WorldWideScience

Sample records for strong constant magnetic

  1. Calculation of the structural properties of a strange quark star in the presence of a strong magnetic field using a density dependent bag constant

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Hajar Bahri; Fatemeh Kayanikhoo

    2012-01-01

    We have calculated the structural properties of a strange quark star with a static model in the presence of a strong magnetic field.To this end,we use the MITbag model with a density dependent bag constant.To parameterize the density dependence of the bag constant,we have used our results for the lowest order constrained variational calculation of the asymmetric nuclear matter.By calculating the equation of state of strange quark matter,we have shown that the pressure of this system increases by increasing both density and magnetic field.Finally,we have investigated the effect of density dependence of the bag constant on the structural properties of a strange quark star.

  2. Calculation of magnetic hyperfine constants

    International Nuclear Information System (INIS)

    Bufaical, R.F.; Maffeo, B.; Brandi, H.S.

    1975-01-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used

  3. Wigner functions for fermions in strong magnetic fields

    Science.gov (United States)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  4. Statistical mechanics of a plasma in a very strong magnetic field

    International Nuclear Information System (INIS)

    Psimopoulos, M.

    1980-03-01

    Using the guiding centre model the behaviour of a plasma in the presence of a very strong constant magnetic field has been studied. The validity of the model is discussed and the conditions concerning the strength of the magnetic field are derived. Both the equilibrium and the non-equilibrium aspects of the problem are considered. (U.K.)

  5. Strong coupling constant extraction from high-multiplicity Z +jets observables

    Science.gov (United States)

    Johnson, Mark; Maître, Daniel

    2018-03-01

    We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .

  6. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial ...

  7. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field

    Science.gov (United States)

    Rath, Shubhalaxmi; Patra, Binoy Krishna

    2017-12-01

    We have studied how the equation of state of thermal QCD with two light flavors is modified in a strong magnetic field. We calculate the thermodynamic observables of hot QCD matter up to one-loop, where the magnetic field affects mainly the quark contribution and the gluon part is largely unaffected except for the softening of the screening mass. We have first calculated the pressure of a thermal QCD medium in a strong magnetic field, where the pressure at fixed temperature increases with the magnetic field faster than the increase with the temperature at constant magnetic field. This can be understood from the dominant scale of thermal medium in the strong magnetic field, being the magnetic field, in the same way that the temperature dominates in a thermal medium in the absence of magnetic field. Thus although the presence of a strong magnetic field makes the pressure of hot QCD medium larger, the dependence of pressure on the temperature becomes less steep. Consistent with the above observations, the entropy density is found to decrease with the temperature in the presence of a strong magnetic field which is again consistent with the fact that the strong magnetic field restricts the dynamics of quarks to two dimensions, hence the phase space becomes squeezed resulting in the reduction of number of microstates. Moreover the energy density is seen to decrease and the speed of sound of thermal QCD medium increases in the presence of a strong magnetic field. These findings could have phenomenological implications in heavy ion collisions because the expansion dynamics of the medium produced in non-central ultra-relativistic heavy ion collisions is effectively controlled by both the energy density and the speed of sound.

  8. Magnetically modified biocells in constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.

  9. Strong Nuclear Gravitational Constant and the Origin of Nuclear Planck Scale

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-07-01

    Full Text Available Whether it may be real or an equivalent, existence of strong nuclear gravitational con- stant G S is assumed. Its value is obtained from Fermi’s weak coupling constant as G S = 6 : 9427284 10 31 m 3 / kg sec 2 and thus “nuclear planck scale” is defined. For strong interaction existence of a new integral charged “confined fermion” of mass 105.383 MeV is assumed. Strong coupling constant is the ratio of nuclear planck energy = 11.97 MeV and assumed 105.383 MeV. 1 s = X s is defined as the strong interaction mass gen- erator. With 105.383 MeV fermion various nuclear unit radii are fitted. Fermi’s weak coupling constant, strong interaction upper limit and Bohr radius are fitted at funda- mental level. Considering Fermi’s weak coupling constant and nuclear planck length a new number X e = 294.8183 is defined for fitting the electron, muon and tau rest masses. Using X s , X e and 105 : 32 = 0 : 769 MeV as the Coulombic energy constant = E c , en- ergy coe cients of the semi-empirical mass formula are estimated as E v = 16 : 32 MeV ; E s = 19 : 37 MeV ; E a = 23 : 86 MeV and E p = 11 : 97 MeV where Coulombic energy term contains [ Z ] 2 : Starting from Z = 2 nuclear binding energy is fitted with two terms along with only one energy constant = 0.769 MeV. Finally nucleon mass and its excited levels are fitted.

  10. Measurement of the strong coupling constant using τ decays

    Science.gov (United States)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  11. Constant force linear permanent magnet actuators

    NARCIS (Netherlands)

    Paulides, J.J.H.; Encica, L.; Meessen, K.J.; Lomonova, E.A.

    2009-01-01

    In applications, such as vibration isolation, gravity compensation, pick-and-place machines, etc., there is a need for (long-stroke) passive constant force actuators combined with tubular permanent magnet actuators to minimize the power consumption, hence, passively counteract the gravitational

  12. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  13. X-ray magnetic circular dichroism strongly influenced by non-magnetic cover layers

    International Nuclear Information System (INIS)

    Zafar, K.; Audehm, P.; Schütz, G.; Goering, E.; Pathak, M.; Chetry, K.B.; LeClair, P.R.; Gupta, A.

    2013-01-01

    Highlights: •Energy filtering gives much larger sampling depth and escape length as expected. •XMCD sum rules could be dramatically altered by this effect. •Strong enhanced effective escape length for buried layers. •A “universal curve” model gives semi quantitative understanding. •Buried layers are more sensitive to self-absorption phenomena. -- Abstract: Total electron yield (TEY) is the dominating measurement mode in soft X-ray absorption spectroscopy (XAS), where the sampling depth is generally assumed to be quite small and constant, and the related self-absorption or saturation phenomena are about to be negligible at normal incidence conditions. From the OK edge to CrL 2,3 edge XAS ratio we determined a strong change in the effective electron escape length between an uncovered and a RuO 2 covered CrO 2 sample. This effect has been explained by a simple electron energy filtering model, providing a semi quantitative description. In addition, this simple model can quantitatively describe the unexpected reduced and positive CrL 2,3 X-ray magnetic circular dichroism (XMCD) signal of a RuO 2 /CrO 2 bilayer, while previous results have identified a clear negative Cr magnetization at the RuO 2 /CrO 2 interface. In our case this escape length enhancement has strong impact on the XMCD sum rule results and in general it provides much deeper sampling depth, but also larger self-absorption or saturation effects

  14. Strongly interacting matter in magnetic fields

    CERN Document Server

    Landsteiner, Karl; Schmitt, Andreas; Yee, Ho-Ung

    2013-01-01

    The physics of strongly interacting matter in an external magnetic field is presently emerging as a topic of great cross-disciplinary interest for particle, nuclear, astro- and condensed matter physicists. It is known that strong magnetic fields are created in heavy ion collisions, an insight that has made it possible to study a variety of surprising and intriguing phenomena that emerge from the interplay of quantum anomalies, the topology of non-Abelian gauge fields, and the magnetic field. In particular, the non-trivial topological configurations of the gluon field induce a non-dissipative electric current in the presence of a magnetic field. These phenomena have led to an extended formulation of relativistic hydrodynamics, called chiral magnetohydrodynamics. Hitherto unexpected applications in condensed matter physics include graphene and topological insulators. Other fields of application include astrophysics, where strong magnetic fields exist in magnetars and pulsars. Last but not least, an important ne...

  15. Cooling Curve of Strange Star in Strong Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; LUO Zhi-Quan

    2008-01-01

    In this paper, firstly, we investigate the neutrino emissivity from quark Urca process in strong magnetic field. Then, we discuss the heat capacity of strange stars in strong magnetic field. Finally, we give the cooling curve in strong magnetic field. In order to make a comparison, we also give the corresponding cooling curve in the case of null magnetic field. It turns out that strange stars cool faster in strong magnetic field than that without magnetic field.

  16. Electron gas interacting in a metal, submitted to a strong magnetic field

    International Nuclear Information System (INIS)

    Alcaraz, Francisco Castilho

    1977-01-01

    Using the propagator's technique in the grand ensemble developed by Montroll and Ward we investigate the magnetic properties of an interacting electron gas in a strong magnetic field. The free propagator properly constructed shows that the spin paramagnetism does not have a term with strong temperature dependence, contrary to the result of Isihara. Considering the electron density to be constant, the dHVA oscillations in the magnetic susceptibility and sound velocity, considering the effects of first exchange interactions, show only one phase in agreement with experimental result, while Ichimura and Isihara obtained two phases differing by π/2. The effects of first order exchange interactions in the dHVA oscillations of the magnetic susceptibility and sound velocity give rise to an exponential factor in the amplitudes of oscillator (Dingle factor), being the Dingle temperature linearly dependent of the Fermi velocity. The calculations of the ring diagram contribution to the grand partition function, show that the approximation used by Isihara for this calculations is not good and the dHVA oscillations of the contributions from the ring diagrams for the grand partition function have a phase differing by π/2 from that obtained by Isihara. (author)

  17. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  18. Multiphoton amplitude in a constant background field

    Science.gov (United States)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  19. Buoyant convection during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1995-02-01

    This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.

  20. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    Science.gov (United States)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  1. Is X-ray emissivity constant on magnetic flux surfaces?

    International Nuclear Information System (INIS)

    Granetz, R.S.; Borras, M.C.

    1997-01-01

    Knowledge of the elongations and shifts of internal magnetic flux surfaces can be used to determine the q profile in elongated tokamak plasmas. X-ray tomography is thought to be a reasonable technique for independently measuring internal flux surface shapes, because it is widely believed that X-ray emissivity should be constant on a magnetic flux surface. In the Alcator C-Mod tokamak, the X-ray tomography diagnostic system consists of four arrays of 38 chords each. A comparison of reconstructed X-ray contours with magnetic flux surfaces shows a small but consistent discrepancy in the radial profile of elongation. Numerous computational tests have been performed to verify these findings, including tests of the sensitivity to calibration and viewing geometry errors, the accuracy of the tomography reconstruction algorithms, and other subtler effects. We conclude that the discrepancy between the X-ray contours and the magnetic flux surfaces is real, leading to the conclusion that X-ray emissivity is not exactly constant on a flux surface. (orig.)

  2. Hypernuclear matter in strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)

    2013-01-17

    Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.

  3. Mechanics of magnetic fluid column in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Polunin, V.M.; Ryapolov, P.A., E-mail: r-piter@yandex.ru; Platonov, V.B.

    2017-06-01

    Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.

  4. Regular and chaotic motion of two dimensional electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Bar-Lev, Oded; Levit, Shimon.

    1992-05-01

    For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)

  5. Polarization of electron-positron vacuum by strong magnetic field in theory with fundamental mass

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.; ); Rodionov, V.N.

    2003-01-01

    The exact Lagrangian function of the intensive constant magnetic field, replacing the Heisenberg-Euler Lagrangian in the traditional quantum electrodynamics, is calculated within the frames of the theory with the fundamental mass in the single-loop approximation. It is established that the obtained generalization of the Lagrangian function is substantial by arbitrary values of the magnetic field. The calculated Lagrangian in the weak field coincides with the known Heisenberg-Euler formula. The Lagrangian dependence on the field in the extremely strong fields completely disappears and it tends in this area to the threshold value, which is determined by the fundamental and lepton mass ratio [ru

  6. Hydrogen atoms in a strong magnetic field

    International Nuclear Information System (INIS)

    Santos, R.R. dos.

    1975-07-01

    The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt

  7. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  8. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....

  9. Spectra of magnetic chain graphs: coupling constant perturbations

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Manko, S. S.

    2015-01-01

    Roč. 48, č. 12 (2015), s. 125302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum graph * magnetic field * coupling constant perturbation * eigenvalues in gaps * weak coupling Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  10. Dual field theory of strong interactions

    International Nuclear Information System (INIS)

    Akers, D.

    1987-01-01

    A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant α = 1/137

  11. Preliminary Planck constant measurements via UME oscillating magnet Kibble balance

    Science.gov (United States)

    Ahmedov, H.; Babayiğit Aşkın, N.; Korutlu, B.; Orhan, R.

    2018-06-01

    The UME Kibble balance project was initiated in the second half of 2014. During this period we have studied the theoretical aspects of Kibble balances, in which an oscillating magnet generates AC Faraday’s voltage in a stationary coil, and constructed a trial version to implement this idea. The remarkable feature of this approach is that it can establish the link between the Planck constant and a macroscopic mass by one single experiment in the most natural way. Weak dependences on variations of environmental and experimental conditions, small size, and other useful features offered by this novel approach reduce the complexity of the experimental set-up. This paper describes the principles of the oscillating magnet Kibble balance and gives details of the preliminary Planck constant measurements. The value of the Planck constant determined with our apparatus is \\boldsymbol{h}/{{\\boldsymbol{h}}\\boldsymbol 90}={1}{.000} {004}~ , with a relative standard uncertainty of 6 ppm.

  12. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  13. Magnetization of dense neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isaev, A.A.; Yang, J.

    2010-01-01

    Spin polarized states in neutron matter at a strong magnetic field up to 1018 G are considered in the model with the Skyrme effective interaction. Analyzing the self consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter as a function of the density corresponds to the negative spin polarization when the majority of neutron spins are oriented oppositely to the direction of the magnetic field. In addition, beginning from some threshold density dependent on the magnetic field strength, the self-consistent equations have also two other branches of solutions for the spin polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to the free energy corresponding to the thermodynamically preferable branch with the negative spin polarization. As a consequence, at a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state at the high density region in neutron matter which changes into a thermodynamically stable state with the negative spin polarization with decrease in the density at some threshold value. The calculations of the neutron spin polarization parameter, energy per neutron, and chemical potentials of spin-up and spin-down neutrons as functions of the magnetic field strength show that the influence of the magnetic field remains small at the field strengths up to 1017 G.

  14. Radiative properties of strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1993-11-01

    The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal

  15. LDA+DMFT Approach to Magnetocrystalline Anisotropy of Strong Magnets

    Directory of Open Access Journals (Sweden)

    Jian-Xin Zhu

    2014-05-01

    Full Text Available The new challenges posed by the need of finding strong rare-earth-free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE. We argue that correlated electron effects, which are normally underestimated in band-structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here, we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement, and the MAE of YCo_{5}.

  16. Matter and Radiation in Strong Magnetic Fields of Neutron Stars

    International Nuclear Information System (INIS)

    Lai, D

    2006-01-01

    Neutron stars are found to possess magnetic fields ranging from 10 8 G to 10 15 G, much larger than achievable in terrestrial laboratories. Understanding the properties of matter and radiative transfer in strong magnetic fields is essential for the proper interpretation of various observations of magnetic neutron stars, including radio pulsars and magnetars. This paper reviews the atomic/molecular physics and condensed matter physics in strong magnetic fields, as well as recent works on modeling radiation from magnetized neutron star atmospheres/surface layers

  17. Strong-coupling constant at three loops in momentum subtraction scheme

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.; Russian Academy of Sciences, Moscow; Kniehl, B.A.; Steinhauser, M.

    2008-12-01

    In this paper we compute the three-loop corrections to the β function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM β function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  18. Strong-coupling constant at three loops in momentum subtraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Chetyrkin, K.G. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik]|[Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Kniehl, B.A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Steinhauser, M. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-12-15

    In this paper we compute the three-loop corrections to the {beta} function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM {beta} function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  19. Magnetic Reconnection in Strongly Magnetized Regions of the Low Solar Chromosphere

    Science.gov (United States)

    Ni, Lei; Lukin, Vyacheslav S.; Murphy, Nicholas A.; Lin, Jun

    2018-01-01

    Magnetic reconnection in strongly magnetized regions around the temperature minimum region of the low solar atmosphere is studied by employing MHD-based simulations of a partially ionized plasma within a reactive 2.5D multi-fluid model. It is shown that in the absence of magnetic nulls in a low β plasma, the ionized and neutral fluid flows are well-coupled throughout the reconnection region. However, non-equilibrium ionization–recombination dynamics play a critical role in determining the structure of the reconnection region, leading to much lower temperature increases and a faster magnetic reconnection rate as compared to simulations that assume plasma to be in ionization–recombination equilibrium. The rate of ionization of the neutral component of the plasma is always faster than recombination within the current sheet region even when the initial plasma β is as high as {β }0=1.46. When the reconnecting magnetic field is in excess of a kilogauss and the plasma β is lower than 0.0145, the initially weakly ionized plasmas can become fully ionized within the reconnection region and the current sheet can be strongly heated to above 2.5× {10}4 K, even as most of the collisionally dissipated magnetic energy is radiated away. The Hall effect increases the reconnection rate slightly, but in the absence of magnetic nulls it does not result in significant asymmetries or change the characteristics of the reconnection current sheet down to meter scales.

  20. Suppression of cooling by strong magnetic fields in white dwarf stars.

    Science.gov (United States)

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-06

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

  1. Precision determination of the strong coupling constant within a global PDF analysis

    NARCIS (Netherlands)

    Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Kassabov, Zahari; Rojo, Juan; Slade, Emma; Ubiali, Maria

    2018-01-01

    We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ based on the NNPDF3.1 determination of parton distributions, which for the first time includes constraints from jet production, top-quark pair differential distributions, and the $Z$ $p_T$ distributions using exact NNLO

  2. Spin echoes of nuclear magnetization diffusing in a constant magnetic field gradient and in a restricted geometry

    International Nuclear Information System (INIS)

    Sen, P.N.; Andre, A.; Axelrod, S.

    1999-01-01

    We study the influence of restriction on Carr - Purcell - Meiboom - Gill spin echoes response of magnetization of spins diffusing in a bounded region in the presence of a constant magnetic field gradient. Depending on three main length scales: L S pore size, L G dephasing length and L D diffusion length during half-echo time, three main regimes of decay have been identified: free, localization and motionally averaging regime. In localization regime, the decay exponent depends on a fractional power (2/3) of the gradient, denoting a strong breakdown of the second cumulant or the Gaussian phase approximation (GPA). In the other two regimes, the exponent depends on the gradient squared, and the GPA holds. We find that the transition from the localization to the motionally averaging regime happens when the magnetic field gradients approach special values, corresponding to branch points of the eigenvalues. Transition from one regime to another as a function of echo number for a certain range of parameters is discussed. In this transition region, the signal shows large oscillations with echo number. For large n, asymptotic behavior sets in as a function of n for the decay exponent per echo. This is true for all values of the parameters L S , L G , and L D . copyright 1999 American Institute of Physics

  3. Neutrino oscillations in strong magnetic fields

    International Nuclear Information System (INIS)

    Likhachev, G.G.; Studenikin, A.I.

    1994-07-01

    Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs

  4. Quantum oscillator on CPn in a constant magnetic field

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We construct the quantum oscillator interacting with a constant magnetic field on complex projective spaces CP N , as well as on their noncompact counterparts, i.e., the N-dimensional Lobachewski spaces L N . We find the spectrum of this system and the complete basis of wave functions. Surprisingly, the inclusion of a magnetic field does not yield any qualitative change in the energy spectrum. For N>1 the magnetic field does not break the superintegrability of the system, whereas for N=1 it preserves the exact solvability of the system. We extend these results to the cones constructed over CP N and L N , and perform the Kustaanheimo-Stiefel transformation of these systems to the three dimensional Coulomb-like systems

  5. Magnetization reversal of a type-II superconductor thin disk under the action of a constant magnetic field

    International Nuclear Information System (INIS)

    Koval'chuk, D.G.; Chornomorets', M.P.

    2010-01-01

    The applicability of relations obtained by Clem and Sanchez for the ac magnetic susceptibility of type-II superconductor thin films to the case where an additional constant magnetic field is applied perpendicularly to the film has been analyzed in the framework of the critical state model. The issues concerning the sample 'memory' and the influence of the magnetic field change prehistory on the current sample state have been discussed. It has been shown that the ac component of the magnetic moment and, hence, the amplitudes of ac magnetic susceptibility harmonics are established within one period of the ac magnetic field irrespective of the field prehistory.

  6. A many-particle adiabatic invariant of strongly magnetized pure electron plasmas

    International Nuclear Information System (INIS)

    Hjorth, P.G.

    1988-01-01

    A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σ j mv 2 j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures T parallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that T parallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation

  7. Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Ivan S., E-mail: ivan.maksymov@uwa.edu.au [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); ARC Centre of Excellence for Nanoscale BioPhotonics, School of Applied Sciences, RMIT University, Melbourne, VIC 3001 (Australia); Hutomo, Jessica; Nam, Donghee; Kostylev, Mikhail [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-05-21

    We demonstrate theoretically a ∼350-fold local enhancement of the intensity of the in-plane microwave magnetic field in multilayered structures made from a magneto-insulating yttrium iron garnet (YIG) layer sandwiched between two non-magnetic layers with a high dielectric constant matching that of YIG. The enhancement is predicted for the excitation regime when the microwave magnetic field is induced inside the multilayer by the transducer of a stripline Broadband Ferromagnetic Resonance (BFMR) setup. By means of a rigorous numerical solution of the Landau-Lifshitz-Gilbert equation consistently with the Maxwell's equations, we investigate the magnetisation dynamics in the multilayer. We reveal a strong photon-magnon coupling, which manifests itself as anti-crossing of the ferromagnetic resonance magnon mode supported by the YIG layer and the electromagnetic resonance mode supported by the whole multilayered structure. The frequency of the magnon mode depends on the external static magnetic field, which in our case is applied tangentially to the multilayer in the direction perpendicular to the microwave magnetic field induced by the stripline of the BFMR setup. The frequency of the electromagnetic mode is independent of the static magnetic field. Consequently, the predicted photon-magnon coupling is sensitive to the applied magnetic field and thus can be used in magnetically tuneable metamaterials based on simultaneously negative permittivity and permeability achievable thanks to the YIG layer. We also suggest that the predicted photon-magnon coupling may find applications in microwave quantum information systems.

  8. Quasiparticles of strongly correlated Fermi liquids at high temperatures and in high magnetic fields

    International Nuclear Information System (INIS)

    Shaginyan, V. R.

    2011-01-01

    Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.

  9. Dirac particle in a constant magnetic field: path integral treatment

    Energy Technology Data Exchange (ETDEWEB)

    Merdaci, A.; Boudiaf, N.; Chetouani, L. [Univ. Mentouri, Constantine (Algeria). Dept. de Physique

    2008-05-15

    The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)

  10. Dirac particle in a constant magnetic field: path integral treatment

    International Nuclear Information System (INIS)

    Merdaci, A.; Boudiaf, N.; Chetouani, L.

    2008-01-01

    The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)

  11. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  12. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  13. Canonical Transform Method for Treating Strongly Anisotropy Magnets

    DEFF Research Database (Denmark)

    Cooke, J. F.; Lindgård, Per-Anker

    1977-01-01

    An infinite-order perturbation approach to the theory of magnetism in magnets with strong single-ion anisotropy is given. This approach is based on a canonical transformation of the system into one with a diagonal crystal field, an effective two-ion anisotropy, and reduced ground-state corrections....... A matrix-element matching procedure is used to obtain an explicit expression for the spin-wave energy to second order. The consequences of this theory are illustrated by an application to a simple example with planar anisotropy and an external magnetic field. A detailed comparison between the results...

  14. Characterizing full matrix constants of piezoelectric single crystals with strong anisotropy using two samples

    Science.gov (United States)

    Tang, Liguo; Zhang, Yang; Cao, Wenwu

    2016-10-01

    Although the self-consistency of the full matrix material constants of a piezoelectric sample obtained by the resonant ultrasonic spectroscopy technique can be guaranteed because all constants come from the same sample, it is a great challenge to determine the constants of a piezoelectric sample with strong anisotropy because it might not be possible to identify enough resonance modes from the resonance spectrum. To overcome this difficulty, we developed a strategy to use two samples of similar geometries to increase the number of easy identifiable modes. Unlike the IEEE resonance methods, sample-to-sample variation here is negligible because the two samples have almost the same dimensions, cut from the same specimen and poled under the same conditions. Using this method, we have measured the full matrix constants of a [011]c poled 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal, which has 17 independent constants. The self-consistency of the obtained results is checked by comparing the calculated elastic stiffness constants c33 D , c44 D , and c55 D with those directly measured ones using the ultrasonic pulse-echo method.

  15. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  16. Application of orbital strong magnet in the extraction of deep orbital magnetic foreign bodies

    Directory of Open Access Journals (Sweden)

    Jin-Chen Jia

    2017-12-01

    Full Text Available AIM: To investigate the surgical method and efficacy of extraction of deep orbital magnetic foreign bodies by mean of an orbital strong magnet. METHODS: A retrospective analysis of clinical data of patients with deep orbital magnetic foreign bodies(OMFBin Hebei Eye Hospital from June 2014 to May 2017 was processed. A total of 23 eyes were enrolled, among them, 14 eyes of extraorbital OMFB, 9 eyes of intraorbital OMFB. The rate of extraction of foreign bodies and the postoperative complications were observed. RESULTS: All eyes of intraorbital foreign bodies were successfully extracted with 100% success rate. Twelve of 14 eyes of extraorbital foreign bodies were extracted with 86% success rate. Mild orbital hemorrhage were found in 2 eyes. There was no other obvious complication such as visual loss, orbital massive hemorrhage or limited ocular movement. CONCLUSION: It's an ideal surgical method to extract the deep orbital magnetic foreign bodies by mean of an orbital strong magnet, with mini-injury, high success rate, short duration and few complications.

  17. On the theory of stationary charged particle ensembles in strongly non-homogeneous azimuthally symmetric magnetic fields

    International Nuclear Information System (INIS)

    Auluck, S.K.H.

    1982-01-01

    A method of treating problems involving strongly nonadiabatic particle orbits in a magnetic field is described for the case when the system is long-lived on the collisional time scale. A canonical distribution P=Z -1 exp-β(H+Ωpsub(theta)) results from maximization of entropy subject to conservation of the Hamiltonian H and canonical angular momentum psub(theta) for an azimuthally symmetric system. By taking the MIGMA problem as an example, the method of determining the constants β,Ω,Z from the average energy, average angular momentum and the total number of particles is illustrated. Associated physical effects are discussed. (author)

  18. Magnetic separation technique for environmental water purification by strong magnetic field generator loading HTS bulk magnets

    International Nuclear Information System (INIS)

    Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.

    2010-01-01

    The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.

  19. Magnetic properties of the strongly correlated chain antiferromagnet KTb(WO4)2

    International Nuclear Information System (INIS)

    Khatsko, E.; Loginov, A.; Cherny, A.; Rykova, A.

    2006-01-01

    The susceptibility and magnetization of a single crystal of KTb(WO 4 ) 2 has been measured in the temperature range 0.5-80 K in magnetic fields up to 6 T. It is shown that KTb(WO 4 ) 2 is an Ising magnet with only one component of the magnetic moment. The three-dimensional phase transition to the antiferromagnetically ordered state has been found below 0.7 K. This transition can be described in the molecular field two-level approximation. The principal exchange constant has been estimated. By using experimental data the magnetic structure of KTb(WO 4 ) 2 is proposed

  20. Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin–spin interactions

    International Nuclear Information System (INIS)

    Vavřinská, Andrea; Zelinka, Jiří; Šebera, Jakub; Sychrovský, Vladimír; Fiala, Radovan; Boelens, Rolf; Sklenář, Vladimír; Trantírek, Lukáš

    2016-01-01

    Heteronuclear and homonuclear direct (D) and indirect (J) spin–spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin–spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely 1 J CH and 3 J HH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy

  1. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to ...

  2. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  3. Touchless attitude correction for satellite with constant magnetic moment

    Science.gov (United States)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  4. [The influence of variable and constant magnetic fields on biota and biological activity of ordinary chernozem soils].

    Science.gov (United States)

    Denisova, T V; Kazeev, K Sh

    2007-01-01

    In model experiments on influence variable magnetic fields of industrial frequency (50 Hz) an induction of 1500 and of 6000 mkTl and the constant magnetic field an induction of 6000 mkTl and of 15000 mkTl during 5 days of exposure on biological properties of chernozem ordinary is shown, that the soil microflora is more sensitive to magnetic fields, than enzymes activity. Bacteria are more sensitive, than microscopic mushrooms. Dehydrogenase it is steady against influence of all variants. Constant magnetic field by the induction of 15000 mkTl rendered practically identical authentic overwhelming influence on catalase and saccharase activity - on 51 and 47% accordingly.

  5. RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Stroman, Wendy; Pohl, Martin

    2009-01-01

    We discuss the emission and transport of polarized radio-band synchrotron radiation near the forward shocks of young shell-type supernova remnants, for which X-ray data indicate a strong amplification of turbulent magnetic field. Modeling the magnetic turbulence through the superposition of waves, we calculate the degree of polarization and the magnetic polarization direction which is at 90 deg. to the conventional electric polarization direction. We find that isotropic strong turbulence will produce weakly polarized radio emission even in the absence of internal Faraday rotation. If anisotropy is imposed on the magnetic-field structure, the degree of polarization can be significantly increased, provided internal Faraday rotation is inefficient. Both for shock compression and a mixture with a homogeneous field, the increase in polarization degree goes along with a fairly precise alignment of the magnetic-polarization angle with the direction of the dominant magnetic-field component, implying tangential magnetic polarization at the rims in the case of shock compression. We compare our model with high-resolution radio polarimetry data of Tycho's remnant. Using the absence of internal Faraday rotation we find a soft limit for the amplitude of magnetic turbulence, δB ∼ 0 . An alternative viable scenario involves anisotropic turbulence with stronger amplitudes in the radial direction, as was observed in recent Magnetohydrodynamics simulations of shocks propagating through a medium with significant density fluctuations.

  6. Heavy quark potential in a static and strong homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-11-15

    We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)

  7. Kinetic theory of wave spectra in semiconductors at the strong constant electric field

    International Nuclear Information System (INIS)

    Grinev, B.V.; Seminozhenko, V.P.; Yatsenko, A.A.

    1984-01-01

    With allowanse made for the effect of strong static electric field on the electronic interaction with collective oscillations in plasms, the Languemure oscillations, ion acoustic instability of plasma with current are considered in the collisionless limit. The electric field dependence of the collisionless damping of transversal wayes is determined borh in the degenerate and the nondegenerate cases. The influence of the constant electric field on the anomalous skineffect isstudied

  8. Ion Motion in a Plasma Interacting with Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Weingarten, A.; Grabowski, C.; Chakrabarti, N.; Maron, Y.; Fruchtmant, A.

    1999-01-01

    The interaction of a plasma with strong magnetic fields takes place in many laboratory experiments and astrophysical plasmas. Applying a strong magnetic field to the plasma may result in plasma displacement, magnetization, or the formation of instabilities. Important phenomena in plasma, such as the energy transport and the momentum balance, take a different form in each case. We study this interaction in a plasma that carries a short-duration (80-ns) current pulse, generating a magnetic field of up to 17 kG. The evolution of the magnetic field, plasma density, ion velocities, and electric fields are determined before and during the current pulse. The dependence of the plasma limiting current on the plasma density and composition are studied and compared to theoretical models based on the different phenomena. When the plasma collisionality is low, three typical velocities should be taken into consideration: the proton and heavier-ion Alfven velocities (v A p and v A h , respectively) and the EMHD magnetic-field penetration velocity into the plasma (v EMHD ). If both Alfven velocities are larger than v EMHD the plasma is pushed ahead of the magnetic piston and the magnetic field energy is dissipated into ion kinetic energy. If v EMHD is the largest of three velocities, the plasma become magnetized and the ions acquire a small axial momentum only. Different ion species may drift in different directions along the current lines. In this case, the magnetic field energy is probably dissipated into electron thermal energy. When vs > V EMHD > vi, as in the case of one of our experiments, ion mass separation occurs. The protons are pushed ahead of the piston while the heavier-ions become magnetized. Since the plasma electrons are unmagnetized they cannot cross the piston, and the heavy ions are probably charge-neutralized by electrons originating from the cathode that are 'born' magnetized

  9. Non-equilibrium magnetic interactions in strongly correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands); Brener, S.; Lichtenstein, A.I. [Institut für Theoretische Physik, Universitat Hamburg, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen (Netherlands)

    2013-06-15

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.

  10. Measurement of the strong coupling constant αs with hadronic jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Gouzevitch, Maxime

    2008-12-01

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant α s . The jets have been selected in the NC DIS events at large momentum transvers 150 2 2 within the limits of the detector acceptance -0.8 Lab T B >5. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on α s (m Z ) has been obtained with the combination ob the three observables at Q 2 >150 GeV 2 : α s (m Z )=0.1180±0.0007(exp.) -0.0034 +0.0050 (th.)±0.0017 (pdf.).

  11. Theory of Spin Waves in Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Cooke, J. F.

    1976-01-01

    A new infinite-order perturbation approach to the theory of spin waves in strongly anisotropic magnets is introduced. The system is transformed into one with effective two-ion anisotropy and considerably reduced ground-state corrections. A general expression for the spin-wave energy, valid to any...

  12. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    Science.gov (United States)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  13. Coupling constants deduced for the resonances in kaon photo-production

    International Nuclear Information System (INIS)

    Cheoun, M. K.; Kim, K. S.; Choi, T. K.

    2004-01-01

    We deduced the coupling constants of nucleon and hyperon resonances, which participate in kaon productions as intermediate states that are formed by electro-magnetic probes and that finally decay into hadronic final states. We used an isobaric model based on an effective Lagrangian approach to describe the processes, in which relevant coupling constants regarding related resonances are effectively determined by fitting available experimental data. Our scheme to deduce the coupling constants was as follows: First, we calculated the lower and the upper limits on the coupling constants by using the experimental decay data available until now and/or theoretical predictions, such as those from quark models and SU(3) symmetry. Second, we exploited those limits as physical constraints on our fitting scheme for the kaon photo-production data. Finally, the deduced values and regions of the coupling constants, which satisfy not only the reaction data but also the decay data, are presented as figures with respect to the strong and the electro-magnetic coupling constants, and their multiplicative values. Our results for the coupling constants give physical values that are more restricted than those allowed by the experimental data nowadays.

  14. MgB2 superconducting particles in a strong electric field

    International Nuclear Information System (INIS)

    Tao, R.; Xu, X.; Amr, E.

    2003-01-01

    The electric-field induced ball formation has been observed with MgB 2 powder in a strong static or quasi-static electric field. The effect of temperature and magnetic field on the ball formation shows surprising features. For quite a wide range of temperature from T c =39 K and below, the ball size is proportional to (1-T/T c ). As the temperature further goes below 20 K, the ball size becomes almost a constant. If MgB 2 particles are in a strong electric field and a moderate magnetic field, the electric-field induced balls align in the magnetic-field direction to form ball chains

  15. Magnetized Langmuir wave packets excited by a strong beam-plasma interaction

    International Nuclear Information System (INIS)

    Pelletier, G.; Sol, H.; Asseo, E.

    1988-01-01

    The physics of beam-plasma interaction, which has been investigated for a long time mostly in relation with solar bursts, is now more widely invoked in various astrophysical contexts such as pulsars, active galactic nuclei, close binaries, cataclysmic variables, γ bursters, and so on. In these situations the interaction is more likely in the spirit of strong Langmuir turbulence rather than in the spirit of quasilinear theory. Many investigations have been done for two opposite extremes, namely, in very weak and in very strong magnetic fields. Very few properties of the strong Langmuir turbulence are known in the most usual astrophysical situation where the magnetic field plays a significant role but is not strong enough to force the electrons into one-dimensional motion. For this case, we analyze the dynamics of Langmuir wave packets and provide new results about the stability of the solitons against transverse perturbations. It turns out that both the averaged Lagrangian method and the adiabatic perturbation method derived from the inverse scattering transform give exactly the same results (which is not obvious in soliton perturbation theory). In particular, they predict the stability of the solitons as long as the electron gyrofrequency is greater than the plasma frequency (strong magnetic field) and their instability against transverse self-modulation in the opposite case (weak magnetic field); moreover, they allow one to deduce the self-similar collapsing oblate cavitons in the latter case. The laws governing the collapse of the wave packets determine the relaxation of the beam in the surrounding medium and we derive a useful formula giving the power loss of the beam. We outline the astrophysical consequences of this investigation

  16. Photometric variability in a warm, strongly magnetic DQ white dwarf, SDSS J103655.39+652252.2

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A. [Department of Physics and Astronomy, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX 75429 (United States); Winget, D. E.; Montgomery, M. H.; Hermes, J. J.; Falcon, Ross E.; Winget, K. I. [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Dufour, Patrick [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7 (Canada); Kepler, S. O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 Porto Alegre 91501-970, RS (Brazil); Bolte, Michael [UCO/Lick Observatory, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); Rubin, Kate H. R. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Liebert, James, E-mail: Kurtis.Williams@tamuc.edu, E-mail: jamesliebert@gmail.com [Emeritus, Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2013-06-01

    We present the discovery of photometric variability in the DQ white dwarf SDSS J103655.39+652252.2 (SDSS J1036+6522). Time-series photometry reveals a coherent monoperiodic modulation at a period of 1115.64751(67) s with an amplitude 0.442% ± 0.024%; no other periodic modulations are observed with amplitudes ≳ 0.13%. The period, amplitude, and phase of this modulation are constant within errors over 16 months. The spectrum of SDSS J1036+6522 shows magnetic splitting of carbon lines, and we use Paschen-Back formalism to develop a grid of model atmospheres for mixed carbon and helium atmospheres. Our models, while reliant on several simplistic assumptions, nevertheless match the major spectral and photometric properties of the star with a self-consistent set of parameters: T {sub eff} ≈ 15, 500 K, log g ≈ 9, log (C/He) = –1.0, and a mean magnetic field strength of 3.0 ± 0.2 MG. The temperature and abundances strongly suggest that SDSS J1036+6522 is a transition object between the hot, carbon-dominated DQs and the cool, helium-dominated DQs. The variability of SDSS J1036+6522 has characteristics similar to those of the variable hot carbon-atmosphere white dwarfs (DQVs), however, its temperature is significantly cooler. The pulse profile of SDSS J1036+6522 is nearly sinusoidal, in contrast with the significantly asymmetric pulse shapes of the known magnetic DQVs. If the variability in SDSS J1036+6522 is due to the same mechanism as other DQVs, then the pulse shape is not a definitive diagnostic on the absence of a strong magnetic field in DQVs. It remains unclear whether the root cause of the variability in SDSS J1036+6522 and the other hot DQVs is the same.

  17. Photometric variability in a warm, strongly magnetic DQ white dwarf, SDSS J103655.39+652252.2

    International Nuclear Information System (INIS)

    Williams, Kurtis A.; Winget, D. E.; Montgomery, M. H.; Hermes, J. J.; Falcon, Ross E.; Winget, K. I.; Dufour, Patrick; Kepler, S. O.; Bolte, Michael; Rubin, Kate H. R.; Liebert, James

    2013-01-01

    We present the discovery of photometric variability in the DQ white dwarf SDSS J103655.39+652252.2 (SDSS J1036+6522). Time-series photometry reveals a coherent monoperiodic modulation at a period of 1115.64751(67) s with an amplitude 0.442% ± 0.024%; no other periodic modulations are observed with amplitudes ≳ 0.13%. The period, amplitude, and phase of this modulation are constant within errors over 16 months. The spectrum of SDSS J1036+6522 shows magnetic splitting of carbon lines, and we use Paschen-Back formalism to develop a grid of model atmospheres for mixed carbon and helium atmospheres. Our models, while reliant on several simplistic assumptions, nevertheless match the major spectral and photometric properties of the star with a self-consistent set of parameters: T eff ≈ 15, 500 K, log g ≈ 9, log (C/He) = –1.0, and a mean magnetic field strength of 3.0 ± 0.2 MG. The temperature and abundances strongly suggest that SDSS J1036+6522 is a transition object between the hot, carbon-dominated DQs and the cool, helium-dominated DQs. The variability of SDSS J1036+6522 has characteristics similar to those of the variable hot carbon-atmosphere white dwarfs (DQVs), however, its temperature is significantly cooler. The pulse profile of SDSS J1036+6522 is nearly sinusoidal, in contrast with the significantly asymmetric pulse shapes of the known magnetic DQVs. If the variability in SDSS J1036+6522 is due to the same mechanism as other DQVs, then the pulse shape is not a definitive diagnostic on the absence of a strong magnetic field in DQVs. It remains unclear whether the root cause of the variability in SDSS J1036+6522 and the other hot DQVs is the same.

  18. Kubo formulas for relativistic fluids in strong magnetic fields

    International Nuclear Information System (INIS)

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-01-01

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: → Strong magnetic fields can make charged fluids behave anisotropically. → Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. → We derive Kubo formulas for these transport coefficients.

  19. Confinining properties of QCD in strong magnetic backgrounds

    Directory of Open Access Journals (Sweden)

    Bonati Claudio

    2017-01-01

    Full Text Available Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.

  20. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  1. Statistical Study of Interplanetary Coronal Mass Ejections with Strong Magnetic Fields

    Science.gov (United States)

    Murphy, Matthew E.

    Coronal Mass Ejections (CMEs) with strong magnetic fields (B ) are typically associated with significant Solar Energetic Particle (SEP) events, high solar wind speed and solar flare events. Successful prediction of the arrival time of a CME at Earth is required to maximize the time available for satellite, infrastructure, and space travel programs to take protective action against the coming flux of high-energy particles. It is known that the magnetic field strength of a CME is linked to the strength of a geomagnetic storm on Earth. Unfortunately, the correlations between strong magnetic field CMEs from the entire sun (especially from the far side or non-Earth facing side of the sun) to SEP and flare events, solar source regions and other relevant solar variables are not well known. New correlation studies using an artificial intelligence engine (Eureqa) were performed to study CME events with magnetic field strength readings over 30 nanoteslas (nT) from January 2010 to October 17, 2014. This thesis presents the results of this study, validates Eureqa to obtain previously published results, and presents previously unknown functional relationships between solar source magnetic field data, CME initial speed and the CME magnetic field. These new results enable the development of more accurate CME magnetic field predictions and should help scientists develop better forecasts thereby helping to prevent damage to humanity's space and Earth assets.

  2. Critical point in the QCD phase diagram for extremely strong background magnetic fields

    International Nuclear Information System (INIS)

    Endrödi, Gergely

    2015-01-01

    Lattice simulations have demonstrated that a background (electro)magnetic field reduces the chiral/deconfinement transition temperature of quantum chromodynamics for eB<1 GeV 2 . On the level of observables, this reduction manifests itself in an enhancement of the Polyakov loop and in a suppression of the light quark condensates (inverse magnetic catalysis) in the transition region. In this paper, we report on lattice simulations of 1+1+1-flavor QCD at an unprecedentedly high value of the magnetic field eB=3.25 GeV 2 . Based on the behavior of various observables, it is shown that even at this extremely strong field, inverse magnetic catalysis prevails and the transition, albeit becoming sharper, remains an analytic crossover. In addition, we develop an algorithm to directly simulate the asymptotically strong magnetic field limit of QCD. We find strong evidence for a first-order deconfinement phase transition in this limiting theory, implying the presence of a critical point in the QCD phase diagram. Based on the available lattice data, we estimate the location of the critical point.

  3. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy

    International Nuclear Information System (INIS)

    Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P

    2011-01-01

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  4. Electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Itzykson, C.

    1985-05-01

    We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited

  5. Interaction between Electron Holes in a Strongly Magnetized Plasma

    DEFF Research Database (Denmark)

    Lynov, Jens-Peter; Michelsen, Poul; Pécseli, Hans

    1980-01-01

    The interaction between electron holes in a strongly magnetized, plasma-filled waveguide is investigated by means of computer simulation. Two holes may or may not coalesce, depending on their amplitudes and velocities. The interaction between holes and Trivelpiece-Gould solitons is demonstrated...

  6. On the theory of magnetic field generation by relativistically strong laser radiation

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M.

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields ∼ 100 Mg and greater

  7. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum-field approach do not agree with those obtained in the semi-classical approach. Furthermore, we also find that the anomalous magnetic moment of the proton greatly enhances the production rate about by two orders of magnitude, and that the polar angle of an emitted pion is the same as that of an initial proton.

  8. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    Science.gov (United States)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  9. SU-E-T-227: Could the Alpha/Beta Ratio Change in a Strong Magnetic Field?

    Energy Technology Data Exchange (ETDEWEB)

    Pang, G [Odette Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5, Canada and Sunnybrook Research Institute and Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto (Canada)

    2015-06-15

    Purpose: Magnetic resonance imaging (MRI) is being integrated into radiotherapy delivery for MRI-guided radiotherapy. The presence of a strong magnetic field from a MRI machine during radiotherapy delivery presents a new challenge since the trajectories of electrons liberated by ionizing radiation in patients are strongly dependent on the applied magnetic field. The purpose of this work is to explore the potential effect of a strong magnetic field on the α/β ratio, an important radiobiological parameter in radiotherapy. Methods: Based on the theory of dual radiation action, the α/β ratio can be expressed by an integral of the product of two microdosimetry quantities γ(x) and t(x), where γ(x) is the probability that two energy transfers, a distance x apart, results in a lesion, and t(x) is the proximity function, which is the energy-weighted point-pair distribution of distances between energy transfer points in a track. The quantity t(x) depends on the applied magnetic field. An analytical approach has been used to derive a formula that can be used to calculate the α/β ratio in an extremely strong magnetic field. Results: The α/β ratio has been evaluated in the special case when the applied magnetic field approaches infinity, which gives the upper limit of the potential change of the α/β ratio due to the presence of a strong magnetic field. For V79 Chinese hamster cells it has been shown that the α/β ratio could be increased by 2.90 times for Pd-103, 2.97 times for I-125 and about 2.3 times for Co-60 sources when the applied magnetic field approaches infinity. Conclusion: It has been shown theoretically that the α/β ratio can change in a strong magnetic field, and there could be up to a nearly three-fold increase in the α/β ratio, depending on the strength of the applied magnetic field, the cell type and the radiation used.

  10. Electron gas interacting in a metal, submitted to a strong magnetic field; Gas de eletrons interagentes num metal, sujeito a um campo magnetico forte

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Francisco Castilho

    1977-07-01

    Using the propagator's technique in the grand ensemble developed by Montroll and Ward we investigate the magnetic properties of an interacting electron gas in a strong magnetic field. The free propagator properly constructed shows that the spin paramagnetism does not have a term with strong temperature dependence, contrary to the result of Isihara. Considering the electron density to be constant, the dHVA oscillations in the magnetic susceptibility and sound velocity, considering the effects of first exchange interactions, show only one phase in agreement with experimental result, while Ichimura and Isihara obtained two phases differing by {pi}/2. The effects of first order exchange interactions in the dHVA oscillations of the magnetic susceptibility and sound velocity give rise to an exponential factor in the amplitudes of oscillator (Dingle factor), being the Dingle temperature linearly dependent of the Fermi velocity. The calculations of the ring diagram contribution to the grand partition function, show that the approximation used by Isihara for this calculations is not good and the dHVA oscillations of the contributions from the ring diagrams for the grand partition function have a phase differing by {pi}/2 from that obtained by Isihara. (author)

  11. Electron gas interacting in a metal, submitted to a strong magnetic field; Gas de eletrons interagentes num metal, sujeito a um campo magnetico forte

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Francisco Castilho

    1977-07-01

    Using the propagator's technique in the grand ensemble developed by Montroll and Ward we investigate the magnetic properties of an interacting electron gas in a strong magnetic field. The free propagator properly constructed shows that the spin paramagnetism does not have a term with strong temperature dependence, contrary to the result of Isihara. Considering the electron density to be constant, the dHVA oscillations in the magnetic susceptibility and sound velocity, considering the effects of first exchange interactions, show only one phase in agreement with experimental result, while Ichimura and Isihara obtained two phases differing by {pi}/2. The effects of first order exchange interactions in the dHVA oscillations of the magnetic susceptibility and sound velocity give rise to an exponential factor in the amplitudes of oscillator (Dingle factor), being the Dingle temperature linearly dependent of the Fermi velocity. The calculations of the ring diagram contribution to the grand partition function, show that the approximation used by Isihara for this calculations is not good and the dHVA oscillations of the contributions from the ring diagrams for the grand partition function have a phase differing by {pi}/2 from that obtained by Isihara. (author)

  12. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  13. Spin-polarized states in neutron matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2009-01-01

    Spin-polarized states in neutron matter in strong magnetic fields up to 10 18 G are considered in the model with the Skyrme effective interaction. By analyzing the self-consistent equations at zero temperature, it is shown that a thermodynamically stable branch of solutions for the spin-polarization parameter as a function of density corresponds to the negative spin polarization when the majority of neutron spins are oriented opposite to the direction of the magnetic field. Besides, beginning from some threshold density dependent on magnetic field strength, the self-consistent equations also have two other branches of solutions for the spin-polarization parameter with the positive spin polarization. The free energy corresponding to one of these branches turns out to be very close to that of the thermodynamically preferable branch. As a consequence, in a strong magnetic field, the state with the positive spin polarization can be realized as a metastable state in the high-density region in neutron matter, which, under decreasing density, at some threshold density changes to a thermodynamically stable state with the negative spin polarization.

  14. Positronium-photon and photon-positronium quantum transitions in strong magnetic fields

    International Nuclear Information System (INIS)

    Leinson, L.B.; Oraevskii, V.N.; Radio-Wave Propagation, Academy of Sciences of the USSR)

    1985-01-01

    The wave functions and energy levels of bound electron-positron pairs in a strong magnetic field H>>α 2 H 0 , where H 0 = m 2 0 c 3 /eh = 4.4 x 10 13 G and α = e 2 /hc, are found in the nonrelativistic approximation. The probabilities of one-photon annihilation of positronium and of the inverse transition from a resonance photon to a positronium atom are calculated. It is shown that in a sufficiently strong magnetic field H∼H 0 , when the probability of one-photon annihilation is considerably greater than the probability of two-photon annihilation of positronium, the lifetime of the decay photon with respect to the inverse transformation to a positronium atom is so small that the decay photon cannot propagate freely in the magnetic field. Therefore, the lifetime of the positronium atom in the case H∼H 0 is determined by the two-photon decay. The possibility of the decay γ→γ 1 +γ 2 via intermediate positronium states in a magnetic field with curved field lines is discussed

  15. Progress on The GEMS (Gravity Electro-Magnetism-Strong) Theory of Field Unification and Its Application to Space Problems

    International Nuclear Information System (INIS)

    Brandenburg, J. E.

    2008-01-01

    Progress on the GEMS (Gravity Electro-Magnetism-Strong), theory is presented as well as its application to space problems. The GEMS theory is now validated through the Standard Model of physics. Derivation of the value of the Gravitation constant based on the observed variation of α with energy: results in the formula G congruent with (ℎ/2π)c/M ηc 2 exp(-1/(1.61α)), where α is the fine structure constant,(ℎ/2π), is Planck's constant, c, is the speed of light, and M ηc is the mass of the η cc Charmonium meson that is shown to be identical to that derived from the GEM postulates. Covariant formulation of the GEM theory is now possible through definition of the spacetime metric tensor as a portion of the EM stress tensor normalized by its own trace: g ab = 4(F c a F cb )/(F ab F ab ), it is found that this results in a massless ground state vacuum and a Newtonian gravitation potential φ = 1/2 E 2 /B 2 . It is also found that a Lorentz or flat-space metric is recovered in the limit of a full spectrum ZPF

  16. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  17. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  18. The strong coupling constant of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih

    2010-01-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  19. Particular features of conditioned electrodefensive reflex in white rats on background of constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shust, I.V.; Galantyuk, S.I.; Cheretyanko, Yu.V.

    Study of the influence of magnetic fields upon the higher nervous activity of man and animals has long been attracting the attention of researchers. It is indicated in the literature that magnetic fields inhibit development of conditioned reflexes in planarians, fishes, and mammals. However, there are data of opposite nature as well, indicating accelerated development of the avoidance reflex in animals exposed previously to a magnetic field. Researchers studied formation of a conditioned electrodefensive reflex (CER) in white rats exposed to a constant magnetic field (CMF), and the influence of a vitamin preparation - galascorbin - on formation of the CER in animals exposed to a CMF.

  20. The essential spectrum of Schroedinger operators with asymptotically constant magnetic fields on the Poincare upper-half plane

    International Nuclear Information System (INIS)

    Inahama, Yuzuru; Shirai, Shin-ichi

    2003-01-01

    We study the essential spectrum of the magnetic Schroedinger operators on the Poincare upper-half plane and establish a hyperbolic analog of Iwatsuka's result [J. Math. Kyoto Univ. 23(3), 475-480 (1983)] on the stability of the essential spectrum under perturbations from constant magnetic fields

  1. Diffusion of charged particles in strong large-scale random and regular magnetic fields

    International Nuclear Information System (INIS)

    Mel'nikov, Yu.P.

    2000-01-01

    The nonlinear collision integral for the Green's function averaged over a random magnetic field is transformed using an iteration procedure taking account of the strong random scattering of particles on the correlation length of the random magnetic field. Under this transformation the regular magnetic field is assumed to be uniform at distances of the order of the correlation length. The single-particle Green's functions of the scattered particles in the presence of a regular magnetic field are investigated. The transport coefficients are calculated taking account of the broadening of the cyclotron and Cherenkov resonances as a result of strong random scattering. The mean-free path lengths parallel and perpendicular to the regular magnetic field are found for a power-law spectrum of the random field. The analytical results obtained are compared with the experimental data on the transport ranges of solar and galactic cosmic rays in the interplanetary magnetic field. As a result, the conditions for the propagation of cosmic rays in the interplanetary space and a more accurate idea of the structure of the interplanetary magnetic field are determined

  2. The influence of hyperons and strong magnetic field in neutron star properties

    International Nuclear Information System (INIS)

    Lopes, L.L.; Menezes, D.P.

    2012-01-01

    Neutron stars are among the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the massradius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic fields to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in ,B equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M0, a natural explanation of why we do not know pulsars with masses above 2.0 Mo arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field. (author)

  3. Strong Magnetic Field Characterisation

    Science.gov (United States)

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  4. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  5. Magnetic ordering in tetragonal FeS: Evidence for strong itinerant spin fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Bone, S.; Qiao, R.; Yang, W.; Liu, Z.; Sposito, G.

    2010-11-01

    Mackinawite is a naturally occurring layer-type FeS mineral important in biogeochemical cycles and, more recently, in the development of microbial fuel cells. Conflicting results have been published as to the magnetic properties of this mineral, with Moessbauer spectroscopy indicating no magnetic ordering down to 4.2 K but density functional theory (DFT) predicting an antiferromagnetic ground state, similar to the Fe-based high-temperature superconductors with which it is isostructural and for which it is known that magnetism is suppressed by strong itinerant spin fluctuations. We investigated this latter possibility for mackinawite using photoemission spectroscopy, near-edge x-ray absorption fine structure spectroscopy, and DFT computations. Our Fe 3{sub s} core-level photoemission spectrum of mackinawite showed a clear exchange-energy splitting (2.9 eV) consistent with a 1 {micro}{sub B} magnetic moment on the Fe ions, while the Fe L-edge x-ray absorption spectrum indicated rather delocalized Fe 3{sub d} electrons in mackinawite similar to those in Fe metal. Our DFT computations demonstrated that the ground state of mackinawite is single-stripe antiferromagnetic, with an Fe magnetic moment (2.7 {micro}{sub B}) that is significantly larger than the experimental estimate and has a strong dependence on the S height and lattice parameters. All of these trends signal the existence of strong itinerant spin fluctuations. If spin fluctuations prove to be mediators of electron pairing, we conjecture that mackinawite may be one of the simplest Fe-based superconductors.

  6. Cooling achieved by rotating an anisotropic superconductor in a constant magnetic field: A new perspective

    Directory of Open Access Journals (Sweden)

    Manh-Huong Phan

    2016-12-01

    Full Text Available A new type of rotary coolers based on the temperature change (ΔTrot of an anisotropic superconductor when rotated in a constant magnetic field is proposed. We show that at low temperature the Sommerfeld coefficient γ(B,Θ of a single crystalline superconductor, such as MgB2 and NbS2, sensitively depends on the applied magnetic field (B and the orientation of the crystal axis (Θ, which is related to the electronic entropy (SE and temperature (T via the expression: SE=γT. A simple rotation of the crystal from one axis to one another in a constant magnetic field results in a change in γ and hence SE: ΔSE=ΔγT. A temperature change −ΔTrot ∼ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔTrot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.

  7. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  8. Heisenberg coupling constant predicted for molecular magnets with pairwise spin-contamination correction

    Energy Technology Data Exchange (ETDEWEB)

    Masunov, Artëm E., E-mail: amasunov@ucf.edu [NanoScience Technology Center, Department of Chemistry, and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Gangopadhyay, Shruba [Department of Physics, University of California, Davis, CA 95616 (United States); IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (United States)

    2015-12-15

    New method to eliminate the spin-contamination in broken symmetry density functional theory (BS DFT) calculations is introduced. Unlike conventional spin-purification correction, this method is based on canonical Natural Orbitals (NO) for each high/low spin coupled electron pair. We derive an expression to extract the energy of the pure singlet state given in terms of energy of BS DFT solution, the occupation number of the bonding NO, and the energy of the higher spin state built on these bonding and antibonding NOs (not self-consistent Kohn–Sham orbitals of the high spin state). Compared to the other spin-contamination correction schemes, spin-correction is applied to each correlated electron pair individually. We investigate two binuclear Mn(IV) molecular magnets using this pairwise correction. While one of the molecules is described by magnetic orbitals strongly localized on the metal centers, and spin gap is accurately predicted by Noodleman and Yamaguchi schemes, for the other one the gap is predicted poorly by these schemes due to strong delocalization of the magnetic orbitals onto the ligands. We show our new correction to yield more accurate results in both cases. - Highlights: • Magnetic orbitails obtained for high and low spin states are not related. • Spin-purification correction becomes inaccurate for delocalized magnetic orbitals. • We use the natural orbitals of the broken symmetry state to build high spin state. • This new correction is made separately for each electron pair. • Our spin-purification correction is more accurate for delocalised magnetic orbitals.

  9. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Gomez, Sergio S.

    2006-01-01

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown

  10. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  11. Chiral soliton lattice and charged pion condensation in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Yamamoto, Naoki [Department of Physics, Keio University,Yokohama 223-8522 (Japan)

    2017-04-21

    The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.

  12. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Beard, J.; Billette, J.; Portugall, O. [LNCMI, UPR 3228, CNRS-UFJ-UPS-INSA, 31400 Toulouse (France); Ciardi, A. [LERMA, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112, Paris (France); Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S. [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  13. Classical anomalous absorption in strongly magnetized plasmas and effective shielding length

    International Nuclear Information System (INIS)

    Matsuda, K.

    1981-01-01

    The high-frequency conductivity tensor of a plasma in a magnetic field has been evaluated. An anomalous perpendicular conductivity is obtained for a strongly magnetized plasma. Contrarily to the previous prediction, the effective shielding length is found to be the Debye length even when the Debye length is larger than the electron gyroradius. The effective shielding length is further discussed by presenting the generalized Balescu-Lenard equation

  14. Kubo conductivity of a strongly magnetized two-dimensional plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1971-01-01

    The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.

  15. Magnetic anisotropy study of UGe2in a static high magnetic field

    International Nuclear Information System (INIS)

    Sakon, T; Saito, S; Koyama, K; Awaji, S; Sato, I; Nojima, T; Watanabe, K; Motokawa, M; Sato, N K

    2006-01-01

    UGe 2 has orthorhombic C mmm crystalline symmetry and shows ferromagnetic Heavy-Fermion (HF) Superconductor, which provides superconductivity under pressure in the range from 1.0 GPa to 1.5 GPa. Magnetic field dependence of magnetization shows strong magnetic anisotropy. When a magnetic field is applied parallel to easy axis (a-axis), magnetization presents ferromagnetic behavior. At 4.2 K, which is much lower than the Curie temperature T c = 54 K. Spontaneous magnetization is 1.4 μ B /U, and the magnetization gradually increase with increasing field. On the contrary, when a field is applied parallel to hard axis (b-axis or c-axis), magnetization increases linearly with increasing magnetic field. As for H//b-axis, magnetization is 0.23 μ B /U even at 27 T. Magnetocrystalline anisotropy constant is obtained as 230 [T μ B ] 3.4[kJ/kg] at 4.2 K. This value is comparable with rare-earth magnet Nd 2 Fe 17 , which is typical strongly correlated ferromagnet

  16. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure

    International Nuclear Information System (INIS)

    Recami, E.; Tonin-Zanchin, V.

    1991-01-01

    Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)

  17. Helium atoms and molecules in strong magnetic fields

    Science.gov (United States)

    Mori, K.

    Recent theoretical studies have shown that the neutron star surface may be composed of helium or heavier elements as hydrogen may be quickly depleted by diffuse nuclear burning Chang Bildsten However while Hydrogen atmospheres have been studied in great details atomic data for helium is available only for He ion Pavlov Bezchastnov 2005 We performed Hartree-Fock type calculation for Helium atom and molecules and computed their binding ionization and dissociation energies in strong magnetic fields B sim10 12 -- 10 15 G We will present ionization balance of Helium atmospheres at typical magnetic field strengths and temperatures to radio-quiet neutron stars and AXPs We will also discuss several implications of helium atmosphere to X-ray data of isolated neutron stars focusing on the detected spectral features

  18. On Multiple Reconnection X-lines and Tripolar Perturbations of Strong Guide Magnetic Fields

    Science.gov (United States)

    Eriksson, S.; Lapenta, G.; Newman, D. L.; Phan, T. D.; Gosling, J. T.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.; Goldman, M. V.

    2015-05-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field BM which is almost four times as strong as the reversing field BL. The novel tripolar field consists of two narrow regions of depressed BM, with an observed 7%-14% ΔBM magnitude relative to the external field, which are found adjacent to a wide region of enhanced BM within the exhaust. A stronger reversing field is associated with each BM depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔBM/ΔXN over the normal width ΔXN between a BM minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  19. Permanent magnet assembly producing a strong tilted homogeneous magnetic field: towards magic angle field spinning NMR and MRI.

    Science.gov (United States)

    Sakellariou, Dimitris; Hugon, Cédric; Guiga, Angelo; Aubert, Guy; Cazaux, Sandrine; Hardy, Philippe

    2010-12-01

    We introduce a cylindrical permanent magnet design that generates a homogeneous and strong magnetic field having an arbitrary inclination with respect to the axis of the cylinder. The analytical theory of 3 D magnetostatics has been applied to this problem, and a hybrid magnet structure has been designed. This structure contains two magnets producing a longitudinal and transverse component for the magnetic field, whose amplitudes and homogeneities can be fully controlled by design. A simple prototype has been constructed using inexpensive small cube magnets, and its magnetic field has been mapped using Hall and NMR probe sensors. This magnet can, in principle, be used for magic angle field spinning NMR and MRI experiments allowing for metabolic chemical shift profiling in small living animals. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi2

    Science.gov (United States)

    Chaudhuri, Dipanjan; Cheng, Bing; Yaresko, Alexander; Gibson, Quinn D.; Cava, R. J.; Armitage, N. P.

    2017-08-01

    Strong spin-orbit coupling (SOC) can result in ground states with nontrivial topological properties. The situation is even richer in magnetic systems where the magnetic ordering can potentially have strong influence over the electronic band structure. The class of A MnBi2 (A = Sr, Ca) compounds are important in this context as they are known to host massive Dirac fermions with strongly anisotropic dispersion, which is believed to be due to the interplay between strong SOC and magnetic degrees of freedom. We report the optical conductivity of YbMnBi2, a newly discovered member of this family and a proposed Weyl semimetal (WSM) candidate with broken time reversal symmetry. Together with density functional theory (DFT) band-structure calculations, we show that the complex conductivity can be interpreted as the sum of an intraband Drude response and interband transitions. We argue that the canting of the magnetic moments that has been proposed to be essential for the realization of the WSM in an otherwise antiferromagnetically ordered system is not necessary to explain the optical conductivity. We believe our data is explained qualitatively by the uncanted magnetic structure with a small offset of the chemical potential from strict stochiometry. We find no definitive evidence of a bulk Weyl nodes. Instead, we see signatures of a gapped Dirac dispersion, common in other members of A MnBi2 family or compounds with similar 2D network of Bi atoms. We speculate that the evidence for a WSM seen in ARPES arises through a surface magnetic phase. Such an assumption reconciles all known experimental data.

  1. Effective Induction Heating around Strongly Magnetized Stars

    Science.gov (United States)

    Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.

    2018-05-01

    Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.

  2. Levitation of a magnet by an alternating magnetic field

    International Nuclear Information System (INIS)

    Gough, W; Hunt, M O; Summerskill, W S H

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism. (paper)

  3. Axion production from Landau quantization in the strong magnetic field of magnetars

    Science.gov (United States)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  4. Extension of the Nambu-Jona-Lasinio model predictions at high temperatures and strong external magnetic field

    International Nuclear Information System (INIS)

    Gomes, Karina P.; Farias, R.L.S.; Pinto, M.B.; Krein, G.

    2013-01-01

    Full text: Recently much attention is dedicated to understand the effects of an external magnetic field on the QCD phase diagram. Actually there is a contradiction in the literature: while effective models of QCD like the Nambu-Jona- Lasinio model (NJL) and linear sigma model predict an increase of the critical temperature of chiral symmetry restoration a function of the magnetic field, recent lattice results shows the opposite behavior. The NJL model is nonrenormalizable; then the high momentum part of the model has to be regularized in a phenomenological way. The common practice is to regularize the divergent loop amplitudes with a three-dimensional momentum cutoff, which also sets the energy-momentum scale for the validity of the model. That is, the model cannot be used for studying phenomena involving momenta running in loops larger than the cutoff. In particular, the model cannot be used to study quark matter at high densities. One of the symptoms of this problem is the prediction of vanishing superconducting gaps at high baryon densities, a feature of the model that is solely caused by the use of a regularizing momentum cutoff of the divergent vacuum and also in finite loop integrals. In a renormalizable theory all the dependence on the cutoff can be removed in favor of running physical parameters, like the coupling constants of QED and QCD. The running is given by the renormalization group equations of the theory and is controlled by an energy scale that is adjusted to the scale of the experimental conditions under consideration. In a recent publication, Casalbuoni et al. have introduced the concept of a running coupling constant for the NJL model to extend the applicability of the model to high density. Their arguments are based on making the cutoff density dependent, using an analogy with the natural cutoff of the Debye frequency of phonon oscillations in an ordinary solid. In the present work we follow such an approach introducing a magnetic field

  5. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.

    Science.gov (United States)

    Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N

    2017-11-22

    The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.

  6. Confinement of laser plasma expansion with strong external magnetic field

    Science.gov (United States)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  7. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    Science.gov (United States)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  8. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Eriksson, S.; Gosling, J. T.; Lapenta, G.; Newman, D. L.; Goldman, M. V.; Phan, T. D.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.

    2015-01-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B M   which is almost four times as strong as the reversing field B L . The novel tripolar field consists of two narrow regions of depressed B M , with an observed 7%–14% ΔB M magnitude relative to the external field, which are found adjacent to a wide region of enhanced B M within the exhaust. A stronger reversing field is associated with each B M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB M /ΔX N over the normal width ΔX N between a B M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field

  9. Infrared behavior of closed superstrings in strong magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Kiritsis, E.; Kounnas, C.

    1995-01-01

    A large class of four-dimensional supersymmetric ground states of closed superstrings with a non-zero mass gap are constructed. For such ground states we turn on chromo-magnetic fields as well as curvature. The exact spectrum as function of the chromo-magnetic fields and curvature is derived. We examine the behavior of the spectrum, and find that there is a maximal value for the magnetic field H max similar M planck 2 . At this value all states that couple to the magnetic field become infinitely massive and decouple. We also find tachyonic instabilities for strong background fields of the order O (μM planck ) where μ is the mass gap of the theory. Unlike the field theory case, we find that such ground states become stable again for magnetic fields of the order O (M 2 planck ). The implications of these results are discussed. (orig.)

  10. Transport coefficients of InSb in a strong magnetic field

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-02-01

    Improvement of a superconducting magnet system makes induction of a strong magnetic field easier. This fact gives us a possibility of energy conversion by the Nernst effect. As the first step to study the Nernst element, we measured the conductivity, the Hall coefficient, the thermoelectric power and the Nernst coefficient of the InSb, which is one of candidates of the Nernst elements. From this experiment, it is concluded that the Nernst coefficient is smaller than the theoretical values. On the other hand, the conductivity, the Hall coefficient and the thermoelectric power has the values expected by the theory. (author)

  11. Modified coulomb law in a strongly magnetized vacuum.

    Science.gov (United States)

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  12. Most Probable Failures in LHC Magnets and Time Constants of their Effects on the Beam.

    CERN Document Server

    Gomez Alonso, Andres

    2006-01-01

    During the LHC operation, energies up to 360 MJ will be stored in each proton beam and over 10 GJ in the main electrical circuits. With such high energies, beam losses can quickly lead to important equipment damage. The Machine Protection Systems have been designed to provide reliable protection of the LHC through detection of the failures leading to beam losses and fast dumping of the beams. In order to determine the protection strategies, it is important to know the time constants of the failure effects on the beam. In this report, we give an estimation of the time constants of quenches and powering failures in LHC magnets. The most critical failures are powering failures in certain normal conducting circuits, leading to relevant effects on the beam in ~1 ms. The failures on super conducting magnets leading to fastest losses are quenches. In this case, the effects on the beam can be signficant ~10 ms after the quench occurs.

  13. Equation of state of strange quark matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2012-01-01

    Thermodynamic properties of strange quark matter (SQM) in strong magnetic fields H up to 10 20 G are considered at zero temperature within the MIT bag model. The effects of the pressure anisotropy, exhibiting in the difference between the pressures along and perpendicular to the field direction, become essential at H>H t h , with the estimate 10 17 t h 18 G. The longitudinal pressure vanishes in the critical field H c , which can be somewhat less or larger than 10 18 G, depending on the total baryon number density and bag pressure. As a result, the longitudinal instability occurs in strongly magnetized SQM. The appearance of such instability sets the upper bound on the magnetic field strength which can be reached in the interior of a neutron star with the quark core. The longitudinal and transverse pressures as well as the anisotropic equation of state of SQM are determined under the conditions relevant for the cores of magnetars

  14. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  15. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  16. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  17. Resonances of the helium atom in a strong magnetic field

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter

    2007-01-01

    We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100  a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...

  18. Magnetic properties of metallic impurities with strongly correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Ringel, Matouš

    2009-01-01

    Roč. 115, č. 1 (2009), s. 30-35 ISSN 0587-4246 R&D Projects: GA ČR GA202/07/0644 Institutional research plan: CEZ:AV0Z10100520 Keywords : And erson impurity * strong electron correlations * spin-polarized solution * three-channel parquet equations * magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 0.433, year: 2009 http://przyrbwn.icm.edu.pl/APP/ABSTR/115/a115-1-5.html

  19. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, S.; Gosling, J. T. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department of Mathematics, University of Leuven, Leuven (Belgium); Newman, D. L.; Goldman, M. V. [Center for Integrated Plasma Studies, University of Colorado, Boulder, CO (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Toulouse (France); Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Carr, C. M. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Markidis, S., E-mail: eriksson@lasp.colorado.edu [High Performance Computing and Visualization Department, KTH, Stockholm (Sweden)

    2015-05-20

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B{sub M} {sub  }which is almost four times as strong as the reversing field B{sub L}. The novel tripolar field consists of two narrow regions of depressed B{sub M}, with an observed 7%–14% ΔB{sub M} magnitude relative to the external field, which are found adjacent to a wide region of enhanced B{sub M} within the exhaust. A stronger reversing field is associated with each B{sub M} depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB{sub M}/ΔX{sub N} over the normal width ΔX{sub N} between a B{sub M} minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  20. The exotic molecular ion H43+ in a strong magnetic field

    International Nuclear Information System (INIS)

    Olivares P, H.

    2006-01-01

    Using the variational method, a detailed study of the lowest m = 0, -1 electronic states of the exotic molecular ion H3+ 4 in a strong magnetic field, in the linear symmetric configuration parallel to the direction of the magnetic field is carried out. A extended study of the 1σg ground state (J.C. Lopez and A.Turbiner, Phys. Rev A 62, 022510, 2000) was performed obtaining that the potential energy curve displays a sufficiently deep minimum for finite internuclear distances, indicating the possible existence of the molecular ion H 4 3+ , for magnetic fields of strength B > ∼ 3 x 10 13 G. It is demonstrated that the excited state 1π u , can exist for a magnetic field B = 4.414 x 10 13 G corresponding to the limit of applicability of the non-relativistic theory. (Author)

  1. Diamagnetic (cyclotron) resonance in semiconductors using strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Sosniak, J

    1962-07-01

    Diamagnetic (cyclotron) resonance experiments have been carried out in the semiconductors indium-antimonide (InSb), the indium-arsenide (InAs). Pulsed magnetic fields up to 300,000 gauss and monochromatic infrared radiation of 9 to 13.5 microns wavelength were used to measure the effective mass of the conduction electrons in those materials. The samples were n-type single crystals, with a room temperature electron concentration of 1.9 x 10{sup 16} and 6 x 10{sup 16} per cm{sup 3} in InSb and InAs respectively. Both the InSb and InAs samples showed a strong dependence of the effective mass on the magnetic field. The results show that the conduction bands in those solids are highly non-parabolic. Measurements were also made of the resonance absorption coefficients, which were found to be considerably smaller than the values obtained from simple theory. The effect is explained by assuming that the magnetic field reduces the intrinsic electron density, and that the absorption coefficient depends on the shape of the conduction band. It is postulated as a consequence that the relaxation time of diamagnetic energy levels at high magnetic fields does not differ appreciably from the relaxation time used in the description of conduction processes. (author)

  2. In-medium covariant propagator of baryons under a strong magnetic field: Effect of the intrinsic magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, R.M.; Paoli, A.L. de [Universidad Nacional de La Plata, and IFLP, Departamento de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina)

    2016-11-15

    We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated. (orig.)

  3. Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    International Nuclear Information System (INIS)

    Marchetti, P.A.; Su Zhaobin; Yu Lu

    2001-02-01

    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)xSU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the 'peculiar' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data. (author)

  4. The ATLAS Measurements of Jet Production and the Strong Coupling Constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density in the parton distribution function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8 TeV and 13 TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the dijet cross section at a center-of-mass energy of 13 TeV as a function of the dijet invariant mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (...

  5. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  6. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  7. Superconductivity and magnetic fluctuations developing in the vicinity of strong first-order magnetic transition in CrAs

    International Nuclear Information System (INIS)

    Kotegawa, H; Matsushima, K; Nakahara, S; Tou, H; Kaneyoshi, J; Nishiwaki, T; Matsuoka, E; Sugawara, H; Harima, H

    2017-01-01

    We report single crystal preparation, resistivity, and nuclear quadrupole resonance (NQR) measurements for new pressure-induced superconductor CrAs. In the first part, we present the difference between crystals made by different thermal sequences and methods, and show the sample dependence of superconductivity in CrAs. In the latter part, we show NQR data focusing the microscopic electronic state at the phase boundary between the helimagnetic and the paramagnetic phases. They suggest strongly that a quantum critical point is absent on the pressure-temperature phase diagram of CrAs, because of the strong first-order character of the magnetic transition; however, the spin fluctuations are observed in the paramagnetic phase. The close relationship between the spin fluctuations and superconductivity can be seen even in the vicinity of the first-order magnetic transition in CrAs. (paper)

  8. Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Matjaz Rozman

    2017-04-01

    Full Text Available This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR and a strongly-coupled magnetic resonance (SCMR, for better wireless power transmission (WPT. This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.

  9. Yeast cells proliferation on various strong static magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Otabe, E S; Kuroki, S; Nikawa, J; Matsumoto, Y; Ooba, T; Kiso, K; Hayashi, H

    2009-01-01

    The effect of strong magnetic fields on activities of yeast cells were investigated. Experimental yeast cells were cultured in 5 ml of YPD(Yeast extract Peptone Dextrose) for the number density of yeast cells of 5.0 ±0.2 x 10 6 /ml with various temperatures and magnetic fields up to 10 T. Since the yeast cells were placed in the center of the superconducting magnet, the effect of magnetic force due to the diamagnetism and magnetic gradient was negligibly small. The yeast suspension was opened to air and cultured in shaking condition. The number of yeast cells in the yeast suspension was counted by a counting plate with an optical microscope, and the time dependence of the number density of yeast cells was measured. The time dependence of the number density of yeast cells, ρ, of initial part is analyzed in terms of Malthus equation as given by ρ = ρo exp(kt), where k is the growth coefficient. It is found that, the growth coefficient under the magnetic field is suppressed compared with the control. The growth coefficient decreasing as increasing magnetic field and is saturated at about 5 T. On the other hand, it is found that the suppression of growth of yeast cells by the magnetic field is diminished at high temperatures.

  10. Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.

    Science.gov (United States)

    Kim, S C; Yang, S-R Eric

    2015-10-01

    We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.

  11. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  12. Strongly anisotropic and complex magnetic behavior in EuRhGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bednarchuk, Oleksandr; Kaczorowski, Dariusz, E-mail: D.Kaczorowski@int.pan.wroc.pl

    2015-10-15

    Single crystals of EuRhGe{sub 3} were studied by means of magnetic susceptibility, magnetization, heat capacity, resistivity and magnetoresistance measurements, performed in wide ranges of temperature and magnetic field strength. The compound was characterized as a Curie–Weiss paramagnet, due to divalent Eu ions, that orders antiferromagnetically at T{sub N} = 11.3 K. In the ordered state, EuRhGe{sub 3} exhibits strong magnetic anisotropy. The magnetic moments are probably nearly confined within the ab plane of the tetragonal crystallographic unit cell, and the magnetic propagation vector is likely perpendicular to this plane. The bulk thermodynamic and transport data concordantly suggest that in zero magnetic field the magnetic structure of EuRhGe{sub 3} is incommensurate with the chemical one and bears an amplitude-modulated character. In external magnetic field applied within the easy magnetization plane, two other magnetic structures were detected, each of them having an antiferromagnetic nature. - Highlights: • High-quality single crystals of EuRhGe{sub 3} were prepared. • Low-temperature physical behavior was studied along the main crystallographic directions. • Magnetic phase diagrams for B || ab and B || c were derived • EuRhGe{sub 3} was found highly anisotropic despite L = 0 electronic ground state. • As many as three distinct AFM phases were evidenced for B || ab.

  13. Magnetism of one-dimensional strongly repulsive spin-1 bosons with antiferromagnetic spin-exchange interaction

    International Nuclear Information System (INIS)

    Lee, J. Y.; Guan, X. W.; Batchelor, M. T.; Lee, C.

    2009-01-01

    We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin-exchange interaction via the thermodynamic Bethe ansatz method. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field H is less than the lower critical field H c1 ; (ii) a ferromagnetic phase of atoms in the hyperfine state |F=1, m F =1> when the external magnetic field exceeds the upper critical field H c2 ; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region H c1 c2 . At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired m F =1 bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.

  14. Constants of motion for the planar orbit of a charged particle in a static and uniform magnetic field: the magnetic Laplace–Runge–Lenz vector

    International Nuclear Information System (INIS)

    Velasco-Martínez, D; Kunold, A; Cardoso, J L; Ibarra-Sierra, V G; Sandoval-Santana, J C

    2014-01-01

    In this paper we introduce an alternative approach to studying the motion of a planar charged particle subject to a static uniform magnetic field. It is well known that an electric charge under a uniform magnetic field has a planar motion if its initial velocity is perpendicular to the magnetic field. Although some constants of motion (CsM), as the energy and the angular momentum, have been widely discussed for this system, others have been neglected. We find that the angular momentum, the generator of the magnetic translations and the magnetic Laplace–Runge–Lenz vector are CsM for this particular system. We show also that these three quantities form an orthogonal basis of vectors. The present work addresses many aspects of the motion of a charged particle in a magnetic field that should be useful for students and tutors of the classical mechanics courses at the senior undergraduate level. (paper)

  15. Dirac particles in the field of magnetic monopoles and of strong electric charges

    International Nuclear Information System (INIS)

    Schafer, A.; Muller, B.; Greiner, W.

    1985-01-01

    The field of a magnetic pointlike monopole acts in a similar way on a charged Dirac particle as the field of a very strong electric point charge. To explore this parallel it is constructed a field solution for an extended magnetic-charge distribution. In contrast to what is found for extended electric charges, the Hamiltonian remains nonself-adjoint for an extended magnetic monopole. This suggests that there exist a fundamental difference between the two cases. In particular, the appearance of undefined states for point monopoles is not a consequence of the mere strength of the magnetic-monopole charge, which has a minimum value fixed by Dirac's quantization condition

  16. Bardeen-Cooper-Schrieffer universal constants generalized

    International Nuclear Information System (INIS)

    Hazaimeh, A.H.

    1992-01-01

    Weak- and moderate-coupling BCS superconductivity theory is shown to admit a more general T c formula, wherein T c approaches zero somewhat faster than with the familiar BCS T c -formula. This theory leads to a departure from the universal behavior of the gap-to-T c ratio and is consistent with some recent empirical values for exotic superconductors. This ratio is smaller than the universal BCS value of 3.53 in a way which is consistent with weak electron-boson coupling. Similarly, other universal constants related to specific heat and critical magnetic field are modified. In this dissertation, The author investigates the latter constants for weak-coupling and moderate-coupling and carry out detailed comparisons with experimental data for the cuprates and with the corresponding predictions of strong-coupling theory. This effort is to elucidate the nature of these superconductors with regards to coupling strength within an electron-boson mechanism

  17. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor.

    Science.gov (United States)

    Jan, Luka; Fefer, Dušan; Košmelj, Katarina; Gaberščik, Alenka; Jerman, Igor

    2015-04-01

    The geomagnetic field (GMF) varies over Earth's surface and changes over time, but it is generally not considered as a factor that could influence plant growth. The effects of reduced and enhanced GMFs and a strong static magnetic field on growth and chlorophyll a (Chl a) fluorescence of Lemna minor plants were investigated under controlled conditions. A standard 7 day test was conducted in extreme geomagnetic environments of 4 µT and 100 µT as well as in a strong static magnetic field environment of 150 mT. Specific growth rates as well as slow and fast Chl a fluorescence kinetics were measured after 7 days incubation. The results, compared to those of controls, showed that the reduced GMF significantly stimulated growth rate of the total frond area in the magnetically treated plants. However, the enhanced GMF pointed towards inhibition of growth rate in exposed plants in comparison to control, but the difference was not statistically significant. This trend was not observed in the case of treatments with strong static magnetic fields. Our measurements suggest that the efficiency of photosystem II is not affected by variations in GMF. In contrast, the strong static magnetic field seems to have the potential to increase initial Chl a fluorescence and energy dissipation in Lemna minor plants. © 2015 Wiley Periodicals, Inc.

  18. Magnetic properties engineering of nanopatterned cobalt antidot arrays

    International Nuclear Information System (INIS)

    Kaidatzis, Andreas; Niarchos, Dimitrios; Del Real, Rafael P; Vázquez, Manuel; Alvaro, Raquel; Anguita, José; García-Martín, José Miguel; Luis Palma, Juan; Escrig, Juan

    2016-01-01

    We report on the study of arrays of 60 nm wide cobalt antidots, nanopatterned using focused ion beam milling. Square and hexagonal symmetry arrays have been studied, with varying antidot densities and lattice constant from 150 up to 300 nm. We find a strong increase of the arrays’ magnetic coercivity with respect to the unpatterned film, which is monotonic as the antidot density increases. Additionally, there is a strong influence of the array symmetry to the in-plane magnetic anisotropy: square arrays exhibit fourfold symmetry and hexagonal arrays exhibit sixfold symmetry. The above findings are corroborated by magnetic imaging and micromagnetic modeling, which show the magnetic structure of the arrays to depend strongly on the array morphology. (paper)

  19. Strategy Iteration Is Strongly Polynomial for 2-Player Turn-Based Stochastic Games with a Constant Discount Factor

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Zwick, Uri

    2013-01-01

    Ye [2011] showed recently that the simplex method with Dantzig’s pivoting rule, as well as Howard’s policy iteration algorithm, solve discounted Markov decision processes (MDPs), with a constant discount factor, in strongly polynomial time. More precisely, Ye showed that both algorithms terminate...... terminates after at most O(m1−γ log n1−γ) iterations. Second, and more importantly, we show that the same bound applies to the number of iterations performed by the strategy iteration (or strategy improvement) algorithm, a generalization of Howard’s policy iteration algorithm used for solving 2-player turn-based...... for 2-player turn-based stochastic games; it is strongly polynomial for a fixed discount factor, and exponential otherwise....

  20. MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggli, S. A., E-mail: sarah.jaeggli@nasa.gov [NASA Goddard Space Flight Center, Solar Physics Laboratory, Code 671, Greenbelt, MD 20771 (United States)

    2016-02-10

    Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s{sup −1}. The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium.

  1. MULTI-WAVELENGTH STUDY OF A DELTA-SPOT. I. A REGION OF VERY STRONG, HORIZONTAL MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Jaeggli, S. A.

    2016-01-01

    Active region NOAA 11035 appeared in 2009 December, early in the new solar activity cycle. This region achieved a delta sunspot (δ spot) configuration when parasitic flux emerged near the rotationally leading magnetic polarity and traveled through the penumbra of the largest sunspot in the group. Both visible and infrared imaging spectropolarimetry of the magnetically sensitive Fe i line pairs at 6302 and 15650 Å show large Zeeman splitting in the penumbra between the parasitic umbra and the main sunspot umbra. The polarized Stokes spectra in the strongest field region display anomalous profiles, and strong blueshifts are seen in an adjacent region. Analysis of the profiles is carried out using a Milne–Eddington inversion code capable of fitting either a single magnetic component with stray light or two independent magnetic components to verify the field strength. The inversion results show that the anomalous profiles cannot be produced by the combination of two profiles with moderate magnetic fields. The largest field strengths are 3500–3800 G in close proximity to blueshifts as strong as 3.8 km s −1 . The strong, nearly horizontal magnetic field seen near the polarity inversion line in this region is difficult to understand in the context of a standard model of sunspot magnetohydrostatic equilibrium

  2. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  3. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.

    Science.gov (United States)

    Yun, Won Seok; Lee, J D

    2014-05-21

    The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2).

  4. The Of?p stars of the Magellanic Clouds: Are they strongly magnetic?

    Science.gov (United States)

    Munoz, M.; Wade, G. A.; Nazé, Y.; Bagnulo, S.; Puls, J.

    2018-01-01

    All known Galactic Of?p stars have been shown to host strong, organized, magnetic fields. Recently, five Of?p stars have been discovered in the Magellanic Clouds. They posses photometric (Nazé et al., 2015) and spectroscopic (Walborn et al., 2015) variability compatible with the Oblique Rotator Model (ORM). However, their magnetic fields have yet to be directly detected. We have developed an algorithm allowing for the synthesis of photometric observables based on the Analytic Dynamical Magnetosphere (ADM) model by Owocki et al. (2016). We apply our model to OGLE photometry in order to constrain their magnetic geometries and surface dipole strengths. We predict that the field strengths for some of theses candidate extra-Galactic magnetic stars may be within the detection limits of the FORS2 instrument

  5. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    Science.gov (United States)

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  6. Localized Electron Heating by Strong Guide-Field Magnetic Reconnection

    Science.gov (United States)

    Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team

    2015-11-01

    Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  7. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field

    International Nuclear Information System (INIS)

    Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Yan, Qifan; Ruan, Xiaohui

    2013-01-01

    In this work the experimental investigation of magnetorheological fluids in squeeze mode has been carried out under constant volume with a self-developed device. The magnetorheological fluids were forced to move in all directions in a horizontal plane as the two flat surfaces came together. A pair of Helmholtz coils was used to generate a uniform magnetic field in the compression gap. The normal forces within the gap were systematically studied for different magnetic field, squeeze velocity, particle concentration, viscosity of carrier fluid and initial gap distance. Two regions of behavior were obtained from the normal force versus gap distance curve: elastic deformation and plastic flow. A power law fitting was appropriate for the relation between the normal force and the gap in the plastic flow. The index of the power law was smaller than that predicted by the continuum theory, possibly due to the squeeze strengthening effect and the sealing effect. (paper)

  8. Electron cyclotron maser instability (ECMI in strong magnetic guide field reconnection

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2017-08-01

    Full Text Available The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is

  9. Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection

    Science.gov (United States)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-08-01

    The ECMI model of electromagnetic radiation from electron holes is shown to be applicable to spontaneous magnetic reconnection. We apply it to reconnection in strong current-aligned magnetic guide fields. Such guide fields participate only passively in reconnection, which occurs in the antiparallel components to both sides of the guide-field-aligned current sheets with current carried by kinetic Alfvén waves. Reconnection generates long (the order of hundreds of electron inertial scales) electron exhaust regions at the reconnection site X point, which are extended perpendicular to the current and the guide fields. Exhausts contain a strongly density-depleted hot electron component and have properties similar to electron holes. Exhaust electron momentum space distributions are highly deformed, exhibiting steep gradients transverse to both the reconnecting and guide fields. Such properties suggest application of the ECMI mechanism with the fundamental ECMI X-mode emission beneath the nonrelativistic guide field cyclotron frequency in localized source regions. An outline of the mechanism and its prospects is given. Potential applications are the kilometric radiation (AKR) in auroral physics, solar radio emissions during flares, planetary emissions and astrophysical scenarios (radiation from stars and compact objects) involving the presence of strong magnetic fields and field-aligned currents. Drift of the exhausts along the guide field maps the local field and plasma properties. Escape of radiation from the exhaust and radiation source region still poses a problem. The mechanism can be studied in 2-D particle simulations of strong guide field reconnection which favours 2-D, mapping the deformation of the electron distribution perpendicular to the guide field, and using it in the numerical calculation of the ECMI growth rate. The mechanism suggests also that reconnection in general may become a source of the ECMI with or without guide fields. This is of particular

  10. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  11. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  12. String phase transitions in a strong magnetic field

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Porrati, Massimo

    1993-01-01

    We consider open strings in an external constant magnetic field $H$. For an (infinite) sequence of critical values of $H$ an increasing number of (highest spin component) states lying on the first Regge trajectory becomes tachyonic. In the limit of infinite $H$ all these states are tachyons (with a common tachyonic mass) both in the case of the bosonic string and for the Neveu-Schwarz sector of the fermionic string. This result generalizes to extended object the same instability which occurs in ordinary non-Abelian gauge theories. The Ramond states have always positive square masses as is the case for ordinary QED. The weak field limit of the mass spectrum is the same as for a field theory with gyromagnetic ratio $g_S=2$ for all charged spin states. This behavior suggests a phase transition of the string as it has been argued for the ordinary electroweak theory.

  13. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  14. Charge transfer of He2+ with H in a strong magnetic field

    International Nuclear Information System (INIS)

    Liu Chun-Lei; Zou Shi-Yang; He Bin; Wang Jian-Guo

    2015-01-01

    By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He 2+ +H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models. (paper)

  15. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    International Nuclear Information System (INIS)

    Ning Shuai; Zhan Peng; Wang Wei-Peng; Li Zheng-Cao; Zhang Zheng-Jun

    2014-01-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ∼ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ∼ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Consequence of total lepton number violation in strongly magnetized iron white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V.B. [Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Ricci, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Firenze) (Italy); Šimkovic, F. [Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-842 15, Bratislava (Slovakia); Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Adam, J.; Tater, M. [Institute of Nuclear Physics ASCR, CZ-250 68 Řež (Czech Republic); Truhlík, E., E-mail: truhlik@ujf.cas.cz [Institute of Nuclear Physics ASCR, CZ-250 68 Řež (Czech Republic)

    2015-05-15

    The influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied. It is shown that they can be good candidates for soft gamma-ray repeaters and anomalous X-ray pulsars.

  17. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Science.gov (United States)

    Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong

    2015-01-01

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  18. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-01-14

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  19. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  20. Analysis of the giant magnetostrictive actuator with strong bias magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guangming, E-mail: yy0youxia@163.com; He, Zhongbo; Li, Dongwei; Yang, Zhaoshu; Zhao, Zhenglong

    2015-11-15

    Giant magnetostrictive actuator with strong bias magnetic field is designed to control the injector bullet valve opening and closing. The relationship between actuator displacement amplitude and input signal direction is analyzed. And based on the approximate linearity of strain-magnetic field, second-order system model of the actuator displacement is established. Experimental system suitable for the actuator is designed. The experimental results show that, the square voltage amplitude being 12 V, the actuator displacement amplitude is about 17 μm with backward direction signal input while being 1.5 μm under forward direction signal. From the results, the suitable input direction is confirmed to be backward. With exciting frequncy lower than 200 Hz, the error between the model and experimental result is less than 1.7 μm. So the model is validated under the low-frequency signal input. The testing displacement-voltage curves are approximately straight lines. But due to the biased position, the line slope and the displacement-voltage linearity change as the input voltage changes. - Highlights: • Giant magnetostrictive actuator with strong bias magnetic field is designed. • The relationship between actuator displacement amplitude and input current direction is analyzed. • The model of the actuator displacement is established and its accuracy is verified by the test. • The actuator displacement-voltage curves are achieved by the test, and the curves’ characteristics are analyzed theoretically.

  1. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties.

    Science.gov (United States)

    Tamboli, Mohaseen S; Palei, Prakash K; Patil, Santosh S; Kulkarni, Milind V; Maldar, Noormahmad N; Kale, Bharat B

    2014-09-21

    Herein, poly(methyl methacrylate)-bismuth ferrite (PMMA-BFO) nanocomposites were successfully prepared by an in situ polymerization method for the first time. Initially, the as prepared bismuth ferrite (BFO) nanoparticles were dispersed in the monomer, (methyl methacrylate) by sonication. Benzoyl peroxide was used to initiate the polymerization reaction in ethyl acetate medium. The nanocomposite films were subjected to X-ray diffraction analysis (XRD), (1)H NMR, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), infrared spectroscopy (IR), dielectric and magnetic characterizations. The dielectric measurement of the nanocomposites was investigated at a frequency range of 10 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased value of the dielectric constant with an increase in the loading percentage of BFO as compared to pure PMMA, but also exhibited low dielectric loss values over a wide range of frequencies. The values of the dielectric constant and dielectric loss of the PMMA-BFO5 (5% BFO loading) sample at 1 kHz frequency was found be ~14 and 0.037. The variation of the ferromagnetic response of the nanocomposite was consistent with the varying volume percentage of the nanoparticles. The remnant magnetization (Mr) and saturation magnetization (Ms) values of the composites were found to be enhanced by increasing the loading percentage of BFO. The value of Ms for PMMA-BFO5 was found to be ~6 emu g(-1). The prima facie observations suggest that the nanocomposite is a potential candidate for application in high dielectric constant capacitors. Significantly, based on its magnetic properties the composite will also be useful for use in hard disk components.

  2. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  3. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  4. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    Administrator

    Treating the anisotropy Hamiltonian as perturbation, we compute ... The dependence of DM on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

  5. Evaluation of the strong coupling constant {alpha}{sub s} using the ATLAS inclusive jet cross-section data

    Energy Technology Data Exchange (ETDEWEB)

    Malaescu, B. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Starovoitov, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    We perform a determination of the strong coupling constant using the latest ATLAS inclusive jet cross section data, from proton-proton collisions at {radical}(s)=7 TeV, and their full information on the bin-to-bin correlations. Several procedures for combining the statistical information from the different data inputs are studied and compared. The theoretical prediction is obtained using NLO QCD, and it also includes non-perturbative corrections. Our determination uses inputs with transverse momenta between 45 and 600 GeV, the running of the strong coupling being also tested in this range. Good agreement is observed when comparing our result with the world average at the Z-boson scale, as well as with the most recent results from the Tevatron. (orig.)

  6. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan

    2014-01-01

    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed...... on a Ni thin film on Cu(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented...... pathways toward optical addressing of surface-deposited single-ion magnets....

  7. Optimal laser heating of plasmas confined in strong solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Vitela, J.; Akcasu, A.Z.

    1987-01-01

    Optimal Control Theory is used to analyze the laser-heating of plasmas confined in strong solenoidal magnetic fields. Heating strategies that minimize a linear combination of heating time and total energy spent by the laser system are found. A numerical example is used to illustrate the theory. Results of this example show that by an appropriate modulation of the laser intensity, significant savings in the laser energy are possible with only slight increases in the heating time. However, results may depend strongly on the initial state of the plasma and on the final ion temperature. (orig.)

  8. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    Science.gov (United States)

    Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun

    2014-12-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.

  9. Photoionization of the hydrogen atom in strong magnetic fields

    Science.gov (United States)

    Potekhin, Aleksandr IU.; Pavlov, George G.

    1993-01-01

    The photoionization of the hydrogen atom in magnetic fields B about 10 exp 11 - 10 exp 13 G typical of the surface layers of neutron stars is investigated analytically and numerically. We consider the photoionization from various tightly bound and hydrogen-like states of the atom for photons with arbitrary polarizations and wave-vector directions. It is shown that the length form of the interaction matrix elements is more appropriate in the adiabatic approximation than the velocity form, at least in the most important frequency range omega much less than omega(B), where omega(B) is the electron cyclotron frequency. Use of the length form yields nonzero cross sections for photon polarizations perpendicular to the magnetic field at omega less than omega(B); these cross sections are the ones that most strongly affect the properties of the radiation escaping from an optically thick medium, e.g., from the atmosphere of a neutron star. The results of the numerical calculations are fitted by simple analytical formulas.

  10. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Kenjeres, Sasa

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier-Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell's equations (Biot-Savart/Ampere's law) for treating the imposed magnetic fields. The relevant hydrodynamic and electromagnetic properties of human blood were taken from the literature. The model is then validated for different test cases ranging from a simple cylindrical geometry to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields on the blood flow pattern are presented and analysed. It is concluded that an imposed non-uniform magnetic field can create significant changes in the secondary flow patterns, thus making it possible to use this technique for optimisations of targeted drug delivery

  11. The mean energy loss by neutrino with magnetic moment in strong magnetic field with consideration of positronium contribution to photon dispersion

    Science.gov (United States)

    Mosichkin, A. F.

    2017-11-01

    The process of radiative decay of the neutrino with a magnetic moment in a strong magnetic field with consideration of positronium influence on photon dispersion has been studied. Positronium contribution to the photon polarization operator induces significant modifications of the photon dispersion law and neutrino radiative decay amplitude. It has been shown that the mean energy loss of a neutrino with magnetic a moment significantly increases, when the positronium contribution to photon dispersion is taken into account.

  12. A new purely growing instability in a strongly magnetized nonuniform pair plasma

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2007-01-01

    It is shown that a strongly magnetized nonuniform electron-positron (hereafter referred to as e-p or pair) plasma is unstable against low-frequency (in comparison with the electron gyrofrequency) electrostatic oscillations. For this purpose, a dispersion relation is derived by using the Poisson equation as well as the electron and positron continuity equations with the guiding center drifts for the electron and positron fluids. The dispersion relation admits a purely growing instability in the presence of the equilibrium density and magnetic field inhomogeneities. Physically, instability arises because of the inhomogeneous magnetic field induced differential electron and positron density fluctuations, which do not keep in phase with the electrostatic potential arising from the charge separation in our nonuniform pair plasmas

  13. Bloch–Siegert shift in application to the astrophysical determination of the fundamental constants variation

    International Nuclear Information System (INIS)

    Solovyev, Dmitry

    2013-01-01

    We have evaluated the Bloch–Siegert shift for the different values of magnetic field's strengths defined at astrophysical conditions, i.e. when the stars with the strong surface magnetic fields are taken as a powerful pumping source of radiation. It is found that the additional shift of resonant frequency should be taken into account in the search for the time variation of the fundamental constants. The main conclusion is that the influence of the electromagnetic field should be considered carefully in each special case of the corresponding frequency determination

  14. Coulomb effects on the transport properties of quantum dots in strong magnetic field

    International Nuclear Information System (INIS)

    Moldoveanu, V.; Aldea, A.; Manolescu, A.; Nita, M.

    2000-08-01

    We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Buettiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed for strong magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling. (author)

  15. Strongly disordered superconductors

    International Nuclear Information System (INIS)

    Muttalib, K.A.

    1982-01-01

    We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

  16. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Broderick, A.; Prakash, M.; Lattimer, J. M.

    2000-01-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10 14 G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10 18 G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society

  17. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, A; Prakash, M; Lattimer, J M

    2000-07-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10{sup 14} G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10{sup 18} G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society.

  18. Quark-gluon plasma in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran

    2013-04-15

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  19. Quark-gluon plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2013-04-01

    One of the fundamental problems in subatomic physics is the determination of properties of matter at extreme temperatures, densities and electromagnetic fields. The modern ultrarelativistic heavy-ion experiments are able to study such states (the quark-gluon plasma) and indicate that the physics at extreme conditions differs drastically from what is known from the conventional observations. Also the theoretical methods developed mostly within the perturbative framework face various conceptual problems and need to be replaced by a nonperturbative approach. In this thesis we study the physics of the strongly-coupled quark-gluon plasma in external magnetic fields as well as general electromagnetic and topological properties of the QCD and QCD-like systems. We develop and apply various nonperturbative techniques, based on e.g. gauge-gravity correspondence, lattice QCD simulations, relativistic hydrodynamics and condensed-matter-inspired models.

  20. Properties of color-flavor locked strange quark matter in an external strong magnetic field

    Institute of Scientific and Technical Information of China (English)

    崔帅帅; 彭光雄; 陆振烟; 彭程; 徐建峰

    2015-01-01

    The properties of color-flavor locked strange quark matter in an external strong magnetic field are investigated in a quark model with density-dependent quark masses. Parameters are determined by stability arguments. It is found that the minimum energy per baryon of the color-flavor locked (MCFL) matter decreases with increasing magnetic-field strength in a certain range, which makes MCFL matter more stable than other phases within a proper magnitude of the external magnetic field. However, if the energy of the field itself is added, the total energy per baryon will increase.

  1. Effects of the pulse-driven magnetic field detuning on the calibration of coil constants while using noble gases

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-04-01

    Full Text Available In the calibration of coil constants using the Free Induction Decay (FID signal of noble gases, we analyse the effects of the pulse-driven magnetic field detuning on the calibration results. This method is based on the inverse relation between the π/2 pulse duration and its amplitude. We confirmed that obtaining a precise frequency is a prerequisite for ensuring the accuracy of research using the initial amplitude of the FID signal. In this paper, the spin dynamics of noble gases and its time-domain solution under the driving pulse have been discussed with regard to different detuning ranges. Experimental results are in good agreement with our theoretical predictions, which indicate the correctness of our theoretical deduction. Therefore, the frequency of the pulse-driven magnetic field is an important factor to the calibration of coil constants, it should be determined with a high degree of accuracy.

  2. Strategy iteration is strongly polynomial for 2-player turn-based stochastic games with a constant discount factor

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Zwick, Uri

    2011-01-01

    Ye showed recently that the simplex method with Dantzig pivoting rule, as well as Howard's policy iteration algorithm, solve discounted Markov decision processes (MDPs), with a constant discount factor, in strongly polynomial time. More precisely, Ye showed that both algorithms terminate after...... iterations. Second, and more importantly, we show that the same bound applies to the number of iterations performed by the strategy iteration (or strategy improvement) algorithm, a generalization of Howard's policy iteration algorithm used for solving 2-player turn-based stochastic games with discounted zero...

  3. Local-duality QCD sum rules for strong isospin breaking in the decay constants of heavy-light mesons

    Energy Technology Data Exchange (ETDEWEB)

    Lucha, Wolfgang [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); Melikhov, Dmitri [Austrian Academy of Sciences, Institute for High Energy Physics, Vienna (Austria); M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Vienna, Faculty of Physics, Vienna (Austria); Simula, Silvano [Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Rome (Italy)

    2018-02-15

    We discuss the leptonic decay constants of heavy-light mesons by means of Borel QCD sum rules in the local-duality (LD) limit of infinitely large Borel mass parameter. In this limit, for an appropriate choice of the invariant structures in the QCD correlation functions, all vacuum-condensate contributions vanish and all nonperturbative effects are contained in only one quantity, the effective threshold. We study properties of the LD effective thresholds in the limits of large heavy-quark mass m{sub Q} and small light-quark mass m{sub q}. In the heavy-quark limit, we clarify the role played by the radiative corrections in the effective threshold for reproducing the pQCD expansion of the decay constants of pseudoscalar and vector mesons. We show that the dependence of the meson decay constants on m{sub q} arises predominantly (at the level of 70-80%) from the calculable m{sub q}-dependence of the perturbative spectral densities. Making use of the lattice QCD results for the decay constants of nonstrange and strange pseudoscalar and vector heavy mesons, we obtain solid predictions for the decay constants of heavy-light mesons as functions of m{sub q} in the range from a few to 100 MeV and evaluate the corresponding strong isospin-breaking effects: f{sub D{sup +}} - f{sub D{sup 0}} = (0.96 ± 0.09) MeV, f{sub D}{sup {sub *}{sub +}} - f{sub D}{sup {sub *}{sub 0}} = (1.18 ± 0.35) MeV, f{sub B{sup 0}} - f{sub B{sup +}} = (1.01 ± 0.10) MeV, f{sub B}{sup {sub *}{sub 0}} - f{sub B}{sup {sub *}{sub +}} = (0.89 ± 0.30) MeV. (orig.)

  4. Quantum magnetism in strongly interacting one-dimensional spinor Bose systems

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.

    2015-01-01

    -range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated......Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....

  5. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    Science.gov (United States)

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  6. Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum

    Science.gov (United States)

    Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi

    2006-05-01

    Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.

  7. Multiple scattering of electromagnetic waves in disordered magnetic media localization parameter, energy transport velocity and diffusion constant

    CERN Document Server

    Pinheiro, F A; Martínez, A S

    2001-01-01

    We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...

  8. Semicalssical quantization of interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Levit, S.; Sivan, N.

    1992-01-01

    We represent a semiclassical theory of charged interacting anyons in strong magnetic fields. We apply this theory to a number of few anyons systems including two interacting anyons in the presence of an impurity and three interacting anyons. We discuss the dependence of their energy levels on the statistical parameter and find regions in which this dependence follows very different patterns. The semiclassical arguments allow to correlate these patterns with the change in the character of the classical motion of the system. (author)

  9. A scenario for inflationary magnetogenesis without strong coupling problem

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom); Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX (United Kingdom)

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  10. A scenario for inflationary magnetogenesis without strong coupling problem

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk [Department of Physics, Swansea University, Swansea, SA2 8PP U.K. (United Kingdom)

    2015-03-01

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  11. Can a Hexapole magnet of an ECR Ion Source be too strong?

    CERN Document Server

    Drentje, A G; Kremers, H R; Meyer, D; Mulder, J; Sijbring, J

    1999-01-01

    Experience of many ECRIS designers and users during more than a decade has given a few experimental rules, or "scaling laws". Many of these have been discussed at the ECRIS workshops. After the 1993 workshop it was concluded that the properties of the magnetic trap, in particular the strength of the radial component, determine to a great deal the confinement characteristics. For that reason it was decided at the KVI to choose a very strong magnet for the new 14 GHz ECRIS4 to be used in the Atomic Physics experiments. The hexapole magnet designed by the Giessen group is a good example. The induction, measured 2.5 mm inside the pole tips (i.e. at the wall of the plasma chamber) amounts more than 1.2 T. The measured radial field component Br obeys closely the expression Br= 0.00136 r2. (with B in T, r in mm). The quality of the magnetic trap can be given by the "radial mirror ratio", which is usually defined as R = Bmax / Breson, with Breson equal 0.5 T for a 14 GHz ECRIS. For the KVI magnet this would give R= 2...

  12. Theory of a four-electron 2-D system in a strong magnetic field

    International Nuclear Information System (INIS)

    Yuandong Dai; Bingjian Ni; Fusui Liu.

    1985-10-01

    An orthogonal and complete set for relative motion of four-electron 2-D system in strong magnetic field is given, the energy of ground state of relative motion is calculated. This paper also calculates the energy of ground state whose maximum of single electron angular momentum is limited by the degeneracy under a given magnetic field, obtains the energy minimums corresponding to a fractional quantized Hall effect of 2/5, 2/7, and from it the physical meaning of 'magic number' is interpreted. (author)

  13. Chemical spots on the surface of the strongly magnetic Herbig Ae star HD 101412

    DEFF Research Database (Denmark)

    Järvinen, S. P.; Hubrig, S.; Schöller, M.

    2016-01-01

    Due to the knowledge of the rotation period and the presence of a rather strong surface magnetic field, the sharp-lined young Herbig Ae star HD 101412 with a rotation period of 42 d has become one of the most well-studied targets among the Herbig Ae stars. High-resolution HARPS polarimetric spectra...... that is opposite to the behaviour of the other elements studied. Since classical Ap stars usually show a relationship between the magnetic field geometry and the distribution of element spots, we used in our magnetic field measurements different line samples belonging to the three elements with the most numerous...

  14. Off-specular polarized neutron reflectometry study of magnetic dots with a strong shape anisotropy

    CERN Document Server

    Temst, K; Moshchalkov, V V; Bruynseraede, Y; Fritzsche, H; Jonckheere, R

    2002-01-01

    We have measured the off-specular polarized neutron reflectivity of a regular array of rectangular magnetic polycrystalline Co dots, which were prepared by a combination of electron-beam lithography, molecular beam deposition, and lift-off processes. The dots have a length-to-width ratio of 4:1 imposing a strong shape anisotropy. The intensity of the off-specular satellite reflection was monitored as a function of the magnetic field applied parallel to the rows of dots and in the plane of the sample, allowing us to analyze the magnetization-reversal process using the four spin-polarized cross sections. (orig.)

  15. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    International Nuclear Information System (INIS)

    Guo, Peng; Feng, Jiafeng; Wei, Hongxiang; Han, Xiufeng; Fang, Bin; Zhang, Baoshun; Zeng, Zhongming

    2015-01-01

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed

  16. Working with MRI: An investigation of occupational exposure to strong static magnetic fields and associated symptoms

    NARCIS (Netherlands)

    Schaap, K.

    2015-01-01

    Magnetic resonance imaging (MRI) makes use of electromagnetic fields in the non-ionizing radiation frequency ranges. One of them is a continuously present strong static magnetic field (SMF), which extends up to several meters around the scanner. Each time an MRI worker performs tasks near the

  17. Magnetic field dependent 13C and 1H CIDNP from biradicals. The role of the hyperfine coupling constant

    International Nuclear Information System (INIS)

    Kanter, F.J.J. de; Sagdeev, R.Z.

    1978-01-01

    Magnetic field dependent biradical CIDNP has been observed in the natural abundance 13 C and 1 H NMR spectra taken immediately after irradiation of cyclic ketones in an auxillary magnet. The 13 C field dependence curves differ from the corresponding 1 H curves: The maxima of the curves for the C 11 and C 12 biradicals appear at a higher magnetic field strength, and the 13 C curves are broader than the 1 H curves. These differences are due to the different magnitudes of the hyperfine coupling constants for 13 C and 1 H and can be accounted for by a model based on a stochastic Liouville method which incorporates the dynamics of the biradicals. (Auth.)

  18. The acceleration of a gaseous plasma by intense microwave fields in a constant inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Mourier, Georges

    1971-01-01

    A gaseous plasma excited by a powerful microwave source (up to 300 kW) was studied theoretically and experimentally. The large amplitude electric field excites, in a constant inhomogeneous magnetic field, a plasma near to the electron cyclotron resonance. These particles are accelerated to energies of between 100 and 10000 eV and subsequently drift to the regions of lower magnetic field. The ions are accelerated by the resulting electrostatic forces. Ion and electron currents of some tens of milli-amperes to a few amperes are obtained. The energy of the electrons is limited by their relativistic mass; a three-dimensional of space charge model is set up to describe the particle flow. (author) [fr

  19. Strong magnetic fields, galaxy formation, and the Galactic engine

    International Nuclear Information System (INIS)

    Greyber, H.D.

    1989-01-01

    The strong-magnetic-field model proposed as an energy source for AGN and quasars by Greyber (1961, 1962, 1964, 1967, 1984, 1988, and 1989) is discussed. The basic principles of the model are reviewed; its advantages (in explaining the observed features of AGN and quasars) over models based on a rotating accretion disk are indicated in a table; and its implications for galaxy and quasar formation are explored. The gravitationally bound current loops detected in nearby spiral galaxies are interpreted as weak remnants of the current loops present during their formation. An observational search for a similar loop near the Galactic center is proposed. 27 refs

  20. Statistical Plasma Physics in a Strong Magnetic Field: Paradigms and Problems

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Krommes

    2004-03-19

    An overview is given of certain aspects of fundamental statistical theories as applied to strongly magnetized plasmas. Emphasis is given to the gyrokinetic formalism, the historical development of realizable Markovian closures, and recent results in the statistical theory of turbulent generation of long-wavelength flows that generalize and provide further physical insight to classic calculations of eddy viscosity. A Hamiltonian formulation of turbulent flow generation is described and argued to be very useful.

  1. The quantum oscillator on complex projective space (Lobachewski space) in a constant magnetic field and the issue of generic boundary conditions

    International Nuclear Information System (INIS)

    Giri, Pulak Ranjan

    2007-01-01

    We perform a one-parameter family of self-adjoint extensions characterized by the parameter ω 0 . This allows us to get generic boundary conditions for the quantum oscillator on N-dimensional complex projective space (CP N ) and on its non-compact version, i.e., Lobachewski space (L N ) in the presence of a constant magnetic field. As a result, we get a family of energy spectra for the oscillator. In our formulation the already known result of this oscillator also belongs to the family. We have also obtained an energy spectrum which preserves all the symmetries (full-hidden symmetry and rotational symmetry) of the oscillator. The method of self-adjoint extensions has also been discussed for a conic oscillator in the presence of the constant magnetic field

  2. Centrifugal pumping during Czochralski silicon growth with a strong, non-uniform, axisymmetric magnetic field

    Science.gov (United States)

    Khine, Y. Y.; Walker, J. S.

    1996-08-01

    Centrifugal pumping flows are produced in the melt by the rotations of crystal and crucible during the Czochralski growth of silicon crystals. This paper treats the centrifugal pumping effects with a steady, strong, non-uniform axisymmetric magnetic field. We consider a family of magnetic fields ranging from a uniform axial field to a "cusp" field, which has a purely radial field at the crystal-melt interface and free surface. We present the numerical solutions for the centrifugal pumping flows as the magnetic field is changed continuously from a uniform axial field to a cusp one, and for arbitrary Hartmann number. Since the perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not likely, we also investigate the effects of a slight misalignment.

  3. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    Science.gov (United States)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  4. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...

  5. Chemically induced dynamic nuclear polarization in systems containing large hyperfine coupling constants

    International Nuclear Information System (INIS)

    Roth, H.D.; Hutton, R.S.; Hwang, Kuochu; Turro, N.J.; Welsh, K.M.

    1989-01-01

    Nuclear spin polarization effects induced in radical pairs with one or more strong ( 13 C) hyperfine coupling constants have been evaluated. The pairs were generated by photoinduced α-cleavage or hydrogen abstraction reactions of carbonyl compounds. Several examples illustrate how changes in the magnetic field strength (H 0 ) and the g-factor difference (Δg) affect the general appearance of the resulting CIDNP multiplets. The results bear out an earlier caveat concerning the qualitative interpretation of CIDNP effects observed for multiplets

  6. Rapid characterization of superconducting wires and tapes in strong pulsed magnetic fields

    International Nuclear Information System (INIS)

    Bockstal, L. van; Keyser, A. de; Deschagt, J.; Hopkins, S.C.; Glowacki, B.A.

    2007-01-01

    A new measurement system for rapid characterization of superconducting wires and tapes is developed. The CryoPulse-BI is a system to provide a direct measurement of critical material parameters for superconducting materials when high long pulsed magnetic fields and strong currents are applied. In the experiments, synchronized magnetic fields up to 30 T and current pulses up to 5 kA are generated with adjustable timing. Varying the magnetic field strength, the current through the sample and the BI timing allows for a thorough characterization of the sample and the determination of critical currents. The rapid cycle time of the experiments yields a rapid and thorough determination of the critical parameters. The method has been tested on low T c as well as high T c materials with the field parallel or perpendicular to the current. The discussion covers the current state of the art including a comparison of our results to classical DC characterization measurements

  7. Zero Sound in Neutron Stars with Dense Quark Matter under Strong Magnetic Fields

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2009-01-01

    We study a neutron star with a quark matter core under extremely strong magnetic fields. We investigate the possibility of an Urca process as a mechanism for the cooling of such a star. We found that apart from very particular cases, the Urca process cannot occur. We also study the stability...

  8. The potential around a test charge in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.; Salimullah, M.

    1996-01-01

    The potential of a test dust particle in a magnetized dusty plasma is calculated, taking into account the dielectric constant associated with electrostatic ion-cyclotron waves. Besides the well-known Debye-Hueckel screening potential, an oscillatory potential distribution around a test dust particle is found, which strongly depends on the strength of the external magnetic field. copyright 1996 American Institute of Physics

  9. The thermodynamic spin magnetization of strongly correlated 2d electrons in a silicon inversion layer

    OpenAIRE

    Prus, O.; Yaish, Y.; Reznikov, M.; Sivan, U.; Pudalov, V.

    2002-01-01

    A novel method invented to measure the minute thermodynamic spin magnetization of dilute two dimensional fermions is applied to electrons in a silicon inversion layer. Interplay between the ferromagnetic interaction and disorder enhances the low temperature susceptibility up to 7.5 folds compared with the Pauli susceptibility of non-interacting electrons. The magnetization peaks in the vicinity of the density where transition to strong localization takes place. At the same density, the suscep...

  10. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    Science.gov (United States)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  11. Fast backprojection-based reconstruction of spectral-spatial EPR images from projections with the constant sweep of a magnetic field.

    Science.gov (United States)

    Komarov, Denis A; Hirata, Hiroshi

    2017-08-01

    In this paper, we introduce a procedure for the reconstruction of spectral-spatial EPR images using projections acquired with the constant sweep of a magnetic field. The application of a constant field-sweep and a predetermined data sampling rate simplifies the requirements for EPR imaging instrumentation and facilitates the backprojection-based reconstruction of spectral-spatial images. The proposed approach was applied to the reconstruction of a four-dimensional numerical phantom and to actual spectral-spatial EPR measurements. Image reconstruction using projections with a constant field-sweep was three times faster than the conventional approach with the application of a pseudo-angle and a scan range that depends on the applied field gradient. Spectral-spatial EPR imaging with a constant field-sweep for data acquisition only slightly reduces the signal-to-noise ratio or functional resolution of the resultant images and can be applied together with any common backprojection-based reconstruction algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The mass limit of white dwarfs with strong magnetic fields in general relativity

    International Nuclear Information System (INIS)

    Wen De-Hua; Liu He-Lei; Zhang Xiang-Dong

    2014-01-01

    Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with B D = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account. (geophysics, astronomy, and astrophysics)

  13. Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Lepikhin, N. D.; Pustovitov, V. D.

    2013-01-01

    Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p ‖ and p ⊥ (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p ‖ and p ⊥ are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p ‖ /p ⊥ or p ⊥ /p ‖ . A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p ⊥ with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p ⊥ on a magnetic surface. This does not happen in the other more complex case

  14. On the model dependence of the determination of the strong coupling constant in second order QCD from e+e--annihilation into hadrons

    International Nuclear Information System (INIS)

    Achterberg, O.; D'Agostini, G.; Apel, W.D.; Engler, J.; Fluegge, G.; Forstbauer, B.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Henkes, T.; Hopp, G.; Krueger, M.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Bonneaud, G.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Laplanche, F.; Le Diberder, F.; Mallik, U.; Ros, E.; Veillet, J.J.; Behrend, H.J.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.

    1983-12-01

    Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations. (orig.)

  15. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu(2+)-Polyethyleneimine Interpolyelectrolyte-Metal Complexes.

    Science.gov (United States)

    Demchenko, V; Shtompel', V; Riabov, S; Lysenkov, E

    2015-12-01

    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Сu(2+) cations in the interpolyelectrolyte-metal complex (pectin-Cu(2+)-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu(2+) cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability.

  16. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  17. Corrections for a constant radial magnetic field in the muon g - 2 and electric-dipole-moment experiments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-10-15

    We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)

  18. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties

    Science.gov (United States)

    Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.

    2010-06-01

    Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.

  19. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  20. Assessing the performance of the random phase approximation for exchange and superexchange coupling constants in magnetic crystalline solids

    DEFF Research Database (Denmark)

    Olsen, Thomas

    2017-01-01

    The random phase approximation (RPA) for total energies has previously been shown to provide a qualitatively correct description of static correlation in molecular systems, where density functional theory (DFT) with local functionals are bound to fail. This immediately poses the question of whether...... the RPA is also able to capture the correct physics of strongly correlated solids such asMott insulators. Due to strong electron localization, magnetic interactions in such systems are dominated by superexchange, which in the simplest picture can be regarded as the analog of static correlation...... for molecules. In this paper, we investigate the performance of the RPA for evaluating both superexchange and direct exchange interactions in the magnetic solids NiO, MnO, Na3Cu2SbO6, Sr2CuO3, Sr2CuTeO6, and a monolayer of CrI3, which were chosen to represent a broad variety of magnetic interactions...

  1. A search for strong, ordered magnetic fields in Herbig Ae/Be stars

    Science.gov (United States)

    Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.

    2007-04-01

    The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAe

  2. Engineering Gilbert damping by dilute Gd doping in soft magnetic Fe thin Films

    NARCIS (Netherlands)

    Zhang, W.; Jiang, S.; Wong, P.K.J.; Sun, Li; Wang, Y.K.; Wang, Kai; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; van der Laan, G.; Zhai, Y.

    2014-01-01

    By analyzing the ferromagnetic resonance linewidth, we show that the Gilbert damping constant in soft magnetic Fe thin films can be enhanced by ∼6 times with Gd doping of up to 20%. At the same time, the magnetic easy axis remains in the film plane while the coercivity is strongly reduced after Gd

  3. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  4. Structure of the (0+,1+) mesons Bs0 and Bs1, and the strong coupling constant gBs0BK and gBs1B*K

    International Nuclear Information System (INIS)

    Wang, Z. G.

    2008-01-01

    In this article, we take the point of view that the bottomed (0 + ,1 + ) mesons B s0 and B s1 are the conventional bs meson and calculate the strong coupling constants g B s0 BK and g B s1 B*K with the light-cone QCD sum rules. The numerical values of strong coupling constants g B s1 B*K and g B s0 BK are very large and support the hadronic dressing mechanism. Just like the scalar mesons f 0 (980), a 0 (980), D s0 and axial-vector meson D s1 , the (0 + ,1 + ) bottomed mesons B s0 and B s1 may have small bs kernels of the typical bs meson size. The strong couplings to the hadronic channels (or the virtual mesons loops) may result in smaller masses than the conventional bs mesons in the potential quark models and enrich the pure bs states with other components.

  5. Features of the magnetic field of a rectangular combined function bending magnet

    International Nuclear Information System (INIS)

    Hwang, C.S.; National Chiao Tung Univ., Hsinchu; Chang, C.H.; Hwang, G.J.; Uen, T.M.; Tseng, P.K.; National Taiwan Univ., Taipei

    1996-01-01

    Magnetic field features of the combined function bending magnet with dipole and quadrupole field components are essential for the successful operation of the electron beam trajectory. These fields also dominate the photon beam quality. The vertical magnetic field B y (x,y) calculation is performed by a computer code MAGNET at the magnet center (s = 0). Those results are compared with the 2-D field measurement by the Hall probe mapping system. Also detailed survey has been made of the harmonic field strength and the main features of the fundamental integrated strength, effective length, magnetic symmetry, tilt of the pole face, offset of the field center and the fringe field. The end shims that compensate for the strong end negative sextupole field to increase the good field region for the entire integrated strength are discussed. An important physical feature of this combined function bending magnet is the constant ratio of dipole and quadrupole strength ∫Bds/∫Gds which is expressed as a function of excitation current in the energy range 0.6 to 1.5 GeV

  6. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  7. Inflation with a smooth constant-roll to constant-roll era transition

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  8. MHD shear flows with non-constant transverse magnetic field

    International Nuclear Information System (INIS)

    Núñez, Manuel

    2012-01-01

    Viscous conducting flows parallel to a fixed plate are studied. In contrast with the Hartmann setting, the problem is not linearized near a fixed transverse magnetic field, although the field tends to be transversal far from the wall. While general solutions may be formally obtained for all cases, their behavior is far more clear when the magnetic Prandtl number equals one. We consider two different instances: a fixed magnetic field at the wall, or an insulating sheet. The evolution of the flow and the magnetic field both near the plate and far from it are detailed, analyzing the possibility of reverse flow and instability of the solutions. -- Highlights: ► A conducting shear flow does not leave a transverse magnetic field invariant. ► Solutions are found for all cases, but these are more useful when kinetic and magnetic diffusivities coincide. ► Dirichlet and Neumann conditions on the magnetic field are studied. ► Reverse flow, and eventual instability, are possible.

  9. Corrections for a constant radial magnetic field in the muon \\varvec{g}-2 and electric-dipole-moment experiments in storage rings

    Science.gov (United States)

    Silenko, Alexander J.

    2017-10-01

    We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.

  10. Algebraic non-integrability of magnetic billiards

    International Nuclear Information System (INIS)

    Bialy, Misha; Mironov, Andrey E

    2016-01-01

    We consider billiard ball motion in a convex domain of the Euclidean plane bounded by a piece-wise smooth curve under the action of a constant magnetic field. We show that if there exists a first integral polynomial in the velocities of the magnetic billiard flow, then every smooth piece γ of the boundary must be algebraic, and either is a circle or satisfies very strong restrictions. In particular, it follows that any non-circular magnetic Birkhoff billiard is not algebraically integrable for all but finitely many values of the magnitude of the magnetic field. Moreover, a magnetic billiard in ellipse is not algebraically integrable for all values of the magnitude of the magnetic field. We conjecture that the circle is the only integrable magnetic billiard, not only in the algebraic sense, but also for a broader meaning of integrability. We also introduce what we call outer magnetic billiards. As an application of our method, we prove analogous results on algebraically integrable outer magnetic billiards. (paper)

  11. Constant conditional entropy and related hypotheses

    International Nuclear Information System (INIS)

    Ferrer-i-Cancho, Ramon; Dębowski, Łukasz; Moscoso del Prado Martín, Fermín

    2013-01-01

    Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)

  12. Spin ordered phase transitions in neutron matter under the presence of a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2011-01-01

    In dense neutron matter under the presence of a strong magnetic field, considered in the model with the Skyrme effective interaction, there are possible two types of spin ordered states. In one of them the majority of neutron spins are aligned opposite to magnetic field (thermodynamically preferable state), and in other one the majority of spins are aligned along the field (metastable state). The equation of state, incompressibility modulus and velocity of sound are determined in each case with the aim to find the peculiarities allowing to distinguish between two spin ordered phases.

  13. Measurement of the strong coupling constant {alpha}{sub s} with hadronic jets in deep inelastic scattering; Mesure de la constante de couplage forte {alpha}{sub s} avec les jets hadroniques en diffusion inelastique profonde

    Energy Technology Data Exchange (ETDEWEB)

    Gouzevitch, Maxime

    2008-12-15

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant {alpha}{sub s}. The jets have been selected in the NC DIS events at large momentum transvers 1505. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on {alpha}{sub s}(m{sub Z}) has been obtained with the combination ob the three observables at Q{sup 2}>150 GeV{sup 2}: {alpha}{sub s}(m{sub Z})=0.1180{+-}0.0007(exp.){sub -0.0034}{sup +0.0050}(th.){+-}0.0017(pdf.).

  14. Method for Transformation of Weakly Magnetic Minerals (Hematite, Goethite into Strongly Magnetic Mineral (Magnetite to Improve the Efficiency of Technologies for Oxidized Iron Ores Benefication

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.

    2015-03-01

    Full Text Available A new method for relatively simple transformation of weakly magnetic minerals (goethite (α-FeOOH and hematite (α-Fe2O3 into strongly magnetic mineral (magnetite (Fe3O4 was developed. It was shown, that transformation of structure and magnetic characteristics of go ethite and hematite are realized in the presence of starch at relatively low temperatures (in the range of 300—600 °С. Obtained results open up new possibilities for development of effective technologies for oxidized iron ore beneficiation.

  15. Linear theory of a cold relativistic beam in a strongly magnetized finite-geometry plasma

    International Nuclear Information System (INIS)

    Gagne, R.R.J.; Shoucri, M.M.

    1976-01-01

    The linear theory of a finite-geometry cold relativistic beam propagating in a cold homogeneous finite-geometry plasma, is investigated in the case of a strongly magnetized plasma. The beam is assumed to propagate parallel to the external magnetic field. It is shown that the instability which takes place at the Cherenkov resonance ωapprox. =k/subz/v/subb/ is of the convective type. The effect of the finite geometry on the instability growth rate is studied and is shown to decrease the growth rate, with respect to the infinite geometry, by a factor depending on the ratio of the beam-to-plasma radius

  16. Strong nonreciprocity of phonon polaritons of an insulator at its boundary with an ideal metal or superconductor in a magnetic field

    International Nuclear Information System (INIS)

    Chupis, I.E.; Mamaluy, D.A.

    2000-01-01

    Surface phonon polaritons in a semi-infinite insulator in a constant magnetic field at the boundary with an ideal metal or a superconductor have been considered. These phonon polaritons are induced by dynamic magnetoelectric interaction, which exists in the presence of a magnetic field. The modes of these surface polaritons appreciably differ in opposite directions of the magnetic field or the propagation of the wave. As a result, polaritons of a given optical or infrared frequency propagate only in one direction with respect to the magnetic field, which is the effect of rectification of surface electromagnetic waves. The inversion of the magnetic field results in 'switching on' or 'switching off' of surface polaritons. The existence of radiant surface polariton modes is predicted. (author)

  17. Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures

    Science.gov (United States)

    Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming

    2018-05-01

    We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.

  18. The realization of strong, stray static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2012-01-01

    Roč. 9, č. 1 (2012), s. 71-77 ISSN 1214-9705 Institutional research plan: CEZ:AV0Z30460519 Keywords : magnetic fields * magnetic circuits * permanent NdFeB magnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/materialy/acta_content/2012_01/7_Zezulka.pdf

  19. Dynamics of the plasma injected into the gap of a plasma opening switch across a strong magnetic field

    International Nuclear Information System (INIS)

    Dolgachev, G. I.; Maslennikov, D. D.; Ushakov, A. G.; Fedotkin, A. S.; Khodeev, I. A.; Shvedov, A. A.

    2011-01-01

    A method is proposed to increase the linear charge density transferred through a plasma opening switch (POS) and, accordingly, reduce the POS diameter by enhancing the external magnetic field in the POS gap. Results are presented from experimental studies of the dynamics of the plasma injected into the POS gap across a strong magnetic field. The possibility of closing the POS gap by the plasma injected across an external magnetic field of up to 60 kG is demonstrated.

  20. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.

    2015-01-01

    Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015

  1. Spin-rotation and NMR shielding constants in HCl

    Energy Technology Data Exchange (ETDEWEB)

    Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz [Laboratory of NMR Spectroscopy, Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2013-12-21

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = −53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  2. Spin-rotation and NMR shielding constants in HCl

    International Nuclear Information System (INIS)

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-01-01

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of 1 H 35 Cl are C Cl   = −53.914 kHz and C H   = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values

  3. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    International Nuclear Information System (INIS)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V.; Salyuk, O.Yu.; Golub, V.O.

    2015-01-01

    Magnetic properties of Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 (84 nm) and Bi 2.8 Y 0.2 Fe 5 O 12 (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction

  4. Large Quantum Probability Backflow and the Azimuthal Angle-Angular Momentum Uncertainty Relation for an Electron in a Constant Magnetic Field

    Science.gov (United States)

    Strange, P.

    2012-01-01

    In this paper we demonstrate a surprising aspect of quantum mechanics that is accessible to an undergraduate student. We discuss probability backflow for an electron in a constant magnetic field. It is shown that even for a wavepacket composed entirely of states with negative angular momentum the effective angular momentum can take on positive…

  5. Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields

    NARCIS (Netherlands)

    Kenjeres, S.

    2008-01-01

    The paper reports on a comprehensive mathematical model for simulations of blood flow under the presence of strong non-uniform magnetic fields. The model consists of a set of Navier–Stokes equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s equations

  6. Process γγ → νν-bar in a strong magnetic field

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.

    2003-01-01

    The three-vertex loop amplitude in a strong magnetic field are analyzed in a general form by using the asymptotic behavior of the electron propagator in an external field. The process γγ → νν-bar is studied in terms of the scalar-vector-vector (SVV), pseudoscalar-vector-vector (PVV), vector-vector-vector (VVV), and axial-vector-vector-vector (AVV) combinations of couplings. It is shown that only in the case of the SVV combination does the amplitude grow linearly with increasing magnetic-field strength, the amplitudes evaluated with the other combinations of couplings (PVV, VVV, and AVV) featuring no linearly increasing terms. The process γγ → νν-bar is also studied within the left-right model, which is an extension of the Standard Model of electroweak interactions and which may involve an effective scalar ννee coupling. Possible astrophysical manifestations of this process are discussed

  7. The thermo magnetic instability in hot viscose plasmas

    Science.gov (United States)

    Haghani, A.; Khosravi, A.; Khesali, A.

    2017-10-01

    Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.

  8. Quantum kinematic theory of a point charge in a constant magnetic field

    International Nuclear Information System (INIS)

    Krause, J.

    1996-01-01

    A group-theoretic quantization method is applied to the open-quote open-quote complete symmetry group close-quote close-quote describing the motion of a point charge in a constant magnetic field. Within the regular ray representation, the Schroedinger operator is obtained as the Casimir operator of the extended Lie algebra. Configuration ray representations of the complete group cast the Schroedinger operator into the familiar space-time differential operator. Next, open-quote open-quote group quantization close-quote close-quote yields the superselection rules, which produce irreducible configuration ray representations. In this way, the Schroedinger operator becomes diagonalized, together with the angular momentum. Finally, the evaluation of an invariant integral, over the group manifold, gives rise to the Feynman propagation kernel left-angle t',x'|t,x right-angle of the system. Everything stems from the assumed symmetry group. Neither canonical quantization nor the path-integral method is used in the present analysis. copyright 1996 The American Physical Society

  9. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Strong correlation effects in theoretical STM studies of magnetic adatoms

    Science.gov (United States)

    Dang, Hung T.; dos Santos Dias, Manuel; Liebsch, Ansgar; Lounis, Samir

    2016-03-01

    We present a theoretical study for the scanning tunneling microscopy (STM) spectra of surface-supported magnetic nanostructures, incorporating strong correlation effects. As concrete examples, we study Co and Mn adatoms on the Cu(111) surface, which are expected to represent the opposite limits of Kondo physics and local moment behavior, using a combination of density functional theory and both quantum Monte Carlo and exact diagonalization impurity solvers. We examine in detail the effects of temperature T , correlation strength U , and impurity d electron occupancy Nd on the local density of states. We also study the effective coherence energy scale, i.e., the Kondo temperature TK, which can be extracted from the STM spectra. Theoretical STM spectra are computed as a function of STM tip position relative to each adatom. Because of the multiorbital nature of the adatoms, the STM spectra are shown to consist of a complicated superposition of orbital contributions, with different orbital symmetries, self-energies, and Kondo temperatures. For a Mn adatom, which is close to half-filling, the STM spectra are featureless near the Fermi level. On the other hand, the quasiparticle peak for a Co adatom gives rise to strongly position-dependent Fano line shapes.

  11. Intra-well relaxation process in magnetic fluids subjected to strong polarising fields

    Energy Technology Data Exchange (ETDEWEB)

    Marin, C.N., E-mail: cmarin@physics.uvt.ro [West University of Timisoara, Faculty of Physics, B-dul V. Parvan, No. 4, Timisoara 300223 (Romania); Fannin, P.C. [Department of Electronic and Electrical Engineering, Trinity College, Dublin 2 (Ireland); Malaescu, I.; Barvinschi, P.; Ercuta, A. [West University of Timisoara, Faculty of Physics, B-dul V. Parvan, No. 4, Timisoara 300223 (Romania)

    2012-02-15

    We report on the frequency and field dependent complex magnetic susceptibility measurements of a kerosene-based magnetic fluid with iron oxide nanoparticles, stabilized with oleic acid, in the frequency range 0.1-6 GHz and over the polarising field range of 0-168.4 kA/m. By increasing polarising field, H, a subsidiary loss-peak clearly occurs in the vicinity of the ferromagnetic resonance peak, from which it remains distinct even in strong polarising fields of 168.4 kA/m. This is in contrast to other reported cases in which the intra-well relaxation process is manifested only as a shoulder of the resonance peak, which vanishes in polarising fields larger than that of 100 kA/m. The results of the XRD analysis connected to the anisotropy field results confirm that the investigated sample contains particles of magnetite and of the tetragonal phase of maghemite. Taking into account the characteristics of our sample, the theoretical analysis revealed that the intra-well relaxation process of the small particles of the tetragonal phase of maghemite may be responsible for the subsidiary loss peak of the investigated magnetic fluid. - Highlights: > Intra-well relaxation process in a magnetic fluid is studied. > Sample consists of the tetragonal phase of maghemite and magnetite particles. > A subsidiary relaxation peak is observed in the vicinity of the resonance peak. > Relaxation peak is correlated to the intra-well relaxation process. > It is assigned to the tetragonal phase of maghemite particles.

  12. Anomalous electrodynamics of neutral pion matter in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Department of Mathematics and Natural Sciences, University of Stavanger,N-4036 Stavanger (Norway); Kadam, Saurabh V. [Indian Institute of Science Education and Research (IISER),Pune 411008 (India)

    2017-03-03

    The ground state of quantum chromodynamics in sufficiently strong external magnetic fields and at moderate baryon chemical potential is a chiral soliton lattice (CSL) of neutral pions https://arxiv.org/abs/1609.05213. We investigate the interplay between the CSL structure and dynamical electromagnetic fields. Our main result is that in presence of the CSL background, the two physical photon polarizations and the neutral pion mix, giving rise to two gapped excitations and one gapless mode with a nonrelativistic dispersion relation. The nature of this mode depends on the direction of its propagation, interpolating between a circularly polarized electromagnetic wave https://www.doi.org/10.1103/PhysRevD.93.085036 and a neutral pion surface wave, which in turn arises from the spontaneously broken translation invariance. Quite remarkably, there is a neutral-pion-like mode that remains gapped even in the chiral limit, in seeming contradiction to the Goldstone theorem. Finally, we have a first look at the effect of thermal fluctuations of the CSL, showing that even the soft nonrelativistic excitation does not lead to the Landau-Peierls instability. However, it leads to an anomalous contribution to pressure that scales with temperature and magnetic field as T{sup 5/2}(B/f{sub π}){sup 3/2}.

  13. Nonequilibrium Thermodynamic Treatment of a Warm Plasma in Strong Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Abourabia, A.M.; Shahein, R.A.

    2008-01-01

    In the framework of the irreversible thermodynamics we study a rarefied and collisional warm electron plasma under the effects of external strong magnetic and electric fields which generate small wave amplitudes. We adopt the linear theory and normal mode solution in the MHD model to calculate the perturbations in pressure, mass density, components of velocity, electric and magnetic fields. By applying the second law of thermodynamics it is concluded that the change in the internal energy of the plasma particles predicts whether they gain from or lose energy to the generated waves .The obtained results agree with the physical ground bounded by the positive nature of the entropy production. The predictions have been carried out within the range of the frequency of the generated waves and the distance from the Debye sphere

  14. PDF constraints and extraction of the strong coupling constant from the inclusive jet cross section at 7 TeV

    CERN Document Server

    CMS Collaboration

    2013-01-01

    The recent CMS measurement of the inclusive jet cross section at 7~TeV extends the accessible phase space in jet transverse momentum up to 2 TeV and ranges up to 2.5 in absolute jet rapidity. At the same time the experimental uncertainties are smaller than in previous publications such that these data constrain the parton distribution functions of the proton, notably for the gluon at high fractions of the proton momentum, and provide valuable input to determine the strong coupling at high momentum scales. The impact on the extraction of the parton distribution functions is investigated. Using predictions from theory at next-to-leading order, complemented with electroweak corrections, the strong coupling constant is determined from the inclusive jet cross section to be $\\alpha_S(M_Z) = 0.1185 \\pm 0.0019\\,\\mathrm{(exp.)} \\pm 0.0028\\,\\mathrm{(\\mathrm{PDF})} \\pm 0.0004\\,\\mathrm{(\\mathrm{NP})} ^{+0.0055}_{-0.0022}\\,\\mathrm{(\\mathrm{scale})}$, which is in agreement with the world average.

  15. Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant

    Science.gov (United States)

    Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.

    2017-11-01

    We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.

  16. Elevator mode convection in flows with strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li; Zikanov, Oleg, E-mail: zikanov@umich.edu [Department of Mechanical Engineering, University of Michigan-Dearborn, 48128-1491 Michigan (United States)

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  17. A phototriode instrumented lead glass calorimeter for use in a strong magnetic field in OPAL

    International Nuclear Information System (INIS)

    Jeffreys, P.W.; Brown, R.M.; Carter, A.A.

    1985-07-01

    Results are presented on the use of vacuum phototriodes to instrument lead glass for operation in strong magnetic fields. The first production triodes from Philips [type XP1501/FL] are shown to perform very well giving an energy resolution of 4.8%/√E RMS at 3 GeV. (author)

  18. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    Science.gov (United States)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  19. Classification of particle orbits near the magnetic axis in a tokamak by using constants of motion

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Sugama, Hideo; Okamoto, Masao; Wakatani, Masahiro

    2001-01-01

    A classification of particle orbits near the magnetic axis in a tokamak is presented in a space of constants of motion (COM), which is important to apply Lagrangian formulation of neoclassical transport theory to the region near the axis. Orbit types are distinguished by the number of the turning points of σsub(parallel)=υsub(parallel)/|υsub(parallel)| and σ θ =θ-bar/|θ-bar| on each orbit, where υsub(parallel) is the velocity parallel to the magnetic field, and θ-bar(≡v·∇θ) is the poloidal angular velocity. As a set of COM, (ε, μ, ) is taken, where ε is the energy of a particle, μ is the magnetic moment, and is the bounce-averaged minor radius position of a particle orbit. Compared with a familiar set of COM (υ, ξ s , r s ), where υ is the particle velocity, r s is the minor radius at which an orbit crosses the mid-plane, and ξ s =υsub(parallel)/υ evaluated at the crossing point, the set of COM (ε, μ, ) is more suitable in practice for Lagrangian formulation of neoclassical transport theory, in which the particle diffusion is described by the change of average position of particles by collisions. Near the magnetic axis, it is found that there are overlaps in regions of orbit types in the (ε, μ, ) space and that has a minimum value for a given ε. (author)

  20. Radiative transfer in a strongly magnetized plasma. I. Effects of Anisotropy

    International Nuclear Information System (INIS)

    Nagel, W.

    1981-01-01

    We present results of radiative transfer calculations for radiating slabs and columns of strongly magnetized plasma. The angular dependence of the escaping radiation was found numerically by Feautrier's method, using the differential scattering cross sections derived by Ventura. We also give an approximate analytical expression for the anisotropy of the outgoing radiation, based on a system of two coupled diffusion equations for ordinary and extraordinary photons. Giving the polarization dependence of the beaming pattern of radiating slabs as well as columns, we generalize previous results of Basko and Kanno. Some implications for models of the pulsating X-ray source Her X-1 are discussed

  1. Strong magnetic field generation in laser plasma

    International Nuclear Information System (INIS)

    Nakarmi, J.J.; Jha, L.N.

    1996-12-01

    An attempt has been made to solve the magnetic field evolution equation by using Green function and taking convective, diffusion and nabla n x nabla T as a dominant source term. The maximum magnetic field is obtained to be an order of megagauss. (author). 14 refs, 1 fig

  2. Measurement of jet production with the ATLAS detector and extraction of the strong coupling constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8TeV and 13TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the di-jet cross section at a center-of-mass energy of 13TeV as a function of the di-jet mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (ATEEC) in multi-jet events at a center...

  3. Strong diamagnetism for general domains and applications

    DEFF Research Database (Denmark)

    Fournais, Søren; Helffer, Bernard

    2007-01-01

    We consider the Neumann Laplacian with constant magnetic field on a regular domain. Let $B$ be the strength of the magnetic field, and let $\\lambda_1(B)$ be the first eigenvalue of the magnetic Neumann Laplacian on the domain. It is proved that $B \\mapsto \\lambda_1(B)$ is monotone increasing for ...

  4. Coupling between eddy current and deflection in cantilevered beams in magnetic fields

    International Nuclear Information System (INIS)

    Hua, T.Q.

    1986-01-01

    Experiments were performed to investigate the coupling between eddy currents and deflection in cantilevered beams in longitudinal and transverse magnetic fields. This coupling effect reduces the current, deflection, and material stress to levels far less severe than would be predicted if coupling is disregarded. The experiments were conducted using the FELIX (Fusion ELectromagnetic Induction experiment) facility at the Argonne National Laboratory. The beams, which provide a simple model for the limiter blades in a tokamak fusion reactor, are subjected to crossed time-varying and constant magnetic fields. The time-varying field simulates the decaying field during a plasma disruption and the constant field models the toroidal field. Several test pieces are employed to allow variations in thicknesses and mechanical and electrical properties. Various magnetic field levels and decay time constants of time-varying are used to study the extent of the coupling from weak to strong coupling. The ratios of constant field to time-varying field are kept in the range from 10:1 to 20:1 as would be appropriate to tokamak limiters. Major parameters measured as functions of time are beam deflection, measured with an electro-optical device; total circulating current, measured with a Rogowski coil; strain recorded by strain gauges; and magnetic fields measured with Hall probes

  5. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  6. Photon Splitting in a Strong Magnetic Field: Recalculation and Comparison with Previous Calculations

    International Nuclear Information System (INIS)

    Adler, S.L.; Schubert, C.

    1996-01-01

    We recalculate the amplitude for photon splitting in a strong magnetic field below the pair production threshold, using the world line path integral variant of the Bern-Kosower formalism. Numerical comparison (using programs that we have made available for public access on the Internet) shows that the results of the recalculation are identical to the earlier calculations of Adler and later of Stoneham, and to the recent recalculation by Baier, Milstein, and Shaisultanov. copyright 1996 The American Physical Society

  7. Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity

    Science.gov (United States)

    Ashouri, Majid; Behshad Shafii, Mohammad

    2017-11-01

    The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and counterclockwise in the lower half. In addition, strong circulations are observed around the edges of the permanent magnet surface. The strength of the circulations increase monotonically with the magnetic Rayleigh number. The circulations also increase with the permanent magnet size, but eventually, are suppressed for larger sizes. It is found that there is an optimum size for the permanent magnet due to the contrary effects of the increase in magnetic force and the increase in flow resistance by increasing the size. By increasing the magnetic Rayleigh number or isothermal walls temperature ratio, the heat transfer rate increases.

  8. The process γγ → νν-bar in a strong magnetic field

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.

    2003-01-01

    A general analysis of the three-vertex loop amplitude in a strong magnetic field, based on the asymptotic form of the electron propagator in the field, is performed. In order to investigate the photon-neutrino process γγ → νν-bar, the vertex combinations of the scalar-vector-vector (SVV), pseudoscalar- vector-vector (PVV), 3-vector (VVV), and axial-vector-vector (AVV) types are considered. It is shown that only the SVV amplitude grows linearly with the magnetic-field strength, while in the other amplitudes, PVV, VVV, and AVV, the linearly growing terms are cancelled. The process γγ → νν-bar is investigated in the left-right-symmetric extension of the standard model of electroweak interaction, where the effective scalar ννee coupling could exist. Possible astrophysical manifestations of the considered process are discussed [ru

  9. Investigations of Magnetic Structural Phase Transition of Layered Systems by Moessbauer Effect and by Dielectric Constant Measurements

    International Nuclear Information System (INIS)

    Mulhem, J.; Mostafa, M.; Shaban, H.

    2002-01-01

    Moessbauer Effect (ME) of compounds like (C n H 2 N +1 NH 3 ) 2 -Fe(Π)CL 4 and (CH 2 ) 6 (NH 3 ) 2 Fe(Π)CL 4 have been measured. The results indicate a conted spin antiferromagnet, with transition temperatures and magnetic field strengths according to value of n. Dielectric constant measurements of the above compounds as afunction of temperatures at different selected frequencies also have been carried out. The results confirm existence of structural phase transition shown by Me. (Author's) 10 refs., 6 figs., 1 tab

  10. Ion heating and magnetic flux pile-up in a magnetic reconnection experiment with super-Alfvénic plasma inflows

    Science.gov (United States)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.

    2018-04-01

    This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.

  11. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    Science.gov (United States)

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  12. Magnetic avalanches in manganese-acetate, "magnetic deflagration"

    Science.gov (United States)

    Suzuki, Yoko

    Mn12-acetate, first synthesized in 1980 by Lis, is one example of a class of many molecules called single molecule magnets (SMMs) or molecular nanomagnets. These molecules have several atomic spins strongly coupled together within each molecule. They exhibit interesting quantum mechanical phenomena at low temperatures such as quantum tunneling of magnetization, which was first found with Mn12-acetate in 1996 by Friedman, et al. , and Berry phase oscillations which were measured in Fe8 (another SMM) in 1999 by Wernsdorfer, et al. In addition to possible application as memory storage and qubits for quantum computers, these systems provide the means for studies of mesoscopic physics as well as the interactions of the molecules with their environment, such as phonon, photon, nuclear spin, intermolecular dipole, and exchange interactions. Mn12-acetate has twelve Mn ions magnetically coupled in the center of the molecule yielding a giant spin of S = 10 at low temperature. It also has a large uniaxial anisotropy of 65 K. Below 3 K, magnetization curves show strong hysteresis due to the anisotropy barrier. At thesis temperatures, the spin relaxes through the barrier by quantum tunneling of magnetization, which produces regularly-spaced multiple resonant steps in the hysteresis curve. Magnetic avalanches, first detected by Paulsen et al., also occur for some samples only at low temperature, leading to a very fast single-step reversal of the full magnetization, which clearly differs from relaxation by tunneling. In this thesis, I present the results of detailed experimental studies of two aspects of magnetic avalanche phenomenon: "conditions for the triggering of avalanches" and "propagation of the avalanche front". In the first study, we find the magnetic fields at which avalanches occur are stochastically distributed in a particular range of fields. For the second study, we conducted local time-resolved measurements. The results indicate the magnetization avalanches spread

  13. Lazer-produced plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Kaitmazov, S.D.; Shklovskij, E.I.

    1978-01-01

    Investigations on interaction of laser plasma with the magnetic field in the range of 100-300 kOe are surveyed. Problems associated with the effect of the field on the optical breakdown threshold in gases, the geometry (kinetics) of laser plasma and its radiation are mainly considered. It is noted that the magnetic field may reduce the o tical breakdown threshold in gases, promote the spreading of plasma predominantly in the direction of tice magnetic field, and also affect (increase in the visible range) the radiation intensity of the laser plasma. The effect of the magnetic field on the temperature of the laser plasma is not completely understood yet, but the very fact of existence of this dependence is important; it enables one to search for conditions under which the magnetic field would promote the increase at the temperature of laser plasma

  14. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  15. Determination of the strong coupling constant $\\alpha_s$ in multijet production with the ATLAS detector at the LHC.

    CERN Document Server

    Llorente Merino, Javier; The ATLAS collaboration

    2018-01-01

    A measurement of transverse energy--energy correlations and its asymmetry in $pp$ collisions recorded by the ATLAS detector at the LHC at $\\sqrt{s} = 8$ TeV is presented. The results are intepreted as a precision test of Quantum Chromodynamics, used to determine the strong coupling constant $\\alpha_s(m_Z)$ and to test asymptotic freedom up to scales close to 1 TeV. A global fit to the transverse energy--energy correlation distributions yields $\\alpha_{\\mathrm{s}}(m_Z) = 0.1162 \\pm 0.0011 \\mbox{ (exp.)}^{+0.0084}_{-0.0070} \\mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\\alpha_{\\mathrm{s}}(m_Z) = 0.1196 \\pm 0.0013 \\mbox{ (exp.)}^{+0.0075}_{-0.0045} \\mbox{ (theo.)}$.

  16. Connecting Fundamental Constants

    International Nuclear Information System (INIS)

    Di Mario, D.

    2008-01-01

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a π√(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment

  17. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Eduardo Lenho, E-mail: eduardo.coelho@uva.br [Universidade Veiga de Almeida, 108 Ibituruna St., 20271-020, Rio de Janeiro (Brazil); Chiapparini, Marcelo [Instituto de Física, Universidade do Estado do Rio de Janeiro, 524 São Francisco Xavier St., 20271-020, Rio de Janeiro (Brazil); Negreiros, Rodrigo Picanço [Instituto de Física, Universidade Federal Fluminense, Gal. Milton Tavares de Souza Ave., 24210-346, Rio de Janeiro (Brazil)

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  18. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, 95007 Simferopol (Ukraine); Salyuk, O.Yu. [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine); Golub, V.O., E-mail: golub@imag.kiev.ua [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2015-11-15

    Magnetic properties of Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} (84 nm) and Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction.

  19. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    Science.gov (United States)

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  20. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<magnetic field. There is one special case for which the Thomson cross section is valid irrespective of the magnitudes of ..omega.. and ..omega..sub(c); the forward scattering in the direction of the magnetic field by an electron in the ground state.

  1. Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

    Directory of Open Access Journals (Sweden)

    M. Stiller

    2016-12-01

    Full Text Available The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.

  2. Magneto-optical measurement of anisotropy energy constant(s) for amorphous rare earth, transition metal alloys

    International Nuclear Information System (INIS)

    Uber, R.E.; Mansuripur, M.

    1988-01-01

    Optical investigation of magneto-optical films is complementary to conventional torque and VSM magnetometry. In the authors' laboratory, they are now measuring anisotropy energy constants of RE-TM thin films at temperatures from ambient to 150 0 C. An in-plane magnetic field (up to 16.5 KOe) is applied to a saturated sample with perpendicular magnetization. The movement away from the perpendicular direction is monitored using the polar Kerr effect. At the HeNe wavelength, the Kerr effect is principally due to the top 500 angstroms of the transition metal subnetwork in the films

  3. Dynamics of liquid metal droplets and jets influenced by a strong axial magnetic field

    Science.gov (United States)

    Hernández, D.; Karcher, Ch

    2017-07-01

    Non-contact electromagnetic control and shaping of liquid metal free surfaces is crucial in a number of high-temperature metallurgical processes like levitation melting and electromagnetic sealing, among others. Other examples are the electromagnetic bending or stabilization of liquid metal jets that frequently occur in casting or fusion applications. Within this context, we experimentally study the influence of strong axial magnetic fields on the dynamics of falling metal droplets and liquid metal jets. GaInSn in eutectic composition is used as test melt being liquid at room temperature. In the experiments, we use a cryogen-free superconducting magnet (CFM) providing steady homogeneous fields of up to 5 T and allowing a tilt angle between the falling melt and the magnet axis. We vary the magnetic flux density, the tilt angle, the liquid metal flow rate, and the diameter and material of the nozzle (electrically conducting/insulating). Hence, the experiments cover a parameter range of Hartmann numbers Ha, Reynolds numbers Re, and Weber numbers We within 0 rotation ceases and the droplets are stretched in the field direction. Moreover, we observe that the jet breakup into droplets (spheroidization) is suppressed, and in the case of electrically conducting nozzles and tilt, the jets are bent towards the field axis.

  4. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    Science.gov (United States)

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  5. Stiffness-constant variation in nickel-based alloys: Experiment and theory

    International Nuclear Information System (INIS)

    Hennion, M.; Hennion, B.

    1979-01-01

    Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond to previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors

  6. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  7. Energy dependence of jet-structures and determination of the strong coupling constant αsub(s) in e+e- annihilation with the CELLO detector

    International Nuclear Information System (INIS)

    Hopp, G.

    1985-07-01

    We considered multihadronic events and we studied the energy dependence of the jet-structure of those events. We confirmed the existence of 3-jet and 4-jet events in high energy data as predicted by QCD. In parallel we checked the energy dependence of different jet-measures which is predicted by the fragmentation models. We determined the strong coupling constant αsub(s) using different methods and we found a strong model dependence of the αsub(s) determination in second order QCD. The study of the particle density between the jet-axes resulted in a light preference for the LUND-String model as compared to models with independent jet-fragmentation. (orig.) [de

  8. Fundamental Constants in Physics and their Time Dependence

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    In the Standard Model of Particle Physics we are dealing with 28 fundamental constants. In the experiments these constants can be measured, but theoretically they are not understood. I will discuss these constants, which are mostly mass parameters. Astrophysical measurements indicate that the finestructure constant is not a real constant, but depends on time. Grand unification then implies also a time variation of the QCD scale. Thus the masses of the atomic nuclei and the magnetic moments of the nuclei will depend on time. I proposed an experiment, which is currently done by Prof. Haensch in Munich and his group. The first results indicate a time dependence of the QCD scale. I will discuss the theoretical implications.

  9. Low-temperature monocrystal elastic constants of Fe-19Cr-10Ni

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1984-01-01

    By a pulse-echo-overlap ultrasonic method, we determined the monocrystal elastic constants (C 11 , C 12 , C 44 ) of an Fe-19Cr-10Ni alloy between 295 and 4 K. In composition this laboratory alloy approximates a technological austenitic stainless steel: AISI 304. Many previous studies on polycrystalline steels found a low-temperature magnetic phase transition that affects physical properties, including elastic constants. At the transition, anomalies occur in all polycrystal elastic constants: Young's modulus, shear modulus, bulk modulus, and Poisson's ratio. The present study found that the transition, near 50 K, does not affect one monocrystal elastic constant: C 44 , the resistance to shear on a (100) plane in a [100]-type direction. We interpret this new observation from the viewpoint of a Born-type lattice model. Also, we comment about the relationship between the elastic-constant changes and the low-temperature magnetic state

  10. Magnetized anisotropic dark energy models with constant ...

    Indian Academy of Sciences (India)

    2016-11-03

    Nov 3, 2016 ... In this paper, we have studied the solutions of plane-symmetric Universe with variable ω in the presence and the ... combination of SNe Ia data with CMBR anisotropy ... found that the early magnetic flux made large growth.

  11. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  12. The measurement system of birefringence and Verdet constant of optical fiber

    Science.gov (United States)

    Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun

    2013-12-01

    The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.

  13. A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances

    Directory of Open Access Journals (Sweden)

    Xuezhe Wei

    2014-07-01

    Full Text Available Strongly coupled magnetic resonance (SCMR, proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research spots, including system architectures, frequency splitting phenomena, impedance matching and optimization designs are classified and elaborated. Finally, current research directions and development trends of SCMR are discussed.

  14. Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet

    Science.gov (United States)

    Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.

    2017-10-01

    Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.

  15. Magnetic structure of RPdSn (R=Tb, Ho) single crystal compounds under strong magnetic field

    International Nuclear Information System (INIS)

    Andoh, Y.; Kurisu, M.; Nakamoto, G.; Tsutaoka, T.; Kawano, S.

    2003-01-01

    Rare earth compounds RTX, where R stands for rare earth elements, T for Ni, Pd or Rh, and X for Sn or Ge, crystallize to a rhombic ε-TiNiSi structure. Only rare earth elements R contribute to magnetic properties since T and X atoms are nonmagnetic. The competition between RKKY indirect interaction and large magnetic anisotropy generates many complicated magnetic phases. At a low temperature phase, complicated magnetisms such as meta-magnetism were observed in magnetization curves with many steps. In previous experiments dealing with RPdSn where R means Tb or Ho, some characteristics of magnetic properties of these compounds were deduced from magnetization measurements and neutron diffraction without external magnetic field. In this report, the change of magnetic scattering of neutron diffraction was studied under external magnetic fields in order to reveal the mechanism of the phase transformations of the compounds. The difference between TbPdSn and HoPdSn compounds was observed in magnetic field dependence of the wave vectors of the magnetic scattering. Two independent wave vectors in magnetic scattering existed in HoPdSn compound. (Y. Kazumata)

  16. Measurement of positron range in matter in strong magnetic fields

    International Nuclear Information System (INIS)

    Hammer, B.E.; Christensen, N.L.

    1995-01-01

    Positron range is one factor that places a limitation on Positron Emission Tomography (PET) resolution. The distance a positron travels through matter before it annihilates with an electron is a function of its initial energy and the electron density of the medium. A strong magnetic field limits positron range when momentum components are transverse to the field. Measurement of positron range was determined by deconvolving the effects of detector response and radioactive distribution from the measured annihilation spread function. The annihilation spread function for a 0.5 mm bead of 68 Ga was measured with 0.2 and 1.0 mm wide slit collimators. Based on the annihilation spread function FWHM (Full Width at Half Maximum) for a 1.0 mm wide slit the median positron range in tissue equivalent material is 0.87, 0.50, 0.22 mm at 0, 5.0 and 9.4 T, respectively

  17. Magnetocrystalline anisotropy constants, rotational hysteresis energy and magnetic domain structure in UFe6Al6, UFe9AlSi2 and ScFe10Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Pawlik, P.; Wochowski, K.; Kotur, B.; Bodak, O.I.

    1996-01-01

    The magnetic torque, T, was applied to determine the anisotropy constants K 1 and K 2 of the UFe 6 Al 6 , UFe 9 AlSi 2 and ScFe 10 Si 2 compounds. The mechanism of magnetization reversal processes in these compounds was investigated on the basis of the analysis of the rotational hysteresis energy, W r and rotational hysteresis integral, R, calculated from the magnetic torque curves. Applying the powder pattern method, magnetic domain structures were observed. Moreover, the fundamental parameters of the domain structure were determined. (orig.)

  18. Simple Model with Time-Varying Fine-Structure ``Constant''

    Science.gov (United States)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  19. The influence of fragmentation models on the determination of the strong coupling constant in e+e- annihilation into hadrons

    International Nuclear Information System (INIS)

    Behrend, H.J.; Chen, C.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.; D'Agostini, G.; Apel, W.D.; Banerjee, S.; Bodenkamp, J.; Chrobaczek, D.; Engler, J.; Fluegge, G.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Hopp, G.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Klarsfeld, A.; Laplanche, F.; Le Diberder, F.; Mallik, U.; Veillet, J.J.; Field, J.H.; George, R.; Goldberg, M.; Grossetete, B.; Hamon, O.; Kapusta, F.; Kovacs, F.; London, G.; Poggioli, L.; Rivoal, M.; Aleksan, R.; Bouchez, J.; Carnesecchi, G.; Cozzika, G.; Ducros, Y.; Gaidot, A.; Jadach, S.; Lavagne, Y.; Pamela, J.; Pansart, J.P.; Pierre, F.

    1983-01-01

    Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant αsub(s). Although within one model the value of αsub(s) varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach. (orig.)

  20. Strong coupling constant from Adler function in lattice QCD

    Science.gov (United States)

    Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo

    2016-09-01

    We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a-1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.

  1. Non-perturbative computation of the strong coupling constant on the lattice

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin; Wolff, Ulli

    2015-01-01

    We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.

  2. Elevator convection modes in vertical ducts with strong transverse magnetic fields

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2014-11-01

    Instability modes in the form of axially uniform vertical jets, also called ``elevator modes,'' are known to be solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to an actual flow state is limited, since they quickly break down to secondary instabilities. We consider a downward flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are likely to be not just relevant, but a dominant feature of the flow. Recent experiments indicate that counterparts of such modes may develop in vertically finite ducts leading to high-amplitude fluctuations of temperature. Potential implications for designs of liquid metal blankets for fusion reactors with poloidal ducts are discussed. Financial support was provided by the US NSF (Grant CBET 1232851).

  3. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  4. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  5. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    International Nuclear Information System (INIS)

    Thompson, Christopher; Gill, Ramandeep

    2014-01-01

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10 3 -10 8 ). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m e c 2 in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F ω ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10 –5 of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle) –1 at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  6. Hot electromagnetic outflows. III. Displaced fireball in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher; Gill, Ramandeep [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2014-08-10

    The evolution of a dilute electron-positron fireball is calculated in the regime of strong magnetization and high compactness (ℓ ∼ 10{sup 3}-10{sup 8}). Heating is applied at a low effective temperature (<25 keV), appropriate to breakout from a confining medium, so that relaxation to a blackbody is inhibited by pair annihilation. The diffusion equation for Compton scattering by thermal pairs is coupled to a trans-relativistic cyclo-synchrotron source. We find that the photon spectrum develops a quasi-thermal peak at energy ∼0.1 m{sub e}c {sup 2} in the comoving frame, with a power-law slope below it that is characteristic of gamma-ray bursts (GRBs; F{sub ω} ∼ const). The formation of a thermal high-energy spectrum is checked using the full kinetic equations. Calculations for a baryon-dominated photosphere reveal a lower spectral peak energy, and a harder low-energy spectrum, unless ion rest mass carries ≲ 10{sup –5} of the energy flux. We infer that (1) the GRB spectrum is inconsistent with the neutron-rich wind emitted by a young magnetar or neutron torus, and points to an event horizon in the engine; (2) neutrons play a negligible role in prompt gamma-ray emission; (3) the relation between observed peak frequency and burst energy is bounded below by the observed Amati relation if the Lorentz factor ∼(opening angle){sup –1} at breakout, and the jet is surrounded by a broader sheath that interacts with a collapsing stellar core; (4) X-ray flashes are consistent with magnetized jets with ion-dominated photospheres; (5) high-frequency Alfvén waves may become charge starved in the dilute pair gas; (6) limitations on magnetic reconnection from plasma collisionality have been overestimated.

  7. Optical Search for QED vacuum magnetic birefringence, Axions and photon Regeneration

    CERN Multimedia

    Pugnat, P; Hryczuk, A; Finger, M; Finger, M; Kral, M

    2007-01-01

    Since its prediction in 1936 by Euler, Heisenberg and Weisskopf in the earlier development of the Quantum Electrodynamic (QED) theory, the Vacuum Magnetic Birefringence (VMB) is still a challenge for optical metrology techniques. According to QED, the vacuum behaves as an optically active medium in the presence of an external magnetic field. It can be experimentally probed with a linearly polarized laser beam. After propagating through the vacuum submitted to a transverse magnetic field, the polarization of the laser beam will change to elliptical and the parameters of the polarization are directly related to fundamental constants such as the fine structure constant and the electron Compton wavelength. Contributions to the VMB could also arise from the existence of light scalar or pseudo-scalar particles like axions that couple to two photons and this would manifest itself as a sizeable deviation from the initial QED prediction. On one side, the interest in axion search, providing an answer to the strong-CP p...

  8. Local Magnetism in Strongly Correlated Electron Systems with Orbital Degrees of Freedom

    Science.gov (United States)

    Ducatman, Samuel Charles

    The central aim of my research is to explain the connection between the macroscopic behavior and the microscopic physics of strongly correlated electron systems with orbital degrees of freedom through the use of effective models. My dissertation focuses on the sub-class of these materials where electrons appear to be localized by interactions, and magnetic ions have well measured magnetic moments. This suggests that we can capture the low-energy physics of the material by employing a minimal model featuring localized spins which interact with each other through exchange couplings. I describe Fe1+y Te and beta-Li2IrO3 with effective models primarily focusing on the spins of the magnetic ions, in this case Fe and Ir, respectively. The goal with both materials is to gain insight and make predictions for experimentalists. In chapter 2, I focus on Fe1+yTe. I describe why we believe the magnetic ground state of this material, with an observed Bragg peak at Q +/- pi/2, pi/2), can be described by a Heisenberg model with 1st, 2nd, and 3rd neighbor interactions. I present two possible ground states of this model in the small J1 limit, the bicollinear and plaquette states. In order to predict which ground state the model prefers, I calculate the spin wave spectrum with 1/S corrections, and I find the model naturally selects the "plaquette state." I give a brief description of the ways this result could be tested using experimental techniques such as polarized neutron scattering. In chapter 3, I extend the model used in chapter 2. This is necessary because the Heisenberg model we employed cannot explain why Fe1+yTe undergoes a phase transition as y is increased. We add an additional elements to our calculation; we assume that electrons in some of the Fe 3D orbitals have selectively localized while others remain itinerant. We write a new Hamiltonian, where localized moments acquire a new long-range RKKY-like interaction from interactions with the itinerant electrons. We are

  9. Comparison of Magnetization Tunneling in the Giant-Spin and Multi-Spin Descriptions of Single-Molecule Magnets

    Science.gov (United States)

    Liu, Junjie; Del Barco, Enrique; Hill, Stephen

    2010-03-01

    We perform a mapping of the spectrum obtained for a triangular Mn3 single-molecule magnet (SMM) with idealized C3 symmetry via exact diagonalization of a multi-spin (MS) Hamiltonian onto that of a giant-spin (GS) model which assumes strong ferromagnetic coupling and a spin S = 6 ground state. Magnetic hysteresis measurements on this Mn3 SMM reveal clear evidence that the steps in magnetization due to magnetization tunneling obey the expected quantum mechanical selection rules [J. Henderson et al., Phys. Rev. Lett. 103, 017202 (2009)]. High-frequency EPR and magnetization data are first fit to the MS model. The tunnel splittings obtained via the two models are then compared in order to find a relationship between the sixth order transverse anisotropy term B6^6 in GS model and the exchange constant J coupling the Mn^III ions in the MS model. We also find that the fourth order transverse term B4^3 in the GS model is related to the orientation of JahnTeller axes of Mn^III ions, as well as J

  10. Massive graviton and determination of cosmological constant from gauge theory of gravity

    International Nuclear Information System (INIS)

    Mitrut, Alexandru

    2002-01-01

    The universe contains a lot more than the eye meets . Sophisticated experiments search diligently for this invisible dark matter. Here we will describe some theoretical implications of the gravitational gauge theory recently proposed by Ning Wu (hep-th/0112062), namely the possibility of the existence of massive gravitons which fill the intergalactic space. Dark matter is an important problem in cosmology. In gravitational gauge field theory, the following effects should be taken into account to solve this problem: 1) The existence of massive graviton will have some contribution to the dark matter; 2) If the gravitational magnetic field is strong inside a celestial system, the gravitational Lorentz force will provide additional centripetal force for circular motion of a celestial object; 3) The existence of a factor which violate inverse square law of classical gravity. Combining general relativity and gravitational gauge theory the cosmological constant is determined theoretically. The cosmological constant is related to the average vacuum energy of the gravitational gauge field. Because the vacuum energy of the gravitational gauge field is negative, the cosmological constant is positive what generates repulsive force on stars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude order 10 -52 m -2 , which is well consistent with experimental results. (authors)

  11. Magnetic anisotropy and quantized spin waves in hematite nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lefmann, Kim; Lindgård, Per-Anker

    2004-01-01

    We report on the observation of high-frequency collective magnetic excitations, (h) over bar omegaapproximate to1.1 meV, in hematite (alpha-Fe2O3) nanoparticles. The neutron scattering experiments include measurements at temperatures in the range 6-300 K and applied fields up to 7.5 T as well...... as polarization analysis. We give an explanation for the field- and temperature dependence of the excitations, which are found to have strongly elliptical out-of-plane precession. The frequency of the excitations gives information on the magnetic anisotropy constants in the system. We have in this way determined...

  12. Determination of the strong coupling constant α{sub s}(m{sub Z}) in next-to-next-to-leading order QCD using H1 jet cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bertone, V. [Vrije University, Department of Physics and Astronomy, Amsterdam (Netherlands); National Institute for Subatomic Physics (NIKHEF), Amsterdam (Netherlands); Bolz, A.; Britzger, D.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Jung, H.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Zlebcik, R. [DESY, Hamburg (Germany); Cantun Avila, K.B.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Currie, J. [Durham University, Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Durham (United Kingdom); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P.Van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Gehrmann, T.; Mueller, K.; Niehues, J.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C.; Huss, A. [ETH Zuerich, Institut fuer Teilchenphysik, Zurich (Switzerland); Gwenlan, C.; Radescu, V. [Oxford University, Department of Physics, Oxford (United Kingdom); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Jung, A.W. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [Queen Mary University of London, School of Physics and Astronomy, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (Canada); Rabbertz, K. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Experimentelle Teilchenphysik (ETP), Karlsruhe (Germany); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (Russian Federation); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Universite de Savoie, CNRS/IN2P3, LAPP, Annecy-le-Vieux (France); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Stella, B. [Universita di Roma Tre, Dipartimento di Fisica, Rome (Italy); INFN Roma 3 (Italy); Sutton, M.R. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Tseepeldorj, B. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [TU Dortmund, Institut fuer Physik, Dortmund (DE); Collaboration: H1 Collaboration

    2017-11-15

    The strong coupling constant α{sub s} is determined from inclusive jet and dijet cross sections in neutral-current deep-inelastic ep scattering (DIS) measured at HERA by the H1 collaboration using next-to-next-to-leading order (NNLO) QCD predictions. The dependence of the NNLO predictions and of the resulting value of α{sub s}(m{sub Z}) at the Z-boson mass m{sub Z} are studied as a function of the choice of the renormalisation and factorisation scales. Using inclusive jet and dijet data together, the strong coupling constant is determined to be α{sub s}(m{sub Z}) = 0.1157(20){sub exp}(29){sub th}. Complementary, α{sub s}(m{sub Z}) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The value α{sub s}(m{sub Z}) = 0.1142(28){sub tot} obtained is consistent with the determination from jet data alone. The impact of the jet data on the PDFs is studied. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with expectations. (orig.)

  13. Magnetic properties of ultra-small goethite nanoparticles

    International Nuclear Information System (INIS)

    Brok, E; Frandsen, C; Madsen, D E; Mørup, S; Jacobsen, H; Birk, J O; Lefmann, K; Bendix, J; Pedersen, K S; Boothroyd, C B; Berhe, A A; Simeoni, G G

    2014-01-01

    Goethite (α-FeOOH) is a common nanocrystalline antiferromagnetic mineral. However, it is typically difficult to study the properties of isolated single-crystalline goethite nanoparticles, because goethite has a strong tendency to form particles of aggregated nanograins often with low-angle grain boundaries. This nanocrystallinity leads to complex magnetic properties that are dominated by magnetic fluctuations in interacting grains. Here we present a study of the magnetic properties of 5.7 nm particles of goethite by use of magnetization measurements, inelastic neutron scattering and Mössbauer spectroscopy. The ‘ultra-small’ size of these particles (i.e. that the particles consist of one or only a few grains) allows for more direct elucidation of the particles' intrinsic magnetic properties. We find from ac and dc magnetization measurements a significant upturn of the magnetization at very low temperatures most likely due to freezing of spins in canted spin structures. From hysteresis curves we estimate the saturation magnetization from uncompensated magnetic moments to be σ s  = 0.044 A m 2  kg −1 at room temperature. Inelastic neutron scattering measurements show a strong signal from excitations of the uniform mode (q = 0 spin waves) at temperatures of 100–250 K and Mössbauer spectroscopy studies show that the magnetic fluctuations are dominated by ‘classical’ superparamagnetic relaxation at temperatures above ∼170 K. From the temperature dependence of the hyperfine fields and the excitation energy of the uniform mode we estimate a magnetic anisotropy constant of around 1.0 × 10 5  J m −3 . (paper)

  14. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2008-01-01

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance

  15. Magnetotransport properties of Cr1−δTe thin films with strong perpendicular magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    L. Zhou

    2017-12-01

    Full Text Available P-type ferromagnetic Cr1-δTe thin films with the Curie temperature of 170K were epitaxially grown on GaAs substrate. Low-temperature magnetotransport study reveals that the film has a strong perpendicular magnetic anisotropy (PMA and an anisotropic magnetoresistance (AMR ratio up to 8.1%. Furthermore, reduced anomalous Hall effect is observed at low temperatures in Cr1-δTe, suggesting the possible crossover of the contribution to AHE from the intrinsic mechanism to extrinsic skew scattering. Distinctive from conventional transition metal ferromagnets, the AMR ratio is also greatly suppressed at low temperatures. Our work demonstrates that epitaxial Cr1-δTe films are interesting platforms for studying the physics underlying the strong PMA and large AMR.

  16. Study of the Magnetically Induced QED Birefringence of the Vacuum in experiment OSQAR

    CERN Document Server

    AUTHOR|(CDS)2083980

    Classical electrodynamics in a vacuum is a linear theory and does not foresee photon-photon scattering or other nonlinear effects between electromagnetic fields. In 1936 Euler, Heisenberg and Weisskopf put framework, in the earliest development of quantum electrodynamics (QED), that vacuum can behave as a birefringent medium in the presence of the external transverse magnetic field. This phenomenon is known as Vacuum Magnetic Birefringence (VMB) and it is still challenging for optical metrology since the first calculations in 1970. When linearly polarized light travels through the strong transverse magnetic field in vacuum, the polarization state of the light would change to elliptical. The difference in the refraction indexes of the ordinary and extraordinary ray is directly related to fundamental constants, such as fine structure constant or Compton wavelength. Contributions to VMB could also arise from the existence of light scalar or pseudoscalar particles, such as axions or axions like particles. Axions ...

  17. Physics of strong internal transport barriers in JT-60U reversed-magnetic-shear plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, N; Takizuka, T; Sakamoto, Y; Fujita, T; Kamada, Y; Ide, S; Koide, Y [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2006-05-15

    The physics of strong internal transport barriers (ITBs) in JT-60U reversed-magnetic-shear (RS) plasmas has been studied through the modelling on the 1.5 dimensional transport simulation. The key physics to produce two scalings on the basis of the JT-60U box-type ITB database are identified. As for the scaling for the narrow ITB width proportional to the ion poloidal gyroradius, the following three physics are important: (1) the sharp reduction of the anomalous transport below the neoclassical level in the RS region, (2) the autonomous formation of pressure and current profiles through the neoclassical transport and the bootstrap current and (3) the large difference between the neoclassical transport and the anomalous transport in the normal-shear region. As for the scaling for the energy confinement inside ITB ({epsilon}{sub f}{beta}{sub p,core} {approx} 0.25, where {epsilon}{sub f} is the inverse aspect ratio at the ITB foot and {beta}{sub p,core} is the core poloidal beta value), the value of 0.25 is found to be a saturation value due to the MHD equilibrium. The value of {epsilon}{sub f}{beta}{sub p,core} reaches the saturation value, when the box-type ITB is formed in the strong RS plasma with a large asymmetry of the poloidal magnetic field, regardless of the details of the transport and the non-inductively driven current.

  18. Universal properties of strongly frustrated quantum magnets in high magnetic fields

    International Nuclear Information System (INIS)

    Richter, J.

    2007-01-01

    For a class of frustrated antiferromagnetic spin systems including e.g. the 1D saw tooth chain, the 2D kagom'e and checkerboard, the 3D pyrochlore lattices exact eigenstates consisting of several independent localized magnons in a ferromagnetic environment can be constructed. Important structural elements of the relevant systems are triangles being attached to polygons or lines. Then the magnons can be trapped on these polygons/lines. If the concentration of localized magnons is small they can be distributed randomly over the lattice. Increasing the number of localized magnons their distribution over the lattice becomes more regular and finally the magnons condensate in a crystal-like state. The physical relevance of these eigenstates emerges in high magnetic fields where they become ground states of the system. The spin systems having localized-magnon eigenstates exhibit universal features at low-temperatures in the vicinity of the saturation field: (i) The ground-state magnetization exhibits a macroscopic jump to saturation. This jump is accompanied by a preceding plateau (ii) The ground state at the saturation field is highly degenerate. The degeneracy grows exponentially with the system size and leads to a low-temperature maximum in the isothermal entropy versus field curve at the saturation field and to an enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones. (iii) By mapping the localized magnon spin degrees of freedom on a hard-core lattice gas one can find explicit analytical universal expressions for the low-temperature thermodynamics near saturation field. (iv) The magnetic system may exhibit a field-tuned structural instability in the vicinity of the saturation field. (author)

  19. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  20. Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-06-26

    The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7$~\\mathrm{TeV}$ was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0$~\\mathrm{fb}^{-1}$. The measurement covers a phase space up to 2$~\\mathrm{TeV}$ in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass $M_{\\mathrm{Z}}$ is determined to be $\\alpha_S(M_{\\mathrm{Z}}) = 0.1185 \\pm 0.0019\\,(\\mathrm{exp})\\,^{+0.0060}_{-0.0037}\\,(\\mathrm{theo})$, which is in a...

  1. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  2. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes.

    Science.gov (United States)

    Tang, Jennifer; Alsop, Richard J; Schmalzl, Karin; Epand, Richard M; Rheinstädter, Maikel C

    2015-09-29

    NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains' electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  3. Spin-polarized currents in a two-terminal double quantum ring driven by magnetic fields and Rashba spin-orbit interaction

    Science.gov (United States)

    Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.

    2018-06-01

    Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.

  4. Magnetic dynamics of weakly and strongly interacting hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen

    2000-01-01

    The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance with...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...... for "superferromagnetism" in which the magnetic anisotropy is included. The coupling between the particles is due to exchange interactions and the interaction strength can be accounted for by just a few exchange bridges between surface atoms in neighboring crystallites....

  5. Magnetic properties of HoVOΛ4 in high magnetic fields

    International Nuclear Information System (INIS)

    Andronenko, S.I.; Bazhan, A.N.; Ioffe, V.A.; Udalov, Yu.P.

    1985-01-01

    Values magnetization and susceptibility of HoVO 4 , Van Vleck paramagnetic are specified in the 4.2-40 K temperature range and magnetic fields up to 50 kOe. Magnetic properties of HoVO 4 are analyzed using a theoretical model in which the interaction of rare earth ions with the crystal- and magnetic fields is considered. A possibility of rare earth ion interaction with the Bsub(1g), Bsub(2g), Asub(1g) symmetry deformations is also considered. It is stated that magnetic properties of HoVO 4 are completely explained within the frames of the crystal field model; the rare earth ion interactions with deformations are insignificant. Anisotropy of magnetization in the (001) plane is determined by the crystal field B 4 4 , B 6 4 constants; the constants being shown to be positive

  6. First-principles elastic constants and phonons of delta-Pu

    DEFF Research Database (Denmark)

    Söderlind, P.; Landa, A.; Sadigh, B.

    2004-01-01

    Elastic constants and zone-boundary phonons of delta-plutonium have been calculated within the density-functional theory. The paramagnetic state of delta-Pu is modeled by disordered magnetism utilizing either the disordered local moment or the special quasirandom structure techniques. The anomalo......Elastic constants and zone-boundary phonons of delta-plutonium have been calculated within the density-functional theory. The paramagnetic state of delta-Pu is modeled by disordered magnetism utilizing either the disordered local moment or the special quasirandom structure techniques....... The anomalously soft C-' as well as a large anisotropy ratio (C-44/C-') of delta-Pu is reproduced by this theoretical model. Also the recently measured phonons for delta-Pu compare relatively well with their theoretical counterpart at the zone boundaries....

  7. Accretion disc dynamo activity in local simulations spanning weak-to-strong net vertical magnetic flux regimes

    Science.gov (United States)

    Salvesen, Greg; Simon, Jacob B.; Armitage, Philip J.; Begelman, Mitchell C.

    2016-03-01

    Strongly magnetized accretion discs around black holes have attractive features that may explain enigmatic aspects of X-ray binary behaviour. The structure and evolution of these discs are governed by a dynamo-like mechanism, which channels part of the accretion power liberated by the magnetorotational instability (MRI) into an ordered toroidal magnetic field. To study dynamo activity, we performed three-dimensional, stratified, isothermal, ideal magnetohydrodynamic shearing box simulations. The strength of the self-sustained toroidal magnetic field depends on the net vertical magnetic flux, which we vary across almost the entire range over which the MRI is linearly unstable. We quantify disc structure and dynamo properties as a function of the initial ratio of mid-plane gas pressure to vertical magnetic field pressure, β _0^mid = p_gas / p_B. For 10^5 ≥ β _0^mid ≥ 10 the effective α-viscosity parameter scales as a power law. Dynamo activity persists up to and including β _0^mid = 10^2, at which point the entire vertical column of the disc is magnetic pressure dominated. Still stronger fields result in a highly inhomogeneous disc structure, with large density fluctuations. We show that the turbulent steady state βmid in our simulations is well matched by the analytic model of Begelman et al. describing the creation and buoyant escape of toroidal field, while the vertical structure of the disc can be broadly reproduced using this model. Finally, we discuss the implications of our results for observed properties of X-ray binaries.

  8. Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator

    DEFF Research Database (Denmark)

    Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper

    1991-01-01

    An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...

  9. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  10. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  11. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  12. The spin structure of magnetic nanoparticles and in magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Disch, Sabrina

    2011-09-26

    The present thesis provides an extensive and original contribution to the investigation of magnetic nanoparticles regarding synthesis and structural characterization using advanced scattering methods in all length scales between the atomic and mesoscopic size range. Particular emphasis is on determination of the magnetic structure of single nanoparticles as well as preparation and characterization of higher dimensional assemblies thereof. The unique physical properties arising from the finite size of magnetic nanoparticles are pronounced for very small particle sizes. With the aim of preparing magnetic nanoparticles suitable for investigation of such properties, a micellar synthesis route for very small cobalt nanoparticles is explored. Cobalt nanoparticles with diameters of less than 3 nm are prepared and characterized, and routes for variation of the particle size are developed. The needs and limitations of primary characterization and handling of such small and oxidation-sensitive nanoparticles are highlighted and discussed in detail. Comprehensive structural and magnetic characterization is performed on iron oxide nanoparticles of {proportional_to} 10 nm in diameter. Particle size and narrow size distribution are determined with high precision. Investigation of the long range and local atomic structure reveals a particle size dependent magnetite - maghemite structure type with lattice distortions induced at the particle surface. The spatial magnetization distribution within these nanoparticles is determined to be constant in the particle core with a decrease towards the particle surface, thus indicating a magnetic dead layer or spin canting close to the surface. Magnetically induced arrangements of such nanoparticles into higher dimensional assemblies are investigated in solution and by deposition of long range ordered mesocrystals. Both cases reveal a strong dependence of the found structures on the nanoparticle shape (spheres, cubes, and heavily truncated

  13. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-08-15

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.

  14. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang

    2013-01-01

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity

  15. Calculation of the hyperfine constants of Vk center in CaF2, SrF2 and BaF2

    International Nuclear Information System (INIS)

    Bufaical, R.F.

    1975-03-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated, assuming a phenomenological model, based on the F 2 central molecule, to describe the wave function of the defect. The introduction of covalence, with the ions neighboring the central molecule, have shown that this is a better description for the defect than a simple central molecule model. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of these neighboring ions, which have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different methods have been used. A better description for the wave function of the defect is suggested

  16. Measurement of the saturation magnetostriction constant of amorphous wire

    International Nuclear Information System (INIS)

    Mitra, A.; Vazquez, M.

    1990-01-01

    Measurement of the magnetostriction constant of amorphous wire by conventional techniques is very difficult because of its small diameter. However, accurate determination of the magnetostriction constant is important in the study of amorphous wires. Here the saturation magnetostriction constant (λ s ) for a low-magnetostriction amorphous wire of nominal composition (Fe 6.3 Co 92.7 Nb 1 ) 77.5 Si 7.5 B 15 has been determined by means of the small-angle magnetization-rotation method. λ s has been evaluated to be 2.1x10 -7 for its as-received state. The dependence of thermal treatment is also reported

  17. A modified CAS-CI approach for an efficient calculation of magnetic exchange coupling constants

    Science.gov (United States)

    Fink, Karin; Staemmler, Volker

    2013-09-01

    A modification of the conventional wavefunction-based CAS-CI method for the calculation of magnetic exchange coupling constants J in small molecules and transition metal complexes is presented. In general, CAS-CI approaches yield much too small values for J since the energies of the important charge transfer configurations are calculated with the ground state orbitals and are therefore much too high. In the present approach we improve these energies by accounting for the relaxation of the orbitals in the charge transfer configurations. The necessary relaxation energies R can be obtained in separate calculations using mononuclear or binuclear model systems. The method is applied to a few examples, small molecules, binuclear transition metal complexes, and bulk NiO. It allows to obtaining fairly reliable estimates for J at costs that are not higher than those of conventional CAS-CI calculations. Therefore, extended and very time-consuming perturbation theory (PT2), configuration interaction (CI), or coupled cluster (CC) schemes on top of the CAS-CI calculation can be avoided and the modified CAS-CI (MCAS-CI) approach can be applied to rather large systems.

  18. String dynamics at strong coupling

    International Nuclear Information System (INIS)

    Hull, C.M.

    1996-01-01

    The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)

  19. Magnetic field fluctuations analysis for the ion trap implementation of the quantum Rabi model in the deep strong coupling regime

    Science.gov (United States)

    Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.

    2018-03-01

    The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.

  20. Nanostructure and magnetic properties of Ni-substituted finemet ribbons

    International Nuclear Information System (INIS)

    Iturriza, N.; Fernandez, L.; Ipatov, M.; Vara, G.; Pierna, A.R.; Val, J.J. del; Chizhik, A.; Gonzalez, J.

    2007-01-01

    Magnetic anisotropy has been induced during the nanocrystallization process of Ni-rich amorphous ferromagnetic (Finemet) ribbons by means of the application of a constant stress during the annealing process. Magnetization measurements have evidenced the anisotropy of the treated samples. The main goal of this work was the analysis of the treated ribbons using X-ray Diffraction (XRD), Transmission Electronic Microscopy (TEM) and Atomic Force Microscopy (AFM). AFM measurements revealed in all the cases a strong nanocrystallisation of the surface without evidences of amorphous matrix, which contrast with XRD and TEM measurements that have shown a high content of amorphous phase in the bulk of the ribbons. Magneto-optical Kerr effect measurements show much higher coercive field values than in the bulk, indicating a complex magnetic behavior for the surface of the ribbons

  1. Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation

    Directory of Open Access Journals (Sweden)

    Nadia Ananda Herianto

    2015-02-01

    Full Text Available Currently, hard disk development has used HAMR technology that applies heat to perpendicular media until near Curie temperature, then cools it down to room temperature. The use of HAMR technology is significantly influence by Gilbert damping constants. Damping affects the magnetization reversal and coercivity field. Simulation is used to evaluate magnetization reversal by completing Landau-Lifshitz-Gilbert explicit equation. A strong ferromagnetic cobalt based material with size 50×50×20 nm3 is used which parameters are anisotropy materials 3.51×106 erg/cm3, magnetic saturation 5697.5 G, exchange constant 1×10-7 erg/cm, and various Gilbert damping from 0.09 to 0.5. To observe the thermal effect, two schemes are used which are Reduced Barrier Writing and Curie Point Writing. As a result, materials with high damping is able to reverse the magnetizations faster and reduce the energy barrier. Moreover, it can lower the minimum field to start the magnetizations reversal, threshold field, and probability rate. The heating near Curie temperature has succeeded in reducing the reversal field to 1/10 compared to writing process in absence of thermal field.

  2. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Energy Technology Data Exchange (ETDEWEB)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  3. Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    International Nuclear Information System (INIS)

    Courteille, Ph W; Deh, B; Fortagh, J; Guenther, A; Kraft, S; Marzok, C; Slama, S; Zimmermann, C

    2006-01-01

    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients, the lattice constant can be well below 1 μm. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potentials are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultracold single atoms or degenerate atomic and molecular quantum gases

  4. Magnet and device for magnetic density separation

    NARCIS (Netherlands)

    Polinder, H.; Rem, P.C.

    2014-01-01

    A planar magnet for magnetic density separation, comprising an array of pole pieces succeeding in longitudinal direction of a mounting plane, each pole piece having a body extending transversely along the mounting plane with a substantially constant cross section that includes a top segment that is

  5. Path-integral calculation of the density of states in heavily doped strongly compensated semiconductors in a magnetic field

    International Nuclear Information System (INIS)

    Koinov, Z.G.; Yanchev, I.Y.

    1981-09-01

    The density of states in heavily doped strongly compansated semiconductors in a strong magnetic field is calculated by using the path-integral method. The case is considered when correlation exists in the impurity positions owing to the Coulomb interactions between the charged donors and acceptors during the high-temperature preparation of the samples. The semiclassical formula is rederived and corrections to it due to the long-range character of the potential and its short-range fluctuations are obtained. The density of states in the tail is studied and analytical results are given in the classical and quantum cases. (author)

  6. Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos

    Science.gov (United States)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2018-04-01

    The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.

  7. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  8. Influence of strong single-ion anisotropy on phase states of 3D and 2D frustrated magnets

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Matunin, D.A.; Gorelikov, G.A.; Klevets, Ph.N.

    2010-01-01

    We investigated the influence of strong single-ion anisotropy, exceeding exchange interaction, and frustrated exchange interaction on spin-wave excitation spectra and phase states using the Hubbard operators' technique, allowing the exact account of single-ion anisotropy. The results show that both the homogeneous phases (ferromagnetic and quadrupolar) and the spatially inhomogeneous phase (spiral structure) are possible in the 3D magnetic crystal. The region of existence of the spiral structure is considerably smaller than that in the analogues system, but with weak single-ion anisotropy. The situation is more complex in the 2D system; another spatially inhomogeneous state (the domain structure) can be realized in addition to the spiral magnetic structure. The phase diagrams for both the 3D and 2D systems were plotted.

  9. Designing magnets with prescribed magnetic fields

    International Nuclear Information System (INIS)

    Liu Liping

    2011-01-01

    We present a novel design method capable of finding the magnetization densities that generate prescribed magnetic fields. The method is based on the solution to a simple variational inequality and the resulting designs have simple piecewise-constant magnetization densities. By this method, we obtain new designs of magnets that generate commonly used magnetic fields: uniform magnetic fields, self-shielding fields, quadrupole fields and sextupole fields. Further, it is worth noting that this method is not limited to the presented examples, and in particular, three-dimensional designs can be constructed in a similar manner. In conclusion, this novel design method is anticipated to have broad applications where specific magnetic fields are important for the performance of the devices.

  10. Modelling of a plasma column sustained by a travelling circularly polarized electromagnetic wave (m=1 mode) in the presence of a constant axial magnetic field

    International Nuclear Information System (INIS)

    Benova, E.; Staikov, P.; Zhelyazkov, I.

    1992-01-01

    A set of equations modelling a low-pressure plasma column sustained by a travelling electromagnetic wave in the dipolar mode in the presence of a constant external magnetic field is presented. It is shown that, from a practical point of view, only the m = 1 mode (the right-hand-polarized wave) can sustain plasma columns in a wide region of gas-discharge conditions: plasma radius R, wave frequency ω, magnetic field B 0 and low pressures, irrespective of the nature of the gas. The main result of this study is that the magnetic field makes it possible to sustain a plasma column for values of σ smaller than σ cr = 0.3726, below which, in the absence of a magnetic field, the dipolar wave cannot produce a plasma. Moreover, at a fixed wave power, the magnetic field - in contrast with the case of plasma columns sustained by azimuthally symmetric waves - increases the plasma density and its axial gradient. The limit of an infinite external magnetic field (Ω → ∞) is also considered. A three-dimensional wave structure is obtained, and it indicates that the wave can be a generalized surface mode, a pure surface or a pseudosurface one. (author)

  11. Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ismael, Muneer A. [Mechanical Engineering Department, Engineering College, University of Basrah, Basrah (Iraq); Mansour, M.A. [Department of Mathematics, Assuit University, Faculty of Science, Assuit (Egypt); Chamkha, Ali J. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia); Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952 (Saudi Arabia); Rashad, A.M., E-mail: am_rashad@yahoo.com [Department of Mathematics, Aswan University, Faculty of Science, Aswan 81528 (Egypt)

    2016-10-15

    Mixed convection in a lid-driven square cavity filled with Cu-water nanofluid and subjected to inclined magnetic field is investigated in this paper. Partial slip effect is considered along the lid driven horizontal walls. A constant heat flux source on the left wall is considered, meanwhile the right vertical wall is cooled isothermally. The remainder cavity walls are thermally insulted. A control finite volume method is used as a numerical appliance of the governing equations. Six pertinent parameters were studied these; the orientation of the magnetic field (Φ=0–360°), Richardson number (Ri=0.001–1000), Hartman number (Ha=0–100), the size and position of the heat source (B=0.2–0.8, D=0.3–0.7, respectively), nanoparticles volume fraction (ϕ=0.0–0.1), and the lid-direction of the horizontal walls (λ=±1) where the positive sign means lid-driven to the right while the negative sign means lid-driven to the left. The results show that the orientation and the strength of the magnetic field can play a significant role in controlling the convection under the effect of partial slip. It is also found that the natural convection decreases with increasing the length of the heat source for all ranges of the studied parameters, while it is do so due to the vertical distance up to Hartman number of 50, beyond this value the natural convection decreases with lifting the heat source narrower to the top wall. - Highlights: • Partial slip along moving walls of MHD cavity filled with nanofluid is considered. • The suppression exerted by the magnetic field decreases with its orientation. • Nusselt number is enhanced slightly with nanoparticles at shortest heat source. • Nusselt number is enhanced with nanoparticles at stronger magnetic field.

  12. Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field

    International Nuclear Information System (INIS)

    Ismael, Muneer A.; Mansour, M.A.; Chamkha, Ali J.; Rashad, A.M.

    2016-01-01

    Mixed convection in a lid-driven square cavity filled with Cu-water nanofluid and subjected to inclined magnetic field is investigated in this paper. Partial slip effect is considered along the lid driven horizontal walls. A constant heat flux source on the left wall is considered, meanwhile the right vertical wall is cooled isothermally. The remainder cavity walls are thermally insulted. A control finite volume method is used as a numerical appliance of the governing equations. Six pertinent parameters were studied these; the orientation of the magnetic field (Φ=0–360°), Richardson number (Ri=0.001–1000), Hartman number (Ha=0–100), the size and position of the heat source (B=0.2–0.8, D=0.3–0.7, respectively), nanoparticles volume fraction (ϕ=0.0–0.1), and the lid-direction of the horizontal walls (λ=±1) where the positive sign means lid-driven to the right while the negative sign means lid-driven to the left. The results show that the orientation and the strength of the magnetic field can play a significant role in controlling the convection under the effect of partial slip. It is also found that the natural convection decreases with increasing the length of the heat source for all ranges of the studied parameters, while it is do so due to the vertical distance up to Hartman number of 50, beyond this value the natural convection decreases with lifting the heat source narrower to the top wall. - Highlights: • Partial slip along moving walls of MHD cavity filled with nanofluid is considered. • The suppression exerted by the magnetic field decreases with its orientation. • Nusselt number is enhanced slightly with nanoparticles at shortest heat source. • Nusselt number is enhanced with nanoparticles at stronger magnetic field.

  13. The H+ molecule in strong magnetic fields

    International Nuclear Information System (INIS)

    Melo, L.C. de; Das, T.K.; Ferreira, R.; Miranda, L.C.M.; Brandi, H.S.

    1976-01-01

    A LCAO-MO treatment of the H 2 + based on hydrogen-like atomic orbitals is described. Trial wave functions to calculate binding energy and potential curves of H 2 + in the presence of magnetic fields in the range 10 8 G 10 G, are used [pt

  14. Strongly correlating liquids and their isomorphs

    OpenAIRE

    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.

    2010-01-01

    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  15. Electrical transverse transport in Lorentz plasma with strong magnetic field and collision effect

    International Nuclear Information System (INIS)

    Xie, Baisong; Chong, L.V.; Li, Ziliang

    2015-01-01

    In inertial confinement fusion (ICF), the spontaneous magnetic field formed from laser interacting with the pellet may reach few hundreds of Megagauss (MG) which results in the cyclotron frequency ω at the same order of the collision frequency υ. Electrical transverse transport in this case would become very important so that we study it by the Boltzmann equation for different electron density distribution. For the Maxwell distribution, it is shown that transport coefficients decrease with the increase of Ω (the ratio of ω to υ), which means the electrons would be highly collimated by strong magnetic field. This is attributed to that the electron's gyroradius is smaller than the collisional mean free paths. Moreover, the electrical transverse transport is also studied for quasi-monoenergy distribution with different width ε, which is different from the Maxwell one. It is found that the transport coefficients decrease greatly as quasi-monoenergy degree increases. In particular when ε approaches to zero, i.e. the Delta distribution with almost perfect monoenergy electron density, the electric conductivity doesn't change while the thermal conductivity decreases with Ω. On the other hand the smaller the ε is the less amount the transverse transport exhibits. Our study indicates that they are beneficial to limit the electric transverse transport. (author)

  16. Tunable photonic crystal for THz radiation in layered superconductors: Strong magnetic-field dependence of the transmission coefficient

    International Nuclear Information System (INIS)

    Savel'ev, Sergey; Rakhmanov, A.L.; Nori, Franco

    2006-01-01

    Josephson plasma waves are scattered by the Josephson vortex lattice. This scattering results in a strong dependence, on the in-plane magnetic-field H ab , of the reflection and transmission of THz radiation propagating in layered superconductors. In particular, a tunable band-gap structure (THz photonic crystal) occurs in such a medium. These effects can be used, by varying H ab , for the selective frequency-filtering of THz radiation

  17. Magnetostriction in glass-coated magnetic microwires

    International Nuclear Information System (INIS)

    Zhukov, A.; Zhukova, V.; Blanco, J.M.; Cobeno, A.F.; Vazquez, M.; Gonzalez, J

    2003-01-01

    The hysteretic magnetic properties of glass coated magnetic microwires depend on the magnetostriction constant: Co-rich microwires with negative magnetostriction constant present an almost non-hysteretic loop with relatively high magnetic anisotropy field up to around 8 kA/m. In contrast, Fe-rich microwires with positive magnetostriction show rectangular hysteresis loops with switching field depending on diameter of the metallic nucleus and the thickness of the glass coating. The softest magnetic properties, such as large magnetic permeability, are observed in nearly zero magnetostrictive alloys. It is then obvious that the experimental determination of the saturation magnetostriction λ s of glass-coated microwires is very important to predict their magnetic behaviour. Different methods for the determination of the saturation magnetostriction λ s of tiny glass coated microwires have been reviewed and compared in this manuscript. Small angle magnetization rotation (SAMR) method and change of the giant magneto-impedance spectrum under applied stress have been employed in nearly zero magnetostrictive in as-prepared and current annealed glass-covered microwires. The conditions of applicability of these methods to the microwires have been analysed, taking into account the domain structure expected for vanishing magnetostriction constant of the metallic nucleus. These different techniques give similar saturation magnetostriction constant values. Heat treatment results in a significant change of λ s

  18. Enhancing the magnetic properties of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Saura-Múzquiz, Matilde; Stingaciu, Marian

    with a similar magnetic performance. There are several different ways of enhancing magnetic properties of 3d magnetic compounds. This includes, size control, core-shell particles or mixing hard and soft magnetic materials together to achieve an exchange coupling between the compounds and enhancing the magnetic...... energy product. In order to control the particle size, a hydrothermal synthesis is preferred. This followed by reduction or the oxides into either core shell particles, or a mixture of magnetic oxides and a metallic phase.......Strong magnets with a high energy product are vital when optimizing the efficiency in the electric industry. But since the rare earth metals, normally used for making strong permanent magnets, are both expensive and difficult to mine, a great demand has come to cheaper types of magnets...

  19. Effect of iron on vanadium (001) strained surface magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M; Al-Barwani, M; Gismelseed, A; Al-Rawas, A; Yousif, A; Widatallah, H; Bouziane, K; Al-Omari, I, E-mail: elzain@squ.edu.o [Department of Physics, College Of Science, Box 36, Sultan Qaboos University, Al Khod 123 (Oman)

    2010-03-01

    The magnetism of the vanadium (001) surface has been a controversial subject on both theoretical and experiment fronts. Both strongly ferromagnetic and paramagnetic phases were reported. We have used the first principle full-potential linearized-augmented plane waves (FP-LAPW) as implemented in WIEN2k package to study the magnetic properties of strained surfaces of vanadium films as a function of film thickness. We found that for films thicker than about 11 monolayers, the magnetism of the strained surfaces converge to a constant value of about 0.15{mu}{sub B}. Introduction of Fe monolayers and impurities at the centre of the films affects the magnetic structure of thin films but has no influence on the surface magnetism of thicker films. For Fe monolayers positioned at the centre of thick films, the Fe atoms maintain magnetic moment of order 0.86{mu}{sub B}, a quadruple splitting of order -0.3 mm/s and a small negative isomer shift, while an Fe impurity has vanishing hyperfine fields and magnetic moment. In addition we have varied the location of the Fe monolayer and impurity within the V films and found that their position affects the surface magnetism.

  20. Gyrotropic Zener tunneling and nonlinear IV curves in the zero-energy Landau level of graphene in a strong magnetic field.

    Science.gov (United States)

    Laitinen, Antti; Kumar, Manohar; Hakonen, Pertti; Sonin, Edouard

    2018-01-12

    We have investigated tunneling current through a suspended graphene Corbino disk in high magnetic fields at the Dirac point, i.e. at filling factor ν = 0. At the onset of the dielectric breakdown the current through the disk grows exponentially before ohmic behaviour, but in a manner distinct from thermal activation. We find that Zener tunneling between Landau sublevels dominates, facilitated by tilting of the source-drain bias potential. According to our analytic modelling, the Zener tunneling is strongly affected by the gyrotropic force (Lorentz force) due to the high magnetic field.

  1. Spin-Orbit Torque-Assisted Switching in Magnetic Insulator Thin Films with Perpendicular Magnetic Anisotropy

    Science.gov (United States)

    Wu, Mingzhong

    As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque that can induce magnetization switching in a neighboring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. This presentation reports the SOT-assisted switching in heavy metal/magnetic insulator systems.1 The experiments made use of Pt/BaFe12O19 bi-layered structures. Thanks to its strong spin-orbit coupling, Pt has been widely used to produce pure spin currents in previous studies. BaFe12O19 is an M-type barium hexagonal ferrite and is often referred as BaM. It is one of the few magnetic insulators with strong magneto-crystalline anisotropy and shows an effective uniaxial anisotropy field of about 17 kOe. It's found that the switching response in the BaM film strongly depends on the charge current applied to the Pt film. When a constant magnetic field is applied in the film plane, the charge current in the Pt film can switch the normal component of the magnetization (M⊥) in the BaM film between the up and down states. The current also dictates the up and down states of the remnant magnetization when the in-plane field is reduced to zero. When M⊥ is measured by sweeping an in-plane field, the response manifests itself as a hysteresis loop, which evolves in a completely opposite manner if the sign of the charge current is flipped. When the coercivity is measured by sweeping an out-of-plane field, its value can be reduced or increased by as much as about 500 Oe if an appropriate charge current is applied. 1. P. Li, T. Liu, H. Chang, A. Kalitsov, W. Zhang, G. Csaba, W. Li, D. Richardson, A. Demann, G. Rimal, H. Dey, J. S. Jiang, W. Porod, S. Field, J. Tang, M. C. Marconi, A. Hoffmann, O. Mryasov, and M. Wu, Nature Commun. 7:12688 doi: 10.1038/ncomms12688 (2016).

  2. Pacemaker reed switch behavior in 0.5, 1.5, and 3.0 Tesla magnetic resonance imaging units: are reed switches always closed in strong magnetic fields?

    Science.gov (United States)

    Luechinger, Roger; Duru, Firat; Zeijlemaker, Volkert A; Scheidegger, Markus B; Boesiger, Peter; Candinas, Reto

    2002-10-01

    MRI is established as an important diagnostic tool in medicine. However, the presence of a cardiac pacemaker is usually regarded as a contraindication for MRI due to safety reasons. The aim of this study was to investigate the state of a pacemaker reed switch in different orientations and positions in the main magnetic field of 0.5-, 1.5-, and 3.0-T MRI scanners. Reed switches used in current pacemakers and ICDs were tested in 0.5-, 1.5-, and 3.0-T MRI scanners. The closure of isolated reed switches was evaluated for different orientations and positions relative to the main magnetic field. The field strengths to close and open the reed switch and the orientation dependency of the closed state inside the main magnetic field were investigated. The measurements were repeated using two intact pacemakers to evaluate the potential influence of the other magnetic components, like the battery. If the reed switches were oriented parallel to the magnetic fields, they closed at 1.0 +/- 0.2 mT and opened at 0.7 +/- 0.2 mT. Two different reed switch behaviors were observed at different magnetic field strengths. In low magnetic fields ( 200 mT), the reed switches opened in 50% of all tested orientations. No difference between the three scanners could be demonstrated. The reed switches showed the same behavior whether they were isolated or an integral part of the pacemakers. The reed switch in a pacemaker or an ICD does not necessarily remain closed in strong magnetic fields at 0.5, 1.5, or 3.0 T and the state of the reed switch may not be predictable with certainty in clinical situations.

  3. Disorder effects on helical edge transport in graphene under a strong tilted magnetic field

    Science.gov (United States)

    Huang, Chunli; Cazalilla, Miguel A.

    2015-10-01

    In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.

  4. Equilibrium and stability in strongly inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1978-10-01

    The equilibrium of strongly inhomogeneous, collisionless, slab plasmas, is studied using a generalized version of a formalism previously developed, which permits the generation of self-consistent equilibria, for plasmas with arbitrary magnetic shear, and variation of magnetic field strength. A systematic procedure is developed for deriving the form of the guiding-center Hamiltonian K, for finite eta, in an axisymmetric geometry. In the process of obtaining K, an expression for the first adiabatic invariant (the gyroaction) is obtained, which generalizes the usual expression 1/2 mv/sub perpendicular/ 2 /Ω/sub c/ (Ω/sub c/ = eB/mc), to finite eta and magnetic shear. A formalism is developed for the study of the stability of strongly-inhomogeneous, magnetized slab plasmas; it is then applied to the ion-drift-cyclotron instability

  5. Measurement of the strong interaction coupling constant αs by jet study in the H1 experiment

    International Nuclear Information System (INIS)

    Squinabol, F.

    1997-01-01

    The H1 experiment allows to study hadronic jets produced in deep inelastic lepton (27.5 GeV) scattering off protons (820 GeV). The coupling constant of the strong interaction α s can be extracted from the measurement of the 2-jets rate in the final state. The use of the JADE algorithm is optimal for events with high energy transfer (100-4,000 GeV 2 ), corresponding to the 1994 and 1995 data. The error on α s (M Z 0 2 ) is dominated by the uncertainty from the hadronic energy measurement and the experimental resolution effects on jets. The theoretical error is dominated by the renormalization scale dependence. The final result is (M Z 0 2 ) 0.118 -0.008 +0.008 . This analysis is extended to smaller momentum transfers (25-100 GeV 2 ) using the factorizable K t algorithm, taking the transferred momentum as energy scale of the particle re-clustering. The result α s (M Z 0 2 ) 0.117 -0.008 +0.009 is compatible with the previous one. The precision of the measurement performed in this thesis is 7%. A precision of 4% could be achieved after progresses in the theoretical framework and/or after a significant increase of the luminosity. (author)

  6. Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk

    Energy Technology Data Exchange (ETDEWEB)

    Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)

    2017-08-20

    We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.

  7. Non-uniform 3He polarization formed by multiple collisions of a fast 3He+ ion with polarized Rb vapor in a strong magnetic field

    International Nuclear Information System (INIS)

    Arimoto, Y.; Yonehara, K.; Yamagata, T.; Tanaka, M.

    2001-01-01

    We investigated the spatial distribution of a polarization in 3 He beam expected from a novel polarized 3 He ion source based on electron pumping, i.e., multiple electron capture and stripping collisions of an incident fast 3 He + ion with a polarized Rb vapor in a strong axial magnetic field. For this purpose, a Monte Carlo simulation was carried out for 19 keV 3 He + ions with varying Rb vapor thickness, magnetic field, and beam emittance. The calculated results showed a distribution of the 3 He polarization that we call a 'polarization hole', which has a low polarization area around the beam axis. The parameters characterizing the polarization hole, i.e., the polarization and radius of the hole, were found to depend on the Rb vapor thickness, the magnetic field, the beam size, and the angular divergence of the initial beam. These parameters were successfully reproduced with analytical functions deduced from a probability density function prescription. This provides a powerful tool to treat complex phenomena of multiple collisions in strong magnetic fields without performing time-consuming Monte Carlo calculations

  8. Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.

    2007-01-01

    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

  9. An analytical method for the investigation of instability of a collisionless plasma in strong magnetic fields

    International Nuclear Information System (INIS)

    Zakharov, V.U.

    1993-01-01

    An analytical method for the investigation of special types of dispersion relations is presented. In particular, analysis of the propagation of small-amplitude hydromagnetic waves in a collisionless plasma in a strong magnetic field leads to such dispersion relations. The fifth-degree dispersion relation corresponding to a particular case is considered. The necessary stability condition for a steady state and conditions for the degeneration of small-amplitude waves are derived. A comparison with other methods for the analysis of similar dispersion relations is also presented. (author)

  10. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  11. Generation of strong inhomogeneous stray fields by high-anisotropy permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Samofalov, V.N. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)]. E-mail: samofalov@kpi.kharkov.ua; Ravlik, A.G. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine); Belozorov, D.P. [National Scientific Center Kharkov Institute of Physics and Techonology, NAS of Ukraine, 1 Akademicheskaja St., 61108 Kharkov (Ukraine); Avramenko, B.A. [National Technical University Kharkov Polytechnical Institute, 21 Frunze St., 61002 Kharkov (Ukraine)

    2004-10-01

    Magnetic stray fields for systems of permanent magnets with high magnetic anisotropy are calculated and measured. It is shown that intensity of these fields exceeds value of an induction of a material of magnets in some time. Besides, these fields are characterized by high gradients, and size H-bar H can reach values up to10{sup 10}-10{sup 11}Oe{sup 2}/cm. Estimations of extremely achievable fields and their gradients are made.

  12. Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs

    Science.gov (United States)

    Mondal, Tushar; Mukhopadhyay, Banibrata

    2018-05-01

    We discuss the importance of large-scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large-scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5-dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.

  13. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    Science.gov (United States)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  14. Investigations about the effects of magnetic fields on QGP in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele; Bleicher, Marcus [FIAS, Frankfurt am Main (Germany); Goethe Universitaet, Frankfurt am Main (Germany); Del Zanna, Luca [Universita degli Studi di Firenze, Firenze (Italy); Osservatorio Astrofisico di Arcetri - INAF, Firenze (Italy); INFN, Sezione di Firenze (Italy); Haddadi, Mohsen [Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita degli Studi di Firenze, Firenze (Italy); INFN, Sezione di Firenze (Italy); Beraudo, Andrea [INFN, Sezione di Torino (Italy); Rolando, Valentina [Universita degli Studi di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy)

    2016-07-01

    Numerical hydrodynamic simulations of heavy ion collisions are constantly refined through the addition of effects that may significantly improve the matching with experimental data, like viscosity or fluctuating initial conditions, but, so far, electromagnetic interactions have been almost completely neglected. However, recent lattice QCD computations and classical electrodynamics estimates both suggest that the magnetic fields produced immediately after the collisions between nuclei may live long enough and with a strength sufficient to produce measurable effects. We would like to present the results of some preliminary investigations about the influence on the properties of the medium due the presence of a strong magnetic field.

  15. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  16. Magnetic field correlations in random flow with strong steady shear

    International Nuclear Information System (INIS)

    Kolokolov, I. V.; Lebedev, V. V.; Sizov, G. A.

    2011-01-01

    We analyze the magnetic kinematic dynamo in a conducting fluid where a stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, and their growth rates and scaling behavior are established. General assertions are illustrated by the explicit solution of a model where the velocity field is short-correlated in time.

  17. Extreme enhancement of blocking temperature by strong magnetic dipoles interaction of α-Fe nanoparticle-based high-density agglomerate

    International Nuclear Information System (INIS)

    Kura, H; Takahashi, M; Ogawa, T

    2011-01-01

    High-volume fraction α-Fe nanoparticle (NP) agglomerates were prepared using chemically synthesized NPs. In the agglomerate, NPs are separated by surfactant and NP superlattice with a hexagonal close-packed structure is locally realized. Volume fractions of NPs at 20% and 42% were obtained in agglomerates consisting of 2.9 nm and 8.2 nm diameter NPs, respectively. The high saturation magnetization of α-Fe NPs and high volume fraction of NPs in the agglomerate provide strong magnetic dipole-dipole interaction. The interaction energy of the agglomerate became much larger than the anisotropic energy of individual NPs. As a result, the blocking temperature of the 8.2 nm NP agglomerate was significantly enhanced from 52.2 K to around 500 K. (fast track communication)

  18. Analytic computation of the quantum levels of a two-dimensional hydrogenic donor in the presence of a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Victor M.; Pino, Ramiro [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela)

    2001-03-01

    In this article we review different techniques for computing the energy spectrum of 2 D hydrogenic donors and two-electron quantum dots in the presence of a constant, magnetic field perpendicular to the plane of the electron. We compute the 1S, 2P- and 3D- energy levels via a scaled variational mixed-bases method. We compare our results with those obtained with the shifted 1/N method. [Spanish] En el presente articulo se exhiben distintos metodos para calcular el espectro de energia de donores hidrogenicos y puntos cuanticos con dos electrones en presencia de un campo magnetico constante perpendicular al plano del electron. Se calculan los niveles de energia 1S, 2P- y 3D- con ayuda del metodo variacional de bases mixtas con escalamiento. Comparamos nuestro resultados con los obtenidos con ayuda del metodo 1/N con corrimiento.

  19. On the measurement of magnetic viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)

    2012-08-15

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.

  20. Calculation of the hyperfine constants of the V sub (K) center in CaF2, SrF2 e BaF2

    International Nuclear Information System (INIS)

    Bufaical, R.F.

    1975-03-01

    The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated, assuming a phenomenological model, based on the F - 2 'central molecule', to describe the wave function of the defect. The introduction of covalence with the ions neighboring the 'central molecule', has shown that this is a better description for the defect than a simple 'central molecule' model. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of these neighboring ions, which have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different methods have been used. A better description for the wave function of the defect is suggested. (author) [pt

  1. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    International Nuclear Information System (INIS)

    Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.

    2015-01-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb -1 collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant α S is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of α S (M Z ) = 0.1171 ± 0.0013(exp) +0.0073 -0.0047 (theo). (orig.)

  2. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  3. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  4. Theory of radiative transfer in a strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, S [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A theory is presented of the radiative transfer in a magnetized plasma with the opacity determined by the Thomson scattering. The Thomson cross section in the magnetic field is highly anisotropic and polarization-dependent. In order to cope with this situation, it is found useful to deal directly with the scattering amplitude (2x2 matrix in the polarization vector space) rather than the intensity. In this way it is possible to take into account the coherent superposition of the forward multiple-scattering amplitudes as a photon propagates. The equation of transfer is established accordingly and approximate solutions are found in the limits of small and large optical thickness. The latter solution is used to find the intensity and the polarization of thermal X-rays from a magnetic dipole star. The concept of mean free path is discussed and also it is shown that the Faraday rotation naturally comes about as a result of the multiple forward scattering.

  5. Magnetic-plasmonic multilayered nanorods

    Science.gov (United States)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  6. Magnetic catalysis and inverse magnetic catalysis in QCD

    International Nuclear Information System (INIS)

    Mueller, N.

    2015-01-01

    We investigate the effects of strong magnetic fields on the QCD phase structure at vanishing density by solving the gluon and quark gap equations. The chiral crossover temperature as well as the chiral condensate is computed. For asymptotically large magnetic fields we find magnetic catalysis, while we find inverse magnetic catalysis for intermediate magnetic fields. Moreover, for large magnetic fields the chiral phase transition for massless quarks turns into a crossover. The underlying mechanisms are then investigated analytically within a few simplifications of the full numerical analysis. We find that a combination of gluon screening effects and the weakening of the strong coupling is responsible for the phenomenon of inverse catalysis seen in lattice studies. In turn, the magnetic catalysis at large magnetic field is already indicated by simple arguments based on dimensionality. (author)

  7. Characteristics of thermally assisted magnetic recording in granular perpendicular media

    International Nuclear Information System (INIS)

    Shiino, Hirotaka; Kawana, Mayumi; Miyashita, Eiichi; Hayashi, Naoto; Watanabe, Sadayuki

    2009-01-01

    The effect of thermally assisted magnetic recording using granular perpendicular media with a single-pole-trimmed head has been investigated. A read/write experiment using a spin stand in which the media were heated by laser irradiation demonstrated that the track average amplitude strongly depends on both the position of the write head relative to the center of the laser spot in the down-track direction and on the laser power. Although the signal-to-noise ratio increased with the coercivity of the media, the increment was small; this is thought to be caused by an increase in the switching field distribution of the media with temperature. Our results suggest that the magnetic constant of the media must be optimized with respect to the temperature of writing in order for high-density thermally assisted magnetic recording to be realized

  8. MAGNETIC CIRCUIT EQUIVALENT OF THE SYNCHRONOUS MOTOR WITH INCORPORATED MAGNETS

    Directory of Open Access Journals (Sweden)

    Fyong Le Ngo

    2015-01-01

    Full Text Available Magnetic circuitry computation is one of the central stages of designing a synchronous motor with incorporated magnets, which can be performed by means of a simplified method of the magnetic-circuits equivalent modeling. The article studies the magnetic circuit of the motor with the rotor-incorporated magnets, which includes four sectors: constant magnets with the field pole extension made of magnetically soft steel, magniflux dispersion sections containing air barriers and steel bridges; the air gap; the stator grooves, cogs and the frame yoke. The authors introduce an equivalent model of the magnetic circuit. High-energy magnets with a linear demagnetization curve are employed in the capacity of constant magnets. Two magnets create the magnetic flux for one pole. The decline of magnetic potential in the steel of the pole is negligible consequent on the admission that the poles magnetic inductivity µ = ∞. The rotor design provides for the air barriers and the steel bridges that close leakage flux. The induction-permeability curve linearization serves for the bridges magnetic saturation accountability and presents a polygonal line consisting of two linear sections. The estimation of the magnet circuit section including the cogs and the frame yoke is executed with account of the steel saturation, their magnetic conductivities thereat being dependent on the saturation rate. Relying on the equivalent model of the magnetic circuit, the authors deduce a system of two equations written from the first and the second Kirchhoff laws of the magnetic circuits. These equations allow solving two problems: specifying dimensions of the magnets by the preset value of the magnetic flow in the clearance and determining the clearance magnetic flow at the preset motor rotor-and-stator design.

  9. Small-x behavior of the structure function F2 and its slope ∂lnF2/∂ln(1/x) for ''frozen'' and analytic strong-coupling constants

    International Nuclear Information System (INIS)

    Cvetic, G.; Kniehl, B.A.; Kotikov, A.V.

    2009-06-01

    Using the leading-twist approximation of the Wilson operator product expansion with ''frozen'' and analytic versions of the strong-coupling constant, we show that the Bessel-inspired behavior of the structure function F 2 and its slope ∂lnF 2 /∂ln(1/x) at small values of x, obtained for a at initial condition in the DGLAP evolution equations, leads to good agreement with experimental data of deep-inelastic scattering at DESY HERA. (orig.)

  10. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  11. QED Based Calculation of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.

  12. Waves on the surface of a magnetic fluid layer in a traveling magnetic field

    International Nuclear Information System (INIS)

    Zimmermann, K.; Zeidis, I.; Naletova, V.A.; Turkov, V.A.

    2004-01-01

    The plane flow of a layer of incompressible viscous magnetic fluid with constant magnetic permeability under the action of a traveling magnetic field is analyzed. The strength of the magnetic field producing a sinusoidal traveling small-amplitude wave on the surface of a magnetic fluid is found. This flow can be used in designing mobile robots

  13. Study of reaction and heat release from solid combustion in strong magnetic field; Kyojiba wo riyoshita hikinshitsu kotai nensho shori no hanno to netsu no seigy ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K; Fujita, O; Iiya, M; Kudo, K [Hokkaido University, Sapporo (Japan)

    1997-02-01

    To establish the inhomogeneous solid combustion control technology, effects of the strong magnetic field on the solid combustion were examined. When applying the sufficiently strong magnetic field, it is possible to control the air flow in combustion field by utilizing the force applying to constituent oxygen with large susceptibility. Based on this possibility, combustion experiments of expanded polystyrene plates were conducted between the magnetic poles of electro-magnet having the maximum flux density of 1 T and the maximum magnetic field gradient of 0.5 T/cm. To observe the effects of magnetic field without the effects of natural convection, combustion experiments of acrylic sheets were conducted between the magnetic poles of electro-magnet having the maximum flux density of 0.6 T and the magnetic field gradient of about 0.1 T/cm under the microgravity conditions between 10{sup -4} and 10{sup -5}g using a microgravity test facility. Consequently, prospective combustion results could be obtained, in which the force of flame received from the magnetic field is almost equivalent to the buoyancy of flame. It was demonstrated that combustion can be controlled by the magnetic field. 1 ref., 3 figs., 1 tab.

  14. Strongly Anisotropic Electronic Transport at Landau Level Filling Factor ν =9/2 and ν =5/2 under a Tilted Magnetic Field

    International Nuclear Information System (INIS)

    Pan, W.; Tsui, D.C.; Pan, W.; Du, R.R.; Du, R.R.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.; Stormer, H.L.; Stormer, H.L.

    1999-01-01

    We have investigated the influence of an increasing in-plane magnetic field on the states of half filling of Landau levels (ν=11/2, 9/2, 7/2, thinspandthinsp 5/2) of a two-dimensional electron system. In the electrically anisotropic phase at ν=9/2 and 11/2 an in-plane magnetic field of ∼1 - 2 T overcomes its initial pinning to the crystal lattice and reorients this phase. In the initially isotropic phases at ν=5/2 and 7/2 an in-plane magnetic field induces a strong electrical anisotropy. In all cases, for high in-plane fields the high-resistance axis is parallel to the direction of the in-plane field. copyright 1999 The American Physical Society

  15. High-latitude dayside electric fields and currents during strong northward interplanetary magnetic field: Observations and model simulation

    International Nuclear Information System (INIS)

    Clauer, C.R.; Friis-Christensen, E.

    1988-01-01

    On July 23, 1983, the Interplanetary Magnetic Field turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, we observe the onset of the reconfiguration of the high-latitude ionospheric currents to occur about 3 min following the northward IMF encountering the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. Using a computer model in which the distribution of field-aligned current in the polar cleft is directly determined by the strength and orientation of the interplanetary electric field, we are able to simulate the time-varying pattern of ionospheric convection, including the onset of high-latitude ''reversed convection'' cells observed to form during the interval of strong northward IMF. These observations and the simulation results indicate that the dayside polar cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind. copyright American Geophysical Union 1988

  16. Mitigating reentry radio blackout by using a traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2017-10-01

    Full Text Available A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  17. Mitigating reentry radio blackout by using a traveling magnetic field

    Science.gov (United States)

    Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan

    2017-10-01

    A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  18. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    International Nuclear Information System (INIS)

    Faenov, A.; Dyakin, V.; Magunov, A.; Pikuz, T.; Skobelev, I.; Pikuz, S.; Pisarczyk, T.; Wolowski, J.; Zielinska, E.

    1996-01-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N e (z) and T e (z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.)

  19. Using X-ray spectroheliograph technique for investigations of laser-produced plasma under interaction with strong magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Dyakin, V. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Magunov, A. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, T. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Skobelev, I. [MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Pikuz, S. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Fizicheskij Inst.; Kasperczyk, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pisarczyk, T. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Zielinska, E. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1996-08-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. It is shown that using the high-luminosity X-ray spectroheliograph technique allows to measure plasma emission spectra with 2-dimensional spatial resolution even in the cases when these spectra have small intensities. The X-ray spectroscopy and interferometry methods are used to measure plasma parameter distributions. The dependencies of N{sub e}(z) and T{sub e}(z) measured in this paper can be used to calculate the evolution of plasma ionization state during plasma expansion. The quasihomogeneous laser jet, which appears when a laser plasma interacts with an external magnetic field can be used not only to form an active medium of a short wavelength laser, but probably also to tackle the urgent problem of transport in a laser ion injector. (orig.).

  20. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    Science.gov (United States)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  1. Strong enhancement of piezoelectric constants in ScxAl1−xN: First-principles calculations

    Directory of Open Access Journals (Sweden)

    Hiroyoshi Momida

    2016-06-01

    Full Text Available We theoretically investigate the piezoelectricity of ScxAl1−xN in the entire range of x by first-principles calculations. We find that the piezoelectric constants of wurtzite-type ScxAl1−xN significantly enhance as x increases from 0 to 0.75. However, the energy stability analyses between structure phases show that the cubic-type phases become more stable than the wurtzite-type phases at x of approximately 0.5 and higher, interfering with the ability of wurtzite-type ScxAl1−xN to realize the maximum piezoelectricity. Moreover, our study on element combination dependences on piezoelectricity in A0.5B0.5N (A = Sc, Y, La and B = Al, Ga, In indicates that Sc, Y, and La have the strongest effect on the enhancement of piezoelectric constants in AlN, GaN, and InN, respectively.

  2. Geometrical contributions to the exchange constants: Free electrons with spin-orbit interaction

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2017-05-01

    Using thermal quantum field theory, we derive an expression for the exchange constant that resembles Fukuyama's formula for orbital magnetic susceptibility (OMS). Guided by this formal analogy between the exchange constant and OMS, we identify a contribution to the exchange constant that arises from the geometrical properties of the band structure in mixed phase space. We compute the exchange constants for free electrons and show that the geometrical contribution is generally important. Our formalism allows us to study the exchange constants in the presence of spin-orbit interaction. Thereby, we find sizable differences between the exchange constants of helical and cycloidal spin spirals. Furthermore, we discuss how to calculate the exchange constants based on a gauge-field approach in the case of the Rashba model with an additional exchange splitting, and we show that the exchange constants obtained from this gauge-field approach are in perfect agreement with those obtained from the quantum field theoretical method.

  3. Derivation of the fine-structure constant

    International Nuclear Information System (INIS)

    Samec, A.

    1980-01-01

    The fine-structure constant is derived as a dynamical property of quantum electrodynamics. Single-particle solutions of the coupled Maxwell and Dirac equations have a physical charge spectrum. The solutions are used to construct lepton-and quark-like particles. The strong, weak, electromagnetic, and gravitational forces are described as the interactions of complex charges in multiple combinations

  4. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  5. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I. [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I. [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  6. Effect of Dipolar Interactions on the Magnetization of Single-Molecule Magnets in a cubic lattice

    Science.gov (United States)

    Alcantara Ortigoza, Marisol

    2005-03-01

    Since the one-body tunnel picture of single-molecule magnets (SMM) is not always sufficient to explain the fine structure of experimental hysteresis loops, the effect of intermolecular dipolar interactions has been investigated on an ensemble of 100 3D-systems of 5X5X4 particles, each with spin S = 5, arranged in a cubic lattice. We have solved the Landau-Lifshitz-Gilbert equation for several values of the damping constant, the field sweep rate and the lattice constant. We find that the smaller the damping constant is, the stronger the maximum field needs to be to produce hysteresis. Furthermore, the shape of the hysteresis loops also depends on the damping constant. We also find that the system magnetizes and demagnetizes faster with decreasing sweep rates, resulting in smaller hysteresis loops. Variations of the lattice constant within realistic values (1.5nm and 2.5nm) show that the dipolar interaction plays an important role in magnetic hysteresis by controlling the relaxation process. Examination of temperature dependencies (0.1K and 0.7K) of the above will be presented and compared with recent experimental data on SMM.

  7. Determination of microturbulence enhanced electron collisionality in magnetized coaxial accelerator channels by direct magnetic field measurement

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-01-01

    A miniature magnetic probe array, consisting of 10 spatially separated coils, has been used to obtain profile information on the time varying magnetic field within the 2.54 cm wide flow channel of the coaxial plasma source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)]. The magnetic field data have been used, together with a resistive, Hall magnetohydrodynamic (MHD) model of applied field distortion by the flowing plasma, to obtain estimates of the microturbulent enhancement to electron collisionality within the CPS-1 flow channel. These measurements provide direct experimental evidence of anomalous electron collisionality, a previously predicted effect in these devices. The anomaly parameter, a=ν an /ν cl , determined both from the distortion of contours of constant magnetic flux, and from local B θ and B z measurements scales with the classical electron magnetization parameter (Ω cl =ω ce /ν e cl ), indicating that collisionality plays a strong role in determining the level of anomalous transport in the plasma. When this anomaly parameter scaling is cast in terms of the ratio ν e cl /ω lh , it is found that the resistivity enhancement scales with ν e cl /ω lh , and becomes significant at ν e cl /ω lh ≤1, suggesting that a lower hybrid drift instability may be the responsible mechanism for enhanced transport. copyright 1997 American Institute of Physics

  8. Micro magnetic modeling of magnetization reversal in permanent magnets

    International Nuclear Information System (INIS)

    Toussaint, J.C.; Kevorkian, B.; Givord, D.; Rossignol, M.F.

    1996-01-01

    Micro magnetic numerical 3 D calculation is presented in this paper to investigate the effect of a soft magnetic heterogeneity on the magnetization reversal of a single hard magnetic grain. Both equilibrium and transient magnetization configurations are obtained by solving the dynamic Landau-Lifshitz-Gilbert (L.L.G.) equation. A modified forward difference method is used to integrate the time dependent L.L.G. equation without conflicting with the constraint of constant magnetic moment. A continuum view of the material medium is adopted and the spatial finite difference method is used to describe the system as a set of cubic elements. In each element the magnetization is interpolated with quadratic polynomial functions and constrained to follow the Brown condition at the surface. A multigrid approach is developed to calculate the magnetic potential and the resulting stray field associated with a given microstructure. The calculated properties are compared to actual properties of Nd Fe B sintered magnets. Assuming a soft nucleus of 160 angstrom diameter and 80 angstrom depth, the calculated coercive field is about 1.45 T, close to experimental values and the calculated angular dependence of H c resembles experimental behaviours. (author)

  9. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  10. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    Science.gov (United States)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  11. Interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields

    International Nuclear Information System (INIS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-01-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and excitonic quantum Hall droplets at a filling factor υ = 2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons. (author)

  12. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Directory of Open Access Journals (Sweden)

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  13. A magnet without a magnetic circuit, of high homogeneity, specially for nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1981-01-01

    This invention concerns a high homogeneity, double access magnet without a magnetic circuit. It is specially adapted for nuclear magnetic resonance (N.M.R.) imagery. Another advantage worth stressing resides in the possibilities of NMR in biochemical analysis which will enable, for instance, cancerous tumours to be detected in vivo. In order to increase the NMR signal ratio over background noise, it is necessary to increase the homogeneity of the B 0 orientating magnetic field. This magnetic field must orientate the nuclear magnetic moments of the elementary particles which compose the body being examined and in particular the protons. It must therefore be relatively constant in intensity and direction in the entire domain of the examination [fr

  14. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Bagaturia, Iuri; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0...

  15. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  16. How systems of single-molecule magnets magnetize at low temperatures

    Science.gov (United States)

    Fernández, Julio F.; Alonso, Juan J.

    2004-01-01

    We model magnetization processes that take place through tunneling in crystals of single-molecule magnets, such as Mn12 and Fe8. These processes take place when a field H is applied after quenching to very low temperatures. Magnetic dipolar interactions and spin-flipping rules are essential ingredients of the model. The results obtained follow from Monte Carlo simulations and from the stochastic model we propose for dipole field diffusion. Correlations established before quenching are shown to later drive the magnetization process. We also show that in simple cubic lattices, m∝√(t) at time t after H is applied, as observed in Fe8, but only for 1+2log10(hd/hw) time decades, where hd is some near-neighbor magnetic dipolar field, and a spin reversal can occur only if the magnetic field acting on it is within some field window (-hw,hw). However, the √(t) behavior is not universal. For bcc and fcc lattices, m∝tp, but p≃0.7. An expression for p in terms of lattice parameters is derived. At later times the magnetization levels off to a constant value. All these processes take place at approximately constant magnetic energy if the annealing energy ɛa is larger than the tunneling window’s energy width (i.e., if ɛa≳gμBhwS). Thermal processes come in only later on to drive further magnetization growth.

  17. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn [School of Mechano-Electronic Engineering, Xidian University, Xi' an 710071, Shaanxi (China); Jin, Ke [School of Aerospace Science and Technology, Xidian University, Xi' an 710071, Shaanxi (China)

    2016-04-14

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.

  18. Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.

    2004-01-01

    We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers

  19. Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems

    Science.gov (United States)

    Hu, Hao

    Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and

  20. Determination of calibration constants for perturbing objects of cavity resonators

    International Nuclear Information System (INIS)

    Franco, M.A.R.; Serrao, V.A.; Fuhrmann, C.

    1989-05-01

    Using the Slater theorem, the calibrating constants for objects utilized in the tecnique of perturbing measurements of cavities electric and magnetic fields have been determined. Such perturbing objects are utilized in the measurements of the shunt impedance and electric field relative intensity ocurring in linac accelerating structures. To determine the calibrating constants of the perturbing objects, a cylindrical cavity of well know field pattern has been utilized. The cavity was excited in two differente modes of oscillation and the experimental results are in good aggrement with the theoretical values. (author) [pt

  1. On computation of relaxation constant α in Landau–Lifshitz–Gilbert equation

    Energy Technology Data Exchange (ETDEWEB)

    Gladkov, Serguey, E-mail: sglad@newmail.ru; Bogdanova, Sofiya, E-mail: sonjaf@list.ru

    2014-11-15

    Due to the quasi-classical kinetic equation (QKE) for the magnon distribution function to calculate the velocity of the domain wall motion V in magnetic fields H>H{sub a}, where H{sub a}− magnetic anisotropy field. Based on the comparison of this formula for Vthe analytic expression of relaxation constant α in Landau–Lifshitz–Gilbert equation was found. We used the detected correlation between the system's entropy and the environment's resistance force, and obtained an expression for the spin-lattice braking force that is applied to the moving domain wall. We calculated the mobility ratio of the domain wall. - Highlights: • The resistance force acting on the domain wall was calculated. • Mobility coefficient of domain wall was calculated. • The strict calculation of relaxation constant in equation Landau-Lifshitz- Gilbert.

  2. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid

    International Nuclear Information System (INIS)

    Parekh, Kinnari; Upadhyay, R.V.

    2017-01-01

    Ultrasonic wave propagation in the aqueous magnetic fluid is investigated for different particle concentrations. The sound velocity decreases while acoustic impedance increases with increasing concentrations. The velocity anisotropy is observed upon application of magnetic field. The velocity anisotropy fits with Tarapov’s theory suggests the presence of aggregates in the system. We report that these aggregates are thermodynamically unstable and the length of aggregate changes continuously with increasing concentration and, or magnetic field and resulted in a decrease in effective magnetic moment. The Taketomi's theory fits well with the experimental data suggesting that the particle clusters are aligned in the direction of the magnetic field. The radius of cluster found to increase with increasing concentration, and then decreases whereas the elastic force constant increases and then becomes constant. The increase in cluster radius indicates elongation of aggregate length due to tip-to-tip interaction of aggregates whereas for higher concentration, the lateral alignment is more favorable than tip-to-tip alignment of aggregates which reduces the cluster radius making elastic force constant to raise. Optical images show that the chains are fluctuating and confirming the lateral alignment of chains at higher fields. - Highlights: • Magnetic field induced aggregates investigated using ultrasonic wave in aqueous magnetic fluid. • Velocity anisotropy induces upon applications of magnetic field. • Tarapov’s theory fit shows reduction in effective magnetic moment as concentration increases. • Taketomi's theory shows alignment of clusters in field direction. • Cluster radius increases and then decreases with increasing volume fractions. • Optical images show that fluctuating chains and lateral alignment of chains at higher fields.

  3. The effect of magnetic field induced aggregates on ultrasound propagation in aqueous magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Parekh, Kinnari, E-mail: kinnariparekh.rnd@charusat.ac.in [Dr. KC Patel R& D Center, Charotar University of Science & Technology, Changa, 388421 Dist. Anand, Gujarat (India); Upadhyay, R.V. [PD Patel Institute of Applied Sciences, Charotar University of Science & Technology, Changa, 388421 Dist. Anand, Gujarat (India)

    2017-06-01

    Ultrasonic wave propagation in the aqueous magnetic fluid is investigated for different particle concentrations. The sound velocity decreases while acoustic impedance increases with increasing concentrations. The velocity anisotropy is observed upon application of magnetic field. The velocity anisotropy fits with Tarapov’s theory suggests the presence of aggregates in the system. We report that these aggregates are thermodynamically unstable and the length of aggregate changes continuously with increasing concentration and, or magnetic field and resulted in a decrease in effective magnetic moment. The Taketomi's theory fits well with the experimental data suggesting that the particle clusters are aligned in the direction of the magnetic field. The radius of cluster found to increase with increasing concentration, and then decreases whereas the elastic force constant increases and then becomes constant. The increase in cluster radius indicates elongation of aggregate length due to tip-to-tip interaction of aggregates whereas for higher concentration, the lateral alignment is more favorable than tip-to-tip alignment of aggregates which reduces the cluster radius making elastic force constant to raise. Optical images show that the chains are fluctuating and confirming the lateral alignment of chains at higher fields. - Highlights: • Magnetic field induced aggregates investigated using ultrasonic wave in aqueous magnetic fluid. • Velocity anisotropy induces upon applications of magnetic field. • Tarapov’s theory fit shows reduction in effective magnetic moment as concentration increases. • Taketomi's theory shows alignment of clusters in field direction. • Cluster radius increases and then decreases with increasing volume fractions. • Optical images show that fluctuating chains and lateral alignment of chains at higher fields.

  4. Design of a master Fastbus for the data acquisition of the DELPHI external detector. Measurement of the strong interaction coupling constant in the Z neutral boson hadronic decay

    International Nuclear Information System (INIS)

    Chorowicz, V.

    1990-05-01

    The thesis was prepared at the Delphi experiment. The work, performed in the LPNHE-Paris group, consists of two steps: the data acquisition at the Delphi External Detector and the analysis of the hadronic data, in order to extract the coupling constant of the strong interactions at √s = 91 GeV. In the first part of the thesis, the constraints relating to the data acquisition and the Delphi output are discussed. The data acquisition system of the External Detector and the implementation of the AM29000 on the main Fastbus are described. The AM29000 is a RISC type processor, which can support the high frequencies expected from the beam luminosity increase at LEP. This module will replace front end freeing monitor which is presently controlled by a 68020 microprocessor. In the second part of the thesis, the data acquired at Delphi from September to December 1989 is analyzed. The investigation is focused on the hadronic events in order to obtain the Standard Model basic parameter: the Λ QCD , which determines the energy dependence of the strong interactions coupling constant. A method based on the measurement of the energy-energy correlations in the hadronic jets is used and the results are discussed. The Λ QCD value is obtained by fitting the theoretical expected value to the distribution of the energy-energy correlations asymmetry [fr

  5. Influence of calculation error of total field anomaly in strongly magnetic environments

    Science.gov (United States)

    Yuan, Xiaoyu; Yao, Changli; Zheng, Yuanman; Li, Zelin

    2016-04-01

    An assumption made in many magnetic interpretation techniques is that ΔTact (total field anomaly - the measurement given by total field magnetometers, after we remove the main geomagnetic field, T0) can be approximated mathematically by ΔTpro (the projection of anomalous field vector in the direction of the earth's normal field). In order to meet the demand for high-precision processing of magnetic prospecting, the approximate error E between ΔTact and ΔTpro is studied in this research. Generally speaking, the error E is extremely small when anomalies not greater than about 0.2T0. However, the errorE may be large in highly magnetic environments. This leads to significant effects on subsequent quantitative inference. Therefore, we investigate the error E through numerical experiments of high-susceptibility bodies. A systematic error analysis was made by using a 2-D elliptic cylinder model. Error analysis show that the magnitude of ΔTact is usually larger than that of ΔTpro. This imply that a theoretical anomaly computed without accounting for the error E overestimate the anomaly associated with the body. It is demonstrated through numerical experiments that the error E is obvious and should not be ignored. It is also shown that the curves of ΔTpro and the error E had a certain symmetry when the directions of magnetization and geomagnetic field changed. To be more specific, the Emax (the maximum of the error E) appeared above the center of the magnetic body when the magnetic parameters are determined. Some other characteristics about the error Eare discovered. For instance, the curve of Emax with respect to the latitude was symmetrical on both sides of magnetic equator, and the extremum of the Emax can always be found in the mid-latitudes, and so on. It is also demonstrated that the error Ehas great influence on magnetic processing transformation and inversion results. It is conclude that when the bodies have highly magnetic susceptibilities, the error E can

  6. The Creation of a Strong Magnetic Field by Means of Large Magnetic Blocks from NdFeB Magnets in Opposing Linear Halbach Arrays

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2016-01-01

    Roč. 21, č. 3 (2016), 364-373 ISSN 1226-1750 Institutional support: RVO:67985891 Keywords : magnetic field * permanent magnets * NdFeB magnets * Halbach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.713, year: 2016 http://komag.org/journal/

  7. Size-dependent avoidance of a strong magnetic anomaly in Caribbean spiny lobsters.

    Science.gov (United States)

    Ernst, David A; Lohmann, Kenneth J

    2018-03-01

    On a global scale, the geomagnetic field varies predictably across the Earth's surface, providing animals that migrate long distances with a reliable source of directional and positional information that can be used to guide their movements. In some locations, however, magnetic minerals in the Earth's crust generate an additional field that enhances or diminishes the overall field, resulting in unusually steep gradients of field intensity within a limited area. How animals respond to such magnetic anomalies is unclear. The Caribbean spiny lobster, Panulirus argus , is a benthic marine invertebrate that possesses a magnetic sense and is likely to encounter magnetic anomalies during migratory movements and homing. As a first step toward investigating whether such anomalies affect the behavior of lobsters, a two-choice preference experiment was conducted in which lobsters were allowed to select one of two artificial dens, one beneath a neodymium magnet and the other beneath a non-magnetic weight of similar size and mass (control). Significantly more lobsters selected the control den, demonstrating avoidance of the magnetic anomaly. In addition, lobster size was found to be a significant predictor of den choice: lobsters that selected the anomaly den were significantly smaller as a group than those that chose the control den. Taken together, these findings provide additional evidence for magnetoreception in spiny lobsters, raise the possibility of an ontogenetic shift in how lobsters respond to magnetic fields, and suggest that magnetic anomalies might influence lobster movement in the natural environment. © 2018. Published by The Company of Biologists Ltd.

  8. Modified small angle magnetization rotation method in multilayer magnetic microwires

    International Nuclear Information System (INIS)

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  9. Cauchy horizon stability and mass inflation with a cosmological constant

    International Nuclear Information System (INIS)

    Costa, João L; Girão, Pedro M; Natário, José; Silva, Jorge Drumond

    2015-01-01

    Motivated by the strong cosmic censorship conjecture, we consider the Einstein- Maxwell-scalar field system with a cosmological constant Λ (of any sign), under spherical symmetry, for characteristic initial conditions, with outgoing data prescribed by a (complete) subextremal Reissner-Nordstrom black hole event horizon. We study the structure of the future maximal (globally hyperbolic) development, analyze the mass inflation scenarios, identifying, in particular, large choices of parameters for which the Hawking mass remains bounded, and study the existence of regular extensions. We also discuss why our results, although valid for all signs of Λ, only provide evidence for the failure of strong cosmic censorship in the case of a positive cosmological constant. (paper)

  10. Electrostatic turbulence in strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Nielsen, A.H.

    1993-01-01

    Turbulence in plasmas has been investigated experimentally and numerically. On the experimental side the turbulent nature of the Kelvin-Helmholtz instability has been studied in a single-ended Q-machine. The development of coherent structures in the background of the turbulent flow has been demonstrated and the capability of structures of transporting plasma across the magnetic field-lines is explained in detail. The numerical investigations are divided into two parts: Numerical simulations of the dynamics from the Q-machine experiments using spectral methods to solve the two-dimensional Navier-Stokes equations in a cylindrical geometry. A numerical study of the Eulerian-Lagrangian transformation in a two-dimensional flow. Here the flow is made up by a large number of structures, where each individual structure is convected by the superposed flow field of all the others. (au) (33 ills., 67 refs.)

  11. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  12. On the theory of Heiser and Shercliff experiment. Part 1: MHD flow in an open channel in strong uniform magnetic field

    Science.gov (United States)

    Molokov, S. Y.; Allen, J. E.

    Magnetohydrodynamic (MHD) flows of viscous incompressible fluid in strong magnetic fields parallel to a free surface of fluid are investigated. The problem of flow in an open channel due to a moving side wall in uniform magnetic field is considered, and treated by means of matched asymptotic expansions method. The flow region is divided into various subregions and leading terms of asymptotic expansions as M tends towards infinity (M is the Hartmann number) of solutions of correspondent problems in each subregion are obtained. An exact analytic solution of equations governing the free-surface layer of thickness of order M to the minus 1/2 power is obtained.

  13. Calculation of hyperfine structure constants of small molecules using

    Indian Academy of Sciences (India)

    The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...

  14. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    Science.gov (United States)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  15. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.

    Science.gov (United States)

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-04-10

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.

  16. The Charm and Beauty of Strong Interactions

    Science.gov (United States)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  17. Strong electric and magnetic dipole excitations in deformed nuclei

    International Nuclear Information System (INIS)

    Kneissl, U.

    1993-01-01

    Systematic nuclear resonance fluorescence (NRF) experiments have been performed at the bremsstrahlung facility of the Stutgart dynamitron to investigate the distribution of magnetic and electric dipole excitations in deformed nuclei

  18. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    International Nuclear Information System (INIS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  19. Daylight calculations using constant luminance curves

    Energy Technology Data Exchange (ETDEWEB)

    Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda

    2005-02-01

    This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)

  20. Strongly magnetic soil developed on a non-magnetic rock basement: A case study from NW Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Grison, Hana; Petrovský, Eduard; Jordanova, N.; Kapička, Aleš

    2011-01-01

    Roč. 55, č. 4 (2011), s. 697-716 ISSN 0039-3169 R&D Projects: GA AV ČR(CZ) KJB300120604 Institutional research plan: CEZ:AV0Z30120515 Keywords : magnetic susceptibility * magnetite * soil * pollution * climate * limestone Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.700, year: 2011

  1. Straight ends for superconducting dipole magnet using constant perimeter geometry

    International Nuclear Information System (INIS)

    Royet, J.

    1989-01-01

    The ends of the SSC Dipole magnets are a very critical aspect of the superconducting cable windings needed for this large project. The internal coils, where the radius at the pole is as small as 3/10 of an inch for the first turn, are difficult to form with the very stiff cable, and a high tension is needed. The curing operation on the coils is performed in a heated forming press which applies an important additional stress on the superconducting wire and insulation. A new design of this sensitive region of the magnets was performed at LBL, and several prototypes were built and tested. In this paper the construction method used to solve some of the most critical problems is exposed along with a description of the experimental work in progress. 3 refs., 2 figs

  2. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...

  3. Smoothing Brascamp-Lieb Inequalities and Strong Converses for Common Randomness Generation

    OpenAIRE

    Liu, Jingbo; Courtade, Thomas A.; Cuff, Paul; Verdu, Sergio

    2016-01-01

    We study the infimum of the best constant in a functional inequality, the Brascamp-Lieb-like inequality, over auxiliary measures within a neighborhood of a product distribution. In the finite alphabet and the Gaussian cases, such an infimum converges to the best constant in a mutual information inequality. Implications for strong converse properties of two common randomness (CR) generation problems are discussed. In particular, we prove the strong converse property of the rate region for the ...

  4. The magnetized electron-acoustic instability driven by a warm, field-aligned electron beam

    International Nuclear Information System (INIS)

    Sooklal, A.; Mace, R.L.

    2004-01-01

    The electron-acoustic instability in a magnetized plasma having three electron components, one of which is a field-aligned beam of intermediate temperature, is investigated. When the plasma frequency of the cool electrons exceeds the electron gyrofrequency, the electron-acoustic instability 'bifurcates' at sufficiently large propagation angles with respect to the magnetic field to yield an obliquely propagating, low-frequency electron-acoustic instability and a higher frequency cyclotron-sound instability. Each of these instabilities retains certain wave features of its progenitor, the quasiparallel electron-acoustic instability, but displays also new magnetic qualities through its dependence on the electron gyrofrequency. The obliquely propagating electron-acoustic instability requires a lower threshold beam speed for its excitation than does the cyclotron-sound instability, and for low to intermediate beam speeds has the higher maximum growth rate. When the plasma is sufficiently strongly magnetized that the plasma frequency of the cool electrons is less than the electron gyrofrequency, the only instability in the electron-acoustic frequency range is the strongly magnetized electron-acoustic instability. Its growth rate and real frequency exhibit a monotonic decrease with wave propagation angle and it grows at small to intermediate wave numbers where its parallel phase speed is approximately constant. The relevance of the results to the interpretation of cusp auroral hiss and auroral broadband electrostatic noise is briefly discussed

  5. Magnetic flux density distribution in superconducting cylinders of arbitrary cross section subjected to an axial magnetic field

    Science.gov (United States)

    Fournet, G.

    1982-07-01

    We show here how the application of the critical state model allows one to determine the magnetic flux density B⃗ in each point of a superconducting cylinder with an arbitrary cross section subjected to axial magnetic fields Hz; the B = 0 boundaries of the regions occupied by the vortices are so defined. We successively consider the cases where the critical current density Jc is either isotropic (constant or an arbitrary function of B) or tensorial, which means, for our problem, the use of two components Jcx and Jcy (either constant or depending on B but Jcx/Jcy remaining constant).

  6. Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)

    International Nuclear Information System (INIS)

    Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.

    1998-01-01

    The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H c2 as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H c2 . This negates the conventional thinking that superconductivity and magnetic fields are antagonistic

  7. Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point

    Science.gov (United States)

    Chakraborty, B.; Davies, C. T. H.; Detar, C.; El-Khadra, A. X.; Gámiz, E.; Gottlieb, Steven; Hatton, D.; Koponen, J.; Kronfeld, A. S.; Laiho, J.; Lepage, G. P.; Liu, Yuzhi; MacKenzie, P. B.; McNeile, C.; Neil, E. T.; Simone, J. N.; Sugar, R.; Toussaint, D.; van de Water, R. S.; Vaquero, A.; Fermilab Lattice, Hpqcd,; Milc Collaborations

    2018-04-01

    All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to aμHVP for the first time with physical values of mu and md and dynamical u , d , s , and c quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δ aμHVP ,mu≠md=+1.5 (7 )% , in agreement with estimates from phenomenology.

  8. Magnetic structure driven ferroelectricity and large magnetoelectric coupling in antiferromagnet Co4Nb2O9

    Science.gov (United States)

    Srivastava, P.; Chaudhary, S.; Maurya, V.; Saha, J.; Kaushik, S. D.; Siruguri, V.; Patnaik, S.

    2018-05-01

    Synthesis and extensive structural, pyroelectric, magnetic, dielectric and magneto-electric characterizations are reported for polycrystalline Co4Nb2O9 towards unraveling the multiferroic ground state. Magnetic measurements confirm that Co4Nb2O9 becomes an anti-ferromagnet at around 28 K. Associated with the magnetic phase transition, a sharp peak in pyroelectric current indicates the appearance of strong magneto-electric coupling below Neel temperature (TN) along with large coupling constant upto 17.8 μC/m2T. Using temperature oscillation technique, we establish Co4Nb2O9 to be a genuine multiferroic with spontaneous electric polarization in the anti-ferromagnetic state in the absence of magnetic field poling. This is in agreement with our low temperature neutron diffraction studies that show the magnetic structure of Co4Nb2O9 to be that of a non-collinear anti-ferromagnet with ferroelectric ground state.

  9. Domain structures and magnetization reversal in Co/Pd and CoFeB/Pd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sbiaa, R., E-mail: rachid@squ.edu.om [Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123 (Oman); Ranjbar, M. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Physics Department, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, School of ICT, Royal Institute of Technology (KTH), 164 40 Kista (Sweden)

    2015-05-07

    Domain structures and magnetization reversal of (Co/Pd) and (CoFeB/Pd) multilayers with 7 and 14 repeats were investigated. The Co-based multilayers show much larger coercivities, a better squareness, and a sharper magnetization switching than CoFeB-based multilayers. From magnetic force microscopy observations, both structures show strong reduction in domains size as the number of repeats increases but the magnetic domains for Co-based multilayers are more than one order of magnitude larger than for CoFeB-based multilayers. By imaging domains at different times, breaks in the (CoFeB/Pd) multilayer stripes were observed within only few hours, while no change could be seen for (Co/Pd) multilayers. Although CoFeB single layers are suitable for magnetoresistive devices due to their large spin polarization and low damping constants, their lamination with Pd suffers mainly from thermal instability.

  10. Measurements of vacuum magnetic birefringence using permanent dipole magnets: the PVLAS experiment

    Science.gov (United States)

    Della Valle, F.; Gastaldi, U.; Messineo, G.; Milotti, E.; Pengo, R.; Piemontese, L.; Ruoso, G.; Zavattini, G.

    2013-05-01

    The PVLAS collaboration is presently assembling a new apparatus (at the INFN section of Ferrara, Italy) to detect vacuum magnetic birefringence (VMB). VMB is related to the structure of the quantum electrodynamics (QED) vacuum and is predicted by the Euler-Heisenberg-Weisskopf effective Lagrangian. It can be detected by measuring the ellipticity acquired by a linearly polarized light beam propagating through a strong magnetic field. Using the very same optical technique it is also possible to search for hypothetical low-mass particles interacting with two photons, such as axion-like (ALP) or millicharged particles. Here we report the results of a scaled-down test setup and describe the new PVLAS apparatus. This latter is in construction and is based on a high-sensitivity ellipsometer with a high-finesse Fabry-Perot cavity (>4 × 105) and two 0.8 m long 2.5 T rotating permanent dipole magnets. Measurements with the test setup have improved, by a factor 2, the previous upper bound on the parameter Ae, which determines the strength of the nonlinear terms in the QED Lagrangian: A(PVLAS)e < 3.3 × 10-21 T-2 at 95% c.l. Furthermore, new laboratory limits have been put on the inverse coupling constant of ALPs to two photons and confirmation of previous limits on the fractional charge of millicharged particles is given.

  11. Study of magnetization reversal processes in a thin Co film

    International Nuclear Information System (INIS)

    Chowdhury, N.; Bedanta, S.; Babu, G.S.

    2013-01-01

    The magnetization reversal has been studied both along the easy- and hard- axes for an in plane magnetized thin Cobalt film using magneto-optical Kerr effect (MOKE) microscope. We observe that magnetization reversal is governed by domain wall motion accompanied by nucleation when measured along the easy axis. However coherent rotation is observed during magnetization reversal when measured along the hard axis. The relaxation of magnetization in constant dc magnetic field measured along the easy axis shows exponential behaviour which according to Fatuzzo–Labrune model indicates domain nucleated dominant process. Domain wall velocity plotted as a function of constant dc magnetic field shows creep and slide regime from which the depinning transition was extracted. - Highlights: ► Kerr microscopy was performed for different field orientation to the easy axis. ► Here we have measured domain wall velocity in constant dc fields. ► Creep, depinning and slide modes of domain wall motion have been observed. ► Magnetic relaxation data can be very well fitted to Fatuzzo–Labrune model. ► Magnetization reversal occurs via domain nucleation and wall motion

  12. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  13. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...

  14. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    Science.gov (United States)

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  15. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow

  16. Phase separation in strongly correlated electron systems with two types of charge carriers

    International Nuclear Information System (INIS)

    Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

    2007-01-01

    Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

  17. Magnetic Excitations and Magnetic Ordering in Praseodymium

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Chapellier, M.; Mackintosh, A. R.

    1975-01-01

    The dispersion relations for magnetic excitons propagating on the hexagonal sites of double-hcp Pr provide clear evidence for a pronounced anisotropy in the exchange. The energy of the excitations decreases rapidly as the temperature is lowered, but becomes almost constant below about 7 K......, in agreement with a random-phase-approximation calculation. No evidence of magnetic ordering has been observed above 0.4 K, although the exchange is close to the critical value necessary for an antiferromagnetic state....

  18. Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery

    Directory of Open Access Journals (Sweden)

    Joan Estelrich

    2015-04-01

    Full Text Available In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.

  19. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    Science.gov (United States)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  20. On the theory of Heiser and Shercliff experiment. Part 2: MHD flow between two cylinders in strong radical magnetic field

    Science.gov (United States)

    Molokov, S. Y.; Allen, J. E.

    A magnetohydrodynamic (MHD) flow of conducting fluid between two concentric insulating cylinders in strong radial magnetic field which is parallel to a free surface of a fluid is investigated by means of matched asymptotic expansions method. The flow region is divided into various subregions and leading terms of asymptotic expansions as M tends towards infinity (M is the Hartmann number) of solutions of problems governing flow in these subregions are obtained.

  1. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    Science.gov (United States)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  2. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    Science.gov (United States)

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B

  3. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Herranz Raul

    2012-02-01

    Full Text Available Abstract Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM. We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.

  4. Constant physics and characteristics of fundamental constant

    International Nuclear Information System (INIS)

    Tarrach, R.

    1998-01-01

    We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs

  5. Determination of the strong coupling constant from transverse energy-energy correlations in multi-jet events in pp collisions at 13 TeV using the ATLAS detector at the LHC

    CERN Document Server

    Alvarez, Manuel; Llorente, Javier

    This analysis presents measurements of transverse energy-energy correlations (TEEC) and its associated asymmetry (ATEEC) in multi-jet events in bins of the scalar sum of the two leading jets transverse momenta. The data are unfolded to the particle level and compared to Monte Carlo generators like PYTHIA8, HERWIG++ and SHERPA. A comparison with NLOJET++ predictions is also performed. The value of the strong coupling constant is extracted and the running is tested up to scales beyond 1 TeV.

  6. Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities

    International Nuclear Information System (INIS)

    Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.

    1978-01-01

    Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field

  7. Effect of hydrostatic pressure on magnetic phase transitions and magnetization in gadolinium monocrystal

    International Nuclear Information System (INIS)

    Nikitin, S.A.; Bezdushnyj, R.V.

    1989-01-01

    Effect of hydrostatic pressure on magnetization in gadolinium monocrystal (Δσ-effect) was investigated. Dependences of spesific magnetization, Δσ-effect and bulk magnetostriction of gadolinium monocrystal on temperatures were studied. Results of conducted investigation have shown that in gadolinium the change of specific magnetization under the hydrostatic pressure effect is caused in general case by three effects: a)change of spontaneous magnetization under the effect of hydrostatic pressure; b)change of magnetization within technical magnetization range due to the effect of hydrostatic pressure on magnetic anisotropy constants; c)change of magnetization due to the effect of hydrostatic pressure on temperature of spin-reoriented transition

  8. Thermally activated magnetization reversal in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Guang-Hong, Zhou; Yin-Gang, Wang; Xian-Jin, Qi; Zi-Quan, Li; Jian-Kang, Chen

    2009-01-01

    In this paper, the magnetization reversal of the ferromagnetic layers in the IrMn/CoFe/AlO x /CoFe magnetic tunnel junction has been investigated using bulk magnetometry. The films exhibit very complex magnetization processes and reversal mechanism. Thermal activation phenomena such as the training effect, the asymmetry of reversal, the loop broadening and the decrease of exchange field while holding the film at negative saturation have been observed on the hysteresis loops of the pinned ferromagnetic layer while not on those of the free ferromagnetic layer. The thermal activation phenomena observed can be explained by the model of two energy barrier distributions with different time constants. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. A general perspective on the magnetization reversal in cylindrical soft magnetic nanowires with dominant shape anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kuncser, A. [National Institute of Materials Physics, PO Box MG-7, 077125 Bucharest-Magurele (Romania); University of Bucharest, Faculty of Physics, PO Box MG-11, 077125 Bucharest-Magurele (Romania); Antohe, S. [University of Bucharest, Faculty of Physics, PO Box MG-11, 077125 Bucharest-Magurele (Romania); Kuncser, V., E-mail: kuncser@infim.ro [National Institute of Materials Physics, PO Box MG-7, 077125 Bucharest-Magurele (Romania)

    2017-02-01

    Peculiarities of the magnetization reversal process in cylindrical Ni-Cu soft magnetic nanowires with dominant shape anisotropy are analyzed via both static and time dependent micromagnetic simulations. A reversible process involving a coherent-like spin rotation is always observed for magnetic fields applied perpendicularly to the easy axis whereas nucleation of domain walls is introduced for fields applied along the easy axis. Simple criteria for making distinction between a Stoner-Wohlfarth type rotation and a nucleation mechanism in systems with uniaxial magnetic anisotropy are discussed. Superposed reversal mechanisms can be in action for magnetic fields applied at arbitrary angles with respect to the easy axis within the condition of an enough strong axial component required by the nucleation. The dynamics of the domain wall, involving two different stages (nucleation and propagation), is discussed with respect to initial computing conditions and orientations of the magnetic field. A nucleation time of about 3 ns and corkscrew domain walls propagating with a constant velocity of about 150 m/s are obtained in case of Ni-Cu alloy (Ni rich side) NWs with diameters of 40 nm and high aspect ratio. - Highlights: • The formation and the dynamics of the domain walls in magnetic nanowires have been studied by micromagnetic simulations. • Simple criteria for making distinction between Stoner-Wohlfarth type and nucleation mechanisms in nanowires were discussed. • Corkscrew domain walls or quasi-coherent spin rotation may be induced depending on the field orientation. • The nucleation time was estimated at 3 ns and the wall velocity at 150 m/s. • A simple way for tuning the wall velocity in such systems was mentioned.

  10. QCD : the theory of strong interactions Conference MT17

    CERN Multimedia

    2001-01-01

    The theory of strong interactions,Quantum Chromodynamics (QCD), predicts that the strong interaction is transmitted by the exchange of particles called gluons. Unlike the messengers of electromagnetism photons, which are electrically neutral - gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies. LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  11. Obtaining Magnetic Properties of Meteorites Using Magnetic Scanner

    Science.gov (United States)

    Kletetschka, G.; Nabelek, L.; Mazanec, M.; Simon, K.; Hruba, J.

    2015-12-01

    Magnetic images of Murchison meteorite's and Chelyabinsk meteorite's thin section have been obtained from magnetic scanning system from Youngwood Science and Engineering (YSE) capable of resolving magnetic anomalies down to 10-3 mT range from about 0.3 mm distance between the probe and meteorite surface (resolution about 0.15 mm). Anomalies were produced repeatedly, each time after application of magnetic field pulse of varying amplitude and constant, normal or reversed, direction. This process resulted in both magnetizing and demagnetizing of the meteorite thin section, while keeping the magnetization vector in the plane of the thin section. Analysis of the magnetic data allows determination of coercivity of remanence (Bcr) for the magnetic sources in situ. Value of Bcr is critical for calculating magnetic forces applicable during missions to asteroids where gravity is compromised. Bcr was estimated by two methods. First method measured varying dipole magnetic field strength produced by each anomaly in the direction of magnetic pulses. Second method measured deflections of the dipole direction from the direction of magnetic pulses (Nabelek et al., 2015). Nabelek, L., Mazanec, M., Kdyr, S., and Kletetschka, G., 2015, Magnetic, in situ, mineral characterization of Chelyabinsk meteorite thin section: Meteoritics & Planetary Science.

  12. Two-frequency radiospectrometer for studying paramagnetics under a strong magnetic field

    International Nuclear Information System (INIS)

    Vertii, A.A.; Gudym, I.Y.; Ivanchenko, I.V.

    1994-01-01

    A two-frequency radiospectrometer for studying electron paramagnetic resonance in the 120-150-GHz band and nuclear magnetic resonance in the 180-200-MHz band is described. The spectrometer is used to measure the properties of paramagnetics by a double-resonance technique in a magnetic field of up to 5 T at a temperature ranging from 1.7 to 20 degrees K

  13. AC loss time constant measurements on Nb3Al and NbTi multifilamentary superconductors

    International Nuclear Information System (INIS)

    Painter, T.A.

    1988-03-01

    The AC loss time constant is a previously univestigated property of Nb 3 Al, a superconductor which, with recent technological developments, shows some advantages over the more commonly used superconductors, NbTi and Nb 3 Sn. Four Nb 3 Al samples with varying twist pitches and one NbTi sample are inductively measured for their AC loss time constants. The measured time constants are compared to the theoretical time constant limits imposed by the limits of the transverse resistivity found by Carr [5] and to the theoretical time constants found using the Bean Model as well as to each other. The measured time constants of the Nb 3 Al samples fall approximately halfway between the theoretical time constant limits, and the measured time constants of the NbTi sample is close to the theoretical lower time constant limit. The Bean Model adequately accounts for the variance of the permeability of the Nb 3 Al superconductor in a background magnetic field. Finally, the measured time constant values of the Nb 3 Al samples vary approximately according to the square of their twist pitch. (author)

  14. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  15. Development of a strong electromagnet wiggler

    International Nuclear Information System (INIS)

    Burns, M.J.; Deis, G.A.; Holmes, R.H.; Van Maren, R.D.; Halbach, K.

    1987-01-01

    The Strong Electromagnet (SEM) wiggler is a permanent magnet-assisted electromagnet under development at the Lawrence Livermore National Laboratory (LLNL) as part of the Induction Linac Free-Electron-Laser (IFEL) program. This concept uses permanent magnets within the wiggler to provide a reverse bias flux in the iron and thus delay the onset of magnetic saturation. The electromagnet coils determine the wiggler field and operate at low current densities by virtue of their placement away from the midplane. We describe here the design approach used and test data from a 7-period wiggler prototype that includes curved pole tips to provide wiggle-plane focusing. 7 refs

  16. Magnetic properties of the Ce2Fe17-x Mn x helical magnets up to high magnetic fields

    International Nuclear Information System (INIS)

    Kuchin, A.G.; Mushnikov, N.V.; Bartashevich, M.I.; Prokhnenko, O.; Khrabrov, V.I.; Lapina, T.P.

    2007-01-01

    Magnetic properties of the Ce 2 Fe 17- x Mn x , x=0-2, alloys in magnetic fields up to 40 T are reported. The compounds with x=0.5-1 are helical antiferromagnets and those with 1 B that couple antiparallelly to the Fe moments. Easy-plane magnetic anisotropy in the Ce 2 Fe 17- x Mn x compounds weakens upon substitution of Mn for Fe. The absolute value of the first anisotropy constant in the Ce 2 Fe 17- x Mn x helical ferromagnets decreases slower with increasing temperature than that calculated from the third power of the spontaneous magnetization. Noticeable magnetic hysteresis in the Ce 2 Fe 17- x Mn x , x=0.5-2, helical magnets over the whole range of magnetic fields reflects mainly irreversible deformation of the helical magnetic structure during the magnetization of the compounds. A contribution from short-range order (SRO) magnetic clusters to the magnetic hysteresis of the helical magnets has been also estimated

  17. How strongly are the magnetic anisotropy and coordination numbers ...

    Indian Academy of Sciences (India)

    ted not only by structural and electronic features of the molecule, but also by their surroundings resulting ... The only straightforward way to attain quantitative information about magnetic networks is via fragment ... explanations and attainment of reliable results often requires considerable intervention by expert theorists.

  18. Regularized unfolding of jet cross sections in deep-inelastic ep scattering at HERA and determination of the strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Britzger, Daniel Andreas

    2013-10-15

    In this thesis double-differential cross sections for jet production in neutral current deep-inelastic e{sup {+-}}p scattering (DIS) are presented at the center-of-mass energy of {radical}(s)=319 GeV, and in the kinematic range of the squared four-momentum transfer 150< Q{sup 2}<15 000 GeV{sup 2} and the inelasticity 0.2strong coupling constant {alpha}{sub s}(M{sub Z}) at the scale of the mass of the Z{sup 0} boson in the framework of perturbative quantum chromodynamics in next-to-leading order. Values are derived separately for the absolute

  19. How strong is the strong interaction? The πNN coupling constant and the shape and normalization of np scattering cross sections

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.; Rahm, J.

    2000-01-01

    The world data base on np scattering differential cross section data from 100 to 1000 MeV incident neutron energy has been reviewed. In addition, the status of the np total cross section and the pp → dπ + total cross section is discussed, as these have frequently been used to normalize np scattering data. It appears that the shapes of the largest np data sets tend to fall into two groups, with different steepness at backward angles. Also, it seems as the two major techniques for normalizing data yield incompatible results. Both these effects have consequences when using np data to determine the pion-nucleon coupling constant, g 2 πNN , which is currently under debate. (orig.)

  20. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.

    Science.gov (United States)

    Król, Mateusz; Mirek, Rafał; Lekenta, Katarzyna; Rousset, Jean-Guy; Stephan, Daniel; Nawrocki, Michał; Matuszewski, Michał; Szczytko, Jacek; Pacuski, Wojciech; Piętka, Barbara

    2018-04-27

    Owing to their integer spin, exciton-polaritons in microcavities can be used for observation of non-equilibrium Bose-Einstein condensation in solid state. However, spin-related phenomena of such condensates are difficult to explore due to the relatively small Zeeman effect of standard semiconductor microcavity systems and the strong tendency to sustain an equal population of two spin components, which precludes the observation of condensates with a well defined spin projection along the axis of the system. The enhancement of the Zeeman splitting can be achieved by introducing magnetic ions to the quantum wells, and consequently forming semimagnetic polaritons. In this system, increasing magnetic field can induce polariton condensation at constant excitation power. Here we evidence the spin polarization of a semimagnetic polaritons condensate exhibiting a circularly polarized emission over 95% even in a moderate magnetic field of about 3 T. Furthermore, we show that unlike nonmagnetic polaritons, an increase on excitation power results in an increase of the semimagnetic polaritons condensate spin polarization. These properties open new possibilities for testing theoretically predicted phenomena of spin polarized condensate.