Renormalization in theories with strong vector forces
International Nuclear Information System (INIS)
Kocic, A.
1991-01-01
There are not many field theories in four dimensions that have sensible ultraviolet and interesting (non-trivial) infrared behavior. At present, asymptotically free theories seem to have deserved their legitimacy and there is a strong prejudice that they might be the only ones to have such a distinction. This belief stems mostly from the fact that most of the knowledge of field theory in four dimensions comes from perturbation theory. However, nonperturbative studies of the lower dimensional theories reveal a host of interesting phenomena that are perturbative studies of the lower dimensional theories reveal a host of interesting phenomena that perturbatively inaccessible. The lack of asymptotic freedom implies that the coupling constant grows at short distances and perturbation theory breaks down. Thus, in such theories, ultraviolet behavior requires nonperturbative treatment. Recently, the interest in strongly coupled gauge theories has been revived. In particularly, four dimensional quantum electrodynamics has received considerable attention. This was motivated by the discovery of an ultraviolet stable fixed point at strong couplings. If this fixed point would turn out to be non-gaussian, then QED would be the first nontrivial nonasymptotically free theory in four dimensions. The importance of such a result would be twofold. First, the old question of the existence of QED could be settled. Of course, this would be the case provided that the low energy limit of the theory actually describes photons and electrons; apriori, there is no reason to assume this. Second, the discovery of a nontrivial nonasymptotically free theory would be of great paradigmatic value. The theories which quenched QED resembles the most are nonabelian gauge theories with many flavors with beta-function positive or vanishing at weak couplings. These theories are at present considered as viable candidates for technicolor unification schemes
Strong-Weak CP Hierarchy from Non-Renormalization Theorems
Energy Technology Data Exchange (ETDEWEB)
Hiller, Gudrun
2002-01-28
We point out that the hierarchy between the measured values of the CKM phase and the strong CP phase has a natural origin in supersymmetry with spontaneous CP violation and low energy supersymmetry breaking. The underlying reason is simple and elegant: in supersymmetry the strong CP phase is protected by an exact non-renormalization theorem while the CKM phase is not. We present explicit examples of models which exploit this fact and discuss corrections to the non-renormalization theorem in the presence of supersymmetry breaking. This framework for solving the strong CP problem has generic predictions for the superpartner spectrum, for CP and flavor violation, and predicts a preferred range of values for electric dipole moments.
Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach
Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene
2018-03-01
When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.
Strong renormalization scheme dependence in τ-lepton decay: Fact or fiction?
International Nuclear Information System (INIS)
Chyla, J.
1995-01-01
The question of the renormalization scheme dependence of the τ semileptonic decay rate is examined in response to a recent criticism. Particular attention is payed to a distinction between a consistent quantitative description of this dependence and the actual selection of a subset of ''acceptable'' renormalization schemes. It is pointed out that this criticism is valid only within a particular definition of the ''strength'' of the renormalization scheme dependence and should not discourage further attempts to use the semileptonic τ decay rate for quantitative tests of perturbative QCD
Renormalization theory of stationary homogeneous strong turbulence in a collisionless plasma
International Nuclear Information System (INIS)
Zhang, Y.Z.
1984-01-01
A renormalization procedure for the perturbation expansion of the Vlasov-Poisson equation is presented to describe stationary homogeneous turbulence. By using the diagramatic scheme the theory is shown to be renormalizable to any order. The expressions for the renormalized propagator, the renormalized dielectric function, and the intrinsically incoherent source are given. The renormalization leads to a complete separation of the fluctuating distribution function f/sub k/ into two parts, the coherent part, which is proved to represent the dielectric effect of the medium, and the intrinsically incoherent part, which represents the effect of nonlinear source. The turbulent collisional operator in the transport equation is proved equal to GAMMA 0 , the frequency broadening when k = 0
Energy Technology Data Exchange (ETDEWEB)
Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik
1975-01-01
Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.
Monthus, Cécile
2018-03-01
For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.
Renormalization group functions of the φ4 theory in the strong coupling limit: Analytical results
International Nuclear Information System (INIS)
Suslov, I. M.
2008-01-01
The previous attempts of reconstructing the Gell-Mann-Low function β(g) of the φ 4 theory by summing perturbation series give the asymptotic behavior β(g) = β ∞ g in the limit g → ∞, where α = 1 for the space dimensions d = 2, 3, 4. It can be hypothesized that the asymptotic behavior is β(g) ∼ g for all d values. The consideration of the zero-dimensional case supports this hypothesis and reveals the mechanism of its appearance: it is associated with vanishing of one of the functional integrals. The generalization of the analysis confirms the asymptotic behavior β(g) ∼ g in the general d-dimensional case. The asymptotic behaviors of other renormalization group functions are constant. The connection with the zero-charge problem and triviality of the φ 4 theory is discussed
International Nuclear Information System (INIS)
Monthus, Cécile; Garel, Thomas
2012-01-01
To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent ν FS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent ν typ ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent ν pure Q (d=2)≅0.6 3 of the pure two-dimensional quantum Ising model), and the typical exponent ν h ≃ 1 for the ordered phase. These values satisfy the relations between critical exponents imposed by the expected finite-size scaling properties at infinite-disorder critical points. We also measure, within the disordered phase, the fluctuation exponent ω ≃ 0.35 which is compatible with the directed polymer exponent ω DP (1+1)= 1/3 in (1 + 1) dimensions. (paper)
Renormalization and effective lagrangians
International Nuclear Information System (INIS)
Polchinski, J.
1984-01-01
There is a strong intuitive understanding of renormalization, due to Wilson, in terms of the scaling of effective lagrangians. We show that this can be made the basis for a proof of perturbative renormalization. We first study renormalizability in the language of renormalization group flows for a toy renormalization group equation. We then derive an exact renormalization group equation for a four-dimensional lambda PHI 4 theory with a momentum cutoff. We organize the cutoff dependence of the effective lagrangian into relevant and irrelevant parts, and derive a linear equation for the irrelevant part. A lengthy but straightforward argument establishes that the piece identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The method extends immediately to any system in which a momentum-space cutoff can be used, but the principle is more general and should apply for any physical cutoff. Neither Weinberg's theorem nor arguments based on the topology of graphs are needed. (orig.)
Renormalized action improvements
International Nuclear Information System (INIS)
Zachos, C.
1984-01-01
Finite lattice spacing artifacts are suppressed on the renormalized actions. The renormalized action trajectories of SU(N) lattice gauge theories are considered from the standpoint of the Migdal-Kadanoff approximation. The minor renormalized trajectories which involve representations invariant under the center are discussed and quantified. 17 references
Algebraic renormalization. Perturbative renormalization, symmetries and anomalies
International Nuclear Information System (INIS)
Piguet, O.
1995-01-01
This book is an introduction to the algebraic method in the perturbative renormalization of relativistic quantum field theory. After a general introduction to renormalized perturbation theory the quantum action principle and Ward identities are described. Then Yang-Mills gauge theories are considered. Thereafter the BRS cohomology and descent equations are described. Then nonrenormalization theorems and topological field theories are considered. Finally an application to the bosonic string is described. (HSI)
Hadamard and minimal renormalizations
International Nuclear Information System (INIS)
Castagnino, M.A.; Gunzig, E.; Nardone, P.; Paz, J.P.
1986-01-01
A common language is introduced to study two, well-known, different methods for the renormalization of the energy-momentum tensor of a scalar neutral quantum field in curved space-time. Different features of the two renormalizations are established and compared
Non-Perturbative Renormalization
Mastropietro, Vieri
2008-01-01
The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi
Renormalization of supersymmetric theories
International Nuclear Information System (INIS)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses
International Nuclear Information System (INIS)
Stephens, C. R.
2006-01-01
In this article I give a brief account of the development of research in the Renormalization Group in Mexico, paying particular attention to novel conceptual and technical developments associated with the tool itself, rather than applications of standard Renormalization Group techniques. Some highlights include the development of new methods for understanding and analysing two extreme regimes of great interest in quantum field theory -- the ''high temperature'' regime and the Regge regime
Renormalization of fermion mixing
International Nuclear Information System (INIS)
Schiopu, R.
2007-01-01
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by
Renormalization of fermion mixing
Energy Technology Data Exchange (ETDEWEB)
Schiopu, R.
2007-05-11
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by
Dimensional renormalization and comparison of renormalization schemes in quantum electrodynamics
International Nuclear Information System (INIS)
Coquereaux, R.
1979-02-01
The method of dimensional renormalization as applied to quantum electrodynamics is discussed. A general method is given which allows one to compare the various quantities like coupling constants and masses that appear in different renormalization schemes
Perturbative and constructive renormalization
International Nuclear Information System (INIS)
Veiga, P.A. Faria da
2000-01-01
These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)
Renormalization: infinity in today microscopic physics
International Nuclear Information System (INIS)
Zinn-Justin, J.
2000-01-01
The expectations put in quantum electrodynamics were deceived when first calculations showed that divergencies, due to the pinpoint aspect of the electron, continued to exist. Later, as a consequence of new experimental data and theoretical progress, an empirical method called renormalization was proposed to allow the evaluation of expressions involving infinite terms. The development of this method opened the way to the theory of re-normalizing fields and gave so successful results that it was applied to all fundamental interactions except gravity. This theory allowed the standard model in weak, electromagnetic and strong interactions to be confronted successfully with experimental data during more than 25 years. This article presents the progressive evolution of ideas in the concept of renormalization. (A.C.)
Renormalization and plasma physics
International Nuclear Information System (INIS)
Krommes, J.A.
1980-02-01
A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields
Renormalization and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Krommes, J.A.
1980-02-01
A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.
On renormalization of axial anomaly
International Nuclear Information System (INIS)
Efremov, A.V.; Teryaev, O.V.
1989-01-01
It is shown that multiplicative renormalization of the axial singlet current results in renormalization of the axial anomaly in all orders of perturbation theory. It is a necessary condition for the Adler - Bardeen theorem being valid. 10 refs.; 2 figs
Renormalization group and asymptotic freedom
International Nuclear Information System (INIS)
Morris, J.R.
1978-01-01
Several field theoretic models are presented which allow exact expressions of the renormalization constants and renormalized coupling constants. These models are analyzed as to their content of asymptotic free field behavior through the use of the Callan-Symanzik renormalization group equation. It is found that none of these models possesses asymptotic freedom in four dimensions
Renormalization of Hamiltonian QCD
International Nuclear Information System (INIS)
Andrasi, A.; Taylor, John C.
2009-01-01
We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.
Constructive renormalization theory
International Nuclear Information System (INIS)
Rivasseau, Vincent
2000-01-01
These notes are the second part of a common course on Renormalization Theory given with Professor P. da Veiga. I emphasize here the rigorous non-perturbative or constructive aspects of the theory. The usual formalism for the renormalization group in field theory or statistical mechanics is reviewed, together with its limits. The constructive formalism is introduced step by step. Taylor forest formulas allow to perform easily the cluster and Mayer expansions which are needed for a single step of the renormalization group in the case of Bosonic theories. The iteration of this single step leads to further difficulties whose solution is briefly sketched. The second part of the course is devoted to Fermionic models. These models are easier to treat on the constructive level so they are very well suited to beginners in constructive theory. It is shown how the Taylor forest formulas allow to reorganize perturbation theory nicely in order to construct the Gross-Neveu 2 model without any need for cluster or Mayer expansions. Finally applications of this technique to condensed matter and renormalization group around Fermi surface are briefly reviewed. (author)
Renormalizing Entanglement Distillation
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Holographic renormalization and supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Genolini, Pietro Benetti [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom); Cassani, Davide [LPTHE, Sorbonne Universités UPMC Paris 6 and CNRS, UMR 7589,F-75005, Paris (France); Martelli, Dario [Department of Mathematics, King’s College London,The Strand, London, WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom)
2017-02-27
Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N=2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.
Phases of renormalized lattice gauge theories with fermions
International Nuclear Information System (INIS)
Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)
1979-01-01
Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory
Renormalization Group Functional Equations
Curtright, Thomas L
2011-01-01
Functional conjugation methods are used to analyze the global structure of various renormalization group trajectories. With minimal assumptions, the methods produce continuous flows from step-scaling {\\sigma} functions, and lead to exact functional relations for the local flow {\\beta} functions, whose solutions may have novel, exotic features, including multiple branches. As a result, fixed points of {\\sigma} are sometimes not true fixed points under continuous changes in scale, and zeroes of {\\beta} do not necessarily signal fixed points of the flow, but instead may only indicate turning points of the trajectories.
Investigation of renormalization effects in high temperature cuprate superconductors
Energy Technology Data Exchange (ETDEWEB)
Zabolotnyy, Volodymyr B.
2008-04-16
It has been found that the self-energy of high-T{sub C} cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T{sub C} suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)
Investigation of renormalization effects in high temperature cuprate superconductors
International Nuclear Information System (INIS)
Zabolotnyy, Volodymyr B.
2008-01-01
It has been found that the self-energy of high-T C cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi 2 Sr 2 CaCu 2 O 8+δ and YBa 2 Cu 3 O 7-δ were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T C suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)
NLO renormalization in the Hamiltonian truncation
Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.
2017-09-01
Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.
Renormalization of gauge theories
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-04-01
Gauge theories are characterized by the Slavnov identities which express their invariance under a family of transformations of the supergauge type which involve the Faddeev Popov ghosts. These identities are proved to all orders of renormalized perturbation theory, within the BPHZ framework, when the underlying Lie algebra is semi-simple and the gauge function is chosen to be linear in the fields in such a way that all fields are massive. An example, the SU2 Higgs Kibble model is analyzed in detail: the asymptotic theory is formulated in the perturbative sense, and shown to be reasonable, namely, the physical S operator is unitary and independant from the parameters which define the gauge function [fr
Renormalized Lie perturbation theory
International Nuclear Information System (INIS)
Rosengaus, E.; Dewar, R.L.
1981-07-01
A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another
Compositeness condition in the renormalization group equation
International Nuclear Information System (INIS)
Bando, Masako; Kugo, Taichiro; Maekawa, Nobuhiro; Sasakura, Naoki; Watabiki, Yoshiyuki; Suehiro, Kazuhiko
1990-01-01
The problems in imposing compositeness conditions as boundary conditions in renormalization group equations are discussed. It is pointed out that one has to use the renormalization group equation directly in cutoff theory. In some cases, however, it can be approximated by the renormalization group equation in continuum theory if the mass dependent renormalization scheme is adopted. (orig.)
Effects of renormalizing the chiral SU(2) quark-meson model
Zacchi, Andreas; Schaffner-Bielich, Jürgen
2018-04-01
We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.
Unambiguity of renormalization group calculations in QCD
International Nuclear Information System (INIS)
Vladimirov, A.A.
1979-01-01
A detailed analysis of the reduction of ambiguities determined by an arbitrary renormalization scheme is presented for the renormalization group calculations of physical quantities in quantum chromodynamics (QCD). Some basic formulas concerning the renormalization-scheme dependence of Green's and renormalization group functions are given. A massless asymptotically free theory with one coupling constant g is considered. In conclusion, several rules for renormalization group calculations in QCD are formulated
Differential renormalization of gauge theories
International Nuclear Information System (INIS)
Aguila, F. del; Perez-Victoria, M.
1998-01-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author)
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
The analytic renormalization group
Directory of Open Access Journals (Sweden)
Frank Ferrari
2016-08-01
Full Text Available Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k∈Z, associated with the Matsubara frequencies νk=2πk/β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we construct “Analytic Renormalization Group” linear maps Aμ which, for any choice of cut-off μ, allow to express the low energy Fourier coefficients for |νk|<μ (with the possible exception of the zero mode G0, together with the real-time correlators and spectral functions, in terms of the high energy Fourier coefficients for |νk|≥μ. Operating a simple numerical algorithm, we show that the exact universal linear constraints on Gk can be used to systematically improve any random approximate data set obtained, for example, from Monte-Carlo simulations. Our results are illustrated on several explicit examples.
Practical algebraic renormalization
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias
2001-01-01
A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ
Renormalization of Hamiltonians
International Nuclear Information System (INIS)
Glazek, S.D.; Wilson, K.G.
1993-01-01
This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method
Holographic Renormalization in Dense Medium
International Nuclear Information System (INIS)
Park, Chanyong
2014-01-01
The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space
Renormalization group in modern physics
International Nuclear Information System (INIS)
Shirkov, D.V.
1988-01-01
Renormalization groups used in diverse fields of theoretical physics are considered. The discussion is based upon functional formulation of group transformations. This attitude enables development of a general method by using the notion of functional self-similarity which generalizes the usual self-similarity connected with power similarity laws. From this point of view the authors present a simple derivation of the renorm-group (RG) in QFT liberated from ultra-violet divergences philosophy, discuss the RG approach in other fields of physics and compare different RG's
Renormalized modes in cuprate superconductors
Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.
2018-04-01
The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.
Point transformations and renormalization in the unitary gauge. III. Renormalization effects
International Nuclear Information System (INIS)
Sherry, T.N.
1976-06-01
An analysis of two simple gauge theory models is continued using point transformations rather than gauge transformations. The renormalization constants are examined directly in two gauges, the renormalization (Landau) and unitary gauges. The result is that the individual coupling constant renormalizations are identical when calculated in each of the above two gauges, although the wave-function and proper vertex renormalizations differ
Renormalization group and Mayer expansions
International Nuclear Information System (INIS)
Mack, G.
1984-02-01
Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)
Renormalization group and mayer expansions
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere
Renormalization group in quantum mechanics
International Nuclear Information System (INIS)
Polony, J.
1996-01-01
The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright copyright 1996 Academic Press, Inc
Superfield perturbation theory and renormalization
International Nuclear Information System (INIS)
Delbourgo, R.
1975-01-01
The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond
On renormalization-invariant masses
International Nuclear Information System (INIS)
Fleming, H.; Furuya, K.
1978-02-01
It is shown that spontaneous generation of renormalization invariant mass is possible in infra-red stable theories with more than one coupling constant. If relations among the coupling constants are permitted the effect can be made compatible with pertubation theory
Gauge theory and renormalization
Hooft, G. 't
1996-01-01
Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in
Fixed point of the parabolic renormalization operator
Lanford III, Oscar E
2014-01-01
This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point. Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization. The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...
Renormalization group theory of earthquakes
Directory of Open Access Journals (Sweden)
H. Saleur
1996-01-01
Full Text Available We study theoretically the physical origin of the proposed discrete scale invariance of earthquake processes, at the origin of the universal log-periodic corrections to scaling, recently discovered in regional seismic activity (Sornette and Sammis (1995. The discrete scaling symmetries which may be present at smaller scales are shown to be robust on a global scale with respect to disorder. Furthermore, a single complex exponent is sufficient in practice to capture the essential properties of the leading correction to scaling, whose real part may be renormalized by disorder, and thus be specific to the system. We then propose a new mechanism for discrete scale invariance, based on the interplay between dynamics and disorder. The existence of non-linear corrections to the renormalization group flow implies that an earthquake is not an isolated 'critical point', but is accompanied by an embedded set of 'critical points', its foreshocks and any subsequent shocks for which it may be a foreshock.
Renormalization group and critical phenomena
International Nuclear Information System (INIS)
Ji Qing
2004-01-01
The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)
QCD: Renormalization for the practitioner
International Nuclear Information System (INIS)
Pascual, P.; Tarrach, R.
1984-01-01
These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)
Real space renormalization tecniques for disordered systems
International Nuclear Information System (INIS)
Anda, E.V.
1984-01-01
Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt
The renormalization of the electroweak standard model
International Nuclear Information System (INIS)
Boehm, M.; Spiesberger, H.; Hollik, W.
1984-03-01
A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained in the usual form. Field renormalization respecting the gauge symmetry gives finite Green functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators. Explicit results for the renormalization self energies and vertex functions are given. They can be directly used as building blocks for the evaluation of l-loop radiative corrections. (orig.)
Introduction to the functional renormalization group
International Nuclear Information System (INIS)
Kopietz, Peter; Bartosch, Lorenz; Schuetz, Florian
2010-01-01
This book, based on a graduate course given by the authors, is a pedagogic and self-contained introduction to the renormalization group with special emphasis on the functional renormalization group. The functional renormalization group is a modern formulation of the Wilsonian renormalization group in terms of formally exact functional differential equations for generating functionals. In Part I the reader is introduced to the basic concepts of the renormalization group idea, requiring only basic knowledge of equilibrium statistical mechanics. More advanced methods, such as diagrammatic perturbation theory, are introduced step by step. Part II then gives a self-contained introduction to the functional renormalization group. After a careful definition of various types of generating functionals, the renormalization group flow equations for these functionals are derived. This procedure is shown to encompass the traditional method of the mode elimination steps of the Wilsonian renormalization group procedure. Then, approximate solutions of these flow equations using expansions in powers of irreducible vertices or in powers of derivatives are given. Finally, in Part III the exact hierarchy of functional renormalization group flow equations for the irreducible vertices is used to study various aspects of non-relativistic fermions, including the so-called BCS-BEC crossover, thereby making the link to contemporary research topics. (orig.)
Disordered systems and the functional renormalization group, a pedagogical introduction
International Nuclear Information System (INIS)
Wiese, K.J.
2002-01-01
In this article, we review basic facts about disordered systems, especially the existence of many metastable states and and the resulting failure of dimensional reduction. Besides techniques based on the Gaussian variational method and replica-symmetry breaking (RSB), the functional renormalization group (FRG) is the only general method capable of attacking strongly disordered systems. We explain the basic ideas of the latter method and why it is difficult to implement. We finally review current progress for elastic manifolds in disorder (Author)
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1988-01-01
Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)
Renormalization of Extended QCD2
International Nuclear Information System (INIS)
Fukaya, Hidenori; Yamamura, Ryo
2015-01-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
Non-perturbative renormalization on the lattice
International Nuclear Information System (INIS)
Koerner, Daniel
2014-01-01
Strongly-interacting theories lie at the heart of elementary particle physics. Their distinct behaviour shapes our world sui generis. We are interested in lattice simulations of supersymmetric models, but every discretization of space-time inevitably breaks supersymmetry and allows renormalization of relevant susy-breaking operators. To understand the role of such operators, we study renormalization group trajectories of the nonlinear O(N) Sigma model (NLSM). Similar to quantum gravity, it is believed to adhere to the asymptotic safety scenario. By combining the demon method with blockspin transformations, we compute the global flow diagram. In two dimensions, we reproduce asymptotic freedom and in three dimensions, asymptotic safety is demonstrated. Essential for these results is the application of a novel optimization scheme to treat truncation errors. We proceed with a lattice simulation of the supersymmetric nonlinear O(3) Sigma model. Using an original discretization that requires to fine tune only a single operator, we argue that the continuum limit successfully leads to the correct continuum physics. Unfortunately, for large lattices, a sign problem challenges the applicability of Monte Carlo methods. Consequently, the last chapter of this thesis is spent on an assessment of the fermion-bag method. We find that sign fluctuations are thereby significantly reduced for the susy NLSM. The proposed discretization finally promises a direct confirmation of supersymmetry restoration in the continuum limit. For a complementary analysis, we study the one-flavor Gross-Neveu model which has a complex phase problem. However, phase fluctuations for Wilson fermions are very small and no conclusion can be drawn regarding the potency of the fermion-bag approach for this model.
Renormalization in few body nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Tomio, L.; Biswas, R. [Instituto de Fisica Teorica, UNESP, 01405-900 Sao Paulo (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminenese, Niteroi (Brazil); Frederico, T. [Instituto Tecnologico de Aeronautica, CTA 12228-900 Sao Jose dos Campos (Brazil)
2001-09-01
Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the {sup 3}S{sub l} -{sup 3} D{sub 1} states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three
Renormalization in few body nuclear physics
International Nuclear Information System (INIS)
Tomio, L.; Biswas, R.; Delfino, A.; Frederico, T.
2001-01-01
Full text: Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac delta and/or its derivatives). The approach was developed considering a renormalization scheme for a few-nucleon interaction, that relies on a subtracted T-matrix equation. The fixed-point Hamiltonian contains the renormalized coefficients/operators that carry the physical information of the quantum mechanical system, as well as all the necessary counterterms that make finite the scattering amplitude. It is also behind the renormalization group invariance of quantum mechanics. The renormalization procedure, via subtracted kernel, was first applied to the one-pion-exchange potential supplemented by contact interactions. The singlet and triplet scattering lengths are given to fix the renormalized strengths of the contact interactions. Considering only one scaling parameter, the results that were obtained show an overall very good agreement with neutron-proton data, particularly for the observables related to the triplet channel. In this example, we noticed that the mixing parameter of the 3 S l - 3 D 1 states is the most sensible observable related to the renormalization scale. The above approach, where the nonrelativistic scattering equation with singular interaction is renormalized through a subtraction procedure at a given energy scale, lead us to propose a scheme to formulate renormalized (fixed- point) Hamiltonians in quantum mechanics. We illustrate the numerical diagonalization of the regularized form of the fixed-point Hamiltonian for a two-body system with a Yukawa plus a Dirac-delta interaction. The eigenvalues for the system are shown to be stable in the infinite momentum cutoff. In another example, we also derive the explicit form of the renormalized potential for an example of four-term singular bare interaction. Application of this renormalization scheme to three-body halo nuclei is also
Renormalization methods in solid state physics
Energy Technology Data Exchange (ETDEWEB)
Nozieres, P [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)
1976-01-01
Renormalization methods in various solid state problems (e.g., the Kondo effect) are analyzed from a qualitative vantage point. Our goal is to show how the renormalization procedure works, and to uncover a few simple general ideas (universality, phenomenological descriptions, etc...).
Renormalization Group and Phase Transitions in Spin, Gauge, and QCD Like Theories
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuzhi [Univ. of Iowa, Iowa City, IA (United States)
2013-08-01
In this thesis, we study several different renormalization group (RG) methods, including the conventional Wilson renormalization group, Monte Carlo renormalization group (MCRG), exact renormalization group (ERG, or sometimes called functional RG), and tensor renormalization group (TRG).
Renormalization group approach to causal bulk viscous cosmological models
International Nuclear Information System (INIS)
Belinchon, J A; Harko, T; Mak, M K
2002-01-01
The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor
The density-matrix renormalization group: a short introduction.
Schollwöck, Ulrich
2011-07-13
The density-matrix renormalization group (DMRG) method has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. The DMRG is a method that shares features of a renormalization group procedure (which here generates a flow in the space of reduced density operators) and of a variational method that operates on a highly interesting class of quantum states, so-called matrix product states (MPSs). The DMRG method is presented here entirely in the MPS language. While the DMRG generally fails in larger two-dimensional systems, the MPS picture suggests a straightforward generalization to higher dimensions in the framework of tensor network states. The resulting algorithms, however, suffer from difficulties absent in one dimension, apart from a much more unfavourable efficiency, such that their ultimate success remains far from clear at the moment.
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Class renormalization: islands around islands
International Nuclear Information System (INIS)
Meiss, J.D.
1986-01-01
An orbit of 'class' is one that rotates about a periodic orbit of one lower class with definite frequency. This contrasts to the 'level' of a periodic orbit which is the number of elements in its continued fraction expansion. Level renormalization is conventionally used to study the structure of quasi-periodic orbits. The scaling structure of periodic orbits encircling other periodic orbits in area preserving maps is discussed here. Fixed points corresponding to the accumulation of p/q bifurcations are found and scaling exponents determined. Fixed points for q > 2 correspond to self-similar islands around islands. Frequencies of the island boundary circles at the fixed points are obtained. Importance of this scaling for the motion of particles in stochastic regions is emphasized. (author)
Golden mean Siegel disk universality and renormalization
Gaidashev, Denis; Yampolsky, Michael
2016-01-01
We provide a computer-assisted proof of one of the central open questions in one-dimensional renormalization theory -- universality of the golden-mean Siegel disks. We further show that for every function in the stable manifold of the golden-mean renormalization fixed point the boundary of the Siegel disk is a quasicircle which coincides with the closure of the critical orbit, and that the dynamics on the boundary of the Siegel disk is rigid. Furthermore, we extend the renormalization from on...
Critical phenomena and renormalization group transformations
International Nuclear Information System (INIS)
Castellani, C.; Castro, C. di
1980-01-01
Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)
Sigma models and renormalization of string loops
International Nuclear Information System (INIS)
Tseytlin, A.A.
1989-05-01
An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs
The renormalization group and lattice QCD
International Nuclear Information System (INIS)
Gupta, R.
1989-01-01
This report discusses the following topics: scaling of thermodynamic quantities and critical exponents; scaling relations; block spin idea of Kadanoff; exact RG solution of the 1-d Ising model; Wilson's formulation of the renormalization group; linearized transformation matrix and classification of exponents; derivation of exponents from the eigenvalues of Τ αβ ; simple field theory: the gaussian model; linear renormalization group transformations; numerical methods: MCRG; block transformations for 4-d SU(N) LGT; asymptotic freedom makes QCD simple; non-perturbative β-function and scaling; and the holy grail: the renormalized trajectory
Can renormalization group flow end in a Big Mess?
International Nuclear Information System (INIS)
Morozov, Alexei; Niemi, Antti J.
2003-01-01
The field theoretical renormalization group equations have many common features with the equations of dynamical systems. In particular, the manner how Callan-Symanzik equation ensures the independence of a theory from its subtraction point is reminiscent of self-similarity in autonomous flows towards attractors. Motivated by such analogies we propose that besides isolated fixed points, the couplings in a renormalizable field theory may also flow towards more general, even fractal attractors. This could lead to Big Mess scenarios in applications to multiphase systems, from spin-glasses and neural networks to fundamental string (M?) theory. We consider various general aspects of such chaotic flows. We argue that they pose no obvious contradictions with the known properties of effective actions, the existence of dissipative Lyapunov functions, and even the strong version of the c-theorem. We also explain the difficulties encountered when constructing effective actions with chaotic renormalization group flows and observe that they have many common virtues with realistic field theory effective actions. We conclude that if chaotic renormalization group flows are to be excluded, conceptually novel no-go theorems must be developed
Physical renormalization schemes and asymptotic safety in quantum gravity
Falls, Kevin
2017-12-01
The methods of the renormalization group and the ɛ -expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ɛ -expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.
Renormalization group approach to superfluid neutron matter
Energy Technology Data Exchange (ETDEWEB)
Hebeler, K.
2007-06-06
In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)
Higher derivatives and renormalization in quantum cosmology
International Nuclear Information System (INIS)
Mazzitelli, F.D.
1991-10-01
In the framework of the canonical quantization of general relativity, quantum field theory on a fixed background formally arises in an expansion in powers of the Planck length. In order to renormalize the theory, quadratic terms in the curvature must be included in the gravitational action from the beginning. These terms contain higher derivatives which change the Hamiltonian structure of the theory completely, making the relation between the renormalized-theory and the original one not clear. We show that it is possible to avoid this problem. We replace the higher derivative theory by a second order one. The classical solutions of the latter are also solutions of the former. We quantize the theory, renormalize the infinities and show that there is a smooth limit between the classical and the renormalized theories. We work in a Robertson Walker minisuperspace with a quantum scalar field. (author). 32 refs
Renormalization scheme-invariant perturbation theory
International Nuclear Information System (INIS)
Dhar, A.
1983-01-01
A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)
New renormalization group approach to multiscale problems
Energy Technology Data Exchange (ETDEWEB)
Einhorn, M B; Jones, D R.T.
1984-02-27
A new renormalization group is presented which exploits invariance with respect to more than one scale. The method is illustrated by a simple model, and future applications to fields such as critical phenomena and supersymmetry are speculated upon.
Real space renormalization techniques for disordered systems
International Nuclear Information System (INIS)
Anda, E.V.
1985-01-01
Real Space renormalization techniques are applied to study different disordered systems, with an emphasis on the under-standing of the electronic properties of amorphous matter, mainly semiconductors. (author) [pt
Renormalization of the inflationary perturbations revisited
Markkanen, Tommi
2018-05-01
In this work we clarify aspects of renormalization on curved backgrounds focussing on the potential ramifications on the amplitude of inflationary perturbations. We provide an alternate view of the often used adiabatic prescription by deriving a correspondence between the adiabatic subtraction terms and traditional renormalization. Specifically, we show how adiabatic subtraction can be expressed as a set of counter terms that are introduced by redefining the bare parameters of the action. Our representation of adiabatic subtraction then allows us to easily find other renormalization prescriptions differing only in the finite parts of the counter terms. As our main result, we present for quadratic inflation how one may consistently express the renormalization of the spectrum of perturbations from inflation as a redefinition of the bare cosmological constant and Planck mass such that the observable predictions coincide with the unrenormalized result.
Non-perturbative quark mass renormalization
Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.
1998-01-01
We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.
Effective AdS/renormalized CFT
Fan, JiJi
2011-01-01
For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a dou...
Finite cluster renormalization and new two step renormalization group for Ising model
International Nuclear Information System (INIS)
Benyoussef, A.; El Kenz, A.
1989-09-01
New types of renormalization group theory using the generalized Callen identities are exploited in the study of the Ising model. Another type of two-step renormalization is proposed. Critical couplings and critical exponents y T and y H are calculated by these methods for square and simple cubic lattices, using different size clusters. (author). 17 refs, 2 tabs
Enter, Aernout C.D. van; Fernández, Roberto
For classical lattice systems with finite (Ising) spins, we show that the implementation of momentum-space renormalization at the level of Hamiltonians runs into the same type of difficulties as found for real-space transformations: Renormalized Hamiltonians are ill-defined in certain regions of the
Renormalization of QED with planar binary trees
International Nuclear Information System (INIS)
Brouder, C.
2001-01-01
The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)
Perturbatively improving RI-MOM renormalization constants
Energy Technology Data Exchange (ETDEWEB)
Constantinou, M.; Costa, M.; Panagopoulos, H. [Cyprus Univ. (Cyprus). Dept. of Physics; Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schhierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-03-15
The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.
Renormalization group theory of critical phenomena
International Nuclear Information System (INIS)
Menon, S.V.G.
1995-01-01
Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)
Renormalization group approach in the turbulence theory
International Nuclear Information System (INIS)
Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.
1983-01-01
In the framework of the renormalization groUp approach in the turbulence theory sUggested in another paper, the problem of renormalization and evaluation of critical dimensions of composite operators is discussed. Renormalization of a system of operators of canonical dimension equal to 4, including the operator F=phiΔphi (where phi is the velocity field), is considered. It is shown that the critical dimension Δsub(F)=0. The appendice includes the brief proofs of two theorems: 1) the theorem on the equivalence between the arbitrary stochastic problem and quantum field theory; 2) the theorem which determines the reduction of Green functions of the stochastic problem to the hypersurface of coinciding times
Renormalization transformation of periodic and aperiodic lattices
International Nuclear Information System (INIS)
Macia, Enrique; Rodriguez-Oliveros, Rogelio
2006-01-01
In this work we introduce a similarity transformation acting on transfer matrices describing the propagation of elementary excitations through either periodic or Fibonacci lattices. The proposed transformation can act at two different scale lengths. At the atomic scale the transformation allows one to express the systems' global transfer matrix in terms of an equivalent on-site model one. Correlation effects among different hopping terms are described by a series of local phase factors in that case. When acting on larger scale lengths, corresponding to short segments of the original lattice, the similarity transformation can be properly regarded as describing an effective renormalization of the chain. The nature of the resulting renormalized lattice significantly depends on the kind of order (i.e., periodic or quasiperiodic) of the original lattice, expressing a delicate balance between chemical complexity and topological order as a consequence of the renormalization process
Monthus, Cécile
2017-07-01
When random quantum spin chains are submitted to some periodic Floquet driving, the eigenstates of the time-evolution operator over one period can be localized in real space. For the case of periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator over one period reduces to the product of two simple transfer matrices, we propose a block-self-dual renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also discuss the corresponding strong disorder renormalization procedure, that generalizes the RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians.
Renormalization group aspects of 3-dimensional Pure U(1) lattice gauge theory
International Nuclear Information System (INIS)
Gopfert, M.; Mack, G.
1983-01-01
A few surprises in a recent study of the 3-dimensional pure U(1) lattice gauge theory model, from the point of view of the renormalization group theory, are discussed. Since the gauge group U(1) of this model is abelian, the model is subject to KramersWannier duality transformation. One obtains a ferromagnet with a global symmetry group Z. The duality transformation shows that the surface tension alpha of the model equals the strong tension of the U(1) gauge model. A theorem to represent the true asymptotic behaviour of alpha is derived. A second theorem considers the correlation functions. Discrepiancies between the theorems result in a solution that ''is regarded as a catastrophe'' in renormalization group theory. A lesson is drawn: To choose a good block spin in a renormalization group procedure, know what the low lying excitations of the theory are, to avoid integrating some of them by mischief
Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling
Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun
2018-05-01
Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.
Exact renormalization group equations: an introductory review
Bagnuls, C.; Bervillier, C.
2001-07-01
We critically review the use of the exact renormalization group equations (ERGE) in the framework of the scalar theory. We lay emphasis on the existence of different versions of the ERGE and on an approximation method to solve it: the derivative expansion. The leading order of this expansion appears as an excellent textbook example to underline the nonperturbative features of the Wilson renormalization group theory. We limit ourselves to the consideration of the scalar field (this is why it is an introductory review) but the reader will find (at the end of the review) a set of references to existing studies on more complex systems.
Renormalization using the background-field method
International Nuclear Information System (INIS)
Ichinose, S.; Omote, M.
1982-01-01
Renormalization using the background-field method is examined in detail. The subtraction mechanism of subdivergences is described with reference to multi-loop diagrams and one- and two-loop counter-term formulae are explicitly given. The original one-loop counter-term formula of 't Hooft is thereby improved. The present method of renormalization is far easier to manage than the usual one owing to the fact only gauge-invariant quantities are to be considered when worked in an appropriate gauge. Gravity and Yang-Mills theories are studied as examples. (orig.)
Hypercuboidal renormalization in spin foam quantum gravity
Bahr, Benjamin; Steinhaus, Sebastian
2017-06-01
In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.
Renormalization of a distorted gauge: invariant theory
International Nuclear Information System (INIS)
Hsu, J.P.; Underwood, J.A.
1976-02-01
A new type of renormalizable theory involving massive Yang-Mills fields whose mass is generated by an intrinsic breakdown of the usual local gauge symmetry is considered. However, the Lagrangian has a distorted gauge symmetry which leads to the Ward-Takahashi (W-T) identities. Also, the theory is independent of the gauge parameter xi. An explicit renormalization at the oneloop level is completely carried out by exhibiting counter terms, defining the physical parameters and computing all renormalization constants to check the W-T identities
Field renormalization in photonic crystal waveguides
DEFF Research Database (Denmark)
Colman, Pierre
2015-01-01
A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... orders of magnitude larger than in bulk material. We show that it takes into account in a simple and efficient way the specificity of the nonlinearity in nanostructures that is determined by geometrical parameters like the effective mode area and the group index. The renormalization of the nonlinear...
Physical renormalization condition for de Sitter QED
Hayashinaka, Takahiro; Xue, She-Sheng
2018-05-01
We considered a new renormalization condition for the vacuum expectation values of the scalar and spinor currents induced by a homogeneous and constant electric field background in de Sitter spacetime. Following a semiclassical argument, the condition named maximal subtraction imposes the exponential suppression on the massive charged particle limit of the renormalized currents. The maximal subtraction changes the behaviors of the induced currents previously obtained by the conventional minimal subtraction scheme. The maximal subtraction is favored for a couple of physically decent predictions including the identical asymptotic behavior of the scalar and spinor currents, the removal of the IR hyperconductivity from the scalar current, and the finite current for the massless fermion.
Directory of Open Access Journals (Sweden)
Durães F.O.
2010-04-01
Full Text Available We apply the similarity renormalization group (SRG approach to evolve a nucleon-nucleon (N N interaction in leading-order (LO chiral eﬀective ﬁeld theory (ChEFT, renormalized within the framework of the subtracted kernel method (SKM. We derive a ﬁxed-point interaction and show the renormalization group (RG invariance in the SKM approach. We also compare the evolution of N N potentials with the subtraction scale through a SKM RG equation in the form of a non-relativistic Callan-Symanzik (NRCS equation and the evolution with the similarity cutoﬀ through the SRG transformation.
Concomitant chemoradiotherapy in esophageal cancer
International Nuclear Information System (INIS)
Calais, G.
1998-01-01
Radiation therapy with concomitant chemotherapy is the standard treatment for non resectable esophageal carcinoma. For patients with operable tumors, surgery is the traditional treatment. However several data could improve therapeutic results. At the present time, no randomized trial has demonstrated, except for adenocarcinoma of the cardia, the benefit of preoperative treatment. Other randomized trials are needed to determine the role and the optimal modalities of these treatments. This is a review of the literature data in concomitant chemotherapy and radiation in the management of esophagus. (author)
Mixed fermion-photon condensate in strongly coupled quantum electrodynamics
International Nuclear Information System (INIS)
Gusynin, V.P.; Kushnir, V.A.
1989-01-01
The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs
Strong anisotropy in the low temperature Compton profiles of ...
Indian Academy of Sciences (India)
able for comparison with theory, the resistivity data in α-Ga at low temperature strongly support this anisotropic ... renormalized free-atom (RFA) model [3], band model [5–7] and quantum Monte Carlo ... probability distribution function.
Optimization of renormalization group transformations in lattice gauge theory
International Nuclear Information System (INIS)
Lang, C.B.; Salmhofer, M.
1988-01-01
We discuss the dependence of the renormalization group flow on the choice of the renormalization group transformation (RGT). An optimal choice of the transformation's parameters should lead to a renormalized trajectory close to a few-parameter action. We apply a recently developed method to determine an optimal RGT to SU(2) lattice gauge theory and discuss the achieved improvement. (orig.)
Renormalization group in statistical physics - momentum and real spaces
International Nuclear Information System (INIS)
Yukalov, V.I.
1988-01-01
Two variants of the renormalization group approach in statistical physics are considered, the renormalization group in the momentum and the renormalization group in the real spaces. Common properties of these methods and their differences are cleared up. A simple model for investigating the crossover between different universality classes is suggested. 27 refs
International Nuclear Information System (INIS)
Actis, S.; Passarino, G.
2006-12-01
In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)
2006-12-15
In part I and II of this series of papers all elements have been introduced to extend, to two loops, the set of renormalization procedures which are needed in describing the properties of a spontaneously broken gauge theory. In this paper, the final step is undertaken and finite renormalization is discussed. Two-loop renormalization equations are introduced and their solutions discussed within the context of the minimal standard model of fundamental interactions. These equations relate renormalized Lagrangian parameters (couplings and masses) to some input parameter set containing physical (pseudo-)observables. Complex poles for unstable gauge and Higgs bosons are used and a consistent setup is constructed for extending the predictivity of the theory from the Lep1 Z-boson scale (or the Lep2 WW scale) to regions of interest for LHC and ILC physics. (orig.)
Perturbative renormalization of QED via flow equations
International Nuclear Information System (INIS)
Keller, G.; Kopper, C.
1991-01-01
We prove the perturbative renormalizability of euclidean QED 4 with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.)
Perturbative renormalization of QED via flow equations
Energy Technology Data Exchange (ETDEWEB)
Keller, G. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany)); Kopper, C. (Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Munich (Germany) Inst. fuer Theoretische Physik, Univ. Goettingen (Germany))
1991-12-19
We prove the perturbative renormalizability of euclidean QED{sub 4} with a small photon mass in the framework of effective lagrangians due to Wilson and Polchinski. In particular we show that the QED identities, which become violated by our momentum space regularization at intermediate stages, are restored in the renormalized theory. (orig.).
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Renormalization of Magnetic Excitations in Praseodymium
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1975-01-01
The magnetic exciton renormalization and soft-mode behaviour as the temperature approaches zero of the singlet-doublet magnet (dhcp)pr are accounted for by a selfconsistent rpa theory with no adjustable parameters. The crystal-field splitting between the ground state and the doublet is d=3.74 mev...
Mass renormalization in sine-Gordon model
International Nuclear Information System (INIS)
Xu Bowei; Zhang Yumei
1991-09-01
With a general gaussian wave functional, we investigate the mass renormalization in the sine-Gordon model. At the phase transition point, the sine-Gordon system tends to a system of massless free bosons which possesses conformal symmetry. (author). 8 refs, 1 fig
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Finite size scaling and phenomenological renormalization
International Nuclear Information System (INIS)
Derrida, B.; Seze, L. de; Vannimenus, J.
1981-05-01
The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems
Resummation and renormalization in effective theories of particle physics
Jakovac, Antal
2015-01-01
Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to vario...
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica; INFN, Sezione di Torino (Italy)
2006-12-15
In part I general aspects of the renormalization of a spontaneously broken gauge theory have been introduced. Here, in part II, two-loop renormalization is introduced and discussed within the context of the minimal Standard Model. Therefore, this paper deals with the transition between bare parameters and fields to renormalized ones. The full list of one- and two-loop counterterms is shown and it is proven that, by a suitable extension of the formalism already introduced at the one-loop level, two-point functions suffice in renormalizing the model. The problem of overlapping ultraviolet divergencies is analyzed and it is shown that all counterterms are local and of polynomial nature. The original program of 't Hooft and Veltman is at work. Finite parts are written in a way that allows for a fast and reliable numerical integration with all collinear logarithms extracted analytically. Finite renormalization, the transition between renormalized parameters and physical (pseudo-)observables, are discussed in part III where numerical results, e.g. for the complex poles of the unstable gauge bosons, are shown. An attempt is made to define the running of the electromagnetic coupling constant at the two-loop level. (orig.)
Renormalization and effective actions for general relativity
International Nuclear Information System (INIS)
Neugebohrn, F.
2007-05-01
Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)
Renormalization and effective actions for general relativity
Energy Technology Data Exchange (ETDEWEB)
Neugebohrn, F.
2007-05-15
Quantum gravity is analyzed from the viewpoint of the renormalization group. The analysis is based on methods introduced by J. Polchinski concerning the perturbative renormalization with flow equations. In the first part of this work, the program of renormalization with flow equations is reviewed and then extended to effective field theories that have a finite UV cutoff. This is done for a scalar field theory by imposing additional renormalization conditions for some of the nonrenormalizable couplings. It turns out that one so obtains a statement on the predictivity of the effective theory at scales far below the UV cutoff. In particular, nonrenormalizable theories can be treated without problems in the proposed framework. In the second part, the standard covariant BRS quantization program for Euclidean Einstein gravity is applied. A momentum cutoff regularization is imposed and the resulting violation of the Slavnov-Taylor identities is discussed. Deriving Polchinski's renormalization group equation for Euclidean quantum gravity, the predictivity of effective quantum gravity at scales far below the Planck scale is investigated with flow equations. A fine-tuning procedure for restoring the violated Slavnov-Taylor identities is proposed and it is argued that in the effective quantum gravity context, the restoration will only be accomplished with finite accuracy. Finally, the no-cutoff limit of Euclidean quantum gravity is analyzed from the viewpoint of the Polchinski method. It is speculated whether a limit with nonvanishing gravitational constant might exist where the latter would ultimatively be determined by the cosmological constant and the masses of the elementary particles. (orig.)
CLINICAL STUDY OF CONCOMITANT SQUINT
Directory of Open Access Journals (Sweden)
Vijay Chopra
2017-07-01
Full Text Available BACKGROUND Malalignment in the visual axes of the two eyes is called strabismus. Fusion of both images is replaced either by diplopia or suppression of one image. Squint leads to loss of binocular single vision. Concomitant squint is a type of manifest squint in which the amount of deviation in the squinting eye is same in all gazes. Binocular single vision and ocular movement coordination are not present since birth, but are acquired in the early childhood. This process starts by the age of 3-6 months and is completed up to 5-6 years. Any hindrance in the development of these processes may result in concomitant squint. MATERIALS AND METHODS In 100 cases of concomitant squint, patients were included in our study. Detailed history was taken regarding the onset of squint and duration. Past history and family history was also elicited. General examination was done to detect any abnormalities of central nervous system. Routine ophthalmic examination including best corrected visual acuity, cover test performed to detect the type of deviation whether uniocular or alternating and the type of fixation. Angle of deviation was measured by Hirschberg’s test and on the synoptophore. Binocular single vision was assessed using Worth’s 4-dot test and synoptophore. Cycloplegic refraction and fundus evaluation done in all patients. Inclusion Criteria- All primary non-paralytic deviations, sensory deprivation strabismus. Exclusion Criteria- Paralytic strabismus, strabismus associated with neurological disorders, consecutive strabismus and palpebral fissure abnormalities patients. RESULTS Majority of cases of concomitant squint were of esotropic type. Most common form of esotropia seen was infantile esotropia. Most common form of exotropia was intermittent exotropia. 19% of cases were secondary to other ocular diseases namely cataract, macular lesion, high myopia, etc. Amblyopia was present in 54% patients and of very dense type, which could not be treated
Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED
International Nuclear Information System (INIS)
Goeckeler, M.; Horsley, R.; Rakow, P.; Schierholz, G.; Sommer, R.
1992-01-01
We investigate the ultra-violet behavior of non-compact lattice QED with light staggered fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity could offer an explanation of why the fine-structure constant is so small. Non-compact QED undergoes a second-order chiral phase transition at strong coupling, at which the continuum limit can be taken. We examine the phase diagram and the critical behavior of the theory in detail. Moreover, we address the question as to whether QED confines in the chirally broken phase. This is done by investigating the potential between static external charges. We then compute the renormalized charge and derive the Callan-Symanzik β-function in the critical region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well described by renormalized perturbation theory, and that the renormalized charge vanishes at the critical point. The consequence is that QED can only be regarded as a cut-off theory. We evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we compute the masses of fermion-antifermion composite states. The scaling behavior of these masses is well described by an effective action with mean-field critical exponents plus logarithmic corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we investigate and compare the renormalization group flow of different quantities. Altogether, we find that QED is a valid theory only for samll renormalized charges. (orig.)
Directory of Open Access Journals (Sweden)
Pengqin Shi
2016-09-01
Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Probing renormalization group flows using entanglement entropy
International Nuclear Information System (INIS)
Liu, Hong; Mezei, Márk
2014-01-01
In this paper we continue the study of renormalized entanglement entropy introduced in http://dx.doi.org/10.1007/JHEP04(2013)162. In particular, we investigate its behavior near an IR fixed point using holographic duality. We develop techniques which, for any static holographic geometry, enable us to extract the large radius expansion of the entanglement entropy for a spherical region. We show that for both a sphere and a strip, the approach of the renormalized entanglement entropy to the IR fixed point value contains a contribution that depends on the whole RG trajectory. Such a contribution is dominant, when the leading irrelevant operator is sufficiently irrelevant. For a spherical region such terms can be anticipated from a geometric expansion, while for a strip whether these terms have geometric origins remains to be seen
Poissonian renormalizations, exponentials, and power laws
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Poissonian renormalizations, exponentials, and power laws.
Eliazar, Iddo
2013-05-01
This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.
Renormalization group flow of the Higgs potential.
Gies, Holger; Sondenheimer, René
2018-03-06
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Renormalization group treatment of nonrenormalizable interactions
International Nuclear Information System (INIS)
Kazakov, D I; Vartanov, G S
2006-01-01
The structure of the UV divergences in higher dimensional nonrenormalizable theories is analysed. Based on renormalization operation and renormalization group theory it is shown that even in this case the leading divergences (asymptotics) are governed by the one-loop diagrams the number of which, however, is infinite. An explicit expression for the one-loop counter term in an arbitrary D-dimensional quantum field theory without derivatives is suggested. This allows one to sum up the leading asymptotics which are independent of the arbitrariness in subtraction of higher order operators. Diagrammatic calculations in a number of scalar models in higher loops are performed to be in agreement with the above statements. These results do not support the idea of the naive power-law running of couplings in nonrenormalizable theories and fail (with one exception) to reveal any simple closed formula for the leading terms
On the renormalization of string functionals
International Nuclear Information System (INIS)
Dietz, K.; Filk, T.
1982-09-01
We investigate analytic renormalization procedures for functional integrals, corresponding to field theories defined on compact manifolds, which arise e.g. from string functionals of the Nambu-Schild-Eguchi type. Although these models belong to the nonrenormalizable class of quantum field theories, we prove finiteness for a rectangular string shape up to three loop level, for circular boundary up to two loop order, and for a variety of graphs in higher order, thus indicating that the result might hold in general. From the explicit calculation of the two loop approximation we extract the first model dependent corrections to the qanti q - potential or the Casimir effect. The importance of dilation transformations for the properties of the renormalization procedure are investigated. We prove that under certain conditions, forced by symmetry properties, the association of finite values to divergent series is unique, independent of the regularization procedure. (orig.)
Renormalization group evolution of Dirac neutrino masses
International Nuclear Information System (INIS)
Lindner, Manfred; Ratz, Michael; Schmidt, Michael Andreas
2005-01-01
There are good reasons why neutrinos could be Majorana particles, but there exist also a number of very good reasons why neutrinos could have Dirac masses. The latter option deserves more attention and we derive therefore analytic expressions describing the renormalization group evolution of mixing angles and of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings are in this case enhanced compared to the quark mixings because the hierarchy of neutrino masses is milder and because the mixing angles are larger. The renormalization group effects are compared to the precision of current and future neutrino experiments. We find that, in the MSSM framework, radiative corrections of the mixing angles are for large tan β comparable to the precision of future experiments
Temperature dependent quasiparticle renormalization in nickel metal
Energy Technology Data Exchange (ETDEWEB)
Ovsyannikov, Ruslan; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann A. [Helmholtz Zentrum Berlin (Germany). BESSY II
2009-07-01
One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed', i.e. they acquire an increased effective mass and a lifetime. We studied the spin dependent quasiparticle band structure of Ni(111) with high resolution angle resolved photoemission spectroscopy. At low temperatures (50 K) a renormalization of quasiparticle energy and lifetime indicative of electron-phonon coupling is observed in agreement with literature. With increasing temperature we observe a decreasing quasiparticle lifetime at the Fermi level for all probed minority spin bands as expected from electron phonon coupling. Surprisingly the majority spin states behave differently. We actually observe a slightly increased lifetime at room temperature. The corresponding increase in Fermi velocity points to a temperature dependent reduction of the majority spin quasiparticle renormalization.
Renormalization Methods - A Guide For Beginners
International Nuclear Information System (INIS)
Cardy, J
2004-01-01
The stated goal of this book is to fill a perceived gap between undergraduate texts on critical phenomena and advanced texts on quantum field theory, in the general area of renormalization methods. It is debatable whether this gap really exists nowadays, as a number of books have appeared in which it is made clear that field-theoretic renormalization group methods are not the preserve of particle theory, and indeed are far more easily appreciated in the contexts of statistical and condensed matter physics. Nevertheless, this volume does have a fresh aspect to it, perhaps because of the author's background in fluid dynamics and turbulence theory, rather than through the more traditional migration from particle physics. The book begins at a very elementary level, in an effort to motivate the use of renormalization methods. This is a worthy effort, but it is likely that most of this section will be thought too elementary by readers wanting to get their teeth into the subject, while those for whom this section is apparently written are likely to find the later chapters rather challenging. The author's particular approach then leads him to emphasise the role of renormalized perturbation theory (rather than the renormalization group) in a number of problems, including non-linear systems and turbulence. Some of these ideas will be novel and perhaps even surprising to traditionally trained field theorists. Most of the rest of the book is on far more familiar territory: the momentum-space renormalization group, epsilon-expansion, and so on. This is standard stuff, and, like many other textbooks, it takes a considerable chunk of the book to explain all the formalism. As a result, there is only space to discuss the standard φ 4 field theory as applied to the Ising model (even the N-vector model is not covered) so that no impression is conveyed of the power and extent of all the applications and generalizations of the techniques. It is regrettable that so much space is spent
Renormalization of gauge theories without cohomology
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)
Loop optimization for tensor network renormalization
Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang
We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.
Covariant Derivatives and the Renormalization Group Equation
Dolan, Brian P.
The renormalization group equation for N-point correlation functions can be interpreted in a geometrical manner as an equation for Lie transport of amplitudes in the space of couplings. The vector field generating the diffeomorphism has components given by the β functions of the theory. It is argued that this simple picture requires modification whenever any one of the points at which the amplitude is evaluated becomes close to any other. This modification necessitates the introduction of a connection on the space of couplings and new terms appear in the renormalization group equation involving covariant derivatives of the β function and the curvature associated with the connection. It is shown how the connection is related to the operator product expansion coefficients, but there remains an arbitrariness in its definition.
Renormalized powers of quantum white noise
International Nuclear Information System (INIS)
Accardi, L.; Boukas, A.
2009-01-01
Giving meaning to the powers of the creation and annihilation densities (quantum white noise) is an old and important problem in quantum field theory. In this paper we present an account of some new ideas that have recently emerged in the attempt to solve this problem. We emphasize the connection between the Lie algebra of the renormalized higher powers of quantum white noise (RHPWN), which can be interpreted as a suitably deformed (due to renormalization) current algebra over the 1-mode full oscillator algebra, and the current algebra over the centerless Virasoro (or Witt)-Zamolodchikov-ω ∞ Lie algebras of conformal field theory. Through a suitable definition of the action on the vacuum vector we describe how to obtain a Fock representation of all these algebras. We prove that the restriction of the vacuum to the abelian subalgebra generated by the field operators gives an infinitely divisible process whose marginal distribution is the beta (or continuous binomial). (authors)
A renormalization group theory of cultural evolution
Fath, Gabor; Sarvary, Miklos
2003-01-01
We present a theory of cultural evolution based upon a renormalization group scheme. We consider rational but cognitively limited agents who optimize their decision making process by iteratively updating and refining the mental representation of their natural and social environment. These representations are built around the most important degrees of freedom of their world. Cultural coherence among agents is defined as the overlap of mental representations and is characterized using an adequa...
The Bogolyubov renormalization group. Second English printing
International Nuclear Information System (INIS)
Shirkov, D.V.
1996-01-01
We begin with personal notes describing the atmosphere of 'Bogolyubov renormalization group' birth. Then we expose the history of RG discovery in the QFT and of the RG method devising in the mid-fifties. The third part is devoted to proliferation of RG ideas into diverse parts of theoretical physics. We conclude with discussing the perspective of RG method further development and its application in mathematical physics. 58 refs
Zero Point Energy of Renormalized Wilson Loops
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero wh...
Generalized Hubbard Hamiltonian: renormalization group approach
International Nuclear Information System (INIS)
Cannas, S.A.; Tamarit, F.A.; Tsallis, C.
1991-01-01
We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs
Quarkonia from charmonium and renormalization group equations
International Nuclear Information System (INIS)
Ditsas, P.; McDougall, N.A.; Moorhouse, R.G.
1978-01-01
A prediction of the upsilon and strangeonium spectra is made from the charmonium spectrum by solving the Salpeter equation using an identical potential to that used in charmonium. Effective quark masses and coupling parameters αsub(s) are functions of the inter-quark distance according to the renormalization group equations. The use of the Fermi-Breit Hamiltonian for obtaining the charmonium hyperfine splitting is criticized. (Auth.)
Renormalization group equations with multiple coupling constants
International Nuclear Information System (INIS)
Ghika, G.; Visinescu, M.
1975-01-01
The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given
Chaotic renormalization group approach to disordered systems
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Continentino, M.A.; Makler, S.S.; Anda, E.V.
1984-01-01
We study the eletronic properties of the disordered linear chain using a technique previously developed by some of the authors for an ordered chain. The equations of motion for the one electron Green function are obtained and the configuration average is done according to the GK scheme. The dynamical problem is transformed, using a renormalization group procedure, into a bidimensional map. The properties of this map are investigated and related to the localization properties of the eletronic system. (Author) [pt
A shape dynamical approach to holographic renormalization
Energy Technology Data Exchange (ETDEWEB)
Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2015-01-01
We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)
Introduction to the nonequilibrium functional renormalization group
International Nuclear Information System (INIS)
Berges, J.; Mesterházy, D.
2012-01-01
In these lectures we introduce the functional renormalization group out of equilibrium. While in thermal equilibrium typically a Euclidean formulation is adequate, nonequilibrium properties require real-time descriptions. For quantum systems specified by a given density matrix at initial time, a generating functional for real-time correlation functions can be written down using the Schwinger-Keldysh closed time path. This can be used to construct a nonequilibrium functional renormalization group along similar lines as for Euclidean field theories in thermal equilibrium. Important differences include the absence of a fluctuation-dissipation relation for general out-of-equilibrium situations. The nonequilibrium renormalization group takes on a particularly simple form at a fixed point, where the corresponding scale-invariant system becomes independent of the details of the initial density matrix. We discuss some basic examples, for which we derive a hierarchy of fixed point solutions with increasing complexity from vacuum and thermal equilibrium to nonequilibrium. The latter solutions are then associated to the phenomenon of turbulence in quantum field theory.
Exact renormalization group for gauge theories
International Nuclear Information System (INIS)
Balaban, T.; Imbrie, J.; Jaffe, A.
1984-01-01
Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe-quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored. Rigorous renormalization group methods have been described or proposed in the lectures of Gawedzki, Kupiainen, Mack, and Mitter. Earlier work of Glimm and Jaffe and Gallavotti et al. on the /phi/ model in three dimensions were quite important to later developments in this area. We present here a block spin procedure which works for gauge theories, at least in the superrenormalizable case. It should be enlightening for the reader to compare the various methods described in these proceedings-especially from the point of view of how each method is suited to the physics of the problem it is used to study
Renormalization and Interaction in Quantum Field Theory
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2008-01-01
This thesis works on renormalization in quantum field theory (QFT), in order to show the relevance of some mathematical structures as C*-algebraic and probabilistic structures. Our work begins with a study of the path integral formalism and the Kreimer-Connes approach in perturbative renormalization, which allows to situate the statistical nature of QFT and to appreciate the ultra-violet divergence problem of its partition function. This study is followed by an emphasis of the presence of convolution products in non perturbative renormalisation, through the construction of the Wilson effective action and the Legendre effective action. Thanks to these constructions and the definition of effective theories according J. Polchinski, the non perturbative renormalization shows in particular the general approach of regularization procedure. We begin the following chapter with a C*-algebraic approach of the scale dependence of physical theories by showing the existence of a hierarchy of commutative spaces of states and its compatibility with the fiber bundle formulation of classical field theory. Our Hierarchy also allows us to modelize the notion of states and particles. Finally, we develop a probabilistic construction of interacting theories starting from simple model, a Bernoulli random processes. We end with some arguments on the applicability of our construction -such as the independence between the free and interacting terms and the possibility to introduce a symmetry group wich will select the type of interactions in quantum field theory. [fr
Higgs boson, renormalization group, and naturalness in cosmology
International Nuclear Information System (INIS)
Barvinsky, A.O.; Kamenshchik, A.Yu.; Kiefer, C.; Starobinsky, A.A.; Steinwachs, C.F.
2012-01-01
We consider the renormalization group improvement in the theory of the Standard Model (SM) Higgs boson playing the role of an inflaton with a strong non-minimal coupling to gravity. At the one-loop level with the running of constants taken into account, it leads to a range of the Higgs mass that is entirely determined by the lower WMAP bound on the cosmic microwave background (CMB) spectral index. We find that the SM phenomenology is sensitive to current cosmological data, which suggests to perform more precise CMB measurements as a SM test complementary to the LHC program. By using the concept of a field-dependent cutoff, we show the naturalness of the gradient and curvature expansion in this model within the conventional perturbation theory range of the SM. We also discuss the relation of these results to two-loop calculations and the limitations of the latter caused by parametrization and gauge dependence problems. (orig.)
The Physical Renormalization of Quantum Field Theories
International Nuclear Information System (INIS)
Binger, Michael William.; Stanford U., Phys. Dept.; SLAC
2007-01-01
The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, α(k 1 2 , k 2 2 , k 3 2 ), depends on three momentum scales and gives rise to an effective scale Q eff 2 (k 1 2 , k 2 2 , k 3 2 ) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi-scale analytic renormalization scheme based on gauge-invariant Green
Renormalization of g-boson effects under weak coupling condition
International Nuclear Information System (INIS)
Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping
1998-01-01
An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed
Renormalization group and fixed points in quantum field theory
International Nuclear Information System (INIS)
Hollowood, Timothy J.
2013-01-01
This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.
Renormalization in general theories with inter-generation mixing
International Nuclear Information System (INIS)
Kniehl, Bernd A.; Sirlin, Alberto
2011-11-01
We derive general and explicit expressions for the unrenormalized and renormalized dressed propagators of fermions in parity-nonconserving theories with inter-generation mixing. The mass eigenvalues, the corresponding mass counterterms, and the effect of inter-generation mixing on their determination are discussed. Invoking the Aoki-Hioki-Kawabe-Konuma-Muta renormalization conditions and employing a number of very useful relations from Matrix Algebra, we show explicitly that the renormalized dressed propagators satisfy important physical properties. (orig.)
Zeta Functions, Renormalization Group Equations, and the Effective Action
International Nuclear Information System (INIS)
Hochberg, D.; Perez-Mercader, J.; Molina-Paris, C.; Visser, M.
1998-01-01
We demonstrate how to extract all the one-loop renormalization group equations for arbitrary quantum field theories from knowledge of an appropriate Seeley-DeWitt coefficient. By formally solving the renormalization group equations to one loop, we renormalization group improve the classical action and use this to derive the leading logarithms in the one-loop effective action for arbitrary quantum field theories. copyright 1998 The American Physical Society
On the renormalization group equations of quantum electrodynamics
International Nuclear Information System (INIS)
Hirayama, Minoru
1980-01-01
The renormalization group equations of quantum electrodynamics are discussed. The solution of the Gell-Mann-Low equation is presented in a convenient form. The interrelation between the Nishijima-Tomozawa equation and the Gell-Mann-Low equation is clarified. The reciprocal effective charge, so to speak, turns out to play an important role to discuss renormalization group equations. Arguments are given that the reciprocal effective charge vanishes as the renormalization momentum tends to infinity. (author)
The Background-Field Method and Noninvariant Renormalization
International Nuclear Information System (INIS)
Avdeev, L.V.; Kazakov, D.I.; Kalmykov, M.Yu.
1994-01-01
We investigate the consistency of the background-field formalism when applying various regularizations and renormalization schemes. By an example of a two-dimensional σ model it is demonstrated that the background-field method gives incorrect results when the regularization (and/or renormalization) is noninvariant. In particular, it is found that the cut-off regularization and the differential renormalization belong to this class and are incompatible with the background-field method in theories with nonlinear symmetries. 17 refs
Renormalization in the complete Mellin representation of Feynman amplitudes
International Nuclear Information System (INIS)
Calan, C. de; David, F.; Rivasseau, V.
1981-01-01
The Feynmann amplitudes are renormalized in the formalism of the CM representation. This Mellin-Barnes type integral representation, previously introduced for the study of asymptotic behaviours, is shown to have the following interesting property: in contrast with the usual subtraction procedures, the renormalization leaves the CM intergrand unchanged, and only results into translations of the integration path. The explicit CM representation of the renormalized amplitudes is given. In addition, the dimensional regularization and the extension to spinor amplitudes are sketched. (orig.)
Renormalization group approach to a p-wave superconducting model
International Nuclear Information System (INIS)
Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron
2014-01-01
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.
Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics
International Nuclear Information System (INIS)
Heckathorn, D.
1979-01-01
Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)
The two-loop renormalization of general quantum field theories
International Nuclear Information System (INIS)
Damme, R.M.J. van.
1984-01-01
This thesis provides a general method to compute all first order corrections to the renormalization group equations. This requires the computation of the first perturbative corrections to the renormalization group β-functions. These corrections are described by Feynman diagrams with two loops. The two-loop renormalization is treated for an arbitrary renormalization field theory. Two cases are considered: 1. the Yukawa sector; 2. the gauge coupling and the scalar potential. In a final section, the breakdown of unitarity in the dimensional reduction scheme is discussed. (Auth.)
Functional renormalization group study of fluctuation effects in fermionic superfluids
Energy Technology Data Exchange (ETDEWEB)
Eberlein, Andreas
2013-03-22
This thesis is concerned with ground state properties of two-dimensional fermionic superfluids. In such systems, fluctuation effects are particularly strong and lead for example to a renormalization of the order parameter and to infrared singularities. In the first part of this thesis, the fermionic two-particle vertex is analysed and the fermionic renormalization group is used to derive flow equations for a decomposition of the vertex in charge, magnetic and pairing channels. In the second part, the channel-decomposition scheme is applied to various model systems. In the superfluid state, the fermionic two-particle vertex develops rich and singular dependences on momentum and frequency. After simplifying its structure by exploiting symmetries, a parametrization of the vertex in terms of boson-exchange interactions in the particle-hole and particle-particle channels is formulated, which provides an efficient description of the singular momentum and frequency dependences. Based on this decomposition of the vertex, flow equations for the effective interactions are derived on one- and two-loop level, extending existing channel-decomposition schemes to (i) the description of symmetry breaking in the Cooper channel and (ii) the inclusion of those two-loop renormalization contributions to the vertex that are neglected in the Katanin scheme. In the second part, the superfluid ground state of various model systems is studied using the channel-decomposition scheme for the vertex and the flow equations. A reduced model with interactions in the pairing and forward scattering channels is solved exactly, yielding insights into the singularity structure of the vertex. For the attractive Hubbard model at weak coupling, the momentum and frequency dependence of the two-particle vertex and the frequency dependence of the self-energy are determined on one- and two-loop level. Results for the suppression of the superfluid gap by fluctuations are in good agreement with the literature
Renormalization group flows and continual Lie algebras
International Nuclear Information System (INIS)
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)
The evolution of Bogolyubov's renormalization group
International Nuclear Information System (INIS)
Shirkov, D.V.
2000-01-01
We review the evolution of the concept of Renormalization Group (RG). This notion, as was first introduced in quantum field theory (QFT) in the mid-fifties in N.N.Bogolyubov's formulation, is based upon a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of a boundary condition) specifying some particular solution. To illustrate this approach's effectiveness, we end with its application to the analysis of the laser beam self-focusing in a non-linear medium
Indefinite metric fields and the renormalization group
International Nuclear Information System (INIS)
Sherry, T.N.
1976-11-01
The renormalization group equations are derived for the Green functions of an indefinite metric field theory. In these equations one retains the mass dependence of the coefficient functions, since in the indefinite metric theories the masses cannot be neglected. The behavior of the effective coupling constant in the asymptotic and infrared limits is analyzed. The analysis is illustrated by means of a simple model incorporating indefinite metric fields. The model scales at first order, and at this order also the effective coupling constant has both ultra-violet and infra-red fixed points, the former being the bare coupling constant
Zero point energy of renormalized Wilson loops
International Nuclear Information System (INIS)
Hidaka, Yoshimasa; Pisarski, Robert D.
2009-01-01
The quark-antiquark potential, and its associated zero point energy, can be extracted from lattice measurements of the Wilson loop. We discuss a unique prescription to renormalize the Wilson loop, for which the perturbative contribution to the zero point energy vanishes identically. A zero point energy can arise nonperturbatively, which we illustrate by considering effective string models. The nonperturbative contribution to the zero point energy vanishes in the Nambu model, but is nonzero when terms for extrinsic curvature are included. At one loop order, the nonperturbative contribution to the zero point energy is negative, regardless of the sign of the extrinsic curvature term.
Perturbative and nonperturbative renormalization in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)
2010-03-15
We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)
Matsuno, Genki; Kobayashi, Akito
2018-05-01
We evaluate the uniform spin susceptibility in an extended Hubbard model describing α-(BEDT-TTF)2I3. Employing the Fock-type self-energy with the long-range Coulomb interaction and the random phase approximation with the on-site Coulomb interaction, it is clarified that the characteristic energy scales at which ferrimagnetic fluctuation and velocity renormalization emerge are different. This is why these phenomena coexist while the ferrimagnetic fluctuation is disturbed by the velocity renormalization. In addition, it is found that screening effect to the self-energy is irrelevant in the presence of a strong on-site Coulomb interaction U.
Renormalized plasma turbulence theory: A quasiparticle picture
International Nuclear Information System (INIS)
DuBois, D.F.
1981-01-01
A general renormalized statistical theory of Vlasov turbulence is given which proceeds directly from the Vlasov equation and does not assume prior knowledge of sophisticated field-theoretic techniques. Quasiparticles are the linear excitations of the turbulent system away from its instantaneous mean (ensemble-averaged) state or background; the properties of this background state ''dress'' or renormalize the quasiparticle responses. It is shown that all two-point responses (including the dielectric) and all two-point correlation functions can be completely described by the mean distribution function and three fundamental quantities. Two of these are the quasiparticle responses: the propagator and the potential source: which measure, respectively, the separate responses of the mean distribution function and the mean electrostatic potential to functional changes in an external phase-space source added to Vlasov's equation. The third quantity is the two-point correlation function of the incoherent part of the phase-space density which acts as a self-consistent source of quasiparticle and potential fluctuations. This theory explicitly takes into account the self-consistent nature of the electrostatic-field fluctuations which introduces new effects not found in the usual ''test-particle'' theories. Explicit equations for the fundamental quantities are derived in the direct interaction approximation. Special attention is paid to the two-point correlations and the relation to theories of phase-space granulation
Optimal renormalization scales and commensurate scale relations
International Nuclear Information System (INIS)
Brodsky, S.J.; Lu, H.J.
1996-01-01
Commensurate scale relations relate observables to observables and thus are independent of theoretical conventions, such as the choice of intermediate renormalization scheme. The physical quantities are related at commensurate scales which satisfy a transitivity rule which ensures that predictions are independent of the choice of an intermediate renormalization scheme. QCD can thus be tested in a new and precise way by checking that the observables track both in their relative normalization and in their commensurate scale dependence. For example, the radiative corrections to the Bjorken sum rule at a given momentum transfer Q can be predicted from measurements of the e+e - annihilation cross section at a corresponding commensurate energy scale √s ∝ Q, thus generalizing Crewther's relation to non-conformal QCD. The coefficients that appear in this perturbative expansion take the form of a simple geometric series and thus have no renormalon divergent behavior. The authors also discuss scale-fixed relations between the threshold corrections to the heavy quark production cross section in e+e - annihilation and the heavy quark coupling α V which is measurable in lattice gauge theory
The large-Nc renormalization group
International Nuclear Information System (INIS)
Dorey, N.
1995-01-01
In this talk, we review how effective theories of mesons and baryons become exactly soluble in the large-N c , limit. We start with a generic hadron Lagrangian constrained only by certain well-known large-N c , selection rules. The bare vertices of the theory are dressed by an infinite class of UV divergent Feynman diagrams at leading order in 1/N c . We show how all these leading-order dia, grams can be summed exactly using semiclassical techniques. The saddle-point field configuration is reminiscent of the chiral bag: hedgehog pions outside a sphere of radius Λ -1 (Λ being the UV cutoff of the effective theory) matched onto nucleon degrees of freedom for r ≤ Λ -1 . The effect of this pion cloud is to renormalize the bare nucleon mass, nucleon-Δ hyperfine mass splitting, and Yukawa couplings of the theory. The corresponding large-N c , renormalization group equations for these parameters are presented, and solved explicitly in a series of simple models. We explain under what conditions the Skyrmion emerges as a UV fixed-point of the RG flow as Λ → ∞
Ultracold atoms and the Functional Renormalization Group
International Nuclear Information System (INIS)
Boettcher, Igor; Pawlowski, Jan M.; Diehl, Sebastian
2012-01-01
We give a self-contained introduction to the physics of ultracold atoms using functional integral techniques. Based on a consideration of the relevant length scales, we derive the universal effective low energy Hamiltonian describing ultracold alkali atoms. We then introduce the concept of the effective action, which generalizes the classical action principle to full quantum status and provides an intuitive and versatile tool for practical calculations. This framework is applied to weakly interacting degenerate bosons and fermions in the spatial continuum. In particular, we discuss the related BEC and BCS quantum condensation mechanisms. We then turn to the BCS-BEC crossover, which interpolates between both phenomena, and which is realized experimentally in the vicinity of a Feshbach resonance. For its description, we introduce the Functional Renormalization Group approach. After a general discussion of the method in the cold atoms context, we present a detailed and pedagogical application to the crossover problem. This not only provides the physical mechanism underlying this phenomenon. More generally, it also reveals how the renormalization group can be used as a tool to capture physics at all scales, from few-body scattering on microscopic scales, through the finite temperature phase diagram governed by many-body length scales, up to critical phenomena dictating long distance physics at the phase transition. The presentation aims to equip students at the beginning PhD level with knowledge on key physical phenomena and flexible tools for their description, and should enable to embark upon practical calculations in this field.
Some applications of renormalized RPA in bosonic field theories
International Nuclear Information System (INIS)
Hansen, H.; Chanfray, G.
2003-01-01
We present some applications of the renormalized RPA in bosonic field theories. We first present some developments for the explicit calculation of the total energy in Φ 4 theory and discuss its phase structure in 1 + 1 dimensions. We also demonstrate that the Goldstone theorem is satisfied in the O(N) model within the renormalized RPA. (authors)
International Nuclear Information System (INIS)
Braggio, A; Ferraro, D; Sassetti, M; Carrega, M; Magnoli, N
2012-01-01
We propose a general mechanism for the renormalization of the tunnelling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered for both the Laughlin sequence and the composite co- and counter-propagating edge states with Abelian or non-Abelian statistics. For states with counter-propagating modes, we demonstrate the robustness of the proposed mechanism in the so-called disorder-dominated phase. Prototypes of these states, such as ν = 2/3 and ν = 5/2, are discussed in detail, and the rich phenomenology induced by the presence of a noisy environment is presented. The proposed mechanism could help justify the strong renormalizations reported in many experimental observations carried out at low temperatures. We show how environmental effects could affect the relevance of the tunnelling excitations, leading to important implications, in particular for the ν = 5/2 case. (paper)
Functional renormalization group and Kohn-Sham scheme in density functional theory
Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo
2018-04-01
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
Renormalization of loop functions for all loops
International Nuclear Information System (INIS)
Brandt, R.A.; Neri, F.; Sato, M.
1981-01-01
It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j
On renormalization group flow in matrix model
International Nuclear Information System (INIS)
Gao, H.B.
1992-10-01
The renormalization group flow recently found by Brezin and Zinn-Justin by integrating out redundant entries of the (N+1)x(N+1) Hermitian random matrix is studied. By introducing explicitly the RG flow parameter, and adding suitable counter terms to the matrix potential of the one matrix model, we deduce some interesting properties of the RG trajectories. In particular, the string equation for the general massive model interpolating between the UV and IR fixed points turns out to be a consequence of RG flow. An ambiguity in the UV region of the RG trajectory is remarked to be related to the large order behaviour of the one matrix model. (author). 7 refs
A renormalization group theory of cultural evolution
Fáth, Gábor; Sarvary, Miklos
2005-03-01
We present a theory of cultural evolution based upon a renormalization group scheme. We consider rational but cognitively limited agents who optimize their decision-making process by iteratively updating and refining the mental representation of their natural and social environment. These representations are built around the most important degrees of freedom of their world. Cultural coherence among agents is defined as the overlap of mental representations and is characterized using an adequate order parameter. As the importance of social interactions increases or agents become more intelligent, we observe and quantify a series of dynamic phase transitions by which cultural coherence advances in the society. A similar phase transition may explain the so-called “cultural explosion’’ in human evolution some 50,000 years ago.
Renormalization group approach to soft gluon resummation
International Nuclear Information System (INIS)
Forte, Stefano; Ridolfi, Giovanni
2003-01-01
We present a simple proof of the all-order exponentiation of soft logarithmic corrections to hard processes in perturbative QCD. Our argument is based on proving that all large logs in the soft limit can be expressed in terms of a single dimensionful variable, and then using the renormalization group to resum them. Beyond the next-to-leading log level, our result is somewhat less predictive than previous all-order resummation formulae, but it does not rely on non-standard factorization, and it is thus possibly more general. We use our result to settle issues of convergence of the resummed series, we discuss scheme dependence at the resummed level, and we provide explicit resummed expressions in various factorization schemes
Nonlinear relativistic plasma resonance: Renormalization group approach
Energy Technology Data Exchange (ETDEWEB)
Metelskii, I. I., E-mail: metelski@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kovalev, V. F., E-mail: vfkvvfkv@gmail.com [Dukhov All-Russian Research Institute of Automatics (Russian Federation); Bychenkov, V. Yu., E-mail: bychenk@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-02-15
An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.
The Renormalization Group in Nuclear Physics
International Nuclear Information System (INIS)
Furnstahl, R.J.
2012-01-01
Modern techniques of the renormalization group (RG) combined with effective field theory (EFT) methods are revolutionizing nuclear many-body physics. In these lectures we will explore the motivation for RG in low-energy nuclear systems and its implementation in systems ranging from the deuteron to neutron stars, both formally and in practice. Flow equation approaches applied to Hamiltonians both in free space and in the medium will be emphasized. This is a conceptually simple technique to transform interactions to more perturbative and universal forms. An unavoidable complication for nuclear systems from both the EFT and flow equation perspective is the need to treat many-body forces and operators, so we will consider these aspects in some detail. We'll finish with a survey of current developments and open problems in nuclear RG.
Functional renormalization and ultracold quantum gases
International Nuclear Information System (INIS)
Floerchinger, Stefan
2010-01-01
Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics. (orig.)
On truncations of the exact renormalization group
Morris, T R
1994-01-01
We investigate the Exact Renormalization Group (ERG) description of (Z_2 invariant) one-component scalar field theory, in the approximation in which all momentum dependence is discarded in the effective vertices. In this context we show how one can perform a systematic search for non-perturbative continuum limits without making any assumption about the form of the lagrangian. Concentrating on the non-perturbative three dimensional Wilson fixed point, we then show that the sequence of truncations n=2,3,\\dots, obtained by expanding about the field \\varphi=0 and discarding all powers \\varphi^{2n+2} and higher, yields solutions that at first converge to the answer obtained without truncation, but then cease to further converge beyond a certain point. No completely reliable method exists to reject the many spurious solutions that are also found. These properties are explained in terms of the analytic behaviour of the untruncated solutions -- which we describe in some detail.
Fermionic functional integrals and the renormalization group
Feldman, Joel; Trubowitz, Eugene
2002-01-01
This book, written by well-known experts in the field, offers a concise summary of one of the latest and most significant developments in the theoretical analysis of quantum field theory. The renormalization group is the name given to a technique for analyzing the qualitative behavior of a class of physical systems by iterating a map on the vector space of interactions for the class. In a typical nonrigorous application of this technique, one assumes, based on one's physical intuition, that only a certain finite dimensional subspace (usually of dimension three or less) is important. The material in this book concerns a technique for justifying this approximation in a broad class of fermionic models used in condensed matter and high energy physics. This volume is based on the Aisenstadt Lectures given by Joel Feldman at the Centre de Recherches Mathematiques (Montreal, Canada). It is suitable for graduate students and research mathematicians interested in mathematical physics. Included are many problems and so...
Semihard processes with BLM renormalization scale setting
Energy Technology Data Exchange (ETDEWEB)
Caporale, Francesco [Instituto de Física Teórica UAM/CSIC, Nicolás Cabrera 15 and U. Autónoma de Madrid, E-28049 Madrid (Spain); Ivanov, Dmitry Yu. [Sobolev Institute of Mathematics and Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Murdaca, Beatrice; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza (Italy)
2015-04-10
We apply the BLM scale setting procedure directly to amplitudes (cross sections) of several semihard processes. It is shown that, due to the presence of β{sub 0}-terms in the NLA results for the impact factors, the obtained optimal renormalization scale is not universal, but depends both on the energy and on the process in question. We illustrate this general conclusion considering the following semihard processes: (i) inclusive production of two forward high-p{sub T} jets separated by large interval in rapidity (Mueller-Navelet jets); (ii) high-energy behavior of the total cross section for highly virtual photons; (iii) forward amplitude of the production of two light vector mesons in the collision of two virtual photons.
Large neutrino mixing from renormalization group evolution
International Nuclear Information System (INIS)
Balaji, K.R.S.; Mohapatra, R.N.; Parida, M.K.; Paschos, E.A.
2000-10-01
The renormalization group evolution equation for two neutrino mixing is known to exhibit nontrivial fixed point structure corresponding to maximal mixing at the weak scale. The presence of the fixed point provides a natural explanation of the observed maximal mixing of ν μ - ν τ , if the ν μ and ν τ are assumed to be quasi-degenerate at the seesaw scale without constraining the mixing angles at that scale. In particular, it allows them to be similar to the quark mixings as in generic grand unified theories. We discuss implementation of this program in the case of MSSM and find that the predicted mixing remains stable and close to its maximal value, for all energies below the O(TeV) SUSY scale. We also discuss how a particular realization of this idea can be tested in neutrinoless double beta decay experiments. (author)
Renormalization and the breakup of magnetic surfaces
International Nuclear Information System (INIS)
Greene, J.M.
1983-02-01
There has been very considerable progress in the last few years on problems that are equivalent to finding the global structure of magnetic field lines in toroidal systems. A general problem of this class has a solution that is so complicated that it is impossible to find equations for the location of a field line which are valid everywhere along an infinitely long line. However, recent results are making it possible to find the asymptotic behavior of such systems in the limit of long lengths. This is just the information that is desired in many situations, since it includes the determination of the existence, or nonexistence, of magnetic surfaces. The key to our present understanding is renormalization. The present state-of-the-art has been described in Robert MacKay's thesis, for which this is an advertisement
Renormalization group theory impact on experimental magnetism
Köbler, Ulrich
2010-01-01
Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are calle...
Renormalization of NN scattering: Contact potential
International Nuclear Information System (INIS)
Yang Jifeng; Huang Jianhua
2005-01-01
The renormalization of the T matrix for NN scattering with a contact potential is re-examined in a nonperturbative regime through rigorous nonperturbative solutions. Based on the underlying theory, it is shown that the ultraviolet divergences in the nonperturbative solutions of the T matrix should be subtracted through 'endogenous' counterterms, which in turn leads to a nontrivial prescription dependence. Moreover, employing the effective range expansion, the importance of imposing physical boundary conditions to remove the nontrivial prescription dependence, especially before making any physical claims, is discussed and highlighted. As by-products, some relations between the effective range expansion parameters are derived. We also discuss the power counting of the couplings for the nucleon-nucleon interactions and other subtle points related to the EFT framework beyond perturbative treatment
Gauge field theories. Part three. Renormalization
International Nuclear Information System (INIS)
Frampon, P.H.
1978-01-01
The renormalization of nonabelian gauge theories both with exact symmetry and with spontaneous symmetry breaking is discussed. The method of dimensional regularization is described and used in the ensuing discussion. Triangle anomalies and their implications and the method for cancellation of anomalies in an SU(2) x U(1) theory, introduction of the BRS form of local gauge transformation and its use for the iterative proof of renormalizability to all orders for pure Yang--Mills and with fermion and scalar matter fields are considered. Lastly for massive vectors arising from spontaneous breaking, the demonstration of renormalizability is given, using the 't Hooft gauges introduced first in 1971. While the treatment is not totally rigorous, all the principle steps are given. 108 references
Renormalized semiclassical quantization for rescalable Hamiltonians
International Nuclear Information System (INIS)
Takahashi, Satoshi; Takatsuka, Kazuo
2004-01-01
A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum
Dynamics of symmetry breaking in strongly coupled QED
International Nuclear Information System (INIS)
Bardeen, W.A.
1988-10-01
I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs
Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review
Wu, Xing-Gang; Ma, Yang; Wang, Sheng-Quan; Fu, Hai-Bing; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin
2015-12-01
A valid prediction for a physical observable from quantum field theory should be independent of the choice of renormalization scheme—this is the primary requirement of renormalization group invariance (RGI). Satisfying scheme invariance is a challenging problem for perturbative QCD (pQCD), since a truncated perturbation series does not automatically satisfy the requirements of the renormalization group. In a previous review, we provided a general introduction to the various scale setting approaches suggested in the literature. As a step forward, in the present review, we present a discussion in depth of two well-established scale-setting methods based on RGI. One is the ‘principle of maximum conformality’ (PMC) in which the terms associated with the β-function are absorbed into the scale of the running coupling at each perturbative order; its predictions are scheme and scale independent at every finite order. The other approach is the ‘principle of minimum sensitivity’ (PMS), which is based on local RGI; the PMS approach determines the optimal renormalization scale by requiring the slope of the approximant of an observable to vanish. In this paper, we present a detailed comparison of the PMC and PMS procedures by analyzing two physical observables R e+e- and Γ(H\\to b\\bar{b}) up to four-loop order in pQCD. At the four-loop level, the PMC and PMS predictions for both observables agree within small errors with those of conventional scale setting assuming a physically-motivated scale, and each prediction shows small scale dependences. However, the convergence of the pQCD series at high orders, behaves quite differently: the PMC displays the best pQCD convergence since it eliminates divergent renormalon terms; in contrast, the convergence of the PMS prediction is questionable, often even worse than the conventional prediction based on an arbitrary guess for the renormalization scale. PMC predictions also have the property that any residual dependence on
Renormalization method and singularities in the theory of Langmuir turbulence
International Nuclear Information System (INIS)
Pelletier, G.
1977-01-01
The method of renormalization, using propagators and diagrams, is recalled with enough mathematical details to be read and used by a non-specialist. The Markovian models are discussed and applied to plasma turbulence. The physical meaning of the diagrams is exhibited. In addition to the usual resonance broadening, an improved renormalization is set out, including broadening of the nonlinear resonance with a beat wave by induced scattering. This improved renormalization is emphasized. In the case of Langmuir turbulence, it removes difficulties arising at the group velocity, and enhances large-scale induced-scattering diffusion. (author)
Renormalization group theory of phase transitions in square Ising systems
International Nuclear Information System (INIS)
Nienhuis, B.
1978-01-01
Some renormalization group calculations are presented on a number of phase transitions in a square Ising model, both second and first order. Of these transitions critical exponents are calculated, the amplitudes of the power law divergences and the locus of the transition. In some cases attention is paid to the thermodynamic functions also far from the critical point. Universality and scaling are discussed and the renormalization group theory is reviewed. It is shown how a renormalization transformation, which relates two similar systems with different macroscopic dimensions, can be constructed, and how some critical properties of the system follow from this transformation. Several numerical and analytical applications are presented. (Auth.)
Cohomology and renormalization of BFYM theory in three dimensions
International Nuclear Information System (INIS)
Accardi, A.; Belli, A.; Zeni, M.
1997-01-01
The first-order formalism for the 3D Yang-Mills theory is considered and two different formulations are introduced, in which the gauge theory appears to be a deformation of the topological BF theory. We perform the quantization and the algebraic analysis of the renormalization of both the models, which are found to be anomaly free. We discuss also their stability against radiative corrections, giving the full structure of possible counterterms, requiring an involved matricial renormalization of fields and sources. Both models are then proved to be equivalent to the Yang-Mills theory at the renormalized level. (orig.)
International Nuclear Information System (INIS)
Lopez-Aguilar, F.; Costa-Quintana, J.
1992-01-01
In this paper, the authors give a method for obtaining the renormalized electronic structure of the Hubbard systems. The first step is the determination of the self-energy beyond the Hartree-Fock approximation. This self-energy is constructed from several dielectric response functions. The second step is the determination of the quasiparticle band structure calculation which is performed from an appropriate modification of the augmented plane wave method. The third step consists in the determination of the renormalized density of states deduced from the spectral functions. The analysis of the renormalized density of states of the strongly correlated systems leads to the conclusion that there exist three types of resonances in their electronic structures, the lower energy resonances (LER), the middle energy resonances (MER) and the upper energy resonances (UER). In addition, the authors analyze the conditions for which the Luttinger theorem is satisfied. All of these questions are determined in a characteristic example which allows to test the theoretical method
Anatomy of the magnetic catalysis by renormalization-group method
Hattori, Koichi; Itakura, Kazunori; Ozaki, Sho
2017-12-01
We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and Schwinger-Dyson equations, we discuss an equivalence between these two approaches. Focusing on QED and Nambu-Jona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.
Anatomy of the magnetic catalysis by renormalization-group method
Directory of Open Access Journals (Sweden)
Koichi Hattori
2017-12-01
Full Text Available We first examine the scaling argument for a renormalization-group (RG analysis applied to a system subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of screened photon exchanges at weak coupling, and establish the RG method appropriately including the screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained from the solutions of the RG and SchwingerâDyson equations, we discuss an equivalence between these two approaches. Focusing on QED and NambuâJona-Lasinio model, we clarify how the properties of the interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic energy-scale dependences in underlying theories for the determination of the mass gap. These studies are expected to be useful for a diagnosis of the magnetic catalysis in QCD.
Vacuum polarization and renormalized charge in ν-dimensions
International Nuclear Information System (INIS)
Marinho Junior, R.M.; Lucinda, J.
1984-01-01
The expression for the vacuum polarization is obtained for any momentum transfer in ν dimensions. Using the Wilson loop for QED, the renormalized electric charge in ν dimensions is calculated. (Author) [pt
Exact renormalization group as a scheme for calculations
International Nuclear Information System (INIS)
Mack, G.
1985-10-01
In this lecture I report on recent work to use exact renormalization group methods to construct a scheme for calculations in quantum field theory and classical statistical mechanics on the continuum. (orig./HSI)
Propagators and renormalization transformations for lattice gauge theories. Pt. 2
International Nuclear Information System (INIS)
Balaban, T.
1984-01-01
We continue the studies of the Paper I and extend the results of this paper to operators defined by restrictions on different scales, or by renormalization transformations of different orders. (orig.)
Renormalization and operator product expansion in theories with massless particles
International Nuclear Information System (INIS)
Anikin, S.A.; Smirnov, V.A.
1985-01-01
Renormalization procedure in theories including massless particles is presented. With the help of counterterm formalism the operator product expansion for arbitrary composite fields is derived. The coefficient functions are explicitly expressed in terms of certain Green's functions. (author)
Generalized Callan-Symanzik equations and the Renormalization Group
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
A set of generalized Callan-Symanzik equations derived by Symanzik, relating Green's functions with arbitrary number of mass insertions, is shown be equivalent to the new Renormalization Group equation proposed by S. Weinberg
Noncommutative quantum field theory: attempts on renormalization
International Nuclear Information System (INIS)
Popp, L.
2002-05-01
Quantum field theory is the art of dealing with problems at small distances or, equivalently, large momenta. Although there are different approaches (string theory, for example), it is generally accepted that these principles cannot be extrapolated to arbitrarily small distances as can be shown by applying simple, heuristic arguments. Therefore, the concept of space-time as a differential manifold has to be replaced by something else at such scales, the road we have chosen to follow is noncommutative geometry. We start from the basic relation [ x μ , x ν ] = i θ { μν}, where θ is a (usually) constant, antisymmetric matrix. This relation amounts to a noncommutativity of position measurements, or, put differently, the points are somehow 'smeared' out, which should have a positive effect on field theory since infinities arise from point-like interactions. However, it was shown that the effects of the commutation relation (leading to the so-called Moyal product) do not necessarily cure the divergences but introduce a new kind of problem: whereas UV-divergent integrals are rendered finite by phase factors (that arise as a consequence of the Moyal product), this same kind of 'regularization' introduces IR-divergences which led to the name 'UV/IR-mixing' for this problem. In order to overcome this peculiarity, one expands the action in θ which is immediate for the phase factors but requires the so-called Seiberg-Witten map for the fields. In this thesis, we emphasize the derivation of the Seiberg-Witten map by using noncommutative Lorentz symmetries, which is more general than the original derivation. After that, we concentrate on a treatment of θ-expanded theories and their renormalization, where it can be shown that the photon self-energy of noncommutative Maxwell theory can be renormalized to all orders in hbar and θ when the freedom in the Seiberg-Witten map (there are ambiguities in the map) is exploited. Although this is very promising, it cannot be
Renormalization of the QEMD of a dyon field
International Nuclear Information System (INIS)
Panagiotakopoulos, C.
1983-01-01
A renormalized quantum electromagnetodynamics (QEMD) of a dyon field is defined. Finite and n-independent answers can be obtained in each order of the loop expansion for all processes. The electric and magnetic charges are not constrained with the Dirac condition and therefore perturbation theory can be made reliable. The renormalized theory is found to possess exact dual invariance. Comparisons with the general QEMD of electric and magnetic charges are made. (orig.)
Renormalization of the QEMD of a dyon field
International Nuclear Information System (INIS)
Panagiotakopoulos, C.
1982-05-01
A renormalized quantum electromagnetodynamics (QEMD) of a dyon field is defined. Finite and n independent answers can be obtained in each order of the loop expansion for all processes. The electric and magnetic charges are not constrained with the Dirac condition and therefore perturbation theory can be made reliable. The renormalized theory is found to possess exact dual invariance. Comparisons with the general QEMD of electric and magnetic charges are made. (author)
Non-perturbative versus perturbative renormalization of lattice operators
International Nuclear Information System (INIS)
Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.
1995-09-01
Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)
Renormalization of the g-boson effects for Os isotopes
International Nuclear Information System (INIS)
Zhang Zhanjun; Liu Yong; Sang Jianping
1996-01-01
A modified renormalization approach based on that proposed by Druce et al. is presented. The overall agreement between the spectra calculated here and the accurate spectra is significantly improved. We also use Druce's approach to generate the renormalized spectra. It is shown that in our microscopic study, both of the approaches are very useful to the determination of several free parameters of fermion residual interactions
The renormalization group: scale transformations and changes of scheme
International Nuclear Information System (INIS)
Roditi, I.
1983-01-01
Starting from a study of perturbation theory, the renormalization group is expressed, not only for changes of scale but also within the original view of Stueckelberg and Peterman, for changes of renormalization scheme. The consequences that follow from using that group are investigated. Following a more general point of view a method to obtain an improvement of the perturbative results for physical quantities is proposed. The results obtained with this method are compared with those of other existing methods. (L.C.) [pt
Anisotropic square lattice Potts ferromagnet: renormalization group treatment
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Tsallis, C.
1981-01-01
The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q - [pt
Renormalization in p-adic quantum field theory
International Nuclear Information System (INIS)
Smirnov, V.A.
1990-01-01
A version of p-adic perturbative Euclidean quantum field theory is presented. It is based on the new type of propagator which happens to be rather natural for p-adic space-time. Low-order Feynamn diagrams are explicity calculated and typical renormalization schemes are introduced: analytic, dimensional and BPHZ renormalizations. The calculations show that in p-adic Feynman integrals only logarithmic divergences appear. 14 refs.; 1 fig
Products of composite operators in the exact renormalization group formalism
Pagani, C.; Sonoda, H.
2018-02-01
We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.
Non-perturbative renormalization of HQET and QCD
International Nuclear Information System (INIS)
Sommer, Rainer
2003-01-01
We discuss the necessity of non-perturbative renormalization in QCD and HQET and explain the general strategy for solving this problem. A few selected topics are discussed in some detail, namely the importance of off shell improvement in the MOM-scheme on the lattice, recent progress in the implementation of finite volume schemes and then particular emphasis is put on the recent idea to carry out a non-perturbative renormalization of the Heavy Quark Effective Theory (HQET)
A note on nonperturbative renormalization of effective field theory
Energy Technology Data Exchange (ETDEWEB)
Yang Jifeng [Department of Physics, East China Normal University, Shanghai 200062 (China)
2009-08-28
Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.
A note on nonperturbative renormalization of effective field theory
International Nuclear Information System (INIS)
Yang Jifeng
2009-01-01
Within the realm of contact potentials, the key structures intrinsic of nonperturbative renormalization of T-matrices are unraveled using rigorous solutions and an inverse form of the algebraic Lippmann-Schwinger equation. The intrinsic mismatches between effective field theory power counting and nonperturbative divergence structures are shown for the first time to preclude the conventional counterterm algorithm from working in the renormalization of EFT for NN scattering in nonperturbative regimes.
Renormalization of an abelian gauge theory in stochastic quantization
International Nuclear Information System (INIS)
Chaturvedi, S.; Kapoor, A.K.; Srinivasan, V.
1987-01-01
The renormalization of an abelian gauge field coupled to a complex scalar field is discussed in the stochastic quantization method. The super space formulation of the stochastic quantization method is used to derive the Ward Takahashi identities associated with supersymmetry. These Ward Takahashi identities together with previously derived Ward Takahashi identities associated with gauge invariance are shown to be sufficient to fix all the renormalization constants in terms of scaling of the fields and of the parameters appearing in the stochastic theory. (orig.)
Technical fine-tuning problem in renormalized perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
Technical fine-tuning problem in renormalized perturbation theory
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes
Renormalization group analysis of a simple hierarchical fermion model
International Nuclear Information System (INIS)
Dorlas, T.C.
1991-01-01
A simple hierarchical fermion model is constructed which gives rise to an exact renormalization transformation in a 2-dimensional parameter space. The behaviour of this transformation is studied. It has two hyperbolic fixed points for which the existence of a global critical line is proven. The asymptotic behaviour of the transformation is used to prove the existence of the thermodynamic limit in a certain domain in parameter space. Also the existence of a continuum limit for these theories is investigated using information about the asymptotic renormalization behaviour. It turns out that the 'trivial' fixed point gives rise to a two-parameter family of continuum limits corresponding to that part of parameter space where the renormalization trajectories originate at this fixed point. Although the model is not very realistic it serves as a simple example of the appliclation of the renormalization group to proving the existence of the thermodynamic limit and the continuum limit of lattice models. Moreover, it illustrates possible complications that can arise in global renormalization group behaviour, and that might also be present in other models where no global analysis of the renormalization transformation has yet been achieved. (orig.)
Aspects of renormalization in finite-density field theory
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia
2015-05-26
We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction “Landau parameters” run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 k F singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.
Quantum field theory and phase transitions: universality and renormalization group
International Nuclear Information System (INIS)
Zinn-Justin, J.
2003-08-01
In the quantum field theory the problem of infinite values has been solved empirically through a method called renormalization, this method is satisfying only in the framework of renormalization group. It is in the domain of statistical physics and continuous phase transitions that these issues are the easiest to discuss. Within the framework of a course in theoretical physics the author introduces the notions of continuous limits and universality in stochastic systems operating with a high number of freedom degrees. It is shown that quasi-Gaussian and mean field approximation are unable to describe phase transitions in a satisfying manner. A new concept is required: it is the notion of renormalization group whose fixed points allow us to understand universality beyond mean field. The renormalization group implies the idea that long distance correlations near the transition temperature might be described by a statistical field theory that is a quantum field in imaginary time. Various forms of renormalization group equations are presented and solved in particular boundary limits, namely for fields with high numbers of components near the dimensions 4 and 2. The particular case of exact renormalization group is also introduced. (A.C.)
Nonperturbative Renormalization of Composite Operators with Overlap Fermions
Energy Technology Data Exchange (ETDEWEB)
J.B. Zhang; N. Mathur; S.J. Dong; T. Draper; I. Horvath; F. X. Lee; D.B. Leinweber; K.F. Liu; A.G. Williams
2005-12-01
We compute non-perturbatively the renormalization constants of composite operators on a quenched 16{sup 3} x 28 lattice with lattice spacing a = 0.20 fm for the overlap fermion by using the regularization independent (RI) scheme. The quenched gauge configurations were generated with the Iwasaki action. We test the relations Z{sub A} = Z{sub V} and Z{sub S} = Z{sub P} and find that they agree well (less than 1%) above {mu} = 1.6 GeV. We also perform a Renormalization Group (RG) analysis at the next-to-next-to-leading order and match the renormalization constants to the {ovr MS} scheme. The wave-function renormalization Z{sub {psi}} is determined from the vertex function of the axial current and Z{sub A} from the chiral Ward identity. Finally, we examine the finite quark mass behavior for the renormalization factors of the quark bilinear operators. We find that the (pa){sup 2} errors of the vertex functions are small and the quark mass dependence of the renormalization factors to be quite weak.
Concomitant chemoradiotherapy with high dose rate brachytherapy ...
African Journals Online (AJOL)
Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...
Renormalizations and operator expansion in sigma model
International Nuclear Information System (INIS)
Terentyev, M.V.
1988-01-01
The operator expansion (OPE) is studied for the Green function at x 2 → 0 (n(x) is the dynamical field ofσ-model) in the framework of the two-dimensional σ-model with the O(N) symmetry group at large N. As a preliminary step we formulate the renormalization scheme which permits introduction of an arbitrary intermediate scale μ 2 in the framework of 1/N expansion and discuss factorization (separation) of small (p μ) momentum region. It is shown that definition of composite local operators and coefficient functions figuring in OPE is unambiguous only in the leading order in 1/N expansion when dominant are the solutions with extremum of action. Corrections of order f(μ 2 )/N (here f(μ 2 ) is the effective interaction constant at the point μ 2 ) in composite operators and coefficient functions essentially depend on factorization method of high and low momentum regions. It is shown also that contributions to the power corrections of order m 2 x 2 f(μ 2 )/N in the Green function (here m is the dynamical mass-scale factor in σ-model) arise simultaneously from two sources: from the mean vacuum value of the composite operator n ∂ 2 n and from the hard particle contributions in the coefficient function of unite operator. Due to the analogy between σ-model and QCD the obtained result indicates theoretical limitations to the sum rule method in QCD. (author)
Functional renormalization group methods in quantum chromodynamics
International Nuclear Information System (INIS)
Braun, J.
2006-01-01
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Block generators for the similarity renormalization group
Energy Technology Data Exchange (ETDEWEB)
Huether, Thomas; Roth, Robert [TU Darmstadt (Germany)
2016-07-01
The Similarity Renormalization Group (SRG) is a powerful tool to improve convergence behavior of many-body calculations using NN and 3N interactions from chiral effective field theory. The SRG method decouples high and low-energy physics, through a continuous unitary transformation implemented via a flow equation approach. The flow is determined by a generator of choice. This generator governs the decoupling pattern and, thus, the improvement of convergence, but it also induces many-body interactions. Through the design of the generator we can optimize the balance between convergence and induced forces. We explore a new class of block generators that restrict the decoupling to the high-energy sector and leave the diagonalization in the low-energy sector to the many-body method. In this way one expects a suppression of induced forces. We analyze the induced many-body forces and the convergence behavior in light and medium-mass nuclei in No-Core Shell Model and In-Medium SRG calculations.
Renormalization-group theory of spinodal decomposition
International Nuclear Information System (INIS)
Mazenko, G.F.; Valls, O.T.; Zhang, F.C.
1985-01-01
Renormalization-group (RG) methods developed previously for the study of the growth of order in unstable systems are extended to treat the spinodal decomposition of the two-dimensional spin-exchange kinetic Ising model. The conservation of the order parameter and fixed-length sum rule are properly preserved in the theory. Various correlation functions in both coordinate and momentum space are calculated as functions of time. The scaling function for the structure factor is extracted. We compare our results with direct Monte Carlo (MC) simulations and find them in good agreement. The time rescaling parameter entering the RG analysis is temperature dependent, as was determined in previous work through a RG analysis of MC simulations. The results exhibit a long-time logarithmic growth law for the typical domain size, both analytically and numerically. In the time region where MC simulations have previously been performed, the logarithmic growth law can be fitted to a power law with an effective exponent. This exponent is found to be in excellent agreement with the result of MC simulations. The logarithmic growth law agrees with a physical model of interfacial motion which involves an interplay between the local curvature and an activated jump across the interface
Functional renormalization group methods in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Braun, J.
2006-12-18
We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)
Nonperturbative Renormalization Group Approach to Polymerized Membranes
Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique
2014-03-01
Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.
Slowest kinetic modes revealed by metabasin renormalization
Okushima, Teruaki; Niiyama, Tomoaki; Ikeda, Kensuke S.; Shimizu, Yasushi
2018-02-01
Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009), 10.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016), 10.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.
Concomitant hypo-hyperdontia: A rare entity
Directory of Open Access Journals (Sweden)
Yin-Lin Wang
2018-03-01
Full Text Available Background/purpose: Concomitant hypo-hyperdontia (CHH is a rare numeric dental anomaly characterized by congenital missing teeth and supernumerary teeth occurring in the same individual. Due to its rarity and sporadicity, the causes of CHH have been completely unknown. Detailed characterization and presentation of more CHH cases not only strengthen clinical diagnosis and treatment for the patients but facilitate the search for etiological factors of the disorder. Materials and methods: From a pedodontic patient population, 21 CHH subjects, with a mean age of 6 years 10 months, were identified and characterized. Dental records and radiographs were scrutinized and analyzed for the distribution and frequencies of involved teeth and concurrent dental anomalies. Through further literature review, 59 CHH cases with supernumeraries in the premaxillary region were retrieved for comparative analyses. Results: The boys were affected twice as often as the girls. While most cases were unrelated and sporadic, two sisters and a pair of identical twins from two unrelated families were presented. Of all cases, only one was of syndromic CHH carrying Duchenne muscular dystrophy. Bimaxillay CHH, with anomalies involving two jaws, occurred more than 4 times as often as maxillary CHH. While all supernumeraries were found in premaxillary region, hypodontia frequently involved lateral incisors and premolars of both jaws. Conclusion: As genetic contribution to CHH is strongly suggested by its familial occurrence and syndromic cases, environmental factors seem to play certain roles in modifying disease phenotypes. Judicious use of radiographs during early mixed dentition stage enhances clinical diagnosis and treatment of CHH. Keywords: Tooth agenesis, Supernumerary, Numeric anomaly, Premaxillary
Tensor hypercontraction. II. Least-squares renormalization
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Analysis of coined quantum walks with renormalization
Boettcher, Stefan; Li, Shanshan
2018-01-01
We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.
The applications of the renormalization group
International Nuclear Information System (INIS)
Hughes, J.L.
1988-01-01
Three applications of the exact renormalization group (RG) to field theory and string theory are developed. (1) First, β-functions are related to the flow of the relevant couplings in the exact RG. The specific case of a cutoff λφ 4 theory in four dimensions is discussed in detail. The underlying idea of convergence of the flow of effective lagrangians is developed to identify the β-functions. A perturbative calculations of the β-functions using the exact flow equations is then sketched. (2) Next, the operator product expansion (OPE) is motivated and developed within the context of effective lagrangians. The exact RG may be used to establish the asymptotic properties of the expansion. Again, the example field theory focused upon is a cutoff λφ 4 in four dimensions. A detailed proof of the asymptotics for the special case of the expansion of φ(χ)φ(0) is given. The ideas of the proof are sufficient to prove the general case of any two local operators. Although both of the above applications are developed for a cutoff λφ 4 , the analysis may be extended to any theory with a physical cutoff. (3) Finally, some consequences of the proposal by Banks and Martinec that the classical string field equation can be written as as exact RG equation are examined. Cutoff conformal field theories on the sphere are identified as possible string field configurations. The Wilson fixed-point equation is generalized to conformal invariance and then taken to be the equation of motion for the string field. The equation's solutions for a restricted set of configurations are examined - namely, closed bosonic strings in 26 dimensions. Tree-level Virasoro-Shapiro (VS) S-matrix elements emerge in what is interpreted as a weak component-field expansion of the solution
Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD
Guagnelli, M; Peña, C; Sint, S; Vladikas, A
2006-01-01
We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.
Gauge-independent renormalization of the N2HDM
Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui
2017-12-01
The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.
G-Boson renormalizations and mixed symmetry states
International Nuclear Information System (INIS)
Scholten, O.
1986-01-01
In the IBA model the low-lying collective states are described in terms of a system of interacting s- and d-bosons. A boson can be interpreted as corresponding to collective J=0 or J=2 fermion pair states. As such the IBA model space can be seen as only a small subsector of the full shell model space. For medium heavy nuclei such a truncation of the model space is necessary to make calculations feasible. As is well known truncations of a model space make it necessary to renormalize the model parameters. In this work some renormalizations of the Hamiltonian and the E2 transition operator will be discussed. Special attention will be given to the implication of these renormalizations for the properties of mixed symmetry states. The effects of renormalization are obtained by considering the influence of fermion pair states that have been omitted from the model basis. Here the authors focus attention on the effect of the low-lying two particle J=4 state, referred to as g-boson or G-pair state. Renormalizations of the d-boson energy, the E2 effective charges, and symmetry force are discussed
Oral lichen planus preceding concomitant lichen planopilaris.
Stoopler, Eric T; Alfaris, Sausan; Alomar, Dalal; Alawi, Faizan
2016-09-01
Lichen planus (LP) is an immune-mediated mucocutaneous disorder with a wide array of clinical presentations. Oral lichen planus (OLP) is characterized clinically by striae, desquamation, and/or ulceration. Lichen planopilaris (LPP), a variant of LP, affects the scalp, resulting in perifollicular erythema and scarring of cutaneous surfaces accompanied by hair loss. The association between OLP and LPP has been reported previously with scant information on concomitant or sequential disease presentation. We describe a patient with concomitant OLP and LPP, and to the best of our knowledge, this is the first report on OLP preceding the onset of LPP. Copyright © 2016 Elsevier Inc. All rights reserved.
Off-shell renormalization in Higgs effective field theories
Binosi, Daniele; Quadri, Andrea
2018-04-01
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.
Wetting transitions: A functional renormalization-group approach
International Nuclear Information System (INIS)
Fisher, D.S.; Huse, D.A.
1985-01-01
A linear functional renormalization group is introduced as a framework in which to treat various wetting transitions of films on substrates. A unified treatment of the wetting transition in three dimensions with short-range interactions is given. The results of Brezin, Halperin, and Leibler in their three different regimes are reproduced along with new results on the multicritical behavior connecting the various regimes. In addition, the critical behavior as the coexistence curve is approached at complete wetting is analyzed. Wetting in the presence of long-range substrate-film interactions that fall off as power laws is also studied. The possible effects of the nonlinear terms in the renormalization group are examined briefly and it appears that they do not alter the critical behavior found using the truncated linear renormalization group
Non-perturbative renormalization of three-quark operators
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Kaltenbrunner, Thomas [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2008-10-15
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MS scheme at {mu}=2 GeV. (orig.)
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
The ab-initio density matrix renormalization group in practice
Energy Technology Data Exchange (ETDEWEB)
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Extended BPH renormalization of cutoff scalar field theories
International Nuclear Information System (INIS)
Chalmers, G.
1996-01-01
We show through the use of diagrammatic techniques and a newly adapted BPH renormalization method that general momentum cutoff scalar field theories in four dimensions are perturbatively renormalizable. Weinberg close-quote s convergence theorem is used to show that operators in the Lagrangian with dimension greater than four, which are divided by powers of the cutoff, produce perturbatively only local divergences in the two-, three-, and four-point correlation functions. The naive use of the convergence theorem together with the BPH method is not appropriate for understanding the local divergences and renormalizability of these theories. We also show that the renormalized Green close-quote s functions are the same as in ordinary Φ 4 theory up to corrections suppressed by inverse powers of the cutoff. These conclusions are consistent with those of existing proofs based on the renormalization group. copyright 1996 The American Physical Society
Renormalization group and the superconducting susceptibility of a Fermi liquid
International Nuclear Information System (INIS)
Parameswaran, S. A.; Sondhi, S. L.; Shankar, R.
2010-01-01
A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does not. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.
Renormalization Group in different fields of theoretical physics
International Nuclear Information System (INIS)
Shirkov, D.V.
1992-02-01
A very simple and general approach to the symmetry that is widely known as a Renormalization Group symmetry is presented. It essentially uses a functional formulation of group transformations that can be considered as a generalization of self-similarity transformations well known in mathematical physics since last century. This generalized Functional Self-Similarity symmetry and corresponding group transformations are discussed first for a number of simple physical problems taken from diverse fields of classical physics as well as for QED. Then we formulate the Renorm-Group Method as a regular procedure that essentially improves the approximate solutions near the singularity. After that we discuss relations between different formulations of Renormalization Group as they appear in various parts of a modern theoretical physics. Finally we present several topics of RGM application in modern QFT. (author)
Renormalization of three-quark operators for baryon distribution amplitudes
International Nuclear Information System (INIS)
Gruber, Michael
2017-01-01
In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI ' /SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.
Perturbative renormalization of composite operators via flow equations. Pt. 1
Energy Technology Data Exchange (ETDEWEB)
Keller, G. (Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany). Werner-Heisenberg-Inst. fuer Physik); Kopper, C. (Goettingen Univ. (Germany). Inst. fuer Theoretische Physik)
1992-09-01
We apply the general framework of the continuous renormalization group, whose significance for perturbative quantum field theories was recognized by Polchinski, to investigate by new and mathematically simple methods the perturbative renormalization of composite operators. In this paper we demonstrate the perturbative renormalizability of the Green functions of the Euclidean massive {Phi}{sub 4}{sup 4} theory with one insertion of a (possibly oversubtracted, in the BPHZ language) composite operator. Moreover we show that our method admits an easy proof of the Zimmermann identities and of the Lowenstein rule. (orig.).
Perturbative renormalization of composite operators via flow equations. Pt. 1
International Nuclear Information System (INIS)
Keller, G.; Kopper, C.
1992-01-01
We apply the general framework of the continuous renormalization group, whose significance for perturbative quantum field theories was recognized by Polchinski, to investigate by new and mathematically simple methods the perturbative renormalization of composite operators. In this paper we demonstrate the perturbative renormalizability of the Green functions of the Euclidean massive Φ 4 4 theory with one insertion of a (possibly oversubtracted, in the BPHZ language) composite operator. Moreover we show that our method admits an easy proof of the Zimmermann identities and of the Lowenstein rule. (orig.)
Renormalization in Large Momentum Effective Theory of Parton Physics.
Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong
2018-03-16
In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.
Quantum renormalization group approach to geometric phases in spin chains
International Nuclear Information System (INIS)
Jafari, R.
2013-01-01
A relation between geometric phases and criticality of spin chains are studied using the quantum renormalization-group approach. I have shown how the geometric phase evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. The renormalization scheme demonstrates how the first derivative of the geometric phase with respect to the field strength diverges at the critical point and maximum value of the first derivative, and its position, scales with the exponent of the system size
Functional renormalization group approach to the two dimensional Bose gas
Energy Technology Data Exchange (ETDEWEB)
Sinner, A; Kopietz, P [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt (Germany); Hasselmann, N [International Center for Condensed Matter Physics, Universidade de BrasIlia, Caixa Postal 04667, 70910-900 BrasIlia, DF (Brazil)], E-mail: hasselma@itp.uni-frankfurt.de, E-mail: sinner@itp.uni-frankfurt.de
2009-02-01
We investigate the small frequency and momentum structure of the weakly interacting Bose gas in two dimensions using a functional renormalization group approach. The flow equations are derived within a derivative approximation of the effective action up to second order in spatial and temporal variables and investigated numerically. The truncation we employ is based on the perturbative structure of the theory and is well described as a renormalization group enhanced perturbation theory. It allows to calculate corrections to the Bogoliubov spectrum and to investigate the damping of quasiparticles. Our approach allows to circumvent the divergences which plague the usual perturbative approach.
Renormalization Group Reduction of Non Integrable Hamiltonian Systems
International Nuclear Information System (INIS)
Tzenov, Stephan I.
2002-01-01
Based on Renormalization Group method, a reduction of non integratable multi-dimensional Hamiltonian systems has been performed. The evolution equations for the slowly varying part of the angle-averaged phase space density and for the amplitudes of the angular modes have been derived. It has been shown that these equations are precisely the Renormalization Group equations. As an application of the approach developed, the modulational diffusion in one-and-a-half degrees of freedom dynamical system has been studied in detail
Renormalization Scale-Fixing for Complex Scattering Amplitudes
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J.; /Madrid U.
2005-12-21
We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.
Fine-grained entanglement loss along renormalization-group flows
International Nuclear Information System (INIS)
Latorre, J.I.; Rico, E.; Luetken, C.A.; Vidal, G.
2005-01-01
We explore entanglement loss along renormalization group trajectories as a basic quantum information property underlying their irreversibility. This analysis is carried out for the quantum Ising chain as a transverse magnetic field is changed. We consider the ground-state entanglement between a large block of spins and the rest of the chain. Entanglement loss is seen to follow from a rigid reordering, satisfying the majorization relation, of the eigenvalues of the reduced density matrix for the spin block. More generally, our results indicate that it may be possible to prove the irreversibility along renormalization group trajectories from the properties of the vacuum only, without need to study the whole Hamiltonian
Renormalization of three-quark operators for baryon distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Gruber, Michael
2017-07-01
In this thesis we design and study three-quark operators that are essential for the calculation of baryon distribution amplitudes. These nonperturbative objects grant insight into the internal structure of hadrons, but their renormalization patterns are nontrivial and need to be treated with care. With the application to lattice simulations in mind we discuss two renormalization schemes, MS and RI{sup '}/SMOM, and connect them by calculating conversion factors. Armed with this knowledge we are able to extract phenomenologically relevant results from an accompanying lattice analysis.
The renormalization scale-setting problem in QCD
Energy Technology Data Exchange (ETDEWEB)
Wu, Xing-Gang [Chongqing Univ. (China); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mojaza, Matin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Southern Denmark, Odense (Denmark)
2013-09-01
A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The conventional scale-setting procedure assigns an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In fact, this ad hoc procedure gives results which depend on the choice of the renormalization scheme, and it is in conflict with the standard scale-setting procedure used in QED. Predictions for physical results should be independent of the choice of the scheme or other theoretical conventions. We review current ideas and points of view on how to deal with the renormalization scale ambiguity and show how to obtain renormalization scheme- and scale-independent estimates. We begin by introducing the renormalization group (RG) equation and an extended version, which expresses the invariance of physical observables under both the renormalization scheme and scale-parameter transformations. The RG equation provides a convenient way for estimating the scheme- and scale-dependence of a physical process. We then discuss self-consistency requirements of the RG equations, such as reflexivity, symmetry, and transitivity, which must be satisfied by a scale-setting method. Four typical scale setting methods suggested in the literature, i.e., the Fastest Apparent Convergence (FAC) criterion, the Principle of Minimum Sensitivity (PMS), the Brodsky–Lepage–Mackenzie method (BLM), and the Principle of Maximum Conformality (PMC), are introduced. Basic properties and their applications are discussed. We pay particular attention to the PMC, which satisfies all of the requirements of RG invariance. Using the PMC, all non-conformal terms associated with the β-function in the perturbative series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. The PMC provides the principle underlying the BLM method, since it gives the general rule for extending
Effective-field renormalization-group method for Ising systems
Fittipaldi, I. P.; De Albuquerque, D. F.
1992-02-01
A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.
Renormalization in the stochastic quantization of field theories
International Nuclear Information System (INIS)
Brunelli, J.C.
1991-01-01
In the stochastic quantization scheme of Parisi and Wu the renormalization of the stochastic theory of some models in field theory is studied. Following the path integral approach for stochastic process the 1/N expansion of the non linear sigma model is performed and, using a Ward identity obtained, from a BRS symmetry of the effective action of this formulation. It is shown the renormalizability of the model. Using the Langevin approach for stochastic process the renormalizability of the massive Thirring model is studied showing perturbatively the vanishing of the renormalization group's beta functions at finite fictitious time. (author)
Renormalization group improved bottom mass from {Upsilon} sum rules at NNLL order
Energy Technology Data Exchange (ETDEWEB)
Hoang, Andre H.; Stahlhofen, Maximilian [Wien Univ. (Austria). Fakultaet fuer Physik; Ruiz-Femenia, Pedro [Wien Univ. (Austria). Fakultaet fuer Physik; Valencia Univ. - CSIC (Spain). IFIC
2012-09-15
We determine the bottom quark mass from non-relativistic large-n {Upsilon} sum rules with renormalization group improvement at next-to-next-to-leading logarithmic order. We compute the theoretical moments within the vNRQCD formalism and account for the summation of powers of the Coulomb singularities as well as of logarithmic terms proportional to powers of {alpha}{sub s} ln(n). The renormalization group improvement leads to a substantial stabilization of the theoretical moments compared to previous fixed-order analyses, which did not account for the systematic treatment of the logarithmic {alpha}{sub s} ln(n) terms, and allows for reliable single moment fits. For the current world average of the strong coupling ({alpha}{sub s}(M{sub Z})=0.1183{+-}0.0010) we obtain M{sub b}{sup 1S}=4.755{+-}0.057{sub pert} {+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass, where we have quoted the perturbative error and the uncertainties from the strong coupling and the experimental data.
Concomitant hypo-hyperdontia with dens invaginatus.
Manjunatha, B S; Nagarajappa, D; Singh, Santosh Kumar
2011-01-01
Although developmental anomalies of tooth number are quite common in permanent dentition, concomitant occurrence of hypohyperdontia is a very rare mixed numeric anomalous condition of teeth. Very few cases of this condition have been reported in the English literature. Here we report such a rare case noted in a 26 year-old male dental graduate with no other associated systemic condition or syndrome.
International Nuclear Information System (INIS)
Wu, Ru-Shan; Wang, Benfeng; Hu, Chunhua
2015-01-01
We derived the renormalized nonlinear sensitivity operator and the related inverse thin-slab propagator (ITSP) for nonlinear tomographic waveform inversion based on the theory of nonlinear partial derivative operator and its De Wolf approximation. The inverse propagator is based on a renormalization procedure to the forward and inverse transition matrix scattering series. The ITSP eliminates the divergence of the inverse Born series for strong perturbations by stepwise partial summation (renormalization). Numerical tests showed that the inverse Born T-series starts to diverge at moderate perturbation (20% for the given model of Gaussian ball with a radius of 5 wavelength), while the ITSP has no divergence problem for any strong perturbations (up to 100% perturbation for test model). In addition, the ITSP is a non-iterative, marching algorithm with only one sweep, and therefore very efficient in comparison with the iterative inversion based on the inverse-Born scattering series. This convergence and efficiency improvement has potential applications to the iterative procedure of waveform inversion. (paper)
International Nuclear Information System (INIS)
Busa, J.; Ajryan, Eh.A.; Jurcisinova, E.; Jurcisin, M.; Remecky, R.
2009-01-01
Using the field-theoretic renormalization group, the influence of strong uniaxial small-scale anisotropy on the stability of inertial-range scaling regimes in a model of passive transverse vector field advected by an incompressible turbulent flow is investigated. The velocity field is taken to have a Gaussian statistics with zero mean and defined noise with finite time correlations. It is shown that the inertial-range scaling regimes are given by the existence of infrared stable fixed points of the corresponding renormalization group equations with some angle integrals. The analysis of integrals is given. The problem is solved numerically and the borderline spatial dimension d e (1,3] below which the stability of the scaling regime is not present is found as a function of anisotropy parameters
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Energy Technology Data Exchange (ETDEWEB)
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Multiscale unfolding of real networks by geometric renormalization
García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles
2018-06-01
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
On Newton-Cartan local renormalization group and anomalies
Energy Technology Data Exchange (ETDEWEB)
Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano; Filippini, Francesco [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)
2016-11-28
Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.
Systematic renormalization of the effective theory of Large Scale Structure
International Nuclear Information System (INIS)
Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico
2016-01-01
A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k 2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.
International Nuclear Information System (INIS)
Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.
2010-01-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.
Renormalization group coupling flow of SU(3) gauge theory
QCDTARO Collaboration
1998-01-01
We present our new results on the renormalization group coupling flow obtained i n 3 dimensional coupling space $(\\beta_{11},\\beta_{12},\\beta_{twist})$. The value of $\\beta_{twist}$ turns out to be small and the coupling flow projected on $(\\beta_{11},\\beta_{12})$ plane is very similar with the previous result obtained in the 2 dimensional coupling space.
Simple perturbative renormalization scheme for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-06-30
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of ((p+q)/..delta..)/sup -/delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, ..lambda.. is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously.
A simple perturbative renormalization scheme for supersymmetric gauge theories
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of [(p+q)/δ] - delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, #betta# is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously. (orig.)
Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation
Energy Technology Data Exchange (ETDEWEB)
Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)
1975-01-04
Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.
Finite cluster renormalization group for disordered two-dimensional systems
International Nuclear Information System (INIS)
El Kenz, A.
1987-09-01
A new type of renormalization group theory using the generalized Callen identities is exploited in the study of the disordered systems. Bond diluted and frustrated Ising systems on a square lattice are analyzed with this new scheme. (author). 9 refs, 2 figs, 2 tabs
RENORMALIZATION FACTOR AND ODD-OMEGA GAP SINGLET SUPERCONDUCTIVITY
DOLGOV, OV; LOSYAKOV, VV
1994-01-01
Abrahams et al. [Phys. Rev. B 47 (1993) 513] have considered the possibility of a nonzero critical temperature of the superconductor transition to the state with odd-omega pp function and shown that the condition for it is the following inequality for the renormalization factor. Z (k, omega(n)) <1.
Renormalization group decimation technique for disordered binary harmonic chains
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1983-10-01
The density of states of disordered binary harmonic chains is calculated using the Renormalization Group Decimation technique on the displacements of the masses from their equilibrium positions. The results are compared with numerical simulation data and with those obtained with the current method of Goncalves da Silva and Koiller. The advantage of our procedure over other methods is discussed. (author)
Running with rugby balls: bulk renormalization of codimension-2 branes
Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.
2013-01-01
We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.
General renormalized statistical approach with finite cross-field correlations
International Nuclear Information System (INIS)
Vakulenko, M.O.
1992-01-01
The renormalized statistical approach is proposed, accounting for finite correlations of potential and magnetic fluctuations. It may be used for analysis of a wide class of nonlinear model equations describing the cross-correlated plasma states. The influence of a cross spectrum on stationary potential and magnetic ones is investigated. 10 refs. (author)
Pairing renormalization and regularization within the local density approximation
International Nuclear Information System (INIS)
Borycki, P.J.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M.V.
2006-01-01
We discuss methods used in mean-field theories to treat pairing correlations within the local density approximation. Pairing renormalization and regularization procedures are compared in spherical and deformed nuclei. Both prescriptions give fairly similar results, although the theoretical motivation, simplicity, and stability of the regularization procedure make it a method of choice for future applications
Rota-Baxter algebras and the Hopf algebra of renormalization
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi-Fard, K.
2006-06-15
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
Updated RENORM/MBR Predictions for Diffraction at the LHC
Goulianos, K
2015-01-01
Updated RENORM/MBR-model predictions of diffractive, total, and total-inelastic cross sections at the LHC are presented and compared with experimental results and predictions from other models. In addition, expectations for diffraction at the upcoming LHC run at √s = 13 TeV are discussed.
Renormalization constants for 2-twist operators in twisted mass QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to β=3.9, 4.05, 4.20. Subtraction of O(a 2 ) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a 2 ). The renormalization conditions are defined in the RI ' -MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.
Renormalization group invariance in the presence of an instanton
International Nuclear Information System (INIS)
Ross, D.A.
1987-01-01
A pure Yang-Mills theory which admits an instanton is under discussion. n=1 supersymmetric (SU-2) Yang-Mills theory, both in the Wess-zumino gauge and in manifestly supersymmetric supergauge is considered. Two-loop vacuum graphs are calculated. The way a renormalization group invariance works under conditions of fermionic zero mode elimination is shown
Dynamic mass generation and renormalizations in quantum field theories
International Nuclear Information System (INIS)
Miransky, V.A.
1979-01-01
It is shown that the dynamic mass generation can destroy the multiplicative renormalization relations and lead to new type divergences in the massive phase. To remove these divergences the values of the bare coupling constants must be fixed. The phase diagrams of gauge theories are discussed
Rota-Baxter algebras and the Hopf algebra of renormalization
International Nuclear Information System (INIS)
Ebrahimi-Fard, K.
2006-06-01
Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)
On Newton-Cartan local renormalization group and anomalies
International Nuclear Information System (INIS)
Auzzi, Roberto; Baiguera, Stefano; Filippini, Francesco; Nardelli, Giuseppe
2016-01-01
Weyl consistency conditions are a powerful tool to study the irreversibility properties of the renormalization group. We apply this formalism to non-relativistic theories in 2 spatial dimensions with boost invariance and dynamical exponent z=2. Different possibilities are explored, depending on the structure of the gravitational background used as a source for the energy-momentum tensor.
Real-space renormalization group approach to driven diffusive systems
Energy Technology Data Exchange (ETDEWEB)
Hanney, T [SUPA and School of Physics, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Stinchcombe, R B [Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)
2006-11-24
We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase.
Equation-free dynamic renormalization in a glassy compaction model
International Nuclear Information System (INIS)
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-01-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena
Equation-free dynamic renormalization in a glassy compaction model
Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.
2006-07-01
Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.
Real-space renormalization group approach to driven diffusive systems
International Nuclear Information System (INIS)
Hanney, T; Stinchcombe, R B
2006-01-01
We introduce a real-space renormalization group procedure for driven diffusive systems which predicts both steady state and dynamic properties. We apply the method to the boundary driven asymmetric simple exclusion process and recover exact results for the steady state phase diagram, as well as the crossovers in the relaxation dynamics for each phase
Pade expansion and the renormalization of nucleon-nucleon scattering
International Nuclear Information System (INIS)
Yang Jifeng; Huang Jianhua; Liu Dan
2006-01-01
The importance of imposing physical boundary conditions on the T-matrix to remove to nonperturbative renormalization prescription dependence is stressed and demonstrated in two diagonal channels 1 P 1 and 1 D 2 , with the help of Pade expansion. (authors)
Migdal-Kadanoff renormalization group for the Z(5) model
International Nuclear Information System (INIS)
Baltar, V.L.V.; Carneiro, G.M.; Pol, M.E.; Zagury, N.
1984-01-01
The Migdal-Kadanoff renormalization group methods is used to calculate the phase diagram of the AF Z(5) model. It is found that this scheme simulates a fixed line which it is interpreted as the locus of attraction of a critical phase. This result is in reasonable agreement with the predictions of Monte Carlo simulations. (Author) [pt
The functional renormalization group for interacting quantum systems with spin-orbit interaction
International Nuclear Information System (INIS)
Grap, Stephan Michael
2013-01-01
We studied the influence of spin-orbit interaction (SOI) in interacting low dimensional quantum systems at zero temperature within the framework of the functional renormalization group (fRG). Among the several types of spin-orbit interaction the so-called Rashba spin-orbit interaction is especially intriguing for future spintronic applications as it may be tuned via external electric fields. We investigated its effect on the low energy physics of an interacting quantum wire in an applied Zeeman field which is modeled as a generalization of the extended Hubbard model. To this end we performed a renormalization group study of the two particle interaction, including the SOI and the Zeeman field exactly on the single particle level. Considering the resulting two band model, we formulated the RG equations for the two particle vertex keeping the full band structure as well as the non trivial momentum dependence of the low energy two particle scattering processes. In order to solve these equations numerically we defined criteria that allowed us to classify whether a given set of initial conditions flows towards the strongly coupled regime. We found regions in the models parameter space where a weak coupling method as the fRG is applicable and it is possible to calculate additional quantities of interest. Furthermore we analyzed the effect of the Rashba SOI on the properties of an interacting multi level quantum dot coupled to two semi in nite leads. Of special interest was the interplay with a Zeeman field and its orientation with respect to the SOI term. We found a renormalization of the spin-orbit energy which is an experimental quantity used to asses SOI effects in transport measurements, as well as renormalized effective g factors used to describe the Zeeman field dependence. In particular in asymmetrically coupled systems the large parameter space allows for rich physics which we studied by means of the linear conductance obtained via the generalized Landauer
Concomitant hypo-hyperdontia with dens invaginatus
Directory of Open Access Journals (Sweden)
B S Manjunatha
2011-01-01
Full Text Available Although developmental anomalies of tooth number are quite common in permanent dentition, concomitant occurrence of hypohyperdontia is a very rare mixed numeric anomalous condition of teeth. Very few cases of this condition have been reported in the English literature. Here we report such a rare case noted in a 26 year-old male dental graduate with no other associated systemic condition or syndrome.
DEFF Research Database (Denmark)
Katajainen, Jyrki
2008-01-01
In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...
International Nuclear Information System (INIS)
Molino, Luis Carlos García del; Pakdaman, Khashayar; Touboul, Jonathan
2015-01-01
We introduce and analyze d-dimensional Coulomb gases with random charge distribution and general external confining potential. We show that these gases satisfy a large-deviation principle. The analysis of the minima of the rate function (which is the leading term of the energy) reveals that, at equilibrium, the particle distribution is a generalized circular law (i.e. with spherical support but not necessarily uniform distribution). In the classical electrostatic external potential, there are infinitely many minimizers of the rate function. The most likely macroscopic configuration is a disordered distribution in which particles are uniformly distributed (for d = 2, the circular law), and charges are independent of the positions of the particles. General charge-dependent confining potentials unfold this degenerate situation: in contrast, the particle density is not uniform, and particles spontaneously organize according to their charge. In this picture the classical electrostatic potential appears as a transition at which order is lost. Sub-leading terms of the energy are derived: we show that these are related to an operator, generalizing the Coulomb renormalized energy, which incorporates the heterogeneous nature of the charges. This heterogeneous renormalized energy informs us about the microscopic arrangements of the particles, which are non-standard, strongly dependent on the charges, and include progressive and irregular lattices. (paper)
Turbulent mixing of a critical fluid: The non-perturbative renormalization
Directory of Open Access Journals (Sweden)
M. Hnatič
2018-01-01
Full Text Available Non-perturbative Renormalization Group (NPRG technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi〉∼(Pji⊥+αPji∥/kd+ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow, but there is a new nonequilibrium regime (universality class associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ of possible scaling regimes in the system. The physical point d=3, ζ=4/3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α≲2.26. Otherwise, in the case of “strong compressibility” α≳2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.
Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas
Weger, M.; Burlachkov, L.
We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.
International Nuclear Information System (INIS)
Froissart, Marcel
1976-01-01
Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr
A comprehensive coordinate space renormalization of quantum electrodynamics to two-loop order
International Nuclear Information System (INIS)
Haagensen, P.E.; Latorre, J.I.
1993-01-01
We develop a coordinate space renormalization of massless quantum electrodynamics using the powerful method of differential renormalization. Bare one-loop amplitudes are finite at non-coincident external points, but do not accept a Fourier transform into momentum space. The method provides a systematic procedure to obtain one-loop renormalized amplitudes with finite Fourier transforms in strictly four dimensions without the appearance of integrals or the use of a regulator. Higher loops are solved similarly by renormalizing from the inner singularities outwards to the global one. We compute all one- and two-loop 1PI diagrams, run renormalization group equations on them. and check Ward identities. The method furthermore allows us to discern a particular pattern of renormalization under which certain amplitudes are seen not to contain higher-loop leading logarithms. We finally present the computation of the chiral triangle showing that differential renormalization emerges as a natural scheme to tackle γ 5 problems
Strong coupling transmutation of Yukawa theory
International Nuclear Information System (INIS)
Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.
1981-01-01
In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)
Imaging and concomitant dose in radiotherapy
International Nuclear Information System (INIS)
Negi, P.S.
2008-01-01
Image guidance in radiotherapy now involves multiple imaging procedures for planning, simulation, set-up inter and intrafraction monitoring. Presently ALARA (i.e. as low as reasonable achievable) is the principle of management of dose to radiation workers and patients in any diagnostic imaging procedures including image guided surgery. The situation is different in repeated radiographic/fluoroscopic imaging performed for simulation, dose planning, patient positioning and set-up corrections during preparation/execution of Image guided radiotherapy (IGRT) as well as for Intensity Modulated Radiotherapy (IMRT). Reported imaging and concomitant doses will be highlighted and discussed for the management and optimization of imaging techniques in IMRT and IGRT
The Bekenstein bound in strongly coupled O(N) scalar field theory
International Nuclear Information System (INIS)
Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.
2009-09-01
We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
Renormalization Group scale-setting in astrophysical systems
Domazet, Silvije; Štefančić, Hrvoje
2011-09-01
A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.
Renormalization Group scale-setting in astrophysical systems
International Nuclear Information System (INIS)
Domazet, Silvije; Stefancic, Hrvoje
2011-01-01
A more general scale-setting procedure for General Relativity with Renormalization Group corrections is proposed. Theoretical aspects of the scale-setting procedure and the interpretation of the Renormalization Group running scale are discussed. The procedure is elaborated for several highly symmetric systems with matter in the form of an ideal fluid and for two models of running of the Newton coupling and the cosmological term. For a static spherically symmetric system with the matter obeying the polytropic equation of state the running scale-setting is performed analytically. The obtained result for the running scale matches the Ansatz introduced in a recent paper by Rodrigues, Letelier and Shapiro which provides an excellent explanation of rotation curves for a number of galaxies. A systematic explanation of the galaxy rotation curves using the scale-setting procedure introduced in this Letter is identified as an important future goal.
Matrix product density operators: Renormalization fixed points and boundary theories
Energy Technology Data Exchange (ETDEWEB)
Cirac, J.I. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Pérez-García, D., E-mail: dperezga@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain); ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain); Schuch, N. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Verstraete, F. [Department of Physics and Astronomy, Ghent University (Belgium); Vienna Center for Quantum Technology, University of Vienna (Austria)
2017-03-15
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).
E-cigarette marketing and older smokers: road to renormalization.
Cataldo, Janine K; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas
2015-05-01
To describe older smokers' perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking.
Renormalization group procedure for potential −g/r2
Directory of Open Access Journals (Sweden)
S.M. Dawid
2018-02-01
Full Text Available Schrödinger equation with potential −g/r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r=0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Computing the effective action with the functional renormalization group
Energy Technology Data Exchange (ETDEWEB)
Codello, Alessandro [CP3-Origins and the Danish IAS University of Southern Denmark, Odense (Denmark); Percacci, Roberto [SISSA, Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Rachwal, Leslaw [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Tonero, Alberto [ICTP-SAIFR and IFT, Sao Paulo (Brazil)
2016-04-15
The ''exact'' or ''functional'' renormalization group equation describes the renormalization group flow of the effective average action Γ{sub k}. The ordinary effective action Γ{sub 0} can be obtained by integrating the flow equation from an ultraviolet scale k = Λ down to k = 0. We give several examples of such calculations at one-loop, both in renormalizable and in effective field theories. We reproduce the four-point scattering amplitude in the case of a real scalar field theory with quartic potential and in the case of the pion chiral Lagrangian. In the case of gauge theories, we reproduce the vacuum polarization of QED and of Yang-Mills theory. We also compute the two-point functions for scalars and gravitons in the effective field theory of scalar fields minimally coupled to gravity. (orig.)
Renormalization-group study of the four-body problem
International Nuclear Information System (INIS)
Schmidt, Richard; Moroz, Sergej
2010-01-01
We perform a renormalization-group analysis of the nonrelativistic four-boson problem by means of a simple model with pointlike three- and four-body interactions. We investigate in particular the region where the scattering length is infinite and all energies are close to the atom threshold. We find that the four-body problem behaves truly universally, independent of any four-body parameter. Our findings confirm the recent conjectures of others that the four-body problem is universal, now also from a renormalization-group perspective. We calculate the corresponding relations between the four- and three-body bound states, as well as the full bound-state spectrum and comment on the influence of effective range corrections.
Scaling algebras and renormalization group in algebraic quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Verch, R.
1995-01-01
For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)
E-cigarette Marketing and Older Smokers: Road to Renormalization
Cataldo, Janine K.; Petersen, Anne Berit; Hunter, Mary; Wang, Julie; Sheon, Nicolas
2015-01-01
Objectives To describe older smokers’ perceptions of risks and use of e-cigarettes, and their responses to marketing and knowledge of, and opinions about, regulation of e-cigarettes. Methods Eight 90-minute focus groups with 8 to 9 participants met in urban and suburban California to discuss topics related to cigarettes and alternative tobacco products. Results Older adults are using e-cigarettes for cessation and as a way to circumvent no-smoking policies; they have false perceptions about the effectiveness and safety of e-cigarettes. They perceive e-cigarette marketing as a way to renormalize smoking. Conclusions To stem the current epidemic of nicotine addiction, the FDA must take immediate action because e-cigarette advertising promotes dual use and may contribute to the renormalization of smoking. PMID:25741681
Two-loop renormalization of quantum gravity simplified
Bern, Zvi; Chi, Huan-Hang; Dixon, Lance; Edison, Alex
2017-02-01
The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when nondynamical three-forms are added to the theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences for renormalized scattering processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple. We explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.
One-loop renormalization of Lee-Wick gauge theory
International Nuclear Information System (INIS)
Grinstein, Benjamin; O'Connell, Donal
2008-01-01
We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theory than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.
On the renormalization of operator products: the scalar gluonic case
International Nuclear Information System (INIS)
Zoller, Max F.
2016-01-01
In this paper we study the renormalization of the product of two operators O 1 =−(1/4)G μν G μν in QCD. An insertion of two such operators O 1 (x)O 1 (0) into a Greens function produces divergent contact terms for x→0. In the course of the computation of the operator product expansion (OPE) of the correlator of two such operators i∫ d 4 x e iqx T{ O 1 (x)O 1 (0)} to three-loop order http://dx.doi.org/10.1007/JHEP12(2012)119; http://dx.doi.org/10.1007/JHEP10(2014)169 we discovered that divergent contact terms remain not only in the leading Wilson coefficient C 0 , which is just the VEV of the correlator, but also in the Wilson coefficient C 1 in front of O 1 . As this correlator plays an important role for example in QCD sum rules a full understanding of its renormalization is desireable. This work explains how the divergences encountered in higher orders of an OPE of this correlator should be absorbed in counterterms and derives an additive renormalization constant for C 1 from first principles and to all orders in perturnbation theory. The method to derive the renormalization of this operator product is an extension of the ideas of V. Spiridonov, Anomalous dimension of g μν 2 and β-function, Preprint IYAI-P-0378 (1984). and can be generalized to other cases.
Quasi-renormalization of the axial vector model
International Nuclear Information System (INIS)
Schweda, M.
1979-01-01
Using the regulator-free BPHZL renormalization scheme the problem of anomalies in a massive axial vector meson model is reinvestigated. The Adler-Bardeen-Bell-Jackiw anomaly introduces some impressive modifications: the nontrivial self-energy and the counterterm of the longitudinal part of the axial vector field depend on the anomaly via the anomalous Ward identity. The investigations are based on a Fermi-type gauge. (author)
Fierz transformations and renormalization schemes for fourquark operators
Directory of Open Access Journals (Sweden)
Garron Nicolas
2018-01-01
Full Text Available It has been shown that the choice of renormalization scheme is crucial for four-quark operators, in particular for neutral kaon mixing beyond the Standard Model. In the context of SMOM schemes, the choice of projector is not unique and is part of the definition of the renormalisation scheme. I present the non-diagonal Fierz relations which relate some of these projectors.
Evaluation of spectral zeta-functions with the renormalization group
International Nuclear Information System (INIS)
Boettcher, Stefan; Li, Shanshan
2017-01-01
We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal–Kadanoff bond moving scheme from regular lattices. As possible applications of these results we mention quantum search algorithms as well as synchronization, which we discuss in more detail. (paper)
Nonthermal fixed points and the functional renormalization group
International Nuclear Information System (INIS)
Berges, Juergen; Hoffmeister, Gabriele
2009-01-01
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium
Renormalization group, principle of invariance and functional automodelity
International Nuclear Information System (INIS)
Shirkov, D.V.
1981-01-01
There exists a remarkable identity of functional equations describing the property of functional automodelity in diverse branches of physics: renormalization group equations in quantum field theory, functional equations of the invariance principle of the one-dimensional transport theory and some others. The origin of this identity is investigated. It is shown that the structure of these equations reflects the simple and general property of transitivity with respect to the way of fixatio of initial on effective degrees of freedom [ru
Renormalization of the δ expansion in curved space-time
International Nuclear Information System (INIS)
Cho, H.T.
1991-01-01
Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered
Tadpole renormalization and relativistic corrections in lattice NRQCD
Shakespeare, Norman H.; Trottier, Howard D.
1998-08-01
We make a detailed comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. We renormalize improved gauge-field and NRQCD actions using the mean-link u0,L in the Landau gauge, and using the fourth root of the average plaquette u0,P. Simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed both at leading [O(MQv4)] and at next-to-leading [O(MQv6)] order in the relativistic expansion, where MQ is the renormalized quark mass, and v2 is the mean-squared velocity. Results are obtained at a large number of lattice spacings, in the range of about 0.14-0.38 fm. A number of features emerge, all of which favor tadpole renormalization using u0,L. This includes a much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,L is used. We also find that relativistic corrections to the spin splittings are smaller when u0,L is used, particularly for the cc¯ and bc¯ systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about 1 in lattice units. Simulations with u0,L also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,L is used, compared to when u0,P is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.
Renormalization analysis of catalytic Wright-Fisher diffusions
Czech Academy of Sciences Publication Activity Database
Swart, Jan M.; Fleischmann, K.
2006-01-01
Roč. 2006, č. 11 (2006), s. 585-654 ISSN 1083-6489 R&D Projects: GA ČR GA201/06/1323 Institutional research plan: CEZ:AV0Z10750506 Keywords : renormalization * catalytic Wright-Fisher diffusion * embedded particle system * extinction * unbounded growth * interacting diffusions * universality Subject RIV: BA - General Mathematics Impact factor: 0.676, year: 2006
The Bogolyubov renormalization group in theoretical and mathematical physics
International Nuclear Information System (INIS)
Shirkov, D.V.
1999-01-01
This text follows the line of a talk on Ringberg symposium dedicated to Wolfhart Zimmermann 70th birthday. The historical overview (Part I) partially overlaps with corresponding text of my previous commemorative paper - see Ref. [6] in the list. At the same time the second part includes some fresh results in QFT (Sect. 2.1.) and summarizes (Sect. 2.4) an impressive recent progress of the 'QFT renormalization group' application in mathematical physics
Renormalization-group flows and charge transmutation in string theory
International Nuclear Information System (INIS)
Orlando, D.; Petropoulos, P.M.; Sfetsos, K.
2006-01-01
We analyze the behaviour of heterotic squashed-Wess-Zumino-Witten backgrounds under renormalization-group flow. The flows we consider are driven by perturbation creating extra gauge fluxes. We show how the conformal point acts as an attractor from both the target-space and world-sheet points of view. We also address the question of instabilities created by the presence of closed time-like curves in string backgrounds. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Renormalization, unstable manifolds, and the fractal structure of mode locking
International Nuclear Information System (INIS)
Cvitanovic, P.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.
1985-01-01
The apparent universality of the fractal dimension of the set of quasiperiodic windings at the onset of chaos in a wide class of circle maps is described by construction of a universal one-parameter family of maps which lies along the unstable manifold of the renormalization group. The manifold generates a universal ''devil's staircase'' whose dimension agrees with direct numerical calculations. Applications to experiments are discussed
Real space renormalization group for spectra and density of states
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1984-09-01
We discuss the implementation of the Real Space Renormalization Group Decimation Technique for 1-d tight-binding models with long range interactions with or without disorder and for the 2-d regular square lattice. The procedure follows the ideas developed by Southern et al. Some new explicit formulae are included. The purpose of this study is to calculate spectra and densities of states following the procedure developed in our previous work. (author)
BPHZ renormalization in configuration space for the A4-model
Pottel, Steffen
2018-02-01
Recent developments for BPHZ renormalization performed in configuration space are reviewed and applied to the model of a scalar quantum field with quartic self-interaction. An extension of the results regarding the short-distance expansion and the Zimmermann identity is shown for a normal product, which is quadratic in the field operator. The realization of the equation of motion is computed for the interacting field and the relation to parametric differential equations is indicated.
Temperature renormalization group approach to spontaneous symmetry breaking
International Nuclear Information System (INIS)
Manesis, E.; Sakakibara, S.
1985-01-01
We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)
Concomitant Hip Arthroscopy and Periacetabular Osteotomy.
Domb, Benjamin G; LaReau, Justin M; Hammarstedt, Jon E; Gupta, Asheesh; Stake, Christine E; Redmond, John M
2015-11-01
To detail our early experience using concomitant hip arthroscopy and periacetabular osteotomy (PAO) for the treatment of acetabular dysplasia. We prospectively collected and retrospectively reviewed the surgical and outcome data of 17 patients who underwent concomitant hip arthroscopy and PAO between October 2010 and July 2013. Preoperative and postoperative range of motion, outcome and pain scores, and radiographic data were collected. Intraoperative arthroscopic findings and postoperative complications were recorded. The group consisted of 3 male and 14 female patients with a mean follow-up period of 2.4 years. Three patients had undergone previous surgery on the affected hip. Chondrolabral pathology was identified in all 17 patients. Twelve patients underwent labral repair, and five patients underwent partial labral debridement. No patient was converted to total hip arthroplasty or required revision surgery at short-term follow-up. All 4 patient-reported outcome scores showed statistically significant changes from baseline to latest follow-up (P arthroscopy and PAO has been favorable. We noted that all our patients have evidence of chondrolabral damage at the time of PAO when the joint is distracted and evaluated. All patients in this series had intra-articular pathology treated arthroscopically and showed satisfactory mean clinical improvement. Hip arthroscopy with PAO did not appear to introduce complications beyond the PAO alone. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears
Panagopoulos, Haralambos; Spanoudes, Gregoris
2018-03-01
In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet (Σfψ¯fΓψf', f : flavor index) and nonsinglet (ψ¯f1Γψf2,f1 ≠ f2) bilinear quark operators (where Γ = 𝟙, γ5, γ µ, γ5 γ µ, γ5 σµv on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D [1].
One-loop renormalization of a gravity-scalar system
Energy Technology Data Exchange (ETDEWEB)
Park, I.Y. [Philander Smith College, Department of Applied Mathematics, Little Rock, AR (United States)
2017-05-15
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)
Renormalization group fixed points of foliated gravity-matter systems
Energy Technology Data Exchange (ETDEWEB)
Biemans, Jorn [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Platania, Alessia [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Department of Physics and Astronomy, University of Catania,Via S. Sofia 63, 95123 Catania (Italy); INFN, Catania section,Via S. Sofia 64, 95123, Catania (Italy); INAF, Catania Astrophysical Observatory,Via S. Sofia 78, 95123, Catania (Italy); Saueressig, Frank [Institute for Mathematics, Astrophysics and Particle Physics (IMAPP),Radboud University Nijmegen,Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)
2017-05-17
We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) “time”-direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton’s constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d{sub g}, d{sub λ}. We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.
One-loop renormalization of a gravity-scalar system
International Nuclear Information System (INIS)
Park, I.Y.
2017-01-01
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the ''mass'' term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information. (orig.)
One-loop renormalization of a gravity-scalar system
Park, I. Y.
2017-05-01
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.
Comparison of renormalization group schemes for sine-Gordon-type models
International Nuclear Information System (INIS)
Nandori, I.; Nagy, S.; Sailer, K.; Trombettoni, A.
2009-01-01
The scheme dependence of the renormalization group (RG) flow has been investigated in the local potential approximation for two-dimensional periodic, sine-Gordon type field-theoretic models discussing the applicability of various functional RG methods in detail. It was shown that scheme-independent determination of such physical parameters is possible as the critical frequency (temperature) at which Kosterlitz-Thouless-Berezinskii type phase transition takes place in the sine-Gordon and the layered sine-Gordon models, and the critical ratio characterizing the Ising-type phase transition of the massive sine-Gordon model. For the latter case, the Maxwell construction represents a strong constraint on the RG flow, which results in a scheme-independent infrared value for the critical ratio. For the massive sine-Gordon model also the shrinking of the domain of the phase with spontaneously broken periodicity is shown to take place due to the quantum fluctuations.
Probing the desert by the two-loop renormalization-group equations
International Nuclear Information System (INIS)
Tanimoto, M.; Suetake, Y.; Senba, K.
1987-01-01
We have reexamined the study of probing the desert with fermion masses, presented by Bagger, Dimopoulos, and Masso, by using the two-loop renormalization-group equations in the framework of the SU(3) x SU(2) x U(1) model with three generations and one Higgs doublet. The blow-up energy scale of the Yukawa coupling is found to be dependent on the Higgs quartic coupling λ. If the Yukawa coupling blows up between the electroweak scale M/sub W/ and the grand unified scale M/sub X/, the Higgs potential is destabilized for small values of λ at the electroweak scale M/sub W/, and becomes strongly coupled for large values of λ at M/sub W/. It is found that the Higgs-scalar mass as well as the fermion masses are important to probe the desert
Energy Technology Data Exchange (ETDEWEB)
Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)
2017-01-30
We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.
[Emphysematous gastritis with concomitant portal venous air].
Jeong, Min Yeong; Kim, Jin Il; Kim, Jae Young; Kim, Hyun Ho; Jo, Ik Hyun; Seo, Jae Hyun; Kim, Il Kyu; Cheung, Dae Young
2015-02-01
Emphysematous gastritis is a rare form of gastritis caused by infection of the stomach wall by gas forming bacteria. It is a very rare condition that carries a high mortality rate. Portal venous gas shadow represents elevation of intestinal luminal pressure which manifests as emphysematous gastritis or gastric emphysema. Literature reviews show that the mortality rate is especially high when portal venous gas shadow is present on CT scan. Until recently, the treatment of emphysematous gastritis has been immediate surgical intervention. However, there is a recent trend of avoiding surgery because of the frequent occurrence of post-operative complications such as anastomosis leakage. In addition, aggressive surgical treatment has failed to show significant improvement in prognosis. Recently, the authors experienced a case of emphysematous gastritis accompanied by portal venous gas which was treated successfully by conservative treatment without immediate surgical intervention. Herein, we present a case of emphysematous gastritis with concomitant portal venous air along with literature review.
[Atrial fibrillation concomitant with valvular heart disease].
Ishii, Yosuke
2013-01-01
Patients with valvular heart disease frequently have atrial fibrillation(AF) due to elevated pressure and dilatation of the left and right atria and pulmonary veins. Guidelines for valvular heart disease and AF recommend that surgical treatment for the valvular heart disease should be performed concomitantly with AF surgery. The Full-Maze procedure has evolved into the gold standard of treatment for medically refractory AF. In addition to the pulmonary vein isolation, the right and left atrial incisions of the Full-Maze procedure are designed to block potential macroreentrant pathways. According to the mechanisms of AF with valvular heart disease, the Full-Maze procedure is more effective for the patients than the pulmonary vein isolation alone.
International Nuclear Information System (INIS)
Johnston, S.
1997-01-01
The Principal Investigator, Professor Shayne Johnston, devoted 25% of his time during the academic year 1991--92 to this grant. The central idea underlying this project was a renormalized vision of a turbulent plasma in which electrons become microclumps, discreteness is thereby enhanced,and transport processes, still essentially classical, become anomalous. After two years of continued investigation, the PI believes strongly that this vision remains viable and compelling as an approach to electron heat conduction in the tokamak core. The simple analysis presented below shows that electrostatic waves can indeed correlate resonant repelling particles on length scales much shorter than a wavelength, thus causing enhanced discreteness within Debye clouds
Renormalized trajectory for non-linear sigma model and improved scaling behaviour
International Nuclear Information System (INIS)
Guha, A.; Okawa, M.; Zuber, J.B.
1984-01-01
We apply the block-spin renormalization group method to the O(N) Heisenberg spin model. Extending a previous work of Hirsch and Shenker, we find the renormalized trajectory for O(infinite) in two dimensions. Four finite N models, we choose a four-parameter action near the large-N renormalized trajectory and demonstrate a remarkable improvement in the approach to continuum limit by performing Monte Carlo simulation of O(3) and O(4) models. (orig.)
Space-time versus world-sheet renormalization group equation in string theory
International Nuclear Information System (INIS)
Brustein, R.; Roland, K.
1991-05-01
We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)
Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-04-28
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
The fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes. (orig.)
Renormalization of the new trajectory in the unitarized conventional dual model
International Nuclear Information System (INIS)
Quiros, M.
1978-08-01
The contribution of one-loop planar diagrams to the two-reggeon two-particle amplitude is derived. Its regge limit splits into two separate contributions which must be interpreted as renormalization effects, to order g 2 , of the α and β trajectories. It is shown that the Neveu-Scherk renormalization prescription is able to render finite both contributions. The intercept of the β trajectory is shifted from its bare value by the renormalization procedure, whereas that of the α trajectrory is not renormalized as it was required by the gauge invariance of dual theories
Unique determination of the effective potential in terms of renormalization group functions
International Nuclear Information System (INIS)
Chishtie, F. A.; Hanif, T.; McKeon, D. G. C.; Steele, T. G.
2008-01-01
The perturbative effective potential V in the massless λφ 4 model with a global O(N) symmetry is uniquely determined to all orders by the renormalization group functions alone when the Coleman-Weinberg renormalization condition (d 4 V/dφ 4 )| φ=μ =λ is used, where μ represents the renormalization scale. Systematic methods are developed to express the n-loop effective potential in the Coleman-Weinberg scheme in terms of the known n-loop minimal-subtraction (MS) renormalization group functions. Moreover, it also proves possible to sum the leading- and subsequent-to-leading-logarithm contributions to V. An essential element of this analysis is a conversion of the renormalization group functions in the Coleman-Weinberg scheme to the renormalization group functions in the MS scheme. As an example, the explicit five-loop effective potential is obtained from the known five-loop MS renormalization group functions and we explicitly sum the leading-logarithm, next-to-leading-logarithm, and further subleading-logarithm contributions to V. Extensions of these results to massless scalar QED are also presented. Because massless scalar QED has two couplings, conversion of the renormalization group functions from the MS scheme to the Coleman-Weinberg scheme requires the use of multiscale renormalization group methods.
Transformation of renormalization groups in 2N-component fermion hierarchical model
International Nuclear Information System (INIS)
Stepanov, R.G.
2006-01-01
The 2N-component fermion model on the hierarchical lattice is studied. The explicit formulae for renormalization groups transformation in the space of coefficients setting the Grassmannian-significant density of the free measure are presented. The inverse transformation of the renormalization group is calculated. The definition of immovable points of renormalization groups is reduced to solving the set of algebraic equations. The interesting connection between renormalization group transformations in boson and fermion hierarchical models is found out. It is shown that one transformation is obtained from other one by the substitution of N on -N [ru
Renormalization of the γ-ray strength functions of light nuclei
International Nuclear Information System (INIS)
Canbula, B.; Ersan, S.; Babacan, H.
2015-01-01
γ-ray strength function is the key input for the photonuclear reactions, which have a special astrophysical importance, and should be renormalized by using the nuclear level density for calculating the theoretical average radiative capture width, but performing such renormalization is challenging for light nuclei. With this motivation, recently introduced level density parameter formula including collective effects is used to calculate the average radiative capture width of light nuclei, and therefore to renormalize their γ-ray strength functions. Obtained normalization factors are tested in (n, γ) reactions for the necessity of renormalization for light nuclei. (author)
Numerical renormalization group studies of the partially brogen SU(3) Kondo model
Energy Technology Data Exchange (ETDEWEB)
Fuh Chuo, Evaristus
2013-04-15
The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy {Delta}{sub 0}. When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T{sub K}
Numerical renormalization group studies of the partially brogen SU(3) Kondo model
International Nuclear Information System (INIS)
Fuh Chuo, Evaristus
2013-04-01
The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy Δ 0 . When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T K 0 )=k B ln 2 between the high-T value, S(T>>Δ 0 )=k B ln 3, and the 2CK ground state value, S(0)=k B ln √(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-Δ 0 plane. The Kondo temperature T K shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet. In a wide range of parameter values this stabilizes the single
Renormalization group flow of scalar models in gravity
International Nuclear Information System (INIS)
Guarnieri, Filippo
2014-01-01
In this Ph.D. thesis we study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Horava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the correlation functions. We then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non-perturbative Wilson's renormalization group. In particular we quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The question of the existence of a non-Gaussian fixed point in an infinite-dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω=0 in the local potential approximation. Finally, we investigate, using a perturbative RG scheme, the asymptotic freedom of the Horava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton's constant to a marginal coupling and explicitly preserves unitarity. In particular we evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom.
Non-renormalization theorems andN=2 supersymmetric backgrounds
International Nuclear Information System (INIS)
Butter, Daniel; Wit, Bernard de; Lodato, Ivano
2014-01-01
The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed
Studies in the renormalization-prescription dependence of perturbative calculations
International Nuclear Information System (INIS)
Celmaster, W.; Sivers, D.
1981-01-01
Now that the quantitative testing of perturbative quantum chromodynamics (QCD) has become a major experimental and theoretical effort, it is important to understand the renormalization-prescription dependence of perturbative calculations. We stress the phenomenological importance of finding a definition of the QCD expansion parameter which reduces the magnitude of high-order corrections. We give explicit arguments suggesting that a choice of coupling based on momentum-space subtraction can be phenomenologically useful. Examples from QCD and QED are used to illustrate these arguments, and we also discuss possibilities for refining them
On the renormalization group flow in two dimensional superconformal models
International Nuclear Information System (INIS)
Ahn, Changrim; Stanishkov, Marian
2014-01-01
We extend the results on the RG flow in the next to leading order to the case of the supersymmetric minimal models SM p for p≫1. We explain how to compute the NS and Ramond fields conformal blocks in the leading order in 1/p and follow the renormalization scheme proposed in [1]. As a result we obtained the anomalous dimensions of certain NS and Ramond fields. It turns out that the linear combination expressing the infrared limit of these fields in term of the IR theory SM p−2 is exactly the same as those of the nonsupersymmetric minimal theory
Renormalization group approach to Sudakov resummation in prompt photon production
International Nuclear Information System (INIS)
Bolzoni, Paolo; Forte, Stefano; Ridolfi, Giovanni
2005-01-01
We prove the all-order exponentiation of soft logarithmic corrections to prompt photon production in hadronic collisions, by generalizing an approach previously developed in the context of Drell-Yan production and deep-inelastic scattering. We show that all large logs in the soft limit can be expressed in terms of two dimensionful variables, and we use the renormalization group to resum them. The resummed results that we obtain are more general though less predictive than those proposed by other groups, in that they can accommodate for violations of Sudakov factorization
Renormalization and applications of baryon distribution amplitudes QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Renormalization-group analysis of the Kobayashi-Maskawa matrix
International Nuclear Information System (INIS)
Babu, K.S.
1987-01-01
The one-loop renormalization-group equations for the quark mixing (Kobayashi-Maskawa) matrix V are derived, independent of one's weak interaction basis, in the standard model as well as in its two Higgs and supersymmetric extensions, and their numerical solutions are presented. While the mixing angles vertical strokeV ub vertical stroke, vertical strokeV cb vertical stroke, vertical strokeV td vertical stroke and the phase-invariant measure of CP nonconservation J all vary slowly with momentum, in the standard model they are predicted to increase in clear contrast to the two Higgs and supersymmetric extensions where they decrease with momentum. (orig.)
Renormalization ambiguities and conformal anomaly in metric-scalar backgrounds
International Nuclear Information System (INIS)
Asorey, M.; Berredo-Peixoto, G. de; Shapiro, I. L.
2006-01-01
We analyze the problem of the existing ambiguities in the conformal anomaly in theories with an external scalar field in curved backgrounds. In particular, we consider the anomaly of a self-interacting massive scalar field theory and of a Yukawa model in the massless conformal limit. In all cases the ambiguities are related to finite renormalizations of local nonminimal terms in the effective action. We point out the generic nature of this phenomenon and provide a general method to identify the theories where such an ambiguity can arise
Renormalizing the kinetic energy operator in elementary quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Coutinho, F A B [Faculdade de Medicina, Universidade de Sao Paulo e LIM 01-HCFMUSP, 05405-000 Sao Paulo (Brazil); Amaku, M [Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, 05508-970 Sao Paulo (Brazil)], E-mail: coutinho@dim.fm.usp.br
2009-09-15
In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form {psi}(r) = u(r)/r, where u(0) {ne} 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
Exact renormalization group equation for the Lifshitz critical point
Bervillier, C.
2004-10-01
An exact renormalization equation (ERGE) accounting for an anisotropic scaling is derived. The critical and tricritical Lifshitz points are then studied at leading order of the derivative expansion which is shown to involve two differential equations. The resulting estimates of the Lifshitz critical exponents compare well with the O(ε) calculations. In the case of the Lifshitz tricritical point, it is shown that a marginally relevant coupling defies the perturbative approach since it actually makes the fixed point referred to in the previous perturbative calculations O(ε) finally unstable.
Invariant renormalization method for nonlinear realizations of dynamical symmetries
International Nuclear Information System (INIS)
Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.
1977-01-01
The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported
Renormalization and applications of baryon distribution amplitudes in QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N * distribution amplitudes. (orig.)
Potts ferromagnet correlation length in hypercubic lattices: Renormalization - group approach
International Nuclear Information System (INIS)
Curado, E.M.F.; Hauser, P.R.
1984-01-01
Through a real space renormalization group approach, the q-state Potts ferromagnet correlation length on hierarchical lattices is calculated. These hierarchical lattices are build in order to simulate hypercubic lattices. The high-and-low temperature correlation length asymptotic behaviours tend (in the Ising case) to the Bravais lattice correlation length ones when the size of the hierarchical lattice cells tends to infinity. It is conjectured that the asymptotic behaviours several values of q and d (dimensionality) so obtained are correct. Numerical results are obtained for the full temperature range of the correlation length. (Author) [pt
Renormalization group equations in the stochastic quantization scheme
International Nuclear Information System (INIS)
Pugnetti, S.
1987-01-01
We show that there exists a remarkable link between the stochastic quantization and the theory of critical phenomena and dynamical statistical systems. In the stochastic quantization of a field theory, the stochastic Green functions coverge to the quantum ones when the frictious time goes to infinity. We therefore use the typical techniques of the Renormalization Group equations developed in the framework of critical phenomena to discuss some features of the convergence of the stochastic theory. We are also able, in this way, to compute some dynamical critical exponents and give new numerical valuations for them. (orig.)
Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence
Rubinstein, Robert
1994-01-01
Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.
Renormalizing the kinetic energy operator in elementary quantum mechanics
International Nuclear Information System (INIS)
Coutinho, F A B; Amaku, M
2009-01-01
In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form ψ(r) = u(r)/r, where u(0) ≠ 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.
Entanglement renormalization, quantum error correction, and bulk causality
Energy Technology Data Exchange (ETDEWEB)
Kim, Isaac H. [IBM T.J. Watson Research Center,1101 Kitchawan Rd., Yorktown Heights, NY (United States); Kastoryano, Michael J. [NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen (Denmark)
2017-04-07
Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progressively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.
Renormalized thermodynamic entropy of black holes in higher dimensions
International Nuclear Information System (INIS)
Kim, S.P.; Kim, S.K.; Soh, K.; Yee, J.H.
1997-01-01
We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstroem black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon. copyright 1997 The American Physical Society
Tensor renormalization group with randomized singular value decomposition
Morita, Satoshi; Igarashi, Ryo; Zhao, Hui-Hai; Kawashima, Naoki
2018-03-01
An algorithm of the tensor renormalization group is proposed based on a randomized algorithm for singular value decomposition. Our algorithm is applicable to a broad range of two-dimensional classical models. In the case of a square lattice, its computational complexity and memory usage are proportional to the fifth and the third power of the bond dimension, respectively, whereas those of the conventional implementation are of the sixth and the fourth power. The oversampling parameter larger than the bond dimension is sufficient to reproduce the same result as full singular value decomposition even at the critical point of the two-dimensional Ising model.
International Nuclear Information System (INIS)
Rodrigues, Davi C.; Oliveira, Paulo L.C. de; Fabris, Julio C.; Shapiro, Ilya L.
2011-01-01
Full text: The running of coupling constants is a well known phenomenon within Quantum Field Theory. It is also known that the renormalization group method can be extended to quantum field theory on curved space time. Nonetheless, although we know that the beta function of QED go to zero in the infrared limit fast enough to lead to constant charge at the classical level (in conformity with both the Appelquist-Carazzone theorem and experimental data), no analogous proof exists for General Relativity. Some authors have proposed that the infrared beta function of General Relativity is not trivial, and as such certain small running of the gravitational coupling might take place at astrophysical scales, leading in particular to changes on the role of dark matter in galaxies. We review and extend our contribution to infrared Renormalization Group (RG) effects to General Relativity in the context of galaxies, an approach we call RGGR. We extend our previous results by analyzing a larger sample of galaxies, now also including elliptical and dwarf spheroidal galaxies, besides disk galaxies (both LSB and HSB). We compare our RGGR results to both standard dark matter profiles (NFW, Isothermal, Burkert) and alternative models of gravity (MOND, MSTG), showing that the RGGR results are similar in quality to the best dark matter profiles (the cored ones, e.g., Isothermal and Burkert), while displaying a better fitting to the data than NFW, MOND or MSTG. To the latter, we evaluated both the shape of the rotation curve and the expected stellar mass-to-light ratios. Dwarf spheroidal (dSph) galaxies are small galaxies believed to be dominated by dark matter, with the highest fraction do dark matter per baryonic matter. These galaxies provide a strong test to any theory that mimics either all or part of the dark matter behavior. In particular, this is the only type of galaxy that MOND seems incapable of fitting the data. (author)
Concomitant overdosing of other drugs in patients with paracetamol poisoning
DEFF Research Database (Denmark)
Schmidt, Lars E; Dalhoff, Kim
2002-01-01
AIMS: Paracetamol is frequently involved in intended self-poisoning, and concomitant overdosing of other drugs is commonly reported. The purpose of the study was to investigate further concomitant drug overdose in patients with paracetamol poisoning and to evaluate its effects on the outcome...... of the paracetamol intoxication. METHODS: Six hundred and seventy-one consecutive patients admitted with paracetamol poisoning were studied and concomitant drug intake was recorded. The relative risk of hepatic encephalopathy, death or liver transplantation, hepatic dysfunction, liver cell damage, and renal...... favourable outcome was observed in patients with concomitant NSAID overdose. CONCLUSIONS: Concomitant overdosing of benzodiazepines or analgesics is frequent in patients admitted with paracetamol poisoning. Concomitant benzodiazepine or acetylsalicylic acid overdose was associated with more severe toxicity...
Quantum Transport in Strongly Correlated Systems
DEFF Research Database (Denmark)
Bohr, Dan
2007-01-01
the density matrix renormalization group (DMRG) method. We present two DMRG setups for calculating the linear conductance of strongly correlated nanostructures in the infinitesimal source-drain voltage regime. The first setup describes the leads by modified real-space tight-binding chains, whereas the second....... Thus both coherence and correlation effects are important in this model, and the methods applied should be able to handle both these effects rigorously. We present the DMRG setup for this model and benchmark against existing Greens function results for the model. Then we present initial DMRG results...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using...
Concomitant Suppurative Parotitis and Condylar Osteomyelitis.
Vorrasi, John; Zinberg, Geoffrey
2017-03-01
Parotitis is a common occurrence in the immunocompromised, dehydrated, and malnourished patient as a result of dysfunctional ductal and parotid cells. Inflammation can be acute or chronic based on clinical history, and it can be suppurative based on the presence of micro or macro abscess formation within the substance of the gland. This report presents a case of concomitant condylar osteomyelitis and chronic suppurative parotitis in the setting of previous methicillin-susceptible Staphylococcus aureus foot infection. Ultimately, resection of osteomyelitis, drainage of parotid infection, and intravenous antibiotic therapy led to full resolution of the infection and symptoms. The final pathology of osteomyelitis of the temporomandibular joint and methicillin-resistant S aureus infection is an unusual consequence of chronic parotitis. The patient was restored with a total joint replacement approximately 3 months after resection with no recurrence of infection after 24 months. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Concomitant urethral triplication, bladder, and colon duplication.
Tourchi, Ali; Kajbafzadeh, Abdol-Mohammad; Khakpour, Mahshid; Mohammadi Nejad, Payam; Mousavian, Amir-Abbas; Kalantary, Mahdi
2012-02-01
The concomitant presence of urethral triplication and caudal duplication is extremely rare with no previous reported cases. We report a case of urethral triplication associated with bladder, sigmoid, and rectum duplication. The patient was initially referred with a history of fecaluria and recurrent urinary tract infection. Physical examination revealed 2 meatal opening on the glans penis. Further investigation revealed three distinct urinary streams, two terminating on the glans penis, and one in the rectum in voiding cystourethrography and retrograde urethrography. Computed tomography demonstrated the bladder divided into two compartments by a complete sagittal septum. The patient was managed by the excision of the rectal ending urethra and removal of the bladder sagittal septum during which, two sigmoidal and rectal segments (the right one filled with fecal) were revealed. The right sigmoid and rectum was resected. The two ventral urethras were kept intact. The postoperative course was uneventful. At his 4 month readmission for colostomy closure, the patient reported good urethral voiding with no complication and recurrence of urinary tract infection and the colostomy was closed with no major complication.
Communication: Random phase approximation renormalized many-body perturbation theory
International Nuclear Information System (INIS)
Bates, Jefferson E.; Furche, Filipp
2013-01-01
We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations
Source Localization by Entropic Inference and Backward Renormalization Group Priors
Directory of Open Access Journals (Sweden)
Nestor Caticha
2015-04-01
Full Text Available A systematic method of transferring information from coarser to finer resolution based on renormalization group (RG transformations is introduced. It permits building informative priors in finer scales from posteriors in coarser scales since, under some conditions, RG transformations in the space of hyperparameters can be inverted. These priors are updated using renormalized data into posteriors by Maximum Entropy. The resulting inference method, backward RG (BRG priors, is tested by doing simulations of a functional magnetic resonance imaging (fMRI experiment. Its results are compared with a Bayesian approach working in the finest available resolution. Using BRG priors sources can be partially identified even when signal to noise ratio levels are up to ~ -25dB improving vastly on the single step Bayesian approach. For low levels of noise the BRG prior is not an improvement over the single scale Bayesian method. Analysis of the histograms of hyperparameters can show how to distinguish if the method is failing, due to very high levels of noise, or if the identification of the sources is, at least partially possible.
Dynamical renormalization group resummation of finite temperature infrared divergences
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de; Boyanovsky, D.; Simionato, M.; Holman, R.; Simionato, M.
1999-01-01
We introduce the method of dynamical renormalization group to study relaxation and damping out of equilibrium directly in real time and apply it to the study of infrared divergences in scalar QED. This method allows a consistent resummation of infrared effects associated with the exchange of quasistatic transverse photons and leads to anomalous logarithmic relaxation of the form e -αampersandhthinsp;Tampersandhthinsp;tampersandhthinsp;ln[t/t 0 ] for hard momentum charged excitations. This is in contrast with the usual quasiparticle interpretation of charged collective excitations at finite temperature in the sense of exponential relaxation of a narrow width resonance for which the width is the imaginary part of the self-energy on shell. In the case of narrow resonances away from thresholds, this approach leads to the usual exponential relaxation. The hard thermal loop resummation program is incorporated consistently into the dynamical renormalization group yielding a picture of relaxation and damping phenomena in a plasma in real time that transcends the conceptual limitations of the quasiparticle picture and other types of resummation schemes. copyright 1999 The American Physical Society
Renormalization group flow of entanglement entropy on spheres
Energy Technology Data Exchange (ETDEWEB)
Ben-Ami, Omer; Carmi, Dean [Raymond and Beverly Sackler Faculty of Exact Sciences School of Physics and Astronomy,Tel-Aviv University, Ramat-Aviv 69978 (Israel); Smolkin, Michael [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94720 (United States)
2015-08-12
We explore entanglement entropy of a cap-like region for a generic quantum field theory residing in the Bunch-Davies vacuum on de Sitter space. Entanglement entropy in our setup is identical with the thermal entropy in the static patch of de Sitter, and we derive a simple relation between the vacuum expectation value of the energy-momentum tensor trace and the RG flow of entanglement entropy. In particular, renormalization of the bare couplings and logarithmic divergence of the entanglement entropy are interrelated in our setup. We confirm our findings by recovering known universal contributions for a free field theory deformed by a mass operator as well as obtain correct universal behaviour at the fixed points. Simple examples of entanglement entropy flows are elaborated in d=2,3,4. In three dimensions we find that while the renormalized entanglement entropy is stationary at the fixed points, it is not monotonic. We provide a computational evidence that the universal ‘area law’ for a conformally coupled scalar is different from the known result in the literature, and argue that this difference survives in the limit of flat space. Finally, we carry out the spectral decomposition of entanglement entropy flow and discuss its application to the F-theorem.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-01-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations
The renormalized action principle in quantum field theory
International Nuclear Information System (INIS)
Balasin, H.
1990-03-01
The renormalized action principle holds a central position in field theory, since it offers a variety of applications. The main concern of this work is the proof of the action principle within the so-called BPHZ-scheme of renormalization. Following the classical proof given by Lam and Lowenstein, some loopholes are detected and closed. The second part of the work deals with the application of the action principle to pure Yang-Mills-theories within the axial gauge (n 2 ≠ 0). With the help of the action principle we investigate the decoupling of the Faddeev-Popov-ghost-fields from the gauge field. The consistency of this procedure, suggested by three-graph approximation, is proven to survive quantization. Finally we deal with the breaking of Lorentz-symmetry caused by the presence of the gauge-direction n. Using BRST-like techniques and the semi-simplicity of the Lorentz-group, it is shown that no new breakings arise from quantization. Again the main step of the proof is provided by the action principle. (Author, shortened by G.Q.)
Effective field renormalization group approach for Ising lattice spin systems
Fittipaldi, Ivon P.
1994-03-01
A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.
Renormalized sum rules for structure functions of heavy meson decays
International Nuclear Information System (INIS)
Grozin, A.G.; Korchemsky, G.P.
1996-01-01
We consider the properties of the structure functions of inclusive heavy meson decays B→X c and treat the c quark mass as a free parameter. We show that in two extreme cases of heavy and light c quarks the structure functions of heavy-heavy and heavy-light transitions are given by a Fourier transform of the matrix elements of Wilson lines containing a timelike and a lightlike segment, correspondingly. Using the renormalization properties of Wilson lines we find the dependence of the structure functions on the factorization scale, the structure function of the heavy-heavy transition is renormalized multiplicatively, while that of the heavy-light transition obeys the GLAP-type evolution equation. We propose a generalization of the sum rules for the moments of the structure functions (Bjorken, Voloshin, and the open-quote open-quote third close-quote close-quote sum rules) with a soft exponential factorization cutoff, which correctly incorporates both perturbative and nonperturbative effects. We analyze nonperturbative corrections by first considering infrared renormalon contributions to the Wilson lines. Uncertainties induced by the leading renormalon pole at u=1/2 are exactly canceled by a similar uncertainty in the heavy quark pole mass. The leading nonperturbative corrections associated with the next renormalon at u=1 are parametrized by the matrix element μ π 2 which is proportional to the heavy quark kinetic energy. copyright 1996 The American Physical Society
Dynamical renormalization group approach to relaxation in quantum field theory
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de
2003-01-01
The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths
A non-renormalization theorem for conformal anomalies
International Nuclear Information System (INIS)
Petkou, Anastasios; Skenderis, Kostas
1999-01-01
We provide a non-renormalization theorem for the coefficients of the conformal anomaly associated with operators with vanishing anomalous dimensions. Such operators include conserved currents and chiral operators in superconformal field theories. We illustrate the theorem by computing the conformal anomaly of 2-point functions both by a computation in the conformal field theory and via the AdS/CFT correspondence. Our results imply that 2- and 3-point functions of chiral primary operators in N=4 SU(N) SYM will not renormalize provided that a 'generalized Adler-Bardeen theorem' holds. We further show that recent arguments connecting the non-renormalizability of the above-mentioned correlation functions to a bonus U(1) Y symmetry are incomplete due to possible U(1) Y violating contact terms. The tree level contribution to the contact terms may be set to zero by considering appropriately normalized operators. Non-renormalizability of the above-mentioned correlation functions, however, will follow only if these contact terms saturate by free fields
Phase structure of NJL model with weak renormalization group
Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi
2018-06-01
We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
Energy Technology Data Exchange (ETDEWEB)
Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)
1975-01-01
With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.
Renormalization group improved Yennie-Frautschi-Suura theory for Z0 physics
International Nuclear Information System (INIS)
Ward, B.F.L.
1987-06-01
Described is a recently developed renormalization group improved version of the program of Yennie, Frautschi and Suura for the exponentiation of infrared divergences in Abelian gauge theories. Particular attention is paid to the relevance of this renormalization group improved exponentiation to Z 0 physics at the SLC and LEP
Renormalization Group Invariance of the Pole Mass in the Multi-Higgs System
Kim, Chungku
2018-06-01
We have investigated the renormalization group running of the pole mass in the multi-Higgs theory in two different types of gauge fixing conditions. The pole mass, when expressed in terms of the Lagrangian parameters, turns out to be invariant under the renormalization group with the beta and gamma functions of the symmetric phase.
Application of 't Hooft's renormalization scheme to two-loop calculations 230
International Nuclear Information System (INIS)
Vladimirov, A.A.
1975-01-01
The advantages of the Hooft scheme for asymptotic calculations in the renormalization group have been demonstrated. Two-loop calculations have been carried out in three renormalized models: in scalar electrodynamics, in a pseudoscalar Yukawa theory and in the Weiss-Zumino supersymmetrical model [ru
International Nuclear Information System (INIS)
Monthus, Cecile; Garel, Thomas
2008-01-01
We show that an appropriate description of the non-equilibrium dynamics of disordered systems is obtained through a strong disorder renormalization procedure in configuration space that we define for any master equation with transitions rates W(C→C') between configurations. The idea is to eliminate iteratively the configuration with the highest exit rate W out (C)+Σ C' W(C→C') to obtain renormalized transition rates between the remaining configurations. The multiplicative structure of the new generated transition rates suggests that for a very broad class of disordered systems, the distribution of renormalized exit barriers defined as B out (C)≡-ln W out (C) will become broader and broader upon iteration, so that the strong disorder renormalization procedure should become asymptotically exact at large time scales. We have checked numerically this scenario for the non-equilibrium dynamics of a directed polymer in a two-dimensional random medium
Stability of Dirac Liquids with Strong Coulomb Interaction.
Tupitsyn, Igor S; Prokof'ev, Nikolay V
2017-01-13
We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant. We unambiguously show that with increasing the system size L (up to ln(L)∼40), the coupling constant always flows towards zero; i.e., the two-dimensional Dirac liquid is an asymptotically free T=0 state with divergent Fermi velocity.
Two-loop renormalization in the standard model, part I. Prolegomena
Energy Technology Data Exchange (ETDEWEB)
Actis, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Ferroglia, A. [Albert-Ludwigs-Univ., Freiburg (Germany). Fakultat fur Phys.]|[Zuerich Univ. (Switzerland). Inst. fuer Theoretische Physik; Passera, M. [Padua Univ. (Italy). Dipt. di Fisica]|[INFN, Sezione di Padova (Italy); Passarino, G. [Torino Univ. (Italy). Dipt. di Fisica Teorica]|[INFN, Sezione di Torino (Italy)
2006-12-15
In this paper the building blocks for the two-loop renormalization of the Standard Model are introduced with a comprehensive discussion of the special vertices induced in the Lagrangian by a particular diagonalization of the neutral sector and by two alternative treatments of the Higgs tadpoles. Dyson resummed propagators for the gauge bosons are derived, and two-loop Ward-Slavnov-Taylor identities are discussed. In part II, the complete set of counterterms needed for the two-loop renormalization will be derived. In part III, a renormalization scheme will be introduced, connecting the renormalized quantities to an input parameter set of (pseudo-)experimental data, critically discussing renormalization of a gauge theory with unstable particles. (orig.)
Renormalization in self-consistent approximation schemes at finite temperature I: theory
International Nuclear Information System (INIS)
Hees, H. van; Knoll, J.
2001-07-01
Within finite temperature field theory, we show that truncated non-perturbative self-consistent Dyson resummation schemes can be renormalized with local counter-terms defined at the vacuum level. The requirements are that the underlying theory is renormalizable and that the self-consistent scheme follows Baym's Φ-derivable concept. The scheme generates both, the renormalized self-consistent equations of motion and the closed equations for the infinite set of counter terms. At the same time the corresponding 2PI-generating functional and the thermodynamic potential can be renormalized, in consistency with the equations of motion. This guarantees the standard Φ-derivable properties like thermodynamic consistency and exact conservation laws also for the renormalized approximation scheme to hold. The proof uses the techniques of BPHZ-renormalization to cope with the explicit and the hidden overlapping vacuum divergences. (orig.)
Current algebra method for form factors and strong decays with hard pions and kaons
International Nuclear Information System (INIS)
Srivastava, P.P.
1969-01-01
The F K /F Π ratio between the kaon and pion decay couplings in one lepton pair, sum rules for Weinberg spectral functions, form factor renormalization of the K l3 decay because of the SU(3) symmetry violation and the calculations of strong decays of the K* and K A strange resonances are presented and discussed. (L.C.) [pt
Renormalization schemes for the Two-Higgs-Doublet Model and applications to h → WW/ZZ → 4 fermions
DEFF Research Database (Denmark)
Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi
2017-01-01
We perform the renormalization of different types of Two-Higgs-Doublet Models for the calculation of observables at next-to-leading order. In detail, we suggest four different renormalization schemes based on on-shell renormalization conditions as far as possible and on M S ¯ prescriptions for th...
Concomitant overdosing of other drugs in patients with paracetamol poisoning
DEFF Research Database (Denmark)
Schmidt, Lars E; Dalhoff, Kim
2002-01-01
of the paracetamol intoxication. METHODS: Six hundred and seventy-one consecutive patients admitted with paracetamol poisoning were studied and concomitant drug intake was recorded. The relative risk of hepatic encephalopathy, death or liver transplantation, hepatic dysfunction, liver cell damage, and renal...... was a protective factor in the development of hepatic encephalopathy (OR 0.26; CI 0.07, 0.96). Concomitant acetylsalicylic acid overdose was a risk factor in the development of hepatic encephalopathy (OR 4.87; CI 1.52, 15.7) and death or liver transplantation (OR 6.04; CI 1.69, 21.6). A tendency towards a more...... favourable outcome was observed in patients with concomitant NSAID overdose. CONCLUSIONS: Concomitant overdosing of benzodiazepines or analgesics is frequent in patients admitted with paracetamol poisoning. Concomitant benzodiazepine or acetylsalicylic acid overdose was associated with more severe toxicity...
Superconformal gravity in Hamiltonian form: another approach to the renormalization of gravitation
International Nuclear Information System (INIS)
Kaku, M.
1983-01-01
We reexpress superconformal gravity in Hamiltonian form, explicitly displaying all 24 generators of the group as Dirac constraints on the Hilbert space. From this, we can establish a firm foundation for the canonical quantization of superconformal gravity. The purpose of writing down the Hamiltonian form of the theory is to reexamine the question of renormalization and unitarity. Usually, we start with unitary theories of gravity, such as the Einstein-Hilbert action or supergravity, both of which are probably not renormalizable. In this series of papers, we take the opposite approach and start with a theory which is renormalizable but has problems with unitarity. Conformal and superconformal gravity are both plagued with dipole ghosts when we use perturbation theory to quantize the theories. It is difficult to interpret the results of perturbation theory because the asymptotic states have zero norm and the potential between particles grows linearly with the separation distance. The purpose of writing the Hamiltonian form of these theories is to approach the question of unitarity from a different point of view. For example, a strong-coupling approach to these theories may yield a totally different perturbation expansion. We speculate that canonically quantizing the theory by power expanding in the strong-coupling regime may yield a different set of asymptotic states, somewhat similar to the situation in gauge theories. In this series of papers, we wish to reopen the question of the unitarity of conformal theories. We conjecture that ghosts are ''confined.''
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Barriga, Jaime; Varykhalov, Andrei; Fink, Joerg; Rader, Oliver; Duerr, Hermann; Eberhardt, Wolfgang [Bessy GmbH, Berlin (Germany)
2008-07-01
Spin dependent low-energy electronic excitations in 3d ferromagnets are of special interest due to the need of a microscopic understanding of the electronic structure of solids. Low-energy electrons (or holes) become dressed by a cloud of excitations resulting in quasiparticles of a finite lifetime and a different effective mass. These type of excitations have been studied by many theoretical methods, and it has been found that because of many body effects no sharp quasiparticle peaks exist for binding energies larger than 2 eV. Interestingly, it has been shown that strong correlation effects could particularly affect majority spin electrons, leading to a pronounced damping of quasiparticles at binding energies around 2 eV and above. In order to give an experimental corroboration to these findings, we have performed a systematic study of the spin-dependent quasiparticle lifetime and band structure of ferromagnetic 3d transition metal surfaces by means of spin and angle-resolved photoemission spectroscopy. On hcp Co(0001), fcc Ni(111) and bcc Fe(110), we have found a more pronounced renormalization of the majority spin quasiparticle spectral weight going from Ni to Co which are both strong ferromagnets. For Fe, a weak ferromagnet, such a process becomes more prominent in the minority channel.
Topological field theory: zero-modes and renormalization
International Nuclear Information System (INIS)
Ouvry, S.; Thompson, G.
1989-09-01
We address the issue of the non-triviality of the observables in various Topological Field Theories by means of the explicit introduction of the zero-modes into the BRST algebra. Supersymmetric quantum mechanics and Topological Yang-Mills theory are dealt with in detail. It is shown that due to the presence of fermionic zero-modes the BRST algebra may be dynamically broken leading to non trivial observables albeit the local cohomology being trivial. However the metric and coupling constant independence of the observables are still valid. A renormalization procedure is given that correctly incorporates the zero-modes. Particular attention is given to the conventional gauge fixing in Topological Yang-Mills theories, with emphasis on the geometrical character of the fields and their role in the non-triviality of the observables
Perturbative renormalization and effective Langrangians in Φ44
International Nuclear Information System (INIS)
Keller, G.; Salmhofer, M.; Kopper, C.
1992-01-01
Polchinski's proof of the perturbative renormalizability of massive Euclidean Φ 4 4 is considerably simplified, in some respects clarified and extended to general renormalization conditions and Green's functions with arbitrary external momenta. Φ 3 4 and Φ 2 4 are also dealt with. Moreover we show that adding e.g. Φ≥ 5 type interactions to the bare Lagrangian, with coupling constants vanishing at least as some inverse power of the UV-cutoff, does not alter the Green's functions in the limit where the UV-cutoff is removed. Establishing the validity of the action principle in this formalism has not yet been possible, but some partial results are obtained. (orig.)
The renormalized theory of beam-beam interaction
International Nuclear Information System (INIS)
Chin, Yong Ho.
1988-06-01
A new approach to calculate analytically the particle distribution in the presence of beam-beam interaction and synchrotron radiation effects for an electron-positron colliding beam storage ring is presented. The method is based on correct calculation of the Green's function which includes the full effect of the beam-beam force on the distortion of particle orbits, borrowing the renormalization technique of quantum field therory. By this way, the theory is applicable to any level of beam-beam interaction, no matter whether chaos ensues in phase space or not. This paper is devoted mostly to verificaiton of the theory by comparison with the results of computer simulations. Fairly good agreements are obtained. 5 refs., 3 figs
Numerical renormalization group method for entanglement negativity at finite temperature
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
Momentum-subtraction renormalization techniques in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-10-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.
Momentum-subtraction renormalization techniques in curved space-time
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should
Gauge mediation scenario with hidden sector renormalization in MSSM
International Nuclear Information System (INIS)
Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika
2010-01-01
We study the hidden sector effects on the mass renormalization of a simplest gauge-mediated supersymmetry breaking scenario. We point out that possible hidden sector contributions render the soft scalar masses smaller, resulting in drastically different sparticle mass spectrum at low energy. In particular, in the 5+5 minimal gauge-mediated supersymmetry breaking with high messenger scale (that is favored by the gravitino cold dark matter scenario), we show that a stau can be the next lightest superparticle for moderate values of hidden sector self-coupling. This provides a very simple theoretical model of long-lived charged next lightest superparticles, which imply distinctive signals in ongoing and upcoming collider experiments.
Gauge mediation scenario with hidden sector renormalization in MSSM
Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika
2010-02-01
We study the hidden sector effects on the mass renormalization of a simplest gauge-mediated supersymmetry breaking scenario. We point out that possible hidden sector contributions render the soft scalar masses smaller, resulting in drastically different sparticle mass spectrum at low energy. In particular, in the 5+5¯ minimal gauge-mediated supersymmetry breaking with high messenger scale (that is favored by the gravitino cold dark matter scenario), we show that a stau can be the next lightest superparticle for moderate values of hidden sector self-coupling. This provides a very simple theoretical model of long-lived charged next lightest superparticles, which imply distinctive signals in ongoing and upcoming collider experiments.
High Precision Renormalization Group Study of the Roughening Transition
Hasenbusch, M; Pinn, K
1994-01-01
We confirm the Kosterlitz-Thouless scenario of the roughening transition for three different Solid-On-Solid models: the Discrete Gaussian model, the Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with standard (cosine) action. The method is based on a matching of the renormalization group flow of the candidate models with the flow of a bona fide KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are performed using efficient cluster algorithms. We obtain high precision estimates for the critical couplings and other non-universal quantities. For the XY model with cosine action our critical coupling estimate is $\\beta_R^{XY}=1.1197(5)$. For the roughening coupling of the Discrete Gaussian and the Absolute-Value-Solid-On-Solid model we find $K_R^{DG}=0.6645(6)$ and $K_R^{ASOS}=0.8061(3)$, respectively.
Improved quasi parton distribution through Wilson line renormalization
Energy Technology Data Exchange (ETDEWEB)
Chen, Jiunn-Wei [Department of Physics, Center for Theoretical Sciences, and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, 106, Taiwan (China); Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ji, Xiangdong [INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 (China); Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Zhang, Jian-Hui, E-mail: jianhui.zhang@physik.uni-regensburg.de [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)
2017-02-15
Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
Improved quasi parton distribution through Wilson line renormalization
Directory of Open Access Journals (Sweden)
Jiunn-Wei Chen
2017-02-01
Full Text Available Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.
A geometric renormalization group in discrete quantum space-time
International Nuclear Information System (INIS)
Requardt, Manfred
2003-01-01
We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality
Mutual information, neural networks and the renormalization group
Koch-Janusz, Maciej; Ringel, Zohar
2018-06-01
Physical systems differing in their microscopic details often display strikingly similar behaviour when probed at macroscopic scales. Those universal properties, largely determining their physical characteristics, are revealed by the powerful renormalization group (RG) procedure, which systematically retains `slow' degrees of freedom and integrates out the rest. However, the important degrees of freedom may be difficult to identify. Here we demonstrate a machine-learning algorithm capable of identifying the relevant degrees of freedom and executing RG steps iteratively without any prior knowledge about the system. We introduce an artificial neural network based on a model-independent, information-theoretic characterization of a real-space RG procedure, which performs this task. We apply the algorithm to classical statistical physics problems in one and two dimensions. We demonstrate RG flow and extract the Ising critical exponent. Our results demonstrate that machine-learning techniques can extract abstract physical concepts and consequently become an integral part of theory- and model-building.
Renormalization group theory for percolation in time-varying networks.
Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M
2018-05-22
Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.
Rigorous Free-Fermion Entanglement Renormalization from Wavelet Theory
Directory of Open Access Journals (Sweden)
Jutho Haegeman
2018-01-01
Full Text Available We construct entanglement renormalization schemes that provably approximate the ground states of noninteracting-fermion nearest-neighbor hopping Hamiltonians on the one-dimensional discrete line and the two-dimensional square lattice. These schemes give hierarchical quantum circuits that build up the states from unentangled degrees of freedom. The circuits are based on pairs of discrete wavelet transforms, which are approximately related by a “half-shift”: translation by half a unit cell. The presence of the Fermi surface in the two-dimensional model requires a special kind of circuit architecture to properly capture the entanglement in the ground state. We show how the error in the approximation can be controlled without ever performing a variational optimization.
Irreversibility of world-sheet renormalization group flow
International Nuclear Information System (INIS)
Oliynyk, T.; Suneeta, V.; Woolgar, E.
2005-01-01
We demonstrate the irreversibility of a wide class of world-sheet renormalization group (RG) flows to first order in α ' in string theory. Our techniques draw on the mathematics of Ricci flows, adapted to asymptotically flat target manifolds. In the case of somewhere-negative scalar curvature (of the target space), we give a proof by constructing an entropy that increases monotonically along the flow, based on Perelman's Ricci flow entropy. One consequence is the absence of periodic solutions, and we are able to give a second, direct proof of this. If the scalar curvature is everywhere positive, we instead construct a regularized volume to provide an entropy for the flow. Our results are, in a sense, the analogue of Zamolodchikov's c-theorem for world-sheet RG flows on noncompact spacetimes (though our entropy is not the Zamolodchikov C-function)
Functional renormalization group study of the Anderson–Holstein model
International Nuclear Information System (INIS)
Laakso, M A; Kennes, D M; Jakobs, S G; Meden, V
2014-01-01
We present a comprehensive study of the spectral and transport properties in the Anderson–Holstein model both in and out of equilibrium using the functional renormalization group (fRG). We show how the previously established machinery of Matsubara and Keldysh fRG can be extended to include the local phonon mode. Based on the analysis of spectral properties in equilibrium we identify different regimes depending on the strength of the electron–phonon interaction and the frequency of the phonon mode. We supplement these considerations with analytical results from the Kondo model. We also calculate the nonlinear differential conductance through the Anderson–Holstein quantum dot and find clear signatures of the presence of the phonon mode. (paper)
Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2010-01-01
It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of algebraic renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.
Fermi-edge singularity and the functional renormalization group
Kugler, Fabian B.; von Delft, Jan
2018-05-01
We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.
International Nuclear Information System (INIS)
Maris, Th.A.J.
1976-01-01
The renormalization group theory has a natural place in a general framework of symmetries in quantum field theories. Seen in this way, a 'renormalization group' is a one-parametric subset of the direct product of dilatation and renormalization groups. This subset of spontaneously broken symmetry transformations connects the inequivalent solutions generated by a parameter-dependent regularization procedure, as occurs in renormalized perturbation theory. By considering the global, rather than the infinitesimal, transformations, an expression for general vertices is directly obtained, which is the formal solution of exact renormalization group equations [pt
International Nuclear Information System (INIS)
Jiang Zaifu; Jingchu Univ. of Technology, Jingmen; Fang Zhenyun; Chen Wensuo; Xu Jin; Yi Junmei
2008-01-01
In the Lorentz coupling model of strong interaction between neutral meson π 0 and N-N-bar, we have strictly analytic calculated the scattering differential cross-section of p-(p-bar) about the π 0 renormalized chained propagator and obtained accurate theoretical outcome. Moreover, after comparing with the differential cross- section of π 0 tree propagator, we have obtained related radiation correction outcome. All these, we have done, can be reference for further researching p-(p-bar) elastic collision at high, middle or low ergo region and description Lorentz invariant coupling model theory with strong interaction. (authors)
Renormalization-scheme-invariant QCD and QED: The method of effective charges
International Nuclear Information System (INIS)
Grunberg, G.
1984-01-01
We review, extend, and give some further applications of a method recently suggested to solve the renormalization-scheme-dependence problem in perturbative field theories. The use of a coupling constant as a universal expansion parameter is abandoned. Instead, to each physical quantity depending on a single scale variable is associated an effective charge, whose corresponding Stueckelberg--Peterman--Gell-Mann--Low function is identified as the proper object on which perturbation theory applies. Integration of the corresponding renormalization-group equations yields renormalization-scheme-invariant results free of any ambiguity related to the definition of the kinematical variable, or that of the scale parameter Λ, even though the theory is not solved to all orders. As a by-product, a renormalization-group improvement of the usual series is achieved. Extension of these methods to operators leads to the introduction of renormalization-group-invariant Green's function and Wilson coefficients, directly related to effective charges. The case of nonzero fermion masses is discussed, both for fixed masses and running masses in mass-independent renormalization schemes. The importance of the scale-invariant mass m is emphasized. Applications are given to deep-inelastic phenomena, where the use of renormalization-group-invariant coefficient functions allows to perform the factorization without having to introduce a factorization scale. The Sudakov form factor of the electron in QED is discussed as an example of an extension of the method to problems involving several momentum scales
g-Boson renormalization effects in the interacting Boson model for nondegenerate orbits
Duval, P. D.; Pittel, S.; Barrett, B. R.; Druce, C. H.
1983-09-01
A nonperturbative model-space truncation procedure is utilized to include the effects of a single g boson on the parameters of the neutron-proton Interacting Boson Model in the realistic case of nondegenerate single-particle orbits. Particular emphasis is given to the single-boson energies ɛdϱ (ϱ = v, π), with numerical results presented for the even isotopes of Hg. Only part of the observed renormalization is obtained. Possible sources of further renormalizations to ɛdϱ are discussed. Results are also presented for the renormalizations of the boson quadrupole parameters κ and χϱ.
The Kadanoff lower-bound variational renormalization group applied to an SU(2) lattice spin model
International Nuclear Information System (INIS)
Thorleifsson, G.; Damgaard, P.H.
1990-07-01
We apply the variational lower-bound Renormalization Group transformation of Kadanoff to an SU(2) lattice spin model in 2 and 3 dimensions. Even in the one-hypercube framework of this renormalization group transformation the present model is characterised by having an infinite basis of fundamental operators. We investigate whether the lower-bound variational renormalization group transformation yields results stable under truncations of this operator basis. Our results show that for this particular spin model this is not the case. (orig.)
Renormalization of the nonlinear O(3) model with θ-term
Energy Technology Data Exchange (ETDEWEB)
Flore, Raphael, E-mail: raphael.flore@uni-jena.de [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)
2013-05-11
The renormalization of the topological term in the two-dimensional nonlinear O(3) model is studied by means of the Functional Renormalization Group. By considering the topological charge as a limit of a more general operator, it is shown that a finite multiplicative renormalization occurs in the extreme infrared. In order to compute the effects of the zero modes, a specific representation of the Clifford algebra is developed which allows to reformulate the bosonic problem in terms of Dirac operators and to employ the index theorem.
Renormalization-group theory for the eddy viscosity in subgrid modeling
Zhou, YE; Vahala, George; Hossain, Murshed
1988-01-01
Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.
CONCOMITANT HELMINTHIC AND ENTERO-PROTOZOAL INFESTATION IN INDIAN PEAFOWL
Directory of Open Access Journals (Sweden)
B. Dutta
2013-06-01
Full Text Available Concomitant infestation of Ascaridia spp. along with Raillietina spp. and Emeria spp. has been identified in Indian Peafowl (Pavo cristatus of Ramnabagan Mini Zoo, Burdwan, West Bengal, India.
Contralateral Fracture of the Penis with Concomitant Urethral Injury ...
African Journals Online (AJOL)
ra
2009-03-16
Mar 16, 2009 ... 2, 2009. 103. 103-106. Case Report. Contralateral Fracture of the Penis with Concomitant. Urethral ... Examination revealed ecchymosis and swelling of the proximal shaft and ... of impotence due to infection and cavernosal.
Concomitant medication of psychoses in a lifetime perspective
Vares, Maria; Saetre, Peter; Strålin, Pontus; Levander, Sten; Lindström, Eva; Jönsson, Erik G
2011-01-01
Objective Patients treated with antipsychotic drugs often receive concomitant psychotropic compounds. Few studies address this issue from a lifetime perspective. Here, an analysis is presented of the prescription pattern of such concomitant medication from the first contact with psychiatry until the last written note in the case history documents, in patients with a diagnosis of psychotic illness. Methods A retrospective descriptive analysis of all case history data of 66 patients diagnosed w...
Concomitant Bacterial Meningitis in Infants With Urinary Tract Infection.
Thomson, Joanna; Cruz, Andrea T; Nigrovic, Lise E; Freedman, Stephen B; Garro, Aris C; Ishimine, Paul T; Kulik, Dina M; Uspal, Neil G; Grether-Jones, Kendra L; Miller, Aaron S; Schnadower, David; Shah, Samir S; Aronson, Paul L; Balamuth, Fran
2017-09-01
To determine age-stratified prevalence of concomitant bacterial meningitis in infants ≤60 days with a urinary tract infection, we performed a 23-center, retrospective study of 1737 infants with urinary tract infection. Concomitant bacterial meningitis was rare, but more common in infants 0-28 days of age [0.9%; 95% confidence interval (CI): 0.4%-1.9%) compared with infants 29-60 days of age (0.2%; 95% CI: 0%-0.8%).
Does concomitant anterior fundoplication promote dysphagia after laparoscopic Heller myotomy?
Tapper, Donovan; Morton, Connor; Kraemer, Emily; Villadolid, Desiree; Ross, Sharona B; Cowgill, Sarah M; Rosemurgy, Alexander S
2008-07-01
Concerns for gastroesophageal reflux after laparoscopic Heller myotomy for achalasia justify considerations of concomitant anterior fundoplication. This study was undertaken to determine if concomitant anterior fundoplication reduces symptoms of reflux after myotomy without promoting dysphagia. From 1992 to 2004, 182 patients underwent laparoscopic Heller myotomy without fundoplication. After a prospective randomized trial justified its concomitant application, anterior fundoplication was undertaken with laparoscopic Heller myotomy in 171 patients from 2004 to 2007. All patients have been prospectively followed. Pre and postoperatively, patients scored the frequency and severity of symptoms of achalasia (including dysphagia, choking, vomiting, regurgitation, chest pain, and heartburn) using a Likert Scale (0 = never/not bothersome to 10 = always/very bothersome). Before myotomy, symptoms of achalasia were frequent and severe for all patients. After myotomy, the frequency and severity of all symptoms of achalasia significantly decreased for all patients (P Heller myotomy alone, concomitant anterior fundoplication led to significantly less frequent and severe heartburn after myotomy (P Heller myotomy reduces the frequency and severity of symptoms of achalasia. Concomitant anterior fundoplication decreases the frequency and severity of heartburn and dysphagia after laparoscopic Heller myotomy. Concomitant anterior fundoplication promotes salutary relief in the frequency and severity of symptoms after myotomy and is warranted.
International Nuclear Information System (INIS)
Fano, G.; Ortolani, F.; Ziosi, L.
1997-10-01
The density matrix renormalization group (DMRG) method introduced by White for the study of strongly interacting electron systems is reviewed; the method is variational and considers a system of localized electrons as the union of two adjacent fragments A,B. A density matrix ρ is introduced, whose eigenvectors corresponding to the largest eigenvalues are the most significant, the most probable states of A in the presence of B; these states are retained, while states corresponding to small eigenvalues of ρ are neglected. It is conjectured that the decreasing behaviour of the eigenvalues is gaussian. The DMRG method is tested on the Pariser-Parr-Pople Hamiltonian of a cyclic polyene (CH) N up to N = 34. A Hilbert space of dimension 5. x 10 18 is explored. The ground state energy is 10 -3 eV within the full Cl value in the case N = 18. The DMRG method compares favourably also with coupled cluster approximations. The unrestricted Hartree-Fock solution (which presents spin density waves) is briefly reviewed, and a comparison is made with the DMRG energy values. Finally, the spin-spin and density-density correlation functions are computed; the results suggest that the antiferromagnetic order of the exact solution does not extend up to large distances but exists locally. No charge density waves are present. (author)
A renormalization group invariant line and an infrared attractive top-Higgs mass relation
International Nuclear Information System (INIS)
Schrempp, B.; Schrempp, F.
1992-10-01
The renormalization group equations (RGE's) of the Standard Model at one loop in terms of the gauge couplings g 1,2,3, the top Yukawa coupling g t and the scalar self coupling λ are reexamined. For g 1,2 = 0, the general solution of the RGE's is obtained analytically in terms of an interesting special solution for the ratio λ/g 2 t as function of the ratio g 2 t /g 2 3 which i) represents an RG invariant line which is strongly infrared attractive ii) interpolates all known quasi-fixed points and iii) is finite for large g 2 t /g 2 3 (ultraviolet limit). All essential features survive for g 1,2 ≠ 0. The invariant line translates into an infrared attractive top-Higgs mass relation, which e.g. associates to the top masses m t = 130/145/200 GeV the Higgs masses m H ≅ 68-90/103-115/207 GeV, respectively. (orig.)
International Nuclear Information System (INIS)
Song, Xue-ke; Wu, Tao; Xu, Shuai; He, Juan; Ye, Liu
2014-01-01
In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state
The Implementation of the Renormalized Complex MSSM in FeynArts and FormCalc
Fritzsche, T; Heinemeyer, S; Rzehak, H; Schappacher, C
2014-01-01
We describe the implementation of the renormalized complex MSSM (cMSSM) in the diagram generator FeynArts and the calculational tool FormCalc. This extension allows to perform UV-finite one-loop calculations of cMSSM processes almost fully automatically. The Feynman rules for the cMSSM with counterterms are available as a new model file for FeynArts. Also included are default definitions of the renormalization constants; this fixes the renormalization scheme. Beyond that all model parameters are generic, e.g. we do not impose any relations to restrict the number of input parameters. The model file has been tested extensively for several non-trivial decays and scattering reactions. Our renormalization scheme has been shown to give stable results over large parts of the cMSSM parameter space.
Comment on non-renormalization theorem in the four dimensional superstrings
International Nuclear Information System (INIS)
Soda, Jiro; Nakazawa, Naohito; Sakai, Kenji; Ojima, Shuichi.
1987-10-01
We discuss non-renormalization theorem in the context of the four dimensional superstrings. We explicitly demonstrate that the graviton 3-point one-loop amplitude does not vanish in contrast to the ten dimensional superstring theories. (author)
Introduction to the renormalization group study in relativistic quantum field theory
International Nuclear Information System (INIS)
Mignaco, J.A.; Roditi, I.
1985-01-01
An introduction to the renormalization group approach in relativistic quantum field theories is presented, beginning with a little historical about the subject. Further, this problem is discussed from the point of view of the perturbation theory. (L.C.) [pt
Two-and three-dimension Potts magnetism in the renormalization group approximation
International Nuclear Information System (INIS)
Silva, L.R. da.
1985-01-01
Through a real space Renormalization Group (RG) technique we discuss the criticality of various physical systems, calculate order parameters for geometrical problems and analyse convergence aspects of the RG theory. (author) [pt
How to resolve the factorization- and the renormalization-scheme ambiguities simultaneously
International Nuclear Information System (INIS)
Nakkagawa, H.; Niegawa, A.
1982-01-01
A combined investigation of both the factorization- and renormalization-scheme dependences of perturbative QCD calculations is reported. Applyong Stevenson's optimization method, we get a remarkable result, which forces us to exponentiate 'everything' with uncorrected subprocess cross sections. (orig.)
Nonperturbative renormalization group study of the stochastic Navier-Stokes equation.
Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo
2012-07-01
We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4-2ε of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's -5/3 law is, thus, recovered for ε = 2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the -5/3 law emerges in the presence of a saturation in the ε dependence of the scaling dimension of the eddy diffusivity at ε = 3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.
Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-06-15
We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)
Alternating chain with Hubbard-type interactions: renormalization group analysis
International Nuclear Information System (INIS)
Buzatu, F. D.; Jackeli, G.
1998-01-01
A large amount of work has been devoted to the study of alternating chains for a better understanding of the high-T c superconductivity mechanism. The same phenomenon renewed the interest in the Hubbard model and in its one-dimensional extensions. In this work we investigate, using the Renormalization Group (RG) method, the effect of the Hubbard-type interactions on the ground-state properties of a chain with alternating on-site atomic energies. The one-particle Hamiltonian in the tight binding approximation corresponding to an alternating chain with two nonequivalent sites per unit cell can be diagonalized by a canonical transformation; one gets a two band model. The Hubbard-type interactions give rise to both intra- and inter-band couplings; however, if the gap between the two bands is sufficiently large and the system is more than half-filled, as for the CuO 3 chain occurring in high-T c superconductors, the last ones can be neglected in describing the low energy physics. We restrict our considerations to the Hubbard-type interactions (upper band) in the particular case of alternating on-site energies and equal hopping amplitudes. The standard RG analysis (second order) is done in terms of the g-constants describing the elementary processes of forward, backward and Umklapp scatterings: their expressions are obtained by evaluating the Hubbard-type interactions (upper band) at the Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger and Luther-Emery, we can predict the low energy physics of our system. The ground-state phase diagrams in terms of the model parameters and at arbitrary band filling are determined, where four types of instabilities have been considered: Charge Density Waves (CDW), Spin Density Waves (SDW), Singlet Superconductivity (SS) and Triplet Superconductivity (TS). The 3/4-filled case in terms of some renormalized Hubbard constants is presented. The relevance of our analysis to the case of the undistorted 3/4-filled Cu
A RENORMALIZATION PROCEDURE FOR TENSOR MODELS AND SCALAR-TENSOR THEORIES OF GRAVITY
SASAKURA, NAOKI
2010-01-01
Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian config...
Renormalization group treatment for spin waves in the randomly disordered Heisenberg chain
International Nuclear Information System (INIS)
Chaves, C.M.; Koiller, B.
1983-03-01
Local densities of states in the randomly disordered binary quantum Heisenberg chain using a generalization of a recently developed approach based on renormalization group ideas are calculated. It envolves decimating alternate apins along the chain in such a way as to obtain recursion relations to describe the renormalized set of Green's function equations of motion. The densities of states are richly structured, indicating that the method takes into account compositional fluctuations of arbitrary range. (Author) [pt
International Nuclear Information System (INIS)
Dias, S.A.
1985-01-01
The transformation law of truncated pertubation theory observables under changes of renormalization scheme is deduced. Based on this, a criticism of the calculus of the moments of structure functions in deep inelastic scattering, obtaining that the A 2 coefficient not renormalization group invariant is done. The PMS criterion is used to optimize the perturbative productions of the moments, truncated to 2nd order. (author) [pt
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage
1976-01-01
The transverse correlation range ξ and the susceptibility in the critical region has been measured by neutron scattering. A special technique required to resolve the superdiverging longitudinal correlation range has been utilized. The results for ξ together with existing specific-heat data are in...... are in remarkable agreement with the renormalization group theory of systems with marginal dimensionality. The ratio between the susceptibility amplitudes above and below Tc was found to be 2 in accordance with renormalization-group and meanfield theory....
International Nuclear Information System (INIS)
Gulov, A.V.; Skalozub, V.V.
2000-01-01
In the Yukawa model with two different mass scales the renormalization group equation is used to obtain relations between scattering amplitudes at low energies. Considering fermion-fermion scattering as an example, a basic one-loop renormalization group relation is derived which gives possibility to reduce the problem to the scattering of light particles on the external field substituting a heavy virtual state. Applications of the results to problem of searching new physics beyond the Standard Model are discussed [ru
Full counting statistics of level renormalization in electron transport through double quantum dots
International Nuclear Information System (INIS)
Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong; Jiao Hujun
2011-01-01
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1987-10-01
The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs
Quark-mixing renormalization effects on the W-boson partial decay widths
International Nuclear Information System (INIS)
Almasy, A.A.; Kniehl, B.A.; Sirlin, A.
2008-10-01
We briefly review existing proposals for the renormalization of the Cabibbo- Kobayashi-Maskawa matrix and study their numerical effects on the W-boson partial decay widths. The differences between the decay widths predicted by the various renormalization schemes are generally negligible, while their deviations from the MS results are very small, except for W + → u anti b and W + →c anti b, where they reach approximately 4%. (orig.)
Renormalization-group decimation technique for spectra, wave-functions and density of states
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1983-09-01
The Renormalization Group decimation technique is very useful for problems described by 1-d nearest neighbour tight-binding model with or without translational invariance. We show how spectra, wave-functions and density of states can be calculated with little numerical work from the renormalized coefficients upon iteration. The results of this new procedure are verified using the model of Soukoulis and Economou. (author)
A complete non-perturbative renormalization prescription for quasi-PDFs
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, Kyriakos [The Cyprus Institute, Nicosia (Cyprus); Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Panagopoulos, Haralambos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration
2017-06-15
In this work we present, for the first time, the non-perturbative renormalization for the unpolarized, helicity and transversity quasi-PDFs, in an RI{sup '} scheme. The proposed prescription addresses simultaneously all aspects of renormalization: logarithmic divergences, finite renormalization as well as the linear divergence which is present in the matrix elements of fermion operators with Wilson lines. Furthermore, for the case of the unpolarized quasi-PDF, we describe how to eliminate the unwanted mixing with the twist-3 scalar operator. We utilize perturbation theory for the one-loop conversion factor that brings the renormalization functions to the MS-scheme at a scale of 2 GeV. We also explain how to improve the estimates on the renormalization functions by eliminating lattice artifacts. The latter can be computed in one-loop perturbation theory and to all orders in the lattice spacing. We apply the methodology for the renormalization to an ensemble of twisted mass fermions with N{sub f}=2+1+1 dynamical quarks, and a pion mass of around 375 MeV.
Setting the renormalization scale in QCD: The principle of maximum conformality
DEFF Research Database (Denmark)
Brodsky, S. J.; Di Giustino, L.
2012-01-01
A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale mu of the running coupling alpha(s)(mu(2)). The purpose of the running coupling in any gauge theory is to sum all terms involving the beta function; in fact, when the renormali......A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale mu of the running coupling alpha(s)(mu(2)). The purpose of the running coupling in any gauge theory is to sum all terms involving the beta function; in fact, when...... the renormalization scale is set properly, all nonconformal beta not equal 0 terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with beta...... = 0. The resulting scale-fixed predictions using the principle of maximum conformality (PMC) are independent of the choice of renormalization scheme-a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale setting in the Abelian limit...
All-order renormalization of propagator matrix for fermionic system with flavor mixing
Energy Technology Data Exchange (ETDEWEB)
Kniehl, Bernd A. [California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics
2013-08-15
We consider a mixed system of Dirac fermions in a general parity-nonconserving theory and renormalize the propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses are identified with the complex pole positions and the wave-function renormalization (WFR) matrices are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. We present closed analytic all-order expressions for the renormalization constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions. We identify residual degrees of freedom in the WFR matrices and propose an additional renormalization condition to exhaust them. We then explain how our results may be generalized to the case of unstable fermions, in which we encounter the phenomenon of WFR bifurcation. In the special case of a solitary unstable fermion, the all-order-renormalized propagator is presented in a particularly compact form.
Tutchton, Roxanne; Marchbanks, Christopher; Wu, Zhigang
2018-05-01
The phonon-induced renormalization of electronic band structures is investigated through first-principles calculations based on the density functional perturbation theory for nine materials with various crystal symmetries. Our results demonstrate that the magnitude of the zero-point renormalization (ZPR) of the electronic band structure is dependent on both crystal structure and material composition. We have performed analysis of the electron-phonon-coupling-induced renormalization for two silicon (Si) allotropes, three carbon (C) allotropes, and four boron nitride (BN) polymorphs. Phonon dispersions of each material were computed, and our analysis indicates that materials with optical phonons at higher maximum frequencies, such as graphite and hexagonal BN, have larger absolute ZPRs, with the exception of graphene, which has a considerably smaller ZPR despite having phonon frequencies in the same range as graphite. Depending on the structure and material, renormalizations can be comparable to the GW many-body corrections to Kohn-Sham eigenenergies and, thus, need to be considered in electronic structure calculations. The temperature dependence of the renormalizations is also considered, and in all materials, the eigenenergy renormalization at the band gap and around the Fermi level increases with increasing temperature.
International Nuclear Information System (INIS)
Pivovarov, A.A.
2003-01-01
The analytic structure in the strong coupling constant that emerges for some observables in QCD after duality averaging of renormalization-group-improved amplitudes is discussed, and the validity of the infrared renormalon hypothesis for the determination of this structure is critically reexamined. A consistent description of peculiar features of perturbation theory series related to hypothetical infrared renormalons and corresponding power corrections is considered. It is shown that perturbation theory series for the spectral moments of two-point correlators of hadronic currents in QCD can explicitly be summed in all orders using the definition of the moments that avoids integration through the infrared region in momentum space. Such a definition of the moments relies on the analytic properties of two-point correlators in the momentum variable that allows for shifting the integration contour into the complex plane of the momentum. For definiteness, an explicit case of gluonic current correlators is discussed in detail
International Nuclear Information System (INIS)
Martin, H.O.; Tsallis, C.
1981-01-01
A simple renormalization group approach based on self-dual clusters is proposed for two-dimensional nearest-neighbour 1/2 - spin Ising model on the square lattice; it reproduces the exact critical point. The internal energy and the specific heat for vanishing external magnetic field, spontaneous magnetization and the thermal (Y sub(T)) and magnetic (Y sub(H)) critical exponents are calculated. The results obtained from the first four smallest cluster sizes strongly suggest the convergence towards the exact values when the cluster sizes increases. Even for the smallest cluster, where the calculation is very simple, the results are quite accurate, particularly in the neighbourhood of the critical point. (Author) [pt
International Nuclear Information System (INIS)
Livshits, Gideon I.
2014-01-01
Superpotentials offer a direct means of calculating conserved charges associated with the asymptotic symmetries of space-time. Yet superpotentials have been plagued with inconsistencies, resulting in nonphysical or incongruent values for the mass, angular momentum, and energy loss due to radiation. The approach of Regge and Teitelboim, aimed at a clear Hamiltonian formulation with a boundary, and its extension to the Lagrangian formulation by Julia and Silva have resolved these issues, and have resulted in a consistent, well-defined and unique variational equation for the superpotential, thereby placing it on a firm footing. A hallmark solution of this equation is the KBL superpotential obtained from the first-order Lovelock Lagrangian. Nevertheless, here we show that these formulations are still insufficient for Lovelock Lagrangians of higher orders. We present a paradox, whereby the choice of fields affects the superpotential for equivalent on-shell dynamics. We offer two solutions to this paradox: either the original Lagrangian must be effectively renormalized, or that boundary conditions must be imposed, so that space-time be asymptotically maximally symmetric. Non-metricity is central to this paradox, and we show how quadratic non-metricity in the bulk of space-time contributes to the conserved charges on the boundary, where it vanishes identically. This is a realization of the gravitational Higgs mechanism, proposed by Percacci, where the non-metricity is the analogue of the Goldstone boson
Renormalization group evolution of the universal theories EFT
International Nuclear Information System (INIS)
Wells, James D.; Zhang, Zhengkang
2016-01-01
The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, but dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. We perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.
Phenomenological renormalization of free nucleon-nucleon interaction
International Nuclear Information System (INIS)
Prakash, M.; Waghmare, Y.R.; Mehrotra, I.
1976-01-01
Low-lying spectra of 6 Li, 18 F, 18 O, 42 Sc, 42 Ca, 58 Ni and 92 Zr are studied with Sussex matrix elements (SME) and their central, spin-orbit and tensor components. It is observed that major contribution to level energies comes from the central part, while the tensor part provides the finer details of spectra, particularly for T = 0 levels. The spin-orbit part does not make any appreciable contribution to level energies. A phenomenological renormalization fo the SME is carried out to improve the agreement with the experimental results. It turns out that some of the low-lying T = 0 levels can be satisfactorily described if the SME in the 3 S 1 relative state are made (1+α) times their bare interaction value, where α is a constant to be determined from a comparison with experimental level energies. Similarly, for T = 1 levels, better agreement with the experimental results is obtained if a delta-function-plus-quadrupole interaction is added to the SME. (orig.) [de
Renormalization group method in the theory of dynamical systems
International Nuclear Information System (INIS)
Sinai, Y.G.; Khanin, K.M.
1988-01-01
One of the most important events in the theory of dynamical systems for the last decade has become a wide penetration of ideas and renormalization group methods (RG) into this traditional field of mathematical physics. RG-method has been one of the main tools in statistical physics and it has proved to be rather effective while solving problems of the theory of dynamical systems referring to new types of bifurcations (see further). As in statistical mechanics the application of the RG-method is of great interest in the neighborhood of the critical point concerning the order-chaos transition. First the RG-method was applied in the pioneering papers dedicated to the appearance of a stochastical regime as a result of infinite sequences of period doubling bifurcations. At present this stochasticity mechanism is the most studied one and many papers deal with it. The study of the so-called intermittency phenomenon was the next example of application of the RG-method, i.e. the study of such a situation where the domains of the stochastical and regular behavior do alternate along a trajectory of the dynamical system
Renormalized multiple-scattering theory of photoelectron diffraction
International Nuclear Information System (INIS)
Biagini, M.
1993-01-01
The current multiple-scattering cluster techniques for the calculation of x-ray photoelectron and Auger-electron diffraction patterns consume much computer time in the intermediate-energy range (200--1000 eV); in fact, because of the large value of the electron mean free path and of the large forward-scattering amplitude at such energies, the electron samples a relatively large portion of the crystal, so that the number of paths to be considered becomes dramatically high. An alternative method is developed in the present paper: instead of calculating the individual contribution from each single path, the scattering matrix of each plane parallel to the surface is calculated with a renormalization process that calculates every scattering event in the plane up to infinite order. Similarly the scattering between two planes is calculated up to infinite order, and the double-plane scattering matrix is introduced. The process may then be applied to the calculation of a larger set of atomic layers. The advantage of the method is that a relatively small number of internuclear vectors have been used to obtain convergence in the calculation
Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Friederich, Simon
2010-12-08
Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T{sub c} cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)
Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model
International Nuclear Information System (INIS)
Friederich, Simon
2010-01-01
Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T c cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)
Spectral functions and transport coefficients from the functional renormalization group
Energy Technology Data Exchange (ETDEWEB)
Tripolt, Ralf-Arno
2015-06-03
In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.
Driven similarity renormalization group: Third-order multireference perturbation theory.
Li, Chenyang; Evangelista, Francesco A
2017-03-28
A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.
Interleaved numerical renormalization group as an efficient multiband impurity solver
Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.
2016-06-01
Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.
Temperature dependent quasiparticle renormalization in nickel and iron
Energy Technology Data Exchange (ETDEWEB)
Ovsyannikov, Ruslan; Thirupathaiah, Setti; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann [Helmholtz Zentrum Berlin, BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)
2010-07-01
One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed' with an excitation cloud resulting in quasiparticles. Such a quasiparticle will carry the same spin and charge as the original particle, but will have a renormalized mass and a finite lifetime. The properties of many-body interactions are described with a complex function called self energy which is directly accessible to modern high-resolution angle resolved photoemission spectroscopy (ARPES). Ferromagnetic metals like nickel or iron offers the exciting possibility to study the spin dependence of quasiparticle coupling to bosonic modes. Utilizing the exchange split band structure as an intrinsic 'spin detector' it is possible to distinguish between electron-phonon and electron-magnon coupling phenomena. In this contribution we will report a systematic investigation of the k- and temperature dependence of the electron-boson coupling in nickel and iron metals as well as discuss origin of earlier observed anomalous lifetime broadening of majority spin states of nickel at Fermi level.
Bogolyubov renormalization group and symmetry of solution in mathematical physics
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2000-01-01
Evolution of the concept known in the theoretical physics as the Renormalization Group (RG) is presented. The corresponding symmetry, that has been first introduced in QFT in mid-fifties, is a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of boundary condition) specifying some particular solution. After short detour into Wilson's discrete semi-group, we follow the expansion of QFT RG and argue that the underlying transformation, being considered as a reparametrization one, is closely related to the self-similarity property. It can be treated as its generalization, the Functional Self-similarity (FS). Then, we review the essential progress during the last decade of the FS concept in application to boundary value problem formulated in terms of differential equations. A summary of a regular approach recently devised for discovering the RG = FS symmetries with the help of the modern Lie group analysis and some of its applications are given. As a main physical illustration, we give application of a new approach to solution for a problem of self-focusing laser beam in a nonlinear medium
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
Ultrasoft renormalization of the potentials in vNRQCD
Energy Technology Data Exchange (ETDEWEB)
Stahlhofen, Maximilian Horst
2009-02-18
The effective field theory vNRQCD allows to describe among others the production of top-antitop pairs in electron-positron collisions at threshold, i.e. with very small relative velocity {upsilon} << 1 of the quarks. Potentially large logarithms {proportional_to} ln {upsilon} are systematically summed up and lead to a scale dependence of the Wilson coefficients of the theory. The missing contributions to the cross section {sigma}(e{sup +}e{sup -} {yields} t anti t) in the resonance region at NNLL level are the so-called mixing contributions to the NNLL anomalous dimension of the S-wave production/annihilation current of the topquark pair. To calculate these one has to know the NLL renormalization group running of so-called potentials (4-quark operators). The dominant contributions to the anomalous dimension of these potentials come from vNRQCD diagrams with ultrasoft gluon loops. The aim of this thesis is to derive the complete ultrasoft NLL running of the relevant potentials. For that purpose the UV divergent parts of about 10{sup 4} two-loop diagrams are determined. Technical and conceptional issues are discussed. Some open questions related to the calculation of the non-Abelian two-loop diagrams arise. Preliminary results are analysed with regard to the consequences for the mentioned cross section and its theoretical uncertainty. (orig.)
Fermionic renormalization group methods for transport through inhomogeneous Luttinger liquids
International Nuclear Information System (INIS)
Meden, V; Schoeller, H; Andergassen, S; Enss, T; Schoenhammer, K
2008-01-01
We compare two fermionic renormalization group (RG) methods which have been used to investigate the electronic transport properties of one-dimensional metals with two-particle interaction (Luttinger liquids) and local inhomogeneities. The first one is a poor man's method set-up to resum 'leading-log' divergences of the effective transmission at the Fermi momentum. Generically the resulting equations can be solved analytically. The second approach is based on the functional RG (fRG) method and leads to a set of differential equations which can only for certain set-ups and in limiting cases be solved analytically, while in general it must be integrated numerically. Both methods are claimed to be applicable for inhomogeneities of arbitrary strength and to capture effects of the two-particle interaction, such as interaction dependent exponents, up to leading order. We critically review this for the simplest case of a single impurity. While on first glance the poor man's approach seems to describe the crossover from the 'perfect' to the 'open chain fixed point' we collect evidence that difficulties may arise close to the 'perfect chain fixed point'. Due to a subtle relation between the scaling dimensions of the two fixed points this becomes apparent only in a detailed analysis. In the fRG method the coupling of the different scattering channels is kept which leads to a better description of the underlying physics
Effect of Cisplatin on Parotid Gland Function in Concomitant Radiochemotherapy
International Nuclear Information System (INIS)
Hey, Jeremias; Setz, Juergen; Gerlach, Reinhard; Vordermark, Dirk; Gernhardt, Christian R.; Kuhnt, Thomas
2009-01-01
Purpose: To determine the influence of concomitant radiochemotherapy with cisplatin on parotid gland tissue complication probability. Methods and Materials: Patients treated with either radiotherapy (n = 61) or concomitant radiochemotherapy with cisplatin (n = 36) for head-and-neck cancer were prospectively evaluated. The dose and volume distributions of the parotid glands were noted in dose-volume histograms. Stimulated salivary flow rates were measured before, during the 2nd and 6th weeks and at 4 weeks and 6 months after the treatment. The data were fit using the normal tissue complication probability model of Lyman. Complication was defined as a reduction of the salivary flow rate to less than 25% of the pretreatment flow rate. Results: The normal tissue complication probability model parameter TD 50 (the dose leading to a complication probability of 50%) was found to be 32.2 Gy at 4 weeks and 32.1 Gy at 6 months for concomitant radiochemotherapy and 41.1 Gy at 4 weeks and 39.6 Gy at 6 months for radiotherapy. The tolerated dose for concomitant radiochemotherapy was at least 7 to 8 Gy lower than for radiotherapy alone at TD 50 . Conclusions: In this study, the concomitant radiochemotherapy tended to cause a higher probability of parotid gland tissue damage. Advanced radiotherapy planning approaches such as intensity-modulated radiotherapy may be partiticularly important for parotid sparing in radiochemotherapy because of cisplatin-related increased radiosensitivity of glands.
Clinical applications of continuous infusion chemotherapy ahd concomitant radiation therapy
International Nuclear Information System (INIS)
Rosenthal, C.J.; Rotman, M.
1986-01-01
This book presents information on the following topics: theoretical basis and clinical applications of 5-FU as a radiosensitizer; treatment of hepatic metastases from gastro intestingal primaries with split course radiation therapy; combined modality therapy with 5-FU, Mitomycin-C and radiation therapy for sqamous cell cancers; treatment of bladder carcinoma with concomitant infusion chemotherapy and irradiation; a treatment of invasiv bladder cancer by the XRT/5FU protocol; concomitant radiation therapy and doxorubicin by continuous infusion in advanced malignancies; cis platin by continuous infusion with concurrent radiation therapy in malignant tumors; combination of radiation with concomitant continuous adriamycin infusion in a patient with partially excised pleomorphic soft tissue sarcoma of the lower extremeity; treatment of recurrent carcinoma of the paranasal sinuses using concomitant infusion cis-platinum and radiation therapy; hepatic artery infusion for hepatic metastases in combination with hepatic resection and hepatic radiation; study of simultaneous radiation therapy, continuous infusion, 5FU and bolus mitomycin-C; cancer of the esophagus; continuous infusion VP-16, bolus cis-platinum and simultaneous radiation therapy as salvage therapy in small cell bronchogenic carcinoma; and concomitant radiation, mitomycin-C and 5-FU infusion in gastro intestinal cancer
Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2015-03-01
PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.
Baumgarten, Lorenz; Kierfeld, Jan
2018-05-01
We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy
DAMPING MECHANISM OF THE STRONGLY RENORMALIZED C-AXIS PLASMA FREQUENCY IN HIGH-T-C CUPRATES
VANDERMAREL, D; KIM, JH; SOMAL, HS; FEENSTRA, BJ; WITTLIN, A; DUIJN, AVHM; MENOVSKY, A; LEE, WY
1994-01-01
We study the charge dynamics of high-T-c superconductors with the electric field perpendicular to the planes, using polarized oblique-incidence reflectometry for thin films of Tl2Ba2Ca2Cu(3)O(10) and normal incidence reflectometry for single crystals of La1.85Sr0.15CuO4. In Tl2Ba2Ca2Cu3O10 we
Automatic calculation of supersymmetric renormalization group equations and loop corrections
Staub, Florian
2011-03-01
SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose
Concomitant Rotavirus and Salmonella Infections in Children with Acute Diarrhea
Directory of Open Access Journals (Sweden)
Wen-Tzong Lan
2009-02-01
Conclusion: Concomitant rotavirus and Salmonella infections accounted for 3.7% of cases in this study. Patients in group C (30.0% had a significantly higher incidence of hypokalemia than group R (7.3% or S (8.8%. Group C consisted of 33 cases of the 895 reviewed cases (3.7%. In a child with rotavirus gastroenteritis, concomitant infection with Salmonella should be considered if the child has sustained a high fever (≥ 39°C for over 4 days and a green stool with mucus and blood.
Efficient perturbation theory to improve the density matrix renormalization group
Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej
2017-02-01
The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.
Renormalization of the axial-vector current in QCD
International Nuclear Information System (INIS)
Chiu, C.B.; Pasupathy, J.; Wilson, S.L.
1985-01-01
Following the method of Ioffe and Smilga, the propagation of the baryon current in an external constant axial-vector field is considered. The close similarity of the operator-product expansion with and without an external field is shown to arise from the chiral invariance of gauge interactions in perturbation theory. Several sum rules corresponding to various invariants both for the nucleon and the hyperons are derived. The analysis of the sum rules is carried out by two independent methods, one called the ratio method and the other called the continuum method, paying special attention to the nondiagonal transitions induced by the external field between the ground state and excited states. Up to operators of dimension six, two new external-field-induced vacuum expectation values enter the calculations. Previous work determining these expectation values from PCAC (partial conservation of axial-vector current) are utilized. Our determination from the sum rules of the nucleon axial-vector renormalization constant G/sub A/, as well as the Cabibbo coupling constants in the SU 3 -symmetric limit (m/sub s/ = 0), is in reasonable accord with the experimental values. Uncertainties in the analysis are pointed out. The case of broken flavor SU 3 symmetry is also considered. While in the ratio method, the results are stable for variation of the fiducial interval of the Borel mass parameter over which the left-hand side and the right-hand side of the sum rules are matched, in the continuum method the results are less stable. Another set of sum rules determines the value of the linear combination 7F-5D to be roughly-equal0, or D/(F+D)roughly-equal(7/12). .AE
Renormalization group analysis of order parameter fluctuations in fermionic superfluids
International Nuclear Information System (INIS)
Obert, Benjamin
2014-01-01
In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.
Renormalization effects in the SU(16) maximally gauged theory
International Nuclear Information System (INIS)
Mahdavi-Hezaveh, E.
1981-03-01
In the context of a quark-lepton unified gauge theory, when fermionic degrees of freedom are maximally gauged, several intermediate mass scales filling the grand plateau, between 10 2 Gev. and the grand unifying mass scale, M, may exist. In particular, when renormalization effects are taken into account for the SU(16) ''maximal'' gauge symmetry, [in which lepton number is regarded as the fourth color quantum number], it turns out that two intermediate stages governed by the symmetries G 2 =SU(8)sub(I) S SU(8)sub(II) X U(1)sub(F) and G 3 =SU(2)sub(L) X XU(2)sub(R) X SU(4)sub(C) can naturally coexist if Sin 2 theta (Msub(W))>1/6+5/9(α(Msub(W)/αsub(S)(Msub(W)). It is shown that these symmetries break down at a mass scale of the order of Msub(X) approximately equal to 10 4 -10 5 Gev. If neutral current phenomenology (or any other experiment) predicts Sin 2 theta (Msub(W))>0.206, then quark-lepton unification and left-right symmetry simultaneously break down at M approximately equal to 10 4 Gev. (at which αsub(C)(Msub(X) approximately equal to 0.041). It is then argued that apart from proton decay, n-anti n oscillation and neutrinoless double β decay processes, an accurate experimental value of Sin 2 theta (Msub(W)), to α 10 -4 accuracy) plays a crucial role in determining the possible existence of such intermediate stages. (author)
Cylinder renormalization for Siegel disks and a constructive Measurable Riemann Mapping Theorem
Gaydashev, D G
2006-01-01
The boundary of the Siegel disk of a quadratic polynomial with an irrationally indifferent fixed point with the golden mean rotation number has been observed to be self-similar. The geometry of this self-similarity is universal for a large class of holomorphic maps. A renormalization explanation of this universality has been proposed in the literature. However, one of the ingredients of this explanation, the hyperbolicity of renormalization, has not been proved yet. The present work considers a cylinder renormalization - a novel type of renormalization for holomorphic maps with a Siegel disk which is better suited for a hyperbolicity proof. A key element of a cylinder renormalization of a holomorphic map is a conformal isomorphism of a dynamical quotient of a subset of $\\field{C}$ to a bi-infinite cylinder $\\field{C} / \\field{Z}$. A construction of this conformal isomorphism is an implicit procedure which can be performed using the Measurable Riemann Mapping Theorem. We present a constructive proof of the Mea...
Carilli, Michael F.; Delaney, Kris T.; Fredrickson, Glenn H.
2018-02-01
Using the zero-temperature string method, we investigate nucleation of a stable lamellar phase from a metastable disordered phase of the renormalized Landau-Brazovskii model at parameters explicitly connected to those of an experimentally accessible diblock copolymer melt. We find anisotropic critical nuclei in qualitative agreement with previous experimental and analytic predictions; we also find good quantitative agreement with the predictions of a single-mode analysis. We conduct a thorough search for critical nuclei containing various predicted and experimentally observed defect structures. The predictions of the renormalized model are assessed by simulating the bare Landau-Brazovskii model with fluctuations. We find that the renormalized model makes reasonable predictions for several important quantities, including the order-disorder transition (ODT). However, the critical nucleus size depends sharply on proximity to the ODT, so even small errors in the ODT predicted by the renormalized model lead to large errors in the predicted critical nucleus size. We conclude that the renormalized model is a poor tool to study nucleation in the fluctuating Landau-Brazovskii model, and recommend that future studies work with the fluctuating bare model directly, using well-chosen collective variables to investigate kinetic pathways in the disorder → lamellar transition.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Distribution of the minimum path on percolation clusters: A renormalization group calculation
International Nuclear Information System (INIS)
Hipsh, Lior.
1993-06-01
This thesis uses the renormalization group for the research of the chemical distance or the minimal path on percolation clusters on a 2 dimensional square lattice. Our aims are to calculate analytically (iterative calculation) the fractal dimension of the minimal path. d min. , and the distributions of the minimum paths, l min for different lattice sizes and for different starting densities (including the threshold value p c ). For the distributions. We seek for an analytic form which describes them. The probability to get a minimum path for each linear size L is calculated by iterating the distribution of l min for the basic cell of size 2*2 to the next scale sizes, using the H cell renormalization group. For the threshold value of p and for values near to p c . We confirm a scaling in the form: P(l,L) =f1/l(l/(L d min ). L - the linear size, l - the minimum path. The distribution can be also represented in the Fourier space, so we will try to solve the renormalization group equations in this space. A numerical fitting is produced and compared to existing numerical results. In order to improve the agreement between the renormalization group and the numerical simulations, we also present attempts to generalize the renormalization group by adding more parameters, e.g. correlations between bonds in different directions or finite densities for occupation of bonds and sites. (author) 17 refs
Concomitant boost radiotherapy for muscle invasive bladder cancer
Energy Technology Data Exchange (ETDEWEB)
Pos, Floris J; Tienhoven, Geertjan van; Hulshof, Maarten C.C.M.; Koedooder, Kees; Gonzalez Gonzalez, Dionisio
2003-07-01
Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity {>=}G3 was observed in seven patients (14%). Severe late toxicity {>=}G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity.
Concomitant boost radiotherapy for muscle invasive bladder cancer
International Nuclear Information System (INIS)
Pos, Floris J.; Tienhoven, Geertjan van; Hulshof, Maarten C.C.M.; Koedooder, Kees; Gonzalez Gonzalez, Dionisio
2003-01-01
Purpose: To evaluate the feasibility and efficacy of a concomitant partial bladder boost schedule in radiotherapy for invasive bladder cancer, coupling a limited boost volume with shortening of the overall treatment time. Methods and materials: Between 1994 and 1999, 50 patients with a T2-T4 N0M0 transitional cell carcinoma of the bladder received radiotherapy delivered in a short overall treatment time with a concomitant boost technique. With this technique a dose of 40 Gy in 2-Gy fractions was administered to the small pelvis with a concomitant boost limited to the bladder tumor area plus margin of 15 Gy in fractions of 0.75 Gy. The total tumor dose was 55 Gy in 20 fractions in 4 weeks. Toxicity was scored according to EORTC/RTOG toxicity criteria. Results: The feasibility of the treatment was good. Severe acute toxicity ≥G3 was observed in seven patients (14%). Severe late toxicity ≥G3 was observed in six patients (13%). Thirty-seven patients (74%) showed a complete and five (10 %) a partial remission after treatment. The actuarial 3-year freedom of local progression was 55%. Conclusion: In external radiotherapy for muscle invasive bladder cancer a concomitant boost technique coupling a partial bladder boost with shortening of the overall treatment time provides a high probability of local control with acceptable toxicity
FASTR: A novel data format for concomitant representation of RNA ...
Indian Academy of Sciences (India)
FASTR: A novel data format for concomitant representation of RNA sequence and secondary structure information. Tungadri Bose ... Data archival; data dissemination; file format; RNA; RNA secondary structure ... Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Limited, Pune 411 013, India ...
The impact of haemoglobin level and concomitant infections on ...
African Journals Online (AJOL)
... of paroxysm during Plasmodium infection. Likewise, the presence of concomitant infections in the clinically ill subjects quickened the on-set of clinical signs. The need for proper laboratory diagnosis to ascertain real cause/s of fever during malaria attack so as to avoid wrong treatment/under treatment, and balanced diet to ...
Pattern of Midface Trauma with Associated Concomitant Injuries in a ...
African Journals Online (AJOL)
Recognizing concomitant injuries in patients with facial fracture is important for rapid assessment and further management of these patients. These results support the use of head computed tomography scan and cervical spine radiographs in most general trauma work‑ups, but specifically validates their use in patients with.
Holography as a highly efficient renormalization group flow. I. Rephrasing gravity
Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan
2016-07-01
We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.
Hu, Q.; Vidal, G.
2017-07-01
The generalization of the multiscale entanglement renormalization ansatz (MERA) to continuous systems, or cMERA [Haegeman et al., Phys. Rev. Lett. 110, 100402 (2013), 10.1103/PhysRevLett.110.100402], is expected to become a powerful variational ansatz for the ground state of strongly interacting quantum field theories. In this Letter, we investigate, in the simpler context of Gaussian cMERA for free theories, the extent to which the cMERA state |ΨΛ⟩ with finite UV cutoff Λ can capture the spacetime symmetries of the ground state |Ψ ⟩. For a free boson conformal field theory (CFT) in 1 +1 dimensions, as a concrete example, we build a quasilocal unitary transformation V that maps |Ψ ⟩ into |ΨΛ⟩ and show two main results. (i) Any spacetime symmetry of the ground state |Ψ ⟩ is also mapped by V into a spacetime symmetry of the cMERA |ΨΛ⟩. However, while in the CFT, the stress-energy tensor Tμ ν(x ) (in terms of which all the spacetime symmetry generators are expressed) is local, and the corresponding cMERA stress-energy tensor Tμν Λ(x )=V Tμ ν(x )V† is quasilocal. (ii) From the cMERA, we can extract quasilocal scaling operators OαΛ(x ) characterized by the exact same scaling dimensions Δα, conformal spins sα, operator product expansion coefficients Cα β γ, and central charge c as the original CFT. Finally, we argue that these results should also apply to interacting theories.
Energy Technology Data Exchange (ETDEWEB)
Drechsler, S.L.; Efremov, D.; Grinenko, V. [IFW-Dresden (Germany); Johnston, S. [Inst. of Quantum Matter, University of British Coulumbia, Vancouver (Canada); Rosner, H. [MPI-cPfS, Dresden, (Germany); Kikoin, K. [Tel Aviv University (Israel)
2015-07-01
Combining DFT calculations of the density of states and plasma frequencies with experimental thermodynamic, optical, ARPES, and dHvA data taken from the literature, we estimate both the high-energy (Coulomb, Hund's rule coupling) and the low-energy (el-boson coupling) electronic mass renormalization [H(L)EMR] for typical Fe-pnictides with T{sub c}<40 K, focusing on (K,Rb,Cs)Fe{sub 2}As{sub 2}, (Ca,Na)122, (Ba,K)122, LiFeAs, and LaFeO{sub 1-x}F{sub x}As with and without As-vacancies. Using Eliashberg theory we show that these systems can NOT be described by a very strong el-boson coupling constant λ ≥ ∝ 2, being in conflict with the HEMR as seen by DMFT, ARPES and optics. Instead, an intermediate s{sub ±} coupling regime is realized, mainly based on interband spin fluctuations from one predominant pair of bands. For (Ca,Na)122, there is also a non-negligible intraband el-phonon/orbital fluctuation intraband contribution. The coexistence of magnetic As-vacancies and high-T{sub c}=28 K for LaFeO{sub 1-x}F{sub x}As{sub 1-δ} excludes an orbital fluctuation dominated s{sub ++} scenario at least for that system. In contrast, the line nodal BaFe{sub 2}(As,P){sub 2} near the quantum critical point is found as a superstrongly coupled system. The role of a pseudo-gap is briefly discussed for some of these systems.
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2012-01-01
The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces...... while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local-density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation...... of the ALDA kernel for wave vectors q > 2kF, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can...
The quantum-field renormalization group in the problem of a growing phase boundary
International Nuclear Information System (INIS)
Antonov, N.V.; Vasil'ev, A.N.
1995-01-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik's assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants (open-quotes chargeclose quotes). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundary and time, δ h and δ t , which satisfy the exact relationship 2 δ h = δ t + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab