WorldWideScience

Sample records for strong community structure

  1. Strong influence of regional species pools on continent-wide structuring of local communities.

    Science.gov (United States)

    Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J

    2012-01-22

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.

  2. Strong influence of regional species pools on continent-wide structuring of local communities

    OpenAIRE

    Lessard, Jean-Philippe; Borregaard, Michael K.; Fordyce, James A.; Rahbek, Carsten; Weiser, Michael D.; Dunn, Robert R.; Sanders, Nathan J.

    2011-01-01

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that...

  3. Strong influence of regional species pools on continent-wide structuring of local communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Borregaard, Michael Krabbe; Fordyce, James A.

    2012-01-01

    a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure...... pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use...... of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution...

  4. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  5. Fundamental Structure of Matter and Strong Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Jian-Ping Chen

    2011-11-01

    More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.

  6. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  7. 77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities

    Science.gov (United States)

    2012-03-20

    ... Order 13602 of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities By... enable them to develop and implement economic strategies to become more competitive, sustainable, and inclusive, it is hereby ordered as follows: Section 1. Policy. Cities, towns, and regions across our Nation...

  8. Effects of physical forcing on COastal ZOoplankton community structure: study of the unusual case of a MEDiterranean ecosystem under strong tidal influence (Project COZOMED-MERMEX)

    Science.gov (United States)

    Pagano, Marc

    2017-04-01

    Groupe COZOMED: R. Arfi (1), A. Atoui (2), H. Ayadi (6), B. Bejaoui (1), N. Bhairy (1), N. Barraj (2), M. Belhassen (2), S. Benismail (2), M.Y Benkacem (2), J. Blanchot (1), M. Cankovic(5), F. Carlotti (1), C. Chevalier (1), I Ciglenecki-Jusic (5), D. Couet (1), N. Daly Yahia (3), L. Dammak (2), J.-L. Devenon (1), Z. Drira (6), A. Hamza (2), S. Kmia (6), N. Makhlouf (3), M. Mahfoudi (2), M. Moncef (4), M. Pagano (1), C. Sammari (2), H. Smeti (2), A. Zouari (2) The COZOMED-MERMEX project aims at understanding how hydrodynamic forcing (currents, tides, winds) combine with anthropogenic forcing and climate to affect the variability of coastal Mediterranean zooplankton communities under contrasting tidal influence. This study includes (i) a zero state of knowledge via a literature review of existing data and (ii) a case study on the system Boughrara lagoon - Gulf of Gabes. This ecosystem gives major services for Tunisia (about 65% of national fish production) but is weakened by its situation in a heavily anthropized area and under influence of urban, industrial and agricultural inputs. Besides this region is subject to specific climate forcing (Sahelian winds, scorching heat, intense evaporation, flooding) which possible changes will be considered. The expected issues are (i) to improve our knowledge of hydrodynamic forcing on zooplankton and ultimately on the functioning of coastal Mediterranean ecosystems impacted by anthropogenic and climatic effects and (ii) to elaborate management tools to help preserving good ecological status of these ecosystems: hydrodynamic circulation model, mapping of isochrones of residence times, mapping of the areas of highest zooplankton abundances (swarms), and sensitive areas, etc. This project strengthens existing scientific collaborations within the MERMEX program (The MerMex Group, 2011) and in the frame of an international joint laboratory (COSYS-Med) created in 2014. A first field mulidisciplinary campaign was performed in October

  9. Effectiveness of Advanced Stay Strong, Stay Healthy in Community Settings

    Directory of Open Access Journals (Sweden)

    Emily M. Crowe MS

    2015-07-01

    Full Text Available The goal of this research was to investigate the effectiveness of the 10-week, University of Missouri (MU Extension strength training program Advanced Stay Strong, Stay Healthy (ASSSH. It was hypothesized that the program can improve strength, balance, agility, and flexibility—all physical measures of falling among seniors. Matched pair t tests were used to compare differences in five physical measures of health, body composition, and percent body fat (%BF. Two-way ANOVA was conducted to examine the age effects on changes in physical health from the start and finish of the exercise program. Following programming, participants significantly improved strength, flexibility, and balance, and significantly reduced %BF ( p < .05. Our data indicate that ASSSH can improve the physical health of senior citizens and can successfully be translated into community practice by MU Extension professionals.

  10. Tripartite community structure in social bookmarking data

    Science.gov (United States)

    Neubauer, Nicolas; Obermayer, Klaus

    2011-12-01

    Community detection is a branch of network analysis concerned with identifying strongly connected subnetworks. Social bookmarking sites aggregate datasets of often hundreds of millions of triples (document, user, and tag), which, when interpreted as edges of a graph, give rise to special networks called 3-partite, 3-uniform hypergraphs. We identify challenges and opportunities of generalizing community detection and in particular modularity optimization to these structures. Two methods for community detection are introduced that preserve the hypergraph's special structure to different degrees. Their performance is compared on synthetic datasets, showing the benefits of structure preservation. Furthermore, a tool for interactive exploration of the community detection results is introduced and applied to examples from real datasets. We find additional evidence for the importance of structure preservation and, more generally, demonstrate how tripartite community detection can help understand the structure of social bookmarking data.

  11. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  12. Strong sustainability in Nepal: A structural economics approach

    Science.gov (United States)

    Devkota, Surendra R.

    example of a poor country moving along a path toward strong sustainability. To this end, a sincere intervention at the social and natural capital along with economic growth is necessary. Poverty alleviation efforts should target the socio-economically deprived households by enriching their human capital. Since community based social structures, such as the forest user groups, are already setting an example of strong sustainability, such community based social capital initiatives should be encouraged by granting rights and other resources to augment further economic activities like harnessing hydropower that may eventually transform the socio-ecological-economic system.

  13. Development of strongly coupled FSI technology involving thin walled structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2011-01-01

    Full Text Available the most desirable results and is coupled with an in-house fluid-flow solver. The developed technology is evaluated on representative strongly coupled fluid-structure interaction test problems....

  14. Meso-Structure in Three Strong-lensing Systems

    Science.gov (United States)

    Saha, Prasenjit; Williams, Liliya L. R.; Ferreras, Ignacio

    2007-07-01

    We map substructure in three strong-lensing systems having particularly good image data: the galaxy lens MG J0414+053 and the clusters SDSS J1004+411 and ACO 1689. Our method is to first reconstruct the lens as a pixelated mass map and then subtract off the symmetric part (in the galaxy case) or a projected Navarro-Frenk-White profile (for the cluster lenses). In all three systems we find extended irregular structures, or meso-structures, having of order 10% of the total mass. In J0414+053, the meso-structure suggests a tidal tail connecting the main lens with a nearby galaxy; however, this interpretation is tentative. In the clusters, the identification of meso-structure is more secure, especially in ACO 1689, where two independent sets of lensed images imply very similar meso-structure. In all three cases, the meso-structures are correlated with galaxies but much more extended and massive than the stellar components of single galaxies. Such extended structures cannot plausibly persist in such high-density regions without being mixed; the crossing times are too short. The meso-structures therefore appear to be merging or otherwise dynamically evolving systems.

  15. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona (Spain))

    1993-07-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity.

  16. Mathematical structure of Rabi oscillations in the strong coupling regime

    International Nuclear Information System (INIS)

    Fujii, Kazuyuki

    2003-01-01

    In this paper, we generalize the Jaynes-Cummings Hamiltonian by making use of some operators based on Lie algebras su(1, 1) and su(2), and study a mathematical structure of Rabi floppings of these models in the strong coupling regime. We show that Rabi frequencies are given by matrix elements of generalized coherent operators (Fujii K 2002 Preprint quant-ph/0202081) under the rotating-wave approximation. In the first half, we make a general review of coherent operators and generalized coherent ones based on Lie algebras su(1, 1) and su(2). In the latter half, we carry out a detailed examination of Frasca (Frasca M 2001 Preprint quant-ph/0111134) and generalize his method, and moreover present some related problems. We also apply our results to the construction of controlled unitary gates in quantum computation. Lastly, we make a brief comment on application to holonomic quantum computation

  17. Enhancing Homeland Security Efforts by Building Strong Relationships between the Muslim Community and Local Law Enforcement

    National Research Council Canada - National Science Library

    Jensen, Dennis L

    2006-01-01

    ... to follow up on the incident and to prevent future attacks. It is undeniable that building a strong relationship between the local police and the Muslim community is essential in defending America against acts of terrorism...

  18. Information transfer in community structured multiplex networks

    Directory of Open Access Journals (Sweden)

    Albert eSolé Ribalta

    2015-08-01

    Full Text Available The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.. The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  19. Information transfer in community structured multiplex networks

    Science.gov (United States)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  20. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    -neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...

  1. Strong Rural Communities Initiative (SRCI) program: challenges in promoting healthier lifestyles.

    Science.gov (United States)

    Ahmed, Syed M; Size, Tim; Crouse, Byron; Patterson, Leslie; Gass, Eric; Karon, Sarita L; Lund, Liz; Abert, Connie; Wergin, Amy; Hegranes, Karen; Bishop, Linda; Duffy, Sue; Jacobson, Kevin

    2011-06-01

    The Strong Rural Communities Initiative (SRCI) was created to address the health needs of rural Wisconsin communities through a multifaceted partnership that included the Medical College of Wisconsin (MCW), University of Wisconsin School of Medicine and Public Health (UWSMPH), the Rural Health Development Council (RHDC), and hospitals, public health departments, and businesses in 6 rural communities in Wisconsin. The SRCI provided a broad framework of leadership to assist each of the 6 rural communities in developing and implementing new, collaborative interventions that addressed the specific health needs of the community. Separate assessments were conducted for the communities that partnered with each respective medical school and focused on the processes of community collaboration and partnership function. Assessment approaches included formative and outcome evaluation. Each community independently reported positive outcomes associated with the partnership process and various aspects of community collaboration, including the successes and health impacts of the workplace wellness programs implemented. Assessment data also revealed challenges related to conducting effective community-academic partnerships. The SRCI was established to execute statewide programs in rural communities with the goal to improve the health of people living in those communities. We have gained applicable knowledge regarding the types of challenges that exist in establishing a rural-based community research network between academic partners and community leaders.

  2. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  3. <strong>Aspects of Structure and Dynamics at a Refugee Centre in Denmarkstrong>

    DEFF Research Database (Denmark)

    Mackrill, Thomas Edward

    1996-01-01

    This article presents an empirical analysis that is part of a practice research project carried out at a Danish Red Cross refugee centre in Copenhagen. It focuses on the relation between the individual refugee and the receiving institution. It points out how the organizational structure of a part...... of a particular refugee centre enables discord between refugees and centre workers as well as among the centre staff. It analyses some of the dynamics of the conflicts that are facilitated by the structure...

  4. Leveraging disjoint communities for detecting overlapping community structure

    International Nuclear Information System (INIS)

    Chakraborty, Tanmoy

    2015-01-01

    Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network.In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm. (paper)

  5. Strong linkage between active microbial communities and microbial carbon usage in a deglaciated terrain of the High Arctic

    Science.gov (United States)

    Kim, M.; Gyeong, H. R.; Lee, Y. K.

    2017-12-01

    Soil microorganisms play pivotal roles in ecosystem development and carbon cycling in newly exposed glacier forelands. However, little is known about carbon utilization pattern by metabolically active microbes over the course of ecosystem succession in these nutrient-poor environments. We investigated RNA-based microbial community dynamics and its relation to microbial carbon usage along the chronosequence of a High Arctic glacier foreland. Among microbial taxa surveyed (bacteria, archaea and fungi), bacteria are among the most metabolically active taxa with a dominance of Cyanobacteria and Actinobacteria. There was a strong association between microbial carbon usage and active Actinobacterial communities, suggesting that member of Actinobacteria are actively involved in organic carbon degradation in glacier forelands. Both bacterial community and microbial carbon usage are converged towards later stage of succession, indicating that the composition of soil organic carbon plays important roles in structuring bacterial decomposer communities during ecosystem development.

  6. Similarity between community structures of different online social networks and its impact on underlying community detection

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  7. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    Directory of Open Access Journals (Sweden)

    Thomas Fort

    2016-11-01

    Full Text Available Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2 region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats.

  8. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits.

    Science.gov (United States)

    Leff, Jonathan W; Bardgett, Richard D; Wilkinson, Anna; Jackson, Benjamin G; Pritchard, William J; De Long, Jonathan R; Oakley, Simon; Mason, Kelly E; Ostle, Nicholas J; Johnson, David; Baggs, Elizabeth M; Fierer, Noah

    2018-03-09

    There are numerous ways in which plants can influence the composition of soil communities. However, it remains unclear whether information on plant community attributes, including taxonomic, phylogenetic, or trait-based composition, can be used to predict the structure of soil communities. We tested, in both monocultures and field-grown mixed temperate grassland communities, whether plant attributes predict soil communities including taxonomic groups from across the tree of life (fungi, bacteria, protists, and metazoa). The composition of all soil community groups was affected by plant species identity, both in monocultures and in mixed communities. Moreover, plant community composition predicted additional variation in soil community composition beyond what could be predicted from soil abiotic characteristics. In addition, analysis of the field aboveground plant community composition and the composition of plant roots suggests that plant community attributes are better predictors of soil communities than root distributions. However, neither plant phylogeny nor plant traits were strong predictors of soil communities in either experiment. Our results demonstrate that grassland plant species form specific associations with soil community members and that information on plant species distributions can improve predictions of soil community composition. These results indicate that specific associations between plant species and complex soil communities are key determinants of biodiversity patterns in grassland soils.

  9. Construction and analysis of a bacterial community exhibiting strong chitinolytic activity.

    Science.gov (United States)

    Sato, Kazuaki; Kato, Yuichi; Fukamachi, Ayabi; Nogawa, Masahiro; Taguchi, Goro; Shimosaka, Makoto

    2010-01-01

    A stable bacterial community expressing strong chitinolytic activity was constructed by mixing and cultivating chitinolytic bacteria collected from different natural sources. The DNA fragment pattern, after PCR-denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes using total DNA prepared from whole cells, indicated that the community was composed of four dominant bacterial species. All four species were isolated on agar medium, and one strain, SAY3, was deduced to be a novel species belonging to a new genus based on the 16S rRNA nucleotide sequence. The other strains showed high similarity in their 16S rRNA sequences to those of previously identified bacteria (Acinetobacter and Microbacterium). Strain SAY3 degraded and utilized larger particles of chitin faster than the community, indicating that it plays an important role in the chitin degradation conferred by the community.

  10. Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities.

    Science.gov (United States)

    Carrara, Francesco; Giometto, Andrea; Seymour, Mathew; Rinaldo, Andrea; Altermatt, Florian

    2015-05-01

    Unveiling the mechanisms that promote coexistence in biological communities is a fundamental problem in ecology. Stable coexistence of many species is commonly observed in natural communities. Most of these natural communities, however, are composed of species from multiple trophic and functional groups, while theory and experiments on coexistence have been focusing on functionally similar species. Here, we investigated how functional diversity affects the stability of species coexistence and productivity in multispecies communities by characterizing experimentally all pairwise species interactions in a pool of 11 species of eukaryotes (10 protists and one rotifer) belonging to three different functional groups. Species within the same functional group showed stronger competitive interactions compared to among-functional group interactions. This often led to competitive exclusion between species that had higher functional relatedness, but only at low levels of species richness. Communities with higher functional diversity resulted in increased species coexistence and community biomass production. Our experimental findings and the results of a stochastic model tailored to the experimental interaction matrix suggest the emergence of strong stabilizing forces when species from different functional groups interact in a homogeneous environment. By combining theoretical analysis with experiments we could also disentangle the relationship between species richness and functional diversity, showing that functional diversity per se is a crucial driver of productivity and stability in multispecies community.

  11. Community-oriented support and research structures

    International Nuclear Information System (INIS)

    Attig, Norbert; Eickermann, Thomas; Gibbon, Paul; Lippert, Thomas

    2009-01-01

    Coordinated by the Partnership for Advanced Computing in Europe (PRACE) Europe is restructuring and strengthening its high-performance computing infrastructure with the aim to create a model HPC ecosystem. At the tip of the pyramid, up to six centres are envisaged that will operate systems of the highest performance class. The HPC Research Infrastructure (HPC-RI) will comprise European, national and regional centres. Science communities are integral partners, strong links will include Grid and Cloud users. The HPC-RI strives at providing scientists all over Europe, on the one hand, with unlimited and independent access to state-of-the-art computer resources in all performance classes and, on the other hand, with a world-class pan-European competence and support network. While the hardware-oriented buildup of the infrastructure is making progress, high-quality user support and software development in the upcoming era of unprecedented parallelism and exascale on the horizon have become the imminent challenges. This has been clearly recognized by the European Commission, who will issue calls for proposals to fund petascale software development in summer 2009. Although traditional support structures are well established in Europe's major supercomputing centres, it is questionable if these structures are able to meet the challenges of the future: in general, support structures are based on cross-disciplinary computer science and mathematics teams; disciplinary computational science support usually is given in an ad-hoc, project-oriented manner. In this paper, we describe our approach to establish a suitable support structure-Simulation Laboratories (SL). SLs are currently being established at the Juelich Supercomputing Centre of the Forschungszentrum Juelich (FZJ) and at the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute for Technology (KIT) in Germany. While SLs are community-oriented, i.e. each SL focusses on a specific community, they are structured

  12. Shifting Niches for Community Structure Detection

    DEFF Research Database (Denmark)

    Grappiolo, Corrado; Togelius, Julian; Yannakakis, Georgios N.

    2013-01-01

    We present a new evolutionary algorithm for com- munity structure detection in both undirected and unweighted (sparse) graphs and fully connected weighted digraphs (complete networks). Previous investigations have found that, although evolutionary computation can identify community structure...

  13. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    Science.gov (United States)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-07-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed νe/c increases and as the temperature ratio Ti/Te of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on νe/c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of Ti/Te. The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of νe/c. For νe/c ≲0.17, strong turbulence is approximately electrostatic and wave packets have very similar structure to purely electrostatic wave packets. For νe/c ≳0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all νe/c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as νe/c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  14. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    -neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas......Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid...

  15. Strong incidence of Pseudomonas aeruginosa on bacterial rrs and ITS genetic structures of cystic fibrosis sputa.

    Directory of Open Access Journals (Sweden)

    Laurence Pages-Monteiro

    Full Text Available Cystic fibrosis (CF lungs harbor a complex community of interacting microbes, including pathogens like Pseudomonas aeruginosa. Meta-taxogenomic analysis based on V5-V6 rrs PCR products of 52 P. aeruginosa-positive (Pp and 52 P. aeruginosa-negative (Pn pooled DNA extracts from CF sputa suggested positive associations between P. aeruginosa and Stenotrophomonas and Prevotella, but negative ones with Haemophilus, Neisseria and Burkholderia. Internal Transcribed Spacer analyses (RISA from individual DNA extracts identified three significant genetic structures within the CF cohorts, and indicated an impact of P. aeruginosa. RISA clusters Ip and IIIp contained CF sputa with a P. aeruginosa prevalence above 93%, and of 24.2% in cluster IIp. Clusters Ip and IIIp showed lower RISA genetic diversity and richness than IIp. Highly similar cluster IIp RISA profiles were obtained from two patients harboring isolates of a same P. aeruginosa clone, suggesting convergent evolution in the structure of their microbiota. CF patients of cluster IIp had received significantly less antibiotics than patients of clusters Ip and IIIp but harbored the most resistant P. aeruginosa strains. Patients of cluster IIIp were older than those of Ip. The effects of P. aeruginosa on the RISA structures could not be fully dissociated from the above two confounding factors but several trends in these datasets support the conclusion of a strong incidence of P. aeruginosa on the genetic structure of CF lung microbiota.

  16. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  17. Ecological and evolutionary effects of stickleback on community structure.

    Directory of Open Access Journals (Sweden)

    Simone Des Roches

    Full Text Available Species' ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus. We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density and evolutionary (phenotypic diversity and specialization factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities.

  18. Ecological and evolutionary effects of stickleback on community structure.

    Science.gov (United States)

    Des Roches, Simone; Shurin, Jonathan B; Schluter, Dolph; Harmon, Luke J

    2013-01-01

    Species' ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities.

  19. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition.

    Science.gov (United States)

    Bang-Andreasen, Toke; Nielsen, Jeppe T; Voriskova, Jana; Heise, Janine; Rønn, Regin; Kjøller, Rasmus; Hansen, Hans C B; Jacobsen, Carsten S

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha -1 . We used culture-based enumerations of general bacteria, Pseudomonas and sporeforming bacteria combined with 16S rRNA gene amplicon sequencing to valuate soil bacterial responses to wood ash application. Results showed that wood ash addition strongly increased soil pH and electrical conductivity. Soil pH increased from acidic through neutral at 22 t ha -1 to alkaline at 167 t ha -1 . Bacterial numbers significantly increased up to a wood ash dose of 22 t ha -1 followed by significant decrease at 167 t ha -1 wood ash. The soil bacterial community composition changed after wood ash application with copiotrophic bacteria responding positively up to a wood ash dose of 22 t ha -1 while the adverse effect was seen for oligotrophic bacteria. Marked changes in bacterial community composition occurred at a wood ash dose of 167 t ha -1 with a single alkaliphilic genus dominating. Additionally, spore-formers became abundant at an ash dose of 167 t ha -1 whereas this was not the case at lower ash doses. Lastly, bacterial richness and diversity strongly decreased with increasing amount of wood ash applied. All of the observed bacterial responses can be

  20. Trophic and individual efficiencies of size-structured communities

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan; Lundberg, P.

    2009-01-01

    Individual and trophic efficiencies of size-structured communities are derived from mechanistically based principles at the individual level. The derivations are relevant for communities with a size-based trophic structure, i.e. where trophic level is strongly correlated with individual size...... as in many aquatic systems. The derivations are used to link Lindeman's trophic theory and trophic theory based on average individuals with explicit individual-level size spectrum theory. The trophic efficiency based on the transfer of mass between trophic levels through predator-prey interactions...

  1. Community structure in the phonological network

    Directory of Open Access Journals (Sweden)

    Cynthia S. Q. Siew

    2013-08-01

    Full Text Available Community structure, which refers to the presence of densely connected groups within a larger network, is a common feature of several real-world networks from a variety of domains such as the human brain, social networks of hunter-gatherers and business organizations, and the World Wide Web (Porter et al., 2009. Using a community detection technique known as the Louvain optimization method, 17 communities were extracted from the giant component of the phonological network described in Vitevitch (2008. Additional analyses comparing the lexical and phonological characteristics of words in these communities against words in randomly generated communities revealed several novel discoveries. Larger communities tend to consist of short, frequent words of high degree and low age of acquisition ratings, and smaller communities tend to consist of longer, less frequent words of low degree and high age of acquisition ratings. Real communities also contained fewer different phonological segments compared to random communities, although the number of occurrences of phonological segments found in real communities was much higher than that of the same phonological segments in random communities. Interestingly, the observation that relatively few biphones occur very frequently and a large number of biphones occur rarely within communities mirrors the pattern of the overall frequency of words in a language (Zipf, 1935. The present findings have important implications for understanding the dynamics of activation spread among words in the phonological network that are relevant to lexical processing, as well as understanding the mechanisms that underlie language acquisition and the evolution of language.

  2. Rumor propagation on networks with community structure

    Science.gov (United States)

    Zhang, Ruixia; Li, Deyu

    2017-10-01

    In this paper, based on growth and preferential attachment mechanism, we give a network generation model aiming at generating networks with community structure. There are three characteristics for the networks generated by the generation model. The first is that the community sizes can be nonuniform. The second is that there are bridge hubs in each community. The third is that the strength of community structure is adjustable. Next, we investigate rumor propagation behavior on the generated networks by performing Monte Carlo simulations to reveal the influence of bridge hubs, nonuniformity of community sizes and the strength of community structure on the dynamic behavior of the rumor propagation. We find that bridge hubs have outstanding performance in propagation speed and propagation size, and larger modularity can reduce rumor propagation. Furthermore, when the decay rate of rumor spreading β is large, the final density of the stiflers is larger if the rumor originates in larger community. Additionally, when on networks with different strengths of community structure, rumor propagation exhibits greater difference in the density of stiflers and in the peak prevalence if the decay rate β is larger.

  3. Distribution and Community Structure of Butterflyfishes (Pisces ...

    African Journals Online (AJOL)

    24 species) of the continental states of the Western Indian Ocean region, aspects of the ecology and distribution of this group in Mozambique are poorly documented. The distribution, diversity and community structure of butterflyfishes were ...

  4. Understanding Microbial Communities: Function, Structure and Dynamics

    Science.gov (United States)

    2015-02-11

    microbial communities: Function, structure and dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to...dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to December 2014. The programme involved over 150...Communities: Function, Structure and Dynamics’, at the Isaac Newton Institute, Cambridge University, UK, from 19th August 2014 – 19th December 2014

  5. Community structures and role detection in music networks

    Science.gov (United States)

    Teitelbaum, T.; Balenzuela, P.; Cano, P.; Buldú, Javier M.

    2008-12-01

    We analyze the existence of community structures in two different social networks using data obtained from similarity and collaborative features between musical artists. Our analysis reveals some characteristic organizational patterns and provides information about the driving forces behind the growth of the networks. In the similarity network, we find a strong correlation between clusters of artists and musical genres. On the other hand, the collaboration network shows two different kinds of communities: rather small structures related to music bands and geographic zones, and much bigger communities built upon collaborative clusters with a high number of participants related through the period the artists were active. Finally, we detect the leading artists inside their corresponding communities and analyze their roles in the network by looking at a few topological properties of the nodes.

  6. Determinants of the detrital arthropod community structure

    DEFF Research Database (Denmark)

    Lessard, J.P.; Sackett, Tara E.; Reynolds, William N.

    2011-01-01

    in the determinants of community structure. In this study, we first examined the relative importance of environmental gradients, microclimate, and food resources in driving spatial variation in the structure of detrital communities in forests of the southeastern USA. Then, in order to assess whether the determinants...... of detrital community structure varied along a climatic gradient, we manipulated resource availability and microclimatic conditions at 15 sites along a well-studied elevational gradient. We found that arthropod abundance and richness generally declined with increasing elevation, though the shape...... manipulative experiments along environmental gradients can help tease apart the relative importance and detect the interactive effects of local-scale factors and broad-scale climatic variation in shaping communities...

  7. The structural role of weak and strong links in a financial market network

    Science.gov (United States)

    Garas, A.; Argyrakis, P.; Havlin, S.

    2008-05-01

    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  8. Numerical methods and parallel algorithms for fast transient strongly coupled fluid-structure dynamics

    International Nuclear Information System (INIS)

    Faucher, V.

    2014-01-01

    This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author

  9. Strong plasma shock structures based on the Navier--Stokes equations

    International Nuclear Information System (INIS)

    Abe, K.

    1975-01-01

    The structure of a plasma collisional shock wave is examined on the basis of the Navier--Stokes equations and simultaneously on the basis of the Fokker--Planck equation. The resultant structures are compared to check the validity of the Navier--Stokes equations applied to the structures of strong shock waves. The Navier--Stokes equations give quite correct structures for weak shock waves. For the strong shock waves, the detailed structures obtained from the Navier--Stokes equations differ from the results of the Fokker--Planck equation, but the shock thicknesses of the two shock waves are in relatively close agreement

  10. Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure

    Directory of Open Access Journals (Sweden)

    Dhaker Kroumi

    2015-09-01

    Full Text Available In this paper, we deduce a condition for a strategy S1 to be more abundant on average at equilibrium under weak selection than another strategy S2 in a population structured into a finite number of colonies of fixed proportions as the population size tends to infinity. It is assumed that one individual reproduces at a time with some probability depending on the payoff received in pairwise interactions within colonies and between colonies and that the offspring replaces one individual chosen at random in the colony into which the offspring migrates. It is shown that an expected weighted average equilibrium frequency of S1 under weak symmetric strategy mutation between S1 and S2 is increased by weak selection if an expected weighted payoff of S1 near neutrality exceeds the corresponding expected weighted payoff of S2. The weights are given in terms of reproductive values of individuals in the different colonies in the neutral model. This condition for S1 to be favoured by weak selection is obtained from a strong migration limit of the genealogical process under neutrality for a sample of individuals, which is proven using a two-time scale argument. The condition is applied to games between individuals in colonies with linear or cyclic dominance and between individuals belonging to groups represented by subsets of a given set.

  11. Finding Community Structures In Social Activity Data

    KAUST Repository

    Peng, Chengbin

    2015-05-19

    Social activity data sets are increasing in number and volume. Finding community structure in such data is valuable in many applications. For example, understand- ing the community structure of social networks may reduce the spread of epidemics or boost advertising revenue; discovering partitions in tra c networks can help to optimize routing and to reduce congestion; finding a group of users with common interests can allow a system to recommend useful items. Among many aspects, qual- ity of inference and e ciency in finding community structures in such data sets are of paramount concern. In this thesis, we propose several approaches to improve com- munity detection in these aspects. The first approach utilizes the concept of K-cores to reduce the size of the problem. The K-core of a graph is the largest subgraph within which each node has at least K connections. We propose a framework that accelerates community detection. It first applies a traditional algorithm that is relatively slow to the K-core, and then uses a fast heuristic to infer community labels for the remaining nodes. The second approach is to scale the algorithm to multi-processor systems. We de- vise a scalable community detection algorithm for large networks based on stochastic block models. It is an alternating iterative algorithm using a maximum likelihood ap- proach. Compared with traditional inference algorithms for stochastic block models, our algorithm can scale to large networks and run on multi-processor systems. The time complexity is linear in the number of edges of the input network. The third approach is to improve the quality. We propose a framework for non- negative matrix factorization that allows the imposition of linear or approximately linear constraints on each factor. An example of the applications is to find community structures in bipartite networks, which is useful in recommender systems. Our algorithms are compared with the results in recent papers and their quality and e

  12. Shifting Niches for Community Structure Detection

    DEFF Research Database (Denmark)

    Grappiolo, Corrado; Togelius, Julian; Yannakakis, Georgios N.

    2013-01-01

    We present a new evolutionary algorithm for com- munity structure detection in both undirected and unweighted (sparse) graphs and fully connected weighted digraphs (complete networks). Previous investigations have found that, although evolutionary computation can identify community structure...... experimentally compare the new algorithm to the well-known algorithms of Pizzuti and Tasgin, and find that we outperform those algorithms for sparse graphs under some conditions, and drastically outperform them on complete networks under all tested conditions....

  13. Species composition, Plant Community structure and Natural ...

    African Journals Online (AJOL)

    Bheema

    objective of this work was to study the vegetation structure, composition and Natural ... Vegetation classification was performed using PC - ORD for windows version 5.0. Five communities were recognized. Results showed that a total of 157 plant ..... Vegetation types and forest fire management in Ethiopia In: MOA & GTZ.

  14. Land use intensity controls actinobacterial community structure

    Czech Academy of Sciences Publication Activity Database

    Hill, P.; Krištůfek, Václav; Dijkhuizen, L.; Boddy, Ch.; Kroetsch, D.; van Elsas, J.D.

    2011-01-01

    Roč. 61, č. 2 (2011), s. 286-302 ISSN 0095-3628 R&D Projects: GA MŠk LC06066; GA MŠk 2B06154 Institutional research plan: CEZ:AV0Z60660521 Keywords : actinobacterial community structure * DNA * soils Subject RIV: EH - Ecology, Behaviour Impact factor: 2.912, year: 2011

  15. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  16. Manifestation of Symmetry Properties of Nucleon Structure in Strong and Electromagnetic Processes

    Science.gov (United States)

    Tomasi-Gustafsson, Egle; Rekalo, Michail P.

    2004-04-01

    In this contribution we present a specific application of a result obtained by Franco Iachello (in collaboration with R. Bijker and A. Leviatan), which concerns the inelastic electromagnetic form factors on the nucleons. In particular we show examples where symmetries inherent to the structure of the nucleon resonances can manifest in complicated processes of the strong interaction.

  17. Diverse Asian American Families and Communities: Culture, Structure, and Education (Part 1: Why They Differ)

    Science.gov (United States)

    Paik, Susan J.; Rahman, Zaynah; Kula, Stacy M.; Saito, L. Erika; Witenstein, Matthew A.

    2017-01-01

    Based on 11 diverse Asian American (AA) communities, this article discusses the similarities and differences across East, South, and Southeast Asians. Of two parts in this journal issue, Part 1 presents a review of literature and census data to understand the cultural and structural factors of different types of coethnic communities (strong, weak,…

  18. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals.

    Science.gov (United States)

    Gârlea, Ioana C; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G A L; Lettinga, M Pavlik; Koenderink, Gijsje H; Mulder, Bela M

    2016-06-29

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  19. A Social Network Model Exhibiting Tunable Overlapping Community Structure

    NARCIS (Netherlands)

    Liu, D.; Blenn, N.; Van Mieghem, P.F.A.

    2012-01-01

    Social networks, as well as many other real-world networks, exhibit overlapping community structure. In this paper, we present formulas which facilitate the computation for characterizing the overlapping community structure of networks. A hypergraph representation of networks with overlapping

  20. The role of strong-tie social networks in mediating food security of fish resources by a traditional riverine community in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Frédéric Mertens

    2015-09-01

    Full Text Available Social networks are a significant way through which rural communities that manage resources under common property regimes obtain food resources. Previous research on food security and social network analysis has mostly focused on egocentric network data or proxy variables for social networks to explain how social relations contribute to the different dimensions of food security. Whole-network approaches have the potential to contribute to former studies by revealing how individual social ties aggregate into complex structures that create opportunities or constraints to the sharing and distribution of food resources. We used a whole-network approach to investigate the role of network structure in contributing to the four dimensions of food security: food availability, access, utilization, and stability. For a case study of a riparian community from the Brazilian Amazon that is dependent on fish as a key element of food security, we mapped the community strong-tie network among 97% of the village population over 14 years old (n = 336 by integrating reciprocated friendship and occupational ties, as well as close kinship relationships. We explored how different structural properties of the community network contribute to the understanding of (1 the availability of fish as a community resource, (2 community access to fish as a dietary resource, (3 the utilization of fish for consumption in a way that allows the villagers to maximize nutrition while at the same time minimizing toxic risks associated with mercury exposure, and (4 the stability of the fish resources in local ecosystems as a result of cooperative behaviors and community-based management. The contribution of whole-network approaches to the study of the links between community-based natural resource management and food security were discussed in the context of recent social-ecological changes in the Amazonian region.

  1. Research on Community Structure in Bus Transport Networks

    International Nuclear Information System (INIS)

    Yang Xuhua; Wang Bo; Sun Youxian

    2009-01-01

    We abstract the bus transport networks (BTNs) to two kinds of complex networks with space L and space P methods respectively. Using improved community detecting algorithm (PKM agglomerative algorithm), we analyze the community property of two kinds of BTNs graphs. The results show that the BTNs graph described with space L method have obvious community property, but the other kind of BTNs graph described with space P method have not. The reason is that the BTNs graph described with space P method have the intense overlapping community property and general community division algorithms can not identify this kind of community structure. To overcome this problem, we propose a novel community structure called N-depth community and present a corresponding community detecting algorithm, which can detect overlapping community. Applying the novel community structure and detecting algorithm to a BTN evolution model described with space P, whose network property agrees well with real BTNs', we get obvious community property. (general)

  2. Russian Academy of Engineering: a strong power for integration of engineering community

    Directory of Open Access Journals (Sweden)

    GUSEV Boris Vladimirovich

    2015-04-01

    Full Text Available Russian Academy of Engineering is legal successor of the Engineering Academy of USSR, founded by 20 ministries and departments of USSR and RSFSR on May 13, 1990. The Engineering Academy of USSR since the very beginning of its functioning, has launched its task-oriented activity on strengthening of links between science and industry, on solving the problems of using the results of basic (fundamental research and their accelerated adaptation into the industry. In the post-Soviet period, on the basis of the Academy, the Ministry of Justice of the Russian Federation, on December 24, 1991, registered the All-Russian Public Organization Russian Academy of Engineering (RAE. At the present time, RAE includes over 1350 full and corresponding members, prominent Russian scientists, engineers and industry organizers, over 200 member societies which include major Russian science & technology organizations, and over 40 regional engineering-technical structures, departments of RAE. RAE carries out large-scale work on the development of science & technology areas in science, creating new machinery and technologies, organization of efficient functioning of the Russian Engineering community. During the 25-year period of work, about 4,5 thousand new technologies were developed, over 6,5 thousand monographs were published. Over 4 thousand patents were obtained. 209 members of RAE became laureates of State Prize of USSR and RF, 376 members of RAE became laureates of Government Prize of USSR and RF. Annual value of science & research, project and other works in the area of engineering amounts from 0,5 to 1 billion roubles. This information and reference edition of the Encyclopedia of the Russian Academy of Engineering is dedicated to the 25th anniversary of the Russian Academy of Engineering. The Encyclopedia includes creative biographies of more than 1750 full and corresponding members of RAE, prominent scientists, distinguished engineers and organizers of industry

  3. Structure of the strongly coupled classical plasma in the self-consistent mean spherical approximation

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-10-01

    An analytic theory is presented for the static structure factor of the one-component classical plasma at strong couplings. The theory combines the hard-core model of Gillan for short-range correlations in the Coulomb fluid with a semiempirical representation of intermediate-range correlations, through which the requirement of thermodynamic consistency on the ''compressibility'' and the known equation of state of the system are satisfied. Excellent agreement is found with the available computer simulation data on the structure of the fluid. The approach becomes inapplicable at intermediate and weak couplings where effects of penetration in the Coulomb hole of each particle become important. (author)

  4. High Expectations, Strong Support: Faculty Behaviors Predicting Latina/o Community College Student Learning

    Science.gov (United States)

    Lundberg, Carol A.; Kim, Young K.; Andrade, Luis M.; Bahner, Daniel T.

    2018-01-01

    In this study we investigated the extent to which faculty interaction contributed to Latina/o student perceptions of their learning, using a sample of 10,071 Latina/o students who took the Community College Survey of Student Engagement. Findings were disaggregated for men and women, but results were quite similar between the 2 groups. Frequent…

  5. Virioplankton Community Structure in Tunisian Solar Salterns

    Science.gov (United States)

    Boujelben, Ines; Yarza, Pablo; Almansa, Cristina; Villamor, Judith; Maalej, Sami; Santos, Fernando

    2012-01-01

    The microbial community inhabiting Sfax solar salterns on the east coast of Tunisia has been studied by means of different molecular and culture-dependent tools that have unveiled the presence of novel microbial groups as well as a community structure different from that of other coastal hypersaline environments. We have focused on the study of the viral assemblages of these salterns and their changes along the salinity gradient and over time. Viruses from three ponds (C4, M1, and TS) encompassing salinities from moderately hypersaline to saturated (around 14, 19, and 35%, respectively) were sampled in May and October 2009 and analyzed by transmission electron microscopy (TEM) and pulsed-field gel electrophoresis (PFGE). Additionally, for all three October samples and the May TS sample, viral metagenomic DNA was cloned in fosmids, end sequenced, and analyzed. Viral concentration, as well as virus-to-cell ratios, increased along the salinity gradient, with around 1010 virus-like particles (VLPs)/ml in close-to-saturation ponds, which represents the highest viral concentration reported so far for aquatic systems. Four distinct morphologies could be observed with TEM (spherical, tailed, spindled, and filamentous) but with various proportions in the different samples. Metagenomic analyses indicated that every pond harbored a distinct viral assemblage whose G+C content could be roughly correlated with that of the active part of the microbial community that may have constituted the putative hosts. As previously reported for hypersaline metaviromes, most sequences did not have matches in the databases, although some were conserved among the Sfax metaviromes. BLASTx, BLASTp, and dinucleotide frequency analyses indicated that (i) factors additional to salinity could be structuring viral communities and (ii) every metavirome had unique gene contents and dinucleotide frequencies. Comparison with hypersaline metaviromes available in the databases indicated that the viral

  6. Mining strong jumping emerging patterns with a novel list data structure

    Science.gov (United States)

    Chen, Xiangtao; Guan, Ziping

    2017-06-01

    Strong Jumping Emerging Patterns (SJEPs) are data mining patterns which have strong discriminating abilities in classification. However, SJEPs mining algorithms in current years are usually achieved by the data structure, tree. These existing algorithms using the tree structure are difficult to achieve excellent performance. In this paper, we propose a novel method of mining SJEPs named PPSJEP. This algorithm is based on a novel data structure called NSJEP-list, which is improved from the N-list. We use the NSJEP-lists to replace the tree structure. First, we get the individual items' NSJEP-lists from the tree. Then we use the intersection of NSJEP-lists to get the longer itemsets' NSJEP-lists which includes the information of the position and the count in each class. And we mine the SJEPs through the information. Experiments are performed on six UCI datasets. Compared with existing algorithm in running time and classification accuracy, the experimental results show that our algorithm uses less time to mine SJEPs and get the same classification accuracy, especially in lower minimum support threshold.

  7. Transformations of griseofulvin in strong acidic conditions--crystal structures of 2'-demethylgriseofulvin and dimerized griseofulvin.

    Science.gov (United States)

    Leśniewska, Barbara; Jebors, Said; Coleman, Anthony W; Suwińska, Kinga

    2012-03-01

    The structure of griseofulvic acid, C16H15ClO6, at 100 K has orthorhombic (P2(1)2(1)2) symmetry. It is of interest with respect to biological activity. The structure displays intermolecular O-H...O, C-H...O hydrogen bonding as well as week C-H...pi and pi...pi interactions. In strong acidic conditions the griseofulvin undergoes dimerization. The structure of dimerized griseofulvin, C34H32C12O12 x C2H6O x H2O, at 100 K has monoclinic (P2(1)) symmetry. The molecule crystallized as a solvate with one ethanol and one water molecule. The dimeric molecules form intermolecular O-H...O hydrogen bonds to solvents molecules only but they interact via week C-H...O, C-H...pi, C-Cl...pi and pi...pi interactions with other dimerized molecules.

  8. Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region

    Science.gov (United States)

    Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.

    2016-01-01

    Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.

  9. Enhancing Homeland Security Efforts by Building Strong Relationships between the Muslim Community and Local Law Enforcement

    Science.gov (United States)

    2006-03-01

    Report Crimes: The Role of Ethnic Group Membership and Community Efficacy," Crime & Delinquency 49, no. 4 (October 2003), 564-580. http... facilitator who kept the discussions on point and held the participants of both organizations to ethical standards of behavior . 44...crisis occurred with Hmong juvenile gang violence. Beginning in early 1983 a large number of immigrants from East Africa began settling in the

  10. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  11. Community Structure in Online Collegiate Social Networks

    Science.gov (United States)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  12. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  13. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  14. Nonuniform Internal Structure of Fibrin Fibers: Protein Density and Bond Density Strongly Decrease with Increasing Diameter

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available The major structural component of a blood clot is a meshwork of fibrin fibers. It has long been thought that the internal structure of fibrin fibers is homogeneous; that is, the protein density and the bond density between protofibrils are uniform and do not depend on fiber diameter. We performed experiments to investigate the internal structure of fibrin fibers. We formed fibrin fibers with fluorescently labeled fibrinogen and determined the light intensity of a fiber, I, as a function of fiber diameter, D. The intensity and, thus, the total number of fibrin molecules in a cross-section scaled as D1.4. This means that the protein density (fibrin per cross-sectional area, ρp, is not homogeneous but instead strongly decreases with fiber diameter as D-0.6. Thinner fibers are denser than thicker fibers. We also determined Young’s modulus, Y, as a function of fiber diameter. Y decreased strongly with increasing D; Y scaled as D-1.5. This implies that the bond density, ρb, also scales as D-1.5. Thinner fibers are stiffer than thicker fibers. Our data suggest that fibrin fibers have a dense, well-connected core and a sparse, loosely connected periphery. In contrast, electrospun fibrinogen fibers, used as a control, have a homogeneous cross-section.

  15. Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation.

    Science.gov (United States)

    Demmig-Adams, Barbara; Muller, Onno; Stewart, Jared J; Cohu, Christopher M; Adams, William W

    2015-11-01

    In nature, photosynthetic organisms cope with highly variable light environments--intensities varying over orders of magnitudes as well as rapid fluctuations over seconds-to-minutes--by alternating between (a) highly effective absorption and photochemical conversion of light levels limiting to photosynthesis and (b) powerful photoprotective thermal dissipation of potentially damaging light levels exceeding those that can be utilized in photosynthesis. Adjustments of the photosynthetic apparatus to changes in light environment involve biophysical, biochemical, and structural adjustments. We used electron micrographs to assess overall thylakoid grana structure in evergreen species that exhibit much stronger maximal levels of thermal energy dissipation than the more commonly studied annual species. Our findings indicate an association between partial or complete unstacking of thylakoid grana structure and strong reversible thermal energy dissipation that, in contrast to what has been reported for annual species with much lower maximal levels of energy dissipation, is similar to what is seen under photoinhibitory conditions. For a tropical evergreen with tall grana stacks, a loosening, or vertical unstacking, of grana was seen in sun-grown plants exhibiting pronounced pH-dependent, rapidly reversible thermal energy dissipation as well as for sudden low-to-high-light transfer of shade-grown plants that responded with photoinhibition, characterized by strong dark-sustained, pH-independent thermal energy dissipation and photosystem II (PSII) inactivation. On the other hand, full-sun exposed subalpine confers with rather short grana stacks transitioned from autumn to winter via conversion of most thylakoids from granal to stromal lamellae concomitant with photoinhibitory photosynthetic inactivation and sustained thermal energy dissipation. We propose that these two types of changes (partial or complete unstacking of grana) in thylakoid arrangement are both associated with

  16. Community Attachment and Satisfaction: The Role of a Community's Social Network Structure

    Science.gov (United States)

    Crowe, Jessica

    2010-01-01

    This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…

  17. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit

    2015-01-01

    Twenty-nine provenances of teak (Tectona grandis Linn. f.) representing the full natural distribution range of the species were genotyped with microsatellite DNA markers to analyse genetic diversity and population genetic structure. Provenances originating from the semi-moist east coast of India...... of genetic diversity supports the hypothesis that teak has its centre of origin in India, from where it spread eastwards. The analysis of molecular variance (AMOVA) gave an overall highly significant F st value of 0.227—population pairwise F st values were in the range 0.01–0.48. Applying the G......″st differentiation parameter, the estimated overall differentiation was 0.632, implying a strong genetic structure among populations. A neighbour-joining (NJ) tree, using the pairwise population matrix of G″st values as input, contained three distinct groups: (1) the eight provenances from Thailand and Laos, (2...

  18. Polarization-gradient laser cooling as a way to create strongly localized structures for atom lithography

    International Nuclear Information System (INIS)

    Prudnikov, O. N.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic localization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given detuning in a deep optical potential the secular approximation, which is frequently used for a quantum description of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative method for the formation of high contrast spatially localized structures of atoms for the purposes of atom lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of localized atomic structures that can be reached in this type of light mask

  19. The network of collaboration among rappers and its community structure

    Science.gov (United States)

    Smith, Reginald D.

    2006-02-01

    The social network formed by the collaboration between rappers is studied using standard statistical techniques for analysing complex networks. In addition, the community structure of the rap music community is analysed using a new method that uses weighted edges to determine which connections are most important and revealing among all the communities. The results of this method as well as possible reasons for the structure of the rap music community are discussed.

  20. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  1. Climate change effects on soil microarthropod abundance and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Reynolds, W. Nicholas [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL; Classen, Aimee T [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but not in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil

  2. Influence of static habitat attributes on local and regional Rocky intertidal community structure

    Science.gov (United States)

    Konar, B.; Iken, K.; Coletti, H.; Monson, Daniel H.; Weitzman, Ben P.

    2016-01-01

    Rocky intertidal communities are structured by local environmental drivers, which can be dynamic, fluctuating on various temporal scales, or static and not greatly varying across years. We examined the role of six static drivers (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, and substrate composition) on intertidal community structure across the northern Gulf of Alaska. We hypothesized that community structure is less similar at the local scale compared with the regional scale, coinciding with static drivers being less similar on smaller than larger scales. We also hypothesized that static attributes mainly drive local biological community structure. For this, we surveyed five to six sites in each of the six regions in the mid and low intertidal strata. Across regions, static attributes were not consistently different and only small clusters of sites had similar attributes. Additionally, intertidal communities were less similar on the site compared with the region level. These results suggest that these biological communities are not strongly influenced by the local static attributes measured in this study. An alternative explanation is that static attributes among our regions are not different enough to influence the biological communities. This lack of evidence for a strong static driver may be a result of our site selection, which targeted rocky sheltered communities. This suggests that this habitat may be ideal to examine the influence of dynamic drivers. We recommend that future analyses of dynamic attributes may best be performed after analyses have demonstrated that sites do not differ in static attributes.

  3. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  4. Strong stability and host specific bacterial community in faeces of ponies.

    Directory of Open Access Journals (Sweden)

    Tina M Blackmore

    Full Text Available The horse, as a hindgut fermenter, is reliant on its intestinal bacterial population for efficient diet utilisation. However, sudden disturbance of this population can result in severe colic or laminitis, both of which may require euthanasia. This study therefore aimed to determine the temporal stability of the bacterial population of faecal samples from six ponies maintained on a formulated high fibre diet. Bacterial 16S rRNA terminal restriction fragment length polymorphism (TRFLP analyses of 10 faecal samples collected from 6 ponies at regular intervals over 72 hour trial periods identified a significant pony-specific profile (P<0.001 with strong stability. Within each pony, a significantly different population was found after 11 weeks on the same diet (P<0.001 and with greater intra-individual similarity. Total short chain fatty acid (SCFA concentration increased in all ponies, but other changes (such as bacterial population diversity measures, individual major SCFA concentration were significant and dependent on the individual. This study is the first to report the extent of stability of microbes resident in the intestinal tract as represented with such depth and frequency of faecal sampling. In doing so, this provides a baseline from which future trials can be planned and the extent to which results may be interpreted.

  5. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  6. Exploring community structure in biological networks with random graphs

    Science.gov (United States)

    2014-01-01

    Background Community structure is ubiquitous in biological networks. There has been an increased interest in unraveling the community structure of biological systems as it may provide important insights into a system’s functional components and the impact of local structures on dynamics at a global scale. Choosing an appropriate community detection algorithm to identify the community structure in an empirical network can be difficult, however, as the many algorithms available are based on a variety of cost functions and are difficult to validate. Even when community structure is identified in an empirical system, disentangling the effect of community structure from other network properties such as clustering coefficient and assortativity can be a challenge. Results Here, we develop a generative model to produce undirected, simple, connected graphs with a specified degrees and pattern of communities, while maintaining a graph structure that is as random as possible. Additionally, we demonstrate two important applications of our model: (a) to generate networks that can be used to benchmark existing and new algorithms for detecting communities in biological networks; and (b) to generate null models to serve as random controls when investigating the impact of complex network features beyond the byproduct of degree and modularity in empirical biological networks. Conclusion Our model allows for the systematic study of the presence of community structure and its impact on network function and dynamics. This process is a crucial step in unraveling the functional consequences of the structural properties of biological systems and uncovering the mechanisms that drive these systems. PMID:24965130

  7. Structural Insights into the HIV-1 Minus-strand Strong-stop DNA.

    Science.gov (United States)

    Chen, Yingying; Maskri, Ouerdia; Chaminade, Françoise; René, Brigitte; Benkaroun, Jessica; Godet, Julien; Mély, Yves; Mauffret, Olivier; Fossé, Philippe

    2016-02-12

    An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3'-end of the genomic RNA with the complementary r region at the 3'-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Tunable superconducting critical temperature in ballistic hybrid structures with strong spin-orbit coupling

    Science.gov (United States)

    Simensen, Haakon T.; Linder, Jacob

    2018-02-01

    We present a theoretical description and numerical simulations of the superconducting transition in hybrid structures including strong spin-orbit interactions. The spin-orbit coupling is taken to be of Rashba type for concreteness, and we allow for an arbitrary magnitude of the spin-orbit strength as well as an arbitrary thickness of the spin-orbit coupled layer. This allows us to make contact with the experimentally relevant case of enhanced interfacial spin-orbit coupling via atomically thin heavy metal layers. We consider both interfacial spin-orbit coupling induced by inversion asymmetry in an S/F junction, as well as in-plane spin-orbit coupling in the ferromagnetic region of an S/F/S and an S/F structure. Both the pair amplitudes, local density of states, and critical temperature show dependency on the Rashba strength and, importantly, the orientation of the exchange field. In general, spin-orbit coupling increases the critical temperature of a proximity system where a magnetic field is present, and enhances the superconducting gap in the density of states. We perform a theoretical derivation which explains these results by the appearance of long-ranged singlet correlations. Our results suggest that Tc in ballistic spin-orbit coupled superconducting structures may be tuned by using only a single ferromagnetic layer.

  9. Tough and strong porous bioactive glass-PLA composites for structural bone repair.

    Science.gov (United States)

    Xiao, Wei; Zaeem, Mohsen Asle; Li, Guangda; Bal, B Sonny; Rahaman, Mohamed N

    2017-08-01

    Bioactive glass scaffolds have been used to heal small contained bone defects but their application to repairing structural bone is limited by concerns about their mechanical reliability. In the present study, the addition of an adherent polymer layer to the external surface of strong porous bioactive glass (13-93) scaffolds was investigated to improve their toughness. Finite element modeling (FEM) of the flexural mechanical response of beams composed of a porous glass and an adherent polymer layer predicted a reduction in the tensile stress in the glass with increasing thickness and elastic modulus of the polymer layer. Mechanical testing of composites with structures similar to the models, formed from 13-93 glass and polylactic acid (PLA), showed trends predicted by the FEM simulations but the observed effects were considerably more dramatic. A PLA layer of thickness -400 µm, equal to -12.5% of the scaffold thickness, increased the load-bearing capacity of the scaffold in four-point bending by ~50%. The work of fracture increased by more than 10,000%, resulting in a non-brittle mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture shown to be conducive to bone infiltration, could provide optimal implants for healing structural bone defects.

  10. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    Science.gov (United States)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  11. Outflow structure of the quiet sun corona probed by spacecraft radio scintillations in strong scattering

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tokumaru, Munetoshi; Shiota, Daikou [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 484-8601 (Japan); Isobe, Hiroaki; Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471, Japan. (Japan); Miyamoto, Mayu [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Häusler, Bernd [Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg (Germany); Pätzold, Martin [Rheinisches Institut für Umweltforschung, Department Planetenforschung, Universität zu Köln, Aachener Strasse 209, D-50931 Köln (Germany); Nabatov, Alexander [The Institute of Radio Astronomy, National Academy of Science of Ukraine, Chervonoprapornaya, Strasse 4, Kharkov 61002 (Ukraine); Yaji, Kentaro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Yamada, Manabu, E-mail: imamura.takeshi@jaxa.jp [Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016 (Japan)

    2014-06-20

    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area. The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.

  12. Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability

    Directory of Open Access Journals (Sweden)

    Francesco Tornabene

    2017-07-01

    Full Text Available The authors are presenting a novel formulation based on the Differential Quadrature (DQ method which is used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form finite elements (SFEM or WFEM, according to the numerical scheme employed in the computation. Such numerical methods are applied to solve some structural problems related to the mechanical behavior of plates and shells, made of isotropic or composite materials. The main differences between these two approaches rely on the initial formulation – which is strong or weak (variational – and the implementation of the boundary conditions, that for the former include the continuity of stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. The two methodologies consider also a mapping technique to transform an element of general shape described in Cartesian coordinates into the same element in the computational space. Such technique can be implemented by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or blending functions which allow an “exact mapping” of the element. In particular, the authors are employing NURBS (Not-Uniform Rational B-Splines for such nonlinear mapping in order to use the “exact” shape of CAD designs.

  13. Phylogenetic structure in tropical hummingbird communities

    DEFF Research Database (Denmark)

    Graham, Catherine H; Parra, Juan L; Rahbek, Carsten

    2009-01-01

    composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern...... that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining...

  14. Helminth communities of owls (strigiformes) indicate strong biological and ecological differences from birds of prey (accipitriformes and falconiformes) in southern Italy.

    Science.gov (United States)

    Santoro, Mario; Mattiucci, Simonetta; Nascetti, Giuseppe; Kinsella, John M; Di Prisco, Francesca; Troisi, Sabatino; D'Alessio, Nicola; Veneziano, Vincenzo; Aznar, Francisco J

    2012-01-01

    We compared the helminth communities of 5 owl species from Calabria (Italy) and evaluated the effect of phylogenetic and ecological factors on community structure. Two host taxonomic scales were considered, i.e., owl species, and owls vs. birds of prey. The latter scale was dealt with by comparing the data here obtained with that of birds of prey from the same locality and with those published previously on owls and birds of prey from Galicia (Spain). A total of 19 helminth taxa were found in owls from Calabria. Statistical comparison showed only marginal differences between scops owls (Otus scops) and little owls (Athene noctua) and tawny owls (Strix aluco). It would indicate that all owl species are exposed to a common pool of 'owl generalist' helminth taxa, with quantitative differences being determined by differences in diet within a range of prey relatively narrow. In contrast, birds of prey from the same region exhibited strong differences because they feed on different and wider spectra of prey. In Calabria, owls can be separated as a whole from birds of prey with regard to the structure of their helminth communities while in Galicia helminths of owls represent a subset of those of birds of prey. This difference is related to the occurrence in Calabria, but not Galicia, of a pool of 'owl specialist' species. The wide geographical occurrence of these taxa suggest that local conditions may determine fundamental differences in the composition of local communities. Finally, in both Calabria and Galicia, helminth communities from owls were species-poor compared to those from sympatric birds of prey. However, birds of prey appear to share a greater pool of specific helmith taxa derived from cospeciation processes, and a greater potential exchange of parasites between them than with owls because of phylogenetic closeness.

  15. Helminth communities of owls (strigiformes indicate strong biological and ecological differences from birds of prey (accipitriformes and falconiformes in southern Italy.

    Directory of Open Access Journals (Sweden)

    Mario Santoro

    Full Text Available We compared the helminth communities of 5 owl species from Calabria (Italy and evaluated the effect of phylogenetic and ecological factors on community structure. Two host taxonomic scales were considered, i.e., owl species, and owls vs. birds of prey. The latter scale was dealt with by comparing the data here obtained with that of birds of prey from the same locality and with those published previously on owls and birds of prey from Galicia (Spain. A total of 19 helminth taxa were found in owls from Calabria. Statistical comparison showed only marginal differences between scops owls (Otus scops and little owls (Athene noctua and tawny owls (Strix aluco. It would indicate that all owl species are exposed to a common pool of 'owl generalist' helminth taxa, with quantitative differences being determined by differences in diet within a range of prey relatively narrow. In contrast, birds of prey from the same region exhibited strong differences because they feed on different and wider spectra of prey. In Calabria, owls can be separated as a whole from birds of prey with regard to the structure of their helminth communities while in Galicia helminths of owls represent a subset of those of birds of prey. This difference is related to the occurrence in Calabria, but not Galicia, of a pool of 'owl specialist' species. The wide geographical occurrence of these taxa suggest that local conditions may determine fundamental differences in the composition of local communities. Finally, in both Calabria and Galicia, helminth communities from owls were species-poor compared to those from sympatric birds of prey. However, birds of prey appear to share a greater pool of specific helmith taxa derived from cospeciation processes, and a greater potential exchange of parasites between them than with owls because of phylogenetic closeness.

  16. Investigating the internal structure of galaxies and clusters through strong gravitational lensing

    Science.gov (United States)

    Jigish Gandhi, Pratik; Grillo, Claudio; Bonamigo, Mario

    2018-01-01

    Gravitational lensing studies have radically improved our understanding of the internal structure of galaxies and cluster-scale systems. In particular, the combination of strong lensing and stellar dynamics or stellar population synthesis models have made it possible to characterize numerous fundamental properties of the galaxies as well as dark matter halos and subhalos with unprecedented robustness and accuracy. Here we demonstrate the usefulness and accuracy of strong lensing as a probe for characterising the properties of cluster members as well as dark matter halos, to show that such characterisation carried out via lensing analyses alone is as viable as those carried out through a combination of spectroscopy and lensing analyses.Our study uses focuses on the early-type galaxy cluster MACS J1149.5+2223 at redshift 0.54 in the Hubble Frontier Fields (HFF) program, where the first magnified and spatially resolved multiple images of supernova (SN) “Refsdal” and its late-type host galaxy at redshift 1.489 were detected. The Refsdal system is unique in being the first ever multiply-imaged supernova, with it’s first four images appearing in an Einstein Cross configuration around one of the cluster members in 2015. In our lensing analyses we use HST data of the multiply-imaged SN Refsdal to constrain the dynamical masses, velocity dispersions, and virial radii of individual galaxies and dark matter halos in the MACS J1149.5+2223 cluster. For our lensing models we select a sample of 300 cluster members within approximately 500 kpc from the BCG, and a set of reliable multiple images associated with 18 distinct knots in the SN host spiral galaxy, as well as multiple images of the supernova itself. Our results provide accurate measurements of the masses, velocity dispersions, and radii of the cluster’s dark matter halo as well as three chosen members galaxies, in strong agreement with those obtained by Grillo et al 2015, demonstrating the usefulness of strong

  17. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  18. Enhancing community detection by using local structural information

    International Nuclear Information System (INIS)

    Xiang, Ju; Bao, Mei-Hua; Tang, Liang; Li, Jian-Ming; Hu, Ke; Chen, Benyan; Hu, Jing-Bo; Zhang, Yan; Tang, Yan-Ni; Gao, Yuan-Yuan

    2016-01-01

    Many real-world networks, such as gene networks, protein–protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods. (paper: interdisciplinary statistical mechanics)

  19. A new hierarchical method to find community structure in networks

    Science.gov (United States)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  20. Microarthropod community structures (Oribatei and Collembola) in ...

    Indian Academy of Sciences (India)

    Unknown

    A study on the microarthropod community with special reference to species diversity of Oribatid and Collembola communities (Microarthropoda: Oribatei and Collembola) in Tam Dao National Park of Vietnam, a subtropical evergreen broad leaf alpine forest, was undertaken with the aim to explain how they are related to ...

  1. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  2. Sclerosant foam structure and stability is strongly influenced by liquid air fraction.

    Science.gov (United States)

    Cameron, E; Chen, T; Connor, D E; Behnia, M; Parsi, K

    2013-10-01

    To determine the effects of sclerosant foam preparation and composition on foam structure, the time course of liquid drainage, and foam coarsening. Sodium tetradecyl sulphate (STS) and polidocanol (POL) foams were investigated in a range of concentrations (0.5-3%) and liquid-plus-air fractions (LAF; 1 + 2 to 1 + 8). Foam was injected into a vein simulation model (polyvinyl chloride tubing, inner diameter 3 mm, constant pressure 5-7 mmHg) filled with saline or blood. Liquid drainage, bubble count, and diameter were measured and documented by serial photography. Liquid drainage was faster in the vertical position than the horizontal one. In all variations, very small bubbles (diameter foams (foams (>250 μm) and by 7.5 minutes macro-foams (>500 μm) were formed. Following injection, the upper regions of foam coarsened faster as liquid drained to the bottom of the vessel. Wet preparations produced significantly smaller bubbles. Low concentration POL foam produced significantly higher bubble counts and coarsened slower than STS. Foam structure is strongly influenced by the LAF. Despite the initial formation of micro-bubbles in the syringe, mini- and macro-bubbles are formed in target vessels with time post-injection. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    Science.gov (United States)

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  4. Community structure and diversity of macrobenthic invertebrates in ...

    African Journals Online (AJOL)

    Macrobenthic invertebrates' community structure and diversity in relation to some water quality parameters of Owan River; Edo State, was investigated from March 2011 to August, 2011. The study was aimed to determine the water-quality and their relationship with the community structure and diversity of ...

  5. Angular structure of jet quenching within a hybrid strong/weak coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2017-03-27

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the

  6. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  7. Electronic structure and superconductivity in strongly correlated systems in the pseudogap regime

    Energy Technology Data Exchange (ETDEWEB)

    Puig-Puig, L.; Lopez-Aguilar, F. [Grup d`Electromagnetisme, Departament de Fisica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Ballaterra (Barcelona) (Spain)

    1995-12-15

    We propose effective potentials from a screened Coulomb interaction which arises from spin-fluctuation effects within a three-dimensional Hubbard single-band model for systems with strongly correlated electrons within the pseudogap regime. This regime is characterized by the existence in the normal state of at least two structures located at both sides of the Fermi level and split by a gap or pseudogap. This is the most crucial assumption in the analysis performed in this work. We consider the proposed effective interactions between fermions, analyzing the possibility of obtaining superconductivity by means of the formulation of the corresponding Dyson-like equations for the normal and anomalous one-body propagators in the state with bosonic condensation. We also include vertex effects within these effective fermion-fermion interactions and discuss their influence in this formalism in order to consider a Migdal-like theory appropriate to Hubbard systems. In cases where superconductivity is found, the critical temperature is obtained and the influence of the band and potential parameters is analyzed.

  8. Strong phylogeographic structure in a sedentary seabird, the Stewart Island Shag (Leucocarbo chalconotus.

    Directory of Open Access Journals (Sweden)

    Nicolas J Rawlence

    Full Text Available New Zealand's endemic Stewart Island Shag (Leucocarbo chalconotus comprises two regional groups (Otago and Foveaux Strait that show consistent differentiation in relative frequencies of pied versus dark-bronze morphotypes, the extent of facial carunculation, body size and breeding time. We used modern and ancient DNA (mitochondrial DNA control region one, and morphometric approaches to investigate the phylogeography and taxonomy of L. chalconotus and its closely related sister species, the endemic Chatham Island Shag (L. onslowi. Our analysis shows Leucocarbo shags in southern New Zealand comprise two well-supported clades, each containing both pied and dark-bronze morphs. However, the combined monophyly of these populations is not supported, with the L. chalconotus Otago lineage sister to L. onslowi. Morphometric analysis indicates that Leucocarbo shags from Otago are larger on average than those from Foveaux Strait. Principal co-ordinate analysis of morphometric data showed substantial morphological differentiation between the Otago and Foveaux Strait clades, and L. onslowi. The phylogeographic partitioning detected within L. chalconotus is marked, and such strong structure is rare for phalacrocoracid species. Our phylogenetic results, together with consistent differences in relative proportions of plumage morphs and facial carunculation, and concordant differentiation in body size and breeding time, suggest several alternative evolutionary hypotheses that require further investigation to determine the level of taxonomic distinctiveness that best represents the L. chalconotus Otago and Foveaux Strait clades.

  9. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sayantan [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States); Dick, Viktor [Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Karsch, Frithjof [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States); Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Laermann, Edwin [Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Mukherjee, Swagato [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States)

    2016-12-15

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.

  10. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  11. Role of strongly interacting additives in tuning the structure and properties of polymer systems

    Science.gov (United States)

    Daga, Vikram Kumar

    Block copolymer (BCP) nanocomposites are an important class of hybrid materials in which the BCP guides the spatial location and the periodic assembly of the additives. High loadings of well-dispersed nanofillers are generally important for many applications including mechanical reinforcing of polymers. In particular the composites shown in this work might find use as etch masks in nanolithography, or for enabling various phase selective reactions for new materials development. This work explores the use of hydrogen bonding interactions between various additives (such as homopolymers and non-polymeric additives) and small, disordered BCPs to cause the formation of well-ordered morphologies with small domains. A detailed study of the organization of homopolymer chains and the evolution of structure during the process of ordering is performed. The results demonstrate that by tuning the selective interaction of the additive with the incorporating phase of the BCP, composites with significantly high loadings of additives can be formed while maintaining order in the BCP morphology. The possibility of high and selective loading of additives in one of the phases of the ordered BCP composite opens new avenues due to high degree of functionalization and the proximity of the additives within the incorporating phase. This aspect is utilized in one case for the formation of a network structure between adjoining additive cores to derive mesoporous inorganic materials with their structures templated by the BCP. The concept of additive-driven assembly is extended to formulate BCPadditive blends with an ability to undergo photo-induced ordering. Underlying this strategy is the ability to transition a weakly interacting additive to its strongly interacting form. This strategy provides an on-demand, non-intrusive route for formation of well-ordered nanostructures in arbitrarily defined regions of an otherwise disordered material. The second area explored in this dissertation deals

  12. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  13. Detecting Community Structure by Using a Constrained Label Propagation Algorithm.

    Directory of Open Access Journals (Sweden)

    Jia Hou Chin

    Full Text Available Community structure is considered one of the most interesting features in complex networks. Many real-world complex systems exhibit community structure, where individuals with similar properties form a community. The identification of communities in a network is important for understanding the structure of said network, in a specific perspective. Thus, community detection in complex networks gained immense interest over the last decade. A lot of community detection methods were proposed, and one of them is the label propagation algorithm (LPA. The simplicity and time efficiency of the LPA make it a popular community detection method. However, the LPA suffers from instability detection due to randomness that is induced in the algorithm. The focus of this paper is to improve the stability and accuracy of the LPA, while retaining its simplicity. Our proposed algorithm will first detect the main communities in a network by using the number of mutual neighbouring nodes. Subsequently, nodes are added into communities by using a constrained LPA. Those constraints are then gradually relaxed until all nodes are assigned into groups. In order to refine the quality of the detected communities, nodes in communities can be switched to another community or removed from their current communities at various stages of the algorithm. We evaluated our algorithm on three types of benchmark networks, namely the Lancichinetti-Fortunato-Radicchi (LFR, Relaxed Caveman (RC and Girvan-Newman (GN benchmarks. We also apply the present algorithm to some real-world networks of various sizes. The current results show some promising potential, of the proposed algorithm, in terms of detecting communities accurately. Furthermore, our constrained LPA has a robustness and stability that are significantly better than the simple LPA as it is able to yield deterministic results.

  14. Effects of drought on avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Brian D. Wardlow; Volker C. Radeloff

    2010-01-01

    Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most...

  15. Triclosan alterations of estuarine phytoplankton community structure.

    Science.gov (United States)

    Pinckney, James L; Thompson, Laura; Hylton, Sarah

    2017-06-15

    Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl -1 . The EC 50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l -1 . Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l -1 . This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Virality Prediction and Community Structure in Social Networks

    Science.gov (United States)

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-08-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  17. Assembly and phylogenetic structure of Neotropical palm communities

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Svenning, J.-C.; Balslev, Henrik

    Diversity, composition and dynamics of Neotropical palm communities are receiving an increasing amount of attention due to their economic importance, but also because their high species richness and functional diversity render them valuable model systems for overall forest biodiversity. However......, to better understand these palm communities, it is crucial to gain insight into the mechanisms responsible for their assembly. These can be dispersal limitation, environmental filtering, or biotic interactions. If the degree of niche conservatism is known for a group of organisms, patterns of community...... phylogenetic structure can be directly traced back to mechanisms of community assembly. We aim to examine this for Neotropical palm communities. Phylogenetic structure will be inferred on different spatial scales and for different community definitions (plot-based and environment-based). To overcome...

  18. Elevated Air Humidity Changes Soil Bacterial Community Structure in the Silver Birch Stand.

    Science.gov (United States)

    Truu, Marika; Ostonen, Ivika; Preem, Jens-Konrad; Lõhmus, Krista; Nõlvak, Hiie; Ligi, Teele; Rosenvald, Katrin; Parts, Kaarin; Kupper, Priit; Truu, Jaak

    2017-01-01

    Soil microbes play a fundamental role in forest ecosystems and respond rapidly to changes in the environment. Simultaneously with the temperature increase the climate change scenarios also predict an intensified hydrological cycle for the Baltic Sea runoff region. The aim of this study was to assess the effect of elevated air humidity on the top soil microbial community structure of a silver birch ( Betula pendula Roth.) stand by using a free air humidity manipulation facility (FAHM). The bacterial community structures of bulk soil and birch rhizosphere were analyzed using high-throughput sequencing of bacteria-specific16S rRNA gene fragments and quantification of denitrification related genes. The increased air humidity altered both bulk soil and rhizosphere bacterial community structures, and changes in the bacterial communities initiated by elevated air humidity were related to modified soil abiotic and biotic variables. Network analysis revealed that variation in soil bacterial community structural units is explained by altered abiotic conditions such as increased pH value in bulk soil, while in rhizosphere the change in absorptive root morphology had a higher effect. Among root morphological traits, the absorptive root diameter was strongest related to the bacterial community structure. The changes in bacterial community structures under elevated air humidity are associated with shifts in C, N, and P turnover as well as mineral weathering processes in soil. Increased air humidity decreased the nir and nosZ gene abundance in the rhizosphere bacterial community. The potential contribution of the denitrification to the N 2 O emission was not affected by the elevated air humidity in birch stand soil. In addition, the study revealed a strong link between the bacterial community structure, abundance of denitrification related genes, and birch absorptive root morphology in the ecosystem system adaptation to elevated air humidity.

  19. Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population.

    Science.gov (United States)

    Bani, Luciano; Pisa, Giulia; Luppi, Massimiliano; Spilotros, Giulia; Fabbri, Elena; Randi, Ettore; Orioli, Valerio

    2015-08-01

    population are strongly structured.

  20. Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities

    OpenAIRE

    Bailey, Richard; Schonrogge, Karsten; Cook, James M.; Melika, George; Csoka, Gyorgy; Thuroczy, Csaba; Stone, Graham N.

    2009-01-01

    Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped ...

  1. Community structure follows simple assembly rules in microbial microcosms.

    Science.gov (United States)

    Friedman, Jonathan; Higgins, Logan M; Gore, Jeff

    2017-03-27

    Microorganisms typically form diverse communities of interacting species, whose activities have tremendous impact on the plants, animals and humans they associate with. The ability to predict the structure of these complex communities is crucial to understanding and managing them. Here, we propose a simple, qualitative assembly rule that predicts community structure from the outcomes of competitions between small sets of species, and experimentally assess its predictive power using synthetic microbial communities composed of up to eight soil bacterial species. Nearly all competitions resulted in a unique, stable community, whose composition was independent of the initial species fractions. Survival in three-species competitions was predicted by the pairwise outcomes with an accuracy of ~90%. Obtaining a similar level of accuracy in competitions between sets of seven or all eight species required incorporating additional information regarding the outcomes of the three-species competitions. Our results demonstrate experimentally the ability of a simple bottom-up approach to predict community structure. Such an approach is key for anticipating the response of communities to changing environments, designing interventions to steer existing communities to more desirable states and, ultimately, rationally designing communities de novo.

  2. Community Racial Segregation, Electoral Structure, and Minority Representation.

    Science.gov (United States)

    Vedlitz, Arnold; Johnson, Charles A.

    1982-01-01

    Community electoral structures and segregation levels affect minority representation. Single-member district electorate systems provide significantly more favorable minority representation levels in segregated communities. In nonsegregated cities type of election system makes little difference in the equality of minority representation. (Author/AM)

  3. Colonisation and community structure of benthic diatoms on artificial ...

    African Journals Online (AJOL)

    This was undertaken using tiles as artificial substrates so that we could study how the communities developed after the flood disturbance. The diatom community structure was assessed over a 28-day period following a flood event in October 2012. The Mann Whitney test indicated that there was a statistically significant ...

  4. Faculty Scholarship at Community Colleges: Culture, Institutional Structures, and Socialization

    Science.gov (United States)

    Morest, Vanessa Smith

    2015-01-01

    This chapter looks at community college faculty engagement in scholarship. Community college faculty spend the majority of their time engaged in teaching, and therefore their scholarship typically focuses on strengthening curriculum and instruction. The paper identifies some of the structural and cultural challenges and supports to scholarship at…

  5. Community detection using global and local structural information

    Indian Academy of Sciences (India)

    Abstract. Community detection is of considerable importance for understanding both the struc- ture and function of complex networks. In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local similarity ...

  6. Community perceptions of the socio-economic structural context ...

    African Journals Online (AJOL)

    Community perceptions of the socio-economic structural context influencing HIV and TB risk, prevention and treatment in a high prevalence area in the era of ... The few socio-economic opportunities promote social mobility in search of better prospects which may have a negative impact on community cohesion and ...

  7. Experimental shift in benthic community structure

    OpenAIRE

    Naim, Odile; Cuet, Pascale; Letourneur, Y.

    1996-01-01

    International audience; In January 1989, hypersedimentation generated by hurricane Firinga was responsible for 99% mortality within the St-Leu reef flat coral community (Reunion Island, S.W. Indian Ocean). In September 1992, one homogeneous zone (400 m2) of dead Acropora pharaonis (60% coverage: cv) was selected on the inner ~eef flat: corals were almost totally covered by macroalgae and turfs (Stegastes nigricans territories). Macroalgae and turfs were removed from half of the zone (zone M, ...

  8. Community detection using global and local structural information

    Indian Academy of Sciences (India)

    ac.in/article/fulltext/pram/080/01/0173-0185 ... In this paper, we introduced the general procedure of the community detection algorithms using global and local structural information, where the edge betweenness and the local similarity ...

  9. Host niches and defensive extended phenotypes structure parasitoid wasp communities.

    Directory of Open Access Journals (Sweden)

    Richard Bailey

    2009-08-01

    Full Text Available Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies.Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the "Enemy Hypothesis," which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness, supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed. The combined explanatory power of structural and

  10. Host Niches and Defensive Extended Phenotypes Structure Parasitoid Wasp Communities

    Science.gov (United States)

    Bailey, Richard; Schönrogge, Karsten; Cook, James M.; Melika, George; Csóka, György; Thuróczy, Csaba; Stone, Graham N.

    2009-01-01

    Oak galls are spectacular extended phenotypes of gallwasp genes in host oak tissues and have evolved complex morphologies that serve, in part, to exclude parasitoid natural enemies. Parasitoids and their insect herbivore hosts have coevolved to produce diverse communities comprising about a third of all animal species. The factors structuring these communities, however, remain poorly understood. An emerging theme in community ecology is the need to consider the effects of host traits, shaped by both natural selection and phylogenetic history, on associated communities of natural enemies. Here we examine the impact of host traits and phylogenetic relatedness on 48 ecologically closed and species-rich communities of parasitoids attacking gall-inducing wasps on oaks. Gallwasps induce the development of spectacular and structurally complex galls whose species- and generation-specific morphologies are the extended phenotypes of gallwasp genes. All the associated natural enemies attack their concealed hosts through gall tissues, and several structural gall traits have been shown to enhance defence against parasitoid attack. Here we explore the significance of these and other host traits in predicting variation in parasitoid community structure across gallwasp species. In particular, we test the “Enemy Hypothesis,” which predicts that galls with similar morphology will exclude similar sets of parasitoids and therefore have similar parasitoid communities. Having controlled for phylogenetic patterning in host traits and communities, we found significant correlations between parasitoid community structure and several gall structural traits (toughness, hairiness, stickiness), supporting the Enemy Hypothesis. Parasitoid community structure was also consistently predicted by components of the hosts' spatiotemporal niche, particularly host oak taxonomy and gall location (e.g., leaf versus bud versus seed). The combined explanatory power of structural and spatiotemporal

  11. The overlapping community structure of structural brain network in young healthy individuals.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2011-05-01

    Full Text Available Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.

  12. Covariance, correlation matrix, and the multiscale community structure of networks.

    Science.gov (United States)

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  13. Short-term changes in a microplankton community in the Chukchi Sea during autumn: consequences of a strong wind event

    Science.gov (United States)

    Yokoi, Naoya; Matsuno, Kohei; Ichinomiya, Mutsuo; Yamaguchi, Atsushi; Nishino, Shigeto; Onodera, Jonaotaro; Inoue, Jun; Kikuchi, Takashi

    2016-02-01

    Recent studies indicate an increase in atmospheric turbulence in the Chukchi Sea due to the recent drastic sea-ice reduction during summer months. The importance of the effects of this atmospheric turbulence on the marine ecosystem in this region, however, is not fully understood. To evaluate the effects of atmospheric turbulence on the marine ecosystem, high-frequency sampling (daily) from five layers of the microplankton community between 0 and 30 m at a fixed station in the Chukchi Sea from 10 through 25 September 2013 was conducted. During the study period, a strong wind event (SWE) was observed on 18 and 19 September. The abundance of microplankton was 2.6 to 17.6 cells mL-1, with a maximum abundance being reported at 20 m on 22 September, while diatoms were the most dominant taxa throughout the study period. The abundance of diatoms, dinoflagellates and ciliates ranged between 1.6 and 14.1, 0.5 and 2.4 and 0.1 and 2.8 cells mL-1, respectively. Diatoms belonging to 7 genera consisting of 35 species (Cylindrotheca closterium and Leptocylindrus danicus were dominant), dinoflagellates belonging to 7 genera consisting of 25 species (Prorocentrum balticum and Gymnodinium spp. were dominant) and ciliates belonging to 7 genera consisting of 8 species (Strobilidium spp. and Strombidium spp. were dominant) were identified. Within the microplankton species, there were 11 species with abundances that increased after the SWE, while there was no species with an abundance that decreased following the SWE. It is conjectured that atmospheric turbulences, such as that of an SWE, may supply sufficient nutrients to the surface layer that subsequently enhance the small bloom under the weak stratification of the Chukchi Sea Shelf during the autumn months. After the bloom, the dominant diatom community then shifts from centric-dominated to one where centric/pennate are more equal in abundance.

  14. Dissolved nitrogen transformations and microbial community structure in the organic layer of forest soils in Olkiluoto in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Potila, H.; Sarjala, T.; Aro, L. [Finnish Forest Research Institute, Helsinki (Finland)

    2007-02-15

    Carbon (C) and nitrogen (N) cycles in the ecosystem are strongly coupled. Biomass, structure and activity of the bacterial and fungal community are the key factors influencing C and N cycles. Changes in the function of soil microbial community can be a signal of plant responses to environmental changes. Dissolved N compounds, microbial biomass, microbial activity, fungal community structure and functional diversity of microbial communities were measured in September 2006 from five monitoring plots on Olkiluoto to assess information about soil microbial community structure and activity. High within and between variation in the studied plots were detected. However, in this study the values and their variation in the level of N mineralisation, dissolved N compounds, fungal biomass and microbial community structure in the studied plots were within a normal range in comparison with other published data of similar forest types in Finland. (orig.)

  15. Dissolved nitrogen transformations and microbial community structure in the organic layer of forest soils in Olkiluoto in 2006

    International Nuclear Information System (INIS)

    Potila, H.; Sarjala, T.; Aro, L.

    2007-02-01

    Carbon (C) and nitrogen (N) cycles in the ecosystem are strongly coupled. Biomass, structure and activity of the bacterial and fungal community are the key factors influencing C and N cycles. Changes in the function of soil microbial community can be a signal of plant responses to environmental changes. Dissolved N compounds, microbial biomass, microbial activity, fungal community structure and functional diversity of microbial communities were measured in September 2006 from five monitoring plots on Olkiluoto to assess information about soil microbial community structure and activity. High within and between variation in the studied plots were detected. However, in this study the values and their variation in the level of N mineralisation, dissolved N compounds, fungal biomass and microbial community structure in the studied plots were within a normal range in comparison with other published data of similar forest types in Finland. (orig.)

  16. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake

    OpenAIRE

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-01-01

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,52...

  17. The structure of small mammal communities in some alpine habitats

    Directory of Open Access Journals (Sweden)

    Roberta Locatelli

    1998-12-01

    Full Text Available <strong>Abstract> We studied the composition of several small mammal communities living in different mountain and forest habitats of the central eastern Italian Alps. The small mammals were then grouped together, by cluster analysis, according to similarities in species and density. From the 22 stations investigated, five groups emerged, each one having also distinct environmental characteristics. We observed that spruce forest communities are grouped separately from those of mixed forests (larch and Swiss stone pine. We must stress the considerable difference existing between the small mammal communities living in different kinds of coniferous forests. The larch and Swiss stone pine forest seem to be able to support a greater density of small mammals, which includes in particular the bank vole (Clethrionomys glareolus.

  18. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  19. The Quake-Catcher Network: A Community-Led, Strong-Motion Network with Implications for Earthquake Advanced Alert

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Jakka, R. S.; Chung, A. I.

    2009-12-01

    The goal of the Quake-Catcher Network (QCN) is to dramatically increase the number of strong-motion observations by exploiting recent advances in sensing technologies and cyberinfrastructure. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers are very low cost (50-100), interface to any desktop computer via USB cable, and provide high-quality acceleration data. Preliminary shake table tests show the MEMS accelerometers can record high-fidelity seismic data and provide linear phase and amplitude response over a wide frequency range. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Volunteer computing also allows for rapid transfer of metadata, such as that used to rapidly determine the magnitude and location of an earthquake, from participating stations. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1000 stations. Initial analysis shows metadata are received within 1-14 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. Currently, we are testing a series of triggering algorithms to maximize the number of earthquakes captured while minimizing false triggers. We are also testing algorithms to automatically detect P- and S-wave arrivals in real time. Trigger times, wave amplitude, and station information are currently uploaded to the server for each trigger. Future work will identify additional metadata useful for quickly determining earthquake location and magnitude. The increased strong-motion observations made possible by QCN will greatly augment the capability of seismic networks to quickly estimate the location and magnitude of an earthquake for advanced alert to the public. In addition, the dense waveform observations will provide improved source imaging of a rupture in near-real-time. These

  20. The structure of strongly tilted current sheets in the Earth magnetotail

    Directory of Open Access Journals (Sweden)

    I. Y. Vasko

    2014-02-01

    Full Text Available We investigate strongly tilted (in the y–z GSM plane current sheets (CSs in the Earth magnetotail using data from the Cluster mission. We analyze 29 CS crossings observed in 2001–2004. The characteristic current density, magnetic field at the CS boundary and the CS thickness of strongly tilted CSs are similar to those reported previously for horizontal (not tilted CSs. We confirm that strongly tilted CSs are generally characterized by a rather large northward component of the magnetic field. The field-aligned current in strongly tilted CSs is on average two times larger than the transverse current. The proton adiabaticity parameter, κp, is larger than 0.5 in 85% of strongly tilted CSs due to the large northward magnetic field. Thus, the proton dynamics is stochastic for 18 current sheets with 0.5 p p > 3, whereas electrons are magnetized for all observed current sheets. Strongly tilted CSs provide a unique opportunity to measure the electric field component perpendicular to the CS plane. We find that most of the electric field perpendicular to the CS plane is due to the decoupling of electron and ion motions (plasma polarization. For 27 CSs we determine profiles of the electrostatic potential, which is due to the plasma polarization. Drops in the potential between the neutral plane and the CS boundary are within the range of 200 V to 12 kV, while maximal values of the electric field are within the range of 0.2 mV m−1 to 8 mV m−1. For 16 CSs the observed potentials are in accordance with Ohm's law, if the electron current density is assumed to be comparable to the total current density. In 15 of these CSs the profile of the polarization potential is approximately symmetric with respect to the neutral plane and has minimum therein.

  1. Angular Structure of Jet Quenching Within a Hybrid Strong/Weak Coupling Model

    CERN Document Server

    Casalderrey-Solana, Jorge; Milhano, Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2017-01-01

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter $K\\equiv \\hat q/T^3$ that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when $K\

  2. Bacterial community structure at the microscale in two different soils

    Czech Academy of Sciences Publication Activity Database

    Michelland, R.; Thioulouse, J.; Kyselková, Martina; Grundmann, G.L.

    2016-01-01

    Roč. 72, č. 3 (2016), s. 717-724 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : abundancy-occupancy relationship * bacteria community structure * frequency-occupancy relationship * microscale in soil * soil microbial diversity * soil structure Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  3. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  4. Observation of strong magnetic effects in visible-infrared sum frequency generation from magnetic structures

    NARCIS (Netherlands)

    Kirilyuk, A.; Knippels, G.M.H.; van der Meer, A. F. G.; Renard, S.; Rasing, T.; Heskamp, I. R.; Lodder, J. C.

    2000-01-01

    We have observed very strong magnetization-induced changes of the infrared-visible sum-frequency generation (SFG) intensity from thin magnetic films using a free electron laser as a tunable infrared source. With the help of a magnetic grating a clear resonance is observed due to the excitation of

  5. A unified method of detecting core-periphery structure and community structure in networks.

    Science.gov (United States)

    Xiang, Bing-Bing; Bao, Zhong-Kui; Ma, Chuang; Zhang, Xingyi; Chen, Han-Shuang; Zhang, Hai-Feng

    2018-01-01

    The core-periphery structure and the community structure are two typical meso-scale structures in complex networks. Although community detection has been extensively investigated from different perspectives, the definition and the detection of the core-periphery structure have not received much attention. Furthermore, the detection problems of the core-periphery and community structure were separately investigated. In this paper, we develop a unified framework to simultaneously detect the core-periphery structure and community structure in complex networks. Moreover, there are several extra advantages of our algorithm: our method can detect not only single but also multiple pairs of core-periphery structures; the overlapping nodes belonging to different communities can be identified; different scales of core-periphery structures can be detected by adjusting the size of the core. The good performance of the method has been validated on synthetic and real complex networks. So, we provide a basic framework to detect the two typical meso-scale structures: the core-periphery structure and the community structure.

  6. A unified method of detecting core-periphery structure and community structure in networks

    Science.gov (United States)

    Xiang, Bing-Bing; Bao, Zhong-Kui; Ma, Chuang; Zhang, Xingyi; Chen, Han-Shuang; Zhang, Hai-Feng

    2018-01-01

    The core-periphery structure and the community structure are two typical meso-scale structures in complex networks. Although community detection has been extensively investigated from different perspectives, the definition and the detection of the core-periphery structure have not received much attention. Furthermore, the detection problems of the core-periphery and community structure were separately investigated. In this paper, we develop a unified framework to simultaneously detect the core-periphery structure and community structure in complex networks. Moreover, there are several extra advantages of our algorithm: our method can detect not only single but also multiple pairs of core-periphery structures; the overlapping nodes belonging to different communities can be identified; different scales of core-periphery structures can be detected by adjusting the size of the core. The good performance of the method has been validated on synthetic and real complex networks. So, we provide a basic framework to detect the two typical meso-scale structures: the core-periphery structure and the community structure.

  7. Global and local targeted immunization in networks with community structure

    International Nuclear Information System (INIS)

    Yan, Shu; Tang, Shaoting; Pei, Sen; Zheng, Zhiming; Fang, Wenyi

    2015-01-01

    Immunization plays an important role in the field of epidemic spreading in complex networks. In previous studies, targeted immunization has been proved to be an effective strategy. However, when extended to networks with community structure, it is unknown whether the superior strategy is to vaccinate the nodes who have the most connections in the entire network (global strategy), or those in the original community where epidemic starts to spread (local strategy). In this work, by using both analytic approaches and simulations, we observe that the answer depends on the closeness between communities. If communities are tied closely, the global strategy is superior to the local strategy. Otherwise, the local targeted immunization is advantageous. The existence of a transitional value of closeness implies that we should adopt different strategies. Furthermore, we extend our investigation from two-community networks to multi-community networks. We consider the mode of community connection and the location of community where epidemic starts to spread. Both simulation results and theoretical predictions show that local strategy is a better option for immunization in most cases. But if the epidemic begins from a core community, global strategy is superior in some cases. (paper)

  8. Dynamic structure of stock communities: a comparative study between stock returns and turnover rates

    Science.gov (United States)

    Su, Li-Ling; Jiang, Xiong-Fei; Li, Sai-Ping; Zhong, Li-Xin; Ren, Fei

    2017-07-01

    The detection of community structure in stock market is of theoretical and practical significance for the study of financial dynamics and portfolio risk estimation. We here study the community structures in Chinese stock markets from the aspects of both price returns and turnover rates, by using a combination of the PMFG and infomap methods based on a distance matrix. An empirical study using the overall data set shows that for both returns and turnover rates the largest communities are composed of specific industrial or conceptional sectors and the correlation inside a sector is generally larger than the correlation between different sectors. However, the community structure for turnover rates is more complex than that for returns, which indicates that the interactions between stocks revealed by turnover rates may contain more information. This conclusion is further confirmed by the analysis of the changes in the dynamics of community structures over five sub-periods. Sectors like banks, real estate, health care and New Shanghai take turns to comprise a few of the largest communities in different sub-periods, and more interestingly several specific sectors appear in the communities with different rank orders for returns and turnover rates even in the same sub-period. To better understand their differences, a comparison between the evolution of the returns and turnover rates of the stocks from these sectors is conducted. We find that stock prices only had large changes around important events while turnover rates surged after each of these events relevant to specific sectors, which shows strong evidence that the turnover rates are more susceptible to exogenous shocks than returns and its measurement for community detection may contain more useful information about market structure.

  9. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    Science.gov (United States)

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  10. Network structure embracing mutualism-antagonism continuums increases community robustness.

    Science.gov (United States)

    Montesinos-Navarro, Alicia; Hiraldo, Fernando; Tella, José L; Blanco, Guillermo

    2017-11-01

    Theory predicts that contrasting properties of mutualistic and antagonistic networks differentially promote community resilience to species loss. However, the outcome of most ecological interactions falls within a continuum between mutualism and antagonism, and we ignore the extent to which this interactions' continuum might influence community stability. Using a large data set of interactions, we compared co-extinction cascades that either consider or ignore the mix of beneficial and detrimental actions that parrots exert on plants. When the antagonism-mutualism continuum was considered, a combination of the properties that separately enhance community stability in ecological networks emerged. This combination of properties led to an overall increase of the parrot community robustness to face plant species loss. Our results highlight that the conditional outcomes of interactions can influence the structure of ecological networks, thus affecting our predictions of community stability against eventual changes.

  11. Change in fish community structure in the Barents Sea.

    Directory of Open Access Journals (Sweden)

    Michaela Aschan

    Full Text Available Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992-2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996-1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.

  12. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  13. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    Science.gov (United States)

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  14. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik; Jansson, Janet K.; Sjoling, Sara

    2008-05-15

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities were most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.

  15. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  16. Microbial community structure and function in aerobic granular sludge.

    Science.gov (United States)

    Xia, Juntao; Ye, Lin; Ren, Hongqiang; Zhang, Xu-Xiang

    2018-03-17

    Aerobic granular sludge (AGS), a self-immobilized microbial consortium containing different functional microorganisms, is receiving growing attention, since it has shown great technological and economical potentials in the field of wastewater treatment. Microbial community is crucial for the formation, stability, and pollutant removal efficiency of aerobic granules. This mini-review systematically summarizes the recent findings of the microbial community structure and function of AGS and discusses the new research progress in the microbial community dynamics during the granulation process and spatial distribution patterns of the microbiota in AGS. The presented information may be helpful for the in-depth theoretical study and practical application of AGS technology in the future.

  17. Sampling from complex networks with high community structures.

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R; Rajabi, Arezo

    2012-06-01

    In this paper, we propose a novel link-tracing sampling algorithm, based on the concepts from PageRank vectors, to sample from networks with high community structures. Our method has two phases; (1) Sampling the closest nodes to the initial nodes by approximating personalized PageRank vectors and (2) Jumping to a new community by using PageRank vectors and unknown neighbors. Empirical studies on several synthetic and real-world networks show that the proposed method improves the performance of network sampling compared to the popular link-based sampling methods in terms of accuracy and visited communities.

  18. The strong influence of small amounts of palladium on the structure of liquid potassium-thallium

    Science.gov (United States)

    van der Aart, S. A.; Verkerk, P.; van der Lugt, W.; Xu, R.; van der Horst, F.; McGreevy, R. L.

    1997-12-01

    Neutron diffraction measurements on liquid KT1 alloys with 0, 1, and 5 at % Pd, respectively, show that the prepeak in the structure factor shifts from wave vector k=8.0 to 7.2 nm -1 with an increasing amount of Pd. This corresponds to a periodicity change from 0.96 to 1.07 nm in real space 2. The structure of the liquid KT1 alloys is compared to the corresponding crystal structures, and some similarities are observed. Reverse Monte Carlo modelling indicates T1 clustering in the liquid alloy. Also in solid KTl Tl-clusters occur. The distance between the clusters increases with the addition of 5%. Pd. More information is needed to discriminate between various possible structures of the Tl clusters in the liquid alloy and to determine the position of Pd in these clusters.

  19. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

  20. Environmental and Spatial Influences on Biogeography and Community Structure of Benthic Diatoms

    Science.gov (United States)

    Plante, C.; Hill-Spanik, K.; Lowry, J.

    2016-02-01

    Several theoretical and practical reasons suggest that benthic microalgae could be useful bioindicators. For instance, an ideal indicator species or community would be associated with a given habitat due to local physical conditions or biotic interactions (i.e., `environmental filtering'), not due to dispersal limitation. Due to their small size, immense abundances, and reliance on passive dispersal, the popular notion about micro-organisms is that `Everything is everywhere, but, the environment selects' (Baas-Becking 1934). Although much recent research concerning planktonic bacteria and dispersal limitation has been conducted, very little in this regard is known about microeukaryotes, especially benthic microbes. The purpose of our study was to identify and compare spatial and environmental influences on benthic diatom community structure and biogeography. In summer 2015, sediment was sampled at various spatial scales from four barrier island beaches in South Carolina, USA, and high-throughput (Ion Torrent) DNA sequencing was used to characterize diatom assemblages. ANOSIM and principal coordinates analysis revealed that communities were statistically distinct on the four islands. Community dissimilarity was compared to both spatial distance and environmental differences to determine potential influences of these variables on community structure. We found that geographic distance had the strongest correlation with community similarity, with and without one anomalous location, while differences in temperature (air, water, and sediment), nutrients, organic matter, and turbidity also had significant but weaker relationships with community structure. Surprisingly, air temperature, which changes on very short time scales, appeared to be the environmental factor most strongly related to diatom species composition, potentially implicating some unmeasured variable (e.g., cloud cover). However, we also found that temperature and geographic distance were strongly

  1. Polygyny and strong genetic structuring within an isolated population of the wood ant Formica rufa

    Directory of Open Access Journals (Sweden)

    Wouter Dekoninck

    2014-12-01

    Full Text Available Social structuring of populations within some Formica species exhibits considerable variation going from monodomous and monogynous populations to polydomous, polygynous populations. The wood ant species Formica rufa appears to be mainly monodomous and monogynous throughout most of its distribution area in central and northern Europe. Only occasionally it was mentioned that F. rufa can have both polygynous and monogynous colonies in the same geographical region. We studied an isolated polydomous F. rufa population in a deciduous mixed forest in the north-west of Belgium. The level of polydomy within the colonies varied from monodomous to 11 nests per colony. Our genetic analysis of eight variable microsatellites suggest an oligo- to polygynous structure for at least the major part of the sampled nests. Relatedness amongst nest mate workers varies considerable within the population and colonies but confirms in general a polygynous structure. Additionally high genetic diversity (e.g. up to 8 out of 11 alleles per nest for the most variable locus and high within nest genetic variance (93% indicate that multiple queens contribute to the gene pool of workers of the same nest. Moreover significant genetic structuring among colonies indicates that gene flow between colonies is restricted and that exchange of workers between colonies is very limited. Finally we explain how possible factors as budding and the absence of Serviformica can explain the differences in genetic structure within this polygynous F. rufa population.

  2. Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma

    Science.gov (United States)

    Thomas, Edward; Leblanc, Spencer; Lynch, Brian; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2015-11-01

    The Magnetized Dusty Plasma Experiment (MDPX) device has been in operation for just over one year. In that time, the MDPX device has been operating using a uniform magnetic field configuration up to 3.0 Tesla and has successfully produced plasmas and dusty plasmas at high magnetic fields. In these experimental studies, we have made observations of a new type of imposed, ordered structure in a dusty plasma at magnetic fields above 1 T. These dusty plasma structures are shown to scale inversely with neutral pressure and are shown to reflect the spatial structure of a wire mesh placed in the plasma. Additionally, recent measurements have been made that give insights into the effective potential that establishes the ordered structures in the plasma. In this presentation, we report on details of the imposed, ordered dusty plasma structure as well as filamentary features that also appear in the plasma and modify the confinement of the dusty plasma. This work is supported with funding from the NSF and Department of Energy.

  3. The structure and dynamics of a rhinolophid bat community of Latium (Central Italy (Chiroptera

    Directory of Open Access Journals (Sweden)

    Pierangelo Crucitti

    1998-12-01

    Full Text Available <strong>Abstract> The present paper summarizes the results of 3 years of observation made at six month intervals for six months at a time (18 field surveys in a man-made cave in Northern Latium (Central Italy from April 1992 to April 1995. Its aim is to analyze the main structural and dynamic features of a bat community which hibernates at the shelter. Rhinolophus ferrumequinum and especially Rhinolophus euryale are the most abundant species. Population dynamics of both species as well as that of Rhinoluphus hipposideros show higher levels of abundance between December and February of each semester. In mid-winter, large and sometimes mixed aggregations of Rhinolophus ferrumequinum and Rhinolophus euryale in deep hypothermia occur. A small number of Rhinolophus hipposideros, mainly adult males, was observed. The paper compares the structure of this community to the structure of another community of the same district which has been previously analyzed, in which Vespertilionidae, especially Miniopterus schreibersi, are much more abundant. Despite the difference in species composition, body size was found to be a significant and common feature (as highlighted by forearm length, of the dominant species in both communities, Rhinolophus euryale and Miniopterus schreibersi respectively.

  4. Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference

    Science.gov (United States)

    Daylan, Tansu; Cyr-Racine, Francis-Yan; Diaz Rivero, Ana; Dvorkin, Cora; Finkbeiner, Douglas P.

    2018-02-01

    Strong lensing is a sensitive probe of the small-scale density fluctuations in the Universe. We implement a pipeline to model strongly lensed systems using probabilistic cataloging, which is a transdimensional, hierarchical, and Bayesian framework to sample from a metamodel (union of models with different dimensionality) consistent with observed photon count maps. Probabilistic cataloging allows one to robustly characterize modeling covariances within and across lens models with different numbers of subhalos. Unlike traditional cataloging of subhalos, it does not require model subhalos to improve the goodness of fit above the detection threshold. Instead, it allows the exploitation of all information contained in the photon count maps—for instance, when constraining the subhalo mass function. We further show that, by not including these small subhalos in the lens model, fixed-dimensional inference methods can significantly mismodel the data. Using a simulated Hubble Space Telescope data set, we show that the subhalo mass function can be probed even when many subhalos in the sample catalogs are individually below the detection threshold and would be absent in a traditional catalog. The implemented software, Probabilistic Cataloger (PCAT) is made publicly available at https://github.com/tdaylan/pcat.

  5. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  6. Nash Stability in Additively Separable Hedonic Games and Community Structures

    DEFF Research Database (Denmark)

    Olsen, Martin

    2009-01-01

      We prove that the problem of deciding whether a Nash stable   partition exists in an Additively Separable Hedonic Game is   NP-complete. We also show that the problem of deciding whether a   non trivial Nash stable partition exists in an   Additively Separable Hedonic Game with   non......-negative and symmetric   preferences is NP-complete. We motivate our study of the   computational complexity by linking Nash stable partitions in   Additively Separable Hedonic Games to community structures in   networks. Our results formally justify that computing community   structures in general is hard....

  7. ESR Fine Structure of Manganese Ions in Zeolite A Detects Strong Variations of the Coordination Environment

    NARCIS (Netherlands)

    Vos, D.E. de; Weckhuysen, B.M.; Bein, T.

    1996-01-01

    The electron spin resonance spectra of Mn 2+ exchanged zeolite A have been investigated as a function of the monovalent co-cation (K + ,Na + ,Li + ,Cs + ,or NH4 + ), Mn 2+ content, recording frequency, and temperature. Three new Mn 2+ species are observed with a well-resolved fine structure; this

  8. The strong influence of small amounts of palladium on the structure of liquid potassium-thallium

    NARCIS (Netherlands)

    van der Aart, SA; Verkerk, P; van der Lugt, W; Xu, R; van der Horst, F; McGreevy, RL

    1997-01-01

    Neutron diffraction measurements on liquid KT1 alloys with 0, 1, and 5 at% Pd, respectively, show that the prepeak in the structure factor shifts from wave vector k = 8.0 to 7.2 nm(-1) with an increasing amount of Pd. This corresponds to a periodicity change from 0.96 to 1.07 nm in real space.(2)

  9. Statistics and Structures of Strong Turbulence in a Complex Ginzburg-Landau Equation

    Science.gov (United States)

    Iwasaki, H.; Toh, S.

    1992-05-01

    One-dimensional complex Ginzburg-Landau equation with a quintic nonlinearity (QCGL) is studied numerically to reveal the asymptotic property of its strong turbulence. In the inviscid limit, the QCGL equation tends to the nonlinear Schrödinger (NLS) equation which has a singular solution self-similarly blowing up in a finite time. The probability distribution function (PDF) of fluctuation amplitudes is found to have an algebraic tail with exponent close to -8. This power law is described as the multiplication of the PDF of the amplitude of a singular solution of the NLS equation and that of maximum heights of bursts. The former is shown to have a -7 power law in terms of the scaling property of the NLS singular solution. The latter is found to have a -1 power law by numerical simulation.

  10. Nonlinear physics of plasmas. Spatiotemporal structures in strong turbulence. Lecture notes

    International Nuclear Information System (INIS)

    Skoric, Milos M.

    2008-05-01

    This material has been prepared and partly delivered in a series of lectures given at NIFS to Doctor course students of the SOKENDAI (Graduate University of Advanced Studies, Japan) in academic 2007/08 year. Special gratitude is due to colleagues for fruitful collaboration: Profs. K. Mima, Lj. Hadzievski, S. Ishiguro, A. Maluckov, M. Rajkovic and Dr Li Baiwen and Dr Lj. Nikolic, in particular, and to Prof. Mitsuo Kono for motivating the work on this text. I wish to pay unique tribute to close friends and longtime collaborators, Prof. Dik ter Haar and Prof. Moma Jovanovic who are no longer with us. This report contains Chapter 1 (Strong Langmur Turbulence), Chapter 2 (Wave Collapse in Plasmas), Chapter 3 (Spatiotemporal Complexity in Plasmas), Chapter 4 (Relativistic Plasma Interactions) and Chapter 5 (Ponderomotive Potential and Magnetization). (J.P.N.)

  11. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Laura Delgado-Balbuena

    Full Text Available Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826 accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485 inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100% > earthworms applied (92% > organic material applied (77% > untreated soil (57% > surfactant applied (34% after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil

  12. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    Science.gov (United States)

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  13. Super-strong dislocation-structured high-carbon martensite steel.

    Science.gov (United States)

    Sun, Jun-Jie; Liu, Yong-Ning; Zhu, Yun-Tian; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Liu, Wen-Qing; Ren, Xiao-Bing

    2017-07-26

    High-carbon martensite steels (with C > 0.5 wt.%) are very hard but at the same time as brittle as glass in as-quenched or low-temperature-tempered state. Such extreme brittleness, originating from a twin microstructure, has rendered these steels almost useless in martensite state. Therefore, for more than a century it has been a common knowledge that high-carbon martensitic steels are intrinsically brittle and thus are not expected to find any application in harsh loading conditions. Here we report that these brittle steels can be transformed into super-strong ones exhibiting a combination of ultrahigh strength and significant toughness, through a simple grain-refinement treatment, which refines the grain size to ~4 μm. As a result, an ultra-high tensile strength of 2.4~2.6 GPa, a significant elongation of 4~10% and a good fracture toughness (K 1C ) of 23.5~29.6 MPa m 1/2 were obtained in high-carbon martensitic steels with 0.61-0.65 wt.% C. These properties are comparable with those of "the king of super-high-strength steels"-maraging steels, but achieved at merely 1/30~1/50 of the price. The drastic enhancement in mechanical properties is found to arise from a transition from the conventional twin microstructure to a dislocation one by grain refinement. Our finding may provide a new route to manufacturing super-strong steels in a simple and economic way.

  14. Community, trophic structure and functioning in two contrasting Laminaria hyperborea forests

    Science.gov (United States)

    Leclerc, Jean-Charles; Riera, Pascal; Laurans, Martial; Leroux, Cédric; Lévêque, Laurent; Davoult, Dominique

    2015-01-01

    Worldwide kelp forests have been the focus of several studies concerning ecosystem dysfunction in the past decades. Multifactorial kelp threats have been described and include deforestation due to human impact, cascading effects and climate change. Here, we compared community and trophic structure in two contrasting kelp forests off the coasts of Brittany. One has been harvested five years before sampling and shelters abundant omnivorous predators, almost absent from the other, which has been treated as preserved from kelp harvest. δ15N analyses conducted on the overall communities were linked to the tropho-functional structure of different strata featuring these forests (stipe and holdfast of canopy kelp and rock). Our results yielded site-to-site differences of community and tropho-functional structures across kelp strata, particularly contrasting in terms of biomass on the understorey. Similarly, isotope analyses inferred the top trophic position of Marthasterias glacialis and Echinus esculentus which may be considered as strong interactors in the sub-canopy. We interrogate these patterns and propose a series of probable and testable alternative hypotheses to explain them. For instance, we propose that differences of trophic structure and functioning result from confounded effects of contrasting wave dissipation depending on kelp size-density structure and community cascading involving these omnivorous predators. Given the species diversity and complexity of food web highlighted in these habitats, we call for further comprehensive research about the overall strata and tropho-functional groups for conservation management in kelp forests.

  15. Protonation and strong H-bonding as the factors controlling structural changes in excited azaaromatics

    Energy Technology Data Exchange (ETDEWEB)

    Grabowska, A. (Polska Akademia Nauk, Warsaw. Inst. Chemii Fizycznej)

    1981-11-01

    The relationship between the structure of a molecule and electron density distribution in excited states of protonated N-heteroaromatics has been discussed, basing on (1) Walsh rules (2) dihydroflavines as model compounds. Two selected examples of inter- and intramolecular proton transfer have been quoted, namely the net charge distribution in 7-azaindole and proton transfer kinetics in 2(2'-hydroxyphenyl)benzoxazole.

  16. Functional and phylogenetic structure of island bird communities.

    Science.gov (United States)

    Si, Xingfeng; Cadotte, Marc W; Zeng, Di; Baselga, Andrés; Zhao, Yuhao; Li, Jiaqi; Wu, Yiru; Wang, Siyu; Ding, Ping

    2017-05-01

    Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental

  17. Structural evolution on medium-range-order during the fragile-strong transition in Ge15Te85

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Hembree, William; Hechler, Simon; Bednarcik, Jozef; Busch, Ralf; Lucas, Pierre

    2017-01-01

    Using synchrotron X-ray scattering, we investigate liquid Ge 15 Te 85 spanning a wide temperature range from near T g to the melt, and demonstrate that the density anomaly and fragile-strong transition are not only related to short-range-order (SRO) structural change (e.g. Peierls-like distortion), but also accompanied by a remarkable development of medium-range-order (MRO). The latter manifests as an emerging pre-peak in total structure factor S(Q) and atomic pair correlations on the length scale of ∼8 Å in the real space G(r) function. The results highlight the role of medium-range structural ordering in the evolution of the configurational entropy which, according to the Adam-Gibbs theory, can be linked to the fragile-strong transition (FS-transition). Based on the relation between structure and liquid dynamics, the FS-transitions at high pressures are examined in terms of experimental data and the Ehrenfest relation. This work identifies the length scale for the atomic correlations in MRO structural evolutions and presents a structural approach to exploring liquid dynamics, which may be useful for investigating relevant phase-change alloys.

  18. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  19. Analysis of bacterial and fungal community structure in replant ...

    African Journals Online (AJOL)

    High quality DNA is the basis of analyzing bacterial and fungal community structure in replant strawberry rhizosphere soil with the method of denaturing gradient gel electrophoresis (DGGE). DNA of soil microorganisms was extracted from the rhizosphere soil of strawberries planted in different replanted years (0, two, ...

  20. The corporate elite community structure of global capitalism

    NARCIS (Netherlands)

    Heemskerk, E.M.; Takes, F.W.

    2016-01-01

    A key debate on the merits and consequences of globalisation asks to what extent we have moved to a multipolar global political economy. Here we investigate this issue through the properties and topologies of corporate elite networks and ask: what is the community structure of the global corporate

  1. Variability in Parasites' Community Structure and Composition in Cat ...

    African Journals Online (AJOL)

    This study investigated the composition and structure of the parasite communities in Cat fish with respect to levels of water pollution in Lake Victoria. A total of 1071 Clarias gariepinus with mean TL range of 19 to 27 cm were analyzed from three localities in Mwanza Gulf (Kirumba, 298 fish infected with 15 parasite species), ...

  2. Community structure and Distribution of Phytomacrofauna in Iyagbe ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: This paper reports the results of an investigation into the community structure and spatial distribution of phytomacrofauna inhabiting the roots of water hyacinth in Iyagbe. Lagoon Southwest Nigeria. In all, 48 quantitative samples from eight sampling stations collected over a period of six months were analysed.

  3. Zooplankton community structure and dynamics during the transition ...

    African Journals Online (AJOL)

    This study investigates the zooplankton community structure and dynamics of Kufena Rock Pool during the transition from dry season (March to April) to rainy season (May to June) in Zaria, Nigeria. Physicochemical parameters such as temperature, hydrogen ion concentration, electrical conductivity and total dissolved ...

  4. Macrofaunal community structure in the littoral zone of a freshwater ...

    African Journals Online (AJOL)

    Multidimensional scaling (MDS) indicated that there were no significant spatial patterns in the macrofaunal community structure within the four zones which could be related to the predominance of euryhaline species, including Marphysa sanguinea (estuarine wonder worm), Arcuatula capensis (estuarine mussel), Macoma ...

  5. Impacts of chemical gradients on microbial community structure

    NARCIS (Netherlands)

    Chen, J.; Hanke, A.; Tegetmeyer, H.E.; Kattelmann, I.; Sharma, R.; Hamann, E.; Hargesheimer, T.; Kraft, B.; Lenk, S.; Geelhoed, J.S.; Hettich, R.L.; Strous, M.

    2017-01-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox

  6. Zooplankton composition and community structure in Lake Tiga ...

    African Journals Online (AJOL)

    Zooplankton in Lake Tiga was identified and its community structure assessed between March 2009 and March 2011. A total of 54 species of zooplankton was recorded, comprising two species of Protozoa, 26 species of Rotifera, eight species of Copepoda, 11 species of Cladocera, four species of Ostracoda and three ...

  7. Changes in Age Structure and Rural Community Growth.

    Science.gov (United States)

    McGranahan, David A.

    1985-01-01

    Whatever migration patterns evolve, changes in the age structure mean that rural communities in general can expect fairly stable elementary school population, reduced high school population, slower growth in new business and employment, and continued increase in the elderly population. (JHZ)

  8. Relating methanogen community structure and anaerobic digester function.

    Science.gov (United States)

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Population fluctuations and community structure of small mammals ...

    African Journals Online (AJOL)

    Small mammals were live trapped monthly over a three year period in a subtropical grassland in Swaziland. Seven species of small mammals were recorded from the study grid. There were significant seasonal and inter annual differences in rodent numbers, breeding intensity and community structure. Mastomys natalensis ...

  10. Mutualistic mimicry and filtering by altitude shape the structure of Andean butterfly communities.

    Science.gov (United States)

    Chazot, Nicolas; Willmott, Keith R; Santacruz Endara, Paola G; Toporov, Alexandre; Hill, Ryan I; Jiggins, Chris D; Elias, Marianne

    2014-01-01

    Both the abiotic environment and abiotic interactions among species contribute to shaping species assemblages. While the roles of habitat filtering and competitive interactions are clearly established, less is known about how positive interactions, whereby species benefit from the presence of one another, affect community structure. Here we assess the importance of positive interactions by studying Andean communities of butterflies that interact mutualistically via Müllerian mimicry. We show that communities at similar altitudes have a similar phylogenetic composition, confirming that filtering by altitude is an important process. We also provide evidence that species that interact mutualistically (i.e., species that share the same mimicry wing pattern) coexist at large scales more often than expected by chance. Furthermore, we detect an association between mimicry structure and altitude that is stronger than expected even when phylogeny is corrected for, indicating adaptive convergence for wing pattern and/or altitudinal range driven by mutualistic interactions. Positive interactions extend far beyond Müllerian mimicry, with many examples in plants and animals, and their role in the evolution and assembly of communities may be more pervasive than is currently appreciated. Our findings have strong implications for the evolution and resilience of community structure in a changing world.

  11. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Directory of Open Access Journals (Sweden)

    Nicole L Crane

    Full Text Available The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water and uninhabited (low human impact; cluster 2-oceanic and inhabited (high human impact; and cluster 3-lagoonal (facing the inside of the lagoon and inhabited (highest human impact. Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp. is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  12. Determination of the Bjorken Sum and Strong Coupling from Polarized Structure Functions

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Ridolfi, G; Altarelli, Guido; Ball, Richard D.; Forte, Stefano; Ridolfi, Giovanni

    1997-01-01

    We present a NLO perturbative analysis of all available data on the polarized structure function g_1(x,Q^2) with the aim of making a quantitative test of the validity of the Bjorken sum rule, of measuring \\alpha_s, and of deriving helicity fractions. We take particular care over the small x extrapolation, since it is now known that Regge behaviour is unreliable at perturbative scales. For fixed \\alpha_s we find that if all the most recent data are included g_A=1.18\\pm0.09, confirming the Bjorken sum rule at the 8% level. We further show that the value of \\alpha_s is now reasonably well constrained by scaling violations in the structure function data, despite the fact that it cannot yet be reliably fixed by the value of the Bjorken sum: our final result is \\alpha_s(m_Z) = 0.120+0.010-0.008. We also confirm earlier indications of a sizeable positive gluon polarization in the nucleon.

  13. STRUCTURAL ASPECTS OF STRONG INHIBITION AND ROLE OF SCAFFOLD FOR SERINE PROTEASE INHIBITORS

    Directory of Open Access Journals (Sweden)

    Jhimli Dasgupta

    2011-12-01

    Full Text Available Canonical serine protease inhibitors inhibit their cognate enzymes by binding tightly at the enzyme active site in a substrate-like manner, being cleaved extremely slowly compared to a true substrate. They interact with cognate enzymes through P3-P2 region of the inhibitory loop while the scaffold hardly makes any contact. Neighbouring scaffolding residues like arginine or asparagine shape-up the inhibitory loop and religate the cleaved scissile bond. The specificity of the inhibitor can be altered by mutating the hyper solvent accessible P1 residue without changing loop-scaffold interactions. To understand the loop-scaffold compatibility, we prepared three chimeric proteins ECIL-WCIS , ETIL-WCIS , and STIL-WCIS , where the inhibitory loops of ECI, ETI, and STI were placed on the scaffold of their homologue WCI. Results showed that although ECIL-WCIS and STIL-WCIS behave like inhibitors, ETIL-WCIS behaves like a substrate. Crystal structure of ETIL-WCIS and its comparison with ETI indicated that three novel scaffolding residues Trp88, Arg74, and Tyr113 in ETI act as barrier to confine the inhibitory loop to canonical conformation. Absence of this barrier in the scaffold of WCI makes the inhibitory loop flexible in ETIL-WCIS leading to a loss of canonical conformation, explaining its substrate-like behaviour. Furthermore, complex structures of the inhibitors with their cognate enzymes indicate that rigidification of the inhibitory loop at the enzyme active site is necessary for efficient inhibition.

  14. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2015-01-01

    In the present work, we show experimental evidence for the dynamic fragile-to-strong (F-S) transition in a series of CuZr(Al) glass-forming liquids (GFLs). A detailed analysis of the dynamics of 98 glass-forming liquids indicates that the F-S transition occurs around Tf-s ≈ 1.36 Tg. Using...... the hyperquenching-annealing-x-ray scattering approach, we have observed a three-stage evolution pattern of medium-range ordering (MRO) structures during the F-S transition, indicating a dramatic change of the MRO clusters around Tf-s upon cooling. The F-S transition in CuZr(Al) GFLs is attributed to the competition...... among the MRO clusters composed of different locally ordering configurations. A phenomenological scenario has been proposed to explain the structural evolution from the fragile to the strong phase in the CuZr(Al) GFLs....

  15. Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean

    Science.gov (United States)

    Shatova, O. A.; Wing, S. R.; Hoffmann, L. J.; Wing, L. C.; Gault-Ringold, M.

    2017-05-01

    Phytoplankton biomass, productivity and community structure are strongly influenced by differences in nutrient concentrations among oceanographic water masses. Changes in community composition, particularly in the distribution of cell sizes, can result in dramatic changes in the energetics of pelagic food webs and ecosystem function in terms of biogeochemical cycling and carbon sequestration. Here we examine responses of natural phytoplankton communities from four major water masses in the Southern Ocean to enrichment from seabird guano, a concentrated source of bioactive metals (Mn, Fe, Co, Ni, Cu, Zn) and macronutrients (N, P), in a series of incubation experiments. Phytoplankton communities from sub-tropical water, modified sub-tropical water from the Snares Island wake, sub-Antarctic water and Antarctic water from the Ross Sea, each showed dramatic changes in community structure following additions of seabird guano. We observed particularly high growth of prymnesiophytes in response to the guano-derived nutrients within sub-Antarctic and sub-tropical frontal zones, resulting in communities dominated by larger cell sizes than in control incubations. Community changes within treatments enriched with guano were distinct, and in most cases more extensive, than those observed for treatments with additions of macronutrients (N, P) or iron (Fe) alone. These results provide the first empirical evidence that seabird guano enrichment can drive significant changes in the structure and composition of natural phytoplankton communities. Our findings have important implications for understanding the consequences of accumulation of bioactive metals and macronutrients within food webs and the role of seabirds as nutrient vectors within the Southern Ocean ecosystem.

  16. Calculations of the one-body electronic structure of the strongly correlated systems including self-energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Sanchez-Lopez, M.M.; Lopez-Aguilar, F. [Grup d`Electromagnetisme, Edifici Cn, Universitat Autonoma de Barcelona 08193, Bellaterra, Barcelona (Spain)

    1996-10-01

    We give a method to obtain the quasiparticle band structure and renormalized density of states by diagonalizing the interacting system Green function. This method operates for any self-energy approximation appropriated to strongly correlated systems. Application to CeSi{sub 2} and YBa{sub 2}Cu{sub 3}O{sub 7} is analyzed as a probe for this band calculation method. {copyright} {ital 1996 The American Physical Society.}

  17. A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea.

    Science.gov (United States)

    Bergström, Anders; Oppenheimer, Stephen J; Mentzer, Alexander J; Auckland, Kathryn; Robson, Kathryn; Attenborough, Robert; Alpers, Michael P; Koki, George; Pomat, William; Siba, Peter; Xue, Yali; Sandhu, Manjinder S; Tyler-Smith, Chris

    2017-09-15

    New Guinea shows human occupation since ~50 thousand years ago (ka), independent adoption of plant cultivation ~10 ka, and great cultural and linguistic diversity today. We performed genome-wide single-nucleotide polymorphism genotyping on 381 individuals from 85 language groups in Papua New Guinea and find a sharp divide originating 10 to 20 ka between lowland and highland groups and a lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 thousand years, with major population growth in the same period, suggesting population structure was reshaped following the Neolithic lifestyle transition. However, genetic differentiation between groups in Papua New Guinea is much stronger than in comparable regions in Eurasia, demonstrating that such a transition does not necessarily limit the genetic and linguistic diversity of human societies. Copyright © 2017, American Association for the Advancement of Science.

  18. A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea

    Science.gov (United States)

    Bergström, Anders; Oppenheimer, Stephen J; Mentzer, Alexander J; Auckland, Kathryn; Robson, Kathryn; Attenborough, Robert; Alpers, Michael P; Koki, George; Pomat, William; Siba, Peter; Xue, Yali; Sandhu, Manjinder S; Tyler-Smith, Chris

    2018-01-01

    New Guinea shows human occupation since ~50 thousand years ago (kya), independent adoption of plant cultivation ~10 kya, and great cultural and linguistic diversity today. We performed genome-wide SNP genotyping on 381 individuals from 85 language groups in Papua New Guinea (PNG) and find a sharp divide originating 10-20 kya between lowland and highland groups, and a lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 kya, with major population growth in the same period, suggesting population structure was reshaped following the Neolithic lifestyle transition. However, genetic differentiation between groups in PNG is much stronger than in comparable regions in Eurasia, demonstrating that such a transition does not necessarily limit the genetic and linguistic diversity of human societies. PMID:28912245

  19. Allocating structure to function: the strong links between neuroplasticity and natural selection

    Directory of Open Access Journals (Sweden)

    Michael L Anderson

    2014-01-01

    Full Text Available A central question in brain evolution is how species-typical behaviors, and the neural function-structure mappings supporting them, can be acquired and inherited. Advocates of brain modularity, in its different incarnations across scientific subfields, argue that natural selection must target domain-dedicated, separately modifiable neural subsystems, resulting in genetically-specified functional modules. In such modular systems, specification of neuron number and functional connectivity are necessarily linked. Mounting evidence, however, from allometric, developmental, comparative, systems-physiological, neuroimaging and neurological studies suggests that brain elements are used and reused in multiple functional systems. This variable allocation can be seen in short-term neuromodulation, in neuroplasticity over the lifespan and in response to damage. We argue that the same processes are evident in brain evolution. Natural selection must preserve behavioral functions that may co-locate in variable amounts with other functions. In genetics, the uses and problems of pleiotropy, the re-use of genes in multiple networks have been much discussed, but this issue has been sidestepped in neural systems by the invocation of modules. Here we highlight the interaction between evolutionary and developmental mechanisms to produce distributed and overlapping functional architectures in the brain. These adaptive mechanisms must be robust to perturbations that might disrupt critical information processing and action selection, but must also recognize useful new sources of information arising from internal genetic or environmental variability, when those appear. These contrasting properties of robustness and evolvability have been discussed for the basic organization of body plan and fundamental cell physiology. Here we extend them to the evolution and development, evo-devo, of brain structure.

  20. A clustering algorithm for determining community structure in complex networks

    Science.gov (United States)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  1. Multilabel user classification using the community structure of online networks.

    Science.gov (United States)

    Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  2. Multilabel user classification using the community structure of online networks.

    Directory of Open Access Journals (Sweden)

    Georgios Rizos

    Full Text Available We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE, an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  3. Clustering coefficient and community structure of bipartite networks

    Science.gov (United States)

    Zhang, Peng; Wang, Jinliang; Li, Xiaojia; Li, Menghui; Di, Zengru; Fan, Ying

    2008-12-01

    Many real-world networks display natural bipartite structure, where the basic cycle is a square. In this paper, with the similar consideration of standard clustering coefficient in binary networks, a definition of the clustering coefficient for bipartite networks based on the fraction of squares is proposed. In order to detect community structures in bipartite networks, two different edge clustering coefficients LC4 and LC3 of bipartite networks are defined, which are based on squares and triples respectively. With the algorithm of cutting the edge with the least clustering coefficient, communities in artificial and real world networks are identified. The results reveal that investigating bipartite networks based on the original structure can show the detailed properties that is helpful to get deep understanding about the networks.

  4. Correlations between community structure and link formation in complex networks.

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    Full Text Available BACKGROUND: Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. METHODOLOGY/PRINCIPAL FINDINGS: Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. CONCLUSIONS/SIGNIFICANCE: Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction.

  5. Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.

    Science.gov (United States)

    Slatyer, Rachel A; Nash, Michael A; Miller, Adam D; Endo, Yoshinori; Umbers, Kate D L; Hoffmann, Ary A

    2014-10-02

    Mountain landscapes are topographically complex, creating discontinuous 'islands' of alpine and sub-alpine habitat with a dynamic history. Changing climatic conditions drive their expansion and contraction, leaving signatures on the genetic structure of their flora and fauna. Australia's high country covers a small, highly fragmented area. Although the area is thought to have experienced periods of relative continuity during Pleistocene glacial periods, small-scale studies suggest deep lineage divergence across low-elevation gaps. Using both DNA sequence data and microsatellite markers, we tested the hypothesis that genetic partitioning reflects observable geographic structuring across Australia's mainland high country, in the widespread alpine grasshopper Kosciuscola tristis (Sjösted). We found broadly congruent patterns of regional structure between the DNA sequence and microsatellite datasets, corresponding to strong divergence among isolated mountain regions. Small and isolated mountains in the south of the range were particularly distinct, with well-supported divergence corresponding to climate cycles during the late Pliocene and Pleistocene. We found mixed support, however, for divergence among other mountain regions. Interestingly, within areas of largely contiguous alpine and sub-alpine habitat around Mt Kosciuszko, microsatellite data suggested significant population structure, accompanied by a strong signature of isolation-by-distance. Consistent patterns of strong lineage divergence among different molecular datasets indicate genetic breaks between populations inhabiting geographically distinct mountain regions. Three primary phylogeographic groups were evident in the highly fragmented Victorian high country, while within-region structure detected with microsatellites may reflect more recent population isolation. Despite the small area of Australia's alpine and sub-alpine habitats, their low topographic relief and lack of extensive glaciation

  6. Internal Wave Exposure in Eastern Tropical Pacific Panamá and Costa Rica is Coincident with Strong Vertical Gradients in Shallow Water Benthic Community Composition

    Science.gov (United States)

    Leichter, J.

    2016-02-01

    Multi-year time series and hydrographic observations at near shore sites in Eastern Tropical Pacific Panamá and Costa Rica show regionally coherent internal wave exposure that is strongly modulated across seasons. Sites were sampled to the west of the Osa Peninsula in Costa Rica and near Isla Coiba in Panamá with spatial separation of approximately 250 km. From approximately January through April each year, internal wave activity inferred from high frequency temperature variability is pronounced, associated with well developed and shallow density stratification. The occurrence of highly variable temperatures is correlated with shallow density stratification and oxygen concentrations as low as 1 to 1.5 µg L-1 measured at the base of the thermocline at 50 to 60 m depth in the offshore water column during winter and spring conditions. The physical variability in the near shore corresponds to and appears to drive strong vertical gradients in the benthic community assemblages on rocky substrata. With increasing depth the benthic communities are dominated by scleractinian corals (predominantly in the genera Pocillopora, Pavona, and Porites) from near the surface to approximately 8 m depth, followed by of a range of sessile suspension feeders including sea fans and gorgonians at approximately 10 to 20 m depth, and predominantly rocky bare space with sporadic algal and isolated invertebrate communities to 30 m depth which was the limit of the current sampling. This vertical patterning of the benthic community appears to reflect the strong vertical gradients in hydrographic forcing. From May through December hydrographic conditions at the benthic study sites is significantly less variable, associated with deeper offshore stratification and a decrease in temperature variation driven by internal wave activity impinging on the shallow water ecosystems. The highly variable physical environment in these tropical settings sets a context for strong patterning of benthic

  7. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  8. Structural analysis of factors that influence professional learning communities in Korean elementary schools

    Directory of Open Access Journals (Sweden)

    Kyoung-Oh Song

    2017-09-01

    Full Text Available Professional Learning Communities(PLCs arean important strategy for innovation in schools, and they arereceiving considerable attention from scholars and educators alike. The present study aimed to examine the effect of PLCson schools’ effectiveness and to investigate the social, organizational, and structural factors that can promote these learning communities. The survey for this study was completed by 375 teachers from 40 elementary schools in the Seoul Metropolitan Area of South Korea, and their responses were analyzed to test the hypothesized model. The results of the structural equationmodeling indicated that PLCswere strongly and directly related to elementary schools’ effectivenessand that principals’ leadership and supportive relationshipsamong teachers were the important factors that influenced PLCs. Based on the results of this study, several implications are discussed.

  9. Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands.

    Science.gov (United States)

    Prober, Suzanne M; Bissett, A; Walker, C; Wiehl, G; McIntyre, S; Tibbett, M

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are crucial to the functioning of the plant-soil system, but little is known about the spatial structuring of AMF communities across landscapes modified by agriculture. AMF community composition was characterized across four sites in the highly cleared south-western Australian wheatbelt that were originally dominated by forb-rich eucalypt woodlands. Environmentally induced spatial structuring in AMF composition was examined at four scales: the regional scale associated with location, the site scale associated with past management (benchmark woodlands with no agricultural management history, livestock grazing, recent revegetation), the patch scale associated with trees and canopy gaps, and the fine scale associated with the herbaceous plant species beneath which soils were sourced. Field-collected soils were cultured in trap pots; then, AMF composition was determined by identifying spores and through ITS1 sequencing. Structuring was strongest at site scales, where composition was strongly related to prior management and associated changes in soil phosphorus. The two fields were dominated by the genera Funneliformis and Paraglomus, with little convergence back to woodland composition after revegetation. The two benchmark woodlands were characterized by Ambispora gerdemannii and taxa from Gigasporaceae. Their AMF communities were strongly structured at patch scales associated with trees and gaps, in turn most strongly related to soil N. By contrast, there were few patterns at fine scales related to different herbaceous plant species, or at regional scales associated with the 175 km distance between benchmark woodlands. Important areas for future investigation are to identify the circumstances in which recolonization by woodland AMF may be limited by fungal propagule availability, reduced plant diversity and/or altered chemistry in agricultural soils.

  10. Community structure of non-coding RNA interaction network

    Directory of Open Access Journals (Sweden)

    Nacher Jose C.

    2013-06-01

    Full Text Available Rapid technological advances have shown that the ratio of non-protein coding genes rises to 98.5% in humans, suggesting that current knowledge on genetic information processing might be largely incomplete. It implies that protein-coding sequences only represent a small fraction of cellular transcriptional information. Here, we examine the community structure of the network defined by functional interactions between noncoding RNAs (ncRNAs and proteins related bio-macrolecules (PRMs using a two-fold approach: modularity in bipartite network and k-clique community detection. First, the high modularity scores as well as the distribution of community sizes showing a scaling-law revealed manifestly non-random features. Second, the k-clique sub-graphs and overlaps show that the identified communities of the ncRNA molecules of H. sapiens can potentially be associated with certain functions. These findings highlight the complex modular structure of ncRNA interactions and its possible regulatory roles in the cell.

  11. Scale-dependent interactions and community structure on cobble beaches.

    Science.gov (United States)

    van de Koppel, Johan; Altieri, Andrew H; Silliman, Brian R; Bruno, John F; Bertness, Mark D

    2006-01-01

    Recent theory suggests that scale-dependent interaction between facilitation and competition can generate spatial structure in ecological communities. The application of this hypothesis, however, has been limited to systems with little underlying heterogeneity. We evaluated this prediction in a plant community along an intertidal stress gradient on cobble beaches in Rhode Island, USA. Prior studies have shown that Spartina alterniflora facilitates a forb-dominated community higher in the intertidal by modifying the shoreline environment. We tested the hypothesis that, at a smaller scale, Spartina competitively excludes forb species, explaining their marked absence within the lower Spartina zone. Transplant experiments showed forb species grow significantly better in the Spartina zone when neighbours were removed. Removal of the Spartina canopy led to a massive emergence of annual forbs, showing that competition limits local occupation. These findings indicate that interaction of large-scale facilitation and small-scale competition drives plant zonation on cobble beaches. This study is the first to provide empirical evidence of scale-dependent interactions between facilitation and competition spatially structuring communities in heterogeneous environments.

  12. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Science.gov (United States)

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  13. RECENT STRONG EARTHQUAKES IN CENTRAL ASIA: REGULAR TECTONOPHYSICAL FEATURES OF LOCATIONS IN THE STRUCTURE AND GEODYNAMICS OF THE LITHOSPHERE. PART 1. MAIN GEODYNAMIC FACTORS PREDETERMINING LOCATIONS OF STRONG EARTHQUAKES IN THE STRUCTURE OF THE LITHOSPHER

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2015-01-01

    Full Text Available Studying locations of strong earthquakes (М≥8 in space and time in Central Asia has been among top prob-lems for many years and still remains challenging for international research teams. The authors propose a new ap-proach that requires changing the paradigm of earthquake focus – solid rock relations, while this paradigm is a basis for practically all known physical models of earthquake foci. This paper describes the first step towards developing a new concept of the seismic process, including generation of strong earthquakes, with reference to specific geodynamic features of the part of the study region wherein strong earthquakes were recorded in the past two centuries. Our analysis of the locations of М≥8 earthquakes shows that in the past two centuries such earthquakes took place in areas of the dynamic influence of large deep faults in the western regions of Central Asia. In the continental Asia, there is a clear submeridional structural boundary (95–105°E between the western and eastern regions, and this is a factor controlling localization of strong seismic events in the western regions. Obviously, the Indostan plate’s pressure from the south is an energy source for such events. The strong earthquakes are located in a relatively small part of the territory of Central Asia (i.e. the western regions, which is significantly different from its neighbouring areas at the north, east and west, as evidenced by its specific geodynamic parameters. (1 The crust is twice as thick in the western regions than in the eastern regions. (2 In the western regions, the block structures re-sulting from the crust destruction, which are mainly represented by lense-shaped forms elongated in the submeridio-nal direction, tend to dominate. (3 Active faults bordering large block structures are characterized by significant slip velocities that reach maximum values in the central part of the Tibetan plateau. Further northward, slip velocities decrease

  14. A community detection algorithm based on structural similarity

    Science.gov (United States)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  15. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures

    Science.gov (United States)

    Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.

    2007-01-01

    The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  16. Comparison and validation of community structures in complex networks

    Science.gov (United States)

    Gustafsson, Mika; Hörnquist, Michael; Lombardi, Anna

    2006-07-01

    The issue of partitioning a network into communities has attracted a great deal of attention recently. Most authors seem to equate this issue with the one of finding the maximum value of the modularity, as defined by Newman. Since the problem formulated this way is believed to be NP-hard, most effort has gone into the construction of search algorithms, and less to the question of other measures of community structures, similarities between various partitionings and the validation with respect to external information. Here we concentrate on a class of computer generated networks and on three well-studied real networks which constitute a bench-mark for network studies; the karate club, the US college football teams and a gene network of yeast. We utilize some standard ways of clustering data (originally not designed for finding community structures in networks) and show that these classical methods sometimes outperform the newer ones. We discuss various measures of the strength of the modular structure, and show by examples features and drawbacks. Further, we compare different partitions by applying some graph-theoretic concepts of distance, which indicate that one of the quality measures of the degree of modularity corresponds quite well with the distance from the true partition. Finally, we introduce a way to validate the partitionings with respect to external data when the nodes are classified but the network structure is unknown. This is here possible since we know everything of the computer generated networks, as well as the historical answer to how the karate club and the football teams are partitioned in reality. The partitioning of the gene network is validated by use of the Gene Ontology database, where we show that a community in general corresponds to a biological process.

  17. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  18. AmeriFlux and EuroFlux: History of a Strong Collaboration that Provided Unique Resources to the Scientific Community

    Science.gov (United States)

    Papale, D.; Agarwal, D.; Biraud, S.; Canfora, E.; Pastorello, G.; Torn, M. S.; Trotta, C.

    2017-12-01

    In 1995 scientific communities in Europe and North America using the eddy covariance technique to measure carbon, water, and energy exchanges between the terrestrial biosphere and the atmosphere started to organize their respective regional networks. Although there was a general interest and agreement to collaborate and exchange information and data between the two communities, these mainly occurred at the single site or individual levels through direct communications rather than systematically across networks. Between 2000 and 2008 common strategies to facilitate data sharing, promote data use across the two networks, and outreach to the scientific community, started to be more deeply discussed. Early on, harmonization across networks was deemed necessary to the success of both networks. This actually required major effort including lengthy discussions, compromises, and interactions between the networks for concrete implementation of common platforms and tools. Topics such as measurement units, variable definitions and labeling, data processing methods, data sharing policy, data distribution systems and formats, were key elements that had to be addressed and agreed upon carefully to build integrated and inter-operable research infrastructures (RIs). Today, AmeriFlux and EuroFlux are the basis, not only of the continental research infrastructures (ICOS in Europe), but they are also the driving force behind FLUXNET, where other regional networks are joining this coalition and contributing to the definition of a common system to make complex measurements accessible and comparable across continents. The latest dataset produced from this collaboration includes data contributed by over 200 sites around the world, with records spanning over two decades of data, and has been downloaded by over 900 users in the first 1.5 years of its publication. The core strategy of this collaboration, critical aspects and implemented solutions, as well as the current state of this effort

  19. Diatom community structure on in-service cruise ship hulls.

    Science.gov (United States)

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  20. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    Science.gov (United States)

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  1. Strong congruence in tree and fern community turnover in response to soils and climate in central Panama

    DEFF Research Database (Denmark)

    Jones, Mirkka; Ferrier, Simon; Condit, Richard

    2013-01-01

    and seasonality undoubtedly limit plant distributions in this region, soil effects are at least as important, and interactions between the two are sizeable. This is likely to hold elsewhere in the Caribbean region, where mosaics of marine and volcanic soils combined with pronounced rainfall gradients are common......1. Plant species turnover in central Panamanian forests has been principally attributed to the effects of dispersal limitation and a strong Caribbean to Pacific gradient in rainfall seasonality. Despite marked geological heterogeneity, the role of soil variation has not been rigorously examined. 2....... We modelled the compositional turnover of trees and ferns in the Panama Canal watershed as a function of soil chemistry, climate and geographical separation, using generalized dissimilarity models (GDMs). 3. Predictability in both plant groups was strong, with 74% of turnover explained in trees...

  2. Benthic community structure, diversity, and productivity in the shallow Barents Sea bank (Svalbard Bank).

    Science.gov (United States)

    Kędra, Monika; Renaud, Paul E; Andrade, Hector; Goszczko, Ilona; Ambrose, William G

    2013-01-01

    The Barents Sea is among the most productive areas in the world oceans, and its shallow banks exhibit particularly high rates of primary productivity reaching over 300 g C m -2 year -1 . Our study focused on the Svalbard Bank, an important feeding area for fishes and whales. In order to investigate how benthic community structure and benthic secondary production vary across environmental gradients and through time, we sampled across the bank and compared results with a similar study conducted 85 years ago. Considerable variability in community structure and function across bank corresponded with differences in the physical structure of the habitat, including currents, sedimentation regimes and sediment type, and overlying water masses. Despite an intensive scallop fishery and climatic shifts that have taken place since the last survey in the 1920s, benthic community structure was very similar to that from the previous survey, suggesting strong system resilience. Primary and secondary production over shallow banks plays a large role in the Barents Sea and may act as a carbon subsidy to surrounding fish populations, of which many are of commercial importance.

  3. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture

    Science.gov (United States)

    Jha, Neha; Saggar, Surinder; Giltrap, Donna; Tillman, Russ; Deslippe, Julie

    2017-09-01

    Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O

  4. Competition for space and the structure of ecological communities

    CERN Document Server

    Yodzis, Peter

    1978-01-01

    This volume is an investigation of interspecific competition for space, particularly among sessile organisms, both plant and animal, and its consequences for community structure. While my own contribu­ tion ----and the bulk of this volume --- lies in mathematical analysis of the phenomenon, I have also tried to summarize the most important natural historical aspects of these communities, and have devoted much effort to relating the mathematical results to observations of the natural world. Thus, the volume has both a synthetic and an analytic aspect. On the one hand, I have been struck by certain similarities among many communities, from forests to mussel beds, in which spatial com­ petition is important. On the other hand, I have analyzed this pheno­ menon by means of reaction-dispersal models. Finally, the mathematical analysis has suggested a conceptual framework for these communities which, I believe, further unifies and illuminates the field data. A focal perception of this work is that, just as niche...

  5. Microbial Community Structure in the Rhizosphere of Rice Plants.

    Science.gov (United States)

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G

    2015-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth.

  6. Microbial community structure in the rhizosphere of rice plants

    Directory of Open Access Journals (Sweden)

    Björn eBreidenbach

    2016-01-01

    Full Text Available The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e. rhizosphere versus bulk soil had a greater effect on the community structure than did time (e.g. plant growth stage. Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g. Geobacter, Anaeromyxobacter and fermenters (e.g. Clostridiaceae, Opitutaceae were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth.

  7. Physical structure of artificial seagrass affects macrozoobenthic community recruitment

    Science.gov (United States)

    Ambo-Rappe, R.; Rani, C.

    2018-03-01

    Seagrass ecosystems are important in supporting marine biodiversity. However, the worldwide decline in seagrass areas due to anthropogenic factors leads to a decrease in the marine biodiversity they can support. There is growing awareness of the need for concepts to conserve and/or rehabilitate seagrass ecosystems. One option is to create artificial seagrass to provide a physical structure for the marine organisms to colonize. The objective of this research was to analyze the effect of some artificial seagrasses and seagrass transplants on marine biodiversity, with a focus on the macrozoobenthic community. The experimental design compared two types of artificial seagrass (polypropylene ribbons and shrub-shaped plastic leaves), and seagrass transplants from nearby seagrass meadows. The experimental plots were 4 x 4 m2 with 3 replicates. Macrozoobenthic communities were sampled fortnightly for 3.5 months. At the end of the experiment, makrozoobenthos were also sampled from a natural seagrass bed nearby. Of 116 macrozoobenthic species in the artificial seagrass plots, 91 were gastropods. The density of the macrobenthic fauna increased from the beginning to the end of the study in all treatments, but the increase was only significant for the artificial seagrass treatment (i.e. shrub-like plastic leaves). There was a distinct separation between the macrozoobenthic community structure found in the restoration plots (artificial seagrass and transplanted seagrass) compared to natural seagrass beds.

  8. Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations.

    Science.gov (United States)

    Almog, Assaf; Besamusca, Ferry; MacMahon, Mel; Garlaschelli, Diego

    2015-01-01

    The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.

  9. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure.

    Science.gov (United States)

    Rachid, Caio T C C; Santos, Adriana L; Piccolo, Marisa C; Balieiro, Fabiano C; Coutinho, Heitor L C; Peixoto, Raquel S; Tiedje, James M; Rosado, Alexandre S

    2013-01-01

    The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.

  10. Structure of the epiphyte community in a tropical montane forest in SW China.

    Directory of Open Access Journals (Sweden)

    Mingxu Zhao

    Full Text Available Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height, while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.

  11. Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations.

    Directory of Open Access Journals (Sweden)

    Assaf Almog

    Full Text Available The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases, and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.

  12. Assembly of strongly phosphorescent hetero-bimetallic and -trimetallic [2]catenane structures based on a coinage metal alkynyl system.

    Science.gov (United States)

    Chang, Xiao-Yong; Xu, Guang-Tao; Cao, Bei; Wang, Juan-Yu; Huang, Jie-Sheng; Che, Chi-Ming

    2017-11-01

    C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C - ligand) complex, which feature [2]catenane structures. The formation of the [2]catenane structure is significantly affected by the coinage metal ion(s) and change of the structure of the alkynyl ligand. These hetero-metallic [2]catenane structures are strongly luminescent with tunable emission λ max from 503 to 595 nm and Φ values up to 0.83.

  13. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations

    KAUST Repository

    Schmidt, GM

    2012-06-07

    The Similan Islands, a Thai archipelago in the Andaman Sea located near the shelf break, are subjected to frequent (up to several events per hour) and abrupt changes in physico-chemical conditions, particularly during the dry season (NE monsoon, January through April) and to an intense monsoon season with strong surface wave action (May to October). The exposed west slopes of the islands feature more coral species, but lack a carbonate reef framework. By contrast, the sheltered east sides show a complex reef framework dominated by massive Porites. Our results suggest that the sudden changes in temperature, pH and nutrients (drops of up to 10°C and 0.6 U and increases of up to 9.4 µmol NOx l−1, respectively) due to pulsed upwelling events may rival the importance of surface waves and storms in shaping coral distribution and reef development.

  14. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    Science.gov (United States)

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron, and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    Science.gov (United States)

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  16. Denitrification in Agriculturally Impacted Streams: Seasonal Changes in Structure and Function of the Bacterial Community

    Science.gov (United States)

    Manis, Erin; Royer, Todd V.; Johnson, Laura T.; Leff, Laura G.

    2014-01-01

    Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage), whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ) and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3-) and that seasonal drying of stream channels has a negative impact on NO3- removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change in abundance or

  17. Denitrification in agriculturally impacted streams: seasonal changes in structure and function of the bacterial community.

    Directory of Open Access Journals (Sweden)

    Erin Manis

    Full Text Available Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage, whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3- and that seasonal drying of stream channels has a negative impact on NO3- removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change

  18. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2017-10-01

    Full Text Available Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel and Saxifraga oppositifolia (blue saxifrage, in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH-targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ-Proteobacteria were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and

  19. Trophic structure and community stability in an overfished ecosystem

    KAUST Repository

    Utne-Palm, Anne Christine

    2010-07-15

    Since the collapse of the pelagic fisheries off southwest Africa in the late 1960s, jellyfish biomass has increased and the structure of the Benguelan fish community has shifted, making the bearded goby (Sufflogobius bibarbatus) the new predominant prey species. Despite increased prédation pressure and a harsh environment, the gobies are thriving. Here we show that physiological adaptations and antipredator and foraging behaviors underpin the success of these fish. In particular, body-tissue isotope signatures reveal that gobies consume jellyfish and sulphidic diatomaceous mud, transferring "dead-end" resources back into the food chain.

  20. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks.

    Science.gov (United States)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013)]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012)]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  1. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks

    Science.gov (United States)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013), 10.1038/srep01783]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012), 10.1038/nphys2162]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  2. Making the links between community structure and individual well-being: community quality of life in Riverdale, Toronto, Canada.

    Science.gov (United States)

    Raphael, D; Renwick, R; Brown, I; Steinmetz, B; Sehdev, H; Phillips, S

    2001-09-01

    An inquiry into community quality of life was carried out within a framework that recognizes the complex relationship between community structures and individual well-being. Through use of focus groups and key informant interviews, community members, service providers, and elected representatives in a Toronto community considered aspects of their community that affected quality of life. Community members identified strengths of access to amenities, caring and concerned people, community agencies, low-cost housing, and public transportation. Service providers and elected representatives recognized diversity, community agencies and resources, and presence of culturally relevant food stores and services as strengths. At one level, findings were consistent with emerging concepts of social capital. At another level, threats to the community were considered in relation to the hypothesized role neo-liberalism plays in weakening the welfare state.

  3. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  4. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mass media influence spreading in social networks with community structure

    Science.gov (United States)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  6. Coral Community Structure and Recruitment in Seagrass Meadows

    Directory of Open Access Journals (Sweden)

    Kathryn E. Lohr

    2017-11-01

    Full Text Available Coral communities are increasingly found to populate non-reef habitats prone to high environmental variability. Such sites include seagrass meadows, which are generally not considered optimal habitats for corals as a result of limited suitable substrate for settlement and substantial diel and seasonal fluctuations in physicochemical conditions relative to neighboring reefs. Interest in understanding the ability of corals to persist in non-reef habitats has grown, however little baseline data exists on community structure and recruitment of scleractinian corals in seagrass meadows. To determine how corals populate seagrass meadows, we surveyed the established and recruited coral community over 25 months within seagrass meadows at Little Cayman, Cayman Islands. Simultaneous surveys of established and recruited coral communities at neighboring back-reef sites were conducted for comparison. To fully understand the amount of environmental variability to which corals in each habitat were exposed, we conducted complementary surveys of physicochemical conditions in both seagrass meadows and back-reefs. Despite overall higher variability in physicochemical conditions, particularly pH, compared to the back-reef, 14 coral taxa were capable of inhabiting seagrass meadows, and multiple coral families were also found to recruit to these sites. However, coral cover and species diversity, richness, and evenness were lower at sites within seagrass meadows compared to back-reef sites. Although questions remain regarding the processes governing recruitment, these results provide evidence that seagrass beds can serve as functional habitats for corals despite high levels of environmental variability and suboptimal conditions compared to neighboring reefs.

  7. Influence of Strong Diurnal Variations in Sewage Quality on the Performance of Biological Denitrification in Small Community Wastewater Treatment Plants (WWTPs

    Directory of Open Access Journals (Sweden)

    Giordano Urbini

    2013-08-01

    Full Text Available The great diurnal variation in the quality of wastewater of small communities is an obstacle to the efficient removal of high nitrogen with traditional activated sludge processes provided by pre-denitrification. To verify this problem, the authors developed a pilot plant, in which the domestic wastewater of community of 15,000 inhabitants was treated. The results demonstrate that average and peak nitrogen removal efficiencies of over 60% and 70%, respectively, are difficult to obtain because of the strong variations in the BOD5/NO3-N ratios and the unexpected abnormal accumulation of dissolved oxygen during denitrification when the BOD5 load is low. These phenomena cause inhibitory effects and BOD5 deficiency in the denitrification process. The results demonstrate the need for a more complex approach to designing and managing small wastewater treatment plants (WWTPs provided with denitrification than those usually adopted for medium- and large-size plants.

  8. Microsatellites reveal a strong subdivision of genetic structure in Chinese populations of the mite Tetranychus urticae Koch (Acari: Tetranychidae

    Directory of Open Access Journals (Sweden)

    Sun Jing-Tao

    2012-02-01

    Full Text Available Abstract Background Two colour forms of the two-spotted spider mite (Tetranychus urticae Koch coexist in China: a red (carmine form, which is considered to be native and a green form which is considered to be invasive. The population genetic diversity and population genetic structure of this organism were unclear in China, and there is a controversy over whether they constitute distinct species. To address these issues, we genotyped a total of 1,055 individuals from 18 red populations and 7 green populations in China using eight microsatellite loci. Results We identified 109 alleles. We found a highly significant genetic differentiation among the 25 populations (global FST = 0.506, global FST {ENA} = 0.473 and a low genetic diversity in each population. In addition, genetic diversity of the red form mites was found to be higher than the green form. Pearson correlations between statistics of variation (AR and HE and geographic coordinates (latitude and longitude showed that the genetic diversity of the red form was correlated with latitude. Using Bayesian clustering, we divided the Chinese mite populations into five clades which were well congruent with their geographic distributions. Conclusions Spider mites possess low levels of genetic diversity, limit gene flow between populations and significant and IBD (isolation by distance effect. These factors in turn contribute to the strong subdivision of genetic structure. In addition, population genetic structure results don't support the separation of the two forms of spider mite into two species. The morphological differences between the two forms of mites may be a result of epigenetic effects.

  9. Possible effects of water pollution on the community structure of Red Sea corals

    Energy Technology Data Exchange (ETDEWEB)

    Loya, Y.

    1975-02-28

    The community structure and species diversity of hermatypic corals was studied during 1969 to 1973, in 2 reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the mature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further S, which is free of oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In Sept. 1970, both reefs suffered approximately 90 percent mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was blooming with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. Phosphate eutrophication and chronic oil pollution are probably the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and development of coral larvae. Chronic oil pollution results in either one or a combination of the following: damage to the reproductive system of corals, decreased viability of coral larvae, or changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.

  10. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  11. Spatial structure of the meroplankton community along a Patagonian fjord - The role of changing freshwater inputs

    Science.gov (United States)

    Meerhoff, Erika; Tapia, Fabián J.; Castro, Leonardo R.

    2014-12-01

    Freshwater inputs are major drivers of circulation, hydrographic structure, and productivity patterns along estuarine systems. We assessed the degree to which meroplankton community structure in the Baker/Martinez fjord complex (Chilean Patagonia, 47.5°S) responds to spatial and temporal changes in hydrographic conditions driven by seasonal changes in Baker river outflow. Zooplankton and hydrographic measurements were conducted along the fjord in early spring (October) and late summer (February), when river outflow was minimal and maximal, respectively. Major meroplankton groups found on these surveys were larval barnacles, crabs, bivalves and gastropods. There was a clear change in community structure between October and February, explained by a switch in the numerically dominant group from barnacle to bivalve larvae. This change in community structure was related to changes in hydrographic structure along the fjord, which are mainly associated with seasonal changes in the Baker river outflow. A variance partition analysis showed no significant spatial trend that could account for the variation in meroplankton along the Martinez channel, whereas temporal variability and environmental variables accounted for 36.6% and 27.6% of the variance, respectively. When comparing meroplankton among the Baker and Martinez channels in October, changes in environmental variables explained 44.9% of total variance, whereas spatial variability accounted for 23.5%. Early and late-stage barnacle larvae (i.e. nauplii and cyprids) were more abundant in water with lower temperature, and higher dissolved oxygen and chlorophyll-a concentration, whereas bivalve larvae were more strongly associated to warmer waters. The seasonal shift in numerical dominance, from barnacle larvae in early spring to bivalve larvae in late summer, suggests that reproduction of these groups is triggered by substantially different sets of conditions, both in terms of hydrography and food availability. The

  12. Levitated superconductor ring trap (mini-RT) project - A new self-organized structure with strong plasma flow

    International Nuclear Information System (INIS)

    Ogawa, Y.; Himura, H.; Hishinuma, Y.

    2003-01-01

    Mahajan-Yoshida has theoretically developed a new relaxation state under the condition of a strong plasma flow, and proposed a possibility for confining high beta plasmas. In this self-organized state, two fluids (electron and ion) would relax to the condition given by the relation β + (V/V A ) 2 = const.. An internal coil device is suitable for studying a self-organized structure with strong plasma flow, because a strong toroidal flow is easily induced by introducing an appropriate radial electric field. We are constructing a Mini-RT device, which is equipping a floating coil with a high temperature superconductor (HTS) coil (R=0.15m, Ic=50kAturns). The magnetic field strength near the floating coil is around 0.1 T, and the plasma production with 2.45 GHz Electron Cyclotron Heating is planned. We are preparing several techniques to build up the radial electric field in the plasma such as the direct insertion of the electrode and so on. The utilization of direct orbit loss of high energy electrons produced by ECH might be an interesting method. The orbit calculation results show that the electrons with the energy of more than 10 keV would escape at the outer region of the plasma column, yielding the build-up of the radial electric field. The engineering aspect of the HTS coil is in progress. We have fabricated a small HTS coil (R=0.04 m and Ic= 2.6 kAturns), and succeeded in levitating it during four minutes with an accuracy of a few tens of micrometers. Since the HTS coil is excited by the external power supply, the persistent current switch for the HTS coil has been developed. The HTS coil system with the PCS coil has been fabricated and the excitation test has been carried out. We have succeeded in achieving a persistent current, and it is found that the decay constant of the coil current is evaluated to be around 40 hours and 6.5 hours at 20 K and 40 K, respectively. (author)

  13. A spectral method to detect community structure based on distance modularity matrix

    Science.gov (United States)

    Yang, Jin-Xuan; Zhang, Xiao-Dong

    2017-08-01

    There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.

  14. Effects of strong interactions between Ti and ceria on the structures of Ti/CeO2.

    Science.gov (United States)

    Yao, Xiao-Dan; Zhu, Kong-Jie; Teng, Bo-Tao; Yu, Cao-Ming; Zhang, Yun-Lei; Liu, Ya; Fan, Maohong; Wen, Xiao-Dong

    2016-11-30

    The effects of strong interactions between Ti and ceria on the structures of Ti/CeO 2 (111) are systematically investigated by density functional theory calculation. To our best knowledge, the adsorption energy of a Ti atom at the hollow site of CeO 2 is the highest value (-7.99 eV) reported in the literature compared with those of Au (-0.88--1.26 eV), Ag (-1.42 eV), Cu (-2.69 eV), Pd (-1.75 eV), Pt (-2.62 eV) and Sn (-3.68 eV). It is very interesting to find that Ti adatoms disperse at the hollow site of CeO 2 (111) to form surface TiO x species, instead of aggregating to form Ti metal clusters for the Ti-CeO 2 interactions that are much stronger than those of Ti-Ti ones. Ti adatoms are completely oxidized to Ti 4+ ions if they are monatomically dispersed on the next near hollow sites of CeO 2 (111) (xTi-NN-hollow); while Ti 3+ ions are observed when they locate at the near hollow sites (xTi-N-hollow). Due to the electronic repulsive effects among Ti 3+ ions, the adsorption energies of xTi-N-hollow are slightly weaker than those of xTi-NN-hollow. Simultaneously, the existence of unstable Ti 3+ ions on xTi-N-hollow also leads to the restructuring of xTi-N-hollow by surface O atoms of ceria transferring to the top of Ti 3+ ions, or oxidation by O 2 adsorption and dissociation. Both processes improve the stability of the xTi/CeO 2 system by Ti 3+ oxidation. Correspondingly, surface TiO 2 -like species form. This work sheds light into the structures of metal/CeO 2 catalysts with strong interactions between the metal and the ceria support.

  15. Pregnancy and birth in an indigenous Huichol community: from structural violence to structural policy responses.

    Science.gov (United States)

    Gamlin, Jennie B; Hawkes, Sarah J

    2015-01-01

    Mexico's indigenous regions are characterised by socio-economic marginalisation and poor health outcomes and the Maternal Mortality Rate in indigenous communities continues to be around six times higher than the national rate. Using as a case study the Huichol community of North-Western Mexico we will discuss how institutional health and welfare programmes which aim to address accepted risk factors for maternal health are undermined by a series of structural barriers which put indigenous women especially in harm's way. Semi-structured interviews and observational data were gathered between 2009 and 2011 in highland communities and on coastal tobacco plantations to where a large number of this ethnic group migrate. Many Huichol women birth alone, and to facilitate this process they maintain a low nutritional intake to reduce their infant's growth and seek spiritual guidance during pregnancy from a shaman. These practices are reinforced by feelings of shame and humiliation encountered when using institutional health provision. These are some of the structural barriers to care that need to be addressed. Effective interventions could include addressing the training of health professionals, focusing on educational inequalities and the structural determinants of poverty whilst designing locally specific programmes that encourage acceptance of available health care.

  16. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.

    Science.gov (United States)

    Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S

    2017-05-15

    Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A

  17. Community structure of ectomycorrhizal fungi in Swedish boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    The main aim of this work has been to elucidate the species composition and community structure of ectomycorrhizal fungi associated with mature trees and naturally regenerated seedlings in natural boreal forests in Sweden. Further, the effects of disturbances, such as wildfire and nitrogen inputs, were studied. Sporocarp surveys, morphological stratification and DNA-based analyses of mycorrhizas were used to describe the mycorrhizal fungal communities. In addition, a reference database useful for identifying individual mycorrhizas was developed based on analyses of sporocarp tissue. Overall, the species richness of ectomycorrhizal fungi was at least 30 to 40 times higher than that of their host trees. Naturally regenerated seedlings were colonized by the ectomycorrhizal fungal species present in the mycelial network of the old trees, indicating that the species composition will remain about the same provided that the host does not disappear. Wildfire, disturbing the fungal continuum, caused a shift in the frequencies of ectomycorrhizal fungi rather than a change in species composition. Nitrogen addition did not have any detectable effect on the abundance or species richness of mycorrhizas, but led to a decrease in sporocarp production. In all the studies, there was little resemblance between the species composition of sporocarps and that of mycorrhizas. The ITS-RFLP reference database was very useful in identifying single mycorrhizas, and proved to be a powerful tool for species identification of unknown mycorrhizas 76 refs, 2 figs, 2 tabs

  18. Community Structure and Productivity in Western Mongolian Steppe

    Directory of Open Access Journals (Sweden)

    Kiyokazu Kawada

    2014-12-01

    Full Text Available The people of the Mongolian steppe have maintained a sustainable, nomadic lifestyle. However, several ecological processes are threatening their way of life. Ecological changan be detected through the analysis of quantitative and qualitative data. It is therefore, imperative to develop a sustainable rangeland management system aimed at combating desertifi cation. In this study we quantitatively and qualitatively describe several western Mongolian steppe plant communities by examining species composition, plant volume and community structure. Study sites were located in the Uvs and Khovd provinces and had all been affected by livestock grazing. A total of 48 species were found. Stipa krylovii , S . gobica , Cleistogenes songorica , Koeleria cristata and Ajania achilleoides were dominant. There was a signifi cant relationship between biomass and plant volume at all sites. Study sites were classifi ed into four groups using cluster analysis, based on the presence or absence of several species. More than 90% of plant volumes at all groups were perennial grasses and perennial forbs. The ratio of C 3 to C 4 plants at site 3 was reversed in comparison to the other sites. Species highly palatable to livestock were dominant at all sites. To ensure the sustainable use of biological resources in these arid areas, these fi ndings should be taken into account in designing land-use plans.

  19. Seasonal Dynamics of Bacterioplankton Community Structure in a Eutrophic Lake as Determined by 5S rRNA Analysis

    Science.gov (United States)

    Höfle, Manfred G.; Haas, Heike; Dominik, Katja

    1999-01-01

    Community structure of bacterioplankton was studied during the major growth season for phytoplankton (April to October) in the epilimnion of a temperate eutrophic lake (Lake Plußsee, northern Germany) by using comparative 5S rRNA analysis. Estimates of the relative abundances of single taxonomic groups were made on the basis of the amounts of single 5S rRNA bands obtained after high-resolution electrophoresis of RNA directly from the bacterioplankton. Full-sequence analysis of single environmental 5S rRNAs enabled the identification of single taxonomic groups of bacteria. Comparison of partial 5S rRNA sequences allowed the detection of changes of single taxa over time. Overall, the whole bacterioplankton community showed two to eight abundant (>4% of the total 5S rRNA) taxa. A distinctive seasonal succession was observed in the taxonomic structure of this pelagic community. A rather-stable community structure, with seven to eight different taxonomic units, was observed beginning in April during the spring phytoplankton bloom. A strong reduction in this diversity occurred at the beginning of the clear-water phase (early May), when only two to four abundant taxa were observed, with one taxon dominating (up to 72% of the total 5S rRNA). The community structure during summer stagnation (June and July) was characterized by frequent changes of different dominating taxa. During late summer, a dinoflagellate bloom (Ceratium hirudinella) occurred, with Comamonas acidovorans (β-subclass of the class Proteobacteria) becoming the dominant bacterial species (average abundance of 43% of the total 5S rRNA). Finally, the seasonal dynamics of the community structure of bacterioplankton were compared with the abundances of other major groups of the aquatic food web, such as phyto- and zooplankton, revealing that strong grazing pressure by zooplankton can reduce microbial diversity substantially in pelagic environments. PMID:10388718

  20. Effect of power plant emissions on plant community structure

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.; Agrawal, M.; Narayan, D. (Banaras Hindu University, Varanasi (India))

    1994-06-01

    A field study was conducted around two coal-fired thermal power plants (TPP) to analyse the impact of their emission on the structure of herbaceous communities in a dry tropical area. Phytosociological studies reflected that Cassia tora, Cynodon dactylon and Dichanthium annulatum dominate at heavily polluted sites. Alsycarpus monilifer, Convolvulus pluricaulis, and Desmodium triflorum are uniformly distributed, whereas Paspalidium flavidum, Phyllanthus simplex, and Rungia repens are dominant at less polluted sites. On the basis of Importance Value Index, the species were classified as sensitive, intermediate and resistant to TPP emissions. Shannon-Wiener Index of species diversity, species richness and evenness were inversely related to the pollution load in the area. Significant negative correlation between ambient SO[sub 2] concentration and species diversity suggested selective elimination of sensitive species from the heavily polluted sites.

  1. Effect of power plant emissions on plant community structure.

    Science.gov (United States)

    Singh, J; Agrawal, M; Narayan, D

    1994-06-01

    A field study was conducted around two coal-fired thermal power plants (TPP) to analyse the impact of their emission on the structure of herbaceous communities in a dry tropical area. Phytosociological studies reflected that Cassia tora, Cynodon dactylon and Dichanthium annulatum dominate at heavily polluted sites. Alsycarpus monilifer, Convolvulus pluricaulis, and Desmodium triflorum are uniformly distributed, whereas Paspalidium flavidum, Phyllanthus simplex, and Rungia repens are dominant at less polluted sites. On the basis of Importance Value Index, the species were classified as sensitive, intermediate and resistant to TPP emissions. Shannon-Wiener Index of species diversity, species richness and evenness were inversely related, whereas concentration of dominance was directly related to the pollution load in the area. Significant negative correlation between ambient SO2 concentration and species diversity suggested selective elimination of sensitive species from the heavily polluted sites.

  2. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Directory of Open Access Journals (Sweden)

    Baneshwar Singh

    2018-01-01

    Full Text Available As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m and temporal (3–732 days dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples, the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples, the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding

  3. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  4. Macrobenthic community structure response to coastal hypoxia off Southeastern Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Periasamy, R.; De, K.

    The analysis of changes in macrobenthic community using multivariate statistical techniques has been applied to find the structure by the environmental condition. The aim of the study was to evaluate macrofaunal community patterns between natural...

  5. The effect of bacteria on diatom community structure - The 'antibiotics' approach

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    . The bacterial community preferred the ‘tolerance’ strategy over ‘resistance’ in response to treatment with penicillin; these changes in bacterial dynamics were probably linked to concurrent changes in diatom community structure. The observations with penicillin...

  6. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    OpenAIRE

    Cong, Mingyang; Cao, Di; Sun, Jingkuan; Shi, Fuchen

    2014-01-01

    It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community struc...

  7. Local and regional effects on community structure of dung beetles in a mainland-island scenario.

    Science.gov (United States)

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2014-01-01

    Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites). We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal ability due to habitat

  8. Local and regional effects on community structure of dung beetles in a mainland-island scenario.

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    Full Text Available Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites. We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal

  9. Effect of Sugarcane Burning or Green Harvest Methods on the Brazilian Cerrado Soil Bacterial Community Structure

    Science.gov (United States)

    Rachid, Caio T. C. C.; Santos, Adriana L.; Piccolo, Marisa C.; Balieiro, Fabiano C.; Coutinho, Heitor L. C.; Peixoto, Raquel S.; Tiedje, James M.; Rosado, Alexandre S.

    2013-01-01

    Background The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. Methods We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Results and Conclusions Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected. PMID:23533619

  10. Seagrass radiation after Messinian salinity crisis reflected by strong genetic structuring and out-of-Africa scenario (Ruppiaceae.

    Directory of Open Access Journals (Sweden)

    Ludwig Triest

    Full Text Available Many aquatic plant and seagrass species are widespread and the origin of their continent-wide ranges might result from high gene flow levels. The response of species when extending northwards since the Last Glacial Maximum can be opposed to the structuring of their populations that survived glaciation cycles in southern regions. The peri-Mediterranean is a complex series of sea basins, coastlines, islands and river deltas with a unique history since the Messinian Crisis that potentially influenced allopatric processes of aquatic life. We tested whether vast ranges across Europe and the peri-Mediterranean of a global seagrass group (Ruppia species complexes can be explained by either overall high levels of gene flow or vicariance through linking population genetics, phylogeography and shallow phylogenetics. A multigene approach identified haplogroup lineages of two species complexes, of ancient and recent hybrids with most of the diversity residing in the South. High levels of connectivity over long distances were only observed at recently colonized northern ranges and in recently-filled seas following the last glaciation. A strong substructure in the southern Mediterranean explained an isolation-by-distance model across Europe. The oldest lineages of the southern Mediterranean Ruppia dated back to the period between the end of the Messinian and Late Pliocene. An imprint of ancient allopatric origin was left at basin level, including basal African lineages. Thus both vicariance in the South and high levels of connectivity in the North explained vast species ranges. Our findings highlight the need for interpreting global distributions of these seagrass and euryhaline species in the context of their origin and evolutionary significant units for setting up appropriate conservation strategies.

  11. The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China

    Directory of Open Access Journals (Sweden)

    Xie-feng Yao

    Full Text Available Abstract In this study, determination of heavy metal parameters and microbiological characterization of marine sediments obtained from two heavily polluted sites and one low-grade contaminated reference station at Jiaozhou Bay in China were carried out. The microbial communities found in the sampled marine sediments were studied using PCR-DGGE (denaturing gradient gel electrophoresis fingerprinting profiles in combination with multivariate analysis. Clustering analysis of DGGE and matrix of heavy metals displayed similar occurrence patterns. On this basis, 17 samples were classified into two clusters depending on the presence or absence of the high level contamination. Moreover, the cluster of highly contaminated samples was further classified into two sub-groups based on the stations of their origin. These results showed that the composition of the bacterial community is strongly influenced by heavy metal variables present in the sediments found in the Jiaozhou Bay. This study also suggested that metagenomic techniques such as PCR-DGGE fingerprinting in combination with multivariate analysis is an efficient method to examine the effect of metal contamination on the bacterial community structure.

  12. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  13. A strong TB programme embedded in a developing primary healthcare system is a lose-lose situation: insights from patient and community perspectives in Cambodia.

    Science.gov (United States)

    Sundaram, Neisha; James, Richard; Sreynimol, Um; Linda, Pen; Yoong, Joanne; Saly, Saint; Koeut, Pichenda; Eang, Mao Tan; Coker, Richard; Khan, Mishal S

    2017-10-01

    As exemplified by the situation in Cambodia, disease specific (vertical) health programmes are often favoured when the health system is fragile. The potential of such an approach to impede strengthening of primary healthcare services has been studied from a health systems perspective in terms of access and quality of care. In this bottom-up, qualitative study we investigate patient and community member experiences of health services when a strong tuberculosis (TB) programme is embedded into a relatively underutilized primary healthcare system. We conducted six gender-stratified community focus group discussions (n = 49) and seven mixed-gender focus group discussions with TB patients (n = 45) in three provinces located in urban, peri-urban and rural areas of Cambodia. Our analysis of health-seeking behaviour and experiences for TB and TB-like illness indicates that building a strong vertical TB control programme has had numerous benefits, including awareness of typical symptoms and need to seek care early; confidence in free TB services at public facilities; and willingness to complete treatment. However, there was a clear dichotomy in experiences and behaviour with respect to care-seeking for less severe illness at primary health services, which were generally avoided owing to access barriers and perceived poor quality. The tendency to delay seeking health care until the development of severe symptoms clearly indicative of TB is a major barrier to early diagnosis and treatment of TB. Our study indicates that an imbalance in the strength of vertical and primary health services could be a lose-lose situation as this impedes improvements in health system functioning and constrains progress of vertical disease control programmes. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Are gay communities dying or just in transition? Results from an international consultation examining possible structural change in gay communities.

    Science.gov (United States)

    Simon Rosser, B R; West, William; Weinmeyer, Richard

    2008-05-01

    This study sought to identify how urban gay communities are undergoing structural change, reasons for that change, and implications for HIV prevention planning. Key informants (N=29) at the AIDS Impact Conference from 17 cities in 14 countries completed surveys and participated in a facilitated structured dialog about if gay communities are changing, and if so, how they are changing. In all cities, the virtual gay community was identified as currently larger than the offline physical community. Most cities identified that while the gay population in their cities appeared stable or growing, the gay community appeared in decline. Measures included greater integration of heterosexuals into historically gay-identified neighborhoods and movement of gay persons into suburbs, decreased number of gay bars/clubs, less attendance at gay events, less volunteerism in gay or HIV/AIDS organizations, and the overall declining visibility of gay communities. Participants attributed structural change to multiple factors including gay neighborhood gentrification, achievement of civil rights, less discrimination, a vibrant virtual community, and changes in drug use. Consistent with social assimilation, gay infrastructure, visibility, and community identification appears to be decreasing across cities. HIV prevention planning, interventions, treatment services, and policies need to be re-conceptualized for MSM in the future. Four recommendations for future HIV prevention and research are detailed.

  15. Temperature affects the size-structure of phytoplankton communities in the ocean

    KAUST Repository

    López-Urrutia, Ángel

    2015-03-05

    The strong inverse correlation between resource availability and temperature in the ocean poses a challenge to determine the relative effect of these two variables on the size-structure of natural phytoplankton communities. Maranon et al (2012) compiled a dataset of concurrent temperature and resource level proxies that they claim disentangled the effect of temperature from that of resource supply. They concluded that the hypothesis that temperature per se plays a direct role in controlling phytoplankton size structure should be rejected. But our reanalysis of their data reaches a very different conclusion and suggests that they failed to separate the effects of temperature from the effects of resources. Although we obviously concur with Maranon et al (2012) in the long-known predominance of small phytoplankton cells under oligotrophic conditions, from our point of view this should not deter us from considering temperature as an important explanatory variable at a global scale since we show that, for the vast oligotrophic areas of the world\\'s oceans where chlorophyll concentrations are below <1 g L-1 temperature explains a high proportion of the variability in the size distribution of phytoplankton communities, a variability that can not be explained on the basis of the resource level proxies advocated by Maranon et al. (2012).

  16. The sensitivity and stability of bacterioplankton community structure to wind-wave turbulence in a large, shallow, eutrophic lake.

    Science.gov (United States)

    Zhou, Jian; Qin, Boqiang; Han, Xiaoxia; Jin, Decai; Wang, Zhiping

    2017-12-04

    Lakes are strongly influenced by wind-driven wave turbulence. The direct physical effects of turbulence on bacterioplankton community structure however, have not yet been addressed and remains poorly understood. To examine the stability of bacterioplankton communities under turbulent conditions, we simulated conditions in the field to evaluate the responses of the bacterioplankton community to physical forcing in Lake Taihu, using high-throughput sequencing and flow cytometry. A total of 4,520,231 high quality sequence reads and 74,842 OTUs were obtained in all samples with α-proteobacteria, γ-proteobacteria and Actinobacteria being the most dominant taxa. The diversity and structure of bacterioplankton communities varied during the experiment, but were highly similar based on the same time of sampling, suggesting that bacterioplankton communities are insensitive to wind wave turbulence in the lake. This stability could be associated with the traits associated with bacteria. In particular, turbulence favored the growth of bacterioplankton, which enhanced biogeochemical cycling of nutrients in the lake. This study provides a better understanding of bacterioplankton communities in lake ecosystems exposed to natural mixing/disturbances.

  17. Effect of nitrate on activity and community structure of a sulfidogenic wastewater biofilm

    DEFF Research Database (Denmark)

    Kofoed, Michael Vedel Wegener; Mohanakrishnan, Janani; Schramm, Andreas

    Sulfide production by sulfate reducing bacteria (SRB) in wastewater biofilms can induce corrosion in pipes and valves of treatment plants. Nitrate addition has been shown to suppress sulfide production in biofilms with varying success. The detailed effect of nitrate on bacterial activity...... and community structure was studied in a bench-scale biofilm reactor inoculated with biofilm from a wastewater treatment plant. Biofilm were grown on plastic Kaldnes carriers in anoxic, synthetic wastewater containing sulfate. Once steady-state conditions were reached, nitrate was added continuously...... be detected after nitrate addition. These results strongly suggest that nitrate serves as an inhibitor of certain species of SRB but does not eliminate sulfide production in wastewater biofilm....

  18. Community Structure Of Reef Fish In Eastern Luwu Water Territory

    Directory of Open Access Journals (Sweden)

    Henny Tribuana Cinnawara

    2015-01-01

    Full Text Available Abstract One bio-indicators the condition of coral reefs is a presence of reef fish. The purpose of research is to determine species composition abundance distribution and structure of reef fish communities in these waters. Data collection was conducted in April at six locations in the north and the south eastern Luwu. Mechanical Underwater Visual Cencus UVC and transect method Line intercept Transec LIT with SCUBA equipment used for research data collection. Total reef fish species collected as many as 366 species belonging to 31 families consisting of 150 species of fish target fish consumption 10 species of indicator fish indicator species 206 types of major fissh. The most dominant indicator type of fish is Chaetodon octofasciatus while the major dominant family Pomacentridae Labridae and Apogonidae. Diversity index values ranged from 2.145 to 3.408. Dominance index C is in the range of 0.056 to 0.298. The result is expected to be a reference literature as basic data for the management of reef fish especially in the waters of eastern Luwu.

  19. Spatial variation of phytoplankton community structure in Daya Bay, China.

    Science.gov (United States)

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  20. Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean

    Science.gov (United States)

    Quéguiner, Bernard

    2013-06-01

    In this review article, plankton community structure observations are analyzed both for artificial iron fertilization experiments and also for experiments dedicated to the study of naturally iron-fertilized systems in the Atlantic, Indian and Pacific sectors of the Southern Ocean in the POOZ (Permanently Open Ocean Zone) and the PFZ (Polar Frontal Zone). Observations made in natural systems are combined with those from artificially perturbed systems, in order to evaluate the seasonal evolution of pelagic communities, taking into account controlling factors related to the life cycles and the ecophysiology of dominant organisms. The analysis considers several types of planktonic communities, including both autotrophs and heterotrophs. These communities are spatially segregated owing to different life strategies. A conceptual general scheme is proposed to account for these observations and their variability, regardless of experiment type. Diatoms can be separated into 2 groups: Group 1 has slightly silicified fast growing cells that are homogeneously distributed in the surface mixed layer, and Group 2 has strongly silicified slowly growing cells within discrete layers. During the growth season, Group 1 diatoms show a typical seasonal succession of dominant species, within time windows of development that are conditioned by physical factors (light and temperature) as well as endogenous specific rhythms (internal clock), and biomass accumulation is controlled by the availability of nutrients. Group 1 diatoms are not directly grazed by mesozooplankton which is fed by protozooplankton, linking the microbial food web to higher trophic levels. Instead, successive dominant species of Group 1 are degraded via bacterial activity at the end of their growth season. Organic detritus fragments feed protozooplankton and mesozooplankton. The effective silicon pump leads to the progressive disappearance of silicic acid in surface waters. In contrast, Group 2 is resistant to grazing

  1. Local adaptation to soil hypoxia determines the structure of an arbuscular mycorrhizal fungal community in roots from natural CO₂ springs.

    Science.gov (United States)

    Maček, Irena; Dumbrell, Alex J; Nelson, Michaela; Fitter, Alastair H; Vodnik, Dominik; Helgason, Thorunn

    2011-07-01

    The processes responsible for producing and maintaining the diversity of natural arbuscular mycorrhizal (AM) fungal communities remain largely unknown. We used natural CO(2) springs (mofettes), which create hypoxic soil environments, to determine whether a long-term, directional, abiotic selection pressure could change AM fungal community structure and drive the selection of particular AM fungal phylotypes. We explored whether those phylotypes that appear exclusively in hypoxic soils are local specialists or widespread generalists able to tolerate a range of soil conditions. AM fungal community composition was characterized by cloning, restriction fragment length polymorphism typing, and the sequencing of small subunit rRNA genes from roots of four plant species growing at high (hypoxic) and low (control) geological CO(2) exposure. We found significant levels of AM fungal community turnover (β diversity) between soil types and the numerical dominance of two AM fungal phylotypes in hypoxic soils. Our results strongly suggest that direct environmental selection acting on AM fungi is a major factor regulating AM fungal communities and their phylogeographic patterns. Consequently, some AM fungi are more strongly associated with local variations in the soil environment than with their host plant's distribution.

  2. Plant and litter influences on earthworm abundance and community structures in a tropical wet forest

    Science.gov (United States)

    G. Gonzalez; X. Zou

    1999-01-01

    Plant communities differ in species composition and litter input. To examine the influence of plant species on the abundance and community structure of soil fauna, we sampled earthworms in areas close to and away from the bases of Dacryodes excelsa and Heliconia caribaea, two distinct plant communities within a tropical wet forest in Puerto Rico. We also carried out a...

  3. CHANGES IN EARTHWORM DENSITY AND COMMUNITY STRUCTURE DURING SECONDARY SUCCESSION IN ABANDONED TROPICAL PASTURES

    Science.gov (United States)

    Xiaoming Zou; Grizelle Gonzalez

    1997-01-01

    Plant community succession alters the quantity and chemistry of organic inputs to soils. These differences in organic input may trigger changes in soil fertility and fauna1 activity. We examined earthworm density and community structure along a successional sequence of plant communities in abandoned tropical pastures in Puerto Rico. The chronological sequence of these...

  4. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities.

    Science.gov (United States)

    Zhang, Lai; Andersen, Ken H; Dieckmann, Ulf; Brännström, Åke

    2015-09-07

    We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference competition at intermediate intensity sometimes significantly increases the abundance of adult individuals and the population׳s reproduction rate. We find that foraging and metabolic interference evolutionarily favor smaller maturation size when interference is weak and larger maturation size when interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze the formation of diverse communities with complex trophic structure only at high levels of interference intensity. By contrast, survival interference does so already at intermediate levels, while reproductive interference can only support relatively smaller communities with simpler trophic structure. Taken together, our results show how the type and intensity of interference competition jointly affect coexistence patterns in structured population models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Osteo-cise: Strong Bones for Life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Directory of Open Access Journals (Sweden)

    Gianoudis Jenny

    2012-05-01

    Full Text Available Abstract Background Osteoporosis affects over 220 million people worldwide, and currently there is no ‘cure’ for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods/design The Osteo-cise: Strong Bones for Life study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged ≥60 years will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month ‘research to practise’ translational phase. Participants will be randomly assigned to either the Osteo-cise intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test. Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back

  6. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  7. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  8. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types.

    Directory of Open Access Journals (Sweden)

    Yuguang Zhang

    Full Text Available Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization, sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (P<0.05 at natural secondary forest site. The regression analysis showed that a strong positive (P<0.05 correlation was existed between the soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon, soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (P<0.05 to the relative abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed, and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can't directly reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the microbial community and associated feedback

  9. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis).

    Science.gov (United States)

    Yang, Hong; Schmitt-Wagner, Dirk; Stingl, Ulrich; Brune, Andreas

    2005-07-01

    Differences in microenvironment and interactions of microorganisms within and across habitat boundaries should influence structure and diversity of the microbial communities within an ecosystem. We tested this hypothesis using the well characterized gut tract of the European subterranean termite Reticulitermes santonensis as a model. By cloning and sequencing analysis and molecular fingerprinting (terminal restriction fragment length polymorphism), we characterized the bacterial microbiota in the major intestinal habitats - the midgut, the wall of the hindgut paunch, the hindgut fluid and the intestinal protozoa. The bacterial community was very diverse (> 200 ribotypes) and comprised representatives of several phyla, including Firmicutes (mainly clostridia, streptococci and Mycoplasmatales-related clones), Bacteroidetes, Spirochaetes and a number of Proteobacteria, all of which were unevenly distributed among the four habitats. The largest group of clones fell into the so-called Termite group 1 (TG-1) phylum, which has no cultivated representatives. The majority of the TG-1 clones were associated with the protozoa and formed two phylogenetically distinct clusters, which consisted exclusively of clones previously retrieved from the gut of this and other Reticulitermes species. Also the other clones represented lineages of microorganisms that were exclusively recovered from the intestinal tract of termites. The termite specificity of these lineages was underscored by the finding that the closest relatives of the bacterial clones obtained from R. santonensis were usually derived also from the most closely related termites. Overall, differences in diversity between the different gut habitats and the uneven distribution of individual phylotypes support conclusively that niche heterogeneity is a strong determinant of the structure and spatial organization of the microbial community in the termite gut.

  10. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types.

    Science.gov (United States)

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Yang, Caiyun; Yang, Yunfeng; Zhou, Jizhong; Li, Diqiang

    2014-01-01

    Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization, sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (PThe regression analysis showed that a strong positive (Pthe soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon, soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (Pthe relative abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed, and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can't directly reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the microbial community and associated feedback responses of the terrestrial ecosystem to environmental changes.

  11. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    Directory of Open Access Journals (Sweden)

    Petr Kohout

    2017-04-01

    Full Text Available Arbuscular mycorrhizal fungal (AMF community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae to determine AMF root colonization and diversity (using 454-sequencing, determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age.

  12. Spatial variations in the trophic structure of soil animal communities in boreal forests of Pechora-Ilych Nature Reserve

    Science.gov (United States)

    Goncharov, A. A.; Khramova, E. Yu.; Tiunov, A. V.

    2014-05-01

    Soil animal communities and detrital food webs are spatially compartmentalized. In old-growth boreal forests the dynamics of dominating plant species forms a considerable heterogeneity of edaphic conditions in the soil layer. We demonstrate a strong difference in total and relative abundance of main trophic groups of soil macrofauna in four microsites, i.e. under tree crowns, in gaps, in mounds and in pits created by fallen spruce trees. The variation in the functional structure of soil animal communities is likely related to different availability of key energy resources (leaf litter, roots and root deposits) in the microsites studied. However, results of the stable isotope analysis suggest that mobile litter-dwelling predators occupy very similar trophic positions in different microsites. The compartmentalization of soil invertebrate communities caused by the vegetation-induced mosaic of edaphic conditions seemingly does not lead to spatial isolation of local food webs that are integrated at the top trophic levels.

  13. Potts model based on a Markov process computation solves the community structure problem effectively.

    Science.gov (United States)

    Li, Hui-Jia; Wang, Yong; Wu, Ling-Yun; Zhang, Junhua; Zhang, Xiang-Sun

    2012-07-01

    The Potts model is a powerful tool to uncover community structure in complex networks. Here, we propose a framework to reveal the optimal number of communities and stability of network structure by quantitatively analyzing the dynamics of the Potts model. Specifically we model the community structure detection Potts procedure by a Markov process, which has a clear mathematical explanation. Then we show that the local uniform behavior of spin values across multiple timescales in the representation of the Markov variables could naturally reveal the network's hierarchical community structure. In addition, critical topological information regarding multivariate spin configuration could also be inferred from the spectral signatures of the Markov process. Finally an algorithm is developed to determine fuzzy communities based on the optimal number of communities and the stability across multiple timescales. The effectiveness and efficiency of our algorithm are theoretically analyzed as well as experimentally validated.

  14. Organizational Structures to Support Oakland Community Schools. Knowledge Brief

    Science.gov (United States)

    John W. Gardner Center for Youth and Their Communities, 2015

    2015-01-01

    This brief is part of a series that shares findings from a research collaboration between the John W. Gardner Center for Youth and Their Communities at Stanford University and Oakland Unified School District (OUSD) focused on understanding implementation of the community school model in the district. This brief highlights findings related to…

  15. Serum uric acid is more strongly associated with impaired fasting glucose in women than in men from a community-dwelling population.

    Directory of Open Access Journals (Sweden)

    Ryuichi Kawamoto

    Full Text Available Serum uric acid (SUA levels are associated with metabolic syndrome (MetS and its components such as glucose intolerance and type 2 diabetes. It is unknown whether there are gender-specific differences regarding the relationship between SUA levels, impaired fasting glucose (IFG and newly detected diabetes. We recruited 1,209 men aged 60±15 (range, 19-89 years and 1,636 women aged 63±12 (range, 19-89 years during their annual health examination from a single community. We investigated the association between SUA levels and six categories according to fasting plasma glucose (FPG level {normal fasting glucose (NFG, <100 mg/dL; high NFG-WHO, 100 to 109 mg/dL; IFG-WHO, 110 to 125 mg/dL; IFG-ADA, 100 to 125 mg/dL; newly detected diabetes, ≥126 mg/dL; known diabetes} SUA levels were more strongly associated with the different FPG categories in women compared with men. In women, the associations remained significant for IFG-WHO (OR, 1.23, 95% CI, 1.00-1.50 and newly detected diabetes (OR, 1.33, 95% CI, 1.03-1.72 following multivariate adjustment. However, in men all the associations were not significant. Thus, there was a significant interaction between gender and SUA level for newly detected diabetes (P = 0.005. SUA levels are associated with different categories of impaired fasting glucose in participants from community-dwelling persons, particularly in women.

  16. Human exploitation and benthic community structure on a tropical intertidal mudflat

    NARCIS (Netherlands)

    Boer, de W.F.; Prins, H.H.T.

    2002-01-01

    Human exploitation of intertidal marine invertebrates is known to alter benthic community structure. This study describes the impact that harvesting by women and children has on the intertidal community structure of the mudflats of the Saco on Inhaca Island, Mozambique, by comparing the benthic

  17. Paradoxes of Social Networking in a Structured Web 2.0 Language Learning Community

    Science.gov (United States)

    Loiseau, Mathieu; Zourou, Katerina

    2012-01-01

    This paper critically inquires into social networking as a set of mechanisms and associated practices developed in a structured Web 2.0 language learning community. This type of community can be roughly described as learning spaces featuring (more or less) structured language learning resources displaying at least some notions of language learning…

  18. Fish Community Structure in Iyi-Ekpen Stream, Delta State, Southern ...

    African Journals Online (AJOL)

    The use of fish community structure and diversity in bioassessment is a fundamental and an important water management issue worldwide. This study examines the spatial variations in fish community structure at three stations along Iyi-Ekpen stream, southern, Nigeria between January and July, 2011 as part of a baseline ...

  19. Structure in Community College Career-Technical Programs: A Qualitative Analysis. CCRC Working Paper No. 50

    Science.gov (United States)

    Van Noy, Michelle; Weiss, Madeline Joy; Jenkins, Davis; Barnett, Elisabeth A.; Wachen, John

    2012-01-01

    Using data obtained from interviews and program websites at Washington community and technical colleges, the authors of this study examine the structure of community college career-technical programs in allied health, business and marketing, computer and information studies, and mechanics and repair. A framework for structure with four…

  20. Savanna fires govern community structure of ungulates in Bénoué National Park, Cameroon

    OpenAIRE

    Klop, L.F.; Goethem, J.

    2008-01-01

    We studied the effects of savanna fires on the structure of local ungulate communities in a West African woodland savanna. The distribution of 11 ungulate species over 9¿15 burned sites (the number of which increased as burning activity continued during the dry season) and 7¿13 unburned sites was compared with a variety of null models or randomized `virtual communities¿. Five different parameters of community structure were examined: body mass distribution, co-occurrence patterns, species ric...

  1. Food web structure and the evolution of ecological communities

    Science.gov (United States)

    Quince, Christopher; Higgs, Paul G.; McKane, Alan J.

    Simulations of the coevolution of many interacting species are performed using the Webworld model. The model has a realistic set of predator-prey equations that describe the population dynamics of the species for any structure of the food web. The equations account for competition between species for the same resources, and for the diet choice of predators between alternative prey according to an evolutionarily stable strategy. The set of species present undergoes long-term evolution d ue to speciation and extinction events. We summarize results obtained on the macro-evolutionary dynamics of speciations and extinctions, and on the statistical properties of the food webs that are generated by the model. Simulations begin from small numbers of species and build up to larger webs with relatively constant species number on average. The rate of origination and extinction of species are relatively high, but remain roughly balanced throughout the simulations. When a 'parent' species undergoes sp eciation, the 'child' species usually adds to the same trophic level as the parent. The chance of the child species surviving is significantly higher if the parent is on the second or third trophic level than if it is on the first level, most likely due to a wider choice of possible prey for species on higher levels. Addition of a new species sometimes causes extinction of existing species. The parent species has a high probability of extinction because it has strong competition with the new species. Non-pa rental competitors of the new species also have a significantly higher extinction probability than average, as do prey of the new species. Predators of the new species are less likely than average to become extinct.

  2. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  3. Parasite community structure within and across host populations of a marine pelagic fish: how repeatable is it?

    Science.gov (United States)

    Timi, Juan T; Poulin, Robert

    2003-10-01

    The geographical variation in parasite community structure among populations of the same host species remains one of the least understood aspects of parasite community ecology. Why are parasite communities clearly structured in some host populations, and randomly assembled in others? Here, we address this fundamental question using data on the metazoan parasite communities of different host size-classes of four distinct populations of a small pelagic fish, the Argentine anchovy, Engraulis anchoita, from the South West Atlantic. Within each fish sample, fish length was correlated with both the total intensity of parasites and species richness among infracommunities. More importantly, average fish length correlated with mean infracommunity richness and mean total intensity across the fish samples, indicating that the characteristics of parasite assemblages in a fish population are strongly influenced by the size of its fish in relation to those in other populations. Nested subset patterns were observed in about half of the fish samples. This means that the presence or absence of parasite species among fish individuals is often not random; however, no repeatability of nestedness among component communities was observed. Average fish length did not influence directly the likelihood that a parasite assemblage was significantly nested. However, variables influenced by average fish length, namely mean infracommunity richness and mean total intensity, determine the probability that a nested hierarchy will be observed; host size may thus indirectly affect parasite community structure either itself or via its influence on host movement and feeding patterns. To some extent, this apparent link may be due to the sensitivity of nestedness analyses to the proportion of presence in a presence/absence matrix; this in itself is a biological feature of the parasite community, however, which is associated with mean host length.

  4. Community Structure, Biodiversity, and Ecosystem Services in Treeline Whitebark Pine Communities: Potential Impacts from a Non-Native Pathogen

    Directory of Open Access Journals (Sweden)

    Diana F. Tomback

    2016-01-01

    Full Text Available Whitebark pine (Pinus albicaulis has the largest and most northerly distribution of any white pine (Subgenus Strobus in North America, encompassing 18° latitude and 21° longitude in western mountains. Within this broad range, however, whitebark pine occurs within a narrow elevational zone, including upper subalpine and treeline forests, and functions generally as an important keystone and foundation species. In the Rocky Mountains, whitebark pine facilitates the development of krummholz conifer communities in the alpine-treeline ecotone (ATE, and thus potentially provides capacity for critical ecosystem services such as snow retention and soil stabilization. The invasive, exotic pathogen Cronartium ribicola, which causes white pine blister rust, now occurs nearly rangewide in whitebark pine communities, to their northern limits. Here, we synthesize data from 10 studies to document geographic variation in structure, conifer species, and understory plants in whitebark pine treeline communities, and examine the potential role of these communities in snow retention and regulating downstream flows. Whitebark pine mortality is predicted to alter treeline community composition, structure, and function. Whitebark pine losses in the ATE may also alter response to climate warming. Efforts to restore whitebark pine have thus far been limited to subalpine communities, particularly through planting seedlings with potential blister rust resistance. We discuss whether restoration strategies might be appropriate for treeline communities.

  5. [Fish community structure and its seasonal change in subtidal sandy beach habitat off southern Gouqi Island].

    Science.gov (United States)

    Wang, Zhen-Hua; Wang, Kai; Zhao, Jing; Zhang, Shou-Yu

    2011-05-01

    To understand the characteristics of fish community structure in sandy beach habitats of island reef water areas, and to evaluate the potential capacity of these habitats in local fish stock maintenance, fishes were monthly collected with multi-mesh trammel nets in 2009 from the subtidal sandy beach habitat off southern Gouqi Island, taking the adjacent rocky reef habitat as the control. alpha and beta species diversity indices, index of relative importance (IRI), relative catch rate, and dominance curve for abundance and biomass (ABC curve) were adopted to compare the fish species composition, diversity, and community pattern between the two habitats, and multivariate statistical analyses such as non-metric multidimensional scaling (nMDS) and cluster were conducted to discuss the fish assemblage patterns. A total of 63 fish species belonging to 11 orders, 38 families, and 56 genera were collected, of which, 46 fish species were appeared in the two habitats. Due to the appearance of more warm water species in sandy bottom, the fishes in subtidal sandy beach habitat showed much higher richness, and the abundance catch rate (ACR) from May to July was higher than that in rocky reef habitat. In most rest months, the ACR in subtidal sandy beach habitat also showed the similar trend. However, the species richness and diversity in spring and summer were significantly lower in subtidal sandy beach habitat than in rocky reef habitat, because of the high species dominance and low evenness in the sandy beach habitat. Japanese tonguefish (Paraplagusia japonica) was the indicator species in the sandy beach habitat, and dominated in early spring, later summer, autumn, and winter when the fishing pressure was not strong. In sandy bottom, a unique community structure was formed and kept in dynamic, due to the nursery use of sandy beach by Japanese anchovy (Engraulis japonicus) from May to July, the gathering of gray mullet (Mugil cephalus) in most months for feeding, and the large

  6. Community structure of skipper butterflies (Lepidoptera, Hesperiidae) along elevational gradients in Brazilian Atlantic forest reflects vegetation type rather than altitude.

    Science.gov (United States)

    Carneiro, Eduardo; Mielke, Olaf Hermann Hendrik; Casagrande, Mirna Martins; Fiedler, Konrad

    2014-01-01

    Species turnover across elevational gradients has matured into an important paradigm of community ecology. Here, we tested whether ecological and phylogenetic structure of skipper butterfly assemblages is more strongly structured according to altitude or vegetation type along three elevation gradients of moderate extent in Serra do Mar, Southern Brazil. Skippers were surveyed along three different mountain transects, and data on altitude and vegetation type of every collection site were recorded. NMDS ordination plots were used to assess community turnover and the influence of phylogenetic distance between species on apparent community patterns. Ordinations based on ecological similarity (Bray-Curtis index) were compared to those based on phylogenetic distance measures (MPD and MNTD) derived from a supertree. In the absence of a well-resolved phylogeny, various branch length transformation methods were applied together with four different null models, aiming to assess if results were confounded by low-resolution trees. Species composition as well as phylogenetic community structure of skipper butterflies were more prominently related to vegetation type instead of altitude per se. Phylogenetic distances reflected spatial community patterns less clearly than species composition, but revealed a more distinct fauna of monocot feeders associated with grassland habitats, implying that historical factors have played a fundamental role in shaping species composition across elevation gradients. Phylogenetic structure of community turned out to be a relevant additional tool which was even superior to identify faunal contrasts between forest and grassland habitats related to deep evolutionary splits. Since endemic skippers tend to occur in grassland habitats in the Serra do Mar, inclusion of phylogenetic diversity may also be important for conservation decisions.

  7. Community structure of skipper butterflies (Lepidoptera, Hesperiidae along elevational gradients in Brazilian Atlantic forest reflects vegetation type rather than altitude.

    Directory of Open Access Journals (Sweden)

    Eduardo Carneiro

    Full Text Available Species turnover across elevational gradients has matured into an important paradigm of community ecology. Here, we tested whether ecological and phylogenetic structure of skipper butterfly assemblages is more strongly structured according to altitude or vegetation type along three elevation gradients of moderate extent in Serra do Mar, Southern Brazil. Skippers were surveyed along three different mountain transects, and data on altitude and vegetation type of every collection site were recorded. NMDS ordination plots were used to assess community turnover and the influence of phylogenetic distance between species on apparent community patterns. Ordinations based on ecological similarity (Bray-Curtis index were compared to those based on phylogenetic distance measures (MPD and MNTD derived from a supertree. In the absence of a well-resolved phylogeny, various branch length transformation methods were applied together with four different null models, aiming to assess if results were confounded by low-resolution trees. Species composition as well as phylogenetic community structure of skipper butterflies were more prominently related to vegetation type instead of altitude per se. Phylogenetic distances reflected spatial community patterns less clearly than species composition, but revealed a more distinct fauna of monocot feeders associated with grassland habitats, implying that historical factors have played a fundamental role in shaping species composition across elevation gradients. Phylogenetic structure of community turned out to be a relevant additional tool which was even superior to identify faunal contrasts between forest and grassland habitats related to deep evolutionary splits. Since endemic skippers tend to occur in grassland habitats in the Serra do Mar, inclusion of phylogenetic diversity may also be important for conservation decisions.

  8. Community Structure of Skipper Butterflies (Lepidoptera, Hesperiidae) along Elevational Gradients in Brazilian Atlantic Forest Reflects Vegetation Type Rather than Altitude

    Science.gov (United States)

    Carneiro, Eduardo; Mielke, Olaf Hermann Hendrik; Casagrande, Mirna Martins; Fiedler, Konrad

    2014-01-01

    Species turnover across elevational gradients has matured into an important paradigm of community ecology. Here, we tested whether ecological and phylogenetic structure of skipper butterfly assemblages is more strongly structured according to altitude or vegetation type along three elevation gradients of moderate extent in Serra do Mar, Southern Brazil. Skippers were surveyed along three different mountain transects, and data on altitude and vegetation type of every collection site were recorded. NMDS ordination plots were used to assess community turnover and the influence of phylogenetic distance between species on apparent community patterns. Ordinations based on ecological similarity (Bray-Curtis index) were compared to those based on phylogenetic distance measures (MPD and MNTD) derived from a supertree. In the absence of a well-resolved phylogeny, various branch length transformation methods were applied together with four different null models, aiming to assess if results were confounded by low-resolution trees. Species composition as well as phylogenetic community structure of skipper butterflies were more prominently related to vegetation type instead of altitude per se. Phylogenetic distances reflected spatial community patterns less clearly than species composition, but revealed a more distinct fauna of monocot feeders associated with grassland habitats, implying that historical factors have played a fundamental role in shaping species composition across elevation gradients. Phylogenetic structure of community turned out to be a relevant additional tool which was even superior to identify faunal contrasts between forest and grassland habitats related to deep evolutionary splits. Since endemic skippers tend to occur in grassland habitats in the Serra do Mar, inclusion of phylogenetic diversity may also be important for conservation decisions. PMID:25272004

  9. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    in each stream were measured applying sediment sampling and event triggered water samplers. Furthermore, on all reaches macroinvertebrate community structure was assessed before, during and after the spring application season. Stream reaches with good physical quality generally contain a higher abundance......  A wide array of pesticides are applied to agricultural crops during spring and autumn spraying season, and detections of pesticides in stream water and bed sediments of agricultural streams emphasize the potential exposure of benthic macroinvertebrates. Major transportation routes from catchment...... to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...

  10. Strong 1.54 μm cathodoluminescence from core-shell structures of silicon nanoparticles and erbium

    Science.gov (United States)

    Hoang, Tuan; Elhalawany, Noha; Enders, Brian; Bahceci, Ersin; Abuhassan, Laila; Nayfeh, Munir H.

    2016-12-01

    We report on the development of efficient infrared-active core-shell Er2O3-Si nanoparticle architecture. Sub 3-nm H-terminated Si nanoparticles are used to reduce/deposit Er3+ ions on the nanoparticles, which in an aqueous environment simultaneously oxidize to produce the core-shells. Our results show strong cathodoluminance at 1543 nm while being able to resolve the Stark splitting. The strong luminescence afforded by the core-shell architecture in which the Si-Er interspacing drops appreciably supports a sensitive interspacing-dependent dipole-dipole energy transfer interaction model, while the hydrogenated silicon-core allows increased loading and reduced segregation of Er as in amorphous silicon material. The room temperature-wet procedure, with pre-prepared and -sorted Si nanostructures affords promising applications in electronic and optical technologies.

  11. Macrofouling community structure in Kanayama Bay, Kii Peninsula (Japan)

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; Harada, E.

    An investigation on the macrofouling community in Kanayama Bay, Kill Peninsula, Japan was undertaken from June 1994 to May 1995 by exposing fiber reinforced plastic (FRP) panels at subsurface and bottom (2.2 m) depths. The composition and abundance...

  12. Reef community structure, Sand Island, Oahu HI, (NODC Accession 0000177)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These reports provide the results of nine years (1990-98) of an annual quantitative monitoring of shallow marine communities inshore of the Sand Island Ocean...

  13. Observing and modelling phytoplankton community structure in the North Sea

    NARCIS (Netherlands)

    Ford, D.A.; van der Molen, J.; Hyder, K.; Bacon, J.; Barciela, R.; Creach, V.; McEwan, R.; Ruardij, P.; Forster, R.

    2017-01-01

    Phytoplankton form the base of the marine foodchain, and knowledge of phytoplankton community structureis fundamental when assessing marine biodiversity. Policymakers and other users require information on marinebiodiversity and other aspects of the marine environmentfor the North Sea, a highly

  14. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  15. The Organization and Structure of Community Education Offerings in Community Colleges

    Science.gov (United States)

    Miller, Michael; Grover, Kenda S.; Kacirek, Kit

    2014-01-01

    One of the key services community colleges provide is community education, meaning those programs and activities that are often offered for leisure or self-improvement and not for credit. Programs of this nature are increasingly challenged to be self-financing, whether through user fees or externally funded grants. The current study explored 75…

  16. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  17. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Linking microbial community structure and product spectrum of rice straw fermentation with undefined mixed culture

    Science.gov (United States)

    Ai, Binling; Chi, Xue; Meng, Jia; Sheng, Zhanwu; Zheng, Lili; Zheng, Xiaoyan; Li, Jianzheng

    2017-12-01

    Undefined mixed culture-based fermentation is an alternative strategy for biofuels and bioproducts production from lignocellulosic biomass without supplementary cellulolytic enzymes. Mixed culture produces mixed carboxylates. To estimate the relationship between microbial community structure and product spectrum, carboxylate production was initiated by mixed cultures with different microbial community structure. All the inoculum cultures were derived from the same enrichment culture from the combination of cattle manure, pig manure compost, corn field soil and rotten wood. Due to the differences in the preparation method and culture time, the inoculum cultures for batch fermentation had high similarity in microbial community structure, while the community structure of each inoculum culture for repeated batch fermentation differed from that of another. The inoculum cultures with similar community structure led to a similar product spectrum. In batch fermentation, the selectivity of main product butyric acid stabilized around 76%. The inoculum cultures with different community structures resulted in different product spectra. In repeated batch fermentation, the butyric acid content gradually decreased to 27%, and the by-product acetic acid content steadily increased to 56%. The other by-products including propionic, valeric and caproic acids were also increased. It is deduced that keeping the microbial community structure stable makes the basic and key precondition for steady production of specific carboxylic acid with undefined mixed culture.

  19. Advanced parallel strategy for strongly coupled fast transient fluid-structure dynamics with dual management of kinematic constraints

    International Nuclear Information System (INIS)

    Faucher, Vincent

    2014-01-01

    Simulating fast transient phenomena involving fluids and structures in interaction for safety purposes requires both accurate and robust algorithms, and parallel computing to reduce the calculation time for industrial models. Managing kinematic constraints linking fluid and structural entities is thus a key issue and this contribution promotes a dual approach over the classical penalty approach, introducing arbitrary coefficients in the solution. This choice however severely increases the complexity of the problem, mainly due to non-permanent kinematic constraints. An innovative parallel strategy is therefore described, whose performances are demonstrated on significant examples exhibiting the full complexity of the target industrial simulations. (authors)

  20. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

    Science.gov (United States)

    Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M

    2012-07-01

    Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.

  1. Understanding the implementation and adoption of an information technology intervention to support medicine optimisation in primary care: qualitative study using strong structuration theory.

    Science.gov (United States)

    Jeffries, Mark; Phipps, Denham; Howard, Rachel L; Avery, Anthony; Rodgers, Sarah; Ashcroft, Darren

    2017-05-10

    Using strong structuration theory, we aimed to understand the adoption and implementation of an electronic clinical audit and feedback tool to support medicine optimisation for patients in primary care. This is a qualitative study informed by strong structuration theory. The analysis was thematic, using a template approach. An a priori set of thematic codes, based on strong structuration theory, was developed from the literature and applied to the transcripts. The coding template was then modified through successive readings of the data. Clinical commissioning group in the south of England. Four focus groups and five semi-structured interviews were conducted with 18 participants purposively sampled from a range of stakeholder groups (general practitioners, pharmacists, patients and commissioners). Using the system could lead to improved medication safety, but use was determined by broad institutional contexts; by the perceptions, dispositions and skills of users; and by the structures embedded within the technology. These included perceptions of the system as new and requiring technical competence and skill; the adoption of the system for information gathering; and interactions and relationships that involved individual, shared or collective use. The dynamics between these external, internal and technological structures affected the adoption and implementation of the system. Successful implementation of information technology interventions for medicine optimisation will depend on a combination of the infrastructure within primary care, social structures embedded in the technology and the conventions, norms and dispositions of those utilising it. Future interventions, using electronic audit and feedback tools to improve medication safety, should consider the complexity of the social and organisational contexts and how internal and external structures can affect the use of the technology in order to support effective implementation. © Article author(s) (or their

  2. Strong genetic structure among coral populations within a conservation priority region, the Bird's Head Seascape (Papua, Indonesia

    Directory of Open Access Journals (Sweden)

    Craig John Starger

    2015-11-01

    Full Text Available Marine Protected Areas (MPAs are widely considered to be one of the best strategies available for protecting species diversity and ecosystem processes in marine environments. While data on connectivity and genetic structure of marine populations are critical to designing appropriately sized and spaced networks of MPAs, such data are rarely available. This study examines genetic structure in reef-building corals from Papua and West Papua, Indonesia, one of the most biodiverse and least disturbed coral reef regions in the world. We focused on two common reef-building corals, Pocillopora damicornis (Linnaeus 1758 and Seriatopora hystrix (family: Pocilloporidae, from three regions under different management regimes: Teluk Cenderawasih, Raja Ampat, and southwest Papua. Analyses of molecular variance, assignment tests, and genetical bandwidth mapping based on microsatellite variation revealed significant genetic structure in both species, although there were no clear regional filters to gene flow among regions. Overall, P. damicornis populations were less structured (FST = 0.139, p < 0.00001 than S. hystrix (FST = 0.357, p < 0.00001. Despite occurring in one of the most pristine marine habitats in Indonesia, populations of both species showed evidence of recent declines. Furthermore, exclusion of individual populations from connectivity analyses resulted in marked increases in self-recruitment. Maintaining connectivity within and among regions of Eastern Indonesia will require coral conservation on the local scales and regional networks of MPAs. 

  3. Latitudinal concordance between biogeographic regionalization, community structure, and richness patterns: a study on the reptiles of China

    Science.gov (United States)

    Chen, Youhua; Srivastava, Diane S.

    2015-02-01

    Latitudinal patterns in species richness may be affected by both continuous variations in macroecological factors as well as discrete change between biogeographic regions. We examined whether latitudinal reptilian richness and community structure in China were best explained by three macroecological patterns (mid-domain effects, Rapoport's rule effects, or environmental correlates) within or across the ranges of biogeographic realms. The results showed that (1) there was a weak mid-domain effect within the Oriental Realm. However, the mid-domain effect was detected neither at the overall regional scale nor in the Palaearctic Realm. (2) Rapoport's rule was only weakly supported for reptilian fauna in China at lower latitudinal areas. (3) Environmental variables were more strongly correlated with species' latitudinal community structure and richness patterns at the scale of biogeographic realms. Based on the faunal similarity of reptilian community across latitudinal bands, we proposed a latitudinal delineation scheme at 34° N for dividing East Asia into Oriental and Palaearctic biogeographic realms. At last, at the functional group level, we also evaluated the relevant ecological patterns for lizard and snake species across different latitudinal bins, showing that the distributions of lizards presented strong mid-domain effects at the latitudinal ranges within the Oriental Realm and over the whole range but did not support Rapoport's rule. In comparison, snake species supported Rapoport's rule at low latitudinal zones but did not present any remarkable mid-domain effects at any spatial extents. In conclusion, biogeographic realms are an appropriate scale for studying macroecological patterns. Reptilian latitudinal richness patterns of China were explained by a combination of environmental factors and geometric constraints, while the latitudinal community structure patterns were greatly affected by environmental gradients. Functional guilds present differentiated

  4. Onset of magnetic order in strongly-correlated systems from ab initio electronic structure calculations: application to transition metal oxides

    Science.gov (United States)

    Hughes, I. D.; Däne, M.; Ernst, A.; Hergert, W.; Lüders, M.; Staunton, J. B.; Szotek, Z.; Temmerman, W. M.

    2008-06-01

    We describe an ab initio theory of finite temperature magnetism in strongly-correlated electron systems. The formalism is based on spin density functional theory, with a self-interaction corrected local spin density approximation (SIC-LSDA). The self-interaction correction is implemented locally, within the Kohn-Korringa-Rostoker (KKR) multiple-scattering method. Thermally induced magnetic fluctuations are treated using a mean-field 'disordered local moment' (DLM) approach and at no stage is there a fitting to an effective Heisenberg model. We apply the theory to the 3d transition metal oxides, where our calculations reproduce the experimental ordering tendencies, as well as the qualitative trend in ordering temperatures. We find a large insulating gap in the paramagnetic state which hardly changes with the onset of magnetic order.

  5. Targeting G-quadruplex DNA Structures by EMICORON has a strong antitumor efficacy against advanced models of human colon cancer

    DEFF Research Database (Denmark)

    Porru, Manuela; Artuso, Simona; Salvati, Erica

    2015-01-01

    similar blood levels in humans. Moreover, EMICORON showed a marked therapeutic efficacy, as it inhibited the growth of patient-derived xenografts (PDX) and orthotopic colon cancer and strongly reduced the dissemination of tumor cells to lymph nodes, intestine, stomach, and liver. Finally, activation...... of human colon cancer that could adequately predict human clinical outcomes. Our results showed that EMICORON was well tolerated in mice, as no adverse effects were reported, and a low ratio of sensitivity across human and mouse bone marrow cells was observed, indicating a good potential for reaching...... of DNA damage and impairment of proliferation and angiogenesis are proved to be key determinants of EMICORON antitumoral activity. Altogether, our results, performed on advanced experimental models of human colon cancer that bridge the translational gap between preclinical and clinical studies...

  6. Determination of the proton structure and the strong coupling from inclusive jet cross sections at the LHC

    CERN Document Server

    Sieber, Georg; Rabbertz, Klaus

    This thesis presents the sensitivity study of PDFs and $\\alpha_\\mathrm{S}$ to the inclusive jet cross section at a center-of-mass energy of $\\sqrt{s}$ = 7 TeV. The data corresponds to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector in 2011. Next-to-leading order calculations have been compared to the measurement and found agreement within uncertainties. The PDF sensitivity has been studied using the HERAFitter framework. It was found that the inclusive jet cross section constrains the quark and gluon PDFs in the high-$x$ region and reduces the PDF uncertainties. Furthermore the strong coupling has been extracted using fixed global PDF sets.

  7. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions.

    Science.gov (United States)

    Najafi, Mahshid; McMenamin, Brenton W; Simon, Jonathan Z; Pessoa, Luiz

    2016-07-15

    Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...... was calculated for 1 km2 catchments (produced from topographical maps) on Funen, Denmark. The physical condition (substrate, meandering etc.) of 1st and 2nd order streams (based on existing data from the National Monitoring Programme and personal exploring) draining these catchments was, additionally, assessed...

  9. Distribution and community structure of Ostracoda (Crustacea) in ...

    African Journals Online (AJOL)

    The current study presents the ostracod communities recovered from 26 shallow waterbodies in southern Kenya, combined with an ecological assessment of habitat characteristics. A total of 37 waterbodies were sampled in 2001 and 2003, ranging from small ephemeral pools to large permanent lakes along broad ...

  10. Vascular plant diversity and community Structure of nandi forests ...

    African Journals Online (AJOL)

    Abundance data of species was used for species diversity, similarity, species richness estimation and plant community analysis. PC-ORD, CANOCO and EstimateS were used to analyze the data. A total of 321 species ... Keywords: floristic composition, ordination, rarefaction, species accumulation, species richness.

  11. Bacterial community structure in the Cerasus sachalinensis Kom ...

    African Journals Online (AJOL)

    The results showed that the bacterial community diversity in the cultivated C. sachalinensis rhizosphere was always higher than the wild, while the evenness and dominance indices followed a different pattern as compared to band richness in the wild and cultivated conditions. The plant growth stages also had an influence ...

  12. Implementing a structured triage system at a community health ...

    African Journals Online (AJOL)

    Background: More than 100 unbooked patients present daily to the Mitchell's Plain Community Health Centre (MPCHC), and are triaged by a doctor, with the assistance of a staff nurse. The quality of the triage assessments has been found to be variable, with patients often being deferred without their vital signs being ...

  13. Spatio-temporal variations in phytoplankton community structure in ...

    African Journals Online (AJOL)

    OMARI

    2013-09-06

    Sep 6, 2013 ... lead to the production of phytoplankton, while their assemblage (composition and distribution) is ... dominated by chlorophyceae and cyanobacteria. In a situation of many fish, phytoplankton feeders will ..... pigments and community composition in Lake Tanganyika. In: Freshwater Biology. Vol. 50, 2005. pp.

  14. Uncovering the community structure associated with the diffusion dynamics on networks

    International Nuclear Information System (INIS)

    Cheng, Xue-Qi; Shen, Hua-Wei

    2010-01-01

    As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of the network, which measures how easily the diffusion among different communities occurs. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods in identifying the community structure of networks. Applications to real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network

  15. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Directory of Open Access Journals (Sweden)

    Rutger Goekoop

    Full Text Available INTRODUCTION: Human personality is described preferentially in terms of factors (dimensions found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. AIM: To directly compare the ability of network community detection (NCD and principal component factor analysis (PCA to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R. METHODS: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. RESULTS: At facet level, NCS showed a best match (96.2% with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80% with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. CONCLUSION: We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  16. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    Digital Repository Service at National Institute of Oceanography (India)

    Manikandan, B.; Ravindran, J.; Shrinivaasu, S.; Marimuthu, N.; Paramasivam, K.

    Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral...

  17. Geology and Hydrology Drive Benthic Fungal Community Structure in a Lowland River System

    Science.gov (United States)

    Mansour, I.; Heppell, C. M.; McKew, B.; Dumbrell, A.; Whitby, C. B.; Veresoglou, S.; Leung, G.; Binley, A. M.; Lansdown, K.; Trimmer, M.; Olde, L.; Rillig, M.

    2017-12-01

    Despite their essential roles in ecosystem functioning, exceptionally little is known about fungal communities and the ecological processes regulating their structure. This is particularly true for riverine ecosystems, where almost nothing about the diversity of their fungal communities is known. In this field study, benthic sediment samples and surface water samples were collected seasonally from lowland rivers (Hampshire Avon catchment, UK) underlain by three distinct parent geologies (clay, Greensand and Chalk), across a hydrological gradient of baseflow index ranging from 0.23 to 0.95. Fungal communities were assessed using high-throughput sequencing and community data were analyzed via ordination, variance partitioning and indicator species analysis. We found that distinct fungal communities inhabited the benthic sediments of the differing geologies. Clay sediments were dominated by the yeast Cryptococcus podzolicus, the hyphomycete Pseudeuotium hygrophilum, Mortierella, and unidentified fungi in the class Sordariomycetes - the latter two also common within Greensand sediments along with seasonal spikes in Rhizophydium littoreum, a parasite of green algae. An unidentified fungus from the phylum Ascomycota was numerically dominant at all chalk sites and across all seasons. Spatial variables explained only a negligible proportion of variance between communities, indicating that environmental and biotic processes drive the differences between the observed fungal communities rather than purely spatial mechanisms (e.g. stochastic processes). Season was a highly significant predictor of community structure (p=0.005) and baseflow index explained some of the variance within the fungal community data across seasons. This study demonstrates that deterministic rather than stochastic processes are important for structuring lotic fungal communities, and, for the first time, shows that underlying geology and associated differences in hydrology are drivers of fungal

  18. Geochip: A high throughput genomic tool for linking community structure to functions

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joy D.; Liang, Yuting; He, Zhili; Li, Guanghe; Zhou, Jizhong

    2009-01-30

    GeoChip is a comprehensive functional gene array that targets key functional genes involved in the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and contaminant degradation. Studies have shown the GeoChip to be a sensitive, specific, and high-throughput tool for microbial community analysis that has the power to link geochemical processes with microbial community structure. However, several challenges remain regarding the development and applications of microarrays for microbial community analysis.

  19. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities.

    Directory of Open Access Journals (Sweden)

    Elisa Alonso Aller

    Full Text Available Marine protected areas (MPAs have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones and two unprotected (open-access sites around Zanzibar (Tanzania. We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014-2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities.

  20. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities.

    Science.gov (United States)

    Alonso Aller, Elisa; Jiddawi, Narriman S; Eklöf, Johan S

    2017-01-01

    Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014-2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities.

  1. Electronic bond structure of the H2+ ion in a strong magnetic field: A study of the parallel configuration

    International Nuclear Information System (INIS)

    Kappes, U.; Schmelcher, P.

    1995-01-01

    A large number of magnetically dressed states of the hydrogen molecular ion for parallel internuclear and magnetic field axes are investigated. The numerical calculations of the molecular states and potential-energy curves in the fixed-nuclei approximation are based on a recently established and optimized atomic orbital basis set. We study electronic states within the range 0≤|m|≤10 of magnetic quantum numbers and for several field strengths. In particular, we also investigate many excited states within a subspace for fixed magnetic quantum number and parity. In order to understand the influence of the magnetic field on theof excited molecular states, we perform a detailed comparison of the electronic probability distributions and potential-energy curves in the field-free space with those in the presence of a magnetic field. As a major result we observe the existence of two different classes of strongly bound, i.e., stable, magnetically dressed states whose corresponding counterparts in the field-free space exhibit purely repulsive potential-energy curves, i.e., are unstable. Corrections which are going beyond the fixed-nuclei approach, i.e., the coupling of the center of mass to the electronic motion, as well as the mass corrections are investigated in order to ensure the physical validity of our results

  2. THE THREE-DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM; STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES

    International Nuclear Information System (INIS)

    Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M. J.; Ferguson, A. M. N.; Chapman, S. C.

    2013-01-01

    We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with an rms thickness of just 12.34 +0.75 -0.43 kpc. This disk is oriented approximately edge-on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk-like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.

  3. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  4. Seasonality and vertical structure of microbial communities in an ocean gyre

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A

    2009-01-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of chang...

  5. The fungal community structure of barley malts from diverse geographical regions correlates with malt quality parameters.

    Science.gov (United States)

    Kaur, Mandeep; Bowman, John P; Stewart, Doug C; Evans, David E

    2015-12-23

    Malt is a preferred base for fermentations that produce beer or whisky. Barley for malt is grown under diverse environments in different geographical locations. Malt provides an ecological niche for a varied range of microorganisms with both positive and negative effects on its quality for brewing. Little information exists in the literature on the microbial community structure of Australian malt as well as broader global geographical differences in the associated fungal and bacterial communities. The aims of the present study were to compare the bacterial and fungal community structures of Australian commercial malt with its international counterparts originating from different geographical regions using terminal restriction fragment length polymorphism (TRFLP) fingerprinting and clone library analyses of ribosomal RNA genes. Further, the relationship between malt associated microbial communities and conventional malt quality parameters was also compared. Results showed that differences in fungal communities of malts from different geographical location were more pronounced than bacterial communities. TRFLP analysis discriminated high quality commercial malts with low fungal loads from malts deliberately infected with fungal inocula (Fusarium/Penicillium). Malt moisture, beta-amylase, α-amylase and limit dextrinase contents showed significant correlations with fungal community structure. This investigation concluded that fungal community structure was more important to subsequent malt quality outcomes than bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters

    NARCIS (Netherlands)

    Regueiro, L.; Veiga, P.; Figueroa, M.; Alonso-Gutierrez, J.; Stams, A.J.M.; Lema, J.M.; Carballa, M.

    2012-01-01

    High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester.

  7. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh

    NARCIS (Netherlands)

    Kraigher, Barbara; Stres, Blaz; Hacin, Janez; Ausec, Luka; Mahne, Ivan; van Elsas, Jan D.; Mandic-Mulec, Ines

    Fen peatlands are specific wetland ecosystems containing high soil organic carbon (SOC). There is a general lack of knowledge about the microbial communities that abound in these systems. We examined the microbial activity and community structure in two fen soils differing in SOC content sampled

  8. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities

    DEFF Research Database (Denmark)

    Zhang, Lai; Andersen, Ken Haste; Dieckmann, Ulf

    2015-01-01

    We investigate how four types of interference competition - which alternatively affect foraging, metabolism, survival, and reproduction - impact the ecology and evolution of size-structured populations. Even though all four types of interference competition reduce population biomass, interference...... interference is strong. The evolutionary response to survival interference and reproductive interference is always larger maturation size. We also investigate how the four types of interference competition impact the evolutionary dynamics and resultant diversity and trophic structure of size......-structured communities. Like other types of trait-mediated competition, all four types of interference competition can induce disruptive selection and thus promote initial diversification. Even though foraging interference and reproductive interference are more potent in promoting initial diversification, they catalyze...

  9. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    KAUST Repository

    Lee, O.O.

    2014-01-08

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  10. Polychaete community structure of Indian west coast shelf, Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joydas, T.V.; Jayalakshmy, K.V.; Damodaran, R.

    . The present study investigates the scope of TS in benthic fauna of con- tinental shelf off the west coast of India, where our study 12 has shown that the depth and natural environmental gradi- ents influence the distribution and abun- dance of polychaetes.... The present study confirmed that in the western con- tinental shelf of India, genus and family aggregations of polychaetes show similar community response as that of species on a depth gradient in this environment. Our high resolution data showed...

  11. Structure of the Scientific Community Modelling the Evolution of Resistance

    OpenAIRE

    2007-01-01

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expec...

  12. Microbial community structure affects marine dissolved organic matter composition

    Directory of Open Access Journals (Sweden)

    Elizabeth B Kujawinski

    2016-04-01

    Full Text Available Marine microbes are critical players in the global carbon cycle, affecting both the reduction of inorganic carbon and the remineralization of reduced organic compounds back to carbon dioxide. Members of microbial consortia all depend on marine dissolved organic matter (DOM and in turn, affect the molecules present in this heterogeneous pool. Our understanding of DOM produced by marine microbes is biased towards single species laboratory cultures or simplified field incubations, which exclude large phototrophs and protozoan grazers. Here we explore the interdependence of DOM composition and bacterial diversity in two mixed microbial consortia from coastal seawater: a whole water community and a <1.0-μm community dominated by heterotrophic bacteria. Each consortium was incubated with isotopically-labeled glucose for 9 days. Using stable-isotope probing techniques and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry, we show that the presence of organisms larger than 1.0-μm is the dominant factor affecting bacterial diversity and low-molecular-weight (<1000 Da DOM composition over this experiment. In the <1.0-μm community, DOM composition was dominated by compounds with lipid and peptide character at all time points, confirmed by fragmentation spectra with peptide-containing neutral losses. In contrast, DOM composition in the whole water community was nearly identical to that in the initial coastal seawater. These differences in DOM composition persisted throughout the experiment despite shifts in bacterial diversity, underscoring an unappreciated role for larger microorganisms in constraining DOM composition in the marine environment.

  13. Trophic structure of the fouling community in Odessa Bay (Black Sea

    Directory of Open Access Journals (Sweden)

    A. Y. Varigin

    2016-06-01

    Full Text Available The trophic structure of the coastal fouling community of Odessa Bay (Black Sea, which was composed of 10 species of macrophytes, 57 invertebrate species and 4 species of fish, was determined. The basic trophic relationship between organisms composing the community is shown. A minimization of interspecific trophic competition within the community is noted. The main sources of food material entering the fouling community were determined. We show that a significant proportion of food in the form of detritus, dissolved organic matter and small planktonic organisms enters the community from the water column. Filtration and pumping activity of sestonophage-organisms, particularly mussels, helps to attract food material to the community. Primary producers of the community are macrophytes and microphytes, which develop on account of their photosynthetic activity and ensure the provision of food to herbivores. The trophic group of detritophages consumes different fractions of the detritus which accumulates in the byssus threads of bivalve molluscs. In this context, mussel druses act as sediment traps, collecting detritus. Numerous polyphages, which are essentially omnivores and do not usually lack food material, were noted in the community. A small group of carnivorous invertebrates, whose representatives actively attack small animals, was identified. The abundance of these species in the community was about 1%, and their biomass less than 0.6%. Fish living in macrophyte weeds are the consumers in the community. We determined that the highest relative abundance (over 36% in the fouling community was reached by sestonophages and polyphages. We found that the undisputed leader in the relative biomass (over 97% in the fouling community ofOdessaBaywas the sestonophages (mainly composed of mussels. We determined that the trophic structure index of the community was 0.94, which confirms the significant dominance in biomass of bivalves over other species in

  14. Is benthic food web structure related to diversity of marine macrobenthic communities?

    NARCIS (Netherlands)

    Sokolowski, A.; Wolowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaité, Z.; Grémare, A.; Hummel, H.; Lesutiené, J.; Razinkovas, A.; Renaud, P.E.; Richard, P.; Kędra, M.

    2012-01-01

    Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning.

  15. Heavy metals pollution influence the community structure of Cyanobacteria in nutrient rich tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jasmin, C.; Sheeba V.A.; Gireeshkumar, T.R.; Nair, S.

    Anthropogenic inputs influence the community structure and activities of microorganisms, which may impinge the functioning of estuarine and coastal ecosystem. The aim of the present study was to understand the influence of dissolved heavy metals (Cr...

  16. Microbial community structure of surface sediments from a tropical estuarine environment using next generation sequencing

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Kuchi, N.; Kale, D.; Anil, A.C.

    Microbial community structure was analyzed from tropical monsoon influenced Mandovi-Zuari (Ma-Zu) estuarine sediment by means of Next Gen Sequencing (NGS) approach using Ion Torrent PGM™. The sequencing generated 80,282 raw sequence reads. Barcoding...

  17. Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships.

    Science.gov (United States)

    Brettar, Ingrid; Christen, Richard; Höfle, Manfred G

    2012-01-01

    Understanding structure-function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.

  18. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities?

    Science.gov (United States)

    Heino, Jani

    2013-04-01

    Both spatial processes and environmental control may structure metacommunities, but their relative importance may be contingent on the dispersal ability of organisms. I examined the roles of spatial and environmental factors for the structuring of littoral macroinvertebrate communities across a set of lakes in a boreal drainage basin. I hypothesized that dispersal ability would affect the relative importance of spatial processes and environmental control, and thus the biological data were divided into four groups of species differing in dispersal ability. In general, the group of the strongest aerial dispersers showed greatest relative pure environmental control and least pure spatial structuring of community structure and species richness, while spatial processes seemed to be more important for the other three dispersal ability groups. However, these results were contingent on the indirect measure of spatial processes, with the spatial variables and connectivity variables providing slightly different insights into the spatial processes and environmental control of metacommunity structuring. It appears, however, that dispersal ability has effects on the spatial processes and environmental control important in metacommunity organization, with strong dispersers being more under environmental control and less affected by spatial processes compared to weak dispersers.

  19. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    Science.gov (United States)

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.

  20. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    Science.gov (United States)

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  1. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Science.gov (United States)

    Gómez-Brandón, María; Lores, Marta; Domínguez, Jorge

    2012-01-01

    Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested. To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus. Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community diversity and

  2. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Directory of Open Access Journals (Sweden)

    María Gómez-Brandón

    Full Text Available Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested.To address these questions we determined the microbial community structure (phospholipid fatty acid profiles and microbial activity (basal respiration and microbial growth rates of three types of animal manure (cow, horse and rabbit that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus.Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community

  3. Dissolved organic matter (DOM) in pore water of Arctic Ocean sediments: linking DOM molecular composition with microbial community structure

    Science.gov (United States)

    Rossel, P. E.; Bienhold, C.; Boetius, A.; Dittmar, T.

    2016-02-01

    Marine organic matter (OM) that sinks from surface waters to the seafloor is the energy and carbon source for benthic communities. These communities produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. In the Arctic Ocean, primary production is limited by nutrients and light and is thus strongly influenced by sea ice cover. Ice cover is expected to further decrease due to global warming, which may have important consequences for primary production and the quantity and quality of OM exported to the seafloor. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether there is any relation between Arctic Ocean ice cover and DOM composition and 3) whether the DOM composition correlates with microbial community structure. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were statistically correlated with environmental parameters. The productive ice margin stations showed higher abundances of molecular formulae of peptides, unsaturated aliphatics and saturated fatty acids. This molecular trend is indicative of fresh OM and phytodetritus deposition, compared to the northernmost, ice-covered stations which had stronger aromatic signals. Benthic bacterial community structure, as assessed with the fingerprinting method ARISA, was significantly correlated with DOM molecular composition. Further analyses using Illumina next-generation sequencing will enable the taxonomic identification of specific bacterial groups and their interdependence with DOM compounds. This study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and provides first insights into potential links between microbial community structure and DOM molecular composition in Arctic sediments

  4. Developing Structured-Learning Exercises for a Community Advanced Pharmacy Practice Experience

    OpenAIRE

    Thomas, Renee Ahrens

    2006-01-01

    The recent growth in the number of pharmacy schools across the nation has resulted in the need for high-quality community advanced pharmacy practice experience (APPE) sites. A vital part of a student's education, these APPEs should be structured and formalized to provide an environment conducive to student learning. This paper discusses how to use a calendar, structured-learning activities, and scheduled evaluations to develop students' knowledge, skills, and abilities in a community pharmacy...

  5. Developing structured-learning exercises for a community advanced pharmacy practice experience.

    Science.gov (United States)

    Thomas, Renee Ahrens

    2006-02-15

    The recent growth in the number of pharmacy schools across the nation has resulted in the need for high-quality community advanced pharmacy practice experience (APPE) sites. A vital part of a student's education, these APPEs should be structured and formalized to provide an environment conducive to student learning. This paper discusses how to use a calendar, structured-learning activities, and scheduled evaluations to develop students' knowledge, skills, and abilities in a community pharmacy setting.

  6. Gut bacterial community structure of two Australian tropical fruit fly species (Diptera: Tephritidae)

    OpenAIRE

    Narit Thaochan; Richard A.I. Drew; Anuchit Chinajariyawong; Anurag Sunpapao; Chaninun Pornsuriya

    2015-01-01

    The community structure of the alimentary tract bacteria of two Australian fruit fly species, Bactrocera cacuminata (Hering) and Bactrocera tryoni (Froggatt), was studied using a molecular cloning method based on the 16S rRNA gene. Differences in the bacterial community structure were shown between the crops and midguts of the two species and sexes of each species. Proteobacteria was the dominant bacterial phylum in the flies, especially bacteria in the order Gammaproteobacteria w...

  7. Three-dimensional visualization of magnetic domain structure with strong uniaxial anisotropy via scanning hard X-ray microtomography

    Science.gov (United States)

    Suzuki, Motohiro; Kim, Kab-Jin; Kim, Sanghoon; Yoshikawa, Hiroki; Tono, Takayuki; Yamada, Kihiro T.; Taniguchi, Takuya; Mizuno, Hayato; Oda, Kent; Ishibashi, Mio; Hirata, Yuushou; Li, Tian; Tsukamoto, Arata; Chiba, Daichi; Ono, Teruo

    2018-03-01

    An X-ray tomographic technique was developed to investigate the internal magnetic domain structure in a micrometer-sized ferromagnetic sample. The technique is based on a scanning hard X-ray nanoprobe using X-ray magnetic circular dichroism (XMCD). From transmission XMCD images at the Gd L3 edge as a function of the sample rotation angle, the three-dimensional (3D) distribution of a single component of the magnetic vector in a GdFeCo microdisc was reconstructed with a spatial resolution of 360 nm, using a modified algebraic reconstruction algorithm. The method is applicable to practical magnetic materials and can be extended to 3D visualization of the magnetic domain formation process under external magnetic fields.

  8. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain.

    Science.gov (United States)

    Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A

    2014-04-01

    Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen

    2016-05-01

    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  10. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period

    DEFF Research Database (Denmark)

    Zhu, Zhigang; Noel, Samantha Joan; Difford, Gareth Frank

    2017-01-01

    was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community......% of the total reads, dominated by the genera Methanobrevibacter (75%) and Methanosphaera (24%), whereas the Methanomassiliicoccales order covered only 0.2% of the total reads. In conclusion, the present study showed that the structure of the metabolically active bacterial and archaeal rumen communities changed...... prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over...

  11. Convergent evolution of modularity in metabolic networks through different community structures

    Directory of Open Access Journals (Sweden)

    Zhou Wanding

    2012-09-01

    Full Text Available Abstract Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability. Further, our results

  12. Violence, omissions and structures faced by LGBTI community individuals

    Directory of Open Access Journals (Sweden)

    Manuel Fernando Quinche Ramírez

    2016-07-01

    text works on the issue of legislative and conventional omissions, and identifies some of the traditional domain structures, those that impede the recognition and protection of this community’s rights.

  13. Structure of the scientific community modelling the evolution of resistance.

    Science.gov (United States)

    2007-12-05

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from 1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides, herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress concerning resistance evolution which is currently a major issue for society.

  14. Structure and seasonality in a Malaysian mudflat community

    Science.gov (United States)

    Broom, M. J.

    1982-08-01

    An assessment of community composition and the functional roles of the dominant species has been carried out in two intertidal areas of Malaysian mudflat dominated by natural populations of the arcid bivalve mollusc Anadara granosa. In addition to A. granosa, organisms of numerical importance are the venerid bivalve Pelecyora trigona, the neogastropod Plicarcularia leptospira, the mesogastropods Stenothyra glabrata and Cerithidea cingulata and the hermit crab Diogenes sp. The mesogastropod Natica maculosa and the neogastropod Thais carinifera may be of some importance to community organization but they are not numerically dominant. Annelids are conspicuous by their absence. The following trophic roles are ascribed to specific members of the community: A. granosa—facultative surface deposit feeder; P. trigona—suspension feeder; P. leptospira—scavenger; C. cingulata—deposit feeder/grazer; S. glabrata—deposit feeder/grazer; N. maculosa—predator; T. carinifera—predator; Diogenes sp.—scavenger/predator. S. glabrata is of particular interest because it appears to fill the niche occupied by mud snails of the genus Hydrobia in temperate mudflat systems. There is evidence of seasonality on the mudflats which points to a spawning of certain forms triggered by the major annual salinity depression at the time of the onset of the north-east monsoon in October/November. Concentrations of benthic chlorophyll a show no obvious signs of a seasonal fluctuation and the seasonality of the primary consumers is not thought to be related to food abundance. However there is some evidence of seasonality of reproduction in N. maculosa which preys on the seasonally reproducing bivalves.

  15. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    . It was hypothesised that the bacterial community from a lake with frequent occurrence of toxic cyanobacteria can degrade microcystin along with other organic compounds. The initial dissolved microcystin concentrations ranged between 10 and 136 mug 1(-1) (microcystin-LR equivalents) in the laboratory experiment, using...... initial degradation rates occurred in 2 out of 7 cases, Microcystin was almost eliminated from the water after around 8 d. Results from concomitant measurements of bacterial abundance and net production showed an elevated bacterial activity within 1 to 2 d after the inoculation with algal lysates...

  16. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory.

    Science.gov (United States)

    Gleeson, Deirdre; Mathes, Falko; Farrell, Mark; Leopold, Matthias

    2016-11-15

    The Critical Zone is defined as the thin, permeable layer from the tops of the trees to the bottom of the bedrock that sustains terrestrial life on Earth. The geometry and shape of the various weathering zones are known as the critical zone architecture. At the centre of the Critical Zone are soils and the microorganisms that inhabit them. In Western Australia, the million-year-old stable weathering history and more recent lateral erosion during the past hundreds of thousands of years have created a geomorphic setting where deep weathering zones are now exposed on the surface along the flanks of many lateritic hills. These old weathering zones provide diverse physical and chemical properties that influence near surface pedologic conditions and thus likely shape current surface microbiology. Here, we present data derived from a small lateritic hill on the UWA Farm Ridgefield. Spatial soil sampling revealed the contrasting distribution patterns of simple soil parameters such as pH (CaCl2) and electric conductivity. These are clearly linked with underlying changes of the critical zone architecture and show a strong contrast with low values of pH3.3 at the top of the hill to pH5.3 at the bottom. These parameters were identified as major drivers of microbial spatial variability in terms of bacterial and archaeal community composition but not abundance. In addition, we used sensitive (14)C labelling to assess turnover of three model organic nitrogen compounds - an important biogeochemical functional trait relating to nutrient availability. Though generally rapid and in the order of rates reported elsewhere (t½10h). In conclusion, we have shown that the weathering and erosion history of ancient Western Australia affects the surface pedology and has consequences for microbial community structure and function. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard

    Science.gov (United States)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2015-07-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered as hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances, but a positive correlation with eukaryotic microalgae. Most microalgae found in this study form large colonies (cells, or > 25 μm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in RDA and PCA analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting nutrients is the main factor driving variation in the community structure of microalgae and grazers.

  18. Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard

    Science.gov (United States)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2016-02-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, such as tardigrades and rotifers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances but rather a positive correlation with eukaryotic microalgae. Shared environmental preferences and a positive effect of grazing are the proposed mechanisms to explain these correlations. Most microalgae found in this study form colonies (cells, or > 25 µm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in redundancy (RDA) and principal component (PCA) analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of nutrient input by bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting

  19. Magnetic structure of RPdSn (R=Tb, Ho) single crystal compounds under strong magnetic field

    International Nuclear Information System (INIS)

    Andoh, Y.; Kurisu, M.; Nakamoto, G.; Tsutaoka, T.; Kawano, S.

    2003-01-01

    Rare earth compounds RTX, where R stands for rare earth elements, T for Ni, Pd or Rh, and X for Sn or Ge, crystallize to a rhombic ε-TiNiSi structure. Only rare earth elements R contribute to magnetic properties since T and X atoms are nonmagnetic. The competition between RKKY indirect interaction and large magnetic anisotropy generates many complicated magnetic phases. At a low temperature phase, complicated magnetisms such as meta-magnetism were observed in magnetization curves with many steps. In previous experiments dealing with RPdSn where R means Tb or Ho, some characteristics of magnetic properties of these compounds were deduced from magnetization measurements and neutron diffraction without external magnetic field. In this report, the change of magnetic scattering of neutron diffraction was studied under external magnetic fields in order to reveal the mechanism of the phase transformations of the compounds. The difference between TbPdSn and HoPdSn compounds was observed in magnetic field dependence of the wave vectors of the magnetic scattering. Two independent wave vectors in magnetic scattering existed in HoPdSn compound. (Y. Kazumata)

  20. Effects of isolation and environmental variables on fish community structure in the Brazilian Amazon Madeira-Purus interfluve

    Directory of Open Access Journals (Sweden)

    DF. Barros

    Full Text Available Due to the existence of terrestrial barriers to freshwater fish dispersion, it is believed that its distribution is strongly associated with historical factors related to the formation of the habitats they occupy. By the other hand, some studies reveal the influence of abiotic conditions (such as size of water bodies, pH, conductivity on the composition of fish fauna occurring in small streams. This study aimed to investigate whether drainage basins, because catchment boundaries are potential barriers to fish dispersion, or the physical structure and physico-chemical characteristics of water have a greater influence on fish community structure in small streams. We sampled 22 streams belonging to five drainage basins in the Madeira-Purus interfluve. Fish were caught with dip nets and a small trawl, and data were simultaneously obtained on structural characteristics of the streams and physico-chemical characteristics of the water. Community composition was analyzed using Non-Metric Multidimensional Scaling (NMDS, and variables related to structural and physico-chemical characteristics were summarized by Principal Component Analysis (PCA. Two explanatory models relating faunal composition to environmental factors were constructed: the first using only continuous variables and the second including the drainage basin as a categorical variable. The Akaike Information Criterion (AIC and AIC weight were used to select the best model. Although structural and physico-chemical variables significantly contributed to explaining faunal composition, the model including the drainage basin was clearly the better of the two models (more than 90% support in the data. The importance of drainage basins in structuring fish communities in streams may have significant consequences for conservation planning in these environments.

  1. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  2. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  3. Exploring anti-community structure in networks with application to incompatibility of traditional Chinese medicine

    Science.gov (United States)

    Zhu, Jiajing; Liu, Yongguo; Zhang, Yun; Liu, Xiaofeng; Xiao, Yonghua; Wang, Shidong; Wu, Xindong

    2017-11-01

    Community structure is one of the most important properties in networks, in which a node shares its most connections with the others in the same community. On the contrary, the anti-community structure means the nodes in the same group have few or no connections with each other. In Traditional Chinese Medicine (TCM), the incompatibility problem of herbs is a challenge to the clinical medication safety. In this paper, we propose a new anti-community detection algorithm, Random non-nEighboring nOde expansioN (REON), to find anti-communities in networks, in which a new evaluation criterion, anti-modularity, is designed to measure the quality of the obtained anti-community structure. In order to establish anti-communities in REON, we expand the node set by non-neighboring node expansion and regard the node set with the highest anti-modularity as an anti-community. Inspired by the phenomenon that the node with higher degree has greater contribution to the anti-modularity, an improved algorithm called REONI is developed by expanding node set by the non-neighboring node with the maximum degree, which greatly enhances the efficiency of REON. Experiments on synthetic and real-world networks demonstrate the superiority of the proposed algorithms over the existing methods. In addition, by applying REONI to the herb network, we find that it can discover incompatible herb combinations.

  4. A game theoretic algorithm to detect overlapping community structure in networks

    Science.gov (United States)

    Zhou, Xu; Zhao, Xiaohui; Liu, Yanheng; Sun, Geng

    2018-04-01

    Community detection can be used as an important technique for product and personalized service recommendation. A game theory based approach to detect overlapping community structure is introduced in this paper. The process of the community formation is converted into a game, when all agents (nodes) cannot improve their own utility, the game process will be terminated. The utility function is composed of a gain and a loss function and we present a new gain function in this paper. In addition, different from choosing action randomly among join, quit and switch for each agent to get new label, two new strategies for each agent to update its label are designed during the game, and the strategies are also evaluated and compared for each agent in order to find its best result. The overlapping community structure is naturally presented when the stop criterion is satisfied. The experimental results demonstrate that the proposed algorithm outperforms other similar algorithms for detecting overlapping communities in networks.

  5. The structure and functions of bacterial communities in an agrocenosis

    Science.gov (United States)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  6. Population Genetics of the São Tomé Caecilian (Gymnophiona: Dermophiidae: Schistometopum thomense) Reveals Strong Geographic Structuring

    Science.gov (United States)

    Stoelting, Ricka E.; Measey, G. John; Drewes, Robert C.

    2014-01-01

    Islands provide exciting opportunities for exploring ecological and evolutionary mechanisms. The oceanic island of São Tomé in the Gulf of Guinea exhibits high diversity of fauna including the endemic caecilian amphibian, Schistometopum thomense. Variation in pigmentation, morphology and size of this taxon over its c. 45 km island range is extreme, motivating a number of taxonomic, ecological, and evolutionary hypotheses to explain the observed diversity. We conducted a population genetic study of S. thomense using partial sequences of two mitochondrial DNA genes (ND4 and 16S), together with morphological examination, to address competing hypotheses of taxonomic or clinal variation. Using Bayesian phylogenetic analysis and Spatial Analysis of Molecular Variance, we found evidence of four geographic clades, whose range and approximated age (c. 253 Kya – 27 Kya) are consistent with the spread and age of recent volcanic flows. These clades explained 90% of variation in ND4 (φCT = 0.892), and diverged by 4.3% minimum pairwise distance at the deepest node. Most notably, using Mismatch Distributions and Mantel Tests, we identified a zone of population admixture that dissected the island. In the northern clade, we found evidence of recent population expansion (Fu's Fs = −13.08 and Tajima's D = −1.80) and limited dispersal (Mantel correlation coefficient = 0.36, p = 0.01). Color assignment to clades was not absolute. Paired with multinomial regression of chromatic data, our analyses suggested that the genetic groups and a latitudinal gradient together describe variation in color of S. thomense. We propose that volcanism and limited dispersal ability are the likely proximal causes of the observed genetic structure. This is the first population genetic study of any caecilian and demonstrates that these animals have deep genetic divisions over very small areas in accordance with previous speculations of low dispersal abilities. PMID:25171066

  7. Developing strong concurrent multiphysics multiscale coupling to understand the impact of microstructural mechanisms on the structural scale

    Energy Technology Data Exchange (ETDEWEB)

    Foulk, James W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alleman, Coleman N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mota, Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bergel, Guy Leshem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Popova, Evdokia [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Montes de Oca Zapiain, David [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Kalidindi, Suryanarayana Raju [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Ernst, Corey [Elemental Technologies, Provo, UT (United States)

    2017-09-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of

  8. Zooplankton biodiversity and community structure vary along spatiotemporal environmental gradients in restored peridunal ponds

    Directory of Open Access Journals (Sweden)

    Maria Anton-Pardo

    2015-11-01

    Full Text Available Zooplankton assemblages in neighboring ponds can show important spatial and temporal heterogeneity. Disentangling the influence of regional versus local factors, and of deterministic versus stochastic processes has been recently highlighted in the context of the metacommunity theory. In this study, we determined patterns of temporal and spatial variation in zooplankton diversity along one hydrological year in restored ponds of different hydroperiod and age. The following hypotheses regarding the assembling of species over time were tested: i dispersal is not limited in our study system due to its small area and high exposure to dispersal vectors; ii community dissimilarity among ponds increases with restoration age due to an increase in environmental heterogeneity and stronger niche-based assemblages;and iii similarity increases with decreasing hydroperiod because hydroperiod is a strong selective force filtering out organisms with long life cycles. Our results confirmed dispersal as a homogenizing force and local factors as gaining importance with time of restoration. However, short hydroperiod ponds were highly dissimilar, maybe due to the environmental differences among these ponds, or to high stochasticity followed by priority effects under a weak selection pressure. By adding a temporal dimension to the study of zooplankton structuring, we could identify the first months after flooding as being crucial for species richness, especially in short hydroperiod ponds; and we detected differences in seasonal species richness related to hydroperiod and pond age.

  9. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    Science.gov (United States)

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  10. Evaluation of community structure and community function after exposure to the turbine fuel jet-A

    International Nuclear Information System (INIS)

    Rodgers, S.C.; Landis, W.G.

    1993-01-01

    The underlying premises of the Mixed Flask Culture (MFC), an aquatic microcosm design, include (1) that the effects of a perturbation to an aquatic community may be monitored through the measurement of its functional parameters (i.e. pH and productivity/respiration ratio) and (2) these measurements will be similar between different wild-derived communities given the same perturbation. Two MFC experiments were conducted to assess these two premises. The treatment groups in both experiments consisted of 0%, 1%, 5%, and 15% WSF Jet-A with six replicates respectively. The experimental designs reflected both the MFC and the Standard Aquatic Microcosm (SAM); this hybrid design resulted in following a MFC protocol, but incorporated the SAM specified laboratory cultured organisms. Beaker homogeneity via cross inoculation and reinoculation was encouraged in the first experiment prior to dosing. Beaker heterogeneity was encouraged in the first experiment prior to dosing. Beaker heterogeneity was encouraged in the second experiment by not cross inoculating or reinoculating. The differences between the two experiments was designed to indicate if differently derived communities react similarly to an identical perturbation. Do the microcosms within each treatment group resemble each other functionally throughout the experiment, or is the within group deviation greater than the between group deviation?

  11. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Directory of Open Access Journals (Sweden)

    Alana de Almeida Valadares-Pereira

    2017-11-01

    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  12. Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities.

    Science.gov (United States)

    Huhe; Chen, Xianjiang; Hou, Fujiang; Wu, Yanpei; Cheng, Yunxiang

    2017-01-01

    The Loess Plateau of China is one of the most fragile ecosystems worldwide; thus, human production activities need to be conducted very cautiously. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and changes in vegetation and soil physical and chemical properties induced by grazing, in four grasslands with different levels of grazing intensity (0, 2.67, 5.33, and 8.67 sheep/ha) in the semiarid region of the Loess Plateau. The relative abundances of the bacterial community in the grasslands with 2.67 and 5.33 sheep/ha were significantly higher than those in grasslands with 0 and 8.67 sheep/ha, and the fungal diversity was significantly lower for grasslands with 2.67 sheep/ha than for the other grasslands. Redundancy analysis (RDA) showed that plant biomass, nitrate, and total nitrogen have significant effects on bacterial community structure, whereas nitrate and total nitrogen also significantly affect fungal community structure. Variation partitioning showed that soil and plant characteristics influence the bacterial and fungal community structures; these characteristics explained 51.9 and 52.9% of the variation, respectively. Thus, bacterial and fungal community structures are very sensitive to grazing activity and change to different extents with different grazing intensities. Based on our findings, a grazing intensity of about 2.67 sheep/ha is considered the most appropriate in semiarid grassland of the Loess Plateau.

  13. Multi-scale processes drive benthic community structure in upwelling-affected coral reefs

    Directory of Open Access Journals (Sweden)

    Corvin eEidens

    2015-02-01

    Full Text Available Environmental processes acting at multiple spatial scales control benthic community structures in coral reefs. However, the contribution of local factors (e.g., substrate availability and water clarity vs. non-local oceanographic processes (e.g. upwelling events in these highly complex systems is poorly understood. We therefore investigated the relative contribution of local and non-local environmental factors on the structure of benthic groups and specifically on coral assemblages in the upwelling-affected Tayrona National Natural Park (TNNP, Colombian Caribbean. Coral-dominated communities were monitored along with key environmental parameters at water current-exposed and -sheltered sites in four consecutive bays. Regression tree analyses revealed that environmental parameters explained 59.1% of the variation within the major benthic groups and 36.1% within coral assemblages. Findings also showed recurring patterns in community structures at sites with similar exposure across bays. We suggest that benthic community composition in TNNP is primarily driven by 1 wave exposure, followed by 2 temporal changes in nutrient availability governing the structure of benthic groups, and 3 local bay-specific differences controlling the zonation of benthic groups and coral assemblages. This study highlights the existence of complex hierarchical levels of local and non-local environmental factors acting on reef communities and stresses the importance of considering processes operating at multiple spatial scales in future studies on coral reef community structure and resilience.

  14. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    experiment to evaluate the effects of organic lysates on bacterial proliferation in the absence of microcystin. An exponential decline of the dissolved toxins was observed in all cases with toxins present, and the degradation rates ranged between 0.5 and 1.0 d(-1). No lag phases were observed but slow......Degradation of realistic microcystin concentrations in lake water with indigenous bacteria was studied in laboratory and field experiments following inoculation with lysed toxic algal material containing microcystin primarily from Microcystis sp. or purified commercial microcystin-LR to microcosms....... It was hypothesised that the bacterial community from a lake with frequent occurrence of toxic cyanobacteria can degrade microcystin along with other organic compounds. The initial dissolved microcystin concentrations ranged between 10 and 136 mug 1(-1) (microcystin-LR equivalents) in the laboratory experiment, using...

  15. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    Science.gov (United States)

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  16. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments

    DEFF Research Database (Denmark)

    Engberg, J; Nielsen, Henrik; Lenaers, G

    1990-01-01

    . These are regions within the common core of secondary structure where expansions have taken place during the evolution of the rRNA of higher eukaryotes. The dispensable nature of some of the expansion segments has been taken as evidence of their non-functionality. However, our data show that a considerable...... selective constraint has operated to preserve the secondary structure of these segments. Especially in the case of the D2 and D8 segments, the presence of a considerable number of compensatory base changes suggests that the secondary structure of these regions is of functional importance. Alternatively...

  17. The Structure of Psychopathology in a Community Sample of Preschoolers

    Science.gov (United States)

    Strickland, Jennifer; Keller, Jennifer; Lavigne, John V.; Gouze, Karen; Hopkins, Joyce; LeBailly, Susan

    2011-01-01

    Despite growing interest in the development of alternative diagnostic classification systems for psychopathology in young children, little is known about the adequacy of the DSM symptom structure for describing psychopathology in this population. This paper examines the fit of the DSM-IV emotional (ED) and disruptive behavior disorder (DD) symptom…

  18. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments

    DEFF Research Database (Denmark)

    Engberg, J; Nielsen, Henrik; Lenaers, G

    1990-01-01

    . These are regions within the common core of secondary structure where expansions have taken place during the evolution of the rRNA of higher eukaryotes. The dispensable nature of some of the expansion segments has been taken as evidence of their non-functionality. However, our data show that a considerable......We have determined the nucleotide sequence of the 26S large subunit (LSU) rRNA genes for two Tetrahymena species, T. thermophila and T. pyriformis. The inferred rRNA sequences are presented in their most probable secondary structures based on compensatory mutations, energy, and conservation...... selective constraint has operated to preserve the secondary structure of these segments. Especially in the case of the D2 and D8 segments, the presence of a considerable number of compensatory base changes suggests that the secondary structure of these regions is of functional importance. Alternatively...

  19. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Influence of Strong Diurnal Variations in Sewage Quality on the Performance of Biological Denitrification in Small Community Wastewater Treatment Plants (WWTPs)

    OpenAIRE

    Massimo Raboni; Vincenzo Torretta; Giordano Urbini

    2013-01-01

    The great diurnal variation in the quality of wastewater of small communities is an obstacle to the efficient removal of high nitrogen with traditional activated sludge processes provided by pre-denitrification. To verify this problem, the authors developed a pilot plant, in which the domestic wastewater of community of 15,000 inhabitants was treated. The results demonstrate that average and peak nitrogen removal efficiencies of over 60% and 70%, respectively, are difficult to obtain because ...

  1. Structural analysis of mixed alkali borosilicate glasses containing Cs+ and Na+ using strong magnetic field magic angle spinning nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    S. Kaneko

    2017-03-01

    Full Text Available We have investigated the local structure of alkali atoms in mixed alkali silicate, borate, and borosilicate glasses, which contain Cs+ and Na+, using strong magnetic field magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy of 133Cs and 23Na. The spectral peaks of 133Cs in borosilicate (Si:B = 1:1 and Si-rich borosilicate (Si:B = 2:1 glasses shifted to upfield with increasing Cs+/(Na+ + Cs+ ratio, which implies that the coordination number of Cs+ decreased as in the case of silicate and borate glasses. However, this trend was not observed in the 23Na spectra of either borosilicate glass. This might be because the chemical shift of 23Na in borosilicate glass is strongly affected by nearby species such as Si or B, and not by the coordination number of Na+.

  2. Drug resistance and population structure of M.tuberculosis isolates from prisons and communities in Ethiopia.

    Science.gov (United States)

    Ali, Solomon; Beckert, Patrick; Haileamlak, Abraham; Wieser, Andreas; Pritsch, Michael; Heinrich, Norbert; Löscher, Thomas; Hoelscher, Michael; Niemann, Stefan; Rachow, Andrea

    2016-11-21

    The population structure and drug resistance pattern of Mycobacterium tuberculosis complex (MTBC) isolates in Ethiopian prisons and some communities is still unknown. A comparative cross sectional study was conducted on 126 MTBC strains isolated from prisons and communities in southwestern, southern and eastern Ethiopia. Phenotypic drug susceptibility testing was performed with the MGIT960 system. Combined 24-loci Mycobacterium interspersed repetitive unit-variable number tandem repeat and spacer oligonucleotide typing methods were used to study the MTBC population structure. The obtained data from prisons and communities were compared using statistical tests and regression analysis. A diverse population structure with 11 different lineages and sub-lineages was identified. The predominant strains were the recently described Ethiopia_H37Rv like (27.52%) and Ethiopia_3 (16.51%) with equal lineage distribution between prisons and communities. 28.57% of prison strains and 31.82% of community strains shared the identical genotype with at least one other strain. The multidrug-resistance (MDR) prevalence of the community was 2.27% whereas that of prisons was 9.52%. The highest mono resistance was seen against streptomycin (15.89%). Tuberculosis in communities and prisons is caused by a variety of MTBC lineages with predominance of local Ethiopian lineages. The increasing prevalence of MDR MTBC strains is alarming. These findings suggest the need for new approaches for control of MDR tuberculosis in Ethiopia.

  3. Microbial community structure characteristics associated membrane fouling in A/O-MBR system.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2014-02-01

    The study demonstrated the potential relationship between microbial community structure and membrane fouling in an anoxic-oxic membrane bioreactor (A/O-MBR). The results showed that the microbial community structure in biocake was different with aerobic mixture, and the dominant populations were out of sync during the fouling process. Based on microbial community structure and metabolites analysis, the results showed that the succession of microbial community might be the leading factor to the variation of metabolites, and it might be the primary cause of membrane fouling. The rise of Shannon diversity index (H) of the microbial community in A/O-MBR went with the gradually serious membrane fouling. Pareto-Lorenz curve was used to describe the evenness of microbial distribution in A/O-MBR, and the result indicated when community evenness was low, the membrane fouling took place smoothly or slightly, otherwise, high evenness of microbial community would lead to more seriously membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Traveling salesman problems with PageRank Distance on complex networks reveal community structure

    Science.gov (United States)

    Jiang, Zhongzhou; Liu, Jing; Wang, Shuai

    2016-12-01

    In this paper, we propose a new algorithm for community detection problems (CDPs) based on traveling salesman problems (TSPs), labeled as TSP-CDA. Since TSPs need to find a tour with minimum cost, cities close to each other are usually clustered in the tour. This inspired us to model CDPs as TSPs by taking each vertex as a city. Then, in the final tour, the vertices in the same community tend to cluster together, and the community structure can be obtained by cutting the tour into a couple of paths. There are two challenges. The first is to define a suitable distance between each pair of vertices which can reflect the probability that they belong to the same community. The second is to design a suitable strategy to cut the final tour into paths which can form communities. In TSP-CDA, we deal with these two challenges by defining a PageRank Distance and an automatic threshold-based cutting strategy. The PageRank Distance is designed with the intrinsic properties of CDPs in mind, and can be calculated efficiently. In the experiments, benchmark networks with 1000-10,000 nodes and varying structures are used to test the performance of TSP-CDA. A comparison is also made between TSP-CDA and two well-established community detection algorithms. The results show that TSP-CDA can find accurate community structure efficiently and outperforms the two existing algorithms.

  5. Investigating the link between fish community structure and environmental state in deep-time

    Science.gov (United States)

    Sibert, E. C.

    2017-12-01

    In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish

  6. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes.

    Science.gov (United States)

    Berdjeb, Lyria; Pollet, Thomas; Domaizon, Isabelle; Jacquet, Stéphan

    2011-04-29

    Over the last 30 years, extensive studies have revealed the crucial roles played by microbes in aquatic ecosystems. It has been shown that bacteria, viruses and protozoan grazers are dominant in terms of abundance and biomass. The frequent interactions between these microbiological compartments are responsible for strong trophic links from dissolved organic matter to higher trophic levels, via heterotrophic bacteria, which form the basis for the important biogeochemical roles of microbial food webs in aquatic ecosystems. To gain a better understanding of the interactions between bacteria, viruses and flagellates in lacustrine ecosystems, we investigated the effect of protistan bacterivory on bacterial abundance, production and structure [determined by 16S rRNA PCR-DGGE], and viral abundance and activity of two lakes of contrasting trophic status. Four experiments were conducted in the oligotrophic Lake Annecy and the mesotrophic Lake Bourget over two seasons (early spring vs. summer) using a fractionation approach. In situ dark vs. light incubations were performed to consider the effects of the different treatments in the presence and absence of phototrophic activity. The presence of grazers (i.e. stimulation of viral production (compared to the treatment with no eukaryotic predators) was more variable between lakes than between seasons, with the highest value having been recorded in the mesotrophic lake (+30%). Viral lysis and grazing activities acted additively to sustain high bacterial production in all experiments. Nevertheless, the stimulation of bacterial production was more variable between seasons than between lakes, with the highest values obtained in summer (+33.5% and +37.5% in Lakes Bourget and Annecy, respectively). The presence of both predators (nanoflagellates and viruses) did not seem to have a clear influence upon bacterial community structure according to the four experiments. Our results highlight the importance of a synergistic effect, i.e. the

  7. Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway

    Science.gov (United States)

    Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune

    2017-12-01

    Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

  8. Changes in fish diversity and community structure in the central and southern Yellow Sea from 2003 to 2015

    Science.gov (United States)

    Chen, Yunlong; Shan, Xiujuan; Jin, Xianshi; Johannessen, Arne; Yang, Tao; Dai, Fangqun

    2017-07-01

    The central and southern Yellow Sea is an important overwintering ground for many fish species in the Bohai Sea and Yellow Sea. For better understanding the status of the fish community after years of heavy exploitation, variations in fish community structure and diversity were analyzed using data from bottom trawls during 2003-2015. Five fish assemblage indices all showed fluctuations without clear trends from 2003 to 2015, yet there were strong positive and significant correlations (P top-five dominant species accounted for a high weight percentage (49.7%-82.1%) in the annual fish catch. Multivariate analysis showed that two year groups could be pooled for the fish community: Group I consisted of the years 2006, 2007, 2008 and 2015, while Group II consisted of the years 2003, 2004, 2005, 2009, 2010 and 2014; the groups aggregated with 63.71% similarity, indicating a high level of similarity among all years. The multivariate dispersion values were 1.455 and 0.818 for Groups I and II, respectively, indicating greater variances in fish assemblage structure in Group I than that in Group II. Similarity of percentage analysis demonstrated that the average similarities for Group I and Group II were 71.58% and 67.51%, respectively. Size-spectra analysis revealed no consistent trend in the intercept and slope (P > 0.05); there were also no significant differences between the slope of the size-spectra and fishing effort. The catch per unit effort and mean individual weight analyses of the whole fish assemblage both showed a significantly decreasing trend over time. Overall, the results showed that the fish community structure in the central and southern Yellow Sea was relatively stable from 2003 to 2015 and the study could be used as a reference for supporting ecosystem-based fishery management.

  9. Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms

    Science.gov (United States)

    Roy, A.-S.; Gibbons, S. M.; Schunck, H.; Owens, S.; Caporaso, J. G.; Sperling, M.; Nissimov, J. I.; Romac, S.; Bittner, L.; Mühling, M.; Riebesell, U.; LaRoche, J.; Gilbert, J. A.

    2013-01-01

    The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord) and nine mesocosms with pCO2 levels ranging from ~145 to ~1420 μatm. Samples for the present study were collected at ten time points (t-1, t1, t5, t7, t12, t14, t18, t22, t26 to t28) in seven treatments (ambient fjord (~145), 2 × ~185, ~270, ~685, ~820, ~1050 μatm) and were analysed for "small" and "large" size fraction microbial community composition using 16S RNA (ribosomal ribonucleic acid) amplicon sequencing. This high-throughput sequencing analysis produced ~20 000 000 16S rRNA V4 reads, which comprised 7000 OTUs. The main variables structuring these communities were sample origins (fjord or mesocosms) and the community size fraction (small or large size fraction). The community was significantly different between the unenclosed fjord water and enclosed mesocosms (both control and elevated CO2 treatments) after nutrients were added to the mesocosms, suggesting that the addition of nutrients is the primary driver of the change in mesocosm community structure. The relative importance of each structuring variable depended greatly on the time at which the community was sampled in relation to the phytoplankton bloom. The sampling strategy of separating the small and large size fraction was the second most important factor for community structure. When the small and large size fraction bacteria were analysed separately at different time points, the only taxon pCO2 was found to significantly affect were the Gammaproteobacteria after nutrient addition. Finally, pCO2 treatment was found to be significantly correlated (non-linear) with 15 rare taxa, most of which increased in abundance with higher CO2.

  10. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?

    Directory of Open Access Journals (Sweden)

    Emily B. Graham

    2016-02-01

    Full Text Available Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  11. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: Comparison with structures of other complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hidong; Lipscomb, W.N. (Harvard Univ., Cambridge, MA (USA))

    1990-06-12

    O-(((1R)-((N-(Phenylmethoxycarbonyl)-L-alanyl)amino)ethyl)hydroxyphosphinyl)-L-3-phenyllacetate (ZZA{sup P}(O)F), an analogue of (benzyloxycarbonyl)-Ala-Ala-Phe or (benzyloxycarbonyl)-Ala-Ala-phenyllactate, binds to carboxypeptidase A with great affinity. Similar phosphonates have been shown to be transition-state analogues of the CPA-catalyzed hydrolysis. In the present study, the structure of the complex of phosphonate with carboxypeptidase A has been determined by X-ray crystallography to a resolution of 2.0 {angstrom}. The structure of the complex was solved by molecular replacement. Refinement of the structure against 20,776 unique reflections between 10.0 and 2.0 {angstrom} yields a crystallographic residual of 0.193, including 140 water molecules. The two phosphinyl oxygens of the inhibitor bind to the active-site zinc at 2.2 {angstrom} on the electrophilic (Arg-127) side and 3.1 {angstrom} on the nucleophilic (Glu-270) side. Various features of the binding mode of this phosphonate inhibitor are consistent with the hypothesis that carboxypeptidase A catalyzed hydrolysis proceeds through a general-base mechanism in which the carbonyl carbon of the substrate is attached by Zn-hydroxyl (or Zn-water). This complex structure is compared with previous structures of carboxypeptidase A, including the complexes with the potato inhibitor, a hydrated keto methylene substrate analogue, and a phosphonamidate inhibitor. Comparisons are also made with the complexes of thermolysin with some phosphonamidate inhibitors.

  12. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    Science.gov (United States)

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  13. Bacteria at glacier surfaces: microbial community structures in debris covered glaciers and cryoconites in the Italian Alps

    Science.gov (United States)

    Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina

    2014-05-01

    Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total

  14. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    Science.gov (United States)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  15. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  16. Microbial communities in sediments of Lagos Lagoon, Nigeria: Elucidation of community structure and potential impacts of contamination by municipal and industrial wastes

    Directory of Open Access Journals (Sweden)

    Chioma C Obi

    2016-08-01

    Full Text Available Estuarine sediments are significant repositories of anthropogenic contaminants, and thus understanding the impacts of contamination upon microbial communities in these environments is important to understand potential effects on estuaries as a whole. The Lagos Lagoon (Nigeria is one of Africa’s largest estuarine ecosystems, and is impacted by hydrocarbon pollutants and other industrial and municipal wastes. The goal of this study was to elucidate microbial community structure in Lagos Lagoon sediments to identify groups that may be adversely affected by contamination, and those that may serve as degraders of environmental contaminants, especially polynuclear aromatic hydrocarbons (PAH. Sediment samples were collected from sites that ranged in types and levels of anthropogenic impacts. Sediments were characterized for a range of physicochemical properties, and microbial community structure was determined by Illumina sequencing of 16S rRNA gene sequences. Microbial diversity (species richness and evenness in the Apapa and Eledu sediments was reduced compared to that of the Ofin site, and communities of both of the former two were dominated by a single operational taxonomic unit (OTU assigned to the family Helicobacteraceae (Epsilonproteobacteria. In the Ofin community, Epsilonproteobacteria were minor constituents, and major groups were Cyanobacteria, Bacteroidetes and Firmicutes, which were all minor in the Apapa and Eledu sediments. Sediment oxygen demand (SOD, a broad indicator of contamination, was identified by multivariate analyses as strongly correlated with variation in alphadiversity. Environmental variables that explained betadiversity patterns included SOD, as well as levels of naphthalene, acenaphthylene, cobalt, cadmium, total organic matter or nitrate. Of 582 OTU identified, abundance of 167 was significantly correlated (false discovery rate q ≤ 0.05 to environmental variables. The largest group of OTU correlated with PAH levels

  17. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica.

    Science.gov (United States)

    Achberger, Amanda M; Christner, Brent C; Michaud, Alexander B; Priscu, John C; Skidmore, Mark L; Vick-Majors, Trista J

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus , and Albidiferax ) and archaea ( Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans , and Smithella ), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing

  18. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    Directory of Open Access Journals (Sweden)

    Amanda M Achberger

    2016-09-01

    Full Text Available Subglacial Lake Whillans (SLW, located beneath ~800 m of ice on the Whillans Ice Stream in West Antarctica was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax and archaea (Candidatus Nitrosoarcheaum related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm provided evidence for methane cycling beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several OTUs abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella, suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a

  19. Microbial Community Structure and Function in Peat Soil

    Directory of Open Access Journals (Sweden)

    Luka Ausec

    2014-01-01

    Full Text Available Many peatlands in Europe have been subjected to land reclamation and systematic drainage, which have substantially affected nutrient cycles in the soil. This work reviews published studies on microbial processes linked to carbon and nitrogen transformations in the soils of the Ljubljana marsh, a drained peatland positioned close to Ljubljana, the capital of Slovenia. This region is known for its dramatic diversity of animal and plant life, but below ground it hides diverse bacterial and archaeal communities that are highly responsive to environmental changes and make the Ljubljana marsh soils a good source of N2O and CO2, and a sink for CH4. Methanogenesis is highly restricted in these soils due to competition for electron donors with iron reducers. In addition, methane is efficiently removed by methanotrophs, which are highly active, especially in the soil layers exposed to the changing water table. Denitrification is limited by electron acceptors and in deeper soil layers also by carbon, which becomes more recalcitrant with depth. Nitrification involves bacterial and archaeal ammonia oxidisers with ammonia oxidation rates being among the highest in the world. Interestingly, ammonia-oxidising Thaumarchaeota in acidic bog soils thrive only on ammonia released through mineralisation of organic matter and are incapable of oxidising added mineral ammonia. The soils of the Ljubljana marsh are rich in bacterial laccase-like genes, which may encode enzymes involved in lignin degradation and are therefore interesting for bioexploitations. Future challenges involve designing studies that will reveal specific physiological functions of phenol oxidases and other enzymes involved in peat transformations and address relations between microbial diversity, function and ecosystem responses to anthropogenic disturbances.

  20. Temporal Analysis of Bacterioplankton Community Structure in the Northeastern Gulf of Mexico

    Science.gov (United States)

    Knight, K. T.; Moss, J. A.; Snyder, R.; Henriksson, N. L.; Jeffrey, W. H.

    2016-02-01

    Bacteria are found in all oceans around the globe and are vital to many processes in the ocean. Evidence shows that bacteria are a dominant taxa in the marine environment with both abundance and contribution to the biological processes. Resource availability and environmental parameters are both key factors in determining bacterioplankton growth and community structure. Understanding temporal changes in the microbial community structure in the Gulf of Mexico has the potential to shed new light on the transfer of energy into and out of the system as well as through higher trophic levels. A two-year seasonal study was conducted at a station 40 km south of Choctawhatchee Bay on the Florida Shelf in the Northeast Gulf of Mexico. Water column samples were collected from surface and bottom waters ( 90 m) and mid-water deep chlorophyll maxima when present. In addition to microbial diversity, chemical, physical, and biological environmental parameters such as production, nutrients, temperature, salinity, chlorophyll a, and bacterial counts were also taken. 16S rDNA clone libraries were used to analyze temporal patterns and community structure of bacteria at fourteen timepoints and compared to the environmental data. Community structure patterns were seasonal in nature. The primary factors driving community structure are under statistical analyses.

  1. Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities.

    Science.gov (United States)

    Brown, Norah E M; Milazzo, Marco; Rastrick, Samuel P S; Hall-Spencer, Jason M; Therriault, Thomas W; Harley, Christopher D G

    2018-01-01

    Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO 2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO 2 change and, if high pCO 2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO 2 stress, or are worsened by departures from prior high pCO 2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO 2 gradient to assess the importance of the timing and duration of high pCO 2 exposure (i.e., discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by 8 weeks) but then caught up over the next 4 weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short- and longer-term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO 2 and changes in species interactions. High pCO 2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pretransplant) negative effects of pCO 2 on recruitment of these worms were still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification-driven changes in the biofouling community, via both past and more recent exposure, could have important

  2. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  3. Bone assemblages track animal community structure over 40 years in an African savanna ecosystem.

    Science.gov (United States)

    Western, David; Behrensmeyer, Anna K

    2009-05-22

    Reconstructing ancient communities depends on how accurately fossil assemblages retain information about living populations. We report a high level of fidelity between modern bone assemblages and living populations based on a 40-year study of the Amboseli ecosystem in southern Kenya. Relative abundance of 15 herbivorous species recorded in the bone assemblage accurately tracks the living populations through major changes in community composition and habitat over intervals as short as 5 years. The aggregated bone sample provides an accurate record of community structure time-averaged over four decades. These results lay the groundwork for integrating paleobiological and contemporary ecological studies across evolutionary and ecological time scales. Bone surveys also provide a useful method of assessing population changes and community structure for modern vertebrates.

  4. Community-Level Sanitation Coverage More Strongly Associated with Child Growth and Household Drinking Water Quality than Access to a Private Toilet in Rural Mali.

    Science.gov (United States)

    Harris, Michael; Alzua, Maria Laura; Osbert, Nicolas; Pickering, Amy

    2017-06-20

    Sanitation access can provide positive externalities; for example, safe disposal of feces by one household prevents disease transmission to households nearby. However, little empirical evidence exists to characterize the potential health benefits from sanitation externalities. This study investigated the effect of community sanitation coverage versus individual household sanitation access on child health and drinking water quality. Using a census of 121 villages in rural Mali, we analyzed the association of community latrine coverage (defined by a 200 m radius surrounding a household) and individual household latrine ownership with child growth and household stored water quality. Child height-for-age had a significant and positive linear relationship with community latrine coverage, while child weight-for-age and household water quality had nonlinear relationships that leveled off above 60% coverage (p sanitation access of surrounding households was more important than private latrine access for protecting water quality and child health.

  5. The Influence of Ecological Isolation on the Structural and Functional Stability of Complex Microbial Communities

    Science.gov (United States)

    Franklin, R. B.; Garland, J. L.; Mills, A. L.

    2005-01-01

    To help understand how the behavior of microorganisms and microbial communities in insular space habitats may differ from the behavior of these groups on Earth, long-term incubations (100+ days) were conducting using wastewater bioreactors (batch fed) designed to mimic "closed" and "open" ecological systems. The issue of immigration was considered, and the goal of the research was to determine whether the stability of microbial communities in space is reduced due to their prolonged isolation. Bioreactors were established by inoculating flasks of sterile synthetic wastewater with the microbial community obtained from a local treatment facility; each day, one-third of the medium in the flask was replaced with an equal volume of sterile artificial wastewater. Flasks were divided into two treatments: "closed" and "open" to recruitment of additional microorganisms. "Closed" flasks were maintained as described above, while the medium used to feed the "open" flasks was supplemented daily with a small amount of raw sewage (which provided a continuous source of new potential community members). Significant differences in microbial community structure and function developed in the two sets of communities, and the results suggest that the open community was more stable and better able to adjust to changing environmental conditions. Each community's resistance to environmental (temperature fluctuations) and biological stresses (starvation and invasion by an opportunistic pathogen Pseudomonas aeruginosa) was monitored. Experiments were also conducted to determine whether the effect of isolation changes depending on the microbial communities' initial diversity or composition; communities with a low(er) initial diversity were less stable. Overall, the results indicate that isolation will be an important factor influencing the activity of microbial communities on board spacecraft. A possible way of mitigating these effects would be to include communities with high initial

  6. Flooding Duration Affects the Structure of Terrestrial and Aquatic Microbial Eukaryotic Communities.

    Science.gov (United States)

    Röhl, Oliver; Graupner, Nadine; Peršoh, Derek; Kemler, Martin; Mittelbach, Moritz; Boenigk, Jens; Begerow, Dominik

    2017-10-12

    The increasing number and duration of inundations is reported to be a consequence of climate change and may severely compromise non-adapted macroorganisms. The effect of flooding events on terrestrial and aquatic microbial communities is, however, less well understood. They may respond to the changed abiotic properties of their native habitat, and the native community may change due to the introduction of alien species. We designed an experiment to investigate the effect of five different flooding durations on the terrestrial and aquatic communities of eukaryotic microorganism, using the AquaFlow mesocosms. With amplicon sequencing of the small subunit (SSU) and internal transcribed spacer (ITS) rRNA gene regions, we analyzed community compositions directly before and after flooding. Subsequently, they were monitored for another 28 days, to determine the sustainability of community changes. Our results revealed a temporary increase in similarity between terrestrial and aquatic communities according to OTU composition (operational taxonomic unit, serves as a proxy for species). Increased similarity was mainly caused by the transmission of OTUs from water to soil. A minority of these were able to persist in soil until the end of the experiment. By contrast, the vast majority of soil OTUs was not transmitted to water. Flooding duration affected the community structure (abundance) more than composition (occurrence). Terrestrial communities responded immediately to flooding and the flooding duration influenced the community changes. Independent from flooding duration, all terrestrial communities recovered largely after flooding, indicating a remarkable resilience to the applied disturbances. Aquatic communities responded immediately to the applied inundations too. At the end of the experiment, they grouped according to the applied flooding duration and the amount of ammonium and chloride that leached from the soil. This indicates a sustained long-term response of the

  7. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Science.gov (United States)

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  8. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Directory of Open Access Journals (Sweden)

    Thomas H A Haverkamp

    Full Text Available Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm sediment communities are affected by local conditions within the sediment.

  9. Importance of structure and density of macroalgae communities (Fucus serratus) for photosynthetic production and light utilisation

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    at high light depended on community density. Therefore, while the determination of the production of individual algal thalli is useful for evaluating differences in acclimatisation and adaptation between species and stands, it is not useful for evaluating production rates for entire plants and communities......Determination of photosynthetic production in plant communities is essential for evaluating plant growth rates and carbon fluxes in ecosystems, but it cannot easily be derived from the photosynthetic response of individual leaves or thalli, which has been the focus of virtually all previous aquatic...... studies. To evaluate the regulation of aquatic community production, we measured the photosynthetic production of thallus parts and entire communities of Fucus serratus (L.) of different density and spatial structure exposed to varying photon flux density and dissolved CO2 concentration. Photosynthetic...

  10. [Impact of chemical weapon destruction on the structure of lake zoohydrobiont community].

    Science.gov (United States)

    Stoĭko, T G; Mazeĭ, Iu A; Tsyganov, A N; Tikhonenkov, D V

    2006-01-01

    Community structure of zoohydrobionts in the lake affected by chemical weapon destruction was studied for the first time. Low pH favored species specific to acidic water bodies as well as bidominant zooplankton community. The long-term effects of chemical pollution determined the stage of community succession, namely, the absence of the key predator (fishes), abundance of detritus consumers in the zoobenthic community (dipteran larvae), diversity of amphibiotic insects, and low species diversity in the zooplankton community with the prevalence of cladocerans and rotifers. Unbalanced composition of higher trophic levels results in an unstable functioning of the lake and accumulation of significant amounts of detritus, which is utilized by the abundant microzoobenthic component of the ecosystem.

  11. Ecosystem-Wide Morphological Structure of Leaf-Litter Ant Communities along a Tropical Latitudinal Gradient

    Science.gov (United States)

    Silva, Rogério R.; Brandão, Carlos Roberto F.

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20o of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  12. Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient.

    Science.gov (United States)

    Silva, Rogério R; Brandão, Carlos Roberto F

    2014-01-01

    General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20° of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South), suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case) determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on flexible enough traits

  13. Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Rogério R Silva

    Full Text Available General principles that shape community structure can be described based on a functional trait approach grounded on predictive models; increased attention has been paid to factors accounting for the functional diversity of species assemblages and its association with species richness along environmental gradients. We analyze here the interaction between leaf-litter ant species richness, the local communities' morphological structure and fundamental niche within the context of a northeast-southeast latitudinal gradient in one of the world's most species-rich ecosystems, the Atlantic Forest, representing 2,700 km of tropical rainforest along almost 20° of latitude in eastern Brazil. Our results are consistent with an ecosystem-wide pattern in communities' structure, with relatively high species turnover but functionally analogous leaf-litter ant communities' organization. Our results suggest directional shifts in the morphological space along the environmental gradient from overdispersed to aggregated (from North to South, suggesting that primary productivity and environmental heterogeneity (altitude, temperature and precipitation in the case determine the distribution of traits and regulate the assembly rules, shaping local leaf-litter ant communities. Contrary to the expected and most common pattern along latitudinal gradients, the Atlantic Forest leaf litter ant communities show an inverse pattern in richness, that is, richer communities in higher than in lower latitudes. The morphological specialization of communities showed more morphologically distinct communities at low latitudes and species redundancy at high latitudes. We claim that an inverse latitudinal gradient in primary productivity and environmental heterogeneity across the Atlantic forest may affect morphological diversity and species richness, enhancing species coexistence mechanisms, and producing thus the observed patterns. We suggest that a functional framework based on

  14. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill

    OpenAIRE

    Liu, Zhanfei; Liu, Jiqing

    2013-01-01

    Bacterial community structures were evaluated in oil samples using culture-independent pyrosequencing, including oil mousses collected on sea surface and salt marshes during the Deepwater Horizon oil spill, and oil deposited in sediments adjacent to the wellhead 1 year after the spill. Phylogenetic analysis suggested that Erythrobacter, Rhodovulum, Stappia, and Thalassospira of Alphaproteobacteria were the prevailing groups in the oil mousses, which may relate to high temperatures and strong ...

  15. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  16. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars

    OpenAIRE

    Glassmire, Andrea E.; Jeffrey, Christopher S.; Forister, Matthew L.; Parchman, Thomas L.; Nice, Chris C.; Jahner, Joshua P.; Wilson, Joseph S.; Walla, Thomas R.; Richards, Lora A.; Smilanich, Angela M.; Leonard, Michael D.; Morrison, Colin R.; Simba?a, Wilmer; Salagaje, Luis A.; Dodson, Craig D.

    2016-01-01

    Summary Chemically mediated plant?herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, P...

  17. Scale-dependence of processes structuring dung beetle metacommunities using functional diversity and community deconstruction approaches.

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    Full Text Available Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass for identification of the main processes driving dung beetle (Scarabaeinae community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in

  18. Scale-dependence of processes structuring dung beetle metacommunities using functional diversity and community deconstruction approaches.

    Science.gov (United States)

    Silva, Pedro Giovâni da; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  19. Geographic distance and mountain ranges structure freshwater protist communities on a European scalе

    OpenAIRE

    Boenigk,Jens; Wodniok,Sabina; Bock,Christina; Beisser,Daniela; Hempel,Christopher; Grossmann,Lars; Lange,Anja; Jensen,Manfred

    2018-01-01

    Protists influence ecosystems by modulating microbial population size, diversity, metabolic outputs and gene flow. In this study we used eukaryotic ribosomal amplicon diversity from 218 European freshwater lakes sampled in August 2012 to assess the effect of mountain ranges as biogeographic barriers on spatial patterns and microbial community structure in European freshwaters. The diversity of microbial communities as reflected by amplicon clusters suggested that the eukaryotic microbial inve...

  20. Variations of Bacterial Community Structure and Composition in Mangrove Sediment at Different Depths in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Lucas William Mendes

    2014-12-01

    Full Text Available Tropical mangroves are considered one of the most productive ecosystems of the world, being characterized as nurseries and food sources for fish and other animals. Microorganisms play important roles in these environments, and the study of bacterial communities is of paramount importance for a better comprehension of mangrove dynamics. This study focused on the structure and composition of bacterial communities in mangrove sediments at different depths and points, located in Southeastern Brazil. Terminal Restriction Fragment Length Polymorphism (T-RFLP was used to determine the community structure, and 16S rRNA gene pyrosequencing was used to characterize the community composition. Redundancy analysis of T-RFLP patterns revealed differences in bacterial community structure according to soil attributes and depth. The parameters K and depth presented significant correlation with general community structure. Most sequences were classified into the phylum Proteobacteria (88%, which presented differences according to the depth, where the classes Betaproteobacteria (21% and Deltaproteobacteria (16% were abundant at 10 cm and Epsilonproteobacteria (35% was abundant at 40 cm depth. Clear differences were observed in community composition as shown by the differential distribution of the phyla Firmicutes (1.13% and 3.8%, for 10 cm and 40 cm respectively, Chloroflexi (2.8% and 0.75%, and Acidobacteria (2.75% and 0.57% according to the depth. Bacterial diversity measurements indicated higher diversity in shallow samples. Taken together, our findings indicate that mangrove holds a diverse bacterial community, which is shaped by the variations found in the ecosystem, such as sediment properties and depth.

  1. Effect of tropical rainfall in structuring the macrobenthic community of Mandovi estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaonkar, U.V.; Sivadasa, S.K.; Ingole, B.S.

    of the annual monsoon also influenced the macrofaunal community of Mandovi estuary. The macrofaunal community structure is determined by a number of factors such as salinity, temperature, food availability, recruitment and hydrographic conditions (Henning..., the planktonic recruiting larvae are ensured of abundant food. Further, the water turbulence during the monsoon helps in the wide dispersal of both, larvae and the adults of the sedentary benthic species (Dobbs & Vozarik, 1983; Hernández-Arana et al., 2003...

  2. Influence of d-level degeneration and Jahn-Teller effect on electronic structure of manganites by means of strong coupling approach

    CERN Document Server

    Dunaevskij, S M

    2001-01-01

    The calculation of the E(k) dispersion curves of the charge carriers in the LaMnO sub 3 -type perovskites for the basic types of the Mn sublattice squinted antiferromagnetic ordering is carried out within the frames of the strong coupling method. The calculation of the E(k) spectrum of the antiferromagnetic structures is accomplished for the first time with an account of the manganese e sub g -level degeneration and the Jahn-Teller distortion of the perovskite cubic structure, which required diagonalization of the eight order Hamiltonian matrices. The analytical expressions for the E(k) functions in the separate points and on the individual lines of the corresponding Brillouin zone are obtained. The accomplished calculations showed, that there can be no electron-hole symmetry of properties in the La sub 1 sub - sub x Ca sub x MnO sub 3 system

  3. Friendship Concept and Community Network Structure among Elementary School and University Students.

    Science.gov (United States)

    Hernández-Hernández, Ana María; Viga-de Alva, Dolores; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain; Laviada-Molina, Hugo; Molina-Segui, Fernanda

    2016-01-01

    We use complex network theory to study the differences between the friendship concepts in elementary school and university students. Four friendship networks were identified from surveys. Three of these networks are from elementary schools; two are located in the rural area of Yucatán and the other is in the urban area of Mérida, Yucatán. We analyzed the structure and the communities of these friendship networks and found significant differences among those at the elementary schools compared with those at the university. In elementary schools, the students make friends mainly in the same classroom, but there are also links among different classrooms because of the presence of siblings and relatives in the schools. These kinds of links (sibling-friend or relative-friend) are called, in this work, "mixed links". The classification of the communities is based on their similarity with the classroom composition. If the community is composed principally of students in different classrooms, the community is classified as heterogeneous. These kinds of communities appear in the elementary school friendship networks mainly because of the presence of relatives and siblings. Once the links between siblings and relatives are removed, the communities resembled the classroom composition. On the other hand, the university students are more selective in choosing friends and therefore, even when they have friends in the same classroom, those communities are quite different to the classroom composition. Also, in the university network, we found heterogeneous communities even when the presence of sibling and relatives is negligible. These differences made up a topological structure quite different at different academic levels. We also found differences in the network characteristics. Once these differences are understood, the topological structure of the friendship network and the communities shaped in an elementary school could be predicted if we know the total number of students

  4. The community seismic network and quake-catcher network: enabling structural health monitoring through instrumentation by community participants

    Science.gov (United States)

    Kohler, Monica D.; Heaton, Thomas H.; Cheng, Ming-Hei

    2013-04-01

    A new type of seismic network is in development that takes advantage of community volunteers to install low-cost accelerometers in houses and buildings. The Community Seismic Network and Quake-Catcher Network are examples of this, in which observational-based structural monitoring is carried out using records from one to tens of stations in a single building. We have deployed about one hundred accelerometers in a number of buildings ranging between five and 23 stories in the Los Angeles region. In addition to a USB-connected device which connects to the host's computer, we have developed a stand-alone sensor-plug-computer device that directly connects to the internet via Ethernet or wifi. In the case of the Community Seismic Network, the sensors report both continuous data and anomalies in local acceleration to a cloud computing service consisting of data centers geographically distributed across the continent. Visualization models of the instrumented buildings' dynamic linear response have been constructed using Google SketchUp and an associated plug-in to matlab with recorded shaking data. When data are available from only one to a very limited number of accelerometers in high rises, the buildings are represented as simple shear beam or prismatic Timoshenko beam models with soil-structure interaction. Small-magnitude earthquake records are used to identify the first set of horizontal vibrational frequencies. These frequencies are then used to compute the response on every floor of the building, constrained by the observed data. These tools are resulting in networking standards that will enable data sharing among entire communities, facility managers, and emergency response groups.

  5. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods.

    Science.gov (United States)

    Burbrink, Frank T; McKelvy, Alexander D; Pyron, R Alexander; Myers, Edward A

    2015-11-22

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities. © 2015 The Author(s).

  6. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. AIMS: To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs and to understand the effects of environmental factors on their structure. METHODS: 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. RESULTS: High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO, ammonia concentrations and loading rate of chemical oxygen demand (COD. Based on the variance partitioning analyses (VPA, a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25% and operational parameters (23%, respectively. CONCLUSIONS: This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  7. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    Science.gov (United States)

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.

  8. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures

    Science.gov (United States)

    Wang, Hui; Wang, Bin; Dong, Wenwen; Hu, Xiaoke

    2016-01-01

    Crude oil is a complex mixture of hydrocarbons with different structures; its components vary in bioavailability and toxicity. It is important to understand how bacterial communities response to different hydrocarbons and their co-acclimation in the process of degradation. In this study, microcosms with the addition of structurally different hydrocarbons were setup to investigate the successions of bacterial communities and the interactions between different bacterial taxa. Hydrocarbons were effectively degraded in all microcosms after 40 days. High-throughput sequencing offered a great quantity of data for analyzing successions of bacterial communities. The results indicated that the bacterial communities responded dramatically different to various hydrocarbons. KEGG database and PICRUSt were applied to predict functions of individual bacterial taxa and networks were constructed to analyze co-acclimations between functional bacterial groups. Almost all functional genes catalyzing degradation of different hydrocarbons were predicted in bacterial communities. Most of bacterial taxa were believed to conduct biodegradation processes via interactions with each other. This study addressed a few investigated area of bacterial community responses to structurally different organic pollutants and their co-acclimation and interactions in the process of biodegradation. The study could provide useful information to guide the bioremediation of crude oil pollution. PMID:27698451

  9. Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely

    International Nuclear Information System (INIS)

    Ma, Xiaoke; Gao, Lin; Yong, Xuerong

    2010-01-01

    Identifying community structure is fundamental for revealing the structure–functionality relationship in complex networks, and spectral algorithms have been shown to be powerful for this purpose. In a traditional spectral algorithm, each vertex of a network is embedded into a spectral space by making use of the eigenvectors of the adjacency matrix or Laplacian matrix of the graph. In this paper, a novel spectral approach for revealing the overlapping and hierarchical community structure of complex networks is proposed by not only using the eigenvalues and eigenvectors but also the properties of eigenspaces of the networks involved. This gives us a better characterization of community. We first show that the communicability between a pair of vertices can be rewritten in term of eigenspaces of a network. An agglomerative clustering algorithm is then presented to discover the hierarchical communities using the communicability matrix. Finally, these overlapping vertices are discovered with the corresponding eigenspaces, based on the fact that the vertices more densely connected amongst one another are more likely to be linked through short cycles. Compared with the traditional spectral algorithms, our algorithm can identify both the overlapping and hierarchical community without increasing the time complexity O(n 3 ), where n is the size of the network. Furthermore, our algorithm can also distinguish the overlapping vertices from bridges. The method is tested by applying it to some computer-generated and real-world networks. The experimental results indicate that our algorithm can reveal community structure more precisely than the traditional spectral approaches

  10. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  11. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes.

    Science.gov (United States)

    Kim, H; Lipscomb, W N

    1990-06-12

    O-[[(1R)-[[N-(Phenylmethoxycarbonyl)-L-alanyl]amino]ethyl] hydroxyphosphinyl]-L-3-phenyllacetate [ZAAP(O)F], an analogue of (benzyloxycarbonyl)-Ala-Ala-Phe or (benzyloxycarbonyl)-Ala-Ala-phenyllactate, binds to carboxypeptidase A with great affinity (Ki = 3 pM). Similar phosphonates have been shown to be transition-state analogues of the CPA-catalyzed hydrolysis [Hanson, J. E., Kaplan, A. P., & Bartlett, P. A. (1989) Biochemistry 28, 6294-6305]. In the present study, the structure of the complex of this phosphonate with carboxypeptidase A has been determined by X-ray crystallography to a resolution of 2.0 A. The complex crystallizes in the space group P2(1)2(1)2(1) with cell dimensions a = 61.9 A, b = 67.2 A, and c = 76.2 A. The structure of the complex was solved by molecular replacement. Refinement of the structure against 20,776 unique reflections between 10.0 and 2.0 A yields a crystallographic residual of 0.193, including 140 water molecules. The two phosphinyl oxygens of the inhibitor bind to the active-site zinc at 2.2 A on the electrophilic (Arg-127) side and 3.1 A on the nucleophilic (Glu-270) side. Various features of the binding mode of this phosphonate inhibitor are consistent with the hypothesis that carboxypeptidase A catalyzed hydrolysis proceeds through a general-base mechanism in which the carbonyl carbon of the substrate is attacked by Zn-hydroxyl (or Zn-water). An unexpected feature of the bound inhibitor, the cis carbamoyl ester bond at the benzyloxycarbonyl linkage to alanine, allows the benzyloxycarbonyl phenyl ring of the inhibitor to interact favorably with Tyr-198. This complex structure is compared with previous structures of carboxypeptidase A, including the complexes with the potato inhibitor, a hydrated keto methylene substrate analogue, and a phosphonamidate inhibitor. Comparisons are also made with the complexes of thermolysin with some phosphonamidate inhibitors.

  12. Community-Level Sanitation Coverage More Strongly Associated with Child Growth and Household Drinking Water Quality than Access to a Private Toilet in Rural Mali

    Science.gov (United States)

    2017-01-01

    Sanitation access can provide positive externalities; for example, safe disposal of feces by one household prevents disease transmission to households nearby. However, little empirical evidence exists to characterize the potential health benefits from sanitation externalities. This study investigated the effect of community sanitation coverage versus individual household sanitation access on child health and drinking water quality. Using a census of 121 villages in rural Mali, we analyzed the association of community latrine coverage (defined by a 200 m radius surrounding a household) and individual household latrine ownership with child growth and household stored water quality. Child height-for-age had a significant and positive linear relationship with community latrine coverage, while child weight-for-age and household water quality had nonlinear relationships that leveled off above 60% coverage (p water quality were not associated with individual household latrine ownership. The relationship between community latrine coverage and child height was strongest among households without a latrine; for these households, each 10% increase in latrine coverage was associated with a 0.031 (p-value = 0.040) increase in height-for-age z-score. In this study, the level of sanitation access of surrounding households was more important than private latrine access for protecting water quality and child health. PMID:28514143

  13. Uncovering the fuzzy community structure accurately based on steepest descent projection

    Science.gov (United States)

    Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Yan, Jiaqi

    2017-09-01

    Uncovering the community structure in complex network is a hot research point in recent years. How to identify the community structure accurately in complex network is still an open question under research. There are lots of methods based on topological information, which have some good performances at the expense of longer runtimes. In this paper, we propose a new fuzzy algorithm which follows the line of fuzzy c-means algorithm. A steepest descent framework with projection by optimizing the quality function is presented under the generalized framework. The results of experiments on both real-world networks and synthetic networks show that the proposed method achieves the highest efficiency and is easy for detecting fuzzy community structure in large-scale complex networks.

  14. Improvement of the SEP protocol based on community structure of node degree

    Science.gov (United States)

    Li, Donglin; Wei, Suyuan

    2017-05-01

    Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.

  15. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  16. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  17. Spectral methods for the detection of network community structure: a comparative analysis

    International Nuclear Information System (INIS)

    Shen, Hua-Wei; Cheng, Xue-Qi

    2010-01-01

    Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity

  18. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest.

    Directory of Open Access Journals (Sweden)

    Yanqiu Hu

    Full Text Available We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1 forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2 soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3 a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.

  19. A structured patient identification model for medication therapy management services in a community pharmacy.

    Science.gov (United States)

    Pagano, Gina M; Groves, Brigid K; Kuhn, Catherine H; Porter, Kyle; Mehta, Bella H

    To describe the development and implementation of a structured patient identification model for medication therapy management (MTM) services within traditional dispensing activities of a community pharmacy to facilitate pharmacist-provided completion of MTM services. A daily clinical opportunity report was developed as a structured model to identify MTM opportunities daily for all MTM-eligible patients expecting to pick up a prescription. Pharmacy staff was trained and the standardized model was implemented at study sites. One hundred nineteen grocery store-based community pharmacies throughout Ohio, West Virginia, and Michigan. A structured patient identification model in a community pharmacy consists of reviewing a clinical opportunity report, identifying interventions for MTM-eligible patients, and possibly collaborating with an interdisciplinary team. This model allows pharmacists to increase MTM cases performed by providing a structured process for identifying MTM-eligible patients and completing MTM services. The development and implementation of a structured patient identification model in the community pharmacy was completed and consists of pharmacists reviewing a clinical opportunity report to identify MTM opportunities and perform clinical interventions for patients. In a 3-month pre- and post-implementation comparison, there was a 49% increase in the number of MTM services provided by pharmacists (P < 0.001). A structured patient identification model in the community pharmacy was associated with an increase in the amount of MTM services provided by pharmacists. This method could be a useful tool at a variety of community pharmacies to solve challenges associated with MTM completion. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Coexistence and community structure in a consumer resource model with implicit stoichiometry.

    Science.gov (United States)

    Orlando, Paul A; Brown, Joel S; Wise, David H

    2012-09-01

    We combine stoichiometry theory and optimal foraging theory into the MacArthur consumer-resource model. This generates predictions for diet choice, coexistence, and community structure of heterotroph communities. Tradeoffs in consumer resource-garnering traits influence community outcomes. With scarce resources, consumers forage opportunistically for complementary resources and may coexist via tradeoffs in resource encounter rates. In contrast to single currency models, stoichiometry permits multiple equilibria. These alternative stable states occur when tradeoffs in resource encounter rates are stronger than tradeoffs in elemental conversion efficiencies. With abundant resources consumers exhibit partially selective diets for essential resources and may coexist via tradeoffs in elemental conversion efficiencies. These results differ from single currency models, where adaptive diet selection is either opportunistic or selective. Interestingly, communities composed of efficient consumers share many of the same properties as communities based on substitutable resources. However, communities composed of relatively inefficient consumers behave similarly to plant communities as characterized by Tilman's consumer resource theory. The results of our model indicate that the effects of stoichiometry theory on community ecology are dependent upon both consumer foraging behavior and the nature of resource garnering tradeoffs. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Insight into the strong aggregation-induced emission of low-conjugated racemic C6-unsubstituted tetrahydropyrimidines through crystal-structure-property relationship of polymorphs.

    Science.gov (United States)

    Zhu, Qiuhua; Zhang, Yilin; Nie, Han; Zhao, Zujin; Liu, Shuwen; Wong, Kam Sing; Tang, Ben Zhong

    2015-08-01

    Racemic C6-unsubstituted tetrahydropyrimidines (THPs) are a series of fluorophores with a strong aggregation-induced emission (AIE) effect. However, they do not possess the structural features of conventional AIE compounds. In order to understand their AIE mechanism, here, the influences of the molecular packing mode and the conformation on the optical properties of THPs were investigated using seven crystalline polymorphs of three THPs ( 1-3 ). The racemic THPs 1-3 have low-conjugated and highly flexible molecular structures, and hence show practically no emission in different organic solvents. However, the fluorescence quantum yields of their polymorphs are up to 93%, and the maximum excitation ( λ ex ) and emission ( λ em ) wavelengths of the polymorphs are long at 409 and 484 nm, respectively. Single-crystal structures and theoretical calculation of the HOMOs and LUMOs based on the molecular conformations of these polymorphs indicate that the polymorphs with the shortest λ ex and λ em values possess a RS -packing mode ( R - and S -enantiomers self-assemble as paired anti-parallel lines) and a more twisted conformation without through-space conjugation between the dicarboxylates, but the polymorphs with longer λ ex and λ em values adopt a RR / SS -packing mode ( R - and S -enantiomers self-assemble as unpaired zigzag lines) and a less twisted conformation with through-space conjugation between the dicarboxylates. The molecular conformations of 1-3 in all these polymorphs are stereo and more twisted than those in solution. Although 1-3 are poorly conjugated, the radiative rate constants ( k r ) of their polymorphs are as large as conventional fluorophores (0.41-1.03 × 10 8 s -1 ) because of improved electronic conjugation by both through-bond and through-space interactions. Based on the obtained results, it can be deduced that the strong AIE arises not only from the restriction of intramolecular motion but also from enhanced electronic coupling and

  2. Fish community structure and ecological degradation in tropical rivers of India

    Directory of Open Access Journals (Sweden)

    D. Chakrabarty

    2006-07-01

    Full Text Available Fish community structure and water chemistry of two tropical rivers of West Bengal, an eastern province of India, were studied for two annual cycles (January 2003–December 2004. Water quality and fish community structure reflected a higher degree of pollution in the Churni river than in the Jalangi river. We observed that 63.6% of fish species had disappeared from the polluted Churni river in 20 yr. For protection of fish biodiversity and enhancement of fish production, a rational management program should be implemented in Churni river.

  3. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify

    Energy Technology Data Exchange (ETDEWEB)

    Boulêtreau, Stéphanie, E-mail: stephanie.bouletreau@univ-tlse3.fr [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Lyautey, Emilie [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Dubois, Sophie [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France); Compin, Arthur [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Delattre, Cécile; Touron-Bodilis, Aurélie [EDF Recherche et Développement, LNHE (Laboratoire National d' Hydraulique et Environnement), 6 quai Watier, F-78401 Chatou (France); Mastrorillo, Sylvain [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Garabetian, Frédéric [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France)

    2014-01-01

    Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+ 2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21 days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams. - Highlights: •We produced river biofilms in 2 mean temperature conditions: 17 vs 19.5 °C. •We compared their denitrifiers' structuring and functioning in 6d- and 21d-old biofilms. •A difference of 2.5 °C produced contrasted denitrifier communities. •The indirect temperature effect on denitrification activity shifted between biofilm age.

  4. Bare-Part Color in Female Budgerigars Changes from Brown to Structural Blue following Testosterone Treatment but Is Not Strongly Masculinized

    Science.gov (United States)

    Lahaye, Stefanie E. P.; Eens, Marcel; Darras, Veerle M.; Pinxten, Rianne

    2014-01-01

    Whereas several studies have shown that experimentally increased levels of the androgenic steroid testosterone can affect female behavior, fewer studies have focused on the activational effects of exogenous testosterone on female morphology. With respect to colorful displays in birds, almost exclusively the effects of testosterone manipulation on female carotenoid-based colorations have been studied. Other color types such as structural colors (i.e. UV, blue and violet colors that result from differential light reflection in the nanostructures of the tissue) remain largely unstudied. Here, we investigated the short- and long-term effects of exogenous testosterone on the expression of structural bare-part coloration in female budgerigars, Melopsittacus undulatus. In this parrot species, bare-part coloration is expressed in the cere, a structure over the beak which is brown in females and structural blue in males. We experimentally increased plasma testosterone levels in testosterone-treated females (T-females) compared to controls (C-females) and we performed weekly spectrophotometric measurements of the cere for five weeks after implantation and one measurement after ten weeks. We also estimated the extent to which testosterone masculinized female cere color by comparing the experimental females with untreated males. We found significant effects of testosterone on cere color from week four after implantation onwards. T-females expressed significantly bluer ceres than C-females with higher values for brightness and UV reflectance. T-female cere color, however, remained significantly less blue than in males, while values for brightness and UV reflectance were significantly higher in T-females than in males. Our quantitative results show that exogenous testosterone induces the expression of structural blue color in females but does not strongly masculinize female cere coloration. We provide several potential pathways for the action of testosterone on structural color

  5. Bare-part color in female budgerigars changes from brown to structural blue following testosterone treatment but is not strongly masculinized.

    Directory of Open Access Journals (Sweden)

    Stefanie E P Lahaye

    Full Text Available Whereas several studies have shown that experimentally increased levels of the androgenic steroid testosterone can affect female behavior, fewer studies have focused on the activational effects of exogenous testosterone on female morphology. With respect to colorful displays in birds, almost exclusively the effects of testosterone manipulation on female carotenoid-based colorations have been studied. Other color types such as structural colors (i.e. UV, blue and violet colors that result from differential light reflection in the nanostructures of the tissue remain largely unstudied. Here, we investigated the short- and long-term effects of exogenous testosterone on the expression of structural bare-part coloration in female budgerigars, Melopsittacus undulatus. In this parrot species, bare-part coloration is expressed in the cere, a structure over the beak which is brown in females and structural blue in males. We experimentally increased plasma testosterone levels in testosterone-treated females (T-females compared to controls (C-females and we performed weekly spectrophotometric measurements of the cere for five weeks after implantation and one measurement after ten weeks. We also estimated the extent to which testosterone masculinized female cere color by comparing the experimental females with untreated males. We found significant effects of testosterone on cere color from week four after implantation onwards. T-females expressed significantly bluer ceres than C-females with higher values for brightness and UV reflectance. T-female cere color, however, remained significantly less blue than in males, while values for brightness and UV reflectance were significantly higher in T-females than in males. Our quantitative results show that exogenous testosterone induces the expression of structural blue color in females but does not strongly masculinize female cere coloration. We provide several potential pathways for the action of testosterone on

  6. Composition and structure of arbuscular-mycorrhizal communities in El Palmar National Park, Argentina.

    Science.gov (United States)

    Velázquez, María S; Cabello, Marta N; Barrera, Marcelo

    2013-01-01

    The arbuscular-mycorrhizal-fungal (AMF) communities from the El Palmar National Park of Entre Ríos Province, Argentina, were investigated and characterized. The species of AMF present in five distinct vegetation types-gallery forest, grassland, marsh, palm forest, and scrubland-were isolated, identified and quantified over 2 y. Forty-six AMF morphotaxa were found. The composition of the AMF communities differed between the seasons, soil and vegetation types. Seasonal variations were observed in members of the Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Pacisporaceae. Depending on soil type, the AMF-spore communities were dominated by members of one of the two main orders of the Glomeromycota. AMF communities from grassland and palm forest, which occur on sandy soils, comprised primarily members of the Diversisporales, with a high percentage of species of Acaulospora and of Gigasporaceae. Communities from the gallery forest, marsh and scrubland, which occur on loam-clay soils, were composed of members of the Glomerales, with a high percentage of spores from species of Glomus. Thus, both AMF and plant communities would appear to be strongly and similarly influenced by edaphic conditions.

  7. The relationship between sea ice bacterial community structure and biogeochemistry: A synthesis of current knowledge and known unknowns

    Directory of Open Access Journals (Sweden)

    Jeff S. Bowman

    2015-10-01

    Full Text Available Abstract Sea ice plays an important role in high latitude biogeochemical cycles, ecosystems, and climate. A complete understanding of how sea ice biogeochemistry contributes to these processes must take into account the metabolic functions of the sea ice bacterial community. While the roles of sea ice bacteria in the carbon cycle and sea ice microbial loop are evidenced by high rates of bacterial production (BP, their metabolic diversity extends far beyond heterotrophy, and their functionality encompasses much more than carbon turnover. Work over the last three decades has identified an active role for sea ice bacteria in phosphate and nitrogen cycling, mutualistic partnerships with ice algae, and even prokaryotic carbon fixation. To better understand the role of sea ice bacteria in the carbon cycle the existing sea ice BP and primary production data were synthesized. BP in sea ice was poorly correlated with primary production, but had a strong, variable relationship with chlorophyll a, with a positive correlation below 50 mg chlorophyll a m-3 and a negative correlation above this value. These results concur with previous work suggesting that BP can be inhibited by grazing or the production of bacteriostatic compounds. To extend existing observations and predictions of other community functions a metabolic inference technique was used on the available 16S rRNA gene data. This analysis provided taxonomic support for some observed metabolic processes, as well as underexplored processes such as sulfur oxidation and nitrogen fixation. The decreasing spatial and temporal extent of sea ice, and altered timing of ice formation and melt, are likely to impact the structure and function of sea ice bacterial communities. An adequate modeling framework and studies that can resolve the functional dynamics of the sea ice bacterial community, such as community gene expression studies, are urgently needed to predict future change.

  8. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  9. Ant-mediated ecosystem processes are driven by trophic community structure but mainly by the environment.

    Science.gov (United States)

    Salas-Lopez, Alex; Mickal, Houadria; Menzel, Florian; Orivel, Jérôme

    2017-01-01

    The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the e