WorldWideScience

Sample records for strong community structure

  1. Strong influence of regional species pools on continent-wide structuring of local communities.

    Science.gov (United States)

    Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J

    2012-01-22

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.

  2. Strong influence of regional species pools on continent-wide structuring of local communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Borregaard, Michael Krabbe; Fordyce, James A.

    2012-01-01

    pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use...... of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution...... of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong....

  3. Strong influence of regional species pools on continent-wide structuring of local communities

    OpenAIRE

    Lessard, Jean-Philippe; Borregaard, Michael K.; Fordyce, James A.; Rahbek, Carsten; Weiser, Michael D.; Dunn, Robert R.; Sanders, Nathan J.

    2011-01-01

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that...

  4. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  5. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  6. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  7. Many Body Structure of Strongly Interacting Systems

    CERN Document Server

    Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI

    2006-01-01

    This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.

  8. 77 FR 16131 - Establishing a White House Council on Strong Cities, Strong Communities

    Science.gov (United States)

    2012-03-20

    ... Order 13602 of March 15, 2012 Establishing a White House Council on Strong Cities, Strong Communities By... enable them to develop and implement economic strategies to become more competitive, sustainable, and... resources to develop and implement their economic vision and strategies. Sec. 2. White House Council on...

  9. Strong seasonality and interannual recurrence in marine myovirus communities.

    Science.gov (United States)

    Pagarete, A; Chow, C-E T; Johannessen, T; Fuhrman, J A; Thingstad, T F; Sandaa, R A

    2013-10-01

    The temporal community dynamics and persistence of different viral types in the marine environment are still mostly obscure. Polymorphism of the major capsid protein gene, g23, was used to investigate the community composition dynamics of T4-like myoviruses in a North Atlantic fjord for a period of 2 years. A total of 160 unique operational taxonomic units (OTUs) were identified by terminal restriction fragment length polymorphism (TRFLP) of the gene g23. Three major community profiles were identified (winter-spring, summer, and autumn), which resulted in a clear seasonal succession pattern. These seasonal transitions were recurrent over the 2 years and significantly correlated with progression of seawater temperature, Synechococcus abundance, and turbidity. The appearance of the autumn viral communities was concomitant with the occurrence of prominent Synechococcus blooms. As a whole, we found a highly dynamic T4-like viral community with strong seasonality and recurrence patterns. These communities were unexpectedly dominated by a group of persistently abundant viruses.

  10. Effects of physical forcing on COastal ZOoplankton community structure: study of the unusual case of a MEDiterranean ecosystem under strong tidal influence (Project COZOMED-MERMEX)

    Science.gov (United States)

    Pagano, Marc

    2017-04-01

    Groupe COZOMED: R. Arfi (1), A. Atoui (2), H. Ayadi (6), B. Bejaoui (1), N. Bhairy (1), N. Barraj (2), M. Belhassen (2), S. Benismail (2), M.Y Benkacem (2), J. Blanchot (1), M. Cankovic(5), F. Carlotti (1), C. Chevalier (1), I Ciglenecki-Jusic (5), D. Couet (1), N. Daly Yahia (3), L. Dammak (2), J.-L. Devenon (1), Z. Drira (6), A. Hamza (2), S. Kmia (6), N. Makhlouf (3), M. Mahfoudi (2), M. Moncef (4), M. Pagano (1), C. Sammari (2), H. Smeti (2), A. Zouari (2) The COZOMED-MERMEX project aims at understanding how hydrodynamic forcing (currents, tides, winds) combine with anthropogenic forcing and climate to affect the variability of coastal Mediterranean zooplankton communities under contrasting tidal influence. This study includes (i) a zero state of knowledge via a literature review of existing data and (ii) a case study on the system Boughrara lagoon - Gulf of Gabes. This ecosystem gives major services for Tunisia (about 65% of national fish production) but is weakened by its situation in a heavily anthropized area and under influence of urban, industrial and agricultural inputs. Besides this region is subject to specific climate forcing (Sahelian winds, scorching heat, intense evaporation, flooding) which possible changes will be considered. The expected issues are (i) to improve our knowledge of hydrodynamic forcing on zooplankton and ultimately on the functioning of coastal Mediterranean ecosystems impacted by anthropogenic and climatic effects and (ii) to elaborate management tools to help preserving good ecological status of these ecosystems: hydrodynamic circulation model, mapping of isochrones of residence times, mapping of the areas of highest zooplankton abundances (swarms), and sensitive areas, etc. This project strengthens existing scientific collaborations within the MERMEX program (The MerMex Group, 2011) and in the frame of an international joint laboratory (COSYS-Med) created in 2014. A first field mulidisciplinary campaign was performed in October

  11. The Healthy Children, Strong Families Intervention: Design and Community Participation

    Science.gov (United States)

    Adams, Alexandra K.; LaRowe, Tara L.; Cronin, Kate A.; Prince, Ronald J.; Wubben, Deborah P.; Parker, Tassy; Jobe, Jared B.

    2012-01-01

    Healthy Children, Strong Families (HCSF) is a 2-year, community-driven, family-based randomized controlled trial of a healthy lifestyles intervention conducted in partnership with four Wisconsin American Indian tribes. HCSF is composed of 1 year of targeted home visits to deliver nutritional and physical activity curricula. During Year 1, trained…

  12. Phase structure of strongly correlated Fermi gases

    International Nuclear Information System (INIS)

    Roscher, Dietrich

    2015-01-01

    Strongly correlated fermionic many-body systems are ubiquitous in nature. Their theoretical description poses challenging problems which are further complicated when imbalances in, e.g., the particle numbers of the involved species or their masses are introduced. In this thesis, a number of different approaches is developed and applied in order to obtain predictions for physical observables of such systems that mutually support and confirm each other. In a first step, analytically well-founded mean-field analyses are carried through. One- and three-dimensional ultracold Fermi gases with spin and mass imbalance as well as Gross-Neveu and NJL-type relativistic models at finite baryon chemical potential are investigated with respect to their analytic properties in general and the occurrence of spontaneous breaking of translational invariance in particular. Based on these studies, further methods are devised or adapted allowing for investigations also beyond the mean-field approximation. Lattice Monte Carlo simulations with imaginary imbalance parameters are employed to surmount the infamous sign problem and compute the equation of state of the respective unitary Fermi gases. Moreover, in-medium two-body analyses are used to confirm and explain the characteristics of inhomogeneously ordered phases. Finally, functional RG methods are applied to the unitary Fermi gas with spin and mass imbalance. Besides quantitatively competitive predictions for critical temperatures for the superfluid state, strong hints on the stability of inhomogeneous phases with respect to order parameter fluctuations in the regime of large mass imbalance are obtained. Combining the findings from these different theoretical studies suggests the possibility to find such phases in experiments presently in preparation.

  13. Effectiveness of Advanced Stay Strong, Stay Healthy in Community Settings

    Directory of Open Access Journals (Sweden)

    Emily M. Crowe MS

    2015-07-01

    Full Text Available The goal of this research was to investigate the effectiveness of the 10-week, University of Missouri (MU Extension strength training program Advanced Stay Strong, Stay Healthy (ASSSH. It was hypothesized that the program can improve strength, balance, agility, and flexibility—all physical measures of falling among seniors. Matched pair t tests were used to compare differences in five physical measures of health, body composition, and percent body fat (%BF. Two-way ANOVA was conducted to examine the age effects on changes in physical health from the start and finish of the exercise program. Following programming, participants significantly improved strength, flexibility, and balance, and significantly reduced %BF ( p < .05. Our data indicate that ASSSH can improve the physical health of senior citizens and can successfully be translated into community practice by MU Extension professionals.

  14. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  15. Strong sustainability in Nepal: A structural economics approach

    Science.gov (United States)

    Devkota, Surendra R.

    example of a poor country moving along a path toward strong sustainability. To this end, a sincere intervention at the social and natural capital along with economic growth is necessary. Poverty alleviation efforts should target the socio-economically deprived households by enriching their human capital. Since community based social structures, such as the forest user groups, are already setting an example of strong sustainability, such community based social capital initiatives should be encouraged by granting rights and other resources to augment further economic activities like harnessing hydropower that may eventually transform the socio-ecological-economic system.

  16. 77 FR 35711 - Strong Cities, Strong Communities National Resource Network Pilot Program Advance Notice and...

    Science.gov (United States)

    2012-06-14

    ... economic need, strong local leadership and collaboration, potential for economic growth, geographic... $1 million that they will use to administer an ``X-prize style'' competition, whereby they will... founding mandate in the 1965 Department of Housing and Urban Development Act to ``Exercise leadership at...

  17. Soil shapes community structure through fire.

    Science.gov (United States)

    Ojeda, Fernando; Pausas, Juli G; Verdú, Miguel

    2010-07-01

    Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.

  18. Development of strongly coupled FSI technology involving thin walled structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2011-01-01

    Full Text Available A strongly coupled finite volume-finite element fluid-structure interaction (FSI) scheme is developed. Both an edge-based finite volume and Galerkin finite element scheme are implemented and evaluated for modelling the mechanics of solids...

  19. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Science.gov (United States)

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  20. Optimal community structure for social contagions

    Science.gov (United States)

    Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.

    2018-05-01

    Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.

  1. Universal structure of a strongly interacting Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnle, Eva; Dyke, Paul; Hoinka, Sascha; Mark, Michael; Hu Hui; Liu Xiaji; Drummond, Peter; Hannaford, Peter; Vale, Chris, E-mail: cvale@swin.edu.au [ARC Centre of Excellence for Quantum Atom Optics, Swinburne University of Technology, Hawthorn 3122 (Australia)

    2011-01-10

    This paper presents studies of the universal properties of strongly interacting Fermi gases using Bragg spectroscopy. We focus on pair-correlations, their relationship to the contact C introduced by Tan, and their dependence on both the momentum and temperature. We show that short-range pair correlations obey a universal law, first derived by Tan through measurements of the static structure factor, which displays a universal scaling with the ratio of the contact to the momentum C/q. Bragg spectroscopy of ultracold {sup 6}Li atoms is employed to measure the structure factor for a wide range of momenta and interaction strengths, providing broad confirmation of this universal law. We show that calibrating our Bragg spectra using the f-sum rule leads to a dramatic improvement in the accuracy of the structure factor measurement. We also measure the temperature dependence of the contact in a unitary gas and compare our results to calculations based on a virial expansion.

  2. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions.

    Science.gov (United States)

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; González, Angélica L; Doebeli, Michael; Farjalla, Vinicius F

    2017-08-01

    Phytotelmata in tank-forming Bromeliaceae plants are regarded as potential miniature models for aquatic ecology, but detailed investigations of their microbial communities are rare. Hence, the biogeochemistry in bromeliad tanks remains poorly understood. Here we investigate the structure of bacterial and archaeal communities inhabiting the detritus within the tanks of two bromeliad species, Aechmea nudicaulis and Neoregelia cruenta, from a Brazilian sand dune forest. We used metagenomic sequencing for functional community profiling and 16S sequencing for taxonomic profiling. We estimated the correlation between functional groups and various environmental variables, and compared communities between bromeliad species. In all bromeliads, microbial communities spanned a metabolic network adapted to oxygen-limited conditions, including all denitrification steps, ammonification, sulfate respiration, methanogenesis, reductive acetogenesis and anoxygenic phototrophy. Overall, CO2 reducers dominated in abundance over sulfate reducers, and anoxygenic phototrophs largely outnumbered oxygenic photoautotrophs. Functional community structure correlated strongly with environmental variables, between and within a single bromeliad species. Methanogens and reductive acetogens correlated with detrital volume and canopy coverage, and exhibited higher relative abundances in N. cruenta. A comparison of bromeliads to freshwater lake sediments and soil from around the world, revealed stark differences in terms of taxonomic as well as functional microbial community structure. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.

    1993-01-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity

  4. Information transfer in community structured multiplex networks

    Directory of Open Access Journals (Sweden)

    Albert eSolé Ribalta

    2015-08-01

    Full Text Available The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.. The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  5. Information transfer in community structured multiplex networks

    Science.gov (United States)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  6. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Yeargeau, Etienne; Balieiro, Fabiano C; Piccolo, Marisa C; Peixoto, Raquel S; Greer, Charles W; Rosado, Alexandre S

    2013-01-01

    Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  7. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Directory of Open Access Journals (Sweden)

    Lia C R S Teixeira

    Full Text Available Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies, Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  8. Plant and Bird Presence Strongly Influences the Microbial Communities in Soils of Admiralty Bay, Maritime Antarctica

    Science.gov (United States)

    Teixeira, Lia C. R. S.; Yeargeau, Etienne; Balieiro, Fabiano C.; Piccolo, Marisa C.; Peixoto, Raquel S.; Greer, Charles W.; Rosado, Alexandre S.

    2013-01-01

    Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific. PMID:23840411

  9. Enhancing Homeland Security Efforts by Building Strong Relationships between the Muslim Community and Local Law Enforcement

    National Research Council Canada - National Science Library

    Jensen, Dennis L

    2006-01-01

    ... to follow up on the incident and to prevent future attacks. It is undeniable that building a strong relationship between the local police and the Muslim community is essential in defending America against acts of terrorism...

  10. Ionic charge transport in strongly structured molten salts

    International Nuclear Information System (INIS)

    Tatlipinar, H.; Amoruso, M.; Tosi, M.P.

    1999-08-01

    Data on the d.c. ionic conductivity for strongly structured molten halides of divalent and trivalent metals near freezing are interpreted as mainly reflecting charge transport by the halogen ions. On this assumption the Nernst-Einstein relation allows an estimate of the translational diffusion coefficient D tr of the halogen. In at least one case (molten ZnCl 2 ) D tr is much smaller than the measured diffusion coefficient, pointing to substantial diffusion via neutral units. The values of D tr estimated from the Nernst-Einstein relation are analyzed on the basis of a model involving two parameters, i.e. a bond-stretching frequency ω and an average waiting time τ. With the help of Raman scattering data for ω, the values of τ are evaluated and found to mostly lie in the range 0.02 - 0.3 ps for a vast class of materials. (author)

  11. Mathematical structure of Rabi oscillations in the strong coupling regime

    International Nuclear Information System (INIS)

    Fujii, Kazuyuki

    2003-01-01

    In this paper, we generalize the Jaynes-Cummings Hamiltonian by making use of some operators based on Lie algebras su(1, 1) and su(2), and study a mathematical structure of Rabi floppings of these models in the strong coupling regime. We show that Rabi frequencies are given by matrix elements of generalized coherent operators (Fujii K 2002 Preprint quant-ph/0202081) under the rotating-wave approximation. In the first half, we make a general review of coherent operators and generalized coherent ones based on Lie algebras su(1, 1) and su(2). In the latter half, we carry out a detailed examination of Frasca (Frasca M 2001 Preprint quant-ph/0111134) and generalize his method, and moreover present some related problems. We also apply our results to the construction of controlled unitary gates in quantum computation. Lastly, we make a brief comment on application to holonomic quantum computation

  12. Fast electronic structure methods for strongly correlated molecular systems

    International Nuclear Information System (INIS)

    Head-Gordon, Martin; Beran, Gregory J O; Sodt, Alex; Jung, Yousung

    2005-01-01

    A short review is given of newly developed fast electronic structure methods that are designed to treat molecular systems with strong electron correlations, such as diradicaloid molecules, for which standard electronic structure methods such as density functional theory are inadequate. These new local correlation methods are based on coupled cluster theory within a perfect pairing active space, containing either a linear or quadratic number of pair correlation amplitudes, to yield the perfect pairing (PP) and imperfect pairing (IP) models. This reduces the scaling of the coupled cluster iterations to no worse than cubic, relative to the sixth power dependence of the usual (untruncated) coupled cluster doubles model. A second order perturbation correction, PP(2), to treat the neglected (weaker) correlations is formulated for the PP model. To ensure minimal prefactors, in addition to favorable size-scaling, highly efficient implementations of PP, IP and PP(2) have been completed, using auxiliary basis expansions. This yields speedups of almost an order of magnitude over the best alternatives using 4-center 2-electron integrals. A short discussion of the scope of accessible chemical applications is given

  13. Finding Community Structures In Social Activity Data

    KAUST Repository

    Peng, Chengbin

    2015-01-01

    Social activity data sets are increasing in number and volume. Finding community structure in such data is valuable in many applications. For example, understand- ing the community structure of social networks may reduce the spread of epidemics

  14. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  15. Leveraging disjoint communities for detecting overlapping community structure

    International Nuclear Information System (INIS)

    Chakraborty, Tanmoy

    2015-01-01

    Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network.In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm. (paper)

  16. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  17. Strong linkage between active microbial communities and microbial carbon usage in a deglaciated terrain of the High Arctic

    Science.gov (United States)

    Kim, M.; Gyeong, H. R.; Lee, Y. K.

    2017-12-01

    Soil microorganisms play pivotal roles in ecosystem development and carbon cycling in newly exposed glacier forelands. However, little is known about carbon utilization pattern by metabolically active microbes over the course of ecosystem succession in these nutrient-poor environments. We investigated RNA-based microbial community dynamics and its relation to microbial carbon usage along the chronosequence of a High Arctic glacier foreland. Among microbial taxa surveyed (bacteria, archaea and fungi), bacteria are among the most metabolically active taxa with a dominance of Cyanobacteria and Actinobacteria. There was a strong association between microbial carbon usage and active Actinobacterial communities, suggesting that member of Actinobacteria are actively involved in organic carbon degradation in glacier forelands. Both bacterial community and microbial carbon usage are converged towards later stage of succession, indicating that the composition of soil organic carbon plays important roles in structuring bacterial decomposer communities during ecosystem development.

  18. Similarity between community structures of different online social networks and its impact on underlying community detection

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  19. Stiff, Strong Splice For A Composite Sandwich Structure

    Science.gov (United States)

    Schmaling, D.

    1991-01-01

    New type of splice for composite sandwich structure reduces peak shear stress in structure. Layers of alternating fiber orientation interposed between thin ears in adhesive joint. Developed for structural joint in spar of helicopter rotor blade, increases precision of control over thickness of adhesive at joint. Joint easy to make, requires no additional pieces, and adds little weight.

  20. Prokaryotic communities in pit mud from different-aged cellars used for the production of Chinese strong-flavored liquor.

    Science.gov (United States)

    Tao, Yong; Li, Jiabao; Rui, Junpeng; Xu, Zhancheng; Zhou, Yan; Hu, Xiaohong; Wang, Xiang; Liu, Menghua; Li, Daping; Li, Xiangzhen

    2014-04-01

    Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. Microbes in pit mud play key roles in the fermentation cellar for the CSFL production. However, microbial diversity, community structure, and cellar-age-related changes in pit mud are poorly understood. Here, we investigated the prokaryotic community structure and diversity in pit-mud samples with different cellar ages (1, 10, 25, and 50 years) using the pyrosequencing technique. Results indicated that prokaryotic diversity increased with cellar age until the age reached 25 years and that prokaryotic community structure changed significantly between three cellar ages (1, 10, and 25 years). Significant correlations between prokaryotic communities and environmental variables (pH, NH4(+), lactic acid, butyric acid, and caproic acid) were observed. Overall, our study results suggested that the long-term brewing operation shapes unique prokaryotic community structure and diversity as well as pit-mud chemistry. We have proposed a three-phase model to characterize the changes of pit-mud prokaryotic communities. (i) Phase I is an initial domestication period. Pit mud is characterized by abundant Lactobacillus and high lactic acid and low pH levels. (ii) Phase II is a transition period. While Lactobacillus abundance decreases dramatically, that of Bacteroidetes and methanogens increases. (iii) Phase III is a relative mature period. The prokaryotic community shows the highest diversity and capability to produce more caproic acid as a precursor for synthesis of ethyl caproate, the main flavor component in CSFL. This research provides scientific evidence to support the practical experience that old fermentation cellars produce high-quality liquor.

  1. Epidemics in adaptive networks with community structure

    Science.gov (United States)

    Shaw, Leah; Tunc, Ilker

    2010-03-01

    Models for epidemic spread on static social networks do not account for changes in individuals' social interactions. Recent studies of adaptive networks have modeled avoidance behavior, as non-infected individuals try to avoid contact with infectives. Such models have not generally included realistic social structure. Here we study epidemic spread on an adaptive network with community structure. We model the effect of heterogeneous communities on infection levels and epidemic extinction. We also show how an epidemic can alter the community structure.

  2. Nucleon quark structure and strong meson-nucleon form factors

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.

    1987-01-01

    The nucleon is considered as a three-quark system in virton-quark model. The main statistic properties of proton and neutron are calculated: magnetic moments, electromagnetic radii, G A /G V ratio in weak neutron decay. Strong meson-nucleon form factors which determine nucleon-nucleon potential are obtained as a function of squared transfer momentum of mesons. The results are compared with phenomenological form factors used for description of phases of NN-scattering in the one-boson-, exchange model

  3. Community-oriented support and research structures

    Energy Technology Data Exchange (ETDEWEB)

    Attig, Norbert; Eickermann, Thomas; Gibbon, Paul; Lippert, Thomas, E-mail: th.lippert@fz-juelich.d [Institute for Advanced Simulation, Juelich Supercomputing Centre, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-07-01

    Coordinated by the Partnership for Advanced Computing in Europe (PRACE) Europe is restructuring and strengthening its high-performance computing infrastructure with the aim to create a model HPC ecosystem. At the tip of the pyramid, up to six centres are envisaged that will operate systems of the highest performance class. The HPC Research Infrastructure (HPC-RI) will comprise European, national and regional centres. Science communities are integral partners, strong links will include Grid and Cloud users. The HPC-RI strives at providing scientists all over Europe, on the one hand, with unlimited and independent access to state-of-the-art computer resources in all performance classes and, on the other hand, with a world-class pan-European competence and support network. While the hardware-oriented buildup of the infrastructure is making progress, high-quality user support and software development in the upcoming era of unprecedented parallelism and exascale on the horizon have become the imminent challenges. This has been clearly recognized by the European Commission, who will issue calls for proposals to fund petascale software development in summer 2009. Although traditional support structures are well established in Europe's major supercomputing centres, it is questionable if these structures are able to meet the challenges of the future: in general, support structures are based on cross-disciplinary computer science and mathematics teams; disciplinary computational science support usually is given in an ad-hoc, project-oriented manner. In this paper, we describe our approach to establish a suitable support structure-Simulation Laboratories (SL). SLs are currently being established at the Juelich Supercomputing Centre of the Forschungszentrum Juelich (FZJ) and at the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute for Technology (KIT) in Germany. While SLs are community-oriented, i.e. each SL focusses on a specific community, they are

  4. Community-oriented support and research structures

    International Nuclear Information System (INIS)

    Attig, Norbert; Eickermann, Thomas; Gibbon, Paul; Lippert, Thomas

    2009-01-01

    Coordinated by the Partnership for Advanced Computing in Europe (PRACE) Europe is restructuring and strengthening its high-performance computing infrastructure with the aim to create a model HPC ecosystem. At the tip of the pyramid, up to six centres are envisaged that will operate systems of the highest performance class. The HPC Research Infrastructure (HPC-RI) will comprise European, national and regional centres. Science communities are integral partners, strong links will include Grid and Cloud users. The HPC-RI strives at providing scientists all over Europe, on the one hand, with unlimited and independent access to state-of-the-art computer resources in all performance classes and, on the other hand, with a world-class pan-European competence and support network. While the hardware-oriented buildup of the infrastructure is making progress, high-quality user support and software development in the upcoming era of unprecedented parallelism and exascale on the horizon have become the imminent challenges. This has been clearly recognized by the European Commission, who will issue calls for proposals to fund petascale software development in summer 2009. Although traditional support structures are well established in Europe's major supercomputing centres, it is questionable if these structures are able to meet the challenges of the future: in general, support structures are based on cross-disciplinary computer science and mathematics teams; disciplinary computational science support usually is given in an ad-hoc, project-oriented manner. In this paper, we describe our approach to establish a suitable support structure-Simulation Laboratories (SL). SLs are currently being established at the Juelich Supercomputing Centre of the Forschungszentrum Juelich (FZJ) and at the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute for Technology (KIT) in Germany. While SLs are community-oriented, i.e. each SL focusses on a specific community, they are structured

  5. Influence of earthquake strong motion duration on nonlinear structural response

    International Nuclear Information System (INIS)

    Meskouris, K.

    1983-01-01

    The effects of motion duration on nonlinear structural response of high-rise, moment resisting frames are studied by subjecting shear beam models of a 10- and a 5-story frame to a series of synthetic accelerograms, all matching the same NEWMARK/HALL design spectrum. Two different hysteretic laws are used for the story springs, and calculations are carried out for target ductility values of 2 and 4. Maximum ductilities reached and energy-based damage indicators (maximum seismically input energy, hysteretically dissipated energy) are evaluated and correlated with the motion characteristics. A reasonable extrapolative determination of structural response characteristics based on these indicators seems possible. (orig.)

  6. Strong Hearts, Healthy Communities: A Community-Based Randomized Trial for Rural Women.

    Science.gov (United States)

    Seguin, Rebecca A; Paul, Lynn; Folta, Sara C; Nelson, Miriam E; Strogatz, David; Graham, Meredith L; Diffenderfer, Anna; Eldridge, Galen; Parry, Stephen A

    2018-05-01

    The aim of this study was to evaluate a multilevel cardiovascular disease (CVD) prevention program for rural women. This 6-month, community-based, randomized trial enrolled 194 sedentary rural women aged 40 or older with BMI ≥ 25 kg/m 2 . Intervention participants attended 6 months of twice-weekly exercise, nutrition, and heart health classes (48 total) that included individual-, social-, and environment-level components. An education-only control program included didactic healthy lifestyle classes once a month (six total). The primary outcome measures were change in BMI and weight. Within-group and between-group multivariate analyses revealed that only intervention participants decreased BMI (-0.85 units; 95% CI: -1.32 to -0.39; P = 0.001) and weight (-2.24 kg; 95% CI: -3.49 to -0.99; P = 0.002). Compared with controls, intervention participants decreased BMI (difference: -0.71 units; 95% CI: -1.35 to -0.08; P = 0.03) and weight (1.85 kg; 95% CI: -3.55 to -0.16; P = 0.03) and improved C-reactive protein (difference: -1.15 mg/L; 95% CI: -2.16 to -0.15; P = 0.03) and Simple 7, a composite CVD risk score (difference: 0.67; 95% CI: 0.14 to 1.21; P = 0.01). Cholesterol decreased among controls but increased in the intervention group (-7.85 vs. 3.92 mg/dL; difference: 11.77; 95% CI: 0.57 to 22.96; P = 0.04). The multilevel intervention demonstrated modest but superior and meaningful improvements in BMI and other CVD risk factors compared with the control program. © 2018 The Obesity Society.

  7. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2018-04-01

    Full Text Available Strong flavor baijiu (SFB, also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected.

  8. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  9. Ecological and evolutionary effects of stickleback on community structure.

    Directory of Open Access Journals (Sweden)

    Simone Des Roches

    Full Text Available Species' ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus. We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density and evolutionary (phenotypic diversity and specialization factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities.

  10. Three-dimensional electromagnetic strong turbulence. II. Wave packet collapse and structure of wave packets during strong turbulence

    International Nuclear Information System (INIS)

    Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.

    2011-01-01

    Large-scale simulations of wave packet collapse are performed by numerically solving the three-dimensional (3D) electromagnetic Zakharov equations, focusing on individual wave packet collapses and on wave packets that form in continuously driven strong turbulence. The collapse threshold is shown to decrease as the electron thermal speed ν e /c increases and as the temperature ratio T i /T e of ions to electrons decreases. Energy lost during wave packet collapse and dissipation is shown to depend on ν e /c. The dynamics of density perturbations after collapse are studied in 3D electromagnetic strong turbulence for a range of T i /T e . The structures of the Langmuir, transverse, and total electric field components of wave packets during strong turbulence are investigated over a range of ν e /c. For ν e /c e /c > or approx. 0.17, transverse modes become trapped in density wells and contribute significantly to the structure of the total electric field. At all ν e /c, the Langmuir energy density contours of wave packets are predominantly oblate (pancake shaped). The transverse energy density contours of wave packets are predominantly prolate (sausage shaped), with the major axis being perpendicular to the major axes of the Langmuir component. This results in the wave packet becoming more nearly spherical as ν e /c increases, and in turn generates more spherical density wells during collapse. The results obtained are compared with previous 3D electrostatic results and 2D electromagnetic results.

  11. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    Science.gov (United States)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  12. Community structure informs species geographic distributions

    KAUST Repository

    Montesinos-Navarro, Alicia; Estrada, Alba; Font, Xavier; Matias, Miguel G.; Meireles, Catarina; Mendoza, Manuel; Honrado, Joao P.; Prasad, Hari D.; Vicente, Joana R.; Early, Regan

    2018-01-01

    spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. 'community structure') reflects assembly processes occurring at small scales

  13. Afforestation alters community structure of soil fungi.

    Science.gov (United States)

    Carson, Jennifer K; Gleeson, Deirdre B; Clipson, Nicholas; Murphy, Daniel V

    2010-07-01

    Relatively little is known about the effect of afforestation on soil fungal communities. This study demonstrated that afforestation altered fungal community structure and that changes were correlated to pools of soil C. Pasture at three locations on the same soil type was afforested with Eucalyptus globulus or Pinus pinaster. The structure of fungal communities under the three land uses was measured after 13y using automated ribosomal intergenic spacer analysis (ARISA). Afforestation significantly altered the structure of fungal communities. The effect of location on the structure of fungal communities was limited to pasture soils; although these contained the same plant species, the relative composition of each species varied between locations. Differences in the structure of fungal communities between pasture, E. globulus and P. pinaster were significantly correlated with changes in the amount of total organic C and microbial biomass-C in soil. Afforestation of patches of agricultural land may contribute to conserving soil fungi in agricultural landscapes by supporting fungal communities with different composition to agricultural soils. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Community structures and role detection in music networks

    Science.gov (United States)

    Teitelbaum, T.; Balenzuela, P.; Cano, P.; Buldú, Javier M.

    2008-12-01

    We analyze the existence of community structures in two different social networks using data obtained from similarity and collaborative features between musical artists. Our analysis reveals some characteristic organizational patterns and provides information about the driving forces behind the growth of the networks. In the similarity network, we find a strong correlation between clusters of artists and musical genres. On the other hand, the collaboration network shows two different kinds of communities: rather small structures related to music bands and geographic zones, and much bigger communities built upon collaborative clusters with a high number of participants related through the period the artists were active. Finally, we detect the leading artists inside their corresponding communities and analyze their roles in the network by looking at a few topological properties of the nodes.

  15. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2013-01-01

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree

  16. The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor.

    Science.gov (United States)

    Zhang, Yanyan; Zhu, Xiaoyu; Li, Xiangzhen; Tao, Yong; Jia, Jia; He, Xiaohong

    2017-09-15

    Famous Chinese strong-flavored liquor (CSFL) is brewed by microbial consortia in a special fermentation pit (FT). However, the fermentation process was not fully understood owing to the complicate community structure and metabolism. In this study, the process-related dynamics of microbial communities and main flavor compounds during the 70-day fermentation process were investigated in a simulated fermentation system. A three-phase model was proposed to characterize the process of the CSFL fermentation. (i) In the early fermentation period (1-23 days), glucose was produced from macromolecular carbohydrates (e.g., starch). The prokaryotic diversity decreased significantly. The Lactobacillaceae gradually predominated in the prokaryotic community. In contrast, the eukaryotic diversity rose remarkably in this stage. Thermoascus, Aspergillus, Rhizopus and unidentified Saccharomycetales were dominant eukaryotic members. (ii) In the middle fermentation period (23-48 days), glucose concentration decreased while lactate acid and ethanol increased significantly. Prokaryotic community was almost dominated by the Lactobacillus, while eukaryotic community was mainly comprised of Thermoascus, Emericella and Aspergillus. (iii) In the later fermentation period (48-70 days), the concentrations of ethyl esters, especially ethyl caproate, increased remarkably. The CSFL fermentation could undergo three stages: saccharification, glycolysis and esterification. Saccharomycetales, Monascus, and Rhizopus were positively correlated to glucose concentration (P fermentation, were observed firstly. This study observed comprehensive dynamics of microbial communities during the CSFL fermentation, and it further revealed the correlations between some crucial microorganisms and flavoring chemicals (FCs). The results from this study help to design effective strategies to manipulate microbial consortia for fermentation process optimization in the CSFL brew practice.

  17. The structural role of weak and strong links in a financial market network

    Science.gov (United States)

    Garas, A.; Argyrakis, P.; Havlin, S.

    2008-05-01

    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  18. Numerical methods and parallel algorithms for fast transient strongly coupled fluid-structure dynamics

    International Nuclear Information System (INIS)

    Faucher, V.

    2014-01-01

    This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author

  19. High taxonomic variability despite stable functional structure across microbial communities.

    Science.gov (United States)

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  20. Strong plasma shock structures based on the Navier--Stokes equations

    International Nuclear Information System (INIS)

    Abe, K.

    1975-01-01

    The structure of a plasma collisional shock wave is examined on the basis of the Navier--Stokes equations and simultaneously on the basis of the Fokker--Planck equation. The resultant structures are compared to check the validity of the Navier--Stokes equations applied to the structures of strong shock waves. The Navier--Stokes equations give quite correct structures for weak shock waves. For the strong shock waves, the detailed structures obtained from the Navier--Stokes equations differ from the results of the Fokker--Planck equation, but the shock thicknesses of the two shock waves are in relatively close agreement

  1. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.

    Science.gov (United States)

    Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela

    2014-01-01

    The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on

  2. Finding Community Structures In Social Activity Data

    KAUST Repository

    Peng, Chengbin

    2015-05-19

    Social activity data sets are increasing in number and volume. Finding community structure in such data is valuable in many applications. For example, understand- ing the community structure of social networks may reduce the spread of epidemics or boost advertising revenue; discovering partitions in tra c networks can help to optimize routing and to reduce congestion; finding a group of users with common interests can allow a system to recommend useful items. Among many aspects, qual- ity of inference and e ciency in finding community structures in such data sets are of paramount concern. In this thesis, we propose several approaches to improve com- munity detection in these aspects. The first approach utilizes the concept of K-cores to reduce the size of the problem. The K-core of a graph is the largest subgraph within which each node has at least K connections. We propose a framework that accelerates community detection. It first applies a traditional algorithm that is relatively slow to the K-core, and then uses a fast heuristic to infer community labels for the remaining nodes. The second approach is to scale the algorithm to multi-processor systems. We de- vise a scalable community detection algorithm for large networks based on stochastic block models. It is an alternating iterative algorithm using a maximum likelihood ap- proach. Compared with traditional inference algorithms for stochastic block models, our algorithm can scale to large networks and run on multi-processor systems. The time complexity is linear in the number of edges of the input network. The third approach is to improve the quality. We propose a framework for non- negative matrix factorization that allows the imposition of linear or approximately linear constraints on each factor. An example of the applications is to find community structures in bipartite networks, which is useful in recommender systems. Our algorithms are compared with the results in recent papers and their quality and e

  3. Phylogenetic structure in tropical hummingbird communities

    DEFF Research Database (Denmark)

    Graham, Catherine H; Parra, Juan L; Rahbek, Carsten

    2009-01-01

    How biotic interactions, current and historical environment, and biogeographic barriers determine community structure is a fundamental question in ecology and evolution, especially in diverse tropical regions. To evaluate patterns of local and regional diversity, we quantified the phylogenetic...... composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern...... that is consistent with the idea that competition influences the local composition of hummingbirds. At higher elevations communities are phylogenetically clustered (coexistence of close relatives), consistent with the expectation of environmental filtering, which may result from the challenge of sustaining...

  4. Land use intensity controls actinobacterial community structure

    Czech Academy of Sciences Publication Activity Database

    Hill, P.; Krištůfek, Václav; Dijkhuizen, L.; Boddy, Ch.; Kroetsch, D.; van Elsas, J.D.

    2011-01-01

    Roč. 61, č. 2 (2011), s. 286-302 ISSN 0095-3628 R&D Projects: GA MŠk LC06066; GA MŠk 2B06154 Institutional research plan: CEZ:AV0Z60660521 Keywords : actinobacterial community structure * DNA * soils Subject RIV: EH - Ecology, Behaviour Impact factor: 2.912, year: 2011

  5. Emergence of structured communities through evolutionary dynamics.

    Science.gov (United States)

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Community structure informs species geographic distributions

    KAUST Repository

    Montesinos-Navarro, Alicia

    2018-05-23

    Understanding what determines species\\' geographic distributions is crucial for assessing global change threats to biodiversity. Measuring limits on distributions is usually, and necessarily, done with data at large geographic extents and coarse spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. \\'community structure\\') reflects assembly processes occurring at small scales, and are often available for relatively extensive areas, so could be useful for explaining species distributions. We demonstrate that Bayesian Network Inference (BNI) can overcome several challenges to including community structure into studies of species distributions, despite having been little used to date. We hypothesized that the relative abundance of coexisting species can improve predictions of species distributions. In 1570 assemblages of 68 Mediterranean woody plant species we used BNI to incorporate community structure into Species Distribution Models (SDMs), alongside environmental information. Information on species associations improved SDM predictions of community structure and species distributions moderately, though for some habitat specialists the deviance explained increased by up to 15%. We demonstrate that most species associations (95%) were positive and occurred between species with ecologically similar traits. This suggests that SDM improvement could be because species co-occurrences are a proxy for local ecological processes. Our study shows that Bayesian Networks, when interpreted carefully, can be used to include local conditions into measurements of species\\' large-scale distributions, and this information can improve the predictions of species distributions.

  7. Strong Migration Limit for Games in Structured Populations: Applications to Dominance Hierarchy and Set Structure

    Directory of Open Access Journals (Sweden)

    Dhaker Kroumi

    2015-09-01

    Full Text Available In this paper, we deduce a condition for a strategy S1 to be more abundant on average at equilibrium under weak selection than another strategy S2 in a population structured into a finite number of colonies of fixed proportions as the population size tends to infinity. It is assumed that one individual reproduces at a time with some probability depending on the payoff received in pairwise interactions within colonies and between colonies and that the offspring replaces one individual chosen at random in the colony into which the offspring migrates. It is shown that an expected weighted average equilibrium frequency of S1 under weak symmetric strategy mutation between S1 and S2 is increased by weak selection if an expected weighted payoff of S1 near neutrality exceeds the corresponding expected weighted payoff of S2. The weights are given in terms of reproductive values of individuals in the different colonies in the neutral model. This condition for S1 to be favoured by weak selection is obtained from a strong migration limit of the genealogical process under neutrality for a sample of individuals, which is proven using a two-time scale argument. The condition is applied to games between individuals in colonies with linear or cyclic dominance and between individuals belonging to groups represented by subsets of a given set.

  8. Epidemic spreading on complex networks with community structures

    NARCIS (Netherlands)

    Stegehuis, C.; van der Hofstad, R.W.; van Leeuwaarden, J.S.H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities

  9. How mammalian predation contributes to tropical tree community structure.

    Science.gov (United States)

    Paine, C E Timothy; Beck, Harald; Terborgh, John

    2016-12-01

    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.

  10. Strong, weak, and missing links in a microbial community of the N.W. Mediterranean Sea.

    Science.gov (United States)

    Bettarel, Y; Dolan, J R; Hornak, K; Lemée, R; Masin, M; Pedrotti, M-L; Rochelle-Newall, E; Simek, K; Sime-Ngando, T

    2002-12-01

    Planktonic microbial communities often appear stable over periods of days and thus tight links are assumed to exist between different functional groups (i.e. producers and consumers). We examined these links by characterizing short-term temporal correspondences in the concentrations and activities of microbial groups sampled from 1 m depth, at a coastal site of the N.W. Mediterranean Sea, in September 2001 every 3 h for 3 days. We estimated the abundance and activity rates of the autotrophic prokaryote Synechococcus, heterotrophic bacteria, viruses, heterotrophic nanoflagellates, as well as dissolved organic carbon concentrations. We found that Synechococcus, heterotrophic bacteria, and viruses displayed distinct patterns. Synechococcus abundance was greatest at midnight and lowest at 21:00 and showed the common pattern of an early evening maximum in dividing cells. In contrast, viral concentrations were minimal at midnight and maximal at 18:00. Viral infection of heterotrophic bacteria was rare (0.5-2.5%) and appeared to peak at 03:00. Heterotrophic bacteria, as % eubacteria-positive cells, peaked at midday, appearing loosely related to relative changes in dissolved organic carbon concentration. Bacterial production as assessed by leucine incorporation showed no consistent temporal pattern but could be related to shifts in the grazing rates of heterotrophic nanoflagellates and viral infection rates. Estimates of virus-induced mortality of heterotrophic bacteria, based on infection frequencies, were only about 10% of cell production. Overall, the dynamics of viruses appeared more closely related to Synechococcus than to heterotrophic bacteria. Thus, we found weak links between dissolved organic carbon concentration, or grazing, and bacterial activity, a possibly strong link between Synechococcus and viruses, and a missing link between light and viruses.

  11. Strong coupling strategy for fluid-structure interaction problems in supersonic regime via fixed point iteration

    Science.gov (United States)

    Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.

    2009-03-01

    In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.

  12. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  13. Testing strong factorial invariance using three-level structural equation modeling

    Directory of Open Access Journals (Sweden)

    Suzanne eJak

    2014-07-01

    Full Text Available Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias across groups. Although this approach is possible in principle, it is hardly practical when the number of groups is large or when the group size is relatively small. Jak, Oort and Dolan (2013 showed how strong factorial invariance across large numbers of groups can be tested in a multilevel structural equation modeling framework, by treating group as a random instead of a fixed variable. In the present study, this model is extended for use with three-level data. The proposed method is illustrated with an investigation of strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia test, using three-level structural equation modeling.

  14. Strong Motion Instrumentation of Seismically-Strengthened Port Structures in California by CSMIP

    Science.gov (United States)

    Huang, M.J.; Shakal, A.F.

    2009-01-01

    The California Strong Motion Instrumentation Program (CSMIP) has instrumented five port structures. Instrumentation of two more port structures is underway and another one is in planning. Two of the port structures have been seismically strengthened. The primary goals of the strong motion instrumentation are to obtain strong earthquake shaking data for verifying seismic analysis procedures and strengthening schemes, and for post-earthquake evaluations of port structures. The wharves instrumented by CSMIP were recommended by the Strong Motion Instrumentation Advisory Committee, a committee of the California Seismic Safety Commission. Extensive instrumentation of a wharf is difficult and would be impossible without the cooperation of the owners and the involvement of the design engineers. The instrumentation plan for a wharf is developed through study of the retrofit plans of the wharf, and the strong-motion sensors are installed at locations where specific instrumentation objectives can be achieved and access is possible. Some sensor locations have to be planned during design; otherwise they are not possible to install after construction. This paper summarizes the two seismically-strengthened wharves and discusses the instrumentation schemes and objectives. ?? 2009 ASCE.

  15. Strong population genetic structure and larval dispersal capability of the burrowing ghost shrimp (Neotrypaea californiensis)

    Science.gov (United States)

    The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...

  16. Diverse Asian American Families and Communities: Culture, Structure, and Education (Part 1: Why They Differ)

    Science.gov (United States)

    Paik, Susan J.; Rahman, Zaynah; Kula, Stacy M.; Saito, L. Erika; Witenstein, Matthew A.

    2017-01-01

    Based on 11 diverse Asian American (AA) communities, this article discusses the similarities and differences across East, South, and Southeast Asians. Of two parts in this journal issue, Part 1 presents a review of literature and census data to understand the cultural and structural factors of different types of coethnic communities (strong, weak,…

  17. Weak vs. strong invaders of natural plant communities: Assessing invasibility and impact

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson

    2005-01-01

    In response to the profound threat of exotic species to natural systems, much attention has been focused on the biotic resistance hypothesis, which predicts that diverse communities should better resist invasions. While studies of natural communities generally refute this hypothesis, reporting positive relationships between native species diversity and invasibility,...

  18. Research on Community Structure in Bus Transport Networks

    International Nuclear Information System (INIS)

    Yang Xuhua; Wang Bo; Sun Youxian

    2009-01-01

    We abstract the bus transport networks (BTNs) to two kinds of complex networks with space L and space P methods respectively. Using improved community detecting algorithm (PKM agglomerative algorithm), we analyze the community property of two kinds of BTNs graphs. The results show that the BTNs graph described with space L method have obvious community property, but the other kind of BTNs graph described with space P method have not. The reason is that the BTNs graph described with space P method have the intense overlapping community property and general community division algorithms can not identify this kind of community structure. To overcome this problem, we propose a novel community structure called N-depth community and present a corresponding community detecting algorithm, which can detect overlapping community. Applying the novel community structure and detecting algorithm to a BTN evolution model described with space P, whose network property agrees well with real BTNs', we get obvious community property. (general)

  19. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  20. Structure of Vocational Interests for Diverse Groups on the 2005 Strong Interest Inventory

    Science.gov (United States)

    Kantamneni, Neeta; Fouad, Nadya

    2011-01-01

    This study was designed to examine the structure of vocational interests in a diverse sample of individuals who completed the 2005 revision of the Strong Interest Inventory. We examined the fit of three racial/ethnic groups (African American, Caucasian, and Latino/a), both genders, and three levels of professional status (GRS participant, student,…

  1. Testing strong factorial invariance using three-level structural equation modeling

    NARCIS (Netherlands)

    Jak, Suzanne

    Within structural equation modeling, the most prevalent model to investigate measurement bias is the multigroup model. Equal factor loadings and intercepts across groups in a multigroup model represent strong factorial invariance (absence of measurement bias) across groups. Although this approach is

  2. The role of strong-tie social networks in mediating food security of fish resources by a traditional riverine community in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Frédéric Mertens

    2015-09-01

    Full Text Available Social networks are a significant way through which rural communities that manage resources under common property regimes obtain food resources. Previous research on food security and social network analysis has mostly focused on egocentric network data or proxy variables for social networks to explain how social relations contribute to the different dimensions of food security. Whole-network approaches have the potential to contribute to former studies by revealing how individual social ties aggregate into complex structures that create opportunities or constraints to the sharing and distribution of food resources. We used a whole-network approach to investigate the role of network structure in contributing to the four dimensions of food security: food availability, access, utilization, and stability. For a case study of a riparian community from the Brazilian Amazon that is dependent on fish as a key element of food security, we mapped the community strong-tie network among 97% of the village population over 14 years old (n = 336 by integrating reciprocated friendship and occupational ties, as well as close kinship relationships. We explored how different structural properties of the community network contribute to the understanding of (1 the availability of fish as a community resource, (2 community access to fish as a dietary resource, (3 the utilization of fish for consumption in a way that allows the villagers to maximize nutrition while at the same time minimizing toxic risks associated with mercury exposure, and (4 the stability of the fish resources in local ecosystems as a result of cooperative behaviors and community-based management. The contribution of whole-network approaches to the study of the links between community-based natural resource management and food security were discussed in the context of recent social-ecological changes in the Amazonian region.

  3. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

    Science.gov (United States)

    Ferrando, Lucía; Fernández Scavino, Ana

    2015-09-01

    Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Immunization of networks with community structure

    International Nuclear Information System (INIS)

    Masuda, Naoki

    2009-01-01

    In this study, an efficient method to immunize modular networks (i.e. networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, protection against intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hubs is efficient, good immunization strategies for modular networks have not been established. On the basis of an immunization strategy based on eigenvector centrality, we develop an analytical framework for immunizing modular networks. To this end, we quantify the contribution of each node to the connectivity in a coarse-grained network among modules. We verify the effectiveness of the proposed method by applying it to model and real networks with modular structure.

  5. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  6. Russian Academy of Engineering: a strong power for integration of engineering community

    Directory of Open Access Journals (Sweden)

    GUSEV Boris Vladimirovich

    2015-04-01

    Full Text Available Russian Academy of Engineering is legal successor of the Engineering Academy of USSR, founded by 20 ministries and departments of USSR and RSFSR on May 13, 1990. The Engineering Academy of USSR since the very beginning of its functioning, has launched its task-oriented activity on strengthening of links between science and industry, on solving the problems of using the results of basic (fundamental research and their accelerated adaptation into the industry. In the post-Soviet period, on the basis of the Academy, the Ministry of Justice of the Russian Federation, on December 24, 1991, registered the All-Russian Public Organization Russian Academy of Engineering (RAE. At the present time, RAE includes over 1350 full and corresponding members, prominent Russian scientists, engineers and industry organizers, over 200 member societies which include major Russian science & technology organizations, and over 40 regional engineering-technical structures, departments of RAE. RAE carries out large-scale work on the development of science & technology areas in science, creating new machinery and technologies, organization of efficient functioning of the Russian Engineering community. During the 25-year period of work, about 4,5 thousand new technologies were developed, over 6,5 thousand monographs were published. Over 4 thousand patents were obtained. 209 members of RAE became laureates of State Prize of USSR and RF, 376 members of RAE became laureates of Government Prize of USSR and RF. Annual value of science & research, project and other works in the area of engineering amounts from 0,5 to 1 billion roubles. This information and reference edition of the Encyclopedia of the Russian Academy of Engineering is dedicated to the 25th anniversary of the Russian Academy of Engineering. The Encyclopedia includes creative biographies of more than 1750 full and corresponding members of RAE, prominent scientists, distinguished engineers and organizers of industry

  7. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    Science.gov (United States)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  8. Detecting highly overlapping community structure by greedy clique expansion

    OpenAIRE

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2010-01-01

    In complex networks it is common for each node to belong to several communities, implying a highly overlapping community structure. Recent advances in benchmarking indicate that existing community assignment algorithms that are capable of detecting overlapping communities perform well only when the extent of community overlap is kept to modest levels. To overcome this limitation, we introduce a new community assignment algorithm called Greedy Clique Expansion (GCE). The algorithm identifies d...

  9. High Expectations, Strong Support: Faculty Behaviors Predicting Latina/o Community College Student Learning

    Science.gov (United States)

    Lundberg, Carol A.; Kim, Young K.; Andrade, Luis M.; Bahner, Daniel T.

    2018-01-01

    In this study we investigated the extent to which faculty interaction contributed to Latina/o student perceptions of their learning, using a sample of 10,071 Latina/o students who took the Community College Survey of Student Engagement. Findings were disaggregated for men and women, but results were quite similar between the 2 groups. Frequent…

  10. Strongly correlated electron systems and neutron scattering. Magnetism, superconductivity, structural phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron scattering experiments in our group on strongly correlated electron systems are reviewed Metal-insulator transitions caused by structural phase transitions in (La{sub 1-x}Sr{sub x}) MnO{sub 3}, a novel magnetic transition in the CeP compound, correlations between antiferromagnetism and superconductivity in UPd{sub 2}Al{sub 3} and so forth are discussed. Here, in this note, the phase transition of Mn-oxides was mainly described. (author)

  11. Structure of the strongly coupled classical plasma in the self-consistent mean spherical approximation

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.

    1980-10-01

    An analytic theory is presented for the static structure factor of the one-component classical plasma at strong couplings. The theory combines the hard-core model of Gillan for short-range correlations in the Coulomb fluid with a semiempirical representation of intermediate-range correlations, through which the requirement of thermodynamic consistency on the ''compressibility'' and the known equation of state of the system are satisfied. Excellent agreement is found with the available computer simulation data on the structure of the fluid. The approach becomes inapplicable at intermediate and weak couplings where effects of penetration in the Coulomb hole of each particle become important. (author)

  12. Benthic infaunal community structuring in an acidified tropical estuarine system.

    Science.gov (United States)

    Hossain, M Belal; Marshall, David J

    2014-01-01

    Recent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates. While most theory and application for OA is based on relatively physically-stable oceanic ecological systems, less is known about the effects of acidification on nearshore and estuarine systems. Here, we investigated the structuring of a benthic infaunal community in a tropical estuarine system, along a steep salinity and pH gradient, arising largely from acid-sulphate groundwater inflows (Sungai Brunei Estuary, Borneo, July 2011- June 2012). Preliminary data indicate that sediment pore-water salinity (range: 8.07 - 29.6 psu) declined towards the mainland in correspondence with the above-sediment estuarine water salinity (range: 3.58 - 31.2 psu), whereas the pore-water pH (range: 6.47- 7.72) was generally lower and less variable than the estuarine water pH (range: 5.78- 8.3), along the estuary. Of the thirty six species (taxa) recorded, the polychaetes Neanthes sp., Onuphis conchylega, Nereididae sp. and the amphipod Corophiidae sp., were numerically dominant. Calcified microcrustaceans (e.g., Cyclopoida sp. and Corophiidae sp.) were abundant at all stations and there was no clear distinction in distribution pattern along the estuarine between calcified and non-calcified groups. Species richness increased seawards, though abundance (density) showed no distinct directional trend. Diversity indices were generally positively correlated (Spearman's rank correlation) with salinity and pH (p 0.05). Three faunistic assemblages were distinguished: (1) nereid-cyclopoid-sabellid, (2) corophiid-capitellid and (3) onuphid- nereid-capitellid. These respectively associated with lower salinity/pH and a muddy bottom, low salinity/pH and a sandy bottom, and high salinity/pH and a sandy bottom. However, CCA suggested that species distribution and community structuring is more strongly influenced by sediment particle characteristics than by the

  13. Bipartite Community Structure of eQTLs.

    Science.gov (United States)

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  14. Community Structure in Online Collegiate Social Networks

    Science.gov (United States)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  15. Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region

    Science.gov (United States)

    Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.

    2016-01-01

    Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.

  16. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  17. Structure of large spin expansion of anomalous dimensions at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, M. [Physics Department, Salento University and INFN, 73100 Lecce (Italy)], E-mail: matteo.beccaria@le.infn.it; Forini, V. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany)], E-mail: forini@aei.mpg.de; Tirziu, A. [Department of Physics, Purdue University, W. Lafayette, IN 47907-2036 (United States)], E-mail: atirziu@purdue.edu; Tseytlin, A.A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)], E-mail: tseytlin@imperial.ac.uk

    2009-05-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr({phi}D{sub +}{sup S}{phi}) expanded in large spin S have the asymptotics {gamma}=flnS+f{sub c}+1/S (f{sub 11}lnS+f{sub 10})+..., where f (the universal scaling function or cusp anomaly), f{sub c} and f{sub mn} are given by power series in the 't Hooft coupling {lambda}. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing {gamma} in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS{sub 5}. The large spin expansion of the classical string energy happens to have exactly the same structure as that of {gamma} in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f{sub c}, f{sub 11}, f{sub 10} and verify the functional/reciprocity relations at subleading 1/({radical}({lambda})) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions.

  18. Structure of large spin expansion of anomalous dimensions at strong coupling

    International Nuclear Information System (INIS)

    Beccaria, M.; Forini, V.; Tirziu, A.; Tseytlin, A.A.

    2009-01-01

    The anomalous dimensions of planar N=4 SYM theory operators like tr(ΦD + S Φ) expanded in large spin S have the asymptotics γ=flnS+f c +1/S (f 11 lnS+f 10 )+..., where f (the universal scaling function or cusp anomaly), f c and f mn are given by power series in the 't Hooft coupling λ. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing γ in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS 5 . The large spin expansion of the classical string energy happens to have exactly the same structure as that of γ in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f c , f 11 , f 10 and verify the functional/reciprocity relations at subleading 1/(√(λ)) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions

  19. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  20. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  1. Nonuniform Internal Structure of Fibrin Fibers: Protein Density and Bond Density Strongly Decrease with Increasing Diameter

    Directory of Open Access Journals (Sweden)

    Wei Li

    2017-01-01

    Full Text Available The major structural component of a blood clot is a meshwork of fibrin fibers. It has long been thought that the internal structure of fibrin fibers is homogeneous; that is, the protein density and the bond density between protofibrils are uniform and do not depend on fiber diameter. We performed experiments to investigate the internal structure of fibrin fibers. We formed fibrin fibers with fluorescently labeled fibrinogen and determined the light intensity of a fiber, I, as a function of fiber diameter, D. The intensity and, thus, the total number of fibrin molecules in a cross-section scaled as D1.4. This means that the protein density (fibrin per cross-sectional area, ρp, is not homogeneous but instead strongly decreases with fiber diameter as D-0.6. Thinner fibers are denser than thicker fibers. We also determined Young’s modulus, Y, as a function of fiber diameter. Y decreased strongly with increasing D; Y scaled as D-1.5. This implies that the bond density, ρb, also scales as D-1.5. Thinner fibers are stiffer than thicker fibers. Our data suggest that fibrin fibers have a dense, well-connected core and a sparse, loosely connected periphery. In contrast, electrospun fibrinogen fibers, used as a control, have a homogeneous cross-section.

  2. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example

    Science.gov (United States)

    Zhang, Yan; Zhang, Dongli; Li, Xiaojun; Huang, Bei; Zheng, Wenjun; Wang, Yuejun

    2018-02-01

    Continental thrust faulting earthquakes pose severe threats to megacities across the world. Recent events show the possible control of fault structures on strong ground motions. The seismogenic structure of the 2008 Wenchuan earthquake is associated with high-angle listric reverse fault zones. Its peak ground accelerations (PGAs) show a prominent feature of fault zone amplification: the values within the 30- to 40-km-wide fault zone block are significantly larger than those on both the hanging wall and the footwall. The PGA values attenuate asymmetrically: they decay much more rapidly in the footwall than in the hanging wall. The hanging wall effects can be seen on both the vertical and horizontal components of the PGAs, with the former significantly more prominent than the latter. All these characteristics can be adequately interpreted by upward extrusion of the high-angle listric reverse fault zone block. Through comparison with a low-angle planar thrust fault associated with the 1999 Chi-Chi earthquake, we conclude that different fault structures might have controlled different patterns of strong ground motion, which should be taken into account in seismic design and construction.

  3. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    Science.gov (United States)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  4. Theorising big IT programmes in healthcare: strong structuration theory meets actor-network theory.

    Science.gov (United States)

    Greenhalgh, Trisha; Stones, Rob

    2010-05-01

    The UK National Health Service is grappling with various large and controversial IT programmes. We sought to develop a sharper theoretical perspective on the question "What happens - at macro-, meso- and micro-level - when government tries to modernise a health service with the help of big IT?" Using examples from data fragments at the micro-level of clinical work, we considered how structuration theory and actor-network theory (ANT) might be combined to inform empirical investigation. Giddens (1984) argued that social structures and human agency are recursively linked and co-evolve. ANT studies the relationships that link people and technologies in dynamic networks. It considers how discourses become inscribed in data structures and decision models of software, making certain network relations irreversible. Stones' (2005) strong structuration theory (SST) is a refinement of Giddens' work, systematically concerned with empirical research. It views human agents as linked in dynamic networks of position-practices. A quadripartite approcach considers [a] external social structures (conditions for action); [b] internal social structures (agents' capabilities and what they 'know' about the social world); [c] active agency and actions and [d] outcomes as they feed back on the position-practice network. In contrast to early structuration theory and ANT, SST insists on disciplined conceptual methodology and linking this with empirical evidence. In this paper, we adapt SST for the study of technology programmes, integrating elements from material interactionism and ANT. We argue, for example, that the position-practice network can be a socio-technical one in which technologies in conjunction with humans can be studied as 'actants'. Human agents, with their complex socio-cultural frames, are required to instantiate technology in social practices. Structurally relevant properties inscribed and embedded in technological artefacts constrain and enable human agency. The fortunes

  5. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  6. Community structure and diversity of macrobenthic invertebrates in ...

    African Journals Online (AJOL)

    Macrobenthic invertebrates' community structure and diversity in relation to ... Analysis of variance (ANOVA) revealed that there were significant difference ... invertebrates' species distribution and some measured environmental variables.

  7. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  8. Polarization-gradient laser cooling as a way to create strongly localized structures for atom lithography

    International Nuclear Information System (INIS)

    Prudnikov, O. N.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2007-01-01

    Generally, conditions for deep sub-Doppler laser cooling do not match conditions for strong atomic localization, that takes place in a deeper optical potential and leads to higher temperature. Moreover, for a given detuning in a deep optical potential the secular approximation, which is frequently used for a quantum description of laser cooling, fails. Here we investigate the atomic localization in optical potential, using a full quantum approach for atomic density matrix beyond the secular approximation. It is shown that laser cooling in a deep optical potential, created by a light field with polarization gradients, can be used as an alternative method for the formation of high contrast spatially localized structures of atoms for the purposes of atom lithography and atomic nanofabrication. Finally, we analyze possible limits for the width and contrast of localized atomic structures that can be reached in this type of light mask

  9. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  10. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure

    International Nuclear Information System (INIS)

    Recami, E.; Tonin-Zanchin, V.

    1991-01-01

    Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)

  11. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Science.gov (United States)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  12. Community onsite treatment of cold strong sewage in a UASB-septic tank.

    Science.gov (United States)

    Al-Jamal, Wafa; Mahmoud, Nidal

    2009-02-01

    Two community onsite UASB-septic tanks namely R1 and R2 were operated under two different HRT (2 days for R1 and 4 days for R2) in parallel over a year and monitored over the cold half of the year. During the monitoring period, the sewage was characterised by a high COD(tot) of 905mg/l with a high fraction of COD(ss), viz. about 43.7%, and rather low temperature of 17.3 degrees C. The achieved removal efficiencies in R1 and R2 for COD(tot), COD(sus), COD(col), COD(dis), BOD(5) and TSS were "51%, 83%, 20%, 24%, 45% and 74%" and "54%, 87%, 10%, 28%, 49% and 78%", respectively. The difference in the removal efficiencies of those parameters in R1 and R2 is marginal and was only significant (pseptic tank system is a robust and compact system as it can be adequately designed in Palestine at 2 days HRT.

  13. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  14. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  15. Enhancing community detection by using local structural information

    International Nuclear Information System (INIS)

    Xiang, Ju; Bao, Mei-Hua; Tang, Liang; Li, Jian-Ming; Hu, Ke; Chen, Benyan; Hu, Jing-Bo; Zhang, Yan; Tang, Yan-Ni; Gao, Yuan-Yuan

    2016-01-01

    Many real-world networks, such as gene networks, protein–protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods. (paper: interdisciplinary statistical mechanics)

  16. A new hierarchical method to find community structure in networks

    Science.gov (United States)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  17. The structure and evolution of plankton communities

    Science.gov (United States)

    Longhurst, Alan R.

    New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.

  18. Seasonality and structure of the arthropod community in a forested ...

    African Journals Online (AJOL)

    The structure of an arthropod community in the forest floor vegetation was studied in a low altitude (about 700 m a.s.l.) forest valley in the Uluguru Mountains near Morogoro, Tanzania, by monthly sweep net sampling during one year (December 1996-November 1997). The community structure of arthropods changed ...

  19. Investigating Effects of Invasive Species on Plant Community Structure

    Science.gov (United States)

    Franklin, Wilfred

    2008-01-01

    In this article, the author presents a field study project that explores factors influencing forest community structure and lifts the veil off of "plant blindness." This ecological study consists of three laboratories: (1) preliminary field trip to the study site; (2) plant survey; and (3) analyzing plant community structure with descriptive…

  20. Community Structural Instability, Anomie, Imitation and Adolescent Suicidal Behavior

    Science.gov (United States)

    Thorlindsson, Thorolfur; Bernburg, Jon Gunnar

    2009-01-01

    The current study examines the contextual effects of community structural characteristics, as well as the mediating role of key social mechanisms, on youth suicidal behavior in Iceland. We argue that the contextual influence of community structural instability on youth suicidal behavior should be mediated by weak attachment to social norms and…

  1. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    Directory of Open Access Journals (Sweden)

    Amanda G. Bendia

    2018-05-01

    Full Text Available Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar “open-air” laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

  2. Population structure and strong divergent selection shape phenotypic diversification in maize landraces.

    Science.gov (United States)

    Pressoir, G; Berthaud, J

    2004-02-01

    To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.

  3. Tough and strong porous bioactive glass-PLA composites for structural bone repair.

    Science.gov (United States)

    Xiao, Wei; Zaeem, Mohsen Asle; Li, Guangda; Bal, B Sonny; Rahaman, Mohamed N

    2017-08-01

    Bioactive glass scaffolds have been used to heal small contained bone defects but their application to repairing structural bone is limited by concerns about their mechanical reliability. In the present study, the addition of an adherent polymer layer to the external surface of strong porous bioactive glass (13-93) scaffolds was investigated to improve their toughness. Finite element modeling (FEM) of the flexural mechanical response of beams composed of a porous glass and an adherent polymer layer predicted a reduction in the tensile stress in the glass with increasing thickness and elastic modulus of the polymer layer. Mechanical testing of composites with structures similar to the models, formed from 13-93 glass and polylactic acid (PLA), showed trends predicted by the FEM simulations but the observed effects were considerably more dramatic. A PLA layer of thickness -400 µm, equal to -12.5% of the scaffold thickness, increased the load-bearing capacity of the scaffold in four-point bending by ~50%. The work of fracture increased by more than 10,000%, resulting in a non-brittle mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture shown to be conducive to bone infiltration, could provide optimal implants for healing structural bone defects.

  4. Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability

    Directory of Open Access Journals (Sweden)

    Francesco Tornabene

    2017-07-01

    Full Text Available The authors are presenting a novel formulation based on the Differential Quadrature (DQ method which is used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form finite elements (SFEM or WFEM, according to the numerical scheme employed in the computation. Such numerical methods are applied to solve some structural problems related to the mechanical behavior of plates and shells, made of isotropic or composite materials. The main differences between these two approaches rely on the initial formulation – which is strong or weak (variational – and the implementation of the boundary conditions, that for the former include the continuity of stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. The two methodologies consider also a mapping technique to transform an element of general shape described in Cartesian coordinates into the same element in the computational space. Such technique can be implemented by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or blending functions which allow an “exact mapping” of the element. In particular, the authors are employing NURBS (Not-Uniform Rational B-Splines for such nonlinear mapping in order to use the “exact” shape of CAD designs.

  5. The angular structure of jet quenching within a hybrid strong/weak coupling model

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2017-08-01

    Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.

  6. Evolution of bacterial life-history traits is sensitive to community structure.

    Science.gov (United States)

    Ketola, Tarmo; Mikonranta, Lauri; Mappes, Johanna

    2016-06-01

    Very few studies have experimentally assessed the evolutionary effects of species interactions within the same trophic level. Here we show that when Serratia marcescens evolve in multispecies communities, their growth rate exceeds the growth rate of the bacteria that evolved alone, whereas the biomass yield gets lower. In addition to the community effects per se, we found that few species in the communities caused strong effects on S. marcescens evolution. The results indicate that evolutionary responses (of a focal species) are different in communities, compared to species evolving alone. Moreover, selection can lead to very different outcomes depending on the community structure. Such context dependencies cast doubt on our ability to predict the course of evolution in the wild, where species often inhabit very different kinds of communities. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  7. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  8. Structural change of cooper pairs in color superconductivity. Crossover from weak coupling to strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)

    2002-09-01

    The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)

  9. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  10. Radiation-induced structural transitions in composite materials with strong interaction of polymer components

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Koztaeva, U.P.

    2002-01-01

    In earlier papers the internal friction (IF) method was applied to studies of structural relaxation in different types of polymer-based composite materials (glass-cloth, paper-based and foiled laminates impregnated by epoxy and phenolic resins) irradiated by 2 MeV electrons in the dose range of 0.1-50.0 MGy. Selectivity and high sensibility of the internal friction method allowed to distinguish glassy transitions in different structural components of the composites. The relaxation processes observed were identified and attributed to structural alterations in the polymer filler, the binder and the boundary layers. It was shown that changes in the parameters of relaxation maximums during irradiation can be considered as quantitative characteristics for the degree of radiation-induced degradation or cross-linking of polymer molecules. This paper deals with specific features of IF spectra in paper-based laminates where both the filler fibers and the binder are strongly interacting polymers. Anisotropy of viscous and elastic properties is very weak for this kind of materials, so that IF measurements give nearly the same result independently on the filler fiber orientation in the sample. The main reasons for it are the rigid chain structure of fillers (polyethylene-terephthalate and cellulose) and the good adhesion strengthened by diffusion of the epoxy or phenolic binder to defect regions of the filler.The IF temperature dependence observed in paper-based laminates is represented by superposition of two very broad relaxation maximums associated with transitions from glassy to high-elastic state in structural components, each based on one of the polymers. The inflection points characteristic for IF temperature dependence in paper-based laminates give a reason to treat them as a superposition of α-peaks associated with transitions from glassy to high-elastic state in structural components of a composite based on the binder and the filler, respectively. Another

  11. Angular structure of jet quenching within a hybrid strong/weak coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2017-03-27

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the

  12. Triclosan alterations of estuarine phytoplankton community structure.

    Science.gov (United States)

    Pinckney, James L; Thompson, Laura; Hylton, Sarah

    2017-06-15

    Antimicrobial additives in pharmaceutical and personal care products are a major environmental concern due to their potential ecological impacts on aquatic ecosystems. Triclosan (TCS) has been used as an antiseptic, disinfectant, and preservative in various media. The sublethal and lethal effects of TCS on estuarine phytoplankton community composition were investigated using bioassays of natural phytoplankton communities to measure phytoplankton responses to different concentrations of TCS ranging from 1 to 200μgl -1 . The EC 50 (the concentration of an inhibitor where the growth is reduced by half) for phytoplankton groups (diatoms, chlorophytes, cryptophytes) examined in this ranged from 10.7 to 113.8μg TCS l -1 . Exposures resulted in major shifts in phytoplankton community composition at concentrations as low as 1.0μg TCS l -1 . This study demonstrates estuarine ecosystem sensitivity to TCS exposure and highlights potential alterations in phytoplankton community composition at what are typically environmental concentrations of TCS in urbanized estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of drought on avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Brian D. Wardlow; Volker C. Radeloff

    2010-01-01

    Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most...

  14. Virality Prediction and Community Structure in Social Networks

    Science.gov (United States)

    Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol

    2013-08-01

    How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

  15. Floral colour versus phylogeny in structuring subalpine flowering communities

    OpenAIRE

    McEwen, Jamie R.; Vamosi, Jana C.

    2010-01-01

    The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chanc...

  16. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  17. Bacterial community structure in the Cerasus sachalinensis Kom ...

    African Journals Online (AJOL)

    Jane

    2011-07-21

    Jul 21, 2011 ... The bacterial community structures of the Cerasus sachalinensis Kom. rhizosphere in wild and cultivated soil were studied and the community changes in different growth stages were analyzed by the PCR-denaturing gradient gel electrophoresis (PCR-DGGE) method. The results showed that the bacterial ...

  18. Colonisation and community structure of benthic diatoms on artificial ...

    African Journals Online (AJOL)

    This was undertaken using tiles as artificial substrates so that we could study how the communities developed after the flood disturbance. The diatom community structure was assessed over a 28-day period following a flood event in October 2012. The Mann Whitney test indicated that there was a statistically significant ...

  19. A new dynamic null model for phylogenetic community structure

    NARCIS (Netherlands)

    Pigot, Alex L; Etienne, Rampal S

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by

  20. Determinants of the detrital arthropod community structure

    DEFF Research Database (Denmark)

    Lessard, J.P.; Sackett, Tara E.; Reynolds, William N.

    2011-01-01

    for the effect of climatic variation along the elevational gradient, food resource addition and microclimate alteration influenced the richness and abundance of some taxa. However, the effect of food resource addition and microclimate alteration on the richness and abundance of arthropods did not vary...... manipulative experiments along environmental gradients can help tease apart the relative importance and detect the interactive effects of local-scale factors and broad-scale climatic variation in shaping communities...

  1. Analysis of bacterial and fungal community structure in replant ...

    African Journals Online (AJOL)

    user

    2012-06-19

    Jun 19, 2012 ... roots and few functional root hairs. Normally, RDS is ... community structure of microbes, including microbes as yet unable to be cultured. ..... Due to the fact that. Method 3 in this paper has the advantages in combining.

  2. Implementing a structured triage system at a community health ...

    African Journals Online (AJOL)

    Implementing a structured triage system at a community health centre using Kaizen. ... and a resultant increased workload for doctors; management is concerned ... Aim: We set out to standardise the triage process and to manage unbooked ...

  3. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  4. Quantum Monte Carlo methods and strongly correlated electrons on honeycomb structures

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Thomas C.

    2010-12-16

    In this thesis we apply recently developed, as well as sophisticated quantum Monte Carlo methods to numerically investigate models of strongly correlated electron systems on honeycomb structures. The latter are of particular interest owing to their unique properties when simulating electrons on them, like the relativistic dispersion, strong quantum fluctuations and their resistance against instabilities. This work covers several projects including the advancement of the weak-coupling continuous time quantum Monte Carlo and its application to zero temperature and phonons, quantum phase transitions of valence bond solids in spin-1/2 Heisenberg systems using projector quantum Monte Carlo in the valence bond basis, and the magnetic field induced transition to a canted antiferromagnet of the Hubbard model on the honeycomb lattice. The emphasis lies on two projects investigating the phase diagram of the SU(2) and the SU(N)-symmetric Hubbard model on the hexagonal lattice. At sufficiently low temperatures, condensed-matter systems tend to develop order. An exception are quantum spin-liquids, where fluctuations prevent a transition to an ordered state down to the lowest temperatures. Previously elusive in experimentally relevant microscopic two-dimensional models, we show by means of large-scale quantum Monte Carlo simulations of the SU(2) Hubbard model on the honeycomb lattice, that a quantum spin-liquid emerges between the state described by massless Dirac fermions and an antiferromagnetically ordered Mott insulator. This unexpected quantum-disordered state is found to be a short-range resonating valence bond liquid, akin to the one proposed for high temperature superconductors. Inspired by the rich phase diagrams of SU(N) models we study the SU(N)-symmetric Hubbard Heisenberg quantum antiferromagnet on the honeycomb lattice to investigate the reliability of 1/N corrections to large-N results by means of numerically exact QMC simulations. We study the melting of phases

  5. Permafrost soil characteristics and microbial community structure across a boreal forest watershed vary over short spatial scales and dictate community responses to thaw.

    Science.gov (United States)

    Stegen, J.; Bottos, E. M.; Kennedy, D.; Romero, E. B.; Fansler, S.; Chu, R. K.; Tfaily, M.; Jansson, J.; Bernstein, H. C.; Brown, J. M.; Markillie, L. M.

    2017-12-01

    Understanding drivers of permafrost microbial community structure and function is critical for understanding permafrost microbiology and predicting ecosystem responses to thaw; however, studies describing ecological controls on these communities are lacking. We hypothesize that permafrost communities are uniquely shaped by constraints imposed by prolonged freezing, and decoupled from the selective factors that influence non-permafrost soil communities, but that pre-thaw environmental and community characteristics will be strong determinants of community structure and function post-thaw. We characterized patterns of environmental variation and microbial community composition in sixty permafrost samples spanning landscape gradients in a boreal forest watershed, and monitored community responses to thaw. Consistent with our hypothesis, we found that, proportionally, the strongest process influencing permafrost community composition was dispersal limitation (0.36), exceeding the influence of homogenous selection (0.21) and variable selection (0.16), and that deterministic selection arose primarily from energetic constraints of the permafrost environment. Our data supported a structural equation model in which organic carbon thermodynamics and organic acid content, influenced redox conditions and total selection. Post-thaw community composition was found to be driven primarily by pre-thaw community composition, indicating a strong influence of historical conditions. Together, these results suggest that community responses to thaw may be highly varied over short distances and that changes in community structure and function are likely to be drastic, as changes to system hydrology mobilize organisms and nutrients, thereby relieving the primary constraints on the system. These findings are being integrated with metabolomic and metatranscriptomic analyses to improve understanding of how pre-thaw conditions can be used to predict microbial activity post-thaw.

  6. Covariance, correlation matrix, and the multiscale community structure of networks.

    Science.gov (United States)

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  7. The overlapping community structure of structural brain network in young healthy individuals.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2011-05-01

    Full Text Available Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.

  8. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    Lauprecht, W.; Imgrund, H.; Coldren, P.

    1975-01-01

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good

  9. Dissolved nitrogen transformations and microbial community structure in the organic layer of forest soils in Olkiluoto in 2006

    International Nuclear Information System (INIS)

    Potila, H.; Sarjala, T.; Aro, L.

    2007-02-01

    Carbon (C) and nitrogen (N) cycles in the ecosystem are strongly coupled. Biomass, structure and activity of the bacterial and fungal community are the key factors influencing C and N cycles. Changes in the function of soil microbial community can be a signal of plant responses to environmental changes. Dissolved N compounds, microbial biomass, microbial activity, fungal community structure and functional diversity of microbial communities were measured in September 2006 from five monitoring plots on Olkiluoto to assess information about soil microbial community structure and activity. High within and between variation in the studied plots were detected. However, in this study the values and their variation in the level of N mineralisation, dissolved N compounds, fungal biomass and microbial community structure in the studied plots were within a normal range in comparison with other published data of similar forest types in Finland. (orig.)

  10. Floral colour versus phylogeny in structuring subalpine flowering communities.

    Science.gov (United States)

    McEwen, Jamie R; Vamosi, Jana C

    2010-10-07

    The relative number of seeds produced by competing species can influence the community structure; yet, traits that influence seed production, such as pollinator attraction and floral colour, have received little attention in community ecology. Here, we analyse floral colour using reflectance spectra that include near-UV and examined the phylogenetic signal of floral colour. We found that coflowering species within communities tended to be more divergent in floral colour than expected by chance. However, coflowering species were not phylogenetically dispersed, in part due to our finding that floral colour is a labile trait with a weak phylogenetic signal. Furthermore, while we found that locally rare and common species exhibited equivalent floral colour distances from their coflowering neighbours, frequent species (those found in more communities) exhibited higher colour distances from their coflowering neighbours. Our findings support recent studies, which have found that (i) plant lineages exhibit frequent floral colour transitions; and (ii) traits that influence local population dynamics contribute to community structure.

  11. Fragmentation alters stream fish community structure in dendritic ecological networks.

    Science.gov (United States)

    Perkin, Joshuah S; Gido, Keith B

    2012-12-01

    Effects of fragmentation on the ecology of organisms occupying dendritic ecological networks (DENs) have recently been described through both conceptual and mathematical models, but few hypotheses have been tested in complex, real-world ecosystems. Stream fishes provide a model system for assessing effects of fragmentation on the structure of communities occurring within DENs, including how fragmentation alters metacommunity dynamics and biodiversity. A recently developed habitat-availability measure, the "dendritic connectivity index" (DCI), allows for assigning quantitative measures of connectivity in DENs regardless of network extent or complexity, and might be used to predict fish community response to fragmentation. We characterized stream fish community structure in 12 DENs in the Great Plains, USA, during periods of dynamic (summer) and muted (fall) discharge regimes to test the DCI as a predictive model of fish community response to fragmentation imposed by road crossings. Results indicated that fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) relative to communities that maintained connectivity with the surrounding DEN during summer and fall. Furthermore, isolated communities had greater dissimilarity (beta diversity) to downstream sites notisolated by road crossings during summer and fall. Finally, dissimilarity among communities within DENs decreased as a function of increased habitat connectivity (measured using the DCI) for summer and fall, suggesting that communities within highly connected DENs tend to be more homogeneous. Our results indicate that the DCI is sensitive to community effects of fragmentation in riverscapes and might be used by managers to predict ecological responses to changes in habitat connectivity. Moreover, our findings illustrate that relating structural connectivity of riverscapes to functional connectivity among communities might aid in maintaining metacommunity

  12. Short-term changes in a microplankton community in the Chukchi Sea during autumn: consequences of a strong wind event

    Science.gov (United States)

    Yokoi, Naoya; Matsuno, Kohei; Ichinomiya, Mutsuo; Yamaguchi, Atsushi; Nishino, Shigeto; Onodera, Jonaotaro; Inoue, Jun; Kikuchi, Takashi

    2016-02-01

    Recent studies indicate an increase in atmospheric turbulence in the Chukchi Sea due to the recent drastic sea-ice reduction during summer months. The importance of the effects of this atmospheric turbulence on the marine ecosystem in this region, however, is not fully understood. To evaluate the effects of atmospheric turbulence on the marine ecosystem, high-frequency sampling (daily) from five layers of the microplankton community between 0 and 30 m at a fixed station in the Chukchi Sea from 10 through 25 September 2013 was conducted. During the study period, a strong wind event (SWE) was observed on 18 and 19 September. The abundance of microplankton was 2.6 to 17.6 cells mL-1, with a maximum abundance being reported at 20 m on 22 September, while diatoms were the most dominant taxa throughout the study period. The abundance of diatoms, dinoflagellates and ciliates ranged between 1.6 and 14.1, 0.5 and 2.4 and 0.1 and 2.8 cells mL-1, respectively. Diatoms belonging to 7 genera consisting of 35 species (Cylindrotheca closterium and Leptocylindrus danicus were dominant), dinoflagellates belonging to 7 genera consisting of 25 species (Prorocentrum balticum and Gymnodinium spp. were dominant) and ciliates belonging to 7 genera consisting of 8 species (Strobilidium spp. and Strombidium spp. were dominant) were identified. Within the microplankton species, there were 11 species with abundances that increased after the SWE, while there was no species with an abundance that decreased following the SWE. It is conjectured that atmospheric turbulences, such as that of an SWE, may supply sufficient nutrients to the surface layer that subsequently enhance the small bloom under the weak stratification of the Chukchi Sea Shelf during the autumn months. After the bloom, the dominant diatom community then shifts from centric-dominated to one where centric/pennate are more equal in abundance.

  13. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  14. Examining microbial community response to a strong chemical gradient: the effects of surface coal mining on stream bacteria

    Science.gov (United States)

    Bier, R.; Lindberg, T. T.; Wang, S.; Ellis, J. C.; Di Giulio, R. T.; Bernhardt, E. S.

    2012-12-01

    Surface coal mining is the dominant form of land cover change in northern and central Appalachia. In this process, shallow coal seams are exposed by removing overlying rock with explosives. The resulting fragmented carbonate rock and coal residues are disposed of in stream valleys. These valley fills generate alkaline mine drainage (AlkMD), dramatically increasing alkalinity, ionic strength, substrate supply (esp. SO42-), and trace element (Mn, Li, Se, U) concentrations in downstream rivers as well as significant losses of sensitive fish and macroinvertebrate species. In prior work within the Mud River, which drains the largest surface mine complex in Appalachia, we found that concentrations of AlkMD increase proportionally with the extent of upstream mining. Here we ask "How do stream microbial communities change along this strong chemical gradient?" We collected surface water and benthic biofilms from 25 stream reaches throughout the Mud River spanning the full range of surface mining impacts, with 0-96% of the contributing watershed area converted to surface coal mines. Microbial communities were collected from biofilms grown on a common substrate (red maple veneers) that were incubated in each stream reach for four months prior to collection in April, 2011. 16S rRNA genes from microbial communities at each study site were examined using 454 sequencing and compared with a generalized UniFrac distance matrix (674 sequence eveness) that was used in statistical analyses. Water chemistry at the sites was sampled monthly from July 2010 to December 2010 and again in April 2011. In April, surface water concentrations of SO42-, Ca2+, Mg2+, and Se2- increased linearly with the extent of upstream mining (all regressions R2 >0.43; pPERMANOVA; p=0.029). Bacterial diversity (OTU richness defined at 3% sequence difference) peaked at intermediate conductivities (600 μS cm-1). Environmental data that correlated significantly with the ordination axes were a variety of surface

  15. Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities.

    Directory of Open Access Journals (Sweden)

    Sylvie Estrela

    Full Text Available Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships, and species spatial organization (structural relationships are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource is traded for detoxification (service and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition, and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies.

  16. Bacterial community structure at the microscale in two different soils

    Czech Academy of Sciences Publication Activity Database

    Michelland, R.; Thioulouse, J.; Kyselková, Martina; Grundmann, G.L.

    2016-01-01

    Roč. 72, č. 3 (2016), s. 717-724 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : abundancy-occupancy relationship * bacteria community structure * frequency-occupancy relationship * microscale in soil * soil microbial diversity * soil structure Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  17. Climate extremes drive changes in functional community structure.

    Science.gov (United States)

    Boucek, Ross E; Rehage, Jennifer S

    2014-06-01

    The response of communities to climate extremes can be quite variable. Much of this variation has been attributed to differences in community-specific functional trait diversity, as well as community composition. Yet, few if any studies have explicitly tested the response of the functional trait structure of communities following climate extremes (CEs). Recently in South Florida, two independent, but sequential potential CEs took place, a 2010 cold front, followed by a 2011 drought, both of which had profound impacts on a subtropical estuarine fish community. These CEs provided an opportunity to test whether the structure of South Florida fish communities following each extreme was a result of species-specific differences in functional traits. From historical temperature (1927-2012) and freshwater inflows records into the estuary (1955-2012), we determined that the cold front was a statistically extreme disturbance, while the drought was not, but rather a decadal rare disturbance. The two disturbances predictably affected different parts of functional community structure and thus different component species. The cold front virtually eliminated tropical species, including large-bodied snook, mojarra species, nonnative cichlids, and striped mullet, while having little affect on temperate fishes. Likewise, the drought severely impacted freshwater fishes including Florida gar, bowfin, and two centrarchids, with little effect on euryhaline species. Our findings illustrate the ability of this approach to predict and detect both the filtering effects of different types of disturbances and the implications of the resulting changes in community structure. Further, we highlight the value of this approach to developing predictive frameworks for better understanding community responses to global change. © 2014 John Wiley & Sons Ltd.

  18. Global and local targeted immunization in networks with community structure

    International Nuclear Information System (INIS)

    Yan, Shu; Tang, Shaoting; Pei, Sen; Zheng, Zhiming; Fang, Wenyi

    2015-01-01

    Immunization plays an important role in the field of epidemic spreading in complex networks. In previous studies, targeted immunization has been proved to be an effective strategy. However, when extended to networks with community structure, it is unknown whether the superior strategy is to vaccinate the nodes who have the most connections in the entire network (global strategy), or those in the original community where epidemic starts to spread (local strategy). In this work, by using both analytic approaches and simulations, we observe that the answer depends on the closeness between communities. If communities are tied closely, the global strategy is superior to the local strategy. Otherwise, the local targeted immunization is advantageous. The existence of a transitional value of closeness implies that we should adopt different strategies. Furthermore, we extend our investigation from two-community networks to multi-community networks. We consider the mode of community connection and the location of community where epidemic starts to spread. Both simulation results and theoretical predictions show that local strategy is a better option for immunization in most cases. But if the epidemic begins from a core community, global strategy is superior in some cases. (paper)

  19. Relations between water physico-chemistry and benthic algal communities in a northern Canadian watershed: defining reference conditions using multiple descriptors of community structure.

    Science.gov (United States)

    Thomas, Kathryn E; Hall, Roland I; Scrimgeour, Garry J

    2015-09-01

    Defining reference conditions is central to identifying environmental effects of anthropogenic activities. Using a watershed approach, we quantified reference conditions for benthic algal communities and their relations to physico-chemical conditions in rivers in the South Nahanni River watershed, NWT, Canada, in 2008 and 2009. We also compared the ability of three descriptors that vary in terms of analytical costs to define algal community structure based on relative abundances of (i) all algal taxa, (ii) only diatom taxa, and (iii) photosynthetic pigments. Ordination analyses showed that variance in algal community structure was strongly related to gradients in environmental variables describing water physico-chemistry, stream habitats, and sub-watershed structure. Water physico-chemistry and local watershed-scale descriptors differed significantly between algal communities from sites in the Selwyn Mountain ecoregion compared to sites in the Nahanni-Hyland ecoregions. Distinct differences in algal community types between ecoregions were apparent irrespective of whether algal community structure was defined using all algal taxa, diatom taxa, or photosynthetic pigments. Two algal community types were highly predictable using environmental variables, a core consideration in the development of Reference Condition Approach (RCA) models. These results suggest that assessments of environmental impacts could be completed using RCA models for each ecoregion. We suggest that use of algal pigments, a high through-put analysis, is a promising alternative compared to more labor-intensive and costly taxonomic approaches for defining algal community structure.

  20. Function assessment of coastal ecosystem based on phytoplankton community structure

    DEFF Research Database (Denmark)

    Haraguchi, Lumi

    2018-01-01

    on phytoplankton community structure; and 3) investigating the role of planktonic communities on the cycling of dissolved organic matter. Those objectives were addressed focusing the temperate mesohaline estuary of Roskilde Fjord (Denmark). Paper I, explores the use of Pulse-shape recording flow cytometry (PFCM...... as an energy reservoir, buffering changes in the nutrient supply. Finally, the results embedded in this thesis demonstrate the importance of integrating different time scales to understand functioning of phytoplankton communities. Phytoplankton dynamics should not be regarded just in light of inorganic......This Ph.D. project aimed to improve the knowledge on phytoplankton community structure and its influence in the carbon transfer and nutrient cycling in coastal waters, by: 1) assessing the importance of phytoplankton

  1. Dynamic structure of stock communities: a comparative study between stock returns and turnover rates

    Science.gov (United States)

    Su, Li-Ling; Jiang, Xiong-Fei; Li, Sai-Ping; Zhong, Li-Xin; Ren, Fei

    2017-07-01

    The detection of community structure in stock market is of theoretical and practical significance for the study of financial dynamics and portfolio risk estimation. We here study the community structures in Chinese stock markets from the aspects of both price returns and turnover rates, by using a combination of the PMFG and infomap methods based on a distance matrix. An empirical study using the overall data set shows that for both returns and turnover rates the largest communities are composed of specific industrial or conceptional sectors and the correlation inside a sector is generally larger than the correlation between different sectors. However, the community structure for turnover rates is more complex than that for returns, which indicates that the interactions between stocks revealed by turnover rates may contain more information. This conclusion is further confirmed by the analysis of the changes in the dynamics of community structures over five sub-periods. Sectors like banks, real estate, health care and New Shanghai take turns to comprise a few of the largest communities in different sub-periods, and more interestingly several specific sectors appear in the communities with different rank orders for returns and turnover rates even in the same sub-period. To better understand their differences, a comparison between the evolution of the returns and turnover rates of the stocks from these sectors is conducted. We find that stock prices only had large changes around important events while turnover rates surged after each of these events relevant to specific sectors, which shows strong evidence that the turnover rates are more susceptible to exogenous shocks than returns and its measurement for community detection may contain more useful information about market structure.

  2. Body size, energy use, and community structure of small mammals

    OpenAIRE

    Ernest, S.K. Morgan

    2005-01-01

    Body size has long been hypothesized to play a major role in community structure and dynamics. Two general hypotheses exist for how resources are distributed among body sizes: (1) resources are equally available and uniformly utilized across body sizes and (2) resources are differentially available to organisms of different body sizes, resulting in a nonuniform or modal distribution. It has also been predicted that the distri-bution of body sizes of species in a community should reflect the u...

  3. Change in fish community structure in the Barents Sea.

    Directory of Open Access Journals (Sweden)

    Michaela Aschan

    Full Text Available Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992-2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996-1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.

  4. Sampling from complex networks with high community structures.

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R; Rajabi, Arezo

    2012-06-01

    In this paper, we propose a novel link-tracing sampling algorithm, based on the concepts from PageRank vectors, to sample from networks with high community structures. Our method has two phases; (1) Sampling the closest nodes to the initial nodes by approximating personalized PageRank vectors and (2) Jumping to a new community by using PageRank vectors and unknown neighbors. Empirical studies on several synthetic and real-world networks show that the proposed method improves the performance of network sampling compared to the popular link-based sampling methods in terms of accuracy and visited communities.

  5. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  6. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean

    Science.gov (United States)

    Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino

    2015-01-01

    The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280

  7. Structure of Mesozooplankton Communities in the Coastal Waters of Morocco

    Science.gov (United States)

    Lidvanov, V. V.; Grabko, O. G.; Kukuev, E. I.; Korolkova, T. G.

    2018-03-01

    Mero- and holoplanktonic organisms from 23 large taxa have been detected in the coastal waters of Morocco. Seven Cladocera species and 164 Copepoda species were identified. Copepod fauna mostly consisted of oceanic epipelagic widely tropical species, but the constant species group (frequency of occurrence over 50%) included neritic and neritic-oceanic widely tropical species. The neritic community that formed a biotopic association with coastal upwelling waters and the distant-neritic community associated with Canary Current waters were the two major communities detected. The former community was characterized by a high abundance and biomass (5700 ind./m3 and 260 mg/m3) and predominance of neritic species. The trophic structure was dominated by thin filter feeders, mixed-food consumers, and small grabbers; the species structure was dominated by Paracalanus indicus, Acartia clausi, and Oncaea curta; the indices of species diversity (3.07 bit/ind.) and evenness (0.63) were relatively low. The latter community was characterized by low abundance and biomass (1150 ind./m3 and 90 mg/m3); variable biotopic, trophic, and species structure; and higher Shannon indices (3.99 bit/ind.) and Pielou (0.75). Seasonal variation of the abundance of organisms was not detected in the communities. Anomalous mesozooplankton states were observed in summer 1998 and winter 1998-1999.

  8. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  9. Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes.

    Science.gov (United States)

    Reis, Francisca; Valdiviesso, Teresa; Varela, Carolina; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa

    2018-05-01

    Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.

  10. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

  11. Environmental and Spatial Influences on Biogeography and Community Structure of Benthic Diatoms

    Science.gov (United States)

    Plante, C.; Hill-Spanik, K.; Lowry, J.

    2016-02-01

    Several theoretical and practical reasons suggest that benthic microalgae could be useful bioindicators. For instance, an ideal indicator species or community would be associated with a given habitat due to local physical conditions or biotic interactions (i.e., `environmental filtering'), not due to dispersal limitation. Due to their small size, immense abundances, and reliance on passive dispersal, the popular notion about micro-organisms is that `Everything is everywhere, but, the environment selects' (Baas-Becking 1934). Although much recent research concerning planktonic bacteria and dispersal limitation has been conducted, very little in this regard is known about microeukaryotes, especially benthic microbes. The purpose of our study was to identify and compare spatial and environmental influences on benthic diatom community structure and biogeography. In summer 2015, sediment was sampled at various spatial scales from four barrier island beaches in South Carolina, USA, and high-throughput (Ion Torrent) DNA sequencing was used to characterize diatom assemblages. ANOSIM and principal coordinates analysis revealed that communities were statistically distinct on the four islands. Community dissimilarity was compared to both spatial distance and environmental differences to determine potential influences of these variables on community structure. We found that geographic distance had the strongest correlation with community similarity, with and without one anomalous location, while differences in temperature (air, water, and sediment), nutrients, organic matter, and turbidity also had significant but weaker relationships with community structure. Surprisingly, air temperature, which changes on very short time scales, appeared to be the environmental factor most strongly related to diatom species composition, potentially implicating some unmeasured variable (e.g., cloud cover). However, we also found that temperature and geographic distance were strongly

  12. Epidemic spreading in weighted scale-free networks with community structure

    International Nuclear Information System (INIS)

    Chu, Xiangwei; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng

    2009-01-01

    Many empirical studies reveal that the weights and community structure are ubiquitous in various natural and artificial networks. In this paper, based on the SI disease model, we investigate the epidemic spreading in weighted scale-free networks with community structure. Two exponents, α and β, are introduced to weight the internal edges and external edges, respectively; and a tunable probability parameter q is also introduced to adjust the strength of community structure. We find the external weighting exponent β plays a much more important role in slackening the epidemic spreading and reducing the danger brought by the epidemic than the internal weighting exponent α. Moreover, a novel result we find is that the strong community structure is no longer helpful for slackening the danger brought by the epidemic in the weighted cases. In addition, we show the hierarchical dynamics of the epidemic spreading in the weighted scale-free networks with communities which is also displayed in the famous BA scale-free networks

  13. Impact of metal pollution on fungal diversity and community structures.

    Science.gov (United States)

    Op De Beeck, Michiel; Lievens, Bart; Busschaert, Pieter; Rineau, Francois; Smits, Mark; Vangronsveld, Jaco; Colpaert, Jan V

    2015-06-01

    The impact of metal pollution on plant communities has been studied extensively in the past, but little is known about the effects of metal pollution on fungal communities that occur in metal-polluted soils. Metal-tolerant ecotypes of the ectomycorrhizal fungus Suillus luteus are frequently found in pioneer pine forests in the Campine region in Belgium on metal-polluted soils. We hypothesized that metal pollution would play an important role in shaping below-ground fungal communities that occur in these soils and that Suillus luteus would be a dominant player. To test these hypotheses, the fungal communities in a young pine plantation in soil polluted with zinc, and cadmium were studied using 454 amplicon pyrosequencing. Results show that zinc, cadmium and soil organic matter content were strongly correlated with the fungal community composition, but no effects on fungal diversity were observed. As hypothesized, S. luteus was found to be a dominant member of the studied fungal communities. However, other dominant fungal species, such as Sistotrema sp., Wilcoxina mikolae and Cadophora finlandica were found as well. Their presence in metal-polluted sites is discussed. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Nash Stability in Additively Separable Hedonic Games and Community Structures

    DEFF Research Database (Denmark)

    Olsen, Martin

    2009-01-01

      We prove that the problem of deciding whether a Nash stable   partition exists in an Additively Separable Hedonic Game is   NP-complete. We also show that the problem of deciding whether a   non trivial Nash stable partition exists in an   Additively Separable Hedonic Game with   non......-negative and symmetric   preferences is NP-complete. We motivate our study of the   computational complexity by linking Nash stable partitions in   Additively Separable Hedonic Games to community structures in   networks. Our results formally justify that computing community   structures in general is hard....

  15. The structure and dynamics of a rhinolophid bat community of Latium (Central Italy (Chiroptera

    Directory of Open Access Journals (Sweden)

    Pierangelo Crucitti

    1998-12-01

    Full Text Available <strong>Abstract> The present paper summarizes the results of 3 years of observation made at six month intervals for six months at a time (18 field surveys in a man-made cave in Northern Latium (Central Italy from April 1992 to April 1995. Its aim is to analyze the main structural and dynamic features of a bat community which hibernates at the shelter. Rhinolophus ferrumequinum and especially Rhinolophus euryale are the most abundant species. Population dynamics of both species as well as that of Rhinoluphus hipposideros show higher levels of abundance between December and February of each semester. In mid-winter, large and sometimes mixed aggregations of Rhinolophus ferrumequinum and Rhinolophus euryale in deep hypothermia occur. A small number of Rhinolophus hipposideros, mainly adult males, was observed. The paper compares the structure of this community to the structure of another community of the same district which has been previously analyzed, in which Vespertilionidae, especially Miniopterus schreibersi, are much more abundant. Despite the difference in species composition, body size was found to be a significant and common feature (as highlighted by forearm length, of the dominant species in both communities, Rhinolophus euryale and Miniopterus schreibersi respectively.

  16. Fracture mechanism of a dispersion-hardened molybdenum alloy with strong structural interfaces

    International Nuclear Information System (INIS)

    Vasil'ev, A.D.; Malashenko, I.S.; Moiseev, V.F.; Pechkovskij, Eh.P.; Sul'zhenko, V.K.; Trefilov, V.I.; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1978-01-01

    Fracture mechanism in the two-phase Mo-15wt.%Nb-3.5 vol.% TiN alloy known to be of ''brittle matrix-strong interfaces'' type has been investigated depending on tensile test temperature. Several temperature intervals of fracture have been found, each of them having its own peculiarities. A scheme is suggested for fracture mechanism changes in dispersion-hardened alloys with strong interfaces. At low test temperatures brittle cleavage fracture takes place. With temperature increase fracture mechanisms change in the following way: brittle intergranular fracture; fracture of ''microvoid coalescence'' type; fracture typical for reinforced materials with ductile matrix; intergran laru fracture. Particles of strengthening phase have been shown to play different roles depending on the test temperature in the fracture of the alloys studied

  17. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    Science.gov (United States)

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  18. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils

    Science.gov (United States)

    Delgado-Balbuena, Laura; Bello-López, Juan M.; Navarro-Noya, Yendi E.; Rodríguez-Valentín, Analine; Luna-Guido, Marco L.; Dendooven, Luc

    2016-01-01

    Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100%) > earthworms applied (92%) > organic material applied (77%) > untreated soil (57%) > surfactant applied (34%) after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes), Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes) and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil, but the

  19. Changes in the Bacterial Community Structure of Remediated Anthracene-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Laura Delgado-Balbuena

    Full Text Available Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826 accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485 inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E. fetida or organic material that served as food for the earthworms for 56 days. In both soils, the removal of anthracene was in the order: mixing soil weekly (100% > earthworms applied (92% > organic material applied (77% > untreated soil (57% > surfactant applied (34% after 56 days. There was no clear link between removal of anthracene from soil and changes in the bacterial community structure. On the one hand, application of earthworms removed most of the contaminant from the arable soil and had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of the Acidobacteria, Chloroflexi and Gemmatimonadetes, and an increase in that of the Proteobacteria compared to the unamended soil. Mixing the soil weekly removed all anthracene from the arable soil, but had little or no effect on the bacterial community structure. On the other hand, application of the surfactant inhibited the removal of anthracene from the arable soil compared to the untreated soil, but had a strong effect on the bacterial community structure, i.e. a decrease in the relative abundance of Cytophagia (Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes and an increase in that of the Flavobacteria (Bacteroidetes and Proteobacteria. Additionally, the removal of anthracene was similar in the different treatments of both the arable and pasture soil

  20. [Fungal community structure in phase II composting of Volvariella volvacea].

    Science.gov (United States)

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  1. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover.

    Science.gov (United States)

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-03-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.

  2. Functional and phylogenetic structure of island bird communities.

    Science.gov (United States)

    Si, Xingfeng; Cadotte, Marc W; Zeng, Di; Baselga, Andrés; Zhao, Yuhao; Li, Jiaqi; Wu, Yiru; Wang, Siyu; Ding, Ping

    2017-05-01

    Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental

  3. Atomic-structure effects in strong-field multiphoton detachment and ionization

    International Nuclear Information System (INIS)

    AAberg, T.; Mu, X.; Ruscheinski, J.; Crasemann, B.

    1994-01-01

    Above-threshold photoelectron detachment and ionization spectra are investigated theoretically in the tunneling and over-barrier regime as a function of wavelength (≥ 1.064 μm) and polarization of the electromagnetic field. It is found that the zeros in the initial-state wave function can drastically affect the shape of the high-energy photoelectron distribution. The phenomenon is not predicted by tunneling and related models and hence can test their validity and reveal whether Keldysh-type theories are in general applicable to strong-field multiphoton dynamics. (orig.)

  4. Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions

    Science.gov (United States)

    Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.

    2016-02-01

    The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.

  5. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    Science.gov (United States)

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  6. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  7. Polygyny and strong genetic structuring within an isolated population of the wood ant Formica rufa

    Directory of Open Access Journals (Sweden)

    Wouter Dekoninck

    2014-12-01

    Full Text Available Social structuring of populations within some Formica species exhibits considerable variation going from monodomous and monogynous populations to polydomous, polygynous populations. The wood ant species Formica rufa appears to be mainly monodomous and monogynous throughout most of its distribution area in central and northern Europe. Only occasionally it was mentioned that F. rufa can have both polygynous and monogynous colonies in the same geographical region. We studied an isolated polydomous F. rufa population in a deciduous mixed forest in the north-west of Belgium. The level of polydomy within the colonies varied from monodomous to 11 nests per colony. Our genetic analysis of eight variable microsatellites suggest an oligo- to polygynous structure for at least the major part of the sampled nests. Relatedness amongst nest mate workers varies considerable within the population and colonies but confirms in general a polygynous structure. Additionally high genetic diversity (e.g. up to 8 out of 11 alleles per nest for the most variable locus and high within nest genetic variance (93% indicate that multiple queens contribute to the gene pool of workers of the same nest. Moreover significant genetic structuring among colonies indicates that gene flow between colonies is restricted and that exchange of workers between colonies is very limited. Finally we explain how possible factors as budding and the absence of Serviformica can explain the differences in genetic structure within this polygynous F. rufa population.

  8. Probing the Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference

    Science.gov (United States)

    Daylan, Tansu; Cyr-Racine, Francis-Yan; Diaz Rivero, Ana; Dvorkin, Cora; Finkbeiner, Douglas P.

    2018-02-01

    Strong lensing is a sensitive probe of the small-scale density fluctuations in the Universe. We implement a pipeline to model strongly lensed systems using probabilistic cataloging, which is a transdimensional, hierarchical, and Bayesian framework to sample from a metamodel (union of models with different dimensionality) consistent with observed photon count maps. Probabilistic cataloging allows one to robustly characterize modeling covariances within and across lens models with different numbers of subhalos. Unlike traditional cataloging of subhalos, it does not require model subhalos to improve the goodness of fit above the detection threshold. Instead, it allows the exploitation of all information contained in the photon count maps—for instance, when constraining the subhalo mass function. We further show that, by not including these small subhalos in the lens model, fixed-dimensional inference methods can significantly mismodel the data. Using a simulated Hubble Space Telescope data set, we show that the subhalo mass function can be probed even when many subhalos in the sample catalogs are individually below the detection threshold and would be absent in a traditional catalog. The implemented software, Probabilistic Cataloger (PCAT) is made publicly available at https://github.com/tdaylan/pcat.

  9. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  10. Zooplankton community structure and dynamics during the transition ...

    African Journals Online (AJOL)

    This study investigates the zooplankton community structure and dynamics of Kufena Rock Pool during the transition from dry season (March to April) to rainy season (May to June) in Zaria, Nigeria. Physicochemical parameters such as temperature, hydrogen ion concentration, electrical conductivity and total dissolved ...

  11. Variability in Parasites' Community Structure and Composition in Cat ...

    African Journals Online (AJOL)

    This study investigated the composition and structure of the parasite communities in Cat fish with respect to levels of water pollution in Lake Victoria. A total of 1071 Clarias gariepinus with mean TL range of 19 to 27 cm were analyzed from three localities in Mwanza Gulf (Kirumba, 298 fish infected with 15 parasite species), ...

  12. Impacts of chemical gradients on microbial community structure

    DEFF Research Database (Denmark)

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E

    2017-01-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox ...... Journal advance online publication, 17 January 2017; doi:10.1038/ismej.2016.175....

  13. Analysis of bacterial and fungal community structure in replant ...

    African Journals Online (AJOL)

    High quality DNA is the basis of analyzing bacterial and fungal community structure in replant strawberry rhizosphere soil with the method of denaturing gradient gel electrophoresis (DGGE). DNA of soil microorganisms was extracted from the rhizosphere soil of strawberries planted in different replanted years (0, two, ...

  14. Zooplankton composition and community structure in Lake Tiga ...

    African Journals Online (AJOL)

    Zooplankton in Lake Tiga was identified and its community structure assessed between March 2009 and March 2011. A total of 54 species of zooplankton was recorded, comprising two species of Protozoa, 26 species of Rotifera, eight species of Copepoda, 11 species of Cladocera, four species of Ostracoda and three ...

  15. Macrofaunal community structure in the littoral zone of a freshwater ...

    African Journals Online (AJOL)

    Multidimensional scaling (MDS) indicated that there were no significant spatial patterns in the macrofaunal community structure within the four zones which could be related to the predominance of euryhaline species, including Marphysa sanguinea (estuarine wonder worm), Arcuatula capensis (estuarine mussel), Macoma ...

  16. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Science.gov (United States)

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  17. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Directory of Open Access Journals (Sweden)

    Nicole L Crane

    Full Text Available The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water and uninhabited (low human impact; cluster 2-oceanic and inhabited (high human impact; and cluster 3-lagoonal (facing the inside of the lagoon and inhabited (highest human impact. Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp. is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  18. Strong School-Community Partnerships in Inclusive Schools Are "Part of the Fabric of the School... We Count on Them"

    Science.gov (United States)

    Gross, Judith M. S.; Haines, Shana J.; Hill, Cokethea; Francis, Grace L.; Blue-Banning, Martha; Turnbull, Ann P.

    2015-01-01

    School-community partnerships play an essential role in successful schools, often providing supports and resources to meet staff, family, and student needs that go beyond what is typically available through school. Reciprocally, community partners benefit from their relationships with schools, including learning about schools' inclusive culture.…

  19. Comparison of the electronic structure of two polymers with strong dipole ordering

    International Nuclear Information System (INIS)

    Xiao Jie; Rosa, Luis G; Poulsen, Matt; Feng, D-Q; Reddy, D Sahadeva; Takacs, James M; Cai, Lei; Zhang, Jiandi; Ducharme, Stephen; Dowben, P A

    2006-01-01

    Two different polymers, with large local electric dipoles, are compared: copolymers of polyvinylidene fluoride with trifluoroethylene [P(VDF-TrFE, 70%:30%)] and polymethylvinylidenecyanide (PMVC). While the different local point group symmetries play a key role, both crystalline polymers exhibit intra-molecular band structure, though the Brillouin zone critical points differ. (letter to the editor)

  20. Structural study of liquids with strong short-range correlation in the atomic distribution

    International Nuclear Information System (INIS)

    Uzuki, Kenji

    1976-01-01

    Structure factors of liquids and amorphous solids having a relatively high degree of ordering in their short-range structures have been measured over a wide range of scattering vectors by means of the T-O-F neutron diffraction using epithermal pulsed neutrons generated by an electron linear accelerator. It has been shown in the case of liquid CS 2 that the size and shape of a molecule existing in the liquid phase are determined from the behaviour of the structure factor in the range of high scattering vectors, and that the structure factor in the region of low scattering vectors informs on inter-molecular orientational and center-center correlations in the liquid state. Moreover, based on highly resoluted radial distribution functions, a free rotating chain model has been discussed for chain molecules contained in liquid Se, and a splitting of the nearest neighbour Pd-Pd and Pd-Si correlation has been clearly found in the amorphous Pdsub(0.8) - Sisub(0.2) alloy. (orig./HK) [de

  1. Nonlinear physics of plasmas. Spatiotemporal structures in strong turbulence. Lecture notes

    International Nuclear Information System (INIS)

    Skoric, Milos M.

    2008-05-01

    This material has been prepared and partly delivered in a series of lectures given at NIFS to Doctor course students of the SOKENDAI (Graduate University of Advanced Studies, Japan) in academic 2007/08 year. Special gratitude is due to colleagues for fruitful collaboration: Profs. K. Mima, Lj. Hadzievski, S. Ishiguro, A. Maluckov, M. Rajkovic and Dr Li Baiwen and Dr Lj. Nikolic, in particular, and to Prof. Mitsuo Kono for motivating the work on this text. I wish to pay unique tribute to close friends and longtime collaborators, Prof. Dik ter Haar and Prof. Moma Jovanovic who are no longer with us. This report contains Chapter 1 (Strong Langmur Turbulence), Chapter 2 (Wave Collapse in Plasmas), Chapter 3 (Spatiotemporal Complexity in Plasmas), Chapter 4 (Relativistic Plasma Interactions) and Chapter 5 (Ponderomotive Potential and Magnetization). (J.P.N.)

  2. Multilabel user classification using the community structure of online networks.

    Science.gov (United States)

    Rizos, Georgios; Papadopoulos, Symeon; Kompatsiaris, Yiannis

    2017-01-01

    We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  3. Multilabel user classification using the community structure of online networks.

    Directory of Open Access Journals (Sweden)

    Georgios Rizos

    Full Text Available We study the problem of semi-supervised, multi-label user classification of networked data in the online social platform setting. We propose a framework that combines unsupervised community extraction and supervised, community-based feature weighting before training a classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE, an algorithm that projects the users of a social graph onto a latent space, but instead of packing the global structure into a matrix of predefined rank, as many spectral and neural representation learning methods do, it extracts local communities for all users in the graph in order to learn a sparse embedding. To this end, we employ an improvement of personalized PageRank algorithms for searching locally in each user's graph structure. Then, we perform supervised community feature weighting in order to boost the importance of highly predictive communities. We assess our method performance on the problem of user classification by performing an extensive comparative study among various recent methods based on graph embeddings. The comparison shows that ARCTE significantly outperforms the competition in almost all cases, achieving up to 35% relative improvement compared to the second best competing method in terms of F1-score.

  4. Structure, function and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding.

    Science.gov (United States)

    Samiotakis, Antonios; Dhar, Apratim; Ebbinghaus, Simon; Nienhaus, Lea; Homouz, Dirar; Gruebele, Martin; Cheung, Margaret

    2010-10-01

    We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal) and Sph (spherical compact). With an adjustment for viscosity, crowded wild type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a new solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates.

  5. Bound states in the continuum on periodic structures surrounded by strong resonances

    Science.gov (United States)

    Yuan, Lijun; Lu, Ya Yan

    2018-04-01

    Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .

  6. Monogamy, strongly bonded groups, and the evolution of human social structure.

    Science.gov (United States)

    Chapais, Bernard

    2013-01-01

    Human social evolution has most often been treated in a piecemeal fashion, with studies focusing on the evolution of specific components of human society such as pair-bonding, cooperative hunting, male provisioning, grandmothering, cooperative breeding, food sharing, male competition, male violence, sexual coercion, territoriality, and between-group conflicts. Evolutionary models about any one of those components are usually concerned with two categories of questions, one relating to the origins of the component and the other to its impact on the evolution of human cognition and social life. Remarkably few studies have been concerned with the evolution of the entity that integrates all components, the human social system itself. That social system has as its core feature human social structure, which I define here as the common denominator of all human societies in terms of group composition, mating system, residence patterns, and kinship structures. The paucity of information on the evolution of human social structure poses substantial problems because that information is useful, if not essential, to assess both the origins and impact of any particular aspect of human society. Copyright © 2013 Wiley Periodicals, Inc.

  7. Clustering coefficient and community structure of bipartite networks

    Science.gov (United States)

    Zhang, Peng; Wang, Jinliang; Li, Xiaojia; Li, Menghui; Di, Zengru; Fan, Ying

    2008-12-01

    Many real-world networks display natural bipartite structure, where the basic cycle is a square. In this paper, with the similar consideration of standard clustering coefficient in binary networks, a definition of the clustering coefficient for bipartite networks based on the fraction of squares is proposed. In order to detect community structures in bipartite networks, two different edge clustering coefficients LC4 and LC3 of bipartite networks are defined, which are based on squares and triples respectively. With the algorithm of cutting the edge with the least clustering coefficient, communities in artificial and real world networks are identified. The results reveal that investigating bipartite networks based on the original structure can show the detailed properties that is helpful to get deep understanding about the networks.

  8. Fishing degrades size structure of coral reef fish communities.

    Science.gov (United States)

    Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K

    2017-03-01

    Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016

  9. Electrical Control of Structural and Physical Properties via Strong Spin-Orbit Interactions in Sr2IrO4

    Science.gov (United States)

    Cao, G.; Terzic, J.; Zhao, H. D.; Zheng, H.; De Long, L. E.; Riseborough, Peter S.

    2018-01-01

    Electrical control of structural and physical properties is a long-sought, but elusive goal of contemporary science and technology. We demonstrate that a combination of strong spin-orbit interactions (SOI) and a canted antiferromagnetic Mott state is sufficient to attain that goal. The antiferromagnetic insulator Sr2IrO4 provides a model system in which strong SOI lock canted Ir magnetic moments to IrO6 octahedra, causing them to rigidly rotate together. A novel coupling between an applied electrical current and the canting angle reduces the Néel temperature and drives a large, nonlinear lattice expansion that closely tracks the magnetization, increases the electron mobility, and precipitates a unique resistive switching effect. Our observations open new avenues for understanding fundamental physics driven by strong SOI in condensed matter, and provide a new paradigm for functional materials and devices.

  10. SU(6)-strong breaking: structure functions and small momentum transfer properties of the nucleon

    International Nuclear Information System (INIS)

    Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C.

    1975-01-01

    A new approach in the study of the SU(6) symmetry breaking (in particular in deep inelastic electron-nucleon scattering) is presented. It is shown that there is a connection between deep inelastic and low momentum transfer or static properties of the nucleon, which extends much beyond the common SU(6) 56-assignments of the nucleon in both cases. This connection is provided by the realistic quark model (in which quarks are considered as real entities moving inside the hadron). Using this connection it is shown that the breaking of the prediction Fsub(2)sup(en)/Fsub(2)sup(ep)=2/3 is not truly related to chiral configuration mixings. An alternative solution, based on a true modification of the 56-assignment of the nucleon to a (56,L=0)+(70,L=0) mixing (called SU(6) strong mixing) is proposed. It is shown that the 'good' predictions of SU(6) are not much changed by this mixing. A complete description of the deep inelastic scattering including gluons and pairs is presented

  11. Structure of Langmuir and electromagnetic collapsing wave packets in two-dimensional strong plasma turbulence

    International Nuclear Information System (INIS)

    Alinejad, H.; Robinson, P. A.; Cairns, I. H.; Skjaeraasen, O.; Sobhanian, S.

    2007-01-01

    Nucleating and collapsing wave packets relevant to electromagnetic strong plasma turbulence are studied theoretically in two dimensions. Model collapsing Langmuir and transverse potentials are constructed as superpositions of approximate eigenstates of a spherically symmetric density well. Electrostatic and electromagnetic potentials containing only components with azimuthal quantum numbers m=0, 1, 2 are found to give a good representation of the electric fields of nucleating collapsing wave packets in turbulence simulations. The length scales of these trapped states are related to the electron thermal speed v e and the length scale of the density well. It is shown analytically that the electromagnetic trapped states change with v e and that for v e e > or approx. 0.17c, the Langmuir and transverse modes remain coupled during collapse, with autocorrelation lengths in a constant ratio. An investigation of energy transfer to packets localized in density wells shows that the strongest power transfer to the nucleating state occurs for Langmuir waves. Energy transitions between different trapped and free states for collapsing wave packets are studied, and the transition rate from trapped Langmuir to free plane electromagnetic waves is calculated and related to the emission of electromagnetic waves at the plasma frequency

  12. Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures

    Science.gov (United States)

    Iliopoulos, Nikos; Thanopulos, Ioannis; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2018-03-01

    We study the spontaneous emission of a two-level quantum emitter next to a plasmonic nanoparticle beyond the Markovian approximation and the rotating-wave approximation (RWA) by combining quantum dynamics and classical electromagnetic calculations. For emitters with decay times in the picosecond to nanosecond time regime, as well as located at distances from the nanoparticle up to its radius, the dynamics with and without the RWA and the transition from the non-Markovian to the Markovian regime are investigated. For emitters with longer decay times, the Markov approximation proves to be adequate for distances larger than half the nanoparticle radius. However, the RWA is correct for all distances of the emitter from the nanoparticle. For short decay time emitters, the Markov approximation and RWA are both inadequate, with only the RWA becoming valid again at a distance larger than half the nanoparticle radius. We also show that the entanglement dynamics of two initially entangled qubits interacting independently with the nanoparticle may have a strong non-Markovian character when counter-rotating effects are included. Interesting effects such as entanglement sudden death, periodic entanglement revival, entanglement oscillations, and entanglement trapping are further observed when different initial two-qubit states and different distances between the qubit and the nanoparticle are considered.

  13. Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei, E-mail: nanoyang@qq.com; Jiang, Zhongcheng; Dong, Jiazhang; Zhang, Liuqian [Hunan University, College of Materials Science and Engineering (China); Pan, Anlian, E-mail: anlian.pan@gmail.com; Zhuang, Xiujuan [Hunan University, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province (China)

    2015-10-15

    We report a scheme for investigating two-step stimulated structure change of luminescence centers. Amorphous silica nanospheres with uniform diameter of 9–15 nm have been synthesized by Stöber method. Strong hydroxyl-related infrared-absorption band is observed in infrared spectrum. The surface hydroxyl groups exert great influence on the luminescent behavior of silica. They provide stable and intermediate energy states to accommodate excitation electrons. The existence of these surface states reduces the energy barrier of photochemical reactions, creating conditions for two-step excitation process. By carefully examining excitation and emission process, the nearest excitation band is absent in both optical absorption spectrum and excitation spectrum. This later generated state confirms the generation of new luminescence centers as well as the existence of photochemical reactions. Stimulated by different energies, two-step excitation process impels different photochemical reactions, prompting generation of different lattice defects on surface area of silica. Thereby, tunable luminescence is achieved. After thermal treatment, strong gap excitation band appears with the disappearance of strong surface excitation band. Strong blue luminescence also disappears. The research is significance to precise introducing structural defects and controlling position of luminescence peaks.

  14. Determination of the Bjorken Sum and Strong Coupling from Polarized Structure Functions

    CERN Document Server

    Altarelli, Guido; Forte, Stefano; Ridolfi, G; Altarelli, Guido; Ball, Richard D.; Forte, Stefano; Ridolfi, Giovanni

    1997-01-01

    We present a NLO perturbative analysis of all available data on the polarized structure function g_1(x,Q^2) with the aim of making a quantitative test of the validity of the Bjorken sum rule, of measuring \\alpha_s, and of deriving helicity fractions. We take particular care over the small x extrapolation, since it is now known that Regge behaviour is unreliable at perturbative scales. For fixed \\alpha_s we find that if all the most recent data are included g_A=1.18\\pm0.09, confirming the Bjorken sum rule at the 8% level. We further show that the value of \\alpha_s is now reasonably well constrained by scaling violations in the structure function data, despite the fact that it cannot yet be reliably fixed by the value of the Bjorken sum: our final result is \\alpha_s(m_Z) = 0.120+0.010-0.008. We also confirm earlier indications of a sizeable positive gluon polarization in the nucleon.

  15. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  16. STRUCTURAL ASPECTS OF STRONG INHIBITION AND ROLE OF SCAFFOLD FOR SERINE PROTEASE INHIBITORS

    Directory of Open Access Journals (Sweden)

    Jhimli Dasgupta

    2011-12-01

    Full Text Available Canonical serine protease inhibitors inhibit their cognate enzymes by binding tightly at the enzyme active site in a substrate-like manner, being cleaved extremely slowly compared to a true substrate. They interact with cognate enzymes through P3-P2 region of the inhibitory loop while the scaffold hardly makes any contact. Neighbouring scaffolding residues like arginine or asparagine shape-up the inhibitory loop and religate the cleaved scissile bond. The specificity of the inhibitor can be altered by mutating the hyper solvent accessible P1 residue without changing loop-scaffold interactions. To understand the loop-scaffold compatibility, we prepared three chimeric proteins ECIL-WCIS , ETIL-WCIS , and STIL-WCIS , where the inhibitory loops of ECI, ETI, and STI were placed on the scaffold of their homologue WCI. Results showed that although ECIL-WCIS and STIL-WCIS behave like inhibitors, ETIL-WCIS behaves like a substrate. Crystal structure of ETIL-WCIS and its comparison with ETI indicated that three novel scaffolding residues Trp88, Arg74, and Tyr113 in ETI act as barrier to confine the inhibitory loop to canonical conformation. Absence of this barrier in the scaffold of WCI makes the inhibitory loop flexible in ETIL-WCIS leading to a loss of canonical conformation, explaining its substrate-like behaviour. Furthermore, complex structures of the inhibitors with their cognate enzymes indicate that rigidification of the inhibitory loop at the enzyme active site is necessary for efficient inhibition.

  17. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids

    DEFF Research Database (Denmark)

    Zhou, C.; Hu, L.N.; Sun, Q.J.

    2015-01-01

    In the present work, we show experimental evidence for the dynamic fragile-to-strong (F-S) transition in a series of CuZr(Al) glass-forming liquids (GFLs). A detailed analysis of the dynamics of 98 glass-forming liquids indicates that the F-S transition occurs around Tf-s ≈ 1.36 Tg. Using...... the hyperquenching-annealing-x-ray scattering approach, we have observed a three-stage evolution pattern of medium-range ordering (MRO) structures during the F-S transition, indicating a dramatic change of the MRO clusters around Tf-s upon cooling. The F-S transition in CuZr(Al) GFLs is attributed to the competition...... among the MRO clusters composed of different locally ordering configurations. A phenomenological scenario has been proposed to explain the structural evolution from the fragile to the strong phase in the CuZr(Al) GFLs....

  18. Heavy quarks and strong binding: A field theory of hadron structure

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Chanowitz, M.S.; Drell, S.D.; Weinstein, M.; Yan, T.

    1975-01-01

    We investigate in canonical field theory the possibility that quarks may exist in isolation as very heavy particles, M/sub quark/) very-much-greater-than 1 GeV, yet form strongly bound hadronic states, M/sub hadron/) approx. 1 GeV. In a model with spin-1/2 quarks coupled to scalar gluons we find that a mechanism exists for the formation of bound states which are much lighter than the free constituents. Following Nambu, we introduce a color interaction mediated by gauge vector mesons to guarantee that all states with nonvanishing triality have masses much larger than 1 GeV. The possibility of such a solution to a stronly coupled field theory is exhibited by a calculation employing the variational principle in tree approximation. This procedure reduces the field-theoretical problem to a set of coupled differential equations for classical fields which are just the free parameters of the variational state. A striking property of the solution is that the quark wave function is confined to a thin shell at the surface of the hadronic bound state. Though the quantum corrections to this procedure remain to be investigated systematically, we explore some of the phenomenological implications of the trial wave functions so obtained. In particular, we exhibit the low-lying meson and baryon multiplets of SU(6); their magnetic moments, charge radii, and radiative decays, and the axial charge of the baryons. States of nonvanishing momenta are constructed and the softness of the hadron shell to deformations in scattering processes is discussed qualitatively along with the implications for deep-inelastic electron scattering and dual resonance models

  19. The ordered network structure of M {>=} 6 strong earthquakes and its prediction in the Jiangsu-South Yellow Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Men, Ke-Pei [Nanjing Univ. of Information Science and Technology (China). College of Mathematics and Statistics; Cui, Lei [California Univ., Santa Barbara, CA (United States). Applied Probability and Statistics Dept.

    2013-05-15

    The the Jiangsu-South Yellow Sea region is one of the key seismic monitoring defence areas in the eastern part of China. Since 1846, M {>=} 6 strong earthquakes have showed an obvious commensurability and orderliness in this region. The main orderly values are 74 {proportional_to} 75 a, 57 {proportional_to} 58 a, 11 {proportional_to} 12 a, and 5 {proportional_to} 6 a, wherein 74 {proportional_to} 75 a and 57 {proportional_to} 58 a with an outstanding predictive role. According to the information prediction theory of Wen-Bo Weng, we conceived the M {>=} 6 strong earthquake ordered network structure in the South Yellow Sea and the whole region. Based on this, we analyzed and discussed the variation of seismicity in detail and also made a trend prediction of M {>=} 6 strong earthquakes in the future. The results showed that since 1998 it has entered into a new quiet episode which may continue until about 2042; and the first M {>=} 6 strong earthquake in the next active episode will probably occur in 2053 pre and post, with the location likely in the sea area of the South Yellow Sea; also, the second and the third ones or strong earthquake swarm in the future will probably occur in 2058 and 2070 pre and post. (orig.)

  20. Effective collision frequency method in the theory of the conductivity of Coulomb systems. II. Strong interion interaction and plasma structure

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Triger, S.A.

    1994-01-01

    The effective collision frequency method developed earlier by the authors for Coulomb systems characterized by strong interion interaction is developed further. An explicit expression is obtained for the effective electron collision frequency on the basis of the exact diagram representation obtained in Part I and the use of the model of a one-component plasma as initial approximation. The description of plasma structure in the corresponding approximation is considered. 25 refs

  1. The crystallochemical factor of strong keeping of radiogenic 187Os in the structure of rhenium-bearing molybdenites

    International Nuclear Information System (INIS)

    Val'ter, A.A.; Pisanskij, A.I.; Podberezskaya, N.V.

    2007-01-01

    To understand the possible cause of the strong keeping of radiogenic Os in comparison with initial Re in the molybdenite structure, we compare the cation positions in MoS 2 , ReS 2 , and OsS 2 and the geometry of 'empty' octahedra of the molybdenite structure. The similarity of 'empty' octahedra of MoS 2 and the Os environment in OsS 2 is determined. So, one can assume that knock-on atoms of 187 Os can be fixed in 'empty' octahedra by recoiling or the later thermal action

  2. A Neolithic expansion, but strong genetic structure, in the independent history of New Guinea.

    Science.gov (United States)

    Bergström, Anders; Oppenheimer, Stephen J; Mentzer, Alexander J; Auckland, Kathryn; Robson, Kathryn; Attenborough, Robert; Alpers, Michael P; Koki, George; Pomat, William; Siba, Peter; Xue, Yali; Sandhu, Manjinder S; Tyler-Smith, Chris

    2017-09-15

    New Guinea shows human occupation since ~50 thousand years ago (ka), independent adoption of plant cultivation ~10 ka, and great cultural and linguistic diversity today. We performed genome-wide single-nucleotide polymorphism genotyping on 381 individuals from 85 language groups in Papua New Guinea and find a sharp divide originating 10 to 20 ka between lowland and highland groups and a lack of non-New Guinean admixture in the latter. All highlanders share ancestry within the last 10 thousand years, with major population growth in the same period, suggesting population structure was reshaped following the Neolithic lifestyle transition. However, genetic differentiation between groups in Papua New Guinea is much stronger than in comparable regions in Eurasia, demonstrating that such a transition does not necessarily limit the genetic and linguistic diversity of human societies. Copyright © 2017, American Association for the Advancement of Science.

  3. Allocating structure to function: the strong links between neuroplasticity and natural selection

    Directory of Open Access Journals (Sweden)

    Michael L Anderson

    2014-01-01

    Full Text Available A central question in brain evolution is how species-typical behaviors, and the neural function-structure mappings supporting them, can be acquired and inherited. Advocates of brain modularity, in its different incarnations across scientific subfields, argue that natural selection must target domain-dedicated, separately modifiable neural subsystems, resulting in genetically-specified functional modules. In such modular systems, specification of neuron number and functional connectivity are necessarily linked. Mounting evidence, however, from allometric, developmental, comparative, systems-physiological, neuroimaging and neurological studies suggests that brain elements are used and reused in multiple functional systems. This variable allocation can be seen in short-term neuromodulation, in neuroplasticity over the lifespan and in response to damage. We argue that the same processes are evident in brain evolution. Natural selection must preserve behavioral functions that may co-locate in variable amounts with other functions. In genetics, the uses and problems of pleiotropy, the re-use of genes in multiple networks have been much discussed, but this issue has been sidestepped in neural systems by the invocation of modules. Here we highlight the interaction between evolutionary and developmental mechanisms to produce distributed and overlapping functional architectures in the brain. These adaptive mechanisms must be robust to perturbations that might disrupt critical information processing and action selection, but must also recognize useful new sources of information arising from internal genetic or environmental variability, when those appear. These contrasting properties of robustness and evolvability have been discussed for the basic organization of body plan and fundamental cell physiology. Here we extend them to the evolution and development, evo-devo, of brain structure.

  4. Compositional divergence and convergence in local communities and spatially structured landscapes.

    Directory of Open Access Journals (Sweden)

    Tancredi Caruso

    Full Text Available Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence than, less dissimilar (convergence than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect. The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community

  5. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  6. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...

  7. Strong spatial structure, Pliocene diversification and cryptic diversity in the Neotropical dry forest spider Sicarius cariri.

    Science.gov (United States)

    Magalhaes, Ivan L F; Oliveira, Ubirajara; Santos, Fabrício R; Vidigal, Teofânia H D A; Brescovit, Antonio D; Santos, Adalberto J

    2014-11-01

    The Brazilian Caatinga is part of the seasonally dry tropical forests, a vegetation type disjunctly distributed throughout the Neotropics. It has been suggested that during Pleistocene glacial periods, these dry forests had a continuous distribution, so that these climatic shifts may have acted as important driving forces of the Caatinga biota diversification. To address how these events affected the distribution of a dry forest species, we chose Sicarius cariri, a spider endemic to the Caatinga, as a model. We studied the phylogeography of one mitochondrial and one nuclear gene and reconstructed the paleodistribution of the species using modelling algorithms. We found two allopatric and deeply divergent clades within S. cariri, suggesting that this species as currently recognized might consist of more than one independently evolving lineage. Sicarius cariri populations are highly structured, with low haplotype sharing among localities, high fixation index and isolation by distance. Models of paleodistribution, Bayesian reconstructions and coalescent simulations suggest that this species experienced a reduction in its population size during glacial periods, rather than the expansion expected by previous hypotheses on the paleodistribution of dry forest taxa. In addition to that, major splits of intraspecific lineages of S. cariri took place in the Pliocene. Taken together, these results indicate S. cariri has a complex diversification history dating back to the Tertiary, suggesting the history of dry forest taxa may be significantly older than previously thought. © 2014 John Wiley & Sons Ltd.

  8. Structural analysis of factors that influence professional learning communities in Korean elementary schools

    Directory of Open Access Journals (Sweden)

    Kyoung-Oh Song

    2017-09-01

    Full Text Available Professional Learning Communities(PLCs arean important strategy for innovation in schools, and they arereceiving considerable attention from scholars and educators alike. The present study aimed to examine the effect of PLCson schools’ effectiveness and to investigate the social, organizational, and structural factors that can promote these learning communities. The survey for this study was completed by 375 teachers from 40 elementary schools in the Seoul Metropolitan Area of South Korea, and their responses were analyzed to test the hypothesized model. The results of the structural equationmodeling indicated that PLCswere strongly and directly related to elementary schools’ effectivenessand that principals’ leadership and supportive relationshipsamong teachers were the important factors that influenced PLCs. Based on the results of this study, several implications are discussed.

  9. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency.

    Science.gov (United States)

    Cho, Hyunjun; Kim, Mincheol; Tripathi, Binu; Adams, Jonathan

    2017-07-01

    Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the "humpback" pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance-which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

  10. Comparison and validation of community structures in complex networks

    Science.gov (United States)

    Gustafsson, Mika; Hörnquist, Michael; Lombardi, Anna

    2006-07-01

    The issue of partitioning a network into communities has attracted a great deal of attention recently. Most authors seem to equate this issue with the one of finding the maximum value of the modularity, as defined by Newman. Since the problem formulated this way is believed to be NP-hard, most effort has gone into the construction of search algorithms, and less to the question of other measures of community structures, similarities between various partitionings and the validation with respect to external information. Here we concentrate on a class of computer generated networks and on three well-studied real networks which constitute a bench-mark for network studies; the karate club, the US college football teams and a gene network of yeast. We utilize some standard ways of clustering data (originally not designed for finding community structures in networks) and show that these classical methods sometimes outperform the newer ones. We discuss various measures of the strength of the modular structure, and show by examples features and drawbacks. Further, we compare different partitions by applying some graph-theoretic concepts of distance, which indicate that one of the quality measures of the degree of modularity corresponds quite well with the distance from the true partition. Finally, we introduce a way to validate the partitionings with respect to external data when the nodes are classified but the network structure is unknown. This is here possible since we know everything of the computer generated networks, as well as the historical answer to how the karate club and the football teams are partitioned in reality. The partitioning of the gene network is validated by use of the Gene Ontology database, where we show that a community in general corresponds to a biological process.

  11. Interlinking backscatter, grain size and benthic community structure

    Science.gov (United States)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  12. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    Fertilizer application in conventional agriculture leads to N saturation and decoupled soil C and N cycling, whereas organic practices, e.g. complex rotations and legume incorporation, often results in increased SOM and tightly coupled cycles of C and N. These legacy effects of management on soils likely affect microbial community composition and microbial process rates. This project tested if agricultural management practices led to distinct microbial communities and if those communities differed in ability to utilize labile plant carbon substrates and to produce more plant available N. We addressed several specific questions in this project. 1) Do organic and conventional management legacies on similar soils produce distinct soil bacterial and fungal community structures and abundances? 2) How do these microbial community structures change in response to carbon substrate addition? 3) How do the responses of the microbial communities influence N cycling? To address these questions we conducted a laboratory incubation of organically and conventionally managed soils. We added C-13 labelled glucose either in one large dose or several smaller pulses. We extracted genomic DNA from soils before and after incubation for TRFLP community fingerprinting. We measured C in soil pools and respiration and N in soil extracts and leachates. Management led to different compositions of bacteria and fungi driven by distinct components in organic soils. Biomass did not differ across treatments indicating that differences in cycling were due to composition rather than abundance. C substrate addition led to convergence in bacterial communities; however management still strongly influenced the difference in communities. Fungal communities were very distinct between managements and plots with substrate addition not altering this pattern. Organic soils respired 3 times more of the glucose in the first week than conventional soils (1.1% vs 0.4%). Organic soils produced twice as much

  13. Strong congruence in tree and fern community turnover in response to soils and climate in central Panama

    DEFF Research Database (Denmark)

    Jones, Mirkka; Ferrier, Simon; Condit, Richard

    2013-01-01

    1. Plant species turnover in central Panamanian forests has been principally attributed to the effects of dispersal limitation and a strong Caribbean to Pacific gradient in rainfall seasonality. Despite marked geological heterogeneity, the role of soil variation has not been rigorously examined. 2....... We modelled the compositional turnover of trees and ferns in the Panama Canal watershed as a function of soil chemistry, climate and geographical separation, using generalized dissimilarity models (GDMs). 3. Predictability in both plant groups was strong, with 74% of turnover explained in trees...... and 49% in ferns. Major trends in the two plant groups were strikingly similar. The independent effects of soils, and of climate for trees, were sizeable, but those of geographical distance were minor. In both plant groups, distance and climatic effects on species turnover covaried strongly. 4. Including...

  14. Diatom community structure on in-service cruise ship hulls.

    Science.gov (United States)

    Hunsucker, Kelli Zargiel; Koka, Abhishek; Lund, Geir; Swain, Geoffrey

    2014-10-01

    Diatoms are an important component of marine biofilms found on ship hulls. However, there are only a few published studies that describe the presence and abundance of diatoms on ships, and none that relate to modern ship hull coatings. This study investigated the diatom community structure on two in-service cruise ships with the same cruise cycles, one coated with an antifouling (AF) system (copper self-polishing copolymer) and the other coated with a silicone fouling-release (FR) system. Biofilm samples were collected during dry docking from representative areas of the ship and these provided information on the horizontal and vertical zonation of the hull, and intact and damaged coating and niche areas. Diatoms from the genera Achnanthes, Amphora and Navicula were the most common, regardless of horizontal ship zonation and coating type. Other genera were abundant, but their presence was more dependent on the ship zonation and coating type. Samples collected from damaged areas of the hull coating had a similar community composition to undamaged areas, but with higher diatom abundance. Diatom fouling on the niche areas differed from that of the surrounding ship hull and paralleled previous studies that investigated differences in diatom community structure on static and dynamically exposed coatings; niche areas were similar to static immersion and the hull to dynamic immersion. Additionally, diatom richness was greater on the ship with the FR coating, including the identification of several new genera to the biofouling literature, viz. Lampriscus and Thalassiophysa. These results are the first to describe diatom community composition on in-service ship hulls coated with a FR system. This class of coatings appears to have a larger diatom community compared to copper-based AF systems, with new diatom genera that have the ability to stick to ship hulls and withstand hydrodynamic forces, thus creating the potential for new problematic species in the biofilm.

  15. Bacterial community structure in aquifers corresponds to stratigraphy

    Science.gov (United States)

    Beyer, Andrea; Möller, Silke; Neumann, Stefan; Burow, Katja; Gutmann, Falko; Lindner, Julia; Müsse, Steffen; Kothe, Erika; Büchel, Georg

    2014-05-01

    So far, groundwater microbiology with respect to different host rocks has not been well described in the literature. However, factors influencing the communities would be of interest to provide a tool for mapping groundwater paths. The Thuringian Basin (Germany) studied here, contains formations of the Permian (Zechstein) and also Triassic period of Buntsandstein, Muschelkalk and Keuper, all of which can be found to crop out at the surface in different regions. We analyzed the bacterial community of nine natural springs and sixteen groundwater wells of the respective rock formations as well as core material from the Zechstein salts. For that we sampled in a mine 3 differnet salt rock samples (carnallitite, halite and sylvinitite). To validate the different approaches, similar rock formations were compared and a consistent microbial community for Buntsandstein could be verified. Similary, for Zechstein, the presence of halophiles was seen with cultivation, isolation directly from the rock material and also in groundwater with DNA-dependent approaches. A higher overlap between sandstone- and limestone-derived communities was visible as if compared to the salt formations. Principal component analysis confirmed formation specific patterns for Muschelkalk, Buntsandstein and Zechstein for the bacterial taxa present, with some overlaps. Bacilli and Gammaproteobacteria were the major groups, with the genera Pseudomonas, Marinomonas, Bacillus, Marinobacter and Pseudoalteromonas representing the communities. The bacteria are well adapted to their respective environment with survival strategies including a wide range of salinity which makes them suitable as tracers for fluid movement below the ground. The results indicate the usefulness and robustness of the approach taken here to investigate aquifer community structures in dependence of the stratigraphy of the groundwater reservoir.

  16. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    Science.gov (United States)

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  17. Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members.

    Science.gov (United States)

    Dohrmann, Anja B; Baumert, Susann; Klingebiel, Lars; Weiland, Peter; Tebbe, Christoph C

    2011-03-01

    Microbial conversion of organic waste or harvested plant material into biogas has become an attractive technology for energy production. Biogas is produced in reactors under anaerobic conditions by a consortium of microorganisms which commonly include bacteria of the genus Clostridium. Since the genus Clostridium also harbors some highly pathogenic members in its phylogenetic cluster I, there has been some concern that an unintended growth of such pathogens might occur during the fermentation process. Therefore this study aimed to follow how process parameters affect the diversity of Bacteria in general, and the diversity of Clostridium cluster I members in particular. The development of both communities was followed in model biogas reactors from start-up during stable methanogenic conditions. The biogas reactors were run with either cattle or pig manures as substrates, and both were operated at mesophilic and thermophilic conditions. The structural diversity was analyzed independent of cultivation using a PCR-based detection of 16S rRNA genes and genetic profiling by single-strand conformation polymorphism (SSCP). Genetic profiles indicated that both bacterial and clostridial communities evolved in parallel, and the community structures were highly influenced by both substrate and temperature. Sequence analysis of 16S rRNA genes recovered from prominent bands from SSCP profiles representing Clostridia detected no pathogenic species. Thus, this study gave no indication that pathogenic clostridia would be enriched as dominant community members in biogas reactors fed with manure.

  18. RECENT STRONG EARTHQUAKES IN CENTRAL ASIA: REGULAR TECTONOPHYSICAL FEATURES OF LOCATIONS IN THE STRUCTURE AND GEODYNAMICS OF THE LITHOSPHERE. PART 1. MAIN GEODYNAMIC FACTORS PREDETERMINING LOCATIONS OF STRONG EARTHQUAKES IN THE STRUCTURE OF THE LITHOSPHER

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2015-01-01

    Full Text Available Studying locations of strong earthquakes (М≥8 in space and time in Central Asia has been among top prob-lems for many years and still remains challenging for international research teams. The authors propose a new ap-proach that requires changing the paradigm of earthquake focus – solid rock relations, while this paradigm is a basis for practically all known physical models of earthquake foci. This paper describes the first step towards developing a new concept of the seismic process, including generation of strong earthquakes, with reference to specific geodynamic features of the part of the study region wherein strong earthquakes were recorded in the past two centuries. Our analysis of the locations of М≥8 earthquakes shows that in the past two centuries such earthquakes took place in areas of the dynamic influence of large deep faults in the western regions of Central Asia. In the continental Asia, there is a clear submeridional structural boundary (95–105°E between the western and eastern regions, and this is a factor controlling localization of strong seismic events in the western regions. Obviously, the Indostan plate’s pressure from the south is an energy source for such events. The strong earthquakes are located in a relatively small part of the territory of Central Asia (i.e. the western regions, which is significantly different from its neighbouring areas at the north, east and west, as evidenced by its specific geodynamic parameters. (1 The crust is twice as thick in the western regions than in the eastern regions. (2 In the western regions, the block structures re-sulting from the crust destruction, which are mainly represented by lense-shaped forms elongated in the submeridio-nal direction, tend to dominate. (3 Active faults bordering large block structures are characterized by significant slip velocities that reach maximum values in the central part of the Tibetan plateau. Further northward, slip velocities decrease

  19. AmeriFlux and EuroFlux: History of a Strong Collaboration that Provided Unique Resources to the Scientific Community

    Science.gov (United States)

    Papale, D.; Agarwal, D.; Biraud, S.; Canfora, E.; Pastorello, G.; Torn, M. S.; Trotta, C.

    2017-12-01

    In 1995 scientific communities in Europe and North America using the eddy covariance technique to measure carbon, water, and energy exchanges between the terrestrial biosphere and the atmosphere started to organize their respective regional networks. Although there was a general interest and agreement to collaborate and exchange information and data between the two communities, these mainly occurred at the single site or individual levels through direct communications rather than systematically across networks. Between 2000 and 2008 common strategies to facilitate data sharing, promote data use across the two networks, and outreach to the scientific community, started to be more deeply discussed. Early on, harmonization across networks was deemed necessary to the success of both networks. This actually required major effort including lengthy discussions, compromises, and interactions between the networks for concrete implementation of common platforms and tools. Topics such as measurement units, variable definitions and labeling, data processing methods, data sharing policy, data distribution systems and formats, were key elements that had to be addressed and agreed upon carefully to build integrated and inter-operable research infrastructures (RIs). Today, AmeriFlux and EuroFlux are the basis, not only of the continental research infrastructures (ICOS in Europe), but they are also the driving force behind FLUXNET, where other regional networks are joining this coalition and contributing to the definition of a common system to make complex measurements accessible and comparable across continents. The latest dataset produced from this collaboration includes data contributed by over 200 sites around the world, with records spanning over two decades of data, and has been downloaded by over 900 users in the first 1.5 years of its publication. The core strategy of this collaboration, critical aspects and implemented solutions, as well as the current state of this effort

  20. Competition for space and the structure of ecological communities

    CERN Document Server

    Yodzis, Peter

    1978-01-01

    This volume is an investigation of interspecific competition for space, particularly among sessile organisms, both plant and animal, and its consequences for community structure. While my own contribu­ tion ----and the bulk of this volume --- lies in mathematical analysis of the phenomenon, I have also tried to summarize the most important natural historical aspects of these communities, and have devoted much effort to relating the mathematical results to observations of the natural world. Thus, the volume has both a synthetic and an analytic aspect. On the one hand, I have been struck by certain similarities among many communities, from forests to mussel beds, in which spatial com­ petition is important. On the other hand, I have analyzed this pheno­ menon by means of reaction-dispersal models. Finally, the mathematical analysis has suggested a conceptual framework for these communities which, I believe, further unifies and illuminates the field data. A focal perception of this work is that, just as niche...

  1. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  2. Deep subsurface structure modeling and site amplification factor estimation in Niigata plain for broadband strong motion prediction

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    2009-01-01

    This report addresses a methodology of deep subsurface structure modeling in Niigata plain, Japan to estimate site amplification factor in the broadband frequency range for broadband strong motion prediction. In order to investigate deep S-wave velocity structures, we conduct microtremor array measurements at nine sites in Niigata plain, which are important to estimate both long- and short-period ground motion. The estimated depths of the top of the basement layer agree well with those of the Green tuff formation as well as the Bouguer anomaly distribution. Dispersion characteristics derived from the observed long-period ground motion records are well explained by the theoretical dispersion curves of Love wave group velocities calculated from the estimated subsurface structures. These results demonstrate the deep subsurface structures from microtremor array measurements make it possible to estimate long-period ground motions in Niigata plain. Moreover an applicability of microtremor array exploration for inclined basement structure like a folding structure is shown from the two dimensional finite difference numerical simulations. The short-period site amplification factors in Niigata plain are empirically estimated by the spectral inversion analysis from S-wave parts of strong motion data. The resultant characteristics of site amplification are relative large in the frequency range of about 1.5-5 Hz, and decay significantly with the frequency increasing over about 5 Hz. However, these features can't be explained by the calculations from the deep subsurface structures. The estimation of site amplification factors in the frequency range of about 1.5-5 Hz are improved by introducing a shallow detailed structure down to GL-20m depth at a site. We also propose to consider random fluctuation in a modeling of deep S-wave velocity structure for broadband site amplification factor estimation. The Site amplification in the frequency range higher than about 5 Hz are filtered

  3. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture

    Science.gov (United States)

    Jha, Neha; Saggar, Surinder; Giltrap, Donna; Tillman, Russ; Deslippe, Julie

    2017-09-01

    Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O

  4. The Strong Family Program: an innovative model to engage Aboriginal and Torres Strait Islander youth and Elders with reproductive and sexual health community education.

    Science.gov (United States)

    Duley, P; Botfield, J R; Ritter, T; Wicks, J; Brassil, A

    2017-08-01

    Issue addressed Aboriginal youth in Australia often experience high rates of intimate partner violence (family violence) and poorer reproductive and sexual health than their non-Aboriginal counterparts. To address some of the disparities, the Strong Family Program was developed to deliver reproductive and sexual health education to Aboriginal communities in New South Wales. Methods Development of the program was based on an extensive consultation process with Aboriginal communities. It was implemented in three communities, with two groups from each hosting Aboriginal youth and Elders in a yarning circle within the culturally respectful frameworks of 'men and boys'' and 'women and girls'' business. An evaluation was conducted to measure reproductive and sexual health knowledge and attitude changes upon program completion, using pre- and post-program surveys and yarning (focus group discussions). Results Program participants comprised 48 females and 28 males. Overall, mean knowledge and attitude scores improved upon completion of the program (from 77% to 82% and from 4.15 to 4.32 out of 5, respectively). Among participants aged 20 years and under (the youngest participant was 13 years), there was an increase in knowledge (P=0.034); among participants aged over 20 years (the oldest participant was 78 years), there was an increase in positive attitudes (P=0.001). Participants perceived the information provided to be useful and relevant, with many reporting improved knowledge and attitudes around rights and respectful relationships. Conclusions Reproductive and sexual health education in Aboriginal communities should be based on community consultations and carried out within a culturally appropriate framework to promote greater success. Continued implementation of the Strong Family Program will promote increased understanding of respectful relationships and improved health outcomes for Aboriginal young people. So what? The Strong Family Program was based on an extensive

  5. Physical structure of artificial seagrass affects macrozoobenthic community recruitment

    Science.gov (United States)

    Ambo-Rappe, R.; Rani, C.

    2018-03-01

    Seagrass ecosystems are important in supporting marine biodiversity. However, the worldwide decline in seagrass areas due to anthropogenic factors leads to a decrease in the marine biodiversity they can support. There is growing awareness of the need for concepts to conserve and/or rehabilitate seagrass ecosystems. One option is to create artificial seagrass to provide a physical structure for the marine organisms to colonize. The objective of this research was to analyze the effect of some artificial seagrasses and seagrass transplants on marine biodiversity, with a focus on the macrozoobenthic community. The experimental design compared two types of artificial seagrass (polypropylene ribbons and shrub-shaped plastic leaves), and seagrass transplants from nearby seagrass meadows. The experimental plots were 4 x 4 m2 with 3 replicates. Macrozoobenthic communities were sampled fortnightly for 3.5 months. At the end of the experiment, makrozoobenthos were also sampled from a natural seagrass bed nearby. Of 116 macrozoobenthic species in the artificial seagrass plots, 91 were gastropods. The density of the macrobenthic fauna increased from the beginning to the end of the study in all treatments, but the increase was only significant for the artificial seagrass treatment (i.e. shrub-like plastic leaves). There was a distinct separation between the macrozoobenthic community structure found in the restoration plots (artificial seagrass and transplanted seagrass) compared to natural seagrass beds.

  6. Community structure characteristics of phytoplankton in zhalong wetland, china

    International Nuclear Information System (INIS)

    Zhang, N.; Zang, S.S.

    2015-01-01

    In autumn 2010, the phytoplankton samples were collected in Zhalong Wetland. A total of 347 species belonging to 78 genera,6 phyla were identified, Chlorophyta and Bacillariophyta were dominated phytoplankton communities, including 143 species of Chlorophyta, 116 species of Bacillariophyta, 45 species of Cyanophyta, 39 species of Euglenophyta, 3 species of Pyrrophyta, 1 species of Chrysophyta. In the core area 66 genera, 222 species were identified, in the buffer area 63 genera, 210 species were identified, in the experiment area 63 genera, 167 species were identified. The dominant species in Zhalong Wetland included Cyclotella meneghiniana, Chlorella vulgaris, Trachelomonas volvocina, Nitzschia sp.. The average phytoplankton density was 12.13*10/sup 6/ in Zhalong Wetland, the phytoplankton density of Bacillariophyta was highest (32.82*10/sup 6/ ind L/sup -1/), and then Chlorophyta (23.73*10/sup 6/ ind L/sup -1/) and Cyanophyta (11.43*106 ind L-1), respectively. The results of cluster analysis showed that phytoplankton community structure could be divided into three types, and within-group similarities of phytoplankton community structure was not high, but inter-group non-similarity was high. Based on the species composition, phytoplankton density, phytoplankton pollution indicator, it suggested that Zhalong Wetland was mesotrophic state. (author)

  7. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    Science.gov (United States)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  8. Structure of the epiphyte community in a tropical montane forest in SW China.

    Directory of Open Access Journals (Sweden)

    Mingxu Zhao

    Full Text Available Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height, while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.

  9. Structure of the epiphyte community in a tropical montane forest in SW China.

    Science.gov (United States)

    Zhao, Mingxu; Geekiyanage, Nalaka; Xu, Jianchu; Khin, Myo Myo; Nurdiana, Dian Ridwan; Paudel, Ekananda; Harrison, Rhett Daniel

    2015-01-01

    Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.

  10. Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations.

    Science.gov (United States)

    Almog, Assaf; Besamusca, Ferry; MacMahon, Mel; Garlaschelli, Diego

    2015-01-01

    The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases), and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.

  11. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure.

    Science.gov (United States)

    Rachid, Caio T C C; Santos, Adriana L; Piccolo, Marisa C; Balieiro, Fabiano C; Coutinho, Heitor L C; Peixoto, Raquel S; Tiedje, James M; Rosado, Alexandre S

    2013-01-01

    The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems. We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA). Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.

  12. Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations.

    Directory of Open Access Journals (Sweden)

    Assaf Almog

    Full Text Available The mesoscopic organization of complex systems, from financial markets to the brain, is an intermediate between the microscopic dynamics of individual units (stocks or neurons, in the mentioned cases, and the macroscopic dynamics of the system as a whole. The organization is determined by "communities" of units whose dynamics, represented by time series of activity, is more strongly correlated internally than with the rest of the system. Recent studies have shown that the binary projections of various financial and neural time series exhibit nontrivial dynamical features that resemble those of the original data. This implies that a significant piece of information is encoded into the binary projection (i.e. the sign of such increments. Here, we explore whether the binary signatures of multiple time series can replicate the same complex community organization of the financial market, as the original weighted time series. We adopt a method that has been specifically designed to detect communities from cross-correlation matrices of time series data. Our analysis shows that the simpler binary representation leads to a community structure that is almost identical with that obtained using the full weighted representation. These results confirm that binary projections of financial time series contain significant structural information.

  13. Community detection for networks with unipartite and bipartite structure

    Science.gov (United States)

    Chang, Chang; Tang, Chao

    2014-09-01

    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.

  14. Healthy Children, Strong Families 2: A randomized controlled trial of a healthy lifestyle intervention for American Indian families designed using community-based approaches.

    Science.gov (United States)

    Tomayko, Emily J; Prince, Ronald J; Cronin, Kate A; Parker, Tassy; Kim, Kyungmann; Grant, Vernon M; Sheche, Judith N; Adams, Alexandra K

    2017-04-01

    Background/Aims Few obesity prevention trials have focused on young children and their families in the home environment, particularly in underserved communities. Healthy Children, Strong Families 2 is a randomized controlled trial of a healthy lifestyle intervention for American Indian children and their families, a group at very high risk of obesity. The study design resulted from our long-standing engagement with American Indian communities, and few collaborations of this type resulting in the development and implementation of a randomized clinical trial have been described. Methods Healthy Children, Strong Families 2 is a lifestyle intervention targeting increased fruit and vegetable intake, decreased sugar intake, increased physical activity, decreased TV/screen time, and two less-studied risk factors: stress and sleep. Families with young children from five American Indian communities nationwide were randomly assigned to a healthy lifestyle intervention ( Wellness Journey) augmented with social support (Facebook and text messaging) or a child safety control group ( Safety Journey) for 1 year. After Year 1, families in the Safety Journey receive the Wellness Journey, and families in the Wellness Journey start the Safety Journey with continued wellness-focused social support based on communities' request that all families receive the intervention. Primary (adult body mass index and child body mass index z-score) and secondary (health behaviors) outcomes are assessed after Year 1 with additional analyses planned after Year 2. Results To date, 450 adult/child dyads have been enrolled (100% target enrollment). Statistical analyses await trial completion in 2017. Lessons learned Conducting a community-partnered randomized controlled trial requires significant formative work, relationship building, and ongoing flexibility. At the communities' request, the study involved minimal exclusion criteria, focused on wellness rather than obesity, and included an active

  15. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    Science.gov (United States)

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  16. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  17. Denitrification in agriculturally impacted streams: seasonal changes in structure and function of the bacterial community.

    Directory of Open Access Journals (Sweden)

    Erin Manis

    Full Text Available Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage, whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3- and that seasonal drying of stream channels has a negative impact on NO3- removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change

  18. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    Science.gov (United States)

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  19. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    Science.gov (United States)

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Trophic structure and community stability in an overfished ecosystem

    KAUST Repository

    Utne-Palm, Anne Christine

    2010-07-15

    Since the collapse of the pelagic fisheries off southwest Africa in the late 1960s, jellyfish biomass has increased and the structure of the Benguelan fish community has shifted, making the bearded goby (Sufflogobius bibarbatus) the new predominant prey species. Despite increased prédation pressure and a harsh environment, the gobies are thriving. Here we show that physiological adaptations and antipredator and foraging behaviors underpin the success of these fish. In particular, body-tissue isotope signatures reveal that gobies consume jellyfish and sulphidic diatomaceous mud, transferring "dead-end" resources back into the food chain.

  1. Trophic structure and community stability in an overfished ecosystem

    KAUST Repository

    Utne-Palm, Anne Christine; Salvanes, Anne Gro Vea; Currie, Bronwen; Kaartvedt, Stein; Nilsson, Gö ran E.; Braithwaite, Victoria A.; Stecyk, Jonathan A W; Hundt, Matthias; Van Der Bank, Megan G.; Flynn, Bradley A.; Sandvik, Guro Katrine; Klevjer, Thor Aleksander; Sweetman, Andrew K.; Brü chert, Volker; Pittman, Karin A.; Peard, Kathleen R.; Lunde, Ida Gjervold; Strandaba, R. A U; Gibbons, Mark J.

    2010-01-01

    Since the collapse of the pelagic fisheries off southwest Africa in the late 1960s, jellyfish biomass has increased and the structure of the Benguelan fish community has shifted, making the bearded goby (Sufflogobius bibarbatus) the new predominant prey species. Despite increased prédation pressure and a harsh environment, the gobies are thriving. Here we show that physiological adaptations and antipredator and foraging behaviors underpin the success of these fish. In particular, body-tissue isotope signatures reveal that gobies consume jellyfish and sulphidic diatomaceous mud, transferring "dead-end" resources back into the food chain.

  2. Matrix composition and community structure analysis of a novel bacterial pyrite leaching community.

    Science.gov (United States)

    Ziegler, Sibylle; Ackermann, Sonia; Majzlan, Juraj; Gescher, Johannes

    2009-09-01

    Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.

  3. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique.

    Science.gov (United States)

    Bartáková, Veronika; Reichard, Martin; Janko, Karel; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Cellerino, Alessandro; Bryja, Josef

    2013-09-12

    Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary

  4. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  5. Experimental warming effects on the bacterial community structure and diversity

    Science.gov (United States)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  6. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia.

    Science.gov (United States)

    Kumar, Manoj; van Elsas, Jan Dirk; Nissinen, Riitta

    2017-01-01

    Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB) communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel) and Saxifraga oppositifolia (blue saxifrage), in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region) and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH -targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ- Proteobacteria ) were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and rhizosphere soil

  7. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2017-10-01

    Full Text Available Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel and Saxifraga oppositifolia (blue saxifrage, in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH-targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ-Proteobacteria were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and

  8. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations

    KAUST Repository

    Schmidt, GM; Phongsuwan, N; Jantzen, C; Roder, Cornelia; Khokiattiwong, S; Richter, C

    2012-01-01

    The Similan Islands, a Thai archipelago in the Andaman Sea located near the shelf break, are subjected to frequent (up to several events per hour) and abrupt changes in physico-chemical conditions, particularly during the dry season (NE monsoon, January through April) and to an intense monsoon season with strong surface wave action (May to October). The exposed west slopes of the islands feature more coral species, but lack a carbonate reef framework. By contrast, the sheltered east sides show a complex reef framework dominated by massive Porites. Our results suggest that the sudden changes in temperature, pH and nutrients (drops of up to 10°C and 0.6 U and increases of up to 9.4 µmol NOx l−1, respectively) due to pulsed upwelling events may rival the importance of surface waves and storms in shaping coral distribution and reef development.

  9. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations

    KAUST Repository

    Schmidt, GM

    2012-06-07

    The Similan Islands, a Thai archipelago in the Andaman Sea located near the shelf break, are subjected to frequent (up to several events per hour) and abrupt changes in physico-chemical conditions, particularly during the dry season (NE monsoon, January through April) and to an intense monsoon season with strong surface wave action (May to October). The exposed west slopes of the islands feature more coral species, but lack a carbonate reef framework. By contrast, the sheltered east sides show a complex reef framework dominated by massive Porites. Our results suggest that the sudden changes in temperature, pH and nutrients (drops of up to 10°C and 0.6 U and increases of up to 9.4 µmol NOx l−1, respectively) due to pulsed upwelling events may rival the importance of surface waves and storms in shaping coral distribution and reef development.

  10. Strong spatial genetic structure in five tropical Piper species: should the Baker–Fedorov hypothesis be revived for tropical shrubs?

    Science.gov (United States)

    Lasso, E; Dalling, J W; Bermingham, E

    2011-01-01

    Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker–Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200–750 m) populations showed significant genetic differentiation (Fst 0.11–0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03–0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus. PMID:22393518

  11. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  12. Impact of oil on bacterial community structure in bioturbated sediments.

    Directory of Open Access Journals (Sweden)

    Magalie Stauffert

    Full Text Available Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment, the common burrowing organism Hediste (Nereis diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  13. Mass media influence spreading in social networks with community structure

    Science.gov (United States)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  14. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Coral Community Structure and Recruitment in Seagrass Meadows

    Directory of Open Access Journals (Sweden)

    Kathryn E. Lohr

    2017-11-01

    Full Text Available Coral communities are increasingly found to populate non-reef habitats prone to high environmental variability. Such sites include seagrass meadows, which are generally not considered optimal habitats for corals as a result of limited suitable substrate for settlement and substantial diel and seasonal fluctuations in physicochemical conditions relative to neighboring reefs. Interest in understanding the ability of corals to persist in non-reef habitats has grown, however little baseline data exists on community structure and recruitment of scleractinian corals in seagrass meadows. To determine how corals populate seagrass meadows, we surveyed the established and recruited coral community over 25 months within seagrass meadows at Little Cayman, Cayman Islands. Simultaneous surveys of established and recruited coral communities at neighboring back-reef sites were conducted for comparison. To fully understand the amount of environmental variability to which corals in each habitat were exposed, we conducted complementary surveys of physicochemical conditions in both seagrass meadows and back-reefs. Despite overall higher variability in physicochemical conditions, particularly pH, compared to the back-reef, 14 coral taxa were capable of inhabiting seagrass meadows, and multiple coral families were also found to recruit to these sites. However, coral cover and species diversity, richness, and evenness were lower at sites within seagrass meadows compared to back-reef sites. Although questions remain regarding the processes governing recruitment, these results provide evidence that seagrass beds can serve as functional habitats for corals despite high levels of environmental variability and suboptimal conditions compared to neighboring reefs.

  16. Impact of performance interdependencies on structural vulnerability: A systems perspective of storm surge risk to coastal residential communities

    International Nuclear Information System (INIS)

    Hatzikyriakou, Adam; Lin, Ning

    2017-01-01

    Interaction between residential structures during natural hazards can lead to interdependencies in their performance. During storm surge, for example, structures can affect the performance of inland buildings by generating damaging waterborne debris or by beneficially dampening surge loads. Quantifying the impact of this interaction on structural vulnerability is critical for risk assessment and informed decision-making. In this study we present and implement two general modeling approaches for investigating such interdependencies. The first method is to condition the vulnerability of a structure on the performance of neighboring buildings using a Markov model. The second uses a marginal model to account for correlation between damage observations when estimating a structure's vulnerability to the hazard. Both approaches are implemented using a case study of an impacted coastal community during Hurricane Sandy (2012). Findings indicate that a structure's performance during storm surge is strongly dependent on the damage state of the structure immediately seaward. Furthermore, considering the correlated damage states of buildings increases statistical uncertainty when relating structural performance to hazard intensity. Motivated by these findings, we propose a more coordinated approach to coastal risk mitigation which considers the effects of interdependencies on insurance pricing, structural design, mitigation strategies and community resilience. - Highlights: • Interaction between residential structures leads to performance interdependencies. • Interdependencies during storm surge are due to debris and structural shielding. • Markov model treats interdependencies as an additional demand parameter. • Marginal model incorporates damage correlation into regression estimation. • System behavior should be considered in community risk and resilience.

  17. Start-up of an UASB-septic tank for community on-site treatment of strong domestic sewage.

    Science.gov (United States)

    Al-Shayah, Mohammad; Mahmoud, Nidal

    2008-11-01

    Two community on-site UASB-septic tanks were operated in parallel over a six months period under two different hydraulic retention times (HRT) of 2 days for R1 and 4 days for R2 at mean sewage temperature of 24 degrees C. The sewage was characterised by a high COD(tot) concentration of 1189 mg/L, with a large fraction of COD(sus), viz. 54%. The achieved removal efficiencies in R1 and R2 for COD(tot), COD(sus), BOD5 and TSS were "56%, 87%, 59% and 81%" and "58%, 90%, 60% and 82%" for both systems, respectively. R2 achieved a marginal but significant (p<0.05) better removal efficiencies of those parameters as compared to R1. The COD(col) and COD(dis) removals in R1 and R2 were respectively 31% and 20%, and 34% and 22%. The sludge accumulation was very low suggesting that the desludging frequency will be of several years. Accordingly, the reactor can be adequately designed at 2 days HRT.

  18. Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient.

    Science.gov (United States)

    Rola, Kaja; Osyczka, Piotr

    2014-09-01

    This study aims to determine changes in the structure of cryptogamic vegetation of poor psammophilous grassland along a pollution gradient near a zinc smelter to evaluate the potential of species assemblages as bioindicators of soil condition. Lichens and bryophytes were examined in study plots along six transects in four distance zones, and the physicochemical properties of corresponding soil samples were analysed. Four different responses of species to substrate contamination were identified, with a distinct group of species resistant to and favoured by metal contamination. Although species richness decreases as one approaches the smelter, the gradual replacement of certain sensitive species by resistant ones was observed along the pollution gradient. The results enabled us to develop a useful tool to diagnose strongly polluted sites. Two different cryptogamic assemblages of well-recognised key species characteristic for strongly polluted and lightly polluted sites were distinguished. We conclude that cryptogamic community structure clearly corresponds to the degree of soil contamination, thus demonstrating high bioindicative value. The study confirmed the high relevance of the community approach in metal pollution biomonitoring.

  19. Structure of strongly underexpanded gas jets submerged in liquids – Application to the wastage of tubes by aggressive jets

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Francis, E-mail: roger@ensma.fr [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Carreau, Jean-Louis; Gbahoué, Laurent; Hobbes, Philippe [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Allou, Alexandre; Beauchamp, François [CEA, DEN, Cadarache, DTN/STPA/LTRS, 13108 Saint-Paul lez, Durance Cedex (France)

    2014-07-01

    Highlights: • Underexpanded gas jets submerged in liquids behave similarly to homogeneous gas jets. • The counter rotating vortex pairs of jet produce discrete imprints on the targets. • The shape of hollows made on the targets is explained by the jet structure. • The erosion–corrosion phenomenon well explains the wastage of exchange tubes. - Abstract: Strongly underexpanded gas jets submerged in a liquid at rest behave similarly to underexpanded homogeneous gas jets. The existence of the Taylor-Görtler vortices around the inner zone of the gas jets is demonstrated in free gas jets submerged in water by means of optical probe. In the near field, the same phenomenon produces discrete imprints, approximately distributed in a circle, when underexpanded nitrogen jet submerged in liquid sodium hydroxide and underexpanded water vapour jet submerged in liquid sodium impact onto AU{sub 4}G-T{sub 4} and Incoloy 800{sup ®} alloy targets respectively. For a jet-target couple, the volume of the hollow is satisfactorily related to the strain energy density of the material and the kinetic energy of the gas jet. However, the comparison between volumes of hollows produced by both jets also indicates strong corrosive action of the medium on targets. This allows better understanding of the mechanism of wastage of tubes employed in steam generators integrated in liquid metal fast breeder reactors.

  20. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  1. The relative importance of seed competition, resource competition and perturbations on community structure

    Directory of Open Access Journals (Sweden)

    K. Bohn

    2011-05-01

    Full Text Available While the regional climate is the primary selection pressure for whether a plant strategy can survive, however, competitive interactions strongly affect the relative abundances of plant strategies within communities. Here, we investigate the relative importance of competition and perturbations on the development of vegetation community structure. To do so, we develop DIVE (Dynamics and Interactions of VEgetation, a simple general model that links plant strategies to their competitive dynamics, using growth and reproduction characteristics that emerge from climatic constraints. The model calculates population dynamics based on establishment, mortality, invasion and exclusion in the presence of different strengths of perturbations, seed and resource competition. The highest levels of diversity were found in simulations without competition as long as mortality is not too high. However, reasonable successional dynamics were only achieved when resource competition is considered. Under high levels of competition, intermediate levels of perturbations were required to obtain coexistence. Since succession and coexistence are observed in plant communities, we conclude that the DIVE model with competition and intermediate levels of perturbation represents an adequate way to model population dynamics. Because of the simplicity and generality of DIVE, it could be used to understand vegetation structure and functioning at the global scale and the response of vegetation to global change.

  2. Possible effects of water pollution on the community structure of Red Sea corals

    Energy Technology Data Exchange (ETDEWEB)

    Loya, Y

    1975-02-28

    The community structure and species diversity of hermatypic corals was studied during 1969 to 1973, in 2 reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the mature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further S, which is free of oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In Sept. 1970, both reefs suffered approximately 90 percent mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was blooming with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. Phosphate eutrophication and chronic oil pollution are probably the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and development of coral larvae. Chronic oil pollution results in either one or a combination of the following: damage to the reproductive system of corals, decreased viability of coral larvae, or changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.

  3. Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2008-10-01

    We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong

  4. Spatial structure of the meroplankton community along a Patagonian fjord - The role of changing freshwater inputs

    Science.gov (United States)

    Meerhoff, Erika; Tapia, Fabián J.; Castro, Leonardo R.

    2014-12-01

    Freshwater inputs are major drivers of circulation, hydrographic structure, and productivity patterns along estuarine systems. We assessed the degree to which meroplankton community structure in the Baker/Martinez fjord complex (Chilean Patagonia, 47.5°S) responds to spatial and temporal changes in hydrographic conditions driven by seasonal changes in Baker river outflow. Zooplankton and hydrographic measurements were conducted along the fjord in early spring (October) and late summer (February), when river outflow was minimal and maximal, respectively. Major meroplankton groups found on these surveys were larval barnacles, crabs, bivalves and gastropods. There was a clear change in community structure between October and February, explained by a switch in the numerically dominant group from barnacle to bivalve larvae. This change in community structure was related to changes in hydrographic structure along the fjord, which are mainly associated with seasonal changes in the Baker river outflow. A variance partition analysis showed no significant spatial trend that could account for the variation in meroplankton along the Martinez channel, whereas temporal variability and environmental variables accounted for 36.6% and 27.6% of the variance, respectively. When comparing meroplankton among the Baker and Martinez channels in October, changes in environmental variables explained 44.9% of total variance, whereas spatial variability accounted for 23.5%. Early and late-stage barnacle larvae (i.e. nauplii and cyprids) were more abundant in water with lower temperature, and higher dissolved oxygen and chlorophyll-a concentration, whereas bivalve larvae were more strongly associated to warmer waters. The seasonal shift in numerical dominance, from barnacle larvae in early spring to bivalve larvae in late summer, suggests that reproduction of these groups is triggered by substantially different sets of conditions, both in terms of hydrography and food availability. The

  5. A spectral method to detect community structure based on distance modularity matrix

    Science.gov (United States)

    Yang, Jin-Xuan; Zhang, Xiao-Dong

    2017-08-01

    There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.

  6. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.

    Science.gov (United States)

    Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S

    2017-05-15

    Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A

  7. Seasonal changes in the assembly mechanisms structuring tropical fish communities.

    Science.gov (United States)

    Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M

    2017-01-01

    Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems. © 2016 by the Ecological Society of America.

  8. Formation of non-equilibrium structures in R6M5 steel under strong pulse beams action

    International Nuclear Information System (INIS)

    Rusin, Yu.G.; Plotnikov, S.V.

    2001-01-01

    Formation of non-equilibrium structures in R6M5 steel surface layer in the supply state under irradiation by strong pulse beams (SPB) is examined. Cylindric samples with diameter 10 mm and height 15 mm of R6M5 fast-cutting steel with following content (weight %): 0.85% C, 0.4% Mn, 0.5% Si, 4.0 Cr; 2.1% V; 5.3% Mo, 6.0% W; 0.4% Ni, Fe (the rest) were examined. Irradiation by SPB was conducted on the 'TEMP' modified accelerator operating in a technological regime with carbon beams parameters: energy from 0.3 up o 0.4 MeV, beam density in an impulse from 20 to 250 A/cm 2 , pulse duration from 60 tp 100 ns. The beam consists of 70 % carbon ions and 30 % hydrogen ions. Phase identification and its structural phase analysis have been studied on the DRON-3 X-ray diffractometer of common assignment. Topography of metallographic specimen surface has been examined on the REM-200 scanning electron microscope. Doping elements redistribution and phases quantitative characteristics after SPB action were studied with help of the X-ray spectral microanalysis (XRSA) on the MS-46 Camebax microanalyzer. Character of doping elements redistribution in the alloy (XRSA data) show its appreciably redistribution, moreover in the melted zone the increased content of molybdenum, tungsten, vanadium is observing, and in the zone of thermal action its increase relatively to matrix values

  9. Aphid-parasitoid community structure on genetically modified wheat.

    Science.gov (United States)

    von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-06-23

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.

  10. Community Structure and Productivity in Western Mongolian Steppe

    Directory of Open Access Journals (Sweden)

    Kiyokazu Kawada

    2014-12-01

    Full Text Available The people of the Mongolian steppe have maintained a sustainable, nomadic lifestyle. However, several ecological processes are threatening their way of life. Ecological changan be detected through the analysis of quantitative and qualitative data. It is therefore, imperative to develop a sustainable rangeland management system aimed at combating desertifi cation. In this study we quantitatively and qualitatively describe several western Mongolian steppe plant communities by examining species composition, plant volume and community structure. Study sites were located in the Uvs and Khovd provinces and had all been affected by livestock grazing. A total of 48 species were found. Stipa krylovii , S . gobica , Cleistogenes songorica , Koeleria cristata and Ajania achilleoides were dominant. There was a signifi cant relationship between biomass and plant volume at all sites. Study sites were classifi ed into four groups using cluster analysis, based on the presence or absence of several species. More than 90% of plant volumes at all groups were perennial grasses and perennial forbs. The ratio of C 3 to C 4 plants at site 3 was reversed in comparison to the other sites. Species highly palatable to livestock were dominant at all sites. To ensure the sustainable use of biological resources in these arid areas, these fi ndings should be taken into account in designing land-use plans.

  11. Community structure of ectomycorrhizal fungi in Swedish boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    The main aim of this work has been to elucidate the species composition and community structure of ectomycorrhizal fungi associated with mature trees and naturally regenerated seedlings in natural boreal forests in Sweden. Further, the effects of disturbances, such as wildfire and nitrogen inputs, were studied. Sporocarp surveys, morphological stratification and DNA-based analyses of mycorrhizas were used to describe the mycorrhizal fungal communities. In addition, a reference database useful for identifying individual mycorrhizas was developed based on analyses of sporocarp tissue. Overall, the species richness of ectomycorrhizal fungi was at least 30 to 40 times higher than that of their host trees. Naturally regenerated seedlings were colonized by the ectomycorrhizal fungal species present in the mycelial network of the old trees, indicating that the species composition will remain about the same provided that the host does not disappear. Wildfire, disturbing the fungal continuum, caused a shift in the frequencies of ectomycorrhizal fungi rather than a change in species composition. Nitrogen addition did not have any detectable effect on the abundance or species richness of mycorrhizas, but led to a decrease in sporocarp production. In all the studies, there was little resemblance between the species composition of sporocarps and that of mycorrhizas. The ITS-RFLP reference database was very useful in identifying single mycorrhizas, and proved to be a powerful tool for species identification of unknown mycorrhizas 76 refs, 2 figs, 2 tabs

  12. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Science.gov (United States)

    Singh, Baneshwar; Minick, Kevan J.; Strickland, Michael S.; Wickings, Kyle G.; Crippen, Tawni L.; Tarone, Aaron M.; Benbow, M. Eric; Sufrin, Ness; Tomberlin, Jeffery K.; Pechal, Jennifer L.

    2018-01-01

    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem

  13. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Directory of Open Access Journals (Sweden)

    Baneshwar Singh

    2018-01-01

    Full Text Available As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m and temporal (3–732 days dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples, the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples, the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding

  14. Levitated superconductor ring trap (mini-RT) project - A new self-organized structure with strong plasma flow

    International Nuclear Information System (INIS)

    Ogawa, Y.; Himura, H.; Hishinuma, Y.

    2003-01-01

    Mahajan-Yoshida has theoretically developed a new relaxation state under the condition of a strong plasma flow, and proposed a possibility for confining high beta plasmas. In this self-organized state, two fluids (electron and ion) would relax to the condition given by the relation β + (V/V A ) 2 = const.. An internal coil device is suitable for studying a self-organized structure with strong plasma flow, because a strong toroidal flow is easily induced by introducing an appropriate radial electric field. We are constructing a Mini-RT device, which is equipping a floating coil with a high temperature superconductor (HTS) coil (R=0.15m, Ic=50kAturns). The magnetic field strength near the floating coil is around 0.1 T, and the plasma production with 2.45 GHz Electron Cyclotron Heating is planned. We are preparing several techniques to build up the radial electric field in the plasma such as the direct insertion of the electrode and so on. The utilization of direct orbit loss of high energy electrons produced by ECH might be an interesting method. The orbit calculation results show that the electrons with the energy of more than 10 keV would escape at the outer region of the plasma column, yielding the build-up of the radial electric field. The engineering aspect of the HTS coil is in progress. We have fabricated a small HTS coil (R=0.04 m and Ic= 2.6 kAturns), and succeeded in levitating it during four minutes with an accuracy of a few tens of micrometers. Since the HTS coil is excited by the external power supply, the persistent current switch for the HTS coil has been developed. The HTS coil system with the PCS coil has been fabricated and the excitation test has been carried out. We have succeeded in achieving a persistent current, and it is found that the decay constant of the coil current is evaluated to be around 40 hours and 6.5 hours at 20 K and 40 K, respectively. (author)

  15. Epidemic spreading on complex networks with overlapping and non-overlapping community structure

    Science.gov (United States)

    Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng

    2015-02-01

    Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.

  16. Macrobenthic community structure of coastal Arabian Sea during the fall intermonsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Gaonkar, U.V.; Deshmukh, A.; Mukherjee, I.; Sivadas, S.K.; Gophane, A.

    that the FIM period is critical in structuring the coastal benthic community Results indicated Coscinodiscus sp and Thalassiosira sp were dominant in the phytoplankton and the microphytobenthos community Zooplankton was dominated by small sized calanoid...

  17. Effects of strong interactions between Ti and ceria on the structures of Ti/CeO2.

    Science.gov (United States)

    Yao, Xiao-Dan; Zhu, Kong-Jie; Teng, Bo-Tao; Yu, Cao-Ming; Zhang, Yun-Lei; Liu, Ya; Fan, Maohong; Wen, Xiao-Dong

    2016-11-30

    The effects of strong interactions between Ti and ceria on the structures of Ti/CeO 2 (111) are systematically investigated by density functional theory calculation. To our best knowledge, the adsorption energy of a Ti atom at the hollow site of CeO 2 is the highest value (-7.99 eV) reported in the literature compared with those of Au (-0.88--1.26 eV), Ag (-1.42 eV), Cu (-2.69 eV), Pd (-1.75 eV), Pt (-2.62 eV) and Sn (-3.68 eV). It is very interesting to find that Ti adatoms disperse at the hollow site of CeO 2 (111) to form surface TiO x species, instead of aggregating to form Ti metal clusters for the Ti-CeO 2 interactions that are much stronger than those of Ti-Ti ones. Ti adatoms are completely oxidized to Ti 4+ ions if they are monatomically dispersed on the next near hollow sites of CeO 2 (111) (xTi-NN-hollow); while Ti 3+ ions are observed when they locate at the near hollow sites (xTi-N-hollow). Due to the electronic repulsive effects among Ti 3+ ions, the adsorption energies of xTi-N-hollow are slightly weaker than those of xTi-NN-hollow. Simultaneously, the existence of unstable Ti 3+ ions on xTi-N-hollow also leads to the restructuring of xTi-N-hollow by surface O atoms of ceria transferring to the top of Ti 3+ ions, or oxidation by O 2 adsorption and dissociation. Both processes improve the stability of the xTi/CeO 2 system by Ti 3+ oxidation. Correspondingly, surface TiO 2 -like species form. This work sheds light into the structures of metal/CeO 2 catalysts with strong interactions between the metal and the ceria support.

  18. Local and regional effects on community structure of dung beetles in a mainland-island scenario.

    Directory of Open Access Journals (Sweden)

    Pedro Giovâni da Silva

    Full Text Available Understanding the ecological mechanisms driving beta diversity is a major goal of community ecology. Metacommunity theory brings new ways of thinking about the structure of local communities, including processes occurring at different spatial scales. In addition to new theories, new methods have been developed which allow the partitioning of individual and shared contributions of environmental and spatial effects, as well as identification of species and sites that have importance in the generation of beta diversity along ecological gradients. We analyzed the spatial distribution of dung beetle communities in areas of Atlantic Forest in a mainland-island scenario in southern Brazil, with the objective of identifying the mechanisms driving composition, abundance and biomass at three spatial scales (mainland-island, areas and sites. We sampled 20 sites across four large areas, two on the mainland and two on the island. The distribution of our sampling sites was hierarchical and areas are isolated. We used standardized protocols to assess environmental heterogeneity and sample dung beetles. We used spatial eigenfunctions analysis to generate the spatial patterns of sampling points. Environmental heterogeneity showed strong variation among sites and a mild increase with increasing spatial scale. The analysis of diversity partitioning showed an increase in beta diversity with increasing spatial scale. Variation partitioning based on environmental and spatial variables suggests that environmental heterogeneity is the most important driver of beta diversity at the local scale. The spatial effects were significant only at larger spatial scales. Our study presents a case where environmental heterogeneity seems to be the main factor structuring communities at smaller scales, while spatial effects are more important at larger scales. The increase in beta diversity that occurs at larger scales seems to be the result of limitation in species dispersal

  19. What is the physical origin of strong Lyα emission? I. Demographics of Lyα emitter structures

    International Nuclear Information System (INIS)

    Shibuya, Takatoshi; Ouchi, Masami; Yuma, Suraphong; Nakajima, Kimihiko; Hashimoto, Takuya; Shimasaku, Kazuhiro; Mori, Masao; Umemura, Masayuki

    2014-01-01

    We present the results of structure analyses for a large sample of 426 Lyα emitters (LAEs) at z ∼ 2.2 that are observed with the Hubble Space Telescope/Advanced Camera for Surveys and WFC3-IR during deep extra-galactic legacy surveys. We confirm that the merger fraction and the average ellipticity of LAE's stellar component are 10%-30% and 0.4-0.6, respectively, that are comparable with previous study results. We successfully identify that some LAEs have a spatial offset between Lyα and stellar-continuum emission peaks, δ Lyα , by ∼2.5-4 kpc beyond our statistical errors. To uncover the physical origin of strong Lyα emission found in LAEs, we investigate the Lyα equivalent width (EW) dependences of three structural parameters: merger fraction, δ Lyα , and ellipticity of stellar distribution in the range of EW(Lyα) = 20-250 Å. Contrary to expectations, we find that the merger fraction does not significantly increase with Lyα EW. We reveal an anti-correlation between δ Lyα and EW(Lyα) using a Kolmogorov-Smirnov (K-S) test. There is a trend that the LAEs with a large Lyα EW have a small ellipticity. This is consistent with the recent theoretical claims that Lyα photons can more easily escape from face-on disks having a small ellipticity, due to less inter-stellar gas along the line of sight, although our K-S test indicates that this trend is not statistically significant. Our results of Lyα-EW dependence generally support the idea that an H I column density is a key quantity determining Lyα emissivity.

  20. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida).

    Science.gov (United States)

    Erdmann, Georgia; Scheu, Stefan; Maraun, Mark

    2012-06-01

    Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.

  1. Climate Variability Structures Plant Community Dynamics in Mediterranean Restored and Reference Tidal Wetlands

    Directory of Open Access Journals (Sweden)

    Dylan E. Chapple

    2017-03-01

    Full Text Available In Mediterranean regions and other areas with variable climates, interannual weather variability may impact ecosystem dynamics, and by extension ecological restoration projects. Conditions at reference sites, which are often used to evaluate restoration projects, may also be influenced by weather variability, confounding interpretations of restoration outcomes. To better understand the influence of weather variability on plant community dynamics, we explore change in a vegetation dataset collected between 1990 and 2005 at a historic tidal wetland reference site and a nearby tidal wetland restoration project initiated in 1976 in California’s San Francisco (SF Bay. To determine the factors influencing reference and restoration trajectories, we examine changes in plant community identity in relation to annual salinity levels in the SF Bay, annual rainfall, and tidal channel structure. Over the entire study period, both sites experienced significant directional change away from the 1990 community. Community change was accelerated following low salinity conditions that resulted from strong El Niño events in 1994–1995 and 1997–1998. Overall rates of change were greater at the restoration site and driven by a combination of dominant and sub-dominant species, whereas change at the reference site was driven by sub-dominant species. Sub-dominant species first appeared at the restoration site in 1996 and incrementally increased during each subsequent year, whereas sub-dominant species cover at the reference site peaked in 1999 and subsequently declined. Our results show that frequent, long-term monitoring is needed to adequately capture plant community dynamics in variable Mediterranean ecosystems and demonstrate the need for expanding restoration monitoring and timing restoration actions to match weather conditions.

  2. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    Science.gov (United States)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  3. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  4. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  5. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    Science.gov (United States)

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  6. Are gay communities dying or just in transition? Results from an international consultation examining possible structural change in gay communities.

    Science.gov (United States)

    Simon Rosser, B R; West, William; Weinmeyer, Richard

    2008-05-01

    This study sought to identify how urban gay communities are undergoing structural change, reasons for that change, and implications for HIV prevention planning. Key informants (N=29) at the AIDS Impact Conference from 17 cities in 14 countries completed surveys and participated in a facilitated structured dialog about if gay communities are changing, and if so, how they are changing. In all cities, the virtual gay community was identified as currently larger than the offline physical community. Most cities identified that while the gay population in their cities appeared stable or growing, the gay community appeared in decline. Measures included greater integration of heterosexuals into historically gay-identified neighborhoods and movement of gay persons into suburbs, decreased number of gay bars/clubs, less attendance at gay events, less volunteerism in gay or HIV/AIDS organizations, and the overall declining visibility of gay communities. Participants attributed structural change to multiple factors including gay neighborhood gentrification, achievement of civil rights, less discrimination, a vibrant virtual community, and changes in drug use. Consistent with social assimilation, gay infrastructure, visibility, and community identification appears to be decreasing across cities. HIV prevention planning, interventions, treatment services, and policies need to be re-conceptualized for MSM in the future. Four recommendations for future HIV prevention and research are detailed.

  7. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Chick, John H; Ickes, Brian S; Pegg, Mark A; Barko, Valerie A; Hrabik, Robert A; Herzog, David P

    2005-01-01

    Variation in community composition (presence/absence data) and structure (relative abundance) of Upper Mississippi River fishes was assessed using data from the Long Term Resource Monitoring Program...

  8. Temperature affects the size-structure of phytoplankton communities in the ocean

    KAUST Repository

    López-Urrutia, Ángel

    2015-03-05

    The strong inverse correlation between resource availability and temperature in the ocean poses a challenge to determine the relative effect of these two variables on the size-structure of natural phytoplankton communities. Maranon et al (2012) compiled a dataset of concurrent temperature and resource level proxies that they claim disentangled the effect of temperature from that of resource supply. They concluded that the hypothesis that temperature per se plays a direct role in controlling phytoplankton size structure should be rejected. But our reanalysis of their data reaches a very different conclusion and suggests that they failed to separate the effects of temperature from the effects of resources. Although we obviously concur with Maranon et al (2012) in the long-known predominance of small phytoplankton cells under oligotrophic conditions, from our point of view this should not deter us from considering temperature as an important explanatory variable at a global scale since we show that, for the vast oligotrophic areas of the world\\'s oceans where chlorophyll concentrations are below <1 g L-1 temperature explains a high proportion of the variability in the size distribution of phytoplankton communities, a variability that can not be explained on the basis of the resource level proxies advocated by Maranon et al. (2012).

  9. Temperature-Correlated Changes in Phytoplankton Community Structure Are Restricted to Polar Waters.

    Science.gov (United States)

    Ward, Ben A

    2015-01-01

    Globally distributed observations of size-fractionated chlorophyll a and temperature were used to incorporate temperature dependence into an existing semi-empirical model of phytoplankton community size structure. The additional temperature-dependent term significantly increased the model's ability to both reproduce and predict observations of chlorophyll a size-fractionation at temperatures below 2°C. The most notable improvements were in the smallest (picoplankton) size-class, for which overall model fit was more than doubled, and predictive skill was increased by approximately 40%. The model was subsequently applied to generate global maps for three phytoplankton size classes, on the basis of satellite-derived estimates of surface chlorophyll a and sea surface temperature. Polar waters were associated with marked decline in the chlorophyll a biomass of the smallest cells, relative to lower latitude waters of equivalent total chlorophyll a. In the same regions a complementary increase was seen in the chlorophyll a biomass of larger size classes. These findings suggest that a warming and stratifying ocean will see a poleward expansion of the habitat range of the smallest phytoplankton, with the possible displacement of some larger groups that currently dominate. There was no evidence of a strong temperature dependence in tropical or sub-tropical regions, suggesting that future direct temperature effects on community structure at lower latitudes may be small.

  10. A strong TB programme embedded in a developing primary healthcare system is a lose-lose situation: insights from patient and community perspectives in Cambodia.

    Science.gov (United States)

    Sundaram, Neisha; James, Richard; Sreynimol, Um; Linda, Pen; Yoong, Joanne; Saly, Saint; Koeut, Pichenda; Eang, Mao Tan; Coker, Richard; Khan, Mishal S

    2017-10-01

    As exemplified by the situation in Cambodia, disease specific (vertical) health programmes are often favoured when the health system is fragile. The potential of such an approach to impede strengthening of primary healthcare services has been studied from a health systems perspective in terms of access and quality of care. In this bottom-up, qualitative study we investigate patient and community member experiences of health services when a strong tuberculosis (TB) programme is embedded into a relatively underutilized primary healthcare system. We conducted six gender-stratified community focus group discussions (n = 49) and seven mixed-gender focus group discussions with TB patients (n = 45) in three provinces located in urban, peri-urban and rural areas of Cambodia. Our analysis of health-seeking behaviour and experiences for TB and TB-like illness indicates that building a strong vertical TB control programme has had numerous benefits, including awareness of typical symptoms and need to seek care early; confidence in free TB services at public facilities; and willingness to complete treatment. However, there was a clear dichotomy in experiences and behaviour with respect to care-seeking for less severe illness at primary health services, which were generally avoided owing to access barriers and perceived poor quality. The tendency to delay seeking health care until the development of severe symptoms clearly indicative of TB is a major barrier to early diagnosis and treatment of TB. Our study indicates that an imbalance in the strength of vertical and primary health services could be a lose-lose situation as this impedes improvements in health system functioning and constrains progress of vertical disease control programmes. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Community Structure Of Reef Fish In Eastern Luwu Water Territory

    Directory of Open Access Journals (Sweden)

    Henny Tribuana Cinnawara

    2015-01-01

    Full Text Available Abstract One bio-indicators the condition of coral reefs is a presence of reef fish. The purpose of research is to determine species composition abundance distribution and structure of reef fish communities in these waters. Data collection was conducted in April at six locations in the north and the south eastern Luwu. Mechanical Underwater Visual Cencus UVC and transect method Line intercept Transec LIT with SCUBA equipment used for research data collection. Total reef fish species collected as many as 366 species belonging to 31 families consisting of 150 species of fish target fish consumption 10 species of indicator fish indicator species 206 types of major fissh. The most dominant indicator type of fish is Chaetodon octofasciatus while the major dominant family Pomacentridae Labridae and Apogonidae. Diversity index values ranged from 2.145 to 3.408. Dominance index C is in the range of 0.056 to 0.298. The result is expected to be a reference literature as basic data for the management of reef fish especially in the waters of eastern Luwu.

  12. Plant community structure in an oligohaline tidal marsh

    Science.gov (United States)

    Brewer, J.S.; Grace, J.B.

    1990-01-01

    An oligohaline tidal marsh on the northern shore of Lake Pontchartrain, LA was characterized with respect to the distributions and abundances of plant species over spatial and temporal gradients using Detrended Correspondence Analysis (DCA). In addition, the species distributions were correlated to several physical environmental factors using Detrended Canonical Correspondence Analysis (DCCA). The distributions of species were best correlated with distance from Lake Pontchartrain, and to a lesser extent with elevation and substrate organic matter. They were least correlated with mean soil salinity (referred to here as background salinity). Of the three mid-seasonal dominant species, the perennial grass, Spartina patens, is the most salt tolerant and was found closest to the lake. Further inland the dominant perennial was Sagittaria lancifolia, which has a salt tolerance less than that of Spartina patens. The perennial sedge, Cladium jamaicense, which is the least salt tolerant of the three, was dominant furthest inland. Background salinity levels were generally low (interactions likely also play a role in structuring the plant community. The distributions of several annuals depended on the size and life history of the mid-seasonal dominant perennials. Most of the annuals frequently co-occurred with Sagittaria lancifolia, which was the shortest in stature and had the least persistent canopy of the three mid-seasonal dominant perennials.

  13. Microbial Community Structure of Casing Soil During Mushroom Growth

    Institute of Scientific and Technical Information of China (English)

    CAI Wei-Ming; YAO Huai-Ying; FENG Wei-Lin; JIN Qun-Li; LIU Yue-Yan; LI Nan-Yi; ZHENG Zhong

    2009-01-01

    The culturable bacterial population and phospholipid fatty acid (PLFA)profile of casing soil were investigated at different mushroom (Agaricus bisporusI cropping stages.The change in soil bacterial PLFAs was always accompanied by a change in the soil culturable bacterial population in the first flush.Comparatively higher culturable bacterial population and bacterial PLFAs were found in the casing soil at the primordia formation stage of the first flush.There was a significant increase in the ratio of fungal to bacterial PLFAs during mushroom growth.Multivariate analysis of PLFA data demonstrated that the mushroom cropping stage could considerably affect the microbial community structure of the casing soil.The bacterial population increased significantly from casing soil application to the primordia formation stage of the first flush.Casing soil application resulted in an increase in the ratio of gram-negative bacterial PLFAs to gram-positive bacterial PLFAs,suggesting that some gram-negative bacteria might play an important role in mushroom sporophore initiation.

  14. Spatial variation of phytoplankton community structure in Daya Bay, China.

    Science.gov (United States)

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  15. Seagrass radiation after Messinian salinity crisis reflected by strong genetic structuring and out-of-Africa scenario (Ruppiaceae.

    Directory of Open Access Journals (Sweden)

    Ludwig Triest

    Full Text Available Many aquatic plant and seagrass species are widespread and the origin of their continent-wide ranges might result from high gene flow levels. The response of species when extending northwards since the Last Glacial Maximum can be opposed to the structuring of their populations that survived glaciation cycles in southern regions. The peri-Mediterranean is a complex series of sea basins, coastlines, islands and river deltas with a unique history since the Messinian Crisis that potentially influenced allopatric processes of aquatic life. We tested whether vast ranges across Europe and the peri-Mediterranean of a global seagrass group (Ruppia species complexes can be explained by either overall high levels of gene flow or vicariance through linking population genetics, phylogeography and shallow phylogenetics. A multigene approach identified haplogroup lineages of two species complexes, of ancient and recent hybrids with most of the diversity residing in the South. High levels of connectivity over long distances were only observed at recently colonized northern ranges and in recently-filled seas following the last glaciation. A strong substructure in the southern Mediterranean explained an isolation-by-distance model across Europe. The oldest lineages of the southern Mediterranean Ruppia dated back to the period between the end of the Messinian and Late Pliocene. An imprint of ancient allopatric origin was left at basin level, including basal African lineages. Thus both vicariance in the South and high levels of connectivity in the North explained vast species ranges. Our findings highlight the need for interpreting global distributions of these seagrass and euryhaline species in the context of their origin and evolutionary significant units for setting up appropriate conservation strategies.

  16. Evidence for the functional significance of diazotroph community structure in soil.

    Science.gov (United States)

    Hsu, Shi-Fang; Buckley, Daniel H

    2009-01-01

    Microbial ecologists continue to seek a greater understanding of the factors that govern the ecological significance of microbial community structure. Changes in community structure have been shown to have functional significance for processes that are mediated by a narrow spectrum of organisms, such as nitrification and denitrification, but in some cases, functional redundancy in the community seems to buffer microbial ecosystem processes. The functional significance of microbial community structure is frequently obscured by environmental variation and is hard to detect in short-term experiments. We examine the functional significance of free-living diazotrophs in a replicated long-term tillage experiment in which extraneous variation is minimized and N-fixation rates can be related to soil characteristics and diazotroph community structure. Soil characteristics were found to be primarily impacted by tillage management, whereas N-fixation rates and diazotroph community structure were impacted by both biomass management practices and interactions between tillage and biomass management. The data suggest that the variation in diazotroph community structure has a greater impact on N-fixation rates than do soil characteristics at the site. N-fixation rates displayed a saturating response to increases in diazotroph community diversity. These results show that the changes in the community structure of free-living diazotrophs in soils can have ecological significance and suggest that this response is related to a change in community diversity.

  17. Co-Culture with Listeria monocytogenes within a Dual-Species Biofilm Community Strongly Increases Resistance of Pseudomonas putida to Benzalkonium Chloride

    Science.gov (United States)

    Giaouris, Efstathios; Chorianopoulos, Nikos; Doulgeraki, Agapi; Nychas, George-John

    2013-01-01

    Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation. PMID:24130873

  18. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride.

    Directory of Open Access Journals (Sweden)

    Efstathios Giaouris

    Full Text Available Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS, as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC used in inadequate (sub-lethal concentration (50 ppm. The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90% of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation.

  19. Factors structuring the phytoplankton community in the upwelling site off El Loa River in northern Chile

    Science.gov (United States)

    Herrera, Liliana; Escribano, Ruben

    2006-06-01

    Understanding processes affecting the structure of the autotrophic community in marine ecosystems is relevant because species-dependent characters may affect productivity and carbon fluxes of the ocean. In this work, we studied the influence of oceanographic variability on phytoplankton species composition at a coastal upwelling site off northern Chile. Four seasonal cruises carried out during 2003 off El Loa River (21°S) showed that upwelling occurs year-round supporting a large number of diatoms, dinoflagellates, naked nanoflagellates, and silicoflagellates. The analysis of species composition showed that changes in the structure of the autotrophic community are expressed both in abundance and in differences in species assemblages. These changes occurred not only over the seasonal scale but also over the spatial pattern of distribution, and they correlated well to temporal variability of upwelling and spatial variation of upwelling conditions over the cross-shelf axis. A K-means clustering and principal component analyses showed that species assemblages can be represented by few dominant species strongly coupled to alternate upwelling vs. non-upwelling conditions. Both conditions are well defined, and mostly explained by changes in depth of the upper boundary of the oxygen minimum zone (OMZ) (a prominent feature in northern Chile), surface temperature and water column stratification. Abundance of dominant phytoplankton species were strongly correlated to both OMZ depth and water column stratification. Processes through which OMZ depth might influence species abundance and composition are unknown, although they may relate to changes in redox conditions which affect the nutrient field. Another explanation may relate to changes in grazing pressure derived from the effect of low oxygen water on zooplankton vertical distribution.

  20. Iron fertilization and the structure of planktonic communities in high nutrient regions of the Southern Ocean

    Science.gov (United States)

    Quéguiner, Bernard

    2013-06-01

    In this review article, plankton community structure observations are analyzed both for artificial iron fertilization experiments and also for experiments dedicated to the study of naturally iron-fertilized systems in the Atlantic, Indian and Pacific sectors of the Southern Ocean in the POOZ (Permanently Open Ocean Zone) and the PFZ (Polar Frontal Zone). Observations made in natural systems are combined with those from artificially perturbed systems, in order to evaluate the seasonal evolution of pelagic communities, taking into account controlling factors related to the life cycles and the ecophysiology of dominant organisms. The analysis considers several types of planktonic communities, including both autotrophs and heterotrophs. These communities are spatially segregated owing to different life strategies. A conceptual general scheme is proposed to account for these observations and their variability, regardless of experiment type. Diatoms can be separated into 2 groups: Group 1 has slightly silicified fast growing cells that are homogeneously distributed in the surface mixed layer, and Group 2 has strongly silicified slowly growing cells within discrete layers. During the growth season, Group 1 diatoms show a typical seasonal succession of dominant species, within time windows of development that are conditioned by physical factors (light and temperature) as well as endogenous specific rhythms (internal clock), and biomass accumulation is controlled by the availability of nutrients. Group 1 diatoms are not directly grazed by mesozooplankton which is fed by protozooplankton, linking the microbial food web to higher trophic levels. Instead, successive dominant species of Group 1 are degraded via bacterial activity at the end of their growth season. Organic detritus fragments feed protozooplankton and mesozooplankton. The effective silicon pump leads to the progressive disappearance of silicic acid in surface waters. In contrast, Group 2 is resistant to grazing

  1. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  2. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Science.gov (United States)

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  3. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  4. Estimation of strong motions on free rock surface. Identification of soil structures and strong motions on free rock surface in Kashiwazaki-Kariwa nuclear power plant during the 2007 Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Saguchi, Koichiro; Masaki, Kazuaki; Irikura, Kojiro

    2009-01-01

    Very strong ground motions (maximum acceleration 993 cm/s 2 in the borehole seismometer point of -255m in depth) were observed in the Kashiwazaki Kariwa Nuclear Power Plant during the Niigataken Chuetsu-oki Earthquake on July 16, 2007. In this study, we tried to develop new method, which can simulate waveforms on free rock surface by using the bore hole records. We identified the underground structure model at the Service Hall from aftershock records observed in vertical array, using the simulated annealing method (Ingber(1989)). Based on numerical experiments it is identified that S-wave velocity and Q values of individual layers are inverted very well. Strong motion records of main shock observed by the bore hole seismometers were simulated by using one-dimensional multiple reflection method. In this study, non-linear effect is considered by introducing non-linear coefficient c(f) for under coming wave from surface. The maximum acceleration and phase characteristics in simulated waveforms are similar to the observed one. It means that our method is useful for simulate strong motion in non-linear region. Finally, strong motions on the free rock surface at the Service Hall during the main shock are simulated. The maximum acceleration of EW component on free rock surface is estimated to be 1,207 cm/s 2 . (author)

  5. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    Science.gov (United States)

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828

  6. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types.

    Science.gov (United States)

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Yang, Caiyun; Yang, Yunfeng; Zhou, Jizhong; Li, Diqiang

    2014-01-01

    Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization, sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (PThe regression analysis showed that a strong positive (Pthe soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon, soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (Pthe relative abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed, and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can't directly reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the microbial community and associated feedback responses of the terrestrial ecosystem to environmental changes.

  7. Interspecific associations and community structure: A local survey and analysis in a grass community

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-09-01

    Full Text Available Interspecific associations in the plant community may help to understand the self-organizing assembly and succession of the community. In present study, Pearson correlation, net correlation, Spearman rank correlation, and point correlation were used to detect the interspecific (inter-family associations of grass species (families using the sampling data collected in a grass community of Zhuhai, China. We found that most associations between grass species (families were positive associations. The competition/interference/niche separation between grass species (families was not significant. A lot of pairs of grass species and families with statistically significant interspecific (inter-family associations based on four correlation measures were discovered. Cluster trees for grass species/families were obtained by using cluster analysis. Relationship among positive/negative associations, interspecific relationship and community succession/stability/robustness was discussed. I held that species with significant positive or negative associations are generally keystone species in the community. Although both negative and positive associations occur in the community succession, the adaptation and selection will finally result in the successful coexistence of the species with significant positive associations in the climax community. As the advance of community succession, the significant positive associations increase and maximize in climax community, and the significant negative associations increase to a maximum and then decline into climax community. Dominance of significant positive associations in the climax community means the relative stablility and equilibrium of the community. No significant associations usually account for the majority of possible interspecific associations at each phase of community succession. They guarantee the robustness of community. They are candidates of keystone species. Lose of some existing keystone species might be

  8. Osteo-cise: Strong Bones for Life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Directory of Open Access Journals (Sweden)

    Gianoudis Jenny

    2012-05-01

    Full Text Available Abstract Background Osteoporosis affects over 220 million people worldwide, and currently there is no ‘cure’ for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods/design The Osteo-cise: Strong Bones for Life study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged ≥60 years will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month ‘research to practise’ translational phase. Participants will be randomly assigned to either the Osteo-cise intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test. Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back

  9. Organizational Structures to Support Oakland Community Schools. Knowledge Brief

    Science.gov (United States)

    John W. Gardner Center for Youth and Their Communities, 2015

    2015-01-01

    This brief is part of a series that shares findings from a research collaboration between the John W. Gardner Center for Youth and Their Communities at Stanford University and Oakland Unified School District (OUSD) focused on understanding implementation of the community school model in the district. This brief highlights findings related to…

  10. A general sampling formula for community structure data

    NARCIS (Netherlands)

    Haegeman, Bart; Etienne, Rampal S.

    2017-01-01

    1. The development of neutral community theory has shown that the assumption of species neutrality, although implausible on the level of individual species, can lead to reasonable predictions on the community level. While Hubbell's neutral model and several of its variants have been analysed in

  11. Supraglacial bacterial community structures vary across the Greenland ice sheet

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Zarsky, Jakub D.

    2016-01-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across...... the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related...... to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community...

  12. Paradoxes of Social Networking in a Structured Web 2.0 Language Learning Community

    Science.gov (United States)

    Loiseau, Mathieu; Zourou, Katerina

    2012-01-01

    This paper critically inquires into social networking as a set of mechanisms and associated practices developed in a structured Web 2.0 language learning community. This type of community can be roughly described as learning spaces featuring (more or less) structured language learning resources displaying at least some notions of language learning…

  13. Human exploitation and benthic community structure on a tropical intertidal mudflat

    NARCIS (Netherlands)

    Boer, de W.F.; Prins, H.H.T.

    2002-01-01

    Human exploitation of intertidal marine invertebrates is known to alter benthic community structure. This study describes the impact that harvesting by women and children has on the intertidal community structure of the mudflats of the Saco on Inhaca Island, Mozambique, by comparing the benthic

  14. Effect of agricultural management regimes on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, Joanna; van Elsas, J.D.; Van Veen, J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  15. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J.F.; Elsas, van J.D.; Veen, van J.A.

    2006-01-01

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  16. Effect of agricultural management regime on Burkholderia community structure in soil

    NARCIS (Netherlands)

    Salles, J. F.; van Elsas, J. D.; van Veen, J. A.

    The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history

  17. Community Structure, Biodiversity, and Ecosystem Services in Treeline Whitebark Pine Communities: Potential Impacts from a Non-Native Pathogen

    Directory of Open Access Journals (Sweden)

    Diana F. Tomback

    2016-01-01

    Full Text Available Whitebark pine (Pinus albicaulis has the largest and most northerly distribution of any white pine (Subgenus Strobus in North America, encompassing 18° latitude and 21° longitude in western mountains. Within this broad range, however, whitebark pine occurs within a narrow elevational zone, including upper subalpine and treeline forests, and functions generally as an important keystone and foundation species. In the Rocky Mountains, whitebark pine facilitates the development of krummholz conifer communities in the alpine-treeline ecotone (ATE, and thus potentially provides capacity for critical ecosystem services such as snow retention and soil stabilization. The invasive, exotic pathogen Cronartium ribicola, which causes white pine blister rust, now occurs nearly rangewide in whitebark pine communities, to their northern limits. Here, we synthesize data from 10 studies to document geographic variation in structure, conifer species, and understory plants in whitebark pine treeline communities, and examine the potential role of these communities in snow retention and regulating downstream flows. Whitebark pine mortality is predicted to alter treeline community composition, structure, and function. Whitebark pine losses in the ATE may also alter response to climate warming. Efforts to restore whitebark pine have thus far been limited to subalpine communities, particularly through planting seedlings with potential blister rust resistance. We discuss whether restoration strategies might be appropriate for treeline communities.

  18. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Directory of Open Access Journals (Sweden)

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  19. [Fish community structure and its seasonal change in subtidal sandy beach habitat off southern Gouqi Island].

    Science.gov (United States)

    Wang, Zhen-Hua; Wang, Kai; Zhao, Jing; Zhang, Shou-Yu

    2011-05-01

    To understand the characteristics of fish community structure in sandy beach habitats of island reef water areas, and to evaluate the potential capacity of these habitats in local fish stock maintenance, fishes were monthly collected with multi-mesh trammel nets in 2009 from the subtidal sandy beach habitat off southern Gouqi Island, taking the adjacent rocky reef habitat as the control. alpha and beta species diversity indices, index of relative importance (IRI), relative catch rate, and dominance curve for abundance and biomass (ABC curve) were adopted to compare the fish species composition, diversity, and community pattern between the two habitats, and multivariate statistical analyses such as non-metric multidimensional scaling (nMDS) and cluster were conducted to discuss the fish assemblage patterns. A total of 63 fish species belonging to 11 orders, 38 families, and 56 genera were collected, of which, 46 fish species were appeared in the two habitats. Due to the appearance of more warm water species in sandy bottom, the fishes in subtidal sandy beach habitat showed much higher richness, and the abundance catch rate (ACR) from May to July was higher than that in rocky reef habitat. In most rest months, the ACR in subtidal sandy beach habitat also showed the similar trend. However, the species richness and diversity in spring and summer were significantly lower in subtidal sandy beach habitat than in rocky reef habitat, because of the high species dominance and low evenness in the sandy beach habitat. Japanese tonguefish (Paraplagusia japonica) was the indicator species in the sandy beach habitat, and dominated in early spring, later summer, autumn, and winter when the fishing pressure was not strong. In sandy bottom, a unique community structure was formed and kept in dynamic, due to the nursery use of sandy beach by Japanese anchovy (Engraulis japonicus) from May to July, the gathering of gray mullet (Mugil cephalus) in most months for feeding, and the large

  20. Serum uric acid is more strongly associated with impaired fasting glucose in women than in men from a community-dwelling population.

    Directory of Open Access Journals (Sweden)

    Ryuichi Kawamoto

    Full Text Available Serum uric acid (SUA levels are associated with metabolic syndrome (MetS and its components such as glucose intolerance and type 2 diabetes. It is unknown whether there are gender-specific differences regarding the relationship between SUA levels, impaired fasting glucose (IFG and newly detected diabetes. We recruited 1,209 men aged 60±15 (range, 19-89 years and 1,636 women aged 63±12 (range, 19-89 years during their annual health examination from a single community. We investigated the association between SUA levels and six categories according to fasting plasma glucose (FPG level {normal fasting glucose (NFG, <100 mg/dL; high NFG-WHO, 100 to 109 mg/dL; IFG-WHO, 110 to 125 mg/dL; IFG-ADA, 100 to 125 mg/dL; newly detected diabetes, ≥126 mg/dL; known diabetes} SUA levels were more strongly associated with the different FPG categories in women compared with men. In women, the associations remained significant for IFG-WHO (OR, 1.23, 95% CI, 1.00-1.50 and newly detected diabetes (OR, 1.33, 95% CI, 1.03-1.72 following multivariate adjustment. However, in men all the associations were not significant. Thus, there was a significant interaction between gender and SUA level for newly detected diabetes (P = 0.005. SUA levels are associated with different categories of impaired fasting glucose in participants from community-dwelling persons, particularly in women.

  1. Physical Factors Correlate to Microbial Community Structure and Nitrogen Cycling Gene Abundance in a Nitrate Fed Eutrophic Lagoon.

    Science.gov (United States)

    Highton, Matthew P; Roosa, Stéphanie; Crawshaw, Josie; Schallenberg, Marc; Morales, Sergio E

    2016-01-01

    Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries) creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN) and phosphorous gradient (DRP). Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH , nirS , nosZI , and nosZII using qPCR), potential activity (via denitrification enzyme activity), as well as using changes in total community (via 16S rRNA gene amplicon sequencing). Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance) and functional level (proportion of the microbial community carrying nifH and nosZI genes) were most strongly associated with physical gradients (e.g., lake depth, sediment grain size, sediment porosity) and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

  2. Physical factors correlate to microbial community structure and nitrogen cycling gene abundance in a nitrate fed eutrophic lagoon

    Directory of Open Access Journals (Sweden)

    Matthew Paul Highton

    2016-10-01

    Full Text Available Nitrogenous run-off from farmed pastures contributes to the eutrophication of Lake Ellesmere, a large shallow lagoon/lake on the east coast of New Zealand. Tributaries periodically deliver high loads of nitrate to the lake which likely affect microbial communities therein. We hypothesized that a nutrient gradient would form from the potential sources (tributaries creating a disturbance resulting in changes in microbial community structure. To test this we first determined the existence of such a gradient but found only a weak nitrogen (TN and phosphorous gradient (DRP. Changes in microbial communities were determined by measuring functional potential (quantification of nitrogen cycling genes via nifH, nirS, nosZI and nosZII using qPCR, potential activity (via denitrification enzyme activity, as well as using changes in total community (via 16S rRNA gene amplicon sequencing. Our results demonstrated that changes in microbial communities at a phylogenetic (relative abundance and functional level (proportion of the microbial community carrying nifH and nosZI genes were most strongly associated with physical gradients (e.g. lake depth, sediment grain size, sediment porosity and not nutrient concentrations. Low nitrate influx at the time of sampling is proposed as a factor contributing to the observed patterns.

  3. Reef community structure, Sand Island, Oahu HI, (NODC Accession 0000177)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These reports provide the results of nine years (1990-98) of an annual quantitative monitoring of shallow marine communities inshore of the Sand Island Ocean...

  4. Structure of a toothed cetacean community around a tropical island ...

    African Journals Online (AJOL)

    ... cetacean community around a tropical island (Mayotte, Mozambique Channel) ... Patterns of spatial distribution underscore the existence of three main ... The outer slope of the barrier reef appears to be of primary importance in terms of ...

  5. Ecomorphology of a size-structured tropical freshwater fish community

    NARCIS (Netherlands)

    Piet, G.J.

    1998-01-01

    Among nine species of a tropical community ecomorphological correlates were sought throughout ontogeny. Ontogenetic changes were distinguished by establishing six pre-defined size- classes. Morphometric data associated with feeding were compared by canonical correspondence analysis to dietary data.

  6. Macrofouling community structure in Kanayama Bay, Kii Peninsula (Japan)

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; Harada, E.

    An investigation on the macrofouling community in Kanayama Bay, Kill Peninsula, Japan was undertaken from June 1994 to May 1995 by exposing fiber reinforced plastic (FRP) panels at subsurface and bottom (2.2 m) depths. The composition and abundance...

  7. Polychaete community structure of Indian west coast shelf, Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joydas, T.V.; Jayalakshmy, K.V.; Damodaran, R.

    the effects of pollution on marine communities. As TS moves progressively to species, costs, in terms of the expertise and time needed to identify organisms, decrease 4 . It is quicker and easier to train personnel to sort higher taxonomic levels than... to results obtained from the analysis of higher taxa which show analogous results to those based on species level. The major benefit of being able to detect community patterns at higher taxonomic SCIENTIFIC CORRESPONDENCE CURRENT SCIENCE, VOL. 97...

  8. Effects of structural factors on upwelling fouling community, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Masi

    Full Text Available Abstract To assess the successional pattern of fouling organisms three hypotheses were tested: 1 a thermocline is caused by seasonal upwelling events, and therefore, depth influences the successional trajectory of the fouling community; 2 a reduction in the intensity of natural light of the substrate influences the fouling composition and the successional trajectory; 3 fish predation influences the community composition and its successional trajectory. During one year, up-facing and down-facing PVC panels on open, partially caged or fully caged, and placed at depths of 1.5 and 3.5 meters were monthly sampled by digital photograph to determine the community composition and by contact point to estimate the percent coverage of organisms. The upwelling impact provided different water masses, and light intensity was also a determining factor of the overall successional trajectory of the fouling community. After the installation of full and partial cages, differences were identified in the respective successional trajectories. The results of this study suggest that each physical factor or biological process can change the successional trajectory of the community, and the successional model (e.g., convergent, divergent, parallel, or cyclic depends on the magnitudes of the determinants that act on the community at each stage of its trajectory.

  9. The Organization and Structure of Community Education Offerings in Community Colleges

    Science.gov (United States)

    Miller, Michael; Grover, Kenda S.; Kacirek, Kit

    2014-01-01

    One of the key services community colleges provide is community education, meaning those programs and activities that are often offered for leisure or self-improvement and not for credit. Programs of this nature are increasingly challenged to be self-financing, whether through user fees or externally funded grants. The current study explored 75…

  10. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  11. The Relationship Between Low-Frequency Motions and Community Structure of Residue Network in Protein Molecules.

    Science.gov (United States)

    Sun, Weitao

    2018-01-01

    The global shape of a protein molecule is believed to be dominant in determining low-frequency deformational motions. However, how structure dynamics relies on residue interactions remains largely unknown. The global residue community structure and the local residue interactions are two important coexisting factors imposing significant effects on low-frequency normal modes. In this work, an algorithm for community structure partition is proposed by integrating Miyazawa-Jernigan empirical potential energy as edge weight. A sensitivity parameter is defined to measure the effect of local residue interaction on low-frequency movement. We show that community structure is a more fundamental feature of residue contact networks. Moreover, we surprisingly find that low-frequency normal mode eigenvectors are sensitive to some local critical residue interaction pairs (CRIPs). A fair amount of CRIPs act as bridges and hold distributed structure components into a unified tertiary structure by bonding nearby communities. Community structure analysis and CRIP detection of 116 catalytic proteins reveal that breaking up of a CRIP can cause low-frequency allosteric movement of a residue at the far side of protein structure. The results imply that community structure and CRIP may be the structural basis for low-frequency motions.

  12. Comparing Metabolic Functionalities, Community Structures, and Dynamics of Herbicide-Degrading Communities Cultivated with Different Substrate Concentrations

    DEFF Research Database (Denmark)

    Gözdereliler, Erkin; Boon, Nico; Aamand, Jens

    2013-01-01

    Two 4-chloro-2-methylphenoxyacetic acid (MCPA)-degrading enrichment cultures selected from an aquifer on low (0.1 mg liter−1) or high (25 mg liter−1) MCPA concentrations were compared in terms of metabolic activity, community composition, population growth, and single cell physiology. Different...... community compositions and major shifts in community structure following exposure to different MCPA concentrations were observed using both 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and pyrosequencing. The communities also differed in their MCPA-mineralizing activities...... activity in cultures selected on low herbicide concentrations. This suggests that LNA bacteria may play a role in degradation of low herbicide concentrations in aquifers impacted by agriculture. This study shows that subpopulations of herbicide-degrading bacteria that are adapted to different pesticide...

  13. Effects of brine contamination from energy development on wetland macroinvertebrate community structure in the Prairie Pothole Region

    Science.gov (United States)

    Preston, Todd M.; Borgreen, Michael J.; Ray, Andrew M.

    2018-01-01

    Wetlands in the Prairie Pothole Region (PPR) of North America support macroinvertebrate communities that are integral to local food webs and important to breeding waterfowl. Macroinvertebrates in PPR wetlands are primarily generalists and well adapted to within and among year changes in water permanence and salinity. The Williston Basin, a major source of U.S. energy production, underlies the southwest portion of the PPR. Development of oil and gas results in the coproduction of large volumes of highly saline, sodium chloride dominated water (brine) and the introduction of brine can alter wetland salinity. To assess potential effects of brine contamination on macroinvertebrate communities, 155 PPR wetlands spanning a range of hydroperiods and salinities were sampled between 2014 and 2016. Brine contamination was documented in 34 wetlands with contaminated wetlands having significantly higher chloride concentrations, specific conductance and percent dominant taxa, and significantly lower taxonomic richness, Shannon diversity, and Pielou evenness scores compared to uncontaminated wetlands. Non-metric multidimensional scaling found significant correlations between several water quality parameters and macroinvertebrate communities. Chloride concentration and specific conductance, which can be elevated in naturally saline wetlands, but are also associated with brine contamination, had the strongest correlations. Five wetland groups were identified from cluster analysis with many of the highly contaminated wetlands located in a single cluster. Low or moderately contaminated wetlands were distributed among the remaining clusters and had macroinvertebrate communities similar to uncontaminated wetlands. While aggregate changes in macroinvertebrate community structure were observed with brine contamination, systematic changes were not evident, likely due to the strong and potentially confounding influence of hydroperiod and natural salinity. Therefore, despite the observed

  14. Assembly and phylogenetic structure of Neotropical palm communities

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Svenning, J.-C.; Balslev, Henrik

    Diversity, composition and dynamics of Neotropical palm communities are receiving an increasing amount of attention due to their economic importance, but also because their high species richness and functional diversity render them valuable model systems for overall forest biodiversity. However......, to better understand these palm communities, it is crucial to gain insight into the mechanisms responsible for their assembly. These can be dispersal limitation, environmental filtering, or biotic interactions. If the degree of niche conservatism is known for a group of organisms, patterns of community...... an unspecific assumption of “general niche conservatism”, phylogenetic signal will be analysed for Neotropical palms. Moreover, as an example for evolutionary mechanisms disrupting phylogenetic signal, speciation modes will be examined in selected genera. With the combined results we aim to show the relative...

  15. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  16. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    Science.gov (United States)

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  17. Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

    Science.gov (United States)

    Goberna, M; García, C; Insam, H; Hernández, M T; Verdú, M

    2012-07-01

    Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.

  18. Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

    Science.gov (United States)

    Hu, Anyi; Jiao, Nianzhi; Zhang, Chuanlun L

    2011-10-01

    Marine Crenarchaeota represent a widespread and abundant microbial group in marine ecosystems. Here, we investigated the abundance, diversity, and distribution of planktonic Crenarchaeota in the epi-, meso-, and bathypelagic zones at three stations in the South China Sea (SCS) by analysis of crenarchaeal 16S rRNA gene, ammonia monooxygenase gene amoA involved in ammonia oxidation, and biotin carboxylase gene accA putatively involved in archaeal CO(2) fixation. Quantitative PCR analyses indicated that crenarchaeal amoA and accA gene abundances varied similarly with archaeal and crenarchaeal 16S rRNA gene abundances at all stations, except that crenarchaeal accA genes were almost absent in the epipelagic zone. Ratios of the crenarchaeal amoA gene to 16S rRNA gene abundances decreased ~2.6 times from the epi- to bathypelagic zones, whereas the ratios of crenarchaeal accA gene to marine group I crenarchaeal 16S rRNA gene or to crenarchaeal amoA gene abundances increased with depth, suggesting that the metabolism of Crenarchaeota may change from the epi- to meso- or bathypelagic zones. Denaturing gradient gel electrophoresis profiling of the 16S rRNA genes revealed depth partitioning in archaeal community structures. Clone libraries of crenarchaeal amoA and accA genes showed two clusters: the "shallow" cluster was exclusively derived from epipelagic water and the "deep" cluster was from meso- and/or bathypelagic waters, suggesting that niche partitioning may take place between the shallow and deep marine Crenarchaeota. Overall, our results show strong depth partitioning of crenarchaeal populations in the SCS and suggest a shift in their community structure and ecological function with increasing depth.

  19. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  20. Vascular plant diversity and community Structure of nandi forests ...

    African Journals Online (AJOL)

    Abundance data of species was used for species diversity, similarity, species richness estimation and plant community analysis. PC-ORD, CANOCO and EstimateS were used to analyze the data. A total of 321 species ... Keywords: floristic composition, ordination, rarefaction, species accumulation, species richness.

  1. Distribution and community structure of Ostracoda (Crustacea) in ...

    African Journals Online (AJOL)

    The current study presents the ostracod communities recovered from 26 shallow waterbodies in southern Kenya, combined with an ecological assessment of habitat characteristics. A total of 37 waterbodies were sampled in 2001 and 2003, ranging from small ephemeral pools to large permanent lakes along broad ...

  2. Bacterial community structure in the Cerasus sachalinensis Kom ...

    African Journals Online (AJOL)

    The results showed that the bacterial community diversity in the cultivated C. sachalinensis rhizosphere was always higher than the wild, while the evenness and dominance indices followed a different pattern as compared to band richness in the wild and cultivated conditions. The plant growth stages also had an influence ...

  3. HOW ECOLOGICAL COMMUNITIES ARE STRUCTURED: A REVIEW ON ECOLOGICAL ASSEMBLY RULES

    Directory of Open Access Journals (Sweden)

    Gabriel Jaime Colorado Zuluaga

    Full Text Available Whether biological communities are deterministic or stochastic assemblages of species has long been a central topic of ecology. The widely demonstrated presence of structural patterns in nature may imply the existence of rules that regulate the organization of ecological communities. In this review, I present a compilation of major assembly rules that fundament, in a great proportion, the community assembly theory. Initially, I present a general overview of key concepts associated to the assembly of communities, in particular the origin of assembly rules, definition, the problem of scale and underlying mechanisms in the structure of ecological communities. Subsequently, two major approaches or paradigms (i.e. species-based and trait-based for the assembly of communities are discussed. Finally, major tested assembly rules are explored and discussed under the light of available published literature.

  4. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also...... was calculated for 1 km2 catchments (produced from topographical maps) on Funen, Denmark. The physical condition (substrate, meandering etc.) of 1st and 2nd order streams (based on existing data from the National Monitoring Programme and personal exploring) draining these catchments was, additionally, assessed...

  5. Uncovering the community structure associated with the diffusion dynamics on networks

    International Nuclear Information System (INIS)

    Cheng, Xue-Qi; Shen, Hua-Wei

    2010-01-01

    As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of the network, which measures how easily the diffusion among different communities occurs. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods in identifying the community structure of networks. Applications to real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network

  6. The contribution of Diamond Light Source to the study of strongly correlated electron systems and complex magnetic structures.

    Science.gov (United States)

    Radaelli, P G; Dhesi, S S

    2015-03-06

    We review some of the significant contributions to the field of strongly correlated materials and complex magnets, arising from experiments performed at the Diamond Light Source (Harwell Science and Innovation Campus, Didcot, UK) during the first few years of operation (2007-2014). We provide a comprehensive overview of Diamond research on topological insulators, multiferroics, complex oxides and magnetic nanostructures. Several experiments on ultrafast dynamics, magnetic imaging, photoemission electron microscopy, soft X-ray holography and resonant magnetic hard and soft X-ray scattering are described. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Changtragoon, Suchitra; Ponoy, Bundit

    2015-01-01

    had the highest genetic diversity while provenances from Laos showed the lowest. In the eastern part of the natural distribution area, comprising Myanmar, Thailand and Laos, there was a strong clinal decrease in genetic diversity the further east the provenance was located. Overall, the pattern......) the Indian provenances from the dry interior and the moist west coast and (3) the provenances from northern Myanmar. The provenances from southern Myanmar were placed close to the root of the tree together with the three provenances from the semi-moist east coast of India. A Bayesian cluster analysis using...

  8. Geochip: A high throughput genomic tool for linking community structure to functions

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joy D.; Liang, Yuting; He, Zhili; Li, Guanghe; Zhou, Jizhong

    2009-01-30

    GeoChip is a comprehensive functional gene array that targets key functional genes involved in the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and contaminant degradation. Studies have shown the GeoChip to be a sensitive, specific, and high-throughput tool for microbial community analysis that has the power to link geochemical processes with microbial community structure. However, several challenges remain regarding the development and applications of microarrays for microbial community analysis.

  9. Marine protected areas increase temporal stability of community structure, but not density or diversity, of tropical seagrass fish communities.

    Directory of Open Access Journals (Sweden)

    Elisa Alonso Aller

    Full Text Available Marine protected areas (MPAs have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones and two unprotected (open-access sites around Zanzibar (Tanzania. We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014-2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities.

  10. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Directory of Open Access Journals (Sweden)

    Rutger Goekoop

    Full Text Available INTRODUCTION: Human personality is described preferentially in terms of factors (dimensions found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. AIM: To directly compare the ability of network community detection (NCD and principal component factor analysis (PCA to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R. METHODS: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. RESULTS: At facet level, NCS showed a best match (96.2% with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80% with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. CONCLUSION: We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  11. Advanced parallel strategy for strongly coupled fast transient fluid-structure dynamics with dual management of kinematic constraints

    International Nuclear Information System (INIS)

    Faucher, Vincent

    2014-01-01

    Simulating fast transient phenomena involving fluids and structures in interaction for safety purposes requires both accurate and robust algorithms, and parallel computing to reduce the calculation time for industrial models. Managing kinematic constraints linking fluid and structural entities is thus a key issue and this contribution promotes a dual approach over the classical penalty approach, introducing arbitrary coefficients in the solution. This choice however severely increases the complexity of the problem, mainly due to non-permanent kinematic constraints. An innovative parallel strategy is therefore described, whose performances are demonstrated on significant examples exhibiting the full complexity of the target industrial simulations. (authors)

  12. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    experiments were analysed by polymerase chain reaction-density gradient gel electrophoresis (PCR-DGGE) of 16S rDNA, which showed that the indigenous bacterial community responded quickly to the addition of lysates. Our study confirms that bacteria can efficiently degrade microcystins in natural waters....... It was hypothesised that the bacterial community from a lake with frequent occurrence of toxic cyanobacteria can degrade microcystin along with other organic compounds. The initial dissolved microcystin concentrations ranged between 10 and 136 mug 1(-1) (microcystin-LR equivalents) in the laboratory experiment, using...... experiment to evaluate the effects of organic lysates on bacterial proliferation in the absence of microcystin. An exponential decline of the dissolved toxins was observed in all cases with toxins present, and the degradation rates ranged between 0.5 and 1.0 d(-1). No lag phases were observed but slow...

  13. Seasonality and vertical structure of microbial communities in an ocean gyre

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A

    2009-01-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change...

  14. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests

    Science.gov (United States)

    Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer

    2011-01-01

    Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...

  15. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh

    NARCIS (Netherlands)

    Kraigher, Barbara; Stres, Blaz; Hacin, Janez; Ausec, Luka; Mahne, Ivan; van Elsas, Jan D.; Mandic-Mulec, Ines

    Fen peatlands are specific wetland ecosystems containing high soil organic carbon (SOC). There is a general lack of knowledge about the microbial communities that abound in these systems. We examined the microbial activity and community structure in two fen soils differing in SOC content sampled

  16. The fungal community structure of barley malts from diverse geographical regions correlates with malt quality parameters.

    Science.gov (United States)

    Kaur, Mandeep; Bowman, John P; Stewart, Doug C; Evans, David E

    2015-12-23

    Malt is a preferred base for fermentations that produce beer or whisky. Barley for malt is grown under diverse environments in different geographical locations. Malt provides an ecological niche for a varied range of microorganisms with both positive and negative effects on its quality for brewing. Little information exists in the literature on the microbial community structure of Australian malt as well as broader global geographical differences in the associated fungal and bacterial communities. The aims of the present study were to compare the bacterial and fungal community structures of Australian commercial malt with its international counterparts originating from different geographical regions using terminal restriction fragment length polymorphism (TRFLP) fingerprinting and clone library analyses of ribosomal RNA genes. Further, the relationship between malt associated microbial communities and conventional malt quality parameters was also compared. Results showed that differences in fungal communities of malts from different geographical location were more pronounced than bacterial communities. TRFLP analysis discriminated high quality commercial malts with low fungal loads from malts deliberately infected with fungal inocula (Fusarium/Penicillium). Malt moisture, beta-amylase, α-amylase and limit dextrinase contents showed significant correlations with fungal community structure. This investigation concluded that fungal community structure was more important to subsequent malt quality outcomes than bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Industry interactions of the electronic structure research community in Europe

    OpenAIRE

    Goldbeck, Gerhard

    2014-01-01

    This report explores the interactions of the academic Psi-k community with industry. The evidence presented is mainly based on a semi-quantitative survey and interviews of network members. All Psi-k board, working group and advisory group members, a total of about 120 people were invited to take part in the study, and 40 people responded, representing more than 400 scientists from 33 different institutions in 12 European countries. 90% of respondents work with industry. Main industry sectors ...

  18. Trophic structure of the fouling community in Odessa Bay (Black Sea

    Directory of Open Access Journals (Sweden)

    A. Y. Varigin

    2016-06-01

    Full Text Available The trophic structure of the coastal fouling community of Odessa Bay (Black Sea, which was composed of 10 species of macrophytes, 57 invertebrate species and 4 species of fish, was determined. The basic trophic relationship between organisms composing the community is shown. A minimization of interspecific trophic competition within the community is noted. The main sources of food material entering the fouling community were determined. We show that a significant proportion of food in the form of detritus, dissolved organic matter and small planktonic organisms enters the community from the water column. Filtration and pumping activity of sestonophage-organisms, particularly mussels, helps to attract food material to the community. Primary producers of the community are macrophytes and microphytes, which develop on account of their photosynthetic activity and ensure the provision of food to herbivores. The trophic group of detritophages consumes different fractions of the detritus which accumulates in the byssus threads of bivalve molluscs. In this context, mussel druses act as sediment traps, collecting detritus. Numerous polyphages, which are essentially omnivores and do not usually lack food material, were noted in the community. A small group of carnivorous invertebrates, whose representatives actively attack small animals, was identified. The abundance of these species in the community was about 1%, and their biomass less than 0.6%. Fish living in macrophyte weeds are the consumers in the community. We determined that the highest relative abundance (over 36% in the fouling community was reached by sestonophages and polyphages. We found that the undisputed leader in the relative biomass (over 97% in the fouling community ofOdessaBaywas the sestonophages (mainly composed of mussels. We determined that the trophic structure index of the community was 0.94, which confirms the significant dominance in biomass of bivalves over other species in

  19. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    Science.gov (United States)

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    Aim The fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. Location The contiguous United States. Methods We extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. Results Consistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait

  20. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient.

    Science.gov (United States)

    Egan, Cameron P; Callaway, Ragan M; Hart, Miranda M; Pither, Jason; Klironomos, John

    2017-04-01

    Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.

  1. Understanding the implementation and adoption of an information technology intervention to support medicine optimisation in primary care: qualitative study using strong structuration theory.

    Science.gov (United States)

    Jeffries, Mark; Phipps, Denham; Howard, Rachel L; Avery, Anthony; Rodgers, Sarah; Ashcroft, Darren

    2017-05-10

    Using strong structuration theory, we aimed to understand the adoption and implementation of an electronic clinical audit and feedback tool to support medicine optimisation for patients in primary care. This is a qualitative study informed by strong structuration theory. The analysis was thematic, using a template approach. An a priori set of thematic codes, based on strong structuration theory, was developed from the literature and applied to the transcripts. The coding template was then modified through successive readings of the data. Clinical commissioning group in the south of England. Four focus groups and five semi-structured interviews were conducted with 18 participants purposively sampled from a range of stakeholder groups (general practitioners, pharmacists, patients and commissioners). Using the system could lead to improved medication safety, but use was determined by broad institutional contexts; by the perceptions, dispositions and skills of users; and by the structures embedded within the technology. These included perceptions of the system as new and requiring technical competence and skill; the adoption of the system for information gathering; and interactions and relationships that involved individual, shared or collective use. The dynamics between these external, internal and technological structures affected the adoption and implementation of the system. Successful implementation of information technology interventions for medicine optimisation will depend on a combination of the infrastructure within primary care, social structures embedded in the technology and the conventions, norms and dispositions of those utilising it. Future interventions, using electronic audit and feedback tools to improve medication safety, should consider the complexity of the social and organisational contexts and how internal and external structures can affect the use of the technology in order to support effective implementation. © Article author(s) (or their

  2. Targeting G-quadruplex DNA Structures by EMICORON has a strong antitumor efficacy against advanced models of human colon cancer

    DEFF Research Database (Denmark)

    Porru, Manuela; Artuso, Simona; Salvati, Erica

    2015-01-01

    We previously identified EMICORON as a novel G-quadruplex (G4) ligand showing high selectivity for G4 structures over the duplex DNA, causing telomere damage and inhibition of cell proliferation in transformed and tumor cells. Here, we evaluated the antitumoral effect of EMICORON on advanced mode...

  3. Decentralized identification of nonlinear structure under strong ground motion using the extended Kalman filter and unscented Kalman filter

    Science.gov (United States)

    Tao, Dongwang; Li, Hui; Ma, Qiang

    2016-04-01

    Complete structure identification of complicate nonlinear system using extend Kalman filter (EKF) or unscented Kalman filter (UKF) may have the problems of divergence, huge computation and low estimation precision due to the large dimension of the extended state space for the system. In this article, a decentralized identification method of hysteretic system based on the joint EKF and UKF is proposed. The complete structure is divided into linear substructures and nonlinear substructures. The substructures are identified from the top to the bottom. For the linear substructure, EKF is used to identify the extended space including the displacements, velocities, stiffness and damping coefficients of the substructures, using the limited absolute accelerations and the identified interface force above the substructure. Similarly, for the nonlinear substructure, UKF is used to identify the extended space including the displacements, velocities, stiffness, damping coefficients and control parameters for the hysteretic Bouc-Wen model and the force at the interface of substructures. Finally a 10-story shear-type structure with multiple inter-story hysteresis is used for numerical simulation and is identified using the decentralized approach, and the identified results are compared with those using only EKF or UKF for the complete structure identification. The results show that the decentralized approach has the advantage of more stability, relative less computation and higher estimation precision.

  4. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses

  5. [Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem: a review].

    Science.gov (United States)

    Sheng, Ping-Ping; Li, Min; Liu, Run-Jin

    2011-06-01

    Arbuscular mycorrhizal (AM) fungi are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. Host plants and environmental factors have important effects on AM fungal community structure, so do the agricultural practices which deserve to pay attention to. This paper summarized the research advances in the effects of agricultural practices such as irrigation, fertilization, crop rotation, intercropping, tillage, and pesticide application on AM fungal community structure, analyzed the related possible mechanisms, discussed the possible ways in improving AM fungal community structure in agricultural ecosystem, and put forward a set of countermeasures, i.e., improving fertilization system and related integrated techniques, increasing plant diversity in agricultural ecosystem, and inoculating AM fungi, to enhance the AM fungal diversity in agricultural ecosystem. The existing problems in current agricultural practices and further research directions were also proposed.

  6. Integration of community structure data reveals observable effects below sediment guideline thresholds in a large estuary

    KAUST Repository

    Tremblay, Louis A.; Clark, Dana; Sinner, Jim; Ellis, Joanne

    2017-01-01

    The sustainable management of estuarine and coastal ecosystems requires robust frameworks due to the presence of multiple physical and chemical stressors. In this study, we assessed whether ecological health decline, based on community structure

  7. Impact of maintenance dredging on macrobenthic community structure of a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rehitha, T.V.; Ullas, N.; Vineetha, G.; Benny, P.Y.; Madhu, N.V.; Revichandran, C.

    This paper demonstrates the impact of maintenance dredging activities on the macrobenthic community structure of a tropical monsoonal estuary (Cochin estuary), located in the southwest coast of India for three consecutive years. The results...

  8. Using Population Matrix Modeling to Predict AEGIS Fire Controlmen Community Structure

    National Research Council Canada - National Science Library

    McKeon, Thomas J

    2007-01-01

    .... A Population Matrix with Markov properties was used to develop the AEGIS FC aging model. The goal of this model was to provide an accurate predication of the future AEGIS FC community structure based upon variables...

  9. Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Hamonts, K.; Ryngaert, A.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. As biotransformation of CAHs in the impacted river sediments might be an effective remediation strategy, we investigated the determinants of the microbial community structure of eutrophic,

  10. Subtidal micro and meiobenthic community structure in the Gulf of Kachchh

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Goltekar, R.

    Community structure of the micro- and meiobenthos of subtidal sediment from the Gulf of Kachchh were investigated during April 2002 (premonsoon season). Sediment samples were collected from 23 stations representing the entire Gulf area. A total...

  11. Is benthic food web structure related to diversity of marine macrobenthic communities?

    NARCIS (Netherlands)

    Sokolowski, A.; Wolowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaite, Z.; Gremare, A.; Hummel, H.; Lesutiene, J.; Razinkovas, A.; Renaud, P.E.; Richard, P.; Kedra, M.

    2012-01-01

    Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning.

  12. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    KAUST Repository

    Lee, O.O.; Wang, Y.; Tian, R.; Zhang, W.; Shek, C.S.; Bougouffa, Salim; Al-Suwailem, A.; Batang, Z.B.; Xu, W.; Wang, G.C.; Zhang, Xixiang; Lafi, F.F.; Bajic, Vladimir B.; Qian, P.-Y.

    2014-01-01

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  13. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    KAUST Repository

    Lee, O.O.

    2014-01-08

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  14. Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships.

    Science.gov (United States)

    Brettar, Ingrid; Christen, Richard; Höfle, Manfred G

    2012-01-01

    Understanding structure-function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.

  15. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  16. Developing Structured-Learning Exercises for a Community Advanced Pharmacy Practice Experience

    OpenAIRE

    Thomas, Renee Ahrens

    2006-01-01

    The recent growth in the number of pharmacy schools across the nation has resulted in the need for high-quality community advanced pharmacy practice experience (APPE) sites. A vital part of a student's education, these APPEs should be structured and formalized to provide an environment conducive to student learning. This paper discusses how to use a calendar, structured-learning activities, and scheduled evaluations to develop students' knowledge, skills, and abilities in a community pharmacy...

  17. Developing structured-learning exercises for a community advanced pharmacy practice experience.

    Science.gov (United States)

    Thomas, Renee Ahrens

    2006-02-15

    The recent growth in the number of pharmacy schools across the nation has resulted in the need for high-quality community advanced pharmacy practice experience (APPE) sites. A vital part of a student's education, these APPEs should be structured and formalized to provide an environment conducive to student learning. This paper discusses how to use a calendar, structured-learning activities, and scheduled evaluations to develop students' knowledge, skills, and abilities in a community pharmacy setting.

  18. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Science.gov (United States)

    Gómez-Brandón, María; Lores, Marta; Domínguez, Jorge

    2012-01-01

    Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested. To address these questions we determined the microbial community structure (phospholipid fatty acid profiles) and microbial activity (basal respiration and microbial growth rates) of three types of animal manure (cow, horse and rabbit) that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus. Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community diversity and

  19. Species-specific effects of epigeic earthworms on microbial community structure during first stages of decomposition of organic matter.

    Directory of Open Access Journals (Sweden)

    María Gómez-Brandón

    Full Text Available Epigeic earthworms are key organisms in organic matter decomposition because of the interactions they establish with microorganisms. The earthworm species and the quality and/or substrate availability are expected to be major factors influencing the outcome of these interactions. Here we tested whether and to what extent the epigeic earthworms Eisenia andrei, Eisenia fetida and Perionyx excavatus, widely used in vermicomposting, are capable of altering the microbiological properties of fresh organic matter in the short-term. We also questioned if the earthworm-induced modifications to the microbial communities are dependent on the type of substrate ingested.To address these questions we determined the microbial community structure (phospholipid fatty acid profiles and microbial activity (basal respiration and microbial growth rates of three types of animal manure (cow, horse and rabbit that differed in microbial composition, after being processed by each species of earthworm for one month. No differences were found between earthworm-worked samples with regards to microbial community structure, irrespective of type of manure, which suggests the existence of a bottleneck effect of worm digestion on microbial populations of the original material consumed. Moreover, in mesocosms containing cow manure the presence of E. andrei resulted not only in a decrease in bacterial and fungal biomass, but also in a reduced bacterial growth rate and total microbial activity, while no such reduction was found with E. fetida and P. excavatus.Our results point to the species of earthworm with its associated gut microbiota as a strong determinant of the process shaping the structure of microbial communities in the short-term. This must nonetheless be weighed against the fact that further knowledge is necessary to evaluate whether the changes in the composition of microbiota in response to the earthworm species is accompanied by a change in the microbial community

  20. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    Science.gov (United States)

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  1. Structure and seasonality in a Malaysian mudflat community

    Science.gov (United States)

    Broom, M. J.

    1982-08-01

    An assessment of community composition and the functional roles of the dominant species has been carried out in two intertidal areas of Malaysian mudflat dominated by natural populations of the arcid bivalve mollusc Anadara granosa. In addition to A. granosa, organisms of numerical importance are the venerid bivalve Pelecyora trigona, the neogastropod Plicarcularia leptospira, the mesogastropods Stenothyra glabrata and Cerithidea cingulata and the hermit crab Diogenes sp. The mesogastropod Natica maculosa and the neogastropod Thais carinifera may be of some importance to community organization but they are not numerically dominant. Annelids are conspicuous by their absence. The following trophic roles are ascribed to specific members of the community: A. granosa—facultative surface deposit feeder; P. trigona—suspension feeder; P. leptospira—scavenger; C. cingulata—deposit feeder/grazer; S. glabrata—deposit feeder/grazer; N. maculosa—predator; T. carinifera—predator; Diogenes sp.—scavenger/predator. S. glabrata is of particular interest because it appears to fill the niche occupied by mud snails of the genus Hydrobia in temperate mudflat systems. There is evidence of seasonality on the mudflats which points to a spawning of certain forms triggered by the major annual salinity depression at the time of the onset of the north-east monsoon in October/November. Concentrations of benthic chlorophyll a show no obvious signs of a seasonal fluctuation and the seasonality of the primary consumers is not thought to be related to food abundance. However there is some evidence of seasonality of reproduction in N. maculosa which preys on the seasonally reproducing bivalves.

  2. Convergent evolution of modularity in metabolic networks through different community structures

    Directory of Open Access Journals (Sweden)

    Zhou Wanding

    2012-09-01

    Full Text Available Abstract Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability. Further, our results

  3. Convergent evolution of modularity in metabolic networks through different community structures.

    Science.gov (United States)

    Zhou, Wanding; Nakhleh, Luay

    2012-09-14

    It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network

  4. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain.

    Science.gov (United States)

    Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A

    2014-04-01

    Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Structural evolution on medium-range-order during the fragile-strong transition in Ge_1_5Te_8_5

    International Nuclear Information System (INIS)

    Wei, Shuai; Stolpe, Moritz; Gross, Oliver; Hembree, William; Hechler, Simon; Bednarcik, Jozef; Busch, Ralf; Lucas, Pierre

    2017-01-01

    Using synchrotron X-ray scattering, we investigate liquid Ge_1_5Te_8_5 spanning a wide temperature range from near T_g to the melt, and demonstrate that the density anomaly and fragile-strong transition are not only related to short-range-order (SRO) structural change (e.g. Peierls-like distortion), but also accompanied by a remarkable development of medium-range-order (MRO). The latter manifests as an emerging pre-peak in total structure factor S(Q) and atomic pair correlations on the length scale of ∼8 Å in the real space G(r) function. The results highlight the role of medium-range structural ordering in the evolution of the configurational entropy which, according to the Adam-Gibbs theory, can be linked to the fragile-strong transition (FS-transition). Based on the relation between structure and liquid dynamics, the FS-transitions at high pressures are examined in terms of experimental data and the Ehrenfest relation. This work identifies the length scale for the atomic correlations in MRO structural evolutions and presents a structural approach to exploring liquid dynamics, which may be useful for investigating relevant phase-change alloys.

  6. Community structure and Distribution of Phytomacrofauna in Iyagbe ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Benthic Ecology Unit, Department of Marine Sciences, University of Lagos Akoka, Lagos, Nigeria. *Corresponding author: ... such as fishes and invertebrates can also be affected, ...... Lake Vechten: structural and functional relationships.

  7. Phylogenetic community structure: temporal variation in fish assemblage

    OpenAIRE

    Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia

    2014-01-01

    Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales...

  8. Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory.

    Science.gov (United States)

    Gleeson, Deirdre; Mathes, Falko; Farrell, Mark; Leopold, Matthias

    2016-11-15

    The Critical Zone is defined as the thin, permeable layer from the tops of the trees to the bottom of the bedrock that sustains terrestrial life on Earth. The geometry and shape of the various weathering zones are known as the critical zone architecture. At the centre of the Critical Zone are soils and the microorganisms that inhabit them. In Western Australia, the million-year-old stable weathering history and more recent lateral erosion during the past hundreds of thousands of years have created a geomorphic setting where deep weathering zones are now exposed on the surface along the flanks of many lateritic hills. These old weathering zones provide diverse physical and chemical properties that influence near surface pedologic conditions and thus likely shape current surface microbiology. Here, we present data derived from a small lateritic hill on the UWA Farm Ridgefield. Spatial soil sampling revealed the contrasting distribution patterns of simple soil parameters such as pH (CaCl2) and electric conductivity. These are clearly linked with underlying changes of the critical zone architecture and show a strong contrast with low values of pH3.3 at the top of the hill to pH5.3 at the bottom. These parameters were identified as major drivers of microbial spatial variability in terms of bacterial and archaeal community composition but not abundance. In addition, we used sensitive (14)C labelling to assess turnover of three model organic nitrogen compounds - an important biogeochemical functional trait relating to nutrient availability. Though generally rapid and in the order of rates reported elsewhere (t½10h). In conclusion, we have shown that the weathering and erosion history of ancient Western Australia affects the surface pedology and has consequences for microbial community structure and function. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Soil microbial community structure and function responses to successive planting of Eucalyptus.

    Science.gov (United States)

    Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian

    2013-10-01

    Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.

  10. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita.

    Science.gov (United States)

    Amaral-Zettler, Linda A; Rocca, Jennifer D; Lamontagne, Michael G; Dennett, Mark R; Gast, Rebecca J

    2008-12-15

    Hurricanes have the potential to alter the structures of coastal ecosystems and generate pathogen-laden floodwaters thatthreaten public health. To examine the impact of hurricanes on urban systems, we compared microbial community structures in samples collected after Hurricane Katrina and before and after Hurricane Rita. We extracted environmental DNA and sequenced small-subunit rRNA (SSU rRNA) gene clone libraries to survey microbial communities in floodwater, water, and sediment samples collected from Lake Charles, Lake Pontchartrain, the 17th Street and Industrial Canals in New Orleans, and raw sewage. Correspondence analysis showed that microbial communities associated with sediments formed one cluster while communities associated with lake and Industrial Canal water formed a second. Communities associated with water from the 17th Street Canal and floodwaters collected in New Orleans showed similarity to communities in raw sewage and contained a number of sequences associated with possible pathogenic microbes. This suggests that a distinct microbial community developed in floodwaters following Hurricane Katrina and that microbial community structures as a whole might be sensitive indicators of ecosystem health and serve as "sentinels" of water quality in the environment.

  11. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  12. Exploring anti-community structure in networks with application to incompatibility of traditional Chinese medicine

    Science.gov (United States)

    Zhu, Jiajing; Liu, Yongguo; Zhang, Yun; Liu, Xiaofeng; Xiao, Yonghua; Wang, Shidong; Wu, Xindong

    2017-11-01

    Community structure is one of the most important properties in networks, in which a node shares its most connections with the others in the same community. On the contrary, the anti-community structure means the nodes in the same group have few or no connections with each other. In Traditional Chinese Medicine (TCM), the incompatibility problem of herbs is a challenge to the clinical medication safety. In this paper, we propose a new anti-community detection algorithm, Random non-nEighboring nOde expansioN (REON), to find anti-communities in networks, in which a new evaluation criterion, anti-modularity, is designed to measure the quality of the obtained anti-community structure. In order to establish anti-communities in REON, we expand the node set by non-neighboring node expansion and regard the node set with the highest anti-modularity as an anti-community. Inspired by the phenomenon that the node with higher degree has greater contribution to the anti-modularity, an improved algorithm called REONI is developed by expanding node set by the non-neighboring node with the maximum degree, which greatly enhances the efficiency of REON. Experiments on synthetic and real-world networks demonstrate the superiority of the proposed algorithms over the existing methods. In addition, by applying REONI to the herb network, we find that it can discover incompatible herb combinations.

  13. THE THREE-DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM; STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES

    International Nuclear Information System (INIS)

    Conn, A. R.; Parker, Q. A.; Zucker, D. B.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Valls-Gabaud, D.; Tanvir, N.; Irwin, M. J.; Ferguson, A. M. N.; Chapman, S. C.

    2013-01-01

    We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance distributions presented in a previous publication. These distances make use of the unique combination of depth and spatial coverage of the Pan-Andromeda Archaeological Survey to provide a large, homogeneous sample consisting of 27 of M31's satellites, as well as M31 itself. We find that the satellite distribution, when viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk consisting of 15 of the satellites is however found to be highly significant, and strikingly thin, with an rms thickness of just 12.34 +0.75 -0.43 kpc. This disk is oriented approximately edge-on with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to the disk-like structure regularly reported for the Milky Way satellite system and in close alignment with M31's Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of the 27 satellites most likely lie on the Milky Way side of the galaxy, with the asymmetry being most pronounced within the satellite subset forming the aforementioned disk. This lopsidedness is all the more intriguing in light of the apparent orthogonality observed between the satellite disk structures of the Milky Way and M31.

  14. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    Directory of Open Access Journals (Sweden)

    T. A. S. V. Paes

    Full Text Available Abstract The aim of our study was to assess whether cyanotoxins (microcystins can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers. Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001, but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = – 0.01; P > 0.01 with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001. The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers. These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton.

  15. The structure and functions of bacterial communities in an agrocenosis

    Science.gov (United States)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  16. A game theoretic algorithm to detect overlapping community structure in networks

    Science.gov (United States)

    Zhou, Xu; Zhao, Xiaohui; Liu, Yanheng; Sun, Geng

    2018-04-01

    Community detection can be used as an important technique for product and personalized service recommendation. A game theory based approach to detect overlapping community structure is introduced in this paper. The process of the community formation is converted into a game, when all agents (nodes) cannot improve their own utility, the game process will be terminated. The utility function is composed of a gain and a loss function and we present a new gain function in this paper. In addition, different from choosing action randomly among join, quit and switch for each agent to get new label, two new strategies for each agent to update its label are designed during the game, and the strategies are also evaluated and compared for each agent in order to find its best result. The overlapping community structure is naturally presented when the stop criterion is satisfied. The experimental results demonstrate that the proposed algorithm outperforms other similar algorithms for detecting overlapping communities in networks.

  17. Phylogenetic and Functional Structure of Wintering Waterbird Communities Associated with Ecological Differences.

    Science.gov (United States)

    Che, Xianli; Zhang, Min; Zhao, Yanyan; Zhang, Qiang; Quan, Qing; Møller, Anders; Zou, Fasheng

    2018-01-19

    Ecological differences may be related to community component divisions between Oriental (west) and Sino-Japanese (east) realms, and such differences may result in weak geographical breaks in migratory species that are highly mobile. Here, we conducted comparative phylogenetic and functional structure analyses of wintering waterbird communities in southern China across two realms and subsequently examined possible climate drivers of the observed patterns. An analysis based on such highly migratory species is particularly telling because migration is bound to reduce or completely eliminate any divergence between communities. Phylogenetic and functional structure of eastern communities showed over-dispersion while western communities were clustered. Basal phylogenetic and functional turnover of western communities was significant lower than that of eastern communities. The break between eastern and western communities was masked by these two realms. Geographic patterns were related to mean temperature changes and temperature fluctuations, suggesting that temperature may filter waterbird lineages and traits, thus underlying geographical community divisions. These results suggest phylogenetic and functional divisions in southern China, coinciding with biogeography. This study shows that temperature fluctuations constitute an essential mechanism shaping geographical divisions that have largely gone undetected previously, even under climate change.

  18. Coastal ecosystems on a tipping point: global warming and parasitism combine to alter community structure and function.

    Science.gov (United States)

    Mouritsen, Kim N; Sørensen, Mikkel M; Poulin, Robert; Fredensborg, Brian L

    2018-05-16

    Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in presence of parasites induced massive structural changes: amphipod abundances decreased species-specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, 4-degree higher temperatures in absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19-26°C) and parasitism, simulating a prolonged heat-wave scenario, resulted in an almost complete parasite-induced extermination of the amphipod community at 26°C. In addition, at 19°C, just two degrees above the present average, a similar temperature-parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat-wave temperature of 26°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will deteriorate

  19. Evaluation of community structure and community function after exposure to the turbine fuel jet-A

    International Nuclear Information System (INIS)

    Rodgers, S.C.; Landis, W.G.

    1993-01-01

    The underlying premises of the Mixed Flask Culture (MFC), an aquatic microcosm design, include (1) that the effects of a perturbation to an aquatic community may be monitored through the measurement of its functional parameters (i.e. pH and productivity/respiration ratio) and (2) these measurements will be similar between different wild-derived communities given the same perturbation. Two MFC experiments were conducted to assess these two premises. The treatment groups in both experiments consisted of 0%, 1%, 5%, and 15% WSF Jet-A with six replicates respectively. The experimental designs reflected both the MFC and the Standard Aquatic Microcosm (SAM); this hybrid design resulted in following a MFC protocol, but incorporated the SAM specified laboratory cultured organisms. Beaker homogeneity via cross inoculation and reinoculation was encouraged in the first experiment prior to dosing. Beaker heterogeneity was encouraged in the first experiment prior to dosing. Beaker heterogeneity was encouraged in the second experiment by not cross inoculating or reinoculating. The differences between the two experiments was designed to indicate if differently derived communities react similarly to an identical perturbation. Do the microcosms within each treatment group resemble each other functionally throughout the experiment, or is the within group deviation greater than the between group deviation?

  20. A general method for the purification of synthetic oligodeoxyribonucleotides containing strong secondary structure by reversed-phase high-performance liquid chromatography on PRP-1 resin.

    Science.gov (United States)

    Germann, M W; Pon, R T; van de Sande, J H

    1987-09-01

    Synthetic 5'-dimethoxytritylated oligodeoxyribonucleotides, which contained strong secondary structure, were satisfactorily denatured and purified by reversed-phase HPLC on PRP-1 columns when strongly alkaline conditions (0.05 M NaOH) were employed. This procedure was suitable for the purification of hairpin structures, e.g., d(CG)nT4(CG)n (n = 4, 5, 6), and oligo(dG) sequences, e.g., d(G)24, as well as oligodeoxyribonucleotide probes which contained degenerate base sites. Oligodeoxyribonucleotides as long as 50 bases in length were purified. Recovery of injected oligonucleotides was typically 90% or better. The high capacity of the PRP-1 resin also allowed purification to be performed on a preparative scale (2-8 mg per injection). Enzymatic degradation and HPLC analysis indicated that no modification of the heterocyclic bases occurred under the alkaline conditions described.

  1. The relationship between the deep-level structure in crust and brewing of strong earthquakes in Xingtai area

    Science.gov (United States)

    Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu

    1999-11-01

    In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.

  2. Cyanobacterial Community Structure In Lithifying Mats of A Yellowstone Hotspring-Implications for Precambrian Stromatolite Biocomplexity

    Science.gov (United States)

    Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.

  3. Quantitative Comparison of Abundance Structures of Generalized Communities: From B-Cell Receptor Repertoires to Microbiomes.

    Directory of Open Access Journals (Sweden)

    Mohammadkarim Saeedghalati

    2017-01-01

    Full Text Available The community, the assemblage of organisms co-existing in a given space and time, has the potential to become one of the unifying concepts of biology, especially with the advent of high-throughput sequencing experiments that reveal genetic diversity exhaustively. In this spirit we show that a tool from community ecology, the Rank Abundance Distribution (RAD, can be turned by the new MaxRank normalization method into a generic, expressive descriptor for quantitative comparison of communities in many areas of biology. To illustrate the versatility of the method, we analyze RADs from various generalized communities, i.e. assemblages of genetically diverse cells or organisms, including human B cells, gut microbiomes under antibiotic treatment and of different ages and countries of origin, and other human and environmental microbial communities. We show that normalized RADs enable novel quantitative approaches that help to understand structures and dynamics of complex generalized communities.

  4. The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance.

    Science.gov (United States)

    McNamara, Patrick J; LaPara, Timothy M; Novak, Paige J

    2014-07-01

    Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan.

  5. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics

    Science.gov (United States)

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-01-01

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology. PMID:27941956

  6. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Directory of Open Access Journals (Sweden)

    Alana de Almeida Valadares-Pereira

    2017-11-01

    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  7. Perturbation of seafloor bacterial community structure by drilling waste discharge.

    Science.gov (United States)

    Nguyen, Tan T; Cochrane, Sabine K J; Landfald, Bjarne

    2018-04-01

    Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study.

    Science.gov (United States)

    Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri

    2015-09-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities. © 2015 John Wiley & Sons Ltd.

  9. Contrasted structuring effects of mesoscale features on the seabird community in the Mozambique Channel

    Science.gov (United States)

    Jaquemet, S.; Ternon, J. F.; Kaehler, S.; Thiebot, J. B.; Dyer, B.; Bemanaja, E.; Marteau, C.; Le Corre, M.

    2014-02-01

    of mescoscale features in structuring the tropical seabird community in the Mozambique Channel, in addition to segregating tropical and non-tropical species. The mechanisms underlying the segregation of tropical seabirds seem to partially differ from that of other tropical regions, and this may be a consequence of the strong local mesoscale activity, affecting prey size and availability schemes. Beyond characterising the foraging habitats of the seabird community of the Mozambique Channel, this study highlights the importance of this region as a hot spot for seabirds; especially the southern part, where several endangered sub-Antarctic species over-winter.

  10. The Structure of Psychopathology in a Community Sample of Preschoolers

    Science.gov (United States)

    Strickland, Jennifer; Keller, Jennifer; Lavigne, John V.; Gouze, Karen; Hopkins, Joyce; LeBailly, Susan

    2011-01-01

    Despite growing interest in the development of alternative diagnostic classification systems for psychopathology in young children, little is known about the adequacy of the DSM symptom structure for describing psychopathology in this population. This paper examines the fit of the DSM-IV emotional (ED) and disruptive behavior disorder (DD) symptom…

  11. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen

    2016-05-01

    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  12. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    Science.gov (United States)

    Pawlik, Joseph R; Loh, Tse-Lynn; McMurray, Steven E; Finelli, Christopher M

    2013-01-01

    Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down) or by the availability of picoplankton to suspension-feeding sponges (bottom-up). We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth). There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  13. Sponge communities on Caribbean coral reefs are structured by factors that are top-down, not bottom-up.

    Directory of Open Access Journals (Sweden)

    Joseph R Pawlik

    Full Text Available Caribbean coral reefs have been transformed in the past few decades with the demise of reef-building corals, and sponges are now the dominant habitat-forming organisms on most reefs. Competing hypotheses propose that sponge communities are controlled primarily by predatory fishes (top-down or by the availability of picoplankton to suspension-feeding sponges (bottom-up. We tested these hypotheses on Conch Reef, off Key Largo, Florida, by placing sponges inside and outside predator-excluding cages at sites with less and more planktonic food availability (15 m vs. 30 m depth. There was no evidence of a bottom-up effect on the growth of any of 5 sponge species, and 2 of 5 species grew more when caged at the shallow site with lower food abundance. There was, however, a strong effect of predation by fishes on sponge species that lacked chemical defenses. Sponges with chemical defenses grew slower than undefended species, demonstrating a resource trade-off between growth and the production of secondary metabolites. Surveys of the benthic community on Conch Reef similarly did not support a bottom-up effect, with higher sponge cover at the shallower depth. We conclude that the structure of sponge communities on Caribbean coral reefs is primarily top-down, and predict that removal of sponge predators by overfishing will shift communities toward faster-growing, undefended species that better compete for space with threatened reef-building corals.

  14. Magnetic structure of RPdSn (R=Tb, Ho) single crystal compounds under strong magnetic field

    International Nuclear Information System (INIS)

    Andoh, Y.; Kurisu, M.; Nakamoto, G.; Tsutaoka, T.; Kawano, S.

    2003-01-01

    Rare earth compounds RTX, where R stands for rare earth elements, T for Ni, Pd or Rh, and X for Sn or Ge, crystallize to a rhombic ε-TiNiSi structure. Only rare earth elements R contribute to magnetic properties since T and X atoms are nonmagnetic. The competition between RKKY indirect interaction and large magnetic anisotropy generates many complicated magnetic phases. At a low temperature phase, complicated magnetisms such as meta-magnetism were observed in magnetization curves with many steps. In previous experiments dealing with RPdSn where R means Tb or Ho, some characteristics of magnetic properties of these compounds were deduced from magnetization measurements and neutron diffraction without external magnetic field. In this report, the change of magnetic scattering of neutron diffraction was studied under external magnetic fields in order to reveal the mechanism of the phase transformations of the compounds. The difference between TbPdSn and HoPdSn compounds was observed in magnetic field dependence of the wave vectors of the magnetic scattering. Two independent wave vectors in magnetic scattering existed in HoPdSn compound. (Y. Kazumata)

  15. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Nematode diversity, abundance and community structure 50 years after the formation of the volcanic island of Surtsey

    Science.gov (United States)

    Ilieva-Makulec, K.; Bjarnadottir, B.; Sigurdsson, B. D.

    2014-10-01

    The soil nematode fauna can give important insights into soil development and other habitat changes that occur during primary succession. We investigated the generic composition, density, distribution and community structure of nematodes 50 years after the formation of a pristine volcanic island, Surtsey, Iceland. Part of the island has received additional nutrient inputs from seagulls breeding there since 1985, while the reminder has been much less affected and is at present found at a different successional sere. In total, 25 genera of nematodes were identified, of which 14 were reported on Surtsey for the first time. Nematode communities were more diverse in the more infertile area outside the gull colony, where 24 genera were found, compared to 18 inside. The trophic structure of the nematode communities showed relatively higher abundance of fungal feeders in the infertile areas, but relatively more bacterial- and plant-feeders inside the colony. Nematode abundance in surface soil was, however, significantly higher within the gull colony, with 16.7 ind. cm-2 compared to 3.6 ind. cm-2 outside. A multivariate analysis indicated that the nematode abundance and distribution on Surtsey were most strongly related to the soil C : N ratio, soil acidity, plant cover and biomass, soil temperature and soil depth.

  17. Traveling salesman problems with PageRank Distance on complex networks reveal community structure

    Science.gov (United States)

    Jiang, Zhongzhou; Liu, Jing; Wang, Shuai

    2016-12-01

    In this paper, we propose a new algorithm for community detection problems (CDPs) based on traveling salesman problems (TSPs), labeled as TSP-CDA. Since TSPs need to find a tour with minimum cost, cities close to each other are usually clustered in the tour. This inspired us to model CDPs as TSPs by taking each vertex as a city. Then, in the final tour, the vertices in the same community tend to cluster together, and the community structure can be obtained by cutting the tour into a couple of paths. There are two challenges. The first is to define a suitable distance between each pair of vertices which can reflect the probability that they belong to the same community. The second is to design a suitable strategy to cut the final tour into paths which can form communities. In TSP-CDA, we deal with these two challenges by defining a PageRank Distance and an automatic threshold-based cutting strategy. The PageRank Distance is designed with the intrinsic properties of CDPs in mind, and can be calculated efficiently. In the experiments, benchmark networks with 1000-10,000 nodes and varying structures are used to test the performance of TSP-CDA. A comparison is also made between TSP-CDA and two well-established community detection algorithms. The results show that TSP-CDA can find accurate community structure efficiently and outperforms the two existing algorithms.

  18. Microbial community structure characteristics associated membrane fouling in A/O-MBR system.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2014-02-01

    The study demonstrated the potential relationship between microbial community structure and membrane fouling in an anoxic-oxic membrane bioreactor (A/O-MBR). The results showed that the microbial community structure in biocake was different with aerobic mixture, and the dominant populations were out of sync during the fouling process. Based on microbial community structure and metabolites analysis, the results showed that the succession of microbial community might be the leading factor to the variation of metabolites, and it might be the primary cause of membrane fouling. The rise of Shannon diversity index (H) of the microbial community in A/O-MBR went with the gradually serious membrane fouling. Pareto-Lorenz curve was used to describe the evenness of microbial distribution in A/O-MBR, and the result indicated when community evenness was low, the membrane fouling took place smoothly or slightly, otherwise, high evenness of microbial community would lead to more seriously membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Investigating the link between fish community structure and environmental state in deep-time

    Science.gov (United States)

    Sibert, E. C.

    2017-12-01

    In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish

  20. Biofilm diatom community structure: Influence of temporal and substratum variability

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    ). The structure and composition of the fouling com- munity exhibit wide temporal and regional varia- tions, which are also influenced by the substratum. Dona Paula Bay, the site of this investigation, is highly dynamic in terms of its physico...-off and nutrient loading in coastal environments. In general, the waters are highly disturbed during the monsoon (June–September) and calm during the pre-monsoon (February–May) and post-monsoon (October–January) periods. Such changes are instrumental...

  1. Population Genetics of the São Tomé Caecilian (Gymnophiona: Dermophiidae: Schistometopum thomense) Reveals Strong Geographic Structuring

    Science.gov (United States)

    Stoelting, Ricka E.; Measey, G. John; Drewes, Robert C.

    2014-01-01

    Islands provide exciting opportunities for exploring ecological and evolutionary mechanisms. The oceanic island of São Tomé in the Gulf of Guinea exhibits high diversity of fauna including the endemic caecilian amphibian, Schistometopum thomense. Variation in pigmentation, morphology and size of this taxon over its c. 45 km island range is extreme, motivating a number of taxonomic, ecological, and evolutionary hypotheses to explain the observed diversity. We conducted a population genetic study of S. thomense using partial sequences of two mitochondrial DNA genes (ND4 and 16S), together with morphological examination, to address competing hypotheses of taxonomic or clinal variation. Using Bayesian phylogenetic analysis and Spatial Analysis of Molecular Variance, we found evidence of four geographic clades, whose range and approximated age (c. 253 Kya – 27 Kya) are consistent with the spread and age of recent volcanic flows. These clades explained 90% of variation in ND4 (φCT = 0.892), and diverged by 4.3% minimum pairwise distance at the deepest node. Most notably, using Mismatch Distributions and Mantel Tests, we identified a zone of population admixture that dissected the island. In the northern clade, we found evidence of recent population expansion (Fu's Fs = −13.08 and Tajima's D = −1.80) and limited dispersal (Mantel correlation coefficient = 0.36, p = 0.01). Color assignment to clades was not absolute. Paired with multinomial regression of chromatic data, our analyses suggested that the genetic groups and a latitudinal gradient together describe variation in color of S. thomense. We propose that volcanism and limited dispersal ability are the likely proximal causes of the observed genetic structure. This is the first population genetic study of any caecilian and demonstrates that these animals have deep genetic divisions over very small areas in accordance with previous speculations of low dispersal abilities. PMID:25171066

  2. Developing strong concurrent multiphysics multiscale coupling to understand the impact of microstructural mechanisms on the structural scale

    Energy Technology Data Exchange (ETDEWEB)

    Foulk, James W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alleman, Coleman N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mota, Alejandro [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bergel, Guy Leshem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Popova, Evdokia [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Montes de Oca Zapiain, David [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Kalidindi, Suryanarayana Raju [Georgia Inst. of Technology, Atlanta, GA (United States). Woodruff School of Mechanical Engineering; Ernst, Corey [Elemental Technologies, Provo, UT (United States)

    2017-09-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of

  3. Linking bacterial community structure to advection and environmental impact along a coast-fjord gradient of the Sognefjord, western Norway

    Science.gov (United States)

    Storesund, Julia E.; Sandaa, Ruth-Anne; Thingstad, T. Frede; Asplin, Lars; Albretsen, Jon; Erga, Svein Rune

    2017-12-01

    Here we present novel data on bacterial assemblages along a coast-fjord gradient in the Sognefjord, the deepest (1308 m) and longest (205 km) ice-free fjord in the world. Data were collected on two cruises, one in November 2012, and one in May 2013. Special focus was on the impact of advective processes and how these are reflected in the autochthonous and allochthonous fractions of the bacterial communities. Both in November and May bacterial community composition, determined by Automated Ribosomal Intergenic Spacer Analyses (ARISA), in the surface and intermediate water appeared to be highly related to bacterial communities originating from freshwater runoff and coastal water, whereas the sources in the basin water were mostly unknown. Additionally, the inner part of the Sognefjord was more influenced by side-fjords than the outer part, and changes in bacterial community structure along the coast-fjord gradient generally showed higher correlation with environmental variables than with geographic distances. High resolution model simulations indicated a surprisingly high degree of temporal and spatial variation in both current speed and direction. This led to a more episodic/discontinuous horizontal current pattern, with several vortices (10-20 km wide) being formed from time to time along the fjord. We conclude that during periods of strong wind forcing, advection led to allochthonous species being introduced to the surface and intermediate layers of the fjord, and also appeared to homogenize community composition in the basin water. We also expect vortices to be active mixing zones where inflowing bacterial populations on the southern side of the fjord are mixed with the outflowing populations on the northern side. On average, retention time of the fjord water was sufficient for bacterial communities to be established.

  4. Structuring Community Care using Multi-Agent Systems

    Science.gov (United States)

    Beer, Martin D.

    Community care is a complex operation that requires the interaction of large numbers of dedicated individuals, managed by an equally wide range of organisations. They are also by their nature highly mobile and flexible, moving between clients in whatever order person receiving care is that they receive what they expect regularly, reliably and when they expect to receive it. Current systems are heavily provider focused on providing the scheduled care with as high apparent cost effectiveness as possible. Unfortunately, the lack of focus on the client often leads to inflexibility with expensive services being provided when they are not needed, large scale duplication of effort or inadequate flexibility to change the care regime to meet changing circumstances. Add to this the problems associated with the lack of integration of emergency and routing care and the extensive support given by friends and family and many opportunities exist to improve both the levels of support and the efficiency of care. The move towards Individual Care Plans requires much closer monitoring to ensure that the care specified for each individual is actually delivered and when linked with smart home technology in conjunction with appropriate sensors allows a much richer range of services to be offered which can be customised to meet the needs of each individual, giving them the assurance to continue to live independently.

  5. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes?

    Directory of Open Access Journals (Sweden)

    Emily B. Graham

    2016-02-01

    Full Text Available Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  6. Bacteria at glacier surfaces: microbial community structures in debris covered glaciers and cryoconites in the Italian Alps

    Science.gov (United States)

    Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina

    2014-05-01

    Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total

  7. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  8. Strong gravity and supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, Ali H.; Salam, A.; Strathdee, J.

    1977-11-01

    A supersymmetric theory is constructed for a strong f plus a weak g graviton, together with their accompanying massive gravitinos, by gaugin the gradel 0Sp(2,2,1)x 0Sp(2,2,1) structure. The mixing term between f and g fields, which makes the strong graviton massive, can be introduced through a spontaneous symmetry-breaking mechanism implemented in this note by constructing a non-linear realization of the symmetry group

  9. Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities.

    Science.gov (United States)

    Brown, Norah E M; Milazzo, Marco; Rastrick, Samuel P S; Hall-Spencer, Jason M; Therriault, Thomas W; Harley, Christopher D G

    2018-01-01

    Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO 2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO 2 change and, if high pCO 2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO 2 stress, or are worsened by departures from prior high pCO 2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO 2 gradient to assess the importance of the timing and duration of high pCO 2 exposure (i.e., discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by 8 weeks) but then caught up over the next 4 weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short- and longer-term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO 2 and changes in species interactions. High pCO 2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pretransplant) negative effects of pCO 2 on recruitment of these worms were still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification-driven changes in the biofouling community, via both past and more recent exposure, could have important

  10. Structure of Fungal Communities in Sub-Irrigated Agricultural Soil from Cerrado Floodplains

    Directory of Open Access Journals (Sweden)

    Elainy Cristina A. M. Oliveira

    2016-05-01

    Full Text Available This study aimed to evaluate the influence of soybean cultivation on the fungal community structure in a tropical floodplain area. Soil samples were collected from two different soybean cropland sites and a control area under native vegetation. The soil samples were collected at a depth of 0–10 cm soil during the off-season in July 2013. The genetic structure of the soil fungal microbial community was analyzed using the automated ribosomal intergenic spacer analysis (ARISA technique. Among the 26 phylotypes with abundance levels higher than 1% detected in the control area, five were also detected in the area cultivated for five years, and none of them was shared between the control area and the area cultivated for eight years. Analysis of similarity (ANOSIM revealed differences in fungal community structure between the control area and the soybean cropland sites, and also between the soybean cropland sites. ANOSIM results were confirmed by multivariate statistics, which additionally revealed a nutrient-dependent relation for the fungal community structure in agricultural soil managed for eight consecutive years. The results indicated that land use affects soil chemical properties and richness and structure of the soil fungal microbial community in a tropical floodplain agricultural area, and the effects became more evident to the extent that soil was cultivated for soybean for more time.

  11. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Science.gov (United States)

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  12. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Directory of Open Access Journals (Sweden)

    Thomas H A Haverkamp

    Full Text Available Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm sediment communities are affected by local conditions within the sediment.

  13. Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.

    2010-01-01

    In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental

  14. Importance of structure and density of macroalgae communities (Fucus serratus) for photosynthetic production and light utilisation

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    at high light depended on community density. Therefore, while the determination of the production of individual algal thalli is useful for evaluating differences in acclimatisation and adaptation between species and stands, it is not useful for evaluating production rates for entire plants and communities......Determination of photosynthetic production in plant communities is essential for evaluating plant growth rates and carbon fluxes in ecosystems, but it cannot easily be derived from the photosynthetic response of individual leaves or thalli, which has been the focus of virtually all previous aquatic...... studies. To evaluate the regulation of aquatic community production, we measured the photosynthetic production of thallus parts and entire communities of Fucus serratus (L.) of different density and spatial structure exposed to varying photon flux density and dissolved CO2 concentration. Photosynthetic...

  15. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    Science.gov (United States)

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  16. The Partitioning of Carbon Biomass among the Pico- and Nano-plankton Community in the South Brazilian Bight during a Strong Summer Intrusion of South Atlantic Central Water

    Directory of Open Access Journals (Sweden)

    Natascha M. Bergo

    2017-07-01

    Full Text Available To investigate how pico- and nano-plankton respond to oceanographic conditions in the Southwestern Atlantic Ocean, we assessed the influence of a summer intrusion of the South Atlantic Central Water (SACW on the spatial and vertical dynamics of planktonic abundance and carbon biomass across environmental gradients. Seawater samples were collected from six depths within the euphotic zone at nine oceanographic stations in a transect on the Brazilian continental shelf in January 2013. The abundance of pico- and nano-plankton populations was determined by flow cytometry, and carbon biomass was calculated based on conversion factors from the literature. The autotrophic Synechococcus spp., picoeukaryotes, and nanoeukaryotes were more abundant in the surface layers of the innermost stations influenced by Coastal Water (maximum of 1.19 × 105, 1.5 × 104, and 8.61 × 103 cell·mL−1, respectively, whereas Prochlorococcus spp. dominated (max. of 6.57 × 104 cell·mL−1 at the outermost stations influenced by Tropical Water and in the uplifting layers of the SACW around a depth of 100 m. Numerically, heterotrophic bacterial populations were predominant, with maximum concentrations (2.11 × 106 cell·mL−1 recorded in the surface layers of the inner and mid shelves in Coastal Water and the upper limits of the SACW. Nutrient-rich (high silicate and phosphate and relatively less saline waters enhanced the picoeukaryotic biomass, while Synechococcus and heterotrophic bacteria were linked to higher temperatures, lower salinities, and higher inputs of ammonia and dissolved organic carbon. The relative importance of each group to carbon biomass partitioning under upwelling conditions is led by heterotrophic bacteria, followed by picoeukaryotes, Synechococcus and Prochlorococcus, and when the SACW is not as influential, the relative contribution of each phytoplanktonic group is more evenly distributed. In addition to habitat preferences, the physical structure

  17. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    Science.gov (United States)

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  18. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  19. A Mosaic of Geothermal and Marine Features Shapes Microbial Community Structure on Deception Island Volcano, Antarctica

    OpenAIRE

    Amanda G. Bendia; Camila N. Signori; Diego C. Franco; Rubens T. D. Duarte; Brendan J. M. Bohannan; Vivian H. Pellizari

    2018-01-01

    Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, an...

  20. Energy dependence of jet-structures and determination of the strong coupling constant αsub(s) in e+e- annihilation with the CELLO detector

    International Nuclear Information System (INIS)

    Hopp, G.

    1985-07-01

    We considered multihadronic events and we studied the energy dependence of the jet-structure of those events. We confirmed the existence of 3-jet and 4-jet events in high energy data as predicted by QCD. In parallel we checked the energy dependence of different jet-measures which is predicted by the fragmentation models. We determined the strong coupling constant αsub(s) using different methods and we found a strong model dependence of the αsub(s) determination in second order QCD. The study of the particle density between the jet-axes resulted in a light preference for the LUND-String model as compared to models with independent jet-fragmentation. (orig.) [de

  1. The YMCA Healthy, Fit, and Strong Program: a community-based, family-centered, low-cost obesity prevention/treatment pilot study.

    Science.gov (United States)

    Schwartz, Robert P; Vitolins, Mara Z; Case, L Douglas; Armstrong, Sarah C; Perrin, Eliana M; Cialone, Josephine; Bell, Ronny A

    2012-12-01

    Many resources are available for adults, but there are few community-based programs for overweight and obese children. Community engagement may be instrumental in overcoming barriers physicians experience in managing childhood obesity. Our objective was to design and test the feasibility of a community-based (YMCA), family-centered, low-cost intervention for overweight and obese children. Children 6-11 years over the 85th BMI percentile for age and sex were recruited to YMCA sites in four North Carolina communities. The children had physical activity sessions three times weekly for 3 months (one activity session weekly was family night). The parents received a once-weekly nutrition education class conducted by a registered dietitian using the NC Eat Smart Move More curriculum (10 sessions). Changes in BMI were measured at 3, 6, and 12 months and diet and activity behaviors at 3 and 12 months after baseline. Significant reductions were observed in BMI percentile for age and BMI z-scores at 3, 6, and 12 months. Improvements occurred in dietary and physical activity behaviors, including drinking fewer sugar-sweetened beverages, spending more time in physically active behaviors, and spending less time in sedentary behaviors. The program was low-cost, and qualitative comments suggest the parents and children benefited from the experience. This low-cost YMCA-based intervention was associated with BMI reductions and positive nutritional and activity behavior changes, providing an additional strategy for addressing childhood obesity in community settings.

  2. Friendship Concept and Community Network Structure among Elementary School and University Students.

    Science.gov (United States)

    Hernández-Hernández, Ana María; Viga-de Alva, Dolores; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain; Laviada-Molina, Hugo; Molina-Segui, Fernanda

    2016-01-01

    We use complex network theory to study the differences between the friendship concepts in elementary school and university students. Four friendship networks were identified from surveys. Three of these networks are from elementary schools; two are located in the rural area of Yucatán and the other is in the urban area of Mérida, Yucatán. We analyzed the structure and the communities of these friendship networks and found significant differences among those at the elementary schools compared with those at the university. In elementary schools, the students make friends mainly in the same classroom, but there are also links among different classrooms because of the presence of siblings and relatives in the schools. These kinds of links (sibling-friend or relative-friend) are called, in this work, "mixed links". The classification of the communities is based on their similarity with the classroom composition. If the community is composed principally of students in different classrooms, the community is classified as heterogeneous. These kinds of communities appear in the elementary school friendship networks mainly because of the presence of relatives and siblings. Once the links between siblings and relatives are removed, the communities resembled the classroom composition. On the other hand, the university students are more selective in choosing friends and therefore, even when they have friends in the same classroom, those communities are quite different to the classroom composition. Also, in the university network, we found heterogeneous communities even when the presence of sibling and relatives is negligible. These differences made up a topological structure quite different at different academic levels. We also found differences in the network characteristics. Once these differences are understood, the topological structure of the friendship network and the communities shaped in an elementary school could be predicted if we know the total number of students

  3. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods.

    Science.gov (United States)

    Burbrink, Frank T; McKelvy, Alexander D; Pyron, R Alexander; Myers, Edward A

    2015-11-22

    Predicting species presence and richness on islands is important for understanding the origins of communities and how likely it is that species will disperse and resist extinction. The equilibrium theory of island biogeography (ETIB) and, as a simple model of sampling abundances, the unified neutral theory of biodiversity (UNTB), predict that in situations where mainland to island migration is high, species-abundance relationships explain the presence of taxa on islands. Thus, more abundant mainland species should have a higher probability of occurring on adjacent islands. In contrast to UNTB, if certain groups have traits that permit them to disperse to islands better than other taxa, then phylogeny may be more predictive of which taxa will occur on islands. Taking surveys of 54 island snake communities in the Eastern Nearctic along with mainland communities that have abundance data for each species, we use phylogenetic assembly methods and UNTB estimates to predict island communities. Species richness is predicted by island area, whereas turnover from the mainland to island communities is random with respect to phylogeny. Community structure appears to be ecologically neutral and abundance on the mainland is the best predictor of presence on islands. With regard to young and proximate islands, where allopatric or cladogenetic speciation is not a factor, we find that simple neutral models following UNTB and ETIB predict the structure of island communities. © 2015 The Author(s).

  4. Plant traits determine the phylogenetic structure of arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    López-García, Álvaro; Varela-Cervero, Sara; Vasar, Martti; Öpik, Maarja; Barea, José M; Azcón-Aguilar, Concepción

    2017-12-01

    Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes. © 2017 John Wiley & Sons Ltd.

  5. Competition and habitat filtering jointly explain phylogenetic structure of soil bacterial communities across elevational gradients.

    Science.gov (United States)

    Zhang, Qian; Goberna, Marta; Liu, Yuguo; Cui, Ming; Yang, Haishui; Sun, Qixiang; Insam, Heribert; Zhou, Jinxing

    2018-04-24

    The importance of assembly processes in shaping biological communities is poorly understood, especially for microbes. Here we report on the forces that structure soil bacterial communities along a 2000 m elevational gradient. We characterized the relative importance of habitat filtering and competition on phylogenetic structure and turnover in bacterial communities. Bacterial communities exhibited a phylogenetically clustered pattern and were more clustered with increasing elevation. Biotic factors (i.e. relative abundance of dominant bacterial lineages) appeared to be most important to the degree of clustering, evidencing the role of the competitive ability of entire clades in shaping the communities. Phylogenetic turnover showed the greatest correlation to elevation. After controlling for elevation, biotic factors showed greater correlation to phylogenetic turnover than all the habitat variables (i.e. climate, soil and vegetation). Structural equation modelling also identified that elevation and soil organic matter exerted indirect effects on phylogenetic diversity and turnover by determining the dominance of microbial competitors. Our results suggest that competition among bacterial taxa induced by soil carbon contributes to the phylogenetic pattern across elevational gradient in the Tibetan Plateau. This highlights the importance of considering not only abiotic filtering but also biotic interactions in soil bacterial communities across stressful elevational gradients. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  7. Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely

    International Nuclear Information System (INIS)

    Ma, Xiaoke; Gao, Lin; Yong, Xuerong

    2010-01-01

    Identifying community structure is fundamental for revealing the structure–functionality relationship in complex networks, and spectral algorithms have been shown to be powerful for this purpose. In a traditional spectral algorithm, each vertex of a network is embedded into a spectral space by making use of the eigenvectors of the adjacency matrix or Laplacian matrix of the graph. In this paper, a novel spectral approach for revealing the overlapping and hierarchical community structure of complex networks is proposed by not only using the eigenvalues and eigenvectors but also the properties of eigenspaces of the networks involved. This gives us a better characterization of community. We first show that the communicability between a pair of vertices can be rewritten in term of eigenspaces of a network. An agglomerative clustering algorithm is then presented to discover the hierarchical communities using the communicability matrix. Finally, these overlapping vertices are discovered with the corresponding eigenspaces, based on the fact that the vertices more densely connected amongst one another are more likely to be linked through short cycles. Compared with the traditional spectral algorithms, our algorithm can identify both the overlapping and hierarchical community without increasing the time complexity O(n 3 ), where n is the size of the network. Furthermore, our algorithm can also distinguish the overlapping vertices from bridges. The method is tested by applying it to some computer-generated and real-world networks. The experimental results indicate that our algorithm can reveal community structure more precisely than the traditional spectral approaches

  8. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    Science.gov (United States)

    Wang, Xiaohui; Xia, Yu; Wen, Xianghua; Yang, Yunfeng; Zhou, Jizhong

    2014-01-01

    Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and to understand the effects of environmental factors on their structure. 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA) showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO), ammonia concentrations and loading rate of chemical oxygen demand (COD). Based on the variance partitioning analyses (VPA), a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  9. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. AIMS: To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs and to understand the effects of environmental factors on their structure. METHODS: 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. RESULTS: High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO, ammonia concentrations and loading rate of chemical oxygen demand (COD. Based on the variance partitioning analyses (VPA, a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25% and operational parameters (23%, respectively. CONCLUSIONS: This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  10. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea.

    Science.gov (United States)

    Li, Ran; Jiao, Nianzhi; Warren, Alan; Xu, Dapeng

    2018-04-01

    Protists make up an important component of aquatic ecosystems, playing crucial roles in biogeochemical processes on local and global scales. To reveal the changes of diversity and community structure of protists along the salinity gradients, community compositions of active protistan assemblages were characterized along a transect from the lower Pearl River estuary to the open waters of the South China Sea (SCS), using high-throughput sequencing of the hyper-variable V9 regions of 18S rRNA. This study showed that the alpha diversity of protists, both in the freshwater and in the coastal SCS stations was higher than that in the estuary. The protist community structure also changed along the salinity gradient. The relative sequence abundance of Stramenopiles was highest at stations with lower salinity and decreased with the increasing of salinity. By contrast, the contributions of Alveolata, Hacrobia and Rhizaria to the protistan communities generally increased with the increasing of salinity. The composition of the active protistan community was strongly correlated with salinity, indicating that salinity was the dominant factor among measured environmental parameters affecting protistan community composition and structure. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  12. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.