WorldWideScience

Sample records for strong cold wind

  1. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  2. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  3. Strong winds in South Africa, part 1: application of estimation methods

    CSIR Research Space (South Africa)

    Kruger, A

    2013-08-01

    Full Text Available into the category for a storm or gale, and is consistent with wind strengths to be expected during a very strong cold front. With regard to the above, Brabson & Palutikof (2000) illustrated the effect of the addition of four very large annual maxima, when... of strong winds experienced at the location where the wind measurements were taken. Using the Method of Independent Storms (MIS) a decision has to be taken on the threshold value which separates individual storms. This value should be high enough...

  4. Wind energy under cold climate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-03-01

    There is an increasing interest in wind energy production under different climatic conditions, among them cold climate and icing conditions. More and more wind turbines are being installed in cold climates and even adapted technology has been developed for that environment. Various national activities are going on in at least Finland, Canada, Italy, Sweden, etc. and international collaboration has been carried out within the European Union's Non-nuclear energy programme. Wind turbine operation is affected by both the cold temperatures and the formation of ice on the blades and the supporting structure. Cold temperatures can be handled by material selections known in other technical fields but to prevent icing, new techniques have to be - and have been - developed. Icing affects the reliability of anemometers, which concerns both turbine control and resource estimation, and changes the aerodynamics of the blades, which eventually stops the turbine. In addition, occasional icing events can locally affect public safety. The development of applied technology has entered some different paths and different solutions are tried out. As the applications are entering a commercial phase, these is a request to gather the experiences and monitor the reliability in a form that can be utilised by developers, manufactureres, consultants and other tenderers. The Topical Experts Meeting will focus on site classification, operational experiences, modelling and mesurements of ice induced loads and safety aspects. (EHS)

  5. Two cold-season derechoes in Europe

    Science.gov (United States)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  6. Study of wind turbine foundations in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report provides an overview of the processes at work in soil in cold climates and their effect on wind turbine foundations. Havsnaes wind farm consists of 48 turbines located in Jaemtland county in central Sweden. Havsnaes has provided an appropriate research environment to investigate the engineering challenges related to the design and construction of wind turbine foundations in sub-arctic conditions and the experienced gained from this project informs this report.

  7. Strong wind climatic zones in South Africa

    CSIR Research Space (South Africa)

    Kruger, AC

    2010-01-01

    Full Text Available of cold fronts over the southern African subcontinent. Over the eastern and central interior of South Africa annual maximum wind gusts are usually caused by thunderstorm gust fronts during summer, while in the western and southern interior extratropical...

  8. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    International Nuclear Information System (INIS)

    Feng, Ju; Sheng, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades

  9. Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China

    Science.gov (United States)

    Song, Lei; Wu, Renguang; Jiao, Yang

    2018-06-01

    The present study investigates the relative roles of intraseasonal oscillations (ISOs) and synoptic variations in strong cold events over eastern China during the boreal winter. The ISOs and synoptic variations explain about 55% and 20% of the total area-mean temperature anomaly in eastern China, respectively. The advection of synoptic winds on synoptic temperature gradients has a leading contribution to the temperature decrease before the cold events and thus the synoptic variations are important in determining the time of peak cold anomalies. The ISOs have a larger role in sustaining the cold events. The height anomalies associated with ISOs and synoptic variations are manifested as Rossby wave trains propagating along the polar front jet over the Eurasian continent before the cold events. They both contribute to the deepening of the East Asian trough and the development of cold events. Compared to the ISO wave train, the synoptic wave train has a smaller spatial scale and moves faster. There are obvious intraseasonal signals in the stratosphere about 1 week before the cold events over eastern China. Large negative height anomalies associated with the weakening of the polar vortex are observed over the North Atlantic. These anomalies move eastwards and propagate downwards after reaching the west coast of Europe. The downward moving stratospheric signal triggers height anomalies in the troposphere over the entrance region of the polar front jet. Then the anomalies propagate towards East Asia along the wave train, contributing to the intensification of the Siberian high and the East Asian trough and the occurrence of cold events over eastern China.

  10. European cold season lightning map for wind turbines based on radio soundings

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim; Lopez, Javier

    2016-01-01

    conditions for self-triggered upward lightning, as being observed in Japan and Spain, are identified. This map may give an indication if a potential wind power plant or structure has the risk to be affected by frequent lightning attachments in the cold season which are predominantly upward initiated......In this paper, the meteorological data of cold season thunderstorms in Japan and Spain are reviewed to determine the threshold conditions at which cold season lightning was recorded in the past. The variables investigated are the height of the -10°C and 0°C isotherms above ground, the wind velocity......, the precipitable water in the cloud, and the wind direction. Meteorological data of 72 radio sounding stations in Europe is analyzed for a 5 year period (2009-2014) in the months from October until March. Based on this information, a European map has been created indicating areas where the meteorological...

  11. An Improved Car-Following Model Accounting for Impact of Strong Wind

    Directory of Open Access Journals (Sweden)

    Dawei Liu

    2017-01-01

    Full Text Available In order to investigate the effect of strong wind on dynamic characteristic of traffic flow, an improved car-following model based on the full velocity difference model is developed in this paper. Wind force is introduced as the influence factor of car-following behavior. Among three components of wind force, lift force and side force are taken into account. The linear stability analysis is carried out and the stability condition of the newly developed model is derived. Numerical analysis is made to explore the effect of strong wind on spatial-time evolution of a small perturbation. The results show that the strong wind can significantly affect the stability of traffic flow. Driving safety in strong wind is also studied by comparing the lateral force under different wind speeds with the side friction of vehicles. Finally, the fuel consumption of vehicle in strong wind condition is explored and the results show that the fuel consumption decreased with the increase of wind speed.

  12. Strong winds in South Africa, part 2: mapping of updated statistics

    CSIR Research Space (South Africa)

    Kruger, AC

    2013-08-01

    Full Text Available winds in South Africa imperative. Based on the estimation of strong winds as reported in the accompanying paper (see page 29 in this volume), the spatial interpolation of 50-year characteristic strong wind values to provide updated design wind speed maps...

  13. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  14. Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking

    CERN Document Server

    Konstandin, Thomas

    2011-01-01

    The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...

  15. Ornithological studies of the Cold Northcott Wind Farm in the spring/summer 1994

    International Nuclear Information System (INIS)

    1996-01-01

    Results of ornithological studies carried out at Cold Northcott Wind Farm in North Cornwall during 1994 are presented. Flight patterns of species using the area were studied as were breeding patterns and bird mortality due to collisions with wind turbines. No significant effect on the spring and summer bird communities was observed. Long-term influences on the birds seem, rather, to stem from large scale population changes and local agricultural practice. Wind strength was shown to affect flight patterns in some species, but turbine operation seems unrelated. Death by collision with wind turbines is shown to be very rare. (UK)

  16. Identification of zones of strong wind events in South Africa

    CSIR Research Space (South Africa)

    Goliger, Adam M

    2002-11-01

    Full Text Available This paper summarises the initial stage of development of a wind damage/disaster risk model for South Africa. The aim is to identify the generic zones of various types of strong wind events. The extent of these zones will form the basis...

  17. Coefficients of resistance to cold-air-drainage winds on a grass-covered slope

    International Nuclear Information System (INIS)

    Komoda, H.; Kobayashi, T.; Mori, M.; Kaneko, T.

    2006-01-01

    The cold-air-drainage (CAD) wind is one of the most familiar local winds in Japan. It is driven by the surplus of density, or the deficit of potential temperature produced by radiative cooling in the surface air layer on a slope, and is resisted by the ground surface and the surrounding atmosphere. The coefficients of resistance of the ground surface and the surrounding atmosphere change with the CAD wind speed. The observations made on a grass-covered slope of Mt. Kuju showed that the resistance exerted by the surrounding atmosphere was much larger than that by the ground surface, and the sum of two coefficients of resistance decreased by one order of magnitude when the CAD wind speed exceeded some critical value

  18. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Servant, Géraldine

    2011-01-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only

  19. Strong Anderson localization in cold atom quantum quenches

    OpenAIRE

    Micklitz, T.; Müller, C. A.; Altland, A.

    2013-01-01

    Signatures of strong Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi one-dimensional cloud initially prepared in a well defined momentum state, and expanding for some time in a disorder speckle potential. Anderson localization leads to a formation of a coherence peak in the \\emph{forward} scattering direction (as opposed to the common weak localization backscattering peak). We present a microscopic, and fully time...

  20. Probabilistic Capacity Assessment of Lattice Transmission Towers under Strong Wind

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-10-01

    Full Text Available Serving as one key component of the most important lifeline infrastructure system, transmission towers are vulnerable to multiple nature hazards including strong wind and could pose severe threats to the power system security with possible blackouts under extreme weather conditions, such as hurricanes, derechoes, or winter storms. For the security and resiliency of the power system, it is important to ensure the structural safety with enough capacity for all possible failure modes, such as structural stability. The study is to develop a probabilistic capacity assessment approach for transmission towers under strong wind loads. Due to the complicated structural details of lattice transmission towers, wind tunnel experiments are carried out to understand the complex interactions of wind and the lattice sections of transmission tower and drag coefficients and the dynamic amplification factor for different panels of the transmission tower are obtained. The wind profile is generated and the wind time histories are simulated as a summation of time-varying mean and fluctuating components. The capacity curve for the transmission towers is obtained from the incremental dynamic analysis (IDA method. To consider the stochastic nature of wind field, probabilistic capacity curves are generated by implementing IDA analysis for different wind yaw angles and different randomly generated wind speed time histories. After building the limit state functions based on the maximum allowable drift to height ratio, the probabilities of failure are obtained based on the meteorological data at a given site. As the transmission tower serves as the key nodes for the power network, the probabilistic capacity curves can be incorporated into the performance based design of the power transmission network.

  1. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Thomas; Servant, Géraldine, E-mail: tkonstan@cern.ch, E-mail: geraldine.servant@cern.ch [CERN Physics Department, Theory Division, CH-1211 Geneva 23 (Switzerland)

    2011-07-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only.

  2. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  3. Abrupt acceleration of a 'cold' ultrarelativistic wind from the Crab pulsar.

    Science.gov (United States)

    Aharonian, F A; Bogovalov, S V; Khangulyan, D

    2012-02-15

    Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.

  4. Field measurement of wind pressure and wind-induced vibration of large-span spatial cable-truss system under strong wind or typhoon

    Directory of Open Access Journals (Sweden)

    ZHANG Zhihong

    2013-10-01

    Full Text Available In order to ensure wind-resistance safety of large-span pre-stressed flexible system in southeast coast area of China,and to prepare something for revising of current codes of practice or technical standards,the present paper conducts field measurement of wind pressure and wind-induced vibration of a practical and typical large-span spatial cable-truss system-lunar stadium in Yueqing city.Wind loading and wind effects on full-scale structure under strong wind or typhoon in real architectural environment can be obtained directly and effectively.Field measurement is the best way to investigate the wind loading property,wind effects,and wind-structure interactions of large-span flexible system.Measured data will be highly valuable for scientific research and practical design.On the other hand,it also provides the basis of wind-resistance safety design of this kind of tension structures.If any creative development,it would dramatically improve the research level of large-span pre-stressed flexible system in our country.

  5. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    Science.gov (United States)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  6. Strong Anderson localization in cold atom quantum quenches.

    Science.gov (United States)

    Micklitz, T; Müller, C A; Altland, A

    2014-03-21

    Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined momentum state, and expanding for some time in a disorder speckle potential. Quantum interference generates a peak in the forward scattering amplitude which, unlike the common weak localization backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our results should be observable by present day experiments.

  7. Strong winds and waves offshore

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    2016-01-01

    is on the meteorologi al and o eani onditions related to storm winds and waves over the North Sea. With regard to the o shore wind energy appli ation, the parameters addressed here in lude: extreme wind and extreme waves, storm wind and waves and turbulen e issues for o shore onditions.......This report is prepared for Statoil, with the intention to introdu e DTU Wind Energy's ongoing resear h a tivities on o shore extreme wind and wave onditions. The purpose is to share our re ent ndings and to establish possible further ollaboration with Statoil. The fo us of this report...

  8. Operation Design of Wind Turbines in Strong Wind Conditions

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Montes, Melissa Barroso; Odgaard, Peter Fogh

    2012-01-01

    and variable speed pitch regulated wind turbines. The variable speed design is more suitable for wind turbines to run at very high wind speeds which can help the turbine braking system to stop the turbine at the new "cut-out" wind speed. Reference power, rotational speed and pitch angle have been designed...... optimally. In order to reduce the possible increased loading, fatigue due to the wind gusts, control strategies have been considered for both constant sped and variable speed pitch regulated wind turbines. The control study shows that the designed controllers can reduce the standard deviations efficiently......In order to reduce the impact on the electrical grid from the shutdown of MW wind turbines at wind speeds higher than the cut-out wind speed of 25 m/s, we propose in this paper to run the turbines at high wind speeds up to 40 m/s. Two different operation designs are made for both constant speed...

  9. Wind Climate in Kongsfjorden, Svalbard, and Attribution of Leading Wind Driving Mechanisms through Turbulence-Resolving Simulations

    Directory of Open Access Journals (Sweden)

    Igor Esau

    2012-01-01

    Full Text Available This paper presents analysis of wind climate of the Kongsfjorden-Kongsvegen valley, Svalbard. The Kongsfjorden-Kongsvegen valley is relatively densely covered with meteorological observations, which facilitate joint statistical analysis of the turbulent surface layer structure and the structure of the higher atmospheric layers. Wind direction diagrams reveal strong wind channeled in the surface layer up to 300 m to 500 m. The probability analysis links strong wind channeling and cold temperature anomalies in the surface layer. To explain these links, previous studies suggested the katabatic wind flow mechanism as the leading driver responsible for the observed wind climatology. In this paper, idealized turbulence-resolving simulations are used to distinct between different wind driving mechanisms. The simulations were performed with the real surface topography at resolution of about 60 m. These simulations resolve the obstacle-induced turbulence and the turbulence in the non-stratified boundary layer core. The simulations suggest the leading roles of the thermal land-sea breeze circulation and the mechanical wind channeling in the modulation of the valley winds. The characteristic signatures of the developed down-slope gravity-accelerated flow, that is, the katabatic wind, were found to be of lesser significance under typical meteorological conditions in the valley.

  10. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions.

    Science.gov (United States)

    Henriksson, Otto; Lundgren, J Peter; Kuklane, Kalev; Holmér, Ingvar; Bjornstig, Ulf

    2009-01-01

    In a cold, wet, or windy environment, cold exposure can be considerable for an injured or ill person. The subsequent autonomous stress response initially will increase circulatory and respiratory demands, and as body core temperature declines, the patient's condition might deteriorate. Therefore, the application of adequate insulation to reduce cold exposure and prevent body core cooling is an important part of prehospital primary care, but recommendations for what should be used in the field mostly depend on tradition and experience, not on scientific evidence. The objective of this study was to evaluate the thermal insulation properties in different wind conditions of 12 different blankets and rescue bags commonly used by prehospital rescue and ambulance services. The thermal manikin and the selected insulation ensembles were setup inside a climatic chamber in accordance to the modified European Standard for assessing requirements of sleeping bags. Fans were adjusted to provide low (value, Itr (m2 C/Wclo; where C = degrees Celcius, and W = watts), was calculated from ambient air temperature (C), manikin surface temperature (C), and heat flux (W/m2). In the low wind condition, thermal insulation of the evaluated ensembles correlated to thickness of the ensembles, ranging from 2.0 to 6.0 clo (1 clo = 0.155 m2 C/W), except for the reflective metallic foil blankets that had higher values than expected. In moderate and high wind conditions, thermal insulation was best preserved for ensembles that were windproof and resistant to the compressive effect of the wind, with insulation reductions down to about 60-80% of the original insulation capacity, whereas wind permeable and/or lighter materials were reduced down to about 30-50% of original insulation capacity. The evaluated insulation ensembles might all be used for prehospital protection against cold, either as single blankets or in multiple layer combinations, depending on ambient temperatures. However, with extended

  11. Transport of biologically important nutrients by wind in an eroding cold desert

    Science.gov (United States)

    Sankey, Joel B.; Germino, Matthew J.; Benner, Shawn G.; Glenn, Nancy F.; Hoover, Amber N.

    2012-01-01

    Wind erosion following fire is an important landscape process that can result in the redistribution of ecologically important soil resources. In this study we evaluated the potential for a fire patch in a desert shrubland to serve as a source of biologically important nutrients to the adjacent, downwind, unburned ecosystem. We analyzed nutrient concentrations (P, K, Ca, Mg, Cu, Fe, Mn, Al) in wind-transported sediments, and soils from burned and adjacent unburned surfaces, collected during the first to second growing seasons after a wildfire that burned in 2007 in Idaho, USA in sagebrush steppe; a type of cold desert shrubland. We also evaluated the timing of potential wind erosion events and weather conditions that might have contributed to nutrient availability in downwind shrubland. Findings indicated that post-fire wind erosion resulted in an important, but transient, addition of nutrients on the downwind shrubland. Aeolian sediments from the burned area were enriched relative to both the up- and down-wind soil and indicated the potential for a fertilization effect through the deposition of the nutrient-enriched sediment during the first, but not second, summer after wildfire. Weather conditions that could have produced nutrient transport events might have provided increased soil moisture necessary to make nutrients accessible for plants in the desert environment. Wind transport of nutrients following fire is likely important in the sagebrush steppe as it could contribute to pulses of resource availability that might, for example, affect plant species differently depending on their phenology, and nutrient- and water-use requirements.

  12. Research on Condition Assessment Method of Transmission Tower Under the Action of Strong Wind

    Science.gov (United States)

    Huang, Ren-mou; An, Li-qiang; Zhang, Rong-lun; Wu, Jiong; Liang, Ya-feng

    2018-03-01

    Transmission towers are often subjected to the external damage of severe weather like strong wind and so on, which may cause the collapse due to the yield and fracture of the tower material. Aiming this issue, an assessment method was proposed in this paper to assess the operation condition of transmission towers under strong wind. With a reasonable assess index system established firstly, then the internal force of the tower material was solved and its stability was determined through the mechanical analysis of the transmission tower finite element model. Meanwhile, the condition risk level of the tower was finally determined by considering the difference among the influences of other factors like corrosion and loose of members, slope on the transmission tower through the analytic hierarchy process. The assessment method was applied to assess the wind-induced collapse of towers in 110kV Bao Yi II line in Wenchang City, Hainan Province, of which the result proves the method can assess the condition of transmission tower under strong wind and of guiding significance for improving the windproof capability of transmission towers.

  13. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-03-01

    Full Text Available Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and evaluation of light steel structures caused by strong winds, which include connection failure, fatigue failure, purlin buckling, and primary frame component instability problems. Moreover, this review will mention some applications of structure damage assessment methods in this area, such as vulnerability analysis and performance-based theory, etc.

  14. Tropospheric mid-latitude geopotential wave characteristics associated with strong wind events in the North Atlantic/European region

    Science.gov (United States)

    Wild, Simon; Simmonds, Ian; Leckebusch, Gregor C.

    2015-04-01

    The variability of strong synoptic scale wind events in the mid-latitudes have long been linked to baroclinic wave activity in the mid troposphere. Previous studies have also shown that greater amplitudes of planetary waves in the mid troposphere are likely to increase the occurrence of regional extremes in temperature and precipitation. In this study we examine whether characteristics of planetary and synoptic mid-latitude waves show systematic anomalies in the North Atlantic/ European region which can be related to the occurrence of a strong surface wind event. We will mainly focus on two questions: 1) Do amplitudes for waves with different wave lengths show a systematic anomaly when a strong wind event occurs? 2) Can phases of the individual wave components be detected that favour strong wind events? In order to decompose the mid-tropospheric flow into longitudinal waves we employ the fast Fourier transform to the meridional mean of the geopotential height in 500hPa between 35° and 60°N for i) the entire latitude belt and ii) for a North Atlantic/European sector (36°W to 36°E). Our definition of strong wind events is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. First results using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM) for the 50 most intense strong wind systems with respect to the SSI reveal a greater amplitude for all investigated wave numbers. Especially waves with wave lengths below 2000km show an increase of about 25% of the daily standard deviation on average. The distribution of wave phases for the different wave numbers with respect to the location of a strong wind event shows a less homogenous picture. There is however a high proportion of events that can be associated with phases around 3π/4 and 5π/4 of waves with lengths of around 6000km, equivalent to wave number 5 on a planetary scale

  15. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    International Nuclear Information System (INIS)

    Julia-Diaz, B.; Dagnino, D.; Barberan, N.; Guenter, K. J.; Dalibard, J.; Grass, T.; Lewenstein, M.

    2011-01-01

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  16. Strongly correlated states of a small cold-atom cloud from geometric gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Julia-Diaz, B. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Dagnino, D.; Barberan, N. [Dept. ECM, Facultat de Fisica, U. Barcelona, E-08028 Barcelona (Spain); Guenter, K. J.; Dalibard, J. [Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond, F-75005 Paris (France); Grass, T. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, E-08860 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona (Spain)

    2011-11-15

    Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam that couples two internal atomic states, and it is related to Berry's geometrical phase that emerges when an atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in the strong magnetic-field limit.

  17. Wind measurements with SODAR during strong temperature inversions near the ground

    International Nuclear Information System (INIS)

    Thomas, P.; Vogt, S.

    1989-08-01

    SODAR (Sound Detection and Ranging) equipment has been increasingly used to measure vertical wind profiles with little expenditure in terms of staff, continuously over time and with a good spatial resolution. These informations serve as input variables for atmospheric transport and dispersion models, environmental monitoring of industrial facilities and, generally, for investigating a broad spectrum of meteorological phenomena. The SODAR principle has proved its suitability since long provided that the data recorded with SODAR have served to establish wind statistics valid for extended periods of time. At industrial sites potentially releasing substances prejudicial to health, e.g., chemical plants, nuclear power plants, etc., a SODAR must, moreover, be capable of measuring reliable the wind conditions also during short periods of release. This would, e.g., be important during accidental releases. Especially interesting situations for pollutant dispersion are distinct temperature inversions. It will be examined in this paper whether a SODAR is capable of measuring reliably the wind conditions also during those inversions. The selection of the situations of inversion as well as the direct intercomparison of data supplied by SODAR and conventional wind measuring instruments (anemometer and wind vane) are possible at the 200 m meteorological tower erected at the Karlsruhe Nuclear Research Center. The comparison between SODAR and the meteorological tower has shown that a SODAR is able to measure reliably the wind data also in situations characterized by strong ground-based and elevated inversions, respectively. (orig./KW) [de

  18. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Xiang, Yongyuan, E-mail: ruishengzheng@sdu.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China)

    2017-05-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  19. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Li, Gang; Xiang, Yongyuan

    2017-01-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  20. Linear theory of a cold relativistic beam in a strongly magnetized finite-geometry plasma

    International Nuclear Information System (INIS)

    Gagne, R.R.J.; Shoucri, M.M.

    1976-01-01

    The linear theory of a finite-geometry cold relativistic beam propagating in a cold homogeneous finite-geometry plasma, is investigated in the case of a strongly magnetized plasma. The beam is assumed to propagate parallel to the external magnetic field. It is shown that the instability which takes place at the Cherenkov resonance ωapprox. =k/subz/v/subb/ is of the convective type. The effect of the finite geometry on the instability growth rate is studied and is shown to decrease the growth rate, with respect to the infinite geometry, by a factor depending on the ratio of the beam-to-plasma radius

  1. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  2. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  3. Index Bioclimatic "Wind-Chill"

    Directory of Open Access Journals (Sweden)

    Teodoreanu Elena

    2015-05-01

    Full Text Available This paper presents an important bioclimatic index which shows the influence of wind on the human body thermoregulation. When the air temperature is high, the wind increases thermal comfort. But more important for the body is the wind when the air temperature is low. When the air temperature is lower and wind speed higher, the human body is threatening to freeze faster. Cold wind index is used in Canada, USA, Russia (temperature "equivalent" to the facial skin etc., in the weather forecast every day in the cold season. The index can be used and for bioclimatic regionalization, in the form of skin temperature index.

  4. Wind turbines, is it just wind?

    International Nuclear Information System (INIS)

    Boiteux, M.

    2012-01-01

    The author first outlines that wind energy is not only random, but almost absent in extreme situations when it would be needed (for example and notably, very cold weather without wind). He suggests the association of a gas turbine to each wind turbine, so that the gas turbine will replace non operating wind turbines. He notices that wind turbines are not proximity energy as they were said to be, and that profitability in fact requires tens of grouped giant wind turbines. He also outlines the high cost of construction of grids for the connection of these wind turbines. Thus, he states that wind energy is far from being profitable in the present conditions of electricity tariffs in France

  5. Probabilistic Path Planning of Montgolfier Balloons in Strong, Uncertain Wind Fields

    Science.gov (United States)

    Wolf, Michael; Blackmore, James C.; Kuwata, Yoshiaki

    2011-01-01

    Lighter-than-air vehicles such as hot-air balloons have been proposed for exploring Saturn s moon Titan, as well as other bodies with significant atmospheres. For these vehicles to navigate effectively, it is critical to incorporate the effects of surrounding wind fields, especially as these winds will likely be strong relative to the control authority of the vehicle. Predictive models of these wind fields are available, and previous research has considered problems of planning paths subject to these predicted forces. However, such previous work has considered the wind fields as known a priori, whereas in practical applications, the actual wind vector field is not known exactly and may deviate significantly from the wind velocities estimated by the model. A probabilistic 3D path-planning algorithm was developed for balloons to use uncertain wind models to generate time-efficient paths. The nominal goal of the algorithm is to determine what altitude and what horizontal actuation, if any is available on the vehicle, to use to reach a particular goal location in the least expected time, utilizing advantageous winds. The solution also enables one to quickly evaluate the expected time-to-goal from any other location and to avoid regions of large uncertainty. This method is designed for balloons in wind fields but may be generalized for any buoyant vehicle operating in a vector field. To prepare the planning problem, the uncertainty in the wind field is modeled. Then, the problem of reaching a particular goal location is formulated as a Markov decision process (MDP) using a discretized space approach. Solving the MDP provides a policy of what actuation option (how much buoyancy change and, if applicable, horizontal actuation) should be selected at any given location to minimize the expected time-to-goal. The results provide expected time-to-goal values from any given location on the globe in addition to the action policy. This stochastic approach can also provide

  6. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas

    DEFF Research Database (Denmark)

    Doubrawa, Paula; Barthelmie, Rebecca Jane; Pryor, Sara C.

    2015-01-01

    and combine all scenes into one wind speed map. QuikSCAT winds undergo a seasonal correction due to lack of data during the cold season that is based on its ratio relative to buoy time series. All processing steps reduce the biases of the individual maps relative to the buoy observed wind climates. The remote...

  7. Quality controls for wind measurement of a 1290-MHz boundary layer profiler under strong wind conditions.

    Science.gov (United States)

    Liu, Zhao; Zheng, Chaorong; Wu, Yue

    2017-09-01

    Wind profilers have been widely adopted to observe the wind field information in the atmosphere for different purposes. But accuracy of its observation has limitations due to various noises or disturbances and hence need to be further improved. In this paper, the data measured under strong wind conditions, using a 1290-MHz boundary layer profiler (BLP), are quality controlled via a composite quality control (QC) procedure proposed by the authors. Then, through the comparison with the data measured by radiosonde flights (balloon observations), the critical thresholds in the composite QC procedure, including consensus average threshold T 1 and vertical shear threshold T 3 , are systematically discussed. And the performance of the BLP operated under precipitation is also evaluated. It is found that to ensure the high accuracy and high data collectable rate, the optimal range of subsets is determined to be 4 m/s. Although the number of data rejected by the combined algorithm of vertical shear examination and small median test is quite limited, it is proved that the algorithm is quite useful to recognize the outlier with a large discrepancy. And the optimal wind shear threshold T 3 can be recommended as 5 ms -1 /100m. During patchy precipitation, the quality of data measured by the four oblique beams (using the DBS measuring technique) can still be ensured. After the BLP data are quality controlled by the composite QC procedure, the output can show good agreement with the balloon observation.

  8. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  9. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  10. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  11. International wind energy development. World market update 2012. Forecast 2013-2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    The BTM wind report, World Market Update 2012, published by Navigant Research, is the eighteenth edition of this annual wind energy market report. The report includes more than 80 tables, charts and graphs illustrating global wind market development, as well as a wind market forecast for 2013?2017 and highlighted trends for the wind market through 2022. The report delivers several views on the fast?growing wind market, including: 1) More than 285 GW of wind power now installed globally; 2) 45GW of new capacity added in 2012, including 1.1 GW from offshore wind; 3) The United States surpassed China as the largest market in terms of new installations in 2012; 4) Europe lost its position as the largest world region in terms of new installations; 5) Wind installations in the Americas grew by 12.3 percent compared with 2011; 6) Big shake?up in the top ten wind turbine supplier ranking; 7) Strong Chinese presence among top 15 wind owner?operators; 8) Wind market structures continue to evolve; 9) The penetration of wind power in the world's electricity supply has reached 2.62 percent; 10) Offshore wind more than doubled the capacity added in 2011, with more than 4 GW currently under construction. With the addition of 44,951 MW in new installations in 2012, world wind power capacity grew to around 285,700 MW, an increase in the total wind power installation base of 18.6 percent. Market growth year-over-year in 2012, though a modest 7.8 percent, was still higher than in 2011. Average annual growth for the past five years has been 17.8 percent, achieved during the aftermath of the 2008 financial crisis, with traditionally large markets for wind power in economic recession in America and Europe. The wind power industry continues to demonstrate its ability to rapidly evolve to meet new demands in markets that face a variety of challenges. The focus on product diversification grows with wind turbine vendors designing machines for maximum energy production in low wind speed

  12. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada

    International Nuclear Information System (INIS)

    Li Meishen; Li Xianguo

    2005-01-01

    Wind energy becomes more and more attractive as one of the clean renewable energy resources. Knowledge of the wind characteristics is of great importance in the exploitation of wind energy resources for a site. It is essential in designing or selecting a wind energy conversion system for any application. This study examines the wind characteristics for the Waterloo region in Canada based on a data source measured at an elevation 10 m above the ground level over a 5-year period (1999-2003) with the emphasis on the suitability for wind energy technology applications. Characteristics such as annual, seasonal, monthly and diurnal wind speed variations and wind direction variations are examined. Wind speed data reveal that the windy months in Waterloo are from November to April, defined as the Cold Season in this study, with February being the windiest month. It is helpful that the high heating demand in the Cold Season coincides with the windy season. Analysis shows that the day time is the windy time, with 2 p.m. in the afternoon being the windiest moment. Moreover, a model derived from the maximum entropy principle (MEP) is applied to determine the diurnal, monthly, seasonal and yearly wind speed frequency distributions, and the corresponding Lagrangian parameters are determined. Based on these wind speed distributions, this study quantifies the available wind energy potential to provide practical information for the application of wind energy in this area. The yearly average wind power density is 105 W/m 2 . The day and night time wind power density in the Cold Season is 180 and 111 W/m 2 , respectively

  13. Strongly at the wind; Hart am Wind

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Niels Hendrik

    2013-11-01

    The company Easywind from North Friesland distributes a certified and stromproof small wind turbine. More than 300 systems have been sold. In Germany especially farmers and small businesses meet their needs so. [German] Die Firma Easywind aus Nordfriesland vertreibt eine zertifizierte und sturmfeste Kleinwindanlage. Mehr als 300 Anlagen sind bereits verkauft. In Deutschland decken vor allem Landwirte und kleine Betriebe so ihren Bedarf.

  14. Inversion Build-Up and Cold-Air Outflow in a Small Alpine Sinkhole

    Science.gov (United States)

    Lehner, Manuela; Whiteman, C. David; Dorninger, Manfred

    2017-06-01

    Semi-idealized model simulations are made of the nocturnal cold-air pool development in the approximately 1-km wide and 100-200-m deep Grünloch basin, Austria. The simulations show qualitatively good agreement with vertical temperature and wind profiles and surface measurements collected during a meteorological field expedition. A two-layer stable atmosphere forms in the basin, with a very strong inversion in the lowest part, below the approximate height of the lowest gap in the surrounding orography. The upper part of the stable layer is less strongly stratified and extends to the approximate height of the second-lowest gap. The basin atmosphere cools most strongly during the first few hours of the night, after which temperatures decrease only slowly. An outflow of air forms through the lowest gap in the surrounding orography. The outflow connects with a weak inflow of air through a gap on the opposite sidewall, forming a vertically and horizontally confined jet over the basin. Basin cooling shows strong sensitivity to surface-layer characteristics, highlighting the large impact of variations in vegetation and soil cover on cold-air pool development, as well as the importance of surface-layer parametrization in numerical simulations of cold-air-pool development.

  15. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in s...

  16. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  17. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    Science.gov (United States)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  18. Life expectancy, adapted technology and cold climate conditions : key issues for wind turbines in Canada; Duree de vie, adaptation technologique et conditions froides : un enjeu majeur pour les eoliennes au Canada

    Energy Technology Data Exchange (ETDEWEB)

    Chaumel, J.L.; Nanta, R. [Quebec Univ., Rimouski, PQ (Canada); Golbeck, P. [Peter Golbeck Consultant, Rimouski, PQ (Canada)

    2007-07-01

    This presentation discussed the service life of wind turbines, particularly those operating in cold climates. A map of Quebec was included to indicate the potential sites for an additional 450 MW of wind energy capacity for northern Quebec, near James Bay. Different types of wind turbines were described in terms of their size and power, including those without transformers. It was noted that a 30 per cent growth in the wind power industry is anticipated annually. However, there is currently a lack of wind turbines. A 2 MW wind turbine costs $3 million and major reinvestment is needed after 10 years of service life due to component wear. It was noted that a gear box lasts less than 15 years and other generator components also require maintenance. The primary reasons for increased risk and cost include equipment failures due to component fatigue, cold weather operation, lack of maintenance and bad design for winter conditions. The components affected by failures include gearboxes, generators, pitch controls, and hydraulics. Since the industry is relatively new, there are no replacement parts available for these components and cranage costs are high. In addition, since Canada's entry into the wind industry is also relatively new, there is a lack of machine testing in Canada as well as a lack of understanding of energy capacity and the effects of cold weather. Overproduction also occurs frequently. tabs., figs.

  19. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    International Nuclear Information System (INIS)

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  20. Interaction of Shallow Cold Surges with Topography on Scales of 100-1000 Kilometers.

    Science.gov (United States)

    Toth, James John

    1987-09-01

    A shallow cold air mass is defined as one not extending to the top of the mountain ridge with which it interacts. The structure of such an airmass is examined using both observational data and a hydrostatic version of the Colorado State University Regional Atmospheric Modeling System. The prime constraint on a shallow cold surge is that the flow must ultimately be parallel to the mountain ridge. It is found that the effects of this constraint are altered significantly by surface sensible heat flux. Cold surges are slowed during the daylight hours, a result consistent with previous observational studies in Colorado east of the Continental Divide. Two case studies are described in detail, and several other events are cited. Since observations alone do not provide a complete description of diversion of the cold air by the mountain range, numerical model simulations provide additional insight into important mechanisms. A case study on 14 June 1985 is described using observational and model data. The model development of a deep boundary layer within the frontal baroclinic zone is consistent with the observations for this and other cases. This development is due to strong surface heating. Turning off the model shortwave radiation is seen to produce a rapid southward acceleration of the surface front, with very shallow cold air behind the front. Model simulations with specified surface temperature differences confirm the importance of upward heat flux from the surface in slowing the southward movement of the cold surge. It is concluded that the slowing is not due simply to the thermal wind developing in response to the heating of higher terrain to the west. Since surface heating is distributed over a deeper layer on the warm side of the temperature discontinuity, there is frontolysis at the surface. But this modification would develop even over flat terrain. Sloping terrain introduces additional effects. Heating at the western, upslope side of the cold surge inhibits the

  1. Night Wind - Deliverable D.3.2 main simulation report; Grid architecture for wind power production with energy storage through load shifting in refrigerated warehouses

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, Tom; Bindner, Henrik; Zong, Yi

    2008-11-15

    This report represents Deliverable D.3.2 of Work Package 3 in the Night Wind project. The aim of this Work Package was to simulate a cold store (or number of cold stores) within a power system where there is a high degree of wind power penetration. The Night Wind Control System, developed as part of Work Package 5, was to be integrated into the simulations so that the wind power could be 'stored' in the cold store with maximum benefit to the electrical network, utility or cold store owner. To this end, the following have been accomplished: 1) The Night Wind concept has been described in terms of demand side management. 2) Input requirements and data have been specified and collected. Measured data from the existing cold store facility of Partner Logistics has been analysed. 3) Component models for the simulations (including the cold store model itself) have been developed for the simulation platform, IPSYS. 4) The Night Wind Control System (NWCS) from Work Package 5 has been developed so that it finishes computations within two minutes. 5) Controllers including the NWCS) have been operated with the cold store model within IPSYS. 6) Simulations have been performed with the cold store model and an increasing penetration of wind power. This report presents the results of the work undertaken in Work Package 3 which would have benefited from the additional time requested at the project meeting in March 2008, however, this extension of time was not granted. Nevertheless, the work that was possible is considered significantly complete, although it is acknowledged that there has been a delay in the presentation of this report. It should be noted that it was not possible to address the new aspects of Task 3.7 'Verification of simulation results' as there was no implementation of the night wind concept at the demonstration site (Task 7). Verification of the simulation of the present system has, naturally, been carried out and described in this report. (ln)

  2. Proceedings of the Canadian Wind Energy Association's 2009 wind matters conference : wind and power systems

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for wind energy and electric power industry experts to discuss issues related to wind and power systems. An overview of wind integration studies and activities in Canada and the United States was provided. New tools and technologies for facilitating the integration of wind and improve market conditions for wind energy developers were presented. Methods of increasing wind penetration were evaluated, and technical issues related to wind interconnections throughout North America were reviewed. The conference was divided into the following 5 sessions: (1) experiences with wind integration, and lessons learned, (2) update on ongoing wind integration initiatives in Canada and the United States, (3) initiatives and tools to facilitate wind integration and market access, (4) developments in wind interconnection and grid codes, (5) wind energy and cold weather considerations, and (6) challenges to achieving the 20 per cent WindVision goal in Canada. The conference featured 21 presentations, of which 13 have been catalogued separately for inclusion in this database. refs., tabs., figs

  3. Cold episodes in the Peruvian Central Andes: Composites, Types, and their Impacts over South America (1958-2014)

    Science.gov (United States)

    Sulca, J. C.; Vuille, M. F.; Roundy, P. E.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2015-12-01

    The Mantaro basin (MB) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during austral summer (January-March), that strongly damage crops. However, little is known about the causes and impacts of such cold episodes. The main goal of this study is thus to characterize cold episodes in the MB and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MB daily minimum temperature (Tmin) for the period 1958-2014 from Huayao station, located within the MB was used. A cold episode is defined when daily minimum temperature drops below its 10-percentile for at least one day. Additionally, to study the sensitivity between physical mechanisms associated with cold episodes and temperature, cold episodes are classified in three groups: Weak cold episodes (7.5 ≤ Tmin ≤ 10 percentile), strong cold episodes (Tmin ≤ 2.5 percentile), but excluding the 9 coldest events (Tmin ≤ 0 ͦ C), henceforth referred to as extraordinary cold episodes. Several gridded reanalysis were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events. Weak and strong cold episodes in the MB are mainly associated with a weakening of the Bolivian High-Nordeste Low system by tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the development of cloud cover (e.g., positive OLR anomalies over MB). The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below 10-percentile. Simultaneously, northeastern Brazil (NEB) registers negative OLR anomalies, strong convection and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of

  4. Colliding winds: Interaction regions with strong heat conduction

    International Nuclear Information System (INIS)

    Imamura, J.N.; Chevalier, R.A.

    1984-01-01

    The interaction of fast stellar wind with a slower wind from previous mass loss gives rise to a region of hot, shocked gas. We obtain self-similar solutions for the interaction region under the assumptions of constant mass loss rate and wind velocity for the two winds, conversion of energy in the shock region, and either isothermal electrons and adiabatic ions or isothermal electrons ad ions in the shocked region. The isothermal assumption is intended to show the effects of strog heat conduction. The solutions have no heat conduction through the shock waves and assume that the electron and ion temperatures are equilibriated in the shock waves. The one-temperature isothermal solutions have nearly constant density through the shocked region, while the two-temperature solutions are intermediate between the one-temperature adiabatic and isothermal solutions. In the two-temperature solutions, the ion temperature goes to zero at the point where the gas comoves with the shocked region and the density peaks at this point. The solution may qualitatively describe the effects of heat conduction on interaction regions in the solar wind. It will be important to determine whether the assumption of no thermal waves outside the shocked region applies to shock waves in the solar wind

  5. Evaluation of the National Weather Service Extreme Cold Warning Experiment in North Dakota.

    Science.gov (United States)

    Chiu, Cindy H; Vagi, Sara J; Wolkin, Amy F; Martin, John Paul; Noe, Rebecca S

    2014-01-01

    Dangerously cold weather threatens life and property. During periods of extreme cold due to wind chill, the National Weather Service (NWS) issues wind chill warnings to prompt the public to take action to mitigate risks. Wind chill warnings are based on ambient temperatures and wind speeds. Since 2010, NWS has piloted a new extreme cold warning issued for cold temperatures in wind and nonwind conditions. The North Dakota Department of Health, NWS, and the Centers for Disease Control and Prevention collaborated in conducting household surveys in Burleigh County, North Dakota, to evaluate this new warning. The objectives of the evaluation were to assess whether residents heard the new warning and to determine if protective behaviors were prompted by the warning. This was a cross-sectional survey design using the Community Assessment for Public Health Emergency Response (CASPER) methodology to select a statistically representative sample of households from Burleigh County. From 10 to 11 April 2012, 188 door-to-door household interviews were completed. The CASPER methodology uses probability sampling with weighted analysis to estimate the number and percentage of households with a specific response within Burleigh County. The majority of households reported having heard both the extreme cold and wind chill warnings, and both warnings prompted protective behaviors. These results suggest this community heard the new warning and took protective actions after hearing the warning.

  6. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  7. On the role of tides and strong wind events in promoting summer primary production in the Barents Sea

    Science.gov (United States)

    Le Fouest, Vincent; Postlethwaite, Clare; Morales Maqueda, Miguel Angel; Bélanger, Simon; Babin, Marcel

    2011-11-01

    Tides and wind-driven mixing play a major role in promoting post-bloom productivity in subarctic shelf seas. Whether this is also true in the high Arctic remains unknown. This question is particularly relevant in a context of increasing Arctic Ocean stratification in response to global climatic change. We have used a three-dimensional ocean-sea ice-plankton ecosystem model to assess the contribution of tides and strong wind events to summer (June-August 2001) primary production in the Barents Sea. Tides are responsible for 20% (60% locally) of the post-bloom primary production above Svalbard Bank and east of the Kola Peninsula. By contrast, more than 9% of the primary production is due to winds faster than 8 m s -1 in the central Barents Sea. Locally, this contribution reaches 25%. In the marginal ice zone, both tides and wind events have only a limited effect on primary production (central Barents Sea), respectively. When integrated over all Barents Sea sub-regions, tides and strong wind events account, respectively, for 6.8% (1.55 Tg C; 1 Tg C=10 12 g C) and 4.1% (0.93 Tg C) of the post-bloom primary production (22.6 Tg C). To put this in context, this contribution to summer primary production is equivalent to the spring bloom integrated over the Svalbard area. Tides and winds are significant drivers of summer plankton productivity in the Barents Sea.

  8. Wind generation systems for remote communities: market assessment and guidelines for wind turbines selection

    International Nuclear Information System (INIS)

    Brothers, C.

    1993-06-01

    Wind technology and its market potential in remote communities of the Canadian North were discussed. These communities, unserviced by the main utility electricity grid, generate their own electricity using high quality, expensive diesel fuel to power diesel driven generators. The logistics of delivering fuel to these remote communities is an expensive operation. Wind resource in many of these communities is substantial and wind energy is seen as a prime candidate for supplying electricity to many potential sites in the Arctic and also areas in Quebec and Newfoundland. However, the severe service (i.e., cold climate, remote locations with limited facilities) requires special considerations to ensure that equipment installed performs reliably. This report described some demonstration projects in northern Canada over the last ten years, where an understanding of the special needs of wind turbines in remote areas has been developed. A guide which assessed the suitability of wind turbines for Arctic applications was included to assist organisations in preparing requirements to be used in acquiring wind turbines for use in cold regions. Refs., tabs., figs

  9. Lightning Location System Data from Wind Power Plants Compared to Meteorological Conditions of Warm- and Cold Thunderstorm Events

    DEFF Research Database (Denmark)

    Vogel, Stephan; Lopez, Javier; Garolera, Anna Candela

    2016-01-01

    of topography, height above mean sea level (AMSL), and average ground flash density. For three sites, the most severe lightning events have been identified during the warm and cold months whereas the other two locations exhibit severe lightning detections mainly during the warm months. In this work severity......Five years of Lightning Location System (LLS) data from five different wind turbine sites in Europe are analysed. The sites are located in Croatia, Italy, Spain, France and one offshore wind power plant in the North sea. Each location exhibits individual characteristic properties in terms...... of such an episode can vary from tens of minutes to several hours in the case of new storms being continuously developed in the same area. The distance of the charge separating -10◦ C and the ground is usually larger than 3000 meters. This analyse provides information about the different thunderstorm types which...

  10. Influence of monsoonal winds on chlorophyll-α distribution in the Beibu Gulf.

    Directory of Open Access Journals (Sweden)

    Chunyan Shen

    Full Text Available The influence of seasonal, monsoonal winds on the temporal and spatial variability of chlorophyll-a (chl-a in the Beibu Gulf is studied based on long-term satellite data of sea surface winds, chl-a concentration and sea surface temperature (SST and in-situ observations for the years from 2002 to 2014. The analysis results indicated that under northeasterly monsoonal winds, chl-a concentrations were substantially elevated in most area of the Beibu Gulf, with a high chl-a concentration (>2 mg m-3 patch extending southwestward from the coastal water of the northeastern Gulf, consistent with the winter wind pattern. Meanwhile, the spatial distribution of high chl-a concentration is correlated with low SST in the northeastern Gulf. In the southern Gulf, there was generally low chl-a, except in the coastal waters southwest of Hainan Island. Here, the upwelling cold water prevails outside the mouth of the Beibu Gulf, driven by the southwesterly monsoonal winds and the runoff from the Changhua River, as implied by low observed SST. Correlation analysis indicated the chl-a concentration was strongly modulated by wind speed (r = 0.63, p0.7, p<0.001. Integrated analysis also showed that stratification is weak and mixing is strong in winter as affected by the high wind speed, which suggests that the wind-induced mixing is a dominant mechanism for entrainment of nutrients and the spatial distribution of chl-a in winter.

  11. Gap Winds in a Fjord: Howe Sound, British Columbia.

    Science.gov (United States)

    Jackson, Peter L.

    1993-01-01

    Gap, outflow, or Squamish wind, is the cold low level seaward flow of air through fjords which dissect the coastal mountain barrier of northwestern North America. These flows, occurring mainly during winter, can be strong, threatening safety, economic activity and comfort. Howe Sound gap winds were studied using a combination of observations and several types of models. Observations of winds in Howe Sound showed that gap wind strength varied considerably along the channel, across the channel and vertically. Generally, winds increase down the channel, are strongest along the eastern side, and are below 1000 m depth. Observations were unable to answer all questions about gap winds due to data sparseness, particularly in the vertical direction. Therefore, several modelling approaches were used. The modelling began with a complete 3-dimensional quasi-Boussinesq model (CSU RAMS) and ended with the creation and testing of models which are conceptually simpler, and more easily interpreted and manipulated. A gap wind simulation made using RAMS was shown to be mostly successful by statistical evaluation compared to other mesoscale simulations, and by visual inspection of the fields. The RAMS output, which has very high temporal and spatial resolution, provided much additional information about the details of gap flow. In particular, RAMS results suggested a close analogy between gap wind and hydraulic channel flow, with hydraulic features such as supercritical flow and hydraulic jumps apparent. These findings imply gap wind flow could potentially be represented by much simpler models. The simplest possible models containing pressure gradient, advection and friction but not incorporating hydraulic effects, were created, tested, and found lacking. A hydraulic model, which in addition incorporates varying gap wind height and channel geometry, was created and shown to successfully simulate gap winds. Force balance analysis from RAMS and the hydraulic model showed that pressure

  12. EVOLUTION OF SUPER STAR CLUSTER WINDS WITH STRONG COOLING

    International Nuclear Information System (INIS)

    Wuensch, Richard; Palous, Jan; Silich, Sergiy; Tenorio-Tagle, Guillermo; Munoz-Tunon, Casiana

    2011-01-01

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  13. Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System: Modeling Ion Outflow

    Science.gov (United States)

    Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.

    2014-12-01

    A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.

  14. Estimation of extreme wind speeds in the mixed strong wind climate of South Africa

    CSIR Research Space (South Africa)

    Kruger, AC

    2010-08-01

    Full Text Available wind-generating mechanisms for Australia. Annual extreme wind speeds are generated by different mechanisms, forthcoming from thunderstorm activity and the passages of extratropical low pressure systems, which were identified. Separate extreme value...

  15. Offshore Wind Turbines Situated in Areas with Strong Currents

    DEFF Research Database (Denmark)

    Jensen, Morten S.; Juul Larsen, Brian; Frigaard, Peter

    Prediction of local scour caused by offshore wind turbine foundations using empirical formulae or numerical models.......Prediction of local scour caused by offshore wind turbine foundations using empirical formulae or numerical models....

  16. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    Science.gov (United States)

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  17. A Comprehensive Study of the Cold Dust and Gas in Galactic Winds

    Science.gov (United States)

    Veilleux, Sylvain

    Galaxies do not evolve statically or in isolation, but instead are being structurally rearranged by stellar and gas motions and are interacting dynamically with their halos and environments. Galactic winds (GWs), or large-scale outflows of material from disks and spheroids, are a primary means by which this structural evolution and ongoing interplay occur. Major outstanding questions remain, however, about the precise impact that GWs make. Both from the ground and from space, our recent effort has focused on the all-important cold gas and dust components of GWs. They are the key to understanding GWs for at least three reasons: i. Outflows have to affect the cold gas and dust out of which stars form if they are to inhibit star formation in the host galaxy. ii. We have found in recent years that the cold gas phase is the energetically dominant phase of many GWs. iii. The kinematics and dynamics of the cold gas phase show trends with AGN luminosity that suggest that we are finally seeing the long-sought ``smoking gun'' of quasar feedback. However, these conclusions rest on very limited samples and are thus tentative. Remarkably, the Herschel and Spitzer Science Archives are treasure troves of high-quality images and spectra on GWs that could drastically improve this sad state of affairs, once these data are analyzed. Here we propose to carry out for the first time a single, self-consistent analysis of all of these data, and combine the results with our extensive ancillary ground-based data (Gemini, VLT, JVLA, ALMA, IRAM, and Keck) to capture all of the gas phases involved in GWs. This multiwavelength approach is unique and goes much beyond individual targeted programs in this area. We are interested in studying all GWs, regardless of redshifts: For the nearest (systems, we will examine deep Herschel and Spitzer images to derive the dust content of GWs and the circumgalactic environment in general. Our sample size (~50 GWs and control galaxies) will allow us to

  18. Cold Episodes, Their Precursors and Teleconnections in the Central Peruvian Andes (1958-2009)

    Science.gov (United States)

    Sulca, J. C.; Vuille, M. F.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2014-12-01

    The Mantaro valley (MV) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during the austral summer (January-March), which strongly damage crops. However, little is known about the causes and impacts of such cold episodes in the MV. The main goal of this study is thus to characterize cold episodes in the MV and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MV daily minimum temperature for the period 1958-2009 from Huayao station, located within the MV was used. We defined a cold episode as the period when daily minimum temperature drops below the 10-percentile for at least one day. Several gridded reanalysis and satellite products were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events for same period. Cold episodes in the MV are associated with positive OLR anomalies, which extend over much of the central Andes, indicating reduced convective cloud cover during these extremes, but also affirm the large-scale nature of these events. At the same time, northeastern Brazil (NEB) registers negative OLR anomalies, strong convective activity and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of its climatologic position. Further, it is associated with a weakening of the Bolivian High - Nordeste Low (BH-NL) system at upper levels, but also influenced by a low-level migratory high-pressure center develops at 30°S, 50°W; propagating from mid- to low latitudes as part of an extratropical Rossby wave train. In conclusion, cold episodes in the MV appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection. The reduced cloud cover in turn results from a robust large-scale pattern of westerly wind anomalies over central Peruvian Andes, inhibiting moisture influx, convective activity and

  19. The response of the Red Sea to a strong wind jet near the Tokar Gap in summer

    KAUST Repository

    Zhai, Ping

    2013-01-01

    [1] Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the atmospheric pressure gradient through the Tokar Gap on the Sudanese coast, at about 19°N, during the summer monsoon season. It disturbs the prevailing along-sea (southeastward) winds with strong cross-sea (northeastward) winds that can last from days to weeks and reach amplitudes of 20-25 m/s. By comparing scatterometer winds with along-track and gridded sea level anomaly observations, it is observed that an intense dipolar eddy spins up in response to the wind jet. The eddy pair has a horizontal scale of 140 km. Maximum ocean surface velocities can reach 1 m/s and eddy currents extend more than 100 m into the water column. The eddy currents appear to cover the width of the sea, providing a pathway for rapid transport of marine organisms and other drifting material from one coast to the other. Interannual variability in the strength of the dipole is closely matched with variability in the strength of the wind jet. The dipole is observed to be quasi-stationary, although there is some evidence for slow eastward propagation in an idealized numerical model. Simulation of the dipole in an idealized high-resolution numerical model suggests that this is the result of self-advection. © 2012. American Geophysical Union. All Rights Reserved.

  20. The Strong Wind event of 24th January 2009 in Catalonia: a social impact analysis

    Science.gov (United States)

    Amaro, J.; Aran, M.; Barberia, L.; Llasat, M. C.

    2009-09-01

    Although strong winds are frequent in Catalonia, one of the events with the strongest impact in recent years was on January 24th 2009. An explosive cyclogenesis process took place in the Atlantic: pressure fell 30 hPa in less than 24 hours. The strong wind storm pounded the northern of Spain and the south of France with some fatalities and important economic losses in these regions. Several automatic weather stations recorded wind gusts higher than 100 km/h in Catalonia. Emergency services received more than 20.000 calls in 24 hours and there were 497 interventions in only 12 hours. As a consequence of fallen and uprooted trees railway and road infrastructures got damages and more than 30.000 customers had no electricity during 24 hours. Unfortunately there were a total of 6 fatalities, two of them because of fallen trees and the other ones when a sports centre collapsed over a group of children. In Spain, insurance policies cover damages due to strong winds when fixed thresholds are overcome and, according to the Royal Decree 300/2004 of 20th February, extraordinary risk are assumed by the Consorcio de Compensación de Seguros. Subsequently, Public Weather Services (PWS) had an increased on the number of requests received from people affected by this event and from insurance companies, for the corresponding indemnity or not. As an example, during the first month after the event, in the Servei Meteorològic de Catalunya (SMC) more than 600 requests were received only related to these damages (as an average PWS of SMC received a total of 400 requests per month). Following the research started by the Social Impact Research Group of MEDEX project, a good vulnerability indicator of a meteorological risk can be the number of requests reported. This study uses the information received in the PWS of the SMC during the six months after the event, according the criteria and methodology established in Gayà et al (2008). The objective is to compare the vulnerability with the

  1. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea. A satellite study

    Energy Technology Data Exchange (ETDEWEB)

    Tarkhova, T.I.; Permyakov, M.S.; Potalova, E.Yu.; Semykin, V.I. [V.I. Il' ichev Pacific Oceanological Institute of the Far Eastern Branch of Russian Academy of Sciences, Vladivostok (Russian Federation). Lab. of the Ocean and Atmosphere Interaction Studies

    2011-07-01

    Sea surface wind perturbations over sea surface temperature (SST) cold anomalies over the Kashevarov Bank (KB) of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT) data during the summerautumn period of 2006-2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August- September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 C and wind speed lowered down to {proportional_to}7ms {sup -1} relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of {proportional_to}0.3 {sup -1} on 1 C. (orig.)

  2. Task-dependent cold stress during expeditions in Antarctic environments.

    Science.gov (United States)

    Morris, Drew M; Pilcher, June J; Powell, Robert B

    2017-01-01

    This study seeks to understand the degree of body cooling, cold perception and physical discomfort during Antarctic tour excursions. Eight experienced expedition leaders across three Antarctic cruise voyages were monitored during occupational tasks: kayaking, snorkelling and zodiac outings. Subjective cold perception and discomfort were recorded using a thermal comfort assessment and skin temperature was recorded using a portable data logger. Indoor cabin temperature and outdoor temperature with wind velocity were used as measures of environmental stress. Physical activity level and clothing insulation were estimated using previous literature. Tour leaders experienced a 6°C (2°C wind chill) environment for an average of 6 hours each day. Leaders involved in kayaking reported feeling colder and more uncomfortable than other leaders, but zodiac leaders showed greater skin temperature cooling. Occupational experience did not predict body cooling or cold stress perception. These findings indicate that occupational cold stress varies by activity and measurement methodology. The current study effectively used objective and subjective measures of cold-stress to identify factors which can contribute to risk in the Antarctic tourism industry. Results suggest that the type of activity may moderate risk of hypothermia, but not discomfort, potentially putting individuals at risk for cognitive related mistakes and cold injuries.

  3. Analysis of the Contribution of Wind Drift Factor to Oil Slick Movement under Strong Tidal Condition: Hebei Spirit Oil Spill Case

    OpenAIRE

    Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo

    2014-01-01

    The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Wea...

  4. Icing Problems of Wind Turbine Blades in Cold Climates

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    Climatic Wind Tunnel located at FORCE Technology. The aerodynamic forces acting on the blade during ice accretion for different angles of attack at various air temperatures were measured along with the mass of ice and the final ice shape. For all three types of ice accretion, glaze, mixed and rime ice...... and on the aerodynamic characteristics of the airfoil. The trend of the reduction of lift coefficients agrees quite well with the wind tunnel test results, although based on the measured and the numerical lift coefficients of the clean airfoil, the presence of the wind tunnel walls had significant influence...

  5. Sea surface wind perturbations over the Kashevarov Bank of the Okhotsk Sea: a satellite study

    Directory of Open Access Journals (Sweden)

    T. I. Tarkhova

    2011-02-01

    Full Text Available Sea surface wind perturbations over sea surface temperature (SST cold anomalies over the Kashevarov Bank (KB of the Okhotsk Sea are analyzed using satellite (AMSR-E and QuikSCAT data during the summer-autumn period of 2006–2009. It is shown, that frequency of cases of wind speed decreasing over a cold spot in August–September reaches up to 67%. In the cold spot center SST cold anomalies reached 10.5 °C and wind speed lowered down to ~7 m s−1 relative its value on the periphery. The wind difference between a periphery and a centre of the cold spot is proportional to SST difference with the correlations 0.5 for daily satellite passes data, 0.66 for 3-day mean data and 0.9 for monthly ones. For all types of data the coefficient of proportionality consists of ~0.3 m s−1 on 1 °C.

  6. RAMSI management model and evaluation criteria for Nordic offshore wind asset

    Energy Technology Data Exchange (ETDEWEB)

    Tiusanen, R.; Jaennes, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Liyanage, J. P. [Univ. of Stavanger, Center for Industrial Asset Management (Norway)

    2012-07-01

    The offshore wind energy sector is in the early stages of development, but it is growing fast. Due to the European Union's renewable-energy and climate goals along with national legislation, the offshore wind sector will develop strongly over the coming years in Europe. In the offshore wind energy sector, there are many different wind-turbine designs ranging from traditional mono pile structures to floating platforms, depending on the water depth. Today, most offshore turbines are based on onshore turbine designs, and turbine technology continues to develop incrementally. At the same time, there is strong demand in the market for new, innovative designs for offshore wind turbines whose main focus is reliability and cost efficiency. For floating offshore wind turbine designs, there may be new types of uncertainty and system risks compared with onshore wind turbines. Wind turbines in cold climates, such as those experienced in the Nordic countries, may be exposed to extreme conditions, such as formation of ice or very low temperatures that are outside the design limits of standard wind turbines. In the offshore wind energy sector, specification, implementation and verification of the so-called R&M's (Reliability, Availability, Maintainability, Safety and Inspect ability) requirements during development work are important for companies delivering wind turbines, from the perspective of system integrity. Decisions made before the formal design phase strongly determine the costs and benefits gained during the whole life cycle of a wind turbine. The benefits of implementing the R&M's program include support with investment decisions, cost management, improved management of resource requirements, systematic support with development and implementation of products, and integration of dependability and safety requirements. This publication outlines a model for managing R&M's factors during the conceptual design phase of an offshore wind turbine. The model

  7. Wind blows where (and when) it wants: an analysis of the French electricity production, September-December 2010 - preliminary analysis

    International Nuclear Information System (INIS)

    2011-01-01

    This document analyses the set of data published on the RTE web site and concerning the electricity production and consumption in France from September to December 2010. Having a closer look to the wind energy production, it notably shows that, as expected, all steerable means of production play a coordinated role in covering the required power needs. The analysis of the wind energy power shows a 23 pc average efficiency which is associated to the strong fluctuations which are typical for this type of intermittent production. It notices that time and energy distributions of wind energy power supplied to the network are not related to increased electricity needs during this autumn period which is marked by several cold waves

  8. THE H I MASS DENSITY IN GALACTIC HALOS, WINDS, AND COLD ACCRETION AS TRACED BY Mg II ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, Christopher W., E-mail: gkacprzak@astro.swin.edu.au, E-mail: cwc@nmsu.edu [New Mexico State University, Las Cruces, NM 88003 (United States)

    2011-12-20

    It is well established that Mg II absorption lines detected in background quasar spectra arise from gas structures associated with foreground galaxies. The degree to which galaxy evolution is driven by the gas cycling through halos is highly uncertain because their gas mass density is poorly constrained. Fitting the Mg II equivalent width (W) distribution with a Schechter function and applying the N(H I)-W correlation of Menard and Chelouche, we computed {Omega}(H I){sub MgII} {identical_to} {Omega}(H I){sub halo} = 1.41{sup +0.75}{sub -0.44} Multiplication-Sign 10{sup -4} for 0.4 {<=} z {<=} 1.4. We exclude damped Ly{alpha}'s (DLAs) from our calculations so that {Omega}(H I){sub halo} comprises accreting and/or outflowing halo gas not locked up in cold neutral clouds. We deduce that the cosmic H I gas mass density fraction in galactic halos traced by Mg II absorption is {Omega}(H I){sub halo}/{Omega}(H I){sub DLA} {approx_equal} 15% and {Omega}(H I){sub halo}/{Omega}{sub b} {approx_equal} 0.3%. Citing several lines of evidence, we propose that infall/accretion material is sampled by small W whereas outflow/winds are sampled by large W, and find that {Omega}(H I){sub infall} is consistent with {Omega}(H I){sub outflow} for bifurcation at W = 1.23{sup +0.15}{sub -0.28} Angstrom-Sign ; cold accretion would then comprise no more than {approx}7% of the total H I mass density. We discuss evidence that (1) the total H I mass cycling through halos remains fairly constant with cosmic time and that the accretion of H I gas sustains galaxy winds, and (2) evolution in the cosmic star formation rate depends primarily on the rate at which cool H I gas cycles through halos.

  9. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    Science.gov (United States)

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  10. Wind constraints on the thermoregulation of high mountain lizards

    Science.gov (United States)

    Ortega, Zaida; Mencía, Abraham; Pérez-Mellado, Valentín

    2017-03-01

    Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard ( Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

  11. Wind Farm Wake: The 2016 Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2017-03-01

    Full Text Available Offshore wind farm wakes were observed and photographed in foggy conditions at Horns Rev 2 on 25 January 2016 at 12:45 UTC. These new images show highly contrasting conditions regarding the wind speed, turbulence intensity, atmospheric stability, weather conditions and wind farm wake development as compared to the Horns Rev 1 photographs from 12 February 2008. The paper examines the atmospheric conditions from satellite images, radiosondes, lidar and wind turbine data and compares the observations to results from atmospheric meso-scale modelling and large eddy simulation. Key findings are that a humid and warm air mass was advected from the southwest over cold sea and the dew-point temperature was such that cold-water advection fog formed in a shallow layer. The flow was stably stratified and the freestream wind speed was 13 m/s at hub height, which means that most turbines produced at or near rated power. The wind direction was southwesterly and long, narrow wakes persisted several rotor diameters downwind of the wind turbines. Eventually mixing of warm air from aloft dispersed the fog in the far wake region of the wind farm.

  12. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  13. Large fully retractable telescope enclosures still closable in strong wind

    Science.gov (United States)

    Bettonvil, Felix C. M.; Hammerschlag, Robert H.; Jägers, Aswin P. L.; Sliepen, Guus

    2008-07-01

    Two prototypes of fully retractable enclosures with diameters of 7 and 9 m have been built for the high-resolution solar telescopes DOT (Dutch Open Telescope) and GREGOR, both located at the Canary Islands. These enclosures protect the instruments for bad weather and are fully open when the telescopes are in operation. The telescopes and enclosures also operate in hard wind. The prototypes are based on tensioned membrane between movable but stiff bows, which fold together to a ring when opened. The height of the ring is small. The prototypes already survived several storms, with often snow and ice, without any damage, including hurricane Delta with wind speeds up to 68 m/s. The enclosures can still be closed and opened with wind speeds of 20 m/s without any problems or restrictions. The DOT successfully demonstrated the open, wind-flushing concept for astronomical telescopes. It is now widely recognized that also large future telescopes benefit from wind-flushing and retractable enclosures. These telescopes require enclosures with diameters of 30 m until roughly 100 m, the largest sizes for the ELTs (Extreme Large Telescopes), which will be built in the near future. We discuss developments and required technology for the realization of these large sizes.

  14. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  15. Case study: A severe hailstorm and strong downbursts over northeastern Slovenia on June 16th 2009

    Science.gov (United States)

    Korosec, M.

    2009-09-01

    Introduction A strong isolated storm complex with bow echo feature crossed northeastern Slovenia in the late afternoon hours and caused extensive damage due to severe wind gusts near 30m/s, excessive rainfalls and large hail. Synoptic situation On June 16th 2009, an upper-level ridge persists over southern Europe while a positively tilted short-wave trough, connected to a complex deep trough over northern Europe, crosses central Europe. Accompanied by this trough, a cold front is extending southwestwards towards the Alps. A relatively strong jet steak wraps around the trough axis and creates strong shear environment which overlaps with a narrow band of unstable airmass present ahead of the coming frontal boundary. Behind this trough/front over central Europe, a high pressure area is developing with stable conditions. Over Slovenia, strong surface heating was on going through the day but lack of near-surface convergence zones, limited moisture and strong capping inversion surpressed any storm initiation in the afternoon. Presentation of research This case study will go through a research of damaging bow echo which caused extensive damage due to severe winds, excessive rainfalls and large hail over much of northeastern Slovenia. Numerous trees were down or uprooted and numerous roofs were blown off or were seriously damaged due to severe wind gusts near or exceeding 30m/s. At first stages, when an isolated severe storm entered Slovenia, it had classic high precipitation supercell features while it transformed into a powerful bow echo later on. Very large hail up to 6cm in diameter was first observed in southeast Austria and near the border with Slovenia, while later on the main threat was very strong wind gusts and intense rainfalls. This research paper will show a detailed analysis of the synoptic situation including analysis of satellite, radar and surface observations. Radar imagery clearly showed isolated storm trailing along the near-surface frontal boundary as

  16. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  17. Analysis of the Contribution of Wind Drift Factor to Oil Slick Movement under Strong Tidal Condition: Hebei Spirit Oil Spill Case

    Science.gov (United States)

    Kim, Tae-Ho; Yang, Chan-Su; Oh, Jeong-Hwan; Ouchi, Kazuo

    2014-01-01

    The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC) model and Automatic Weather System (AWS) were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR) data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area. PMID:24498094

  18. Analysis of the contribution of wind drift factor to oil slick movement under strong tidal condition: Hebei Spirit oil spill case.

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    Full Text Available The purpose of this study is to investigate the effects of the wind drift factor under strong tidal conditions in the western coastal area of Korea on the movement of oil slicks caused by the Hebei Spirit oil spill accident in 2007. The movement of oil slicks was computed using a simple simulation model based on the empirical formula as a function of surface current, wind speed, and the wind drift factor. For the simulation, the Environmental Fluid Dynamics Code (EFDC model and Automatic Weather System (AWS were used to generate tidal and wind fields respectively. Simulation results were then compared with 5 sets of spaceborne optical and synthetic aperture radar (SAR data. From the present study, it was found that highest matching rate between the simulation results and satellite imagery was obtained with different values of the wind drift factor, and to first order, this factor was linearly proportional to the wind speed. Based on the results, a new modified empirical formula was proposed for forecasting the movement of oil slicks on the coastal area.

  19. Coastal upwelling by wind-driven forcing in Jervis Bay, New South Wales: A numerical study for 2011

    Science.gov (United States)

    Sun, Youn-Jong; Jalón-Rojas, Isabel; Wang, Xiao Hua; Jiang, Donghui

    2018-06-01

    The Princeton Ocean Model (POM) was used to investigate an upwelling event in Jervis Bay, New South Wales (SE Australia), with varying wind directions and strengths. The POM was adopted with a downscaling approach for the regional ocean model one-way nested to a global ocean model. The upwelling event was detected from the observed wind data and satellite sea surface temperature images. The validated model reproduced the upwelling event showing the input of bottom cold water driven by wind to the bay, its subsequent deflection to the south, and its outcropping to the surface along the west and south coasts. Nevertheless, the behavior of the bottom water that intruded into the bay varied with different wind directions and strengths. Upwelling-favorable wind directions for flushing efficiency within the bay were ranked in the following order: N (0°; northerly) > NNE (30°; northeasterly) > NW (315°; northwesterly) > NE (45°; northeasterly) > ENE (60°; northeasterly). Increasing wind strengths also enhance cold water penetration and water exchange. It was determined that wind-driven downwelling within the bay, which occurred with NNE, NE and ENE winds, played a key role in blocking the intrusion of the cold water upwelled through the bay entrance. A northerly wind stress higher than 0.3 N m-2 was required for the cold water to reach the northern innermost bay.

  20. Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary

    Science.gov (United States)

    Huang, Wei; Li, Chunyan

    2017-11-01

    With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.

  1. Air-sea interactions during strong winter extratropical storms

    Science.gov (United States)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  2. Modelling the Stem Curve of a Palm in a Strong Wind

    DEFF Research Database (Denmark)

    Philipsen, Claus; Markvorsen, Steen; Kliem, Wolfhard

    1996-01-01

    Nonlinear differential equations governing the stem curve of a wind-loaded palm are derived and solved numerically.......Nonlinear differential equations governing the stem curve of a wind-loaded palm are derived and solved numerically....

  3. Proceedings of the cold climate construction conference and expo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This conference provided a forum to present innovative technologies in engineering, construction, energy efficiency, workforce productivity and several other aspects affecting cold regions. The session on winter construction featured tools techniques and technologies that maximize winter construction, with reference to the latest in cold weather construction techniques and lessons learned from the far north and south. It featured lessons on building on ice, frozen ground and permafrost. The session on sustainability addressed issues regarding sustainable design; solar, wind and geothermal systems; building envelopes that work in cold climates; and energy efficient products and techniques. The session on workforce productivity presented methods to keep the workforce warm and healthy in cold conditions; attracting and preparing foreign workers for the far north; worker productivity in a cold environment; tools, techniques and clothing to minimize the effects of cold weather; and cold weather equipment operations. Three presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  4. Numerical Simulation of a Lee Wave Case over Three-Dimensional Mountainous Terrain under Strong Wind Condition

    Directory of Open Access Journals (Sweden)

    Lei Li

    2013-01-01

    Full Text Available This study of a lee wave event over three-dimensional (3D mountainous terrain in Lantau Island, Hong Kong, using a simulation combining mesoscale model and computational fluid dynamics (CFD model has shown that (1 3D steep mountainous terrain can trigger small scale lee waves under strong wind condition, and the horizontal extent of the wave structure is in a dimension of few kilometers and corresponds to the dimension of the horizontal cross-section of the mountain; (2 the life cycle of the lee wave is short, and the wave structures will continuously form roughly in the same location, then gradually move downstream, and dissipate over time; (3 the lee wave triggered by the mountainous terrain in this case can be categorized into “nonsymmetric vortex shedding” or “turbulent wake,” as defined before based on water tank experiments; (4 the magnitude of the wave is related to strength of wind shear. This study also shows that a simulation combining mesoscale model and CFD can capture complex wave structure in the boundary layer over realistic 3D steep terrain, and have a potential value for operational jobs on air traffic warning, wind energy utilization, and atmospheric environmental assessment.

  5. Conductor for a fluid-cooled winding

    Science.gov (United States)

    Kenney, Walter J.

    1983-01-01

    A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

  6. Characterization of sound emitted by wind machines used for frost control

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, V.; Gambino, T. [Aercoustics Engineering Ltd., Toronto, ON (Canada); Fraser, H.W. [Ontario Ministry of Agriculture, Food and Rural Affairs, Vineland, ON (Canada)

    2007-07-01

    Wind machines are used in Niagara-on-the-Lake to protect cold-sensitive crops against cold injury during winter's extreme cold temperatures,spring's late frosts and autumn's early frosts. The number of wind machines in Ontario has about doubled annually from only a few in the late 1990's, to more than 425 in 2006. They are not used for generating power. Noise complaints have multiplied as the number of wind machines has increased. The objective of this study was to characterize the sound produced by wind machines; learn why residents are annoyed by wind machine noise; and suggest ways to possibly reduce sound emissions. One part of the study explored acoustic emission characteristics, the sonic differences of units made by different manufacturers, sound propagation properties under typical use atmospheric conditions and low frequency noise impact potential. Tests were conducted with a calibrated Larson Davis 2900B portable spectrum analyzer. Sound was measured with a microphone whose frequency response covered the range 4 Hz to 20 kHz. The study examined and found several unique acoustic properties that are characteristic of wind machines. It was determined that noise from wind machines is due to both aerodynamic and mechanical effects, but aerodynamic sounds were found to be the most significant. It was concluded that full range or broadband sounds manifest themselves as noise components that extend throughout the audible frequency range from the bladepass frequency to upwards of 1000 Hz. The sound spectrum of a wind machine is full natural tones and impulses that give it a readily identifiable acoustic character. Atmospheric conditions including temperature, lapse rate, relative humidity, mild winds, gradients and atmospheric turbulence all play a significant role in the long range outdoor propagation of sound from wind machines. 6 refs., 6 figs.

  7. ATLAS End Cap Toroid Magnets cold mass design and manufacturing status

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Densham, C J; Holtom, E; Morrow, D; Towndrow, E F; Luijckx, G; Geerinck, J

    2004-01-01

    The End Cap Toroid Magnets for the ATLAS experiment at LHC, CERN will contain eight racetrack coils mounted as a single cold mass in a cryostat vessel of approximately 10 m diameter. This paper presents the engineering design of the cold mass and gives the status of the industrial production. The cold mass mechanical structure consisting of 8 coils and keystone boxes is described. Coil fabrication from component assembly, coil winding to final impregnation will be reviewed. The design and industrial manufacture of the keystone box elements is given. The cold mass assembly methods and status are described. 3 Refs.

  8. Influence of Northeast Monsoon cold surges on air quality in Southeast Asia

    Science.gov (United States)

    Ashfold, M. J.; Latif, M. T.; Samah, A. A.; Mead, M. I.; Harris, N. R. P.

    2017-10-01

    Ozone (O3) is an important ground-level pollutant. O3 levels and emissions of O3 precursors have increased significantly over recent decades in East Asia and export of this O3 eastward across the Pacific Ocean is well documented. Here we show that East Asian O3 is also transported southward to tropical Southeast (SE) Asia during the Northeast Monsoon (NEM) season (defined as November to February), and that this transport pathway is especially strong during 'cold surges'. Our analysis employs reanalysis data and measurements from surface sites in Peninsular Malaysia, both covering 2003-2012, along with trajectory calculations. Using a cold surge index (northerly winds at 925 hPa averaged over 105-110°E, 5°N) to define sub-seasonal strengthening of the NEM winds, we find the largest changes in a region covering much of the Indochinese Peninsula and surrounding seas. Here, the levels of O3 and another key pollutant, carbon monoxide, calculated by the Monitoring Atmospheric Composition and Climate (MACC) Reanalysis are on average elevated by, respectively, >40% (∼15 ppb) and >60% (∼80 ppb) during cold surges. Further, in the broader region of SE Asia local afternoon exceedances of the World Health Organization's air quality guideline for O3 (100 μg m-3, or ∼50 ppb, averaged over 8 h) largely occur during these cold surges. Day-to-day variations in available O3 observations at surface sites on the east coast of Peninsular Malaysia and in corresponding parts of the MACC Reanalysis are similar, and are clearly linked to cold surges. However, observed O3 levels are typically ∼10-20 ppb lower than the MACC Reanalysis. We show that these observations are also subject to influence from local urban pollution. In agreement with past work, we find year-to-year variations in cold surge activity related to the El Nino-Southern Oscillation (ENSO), but this does not appear to be the dominant influence of ENSO on atmospheric composition in this region. Overall, our study

  9. Effects of Cross-axis Wind Jet Events on the Northern Red Sea Circulation

    Science.gov (United States)

    Menezes, V. V.; Bower, A. S.; Farrar, J. T.

    2016-12-01

    Despite its small size, the Red Sea has a complex circulation. There are boundary currents in both sides of the basin, a meridional overturning circulation, water mass formation in the northern part and an intense eddy activity. This complex pattern is driven by strong air-sea interactions. The Red Sea has one of the largest evaporation rates of the global oceans (2m/yr), an intricate and seasonally varying wind pattern. The winds blowing over the Northern Rea Sea (NRS, north of 20N) are predominantly southeastward along the main axis all year round; in the southern, they reverse seasonally due to the monsoonal regime. Although the winds are mostly along-axis in the NRS, several works have shown that sometimes during the boreal winter, the winds blow in a cross-axis direction. The westward winds from Saudi Arabia bring relatively cold dry air and dust from the desert, enhancing heat loss and evaporation off the Red Sea. These wind-jet events may contribute to increased eddy activity and are a trigger for water mass formation. Despite that, our knowledge about the cross-axis winds and their effect on NRS circulation is still incipient. In the present work we analyze 10-years of Quikscat scatterometer winds and altimetric sea surface height anomalies, together with 2-yrs of mooring data, to characterize the westward wind jet events and their impacts on the circulation. We show that the cross-axis winds are, indeed, an important component of the wind regime, explaining 11% of wind variability of the NRS (well-described by a 2nd EOF mode). The westward events occur predominantly in the winter, preferentially in January (about 15 events in 10-years) and have a mean duration of 4-5 days, with a maximum of 12 days (north of 22N). There are around 6 events per year, but in 2002-2003 and 2007-2008, twice more events were detected. The westward wind events are found to strongly modify the wind stress curl, causing a distinct positive/negative curl pattern along the main axis

  10. Preliminary modelling study of ice accretion on wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Yin, Chungen

    2014-01-01

    One of the main challenges associated with cold-climate wind energy is icing on wind turbines and a series of icing-induced problems such as production loss, blade fatigue and safety issues. Because of the difficulties with on-site measurements, simulations are often used to understand and predic...

  11. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    OpenAIRE

    Na Yang; Fan Bai

    2017-01-01

    Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and e...

  12. Control of variable speed pitch-regulated wind turbines in strong wind conditions using a combined feedforward and feedback technique

    DEFF Research Database (Denmark)

    Feng, Ju; Shen, Wen Zhong

    2012-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in s...

  13. Nonlinear theory for axisymmetric self-similar two-dimensional oscillations of electrons in cold plasma with constant proton background

    Science.gov (United States)

    Osherovich, V. A.; Fainberg, J.

    2018-01-01

    We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.

  14. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca Jane; Jensen, L.E.

    2010-01-01

    Here, we quantify relationships between wind farm efficiency and wind speed, direction, turbulence and atmospheric stability using power output from the large offshore wind farm at Nysted in Denmark. Wake losses are, as expected, most strongly related to wind speed variations through the turbine...... thrust coefficient; with direction, atmospheric stability and turbulence as important second order effects. While the wind farm efficiency is highly dependent on the distribution of wind speeds and wind direction, it is shown that the impact of turbine spacing on wake losses and turbine efficiency can...... be quantified, albeit with relatively large uncertainty due to stochastic effects in the data. There is evidence of the ‘deep array effect’ in that wake losses in the centre of the wind farm are under-estimated by the wind farm model WAsP, although overall efficiency of the wind farm is well predicted due...

  15. Strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Goldman, M.V.

    1984-01-01

    After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)

  16. Pulsar Magnetohydrodynamic Winds

    Science.gov (United States)

    Okamoto, Isao; Sigalo, Friday B.

    2006-12-01

    The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the equator, which drive electric current through the pulsar magnetosphere. Any ``current line'' must emanate from one terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface, SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along each field line of the asymptotic domain of \\varpaA2/\\varpi2 ≪ 1, where \\varpiA is the Alfvénic axial distance. The criticality condition at SF yields the Lorentz factor, γF = μ\\varepsilon1/3, and the angular momentum flux, β, as the eigenvalues in terms of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, μδ, which are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, μɛ, is related to μδ as μɛ = μδ[1-(α2\\varpiA2/c2)]-1, and both μɛ and \\varpiA2 are eigenvalues to be determined by the criticality condition at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a discrepancy between the wind theory and the Crab-nebula model. It is argued that the ``anti-collimation theorem'' holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance. The ``theorem'' combines with the ``current-closure condition'' as a global condition in the wind zone to produce a

  17. Wind Farm Wake: The 2016 Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Nygaard, Nicolai Gayle; Volker, Patrick

    2017-01-01

    are that a humid and warm air mass was advected from the southwest over cold sea and the dew-point temperature was such that cold-water advection fog formed in a shallow layer. The flow was stably stratified and the freestream wind speed was 13 m/s at hub height, which means that most turbines produced at or near...

  18. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  19. Historical Consumption of Heating Natural Gas and Thermal Monitoring of a Multifamily High-Rise Building in a Temperate/Cold Climate in Argentina

    Directory of Open Access Journals (Sweden)

    Celina Filippín

    2012-12-01

    Full Text Available This paper analyzes the historical consumption of natural gas in a multifamily high-rise building and the monitored winter thermal behavior of an apartment sample. The building is located in the center of Argentina (latitude: 36º27’S; longitude: 64º27’W, where the climate is a cold temperate with an absolute minimum temperature that may reach −10 °C. The building has two blocks, North and South. The building’s annual gas consumption and its variability between 1996 and 2008 are shown. The South block consumed 78% more gas, a situation expected due to lower solar resource availability and greater vulnerability regarding strong and cold SW winds. Indoor temperatures monitored during 2009 in four apartments are described. The outdoor minimum temperature reached −5 °C, with solar irradiance around 500 W/m2 at midday. Results showed that the average indoor temperatures were 20.1, 20.6, 24.0 and 22.1 °C. The highest consumption value corresponded to the apartment exposed to SW cold winds. Compared to the rest of the building, the apartment on the top floor consumes 59% more energy than the average for the gas consumed throughout the year. The authors assume that the energy potentials of intervention are different, and not necessarily all the apartments should have the same technological response.

  20. How much can wind reduce the French CO2 emissions?

    International Nuclear Information System (INIS)

    Flocard, H.

    2010-03-01

    This report analyses the information recently made available by the French electricity transport network RTE (Reseau de Transport d'Electricite). It consists in a detailed data set which gives the time evolution of the power either consumed by the country or generated with the diverse production modes exploited by utilities within France. For the first time the French public is also provided some analytical information on a major renewable energy: wind. Our analysis shows that the French wind-turbine-fleet efficiency over last fall-winter semester is 24.3%. The wind production displays the strong fluctuations expected for this intermittent non-controllable energy. It is observed that the time and energy distributions of the power delivered by the French wind turbines are not related to the increased electricity needs which occurred during a semester where a few cold waves hit the country. As a consequence, the controllable productions which already ensure the balance of consumption versus production had also to carry the extra load associated with the handling of wind fluctuations. In a second part of this report, based on the actual data provided by RTE, the report determines the maximal reduction of the CO 2 emissions which can be expected from the completion of the national wind energy program endorsed by the government. We conclude that in the absence of a significant strengthening of the electric network and an increase of the national energy storage capacity, the wind energy policy decided by the French government will only yield limited results on the reduction of both the GHG emissions and the country reliance on fossil fuel burning plants. (author)

  1. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea

    Directory of Open Access Journals (Sweden)

    James E. Overland

    2011-12-01

    Full Text Available Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episodic intrinsic atmospheric and ocean variability and persistent increasing greenhouse gases. Winter 2009/10 and December 2010 showed a unique connectivity between the Arctic and more southern weather patterns when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a warm Arctic—cold continents pattern. The negative value of the winter (DJF 2009/10 North Atlantic Oscillation (NAO index associated with enhanced meridional winds was the lowest observed value since the beginning of the record in 1865. Wind patterns in December 2007 and 2008 also show an impact of warmer Arctic temperatures. A tendency for higher geopotential heights over the Arctic and enhanced meridional winds are physically consistent with continued loss of sea ice over the next 40 years. A major challenge is to understand the interaction of Arctic changes with climate patterns such as the NAO, Pacific North American and El Niño–Southern Oscillation.

  2. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  3. A transcription factor for cold sensation!

    Directory of Open Access Journals (Sweden)

    Milbrandt Jeffrey

    2005-03-01

    Full Text Available Abstract The ability to feel hot and cold is critical for animals and human beings to survive in the natural environment. Unlike other sensations, the physiology of cold sensation is mostly unknown. In the present study, we use genetically modified mice that do not express nerve growth factor-inducible B (NGFIB to investigate the possible role of NGFIB in cold sensation. We found that genetic deletion of NGFIB selectively affected behavioral responses to cold stimuli while behavioral responses to noxious heat or mechanical stimuli were normal. Furthermore, behavioral responses remained reduced or blocked in NGFIB knockout mice even after repetitive application of cold stimuli. Our results provide strong evidence that the first transcription factor NGFIB determines the ability of animals to respond to cold stimulation.

  4. Development of risk assessment methodology against natural external hazards for sodium-cooled fast reactors: project overview and strong Wind PRA methodology - 15031

    International Nuclear Information System (INIS)

    Yamano, H.; Nishino, H.; Kurisaka, K.; Okano, Y.; Sakai, T.; Yamamoto, T.; Ishizuka, Y.; Geshi, N.; Furukawa, R.; Nanayama, F.; Takata, T.; Azuma, E.

    2015-01-01

    This paper describes mainly strong wind probabilistic risk assessment (PRA) methodology development in addition to the project overview. In this project, to date, the PRA methodologies against snow, tornado and strong wind were developed as well as the hazard evaluation methodologies. For the volcanic eruption hazard, ash fallout simulation was carried out to contribute to the development of the hazard evaluation methodology. For the forest fire hazard, the concept of the hazard evaluation methodology was developed based on fire simulation. Event sequence assessment methodology was also developed based on plant dynamics analysis coupled with continuous Markov chain Monte Carlo method in order to apply to the event sequence against snow. In developing the strong wind PRA methodology, hazard curves were estimated by using Weibull and Gumbel distributions based on weather data recorded in Japan. The obtained hazard curves were divided into five discrete categories for event tree quantification. Next, failure probabilities for decay heat removal related components were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or out-take in the decay heat removal system, and fragility caused by the missile impacts. Finally, based on the event tree, the core damage frequency was estimated about 6*10 -9 /year by multiplying the discrete hazard probabilities in the Gumbel distribution by the conditional decay heat removal failure probabilities. A dominant sequence was led by the assumption that the operators could not extinguish fuel tank fire caused by the missile impacts and the fire induced loss of the decay heat removal system. (authors)

  5. THE ORIGIN AND KINEMATICS OF COLD GAS IN GALACTIC WINDS: INSIGHT FROM NUMERICAL SIMULATIONS

    International Nuclear Information System (INIS)

    Fujita, Akimi; Martin, Crystal L.; Low, Mordecai-Mark Mac; New, Kimberly C. B.; Weaver, Robert

    2009-01-01

    We study the origin of Na I-absorbing gas in ultraluminous infrared galaxies motivated by the recent observations by Martin of extremely superthermal linewidths in this cool gas. We model the effects of repeated supernova explosions driving supershells in the central regions of molecular disks with M d = 10 10 M sun , using cylindrically symmetric gas dynamical simulations run with ZEUS-3D. The shocked swept-up shells quickly cool and fragment by Rayleigh-Taylor (R-T) instability as they accelerate out of the dense, stratified disks. The numerical resolution of the cooling and compression at the shock fronts determines the peak shell density, and so the speed of R-T fragmentation. We identify cooled shells and shell fragments as Na I-absorbing gas and study its kinematics along various sightlines across the grid. We find that simulations with a numerical resolution of ≤0.2 pc produce multiple R-T fragmented shells in a given line of sight that appear to explain the observed kinematics. We suggest that the observed wide Na I absorption lines, (v) = 320 ± 120 km s -1 , are produced by these multiple fragmented shells traveling at different velocities. We also suggest that some shell fragments can be accelerated above the observed average terminal velocity of 750 km s -1 by the same energy-driven wind with an instantaneous starburst of ∼10 9 M sun . The mass carried by these fragments is only a small fraction of the total shell mass, while the bulk of mass is traveling with velocities consistent with the observed average shell velocity 330 ± 100 km s -1 . Our results show that an energy-driven bubble causing R-T instabilities can explain the kinematics of cool gas seen in the Na I observations without invoking additional physics relying primarily on momentum conservation, such as entrainment of gas by Kelvin-Helmholtz instabilities, ram pressure driving of cold clouds by a hot wind, or radiation pressure acting on dust.

  6. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    Science.gov (United States)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  7. Internal plasma state of the high speed solar wind at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Abraham--Shrauner, B.; Asbridge, J.R.; Bame, S.J.

    1976-01-01

    The character of particle velocity distributions in the high speed solar wind is presented. It is found that electron distribution shapes differ from simple bi-Maxwellians in that a hot, strongly beamed, high energy electron component is always present and is observed to move relative to a distinct low energy electron component along the magnetic field direction, B, away from the sun. The velocity difference between hot and cold electron components appears, at times, to be strongly correlated with the local Alfven speed. This correlation suggests that the solar wind heat flux is being limited some of the time in the neighborhood of 1 AU. Proton velocity distributions are also best described in terms of two relatively convecting, unresolved components. The velocity of the lower density proton beam component is generally larger than that of the main component and the temperature of the main component perpendicular to B is typically 2 to 3 times larger than its parallel temperature. Alpha particles as a whole generally move faster than the protons along B and have a temperature which is, on the average, 6 times higher than the temperature of the total proton population. Evidence is presented which supports the idea that the two-component proton structure observed in high speed regions is intimately related to fine scale velocity variations at 1 AU, and hence by inference, to prominent spatial and/or temporal structures present throughout that part of the corona from which the solar wind evolves

  8. An updated description of the strong-wind climate of South Africa

    CSIR Research Space (South Africa)

    Kruger, AC

    2011-07-01

    Full Text Available stream_source_info Goliger_2011..pdf.txt stream_content_type text/plain stream_size 23452 Content-Encoding ISO-8859-1 stream_name Goliger_2011..pdf.txt Content-Type text/plain; charset=ISO-8859-1 An Updated Description....g. improper design and/or construction, but also inadequate knowledge of the wind action; more specifically the wind characteristics at low elevations at a regional or local scale affecting the design of specific structures. The need for updating...

  9. Extreme wind estimate for Hornsea wind farm

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo

    The purpose of this study is to provide estimation of the 50-year winds of 10 min and 1-s gust value at hub height of 100 m, as well as the design parameter shear exponent for the Hornsea offshore wind farm. The turbulence intensity required for estimating the gust value is estimated using two...... approaches. One is through the measurements from the wind Doppler lidar, WindCube, which implies serious uncertainty, and the other one is through similarity theory for the atmospheric surface layer where the hub height is likely to belong to during strong storms. The turbulence intensity for storm wind...... strength is taken as 0.1. The shear exponents at several heights were calculated from the measurements. The values at 100 m are less than the limit given by IEC standard for all sectors. The 50-year winds have been calculated from various global reanalysis and analysis products as well as mesoscale models...

  10. Impact of Cosmic-Ray Transport on Galactic Winds

    Science.gov (United States)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  11. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  12. The use of cold plasma generators in medicine

    Directory of Open Access Journals (Sweden)

    Kolomiiets R.O.

    2017-04-01

    Full Text Available Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use. This work aims at disclosing the basic principles of construction of cold atmospheric plasma generators in medicine and prospects for their further improvement. The purpose of this work is to improve the existing cold atmospheric plasma generators for use in medical applications. Novelty of this work consists in the application of new principles of construction of cold atmospheric plasmas medical apparatus, namely the combination of the gas discharge chamber, electrodes complex shape forming device and plasma flow in a single package. This helps to achieve a significant reduction in the size of the device, and a discharge chamber design change increases the therapeutic effect. The design of cold atmospheric plasma generator type «pin-to-hole», which is able to control parameters using the plasma current (modulation fluctuations in the primary winding and mechanically (using optional rotary electrode. It is also possible to combine some similar generators in the set, which will increase the surface area of the plasma treatment. We consider the basic principles of generating low atmospheric plasma flow, especially the formation of the plasma jet, changing its shape and modulation stream. The features of cold plasma generator design and information about prospects for further application, and opportunities for further improvement are revealed. The recommendations for further use of cold atmospheric plasma generators in medicine are formulated.

  13. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  14. The relative impact of photoionizing radiation and stellar winds on different environments

    Science.gov (United States)

    Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T.

    2018-05-01

    Photoionizing radiation and stellar winds from massive stars deposit energy and momentum into the interstellar medium (ISM). They might disperse the local ISM, change its turbulent multi-phase structure, and even regulate star formation. Ionizing radiation dominates the massive stars' energy output, but the relative effect of winds might change with stellar mass and the properties of the ambient ISM. We present simulations of the interaction of stellar winds and ionizing radiation of 12, 23, and 60 M⊙ stars within a cold neutral (CNM, n0 = 100 cm-3), warm neutral (WNM, n0 = 1, 10 cm-3) or warm ionized (WIM, n0 = 0.1 cm-3) medium. The FLASH simulations adopt the novel tree-based radiation transfer algorithm TREERAY. With the On-the-Spot approximation and a temperature-dependent recombination coefficient, it is coupled to a chemical network with radiative heating and cooling. In the homogeneous CNM, the total momentum injection ranges from 1.6× 104 to 4× 105 M⊙ km s-1 and is always dominated by the expansion of the ionized HII region. In the WIM, stellar winds dominate (2× 102 to 5× 103 M⊙ km s-1), while the input from radiation is small (˜ 102 M⊙ km s-1). The WNM (n0 = 1 cm-3) is a transition regime. Energetically, stellar winds couple more efficiently to the ISM (˜ 0.1 percent of wind luminosity) than radiation (< 0.001 percent of ionizing luminosity). For estimating the impact of massive stars, the strongly mass-dependent ratios of wind to ionizing luminosity and the properties of the ambient medium have to be considered.

  15. Estonian wind climate

    International Nuclear Information System (INIS)

    Kull, Ain

    1999-01-01

    Estonia is situated on the eastern coast of the Baltic Sea. This is a region with intensive cyclonic activity and therefore with a relatively high mean wind speed. Atmospheric circulation and its seasonal variation determine the general character of the Estonian wind regime over the Atlantic Ocean and Eurasia. However, the Baltic sea itself is a very important factor affecting wind climate, it has an especially strong influence on the wind regime in costal areas. The mean energy density (W/m 2 ) is a wind energy characteristic that is proportional to the third power of wind speed and describes energy available in a flow of air through a unit area. The mean energy density is a characteristic which has practical importance in regional assessment of snowdrift, storm damage and wind energy

  16. Wind Turbines and Heat Pumps. Balancing wind power fluctuations using flexible demand

    International Nuclear Information System (INIS)

    Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Derszi, Z.; Kok, J.K.

    2007-01-01

    In order to overcome portfolio imbalance for traders of variable power from wind we have built an 'Imbalance Reduction System' (IRS) and performed a real-world field test with it, in which imbalance is minimized within a real-time electricity market portfolio, consisting of wind power and industrial and residential consumers and producers (Combined Heat and Power for district heating; residential heat pumps; industrial cold store; emergency generators). IRS uses the PowerMatcher concept, a coordination system for supply and demand of electricity in a which multi-agent system is combined with microeconomic principles. IRS appears to offer opportunities for embedding less predictable generators such as wind power more smoothly in the portfolio. We describe the context and operation of the Imbalance Reduction System and discuss a number of results from the performed field test. Also we introduce a business model for the balance responsible party, based on the e3-value method

  17. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...... and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...

  18. Numerical simulation of wave-current interaction under strong wind conditions

    Science.gov (United States)

    Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier

    2017-04-01

    Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).

  19. Coastal and rain-induced wind variability depicted by scatterometers

    Science.gov (United States)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy

  20. Effects of an Unusual Cold-Water Intrusion in 2008 on the Catch of Coastal Fishing Methods around Penghu Islands, Taiwan

    Directory of Open Access Journals (Sweden)

    Ming-An Lee

    2014-01-01

    Full Text Available Based upon long-term observations (1993 - 2010 of satellite-derived winter sea surface temperature (SST data, an exceptional cold-water intrusion into the southern Taiwan Strait (TS was noted in February 2008. In the winter of 2008, La Niña caused a strong and continuous northeasterly wind that drove the cold ocean current, the China Coastal Current, more southward to penetrate the southern TS north of the Chang-Yuen Ridge. A portion of this current turned eastward to the south of Penghu Islands (PHI. The low-SST event significantly impeded local marine aquaculture and wild fish, causing the death of more than 73 tons of fish around PHI. Comparing variations of the first quarterly catches in 2008 with the long-term averages from 1993 to 2010 (excluding 2008, we noted a 50 to 80% decrease in catches from pole-and-line, long-line, and gill-net fishery. Non-migratory species dominated the composition of the catches. We also noted a greater than 230% increase in the catches from set-net fishery, with the majority being migratory species. These results illustrate the positive and negative effects of cold-water intrusion on several fish communities and species.

  1. Treatment of Common Cold Patients with the Shi-Cha Capsule: A Multicenter, Double-Blind, Randomized, Placebo-Controlled, Dose-Escalation Trial

    Science.gov (United States)

    Chang, Jing; Dong, Shou-Jin; She, Bin; Zhang, Rui-Ming; Meng, Mao-Bin; Xu, Yan-Ling; Wan, Li-Ling; Shi, Ke-Hua; Pan, Jun-Hun; Mao, Bing

    2012-01-01

    This study was designed to determine the therapeutic efficacy and safety of the Shi-cha capsule, a Chinese herbal formula, in the treatment of patients with wind-cold type common cold. In our multi-center, prospective, double-blind, randomized, placebo-controlled, dose-escalation trial, patients with wind-cold type common cold received 0.6 g of Shi-cha capsule plus 0.6 g placebo (group A), 1.2 g of Shi-cha capsule (group B), or 1.2 g placebo (group C), three times daily for 3 days and followed up to 10 days. The primary end point was all symptom duration. The secondary end points were main symptom duration, minor symptom duration, the changes in cumulative symptom score, main symptom score, and minor symptom score 4 days after the treatment, as well as adverse events. A total of 377 patients were recruited and 360 met the inclusive criteria; 120 patients constituted each treatment group. Compared with patients in group C, patients in groups A and B had significant improvement in the all symptom duration, main symptom duration, minor symptom duration, as well as change from baseline of cumulative symptom score, main symptom score, and minor symptom score at day 4. The symptom durations and scores showed slight superiority of group B over group A, although these differences were not statistically significant. There were no differences in adverse events. The Shi-cha capsule is efficacious and safe for the treatment of patients with wind-cold type common cold. Larger trials are required to fully assess the benefits and safety of this treatment for common cold. PMID:23346193

  2. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  3. Synoptic climatological analysis of persistent cold air pools over the Carpathian Basin

    Science.gov (United States)

    Szabóné André, Karolina; Bartholy, Judit; Pongrácz, Rita

    2016-04-01

    A persistent cold air pool (PCAP) is a winter-time, anticyclone-related weather event over a relatively large basin. During this time the air is colder near the surface than aloft. This inversion near the surface can last even for weeks. As the cold air cools down, relative humidity increases and fog forms. The entire life cycle of a PCAP depends on the large scale circulation pattern. PCAP usually appears when an anticyclone builds up after a cold front passed over the examined basin, and it is usually destructed by a coming strong cold front of another midlatitude cyclone. Moreover, the intensity of the anticyclone affects the intensity of the PCAP. PCAP may result in different hazards for the population: (1) Temperature inversion in the surface layers together with weak wind may lead to severe air pollution causing health problems for many people, especially, elderly and children. (2) The fog and/or smog during chilly weather conditions often results in freezing rain. Both fog and freezing rain can distract transportation and electricity supply. Unfortunately, the numerical weather prediction models have difficulties to predict PCAP formation and destruction. One of the reasons is that PCAP is not defined objectively with a simple formula, which could be easily applied to the numerical output data. However, according to some recommendations from the synoptic literature, the shallow convective potential energy (SCPE) can be used to mathematically describe PCAP. In this study, we used the ERA-Interim reanalysis datasets to examine this very specific weather event (i.e., PCAP) over the Carpathian Basin. The connection between the mean sea level pressure and some PCAP measures (e.g., SCPE, energy deficit, etc.) is evaluated. For instance, we used logistic regression to identify PCAP periods over the Carpathian Basin. Then, further statistical analysis includes the evaluation of the length and intensity of these PCAP periods.

  4. Potential bias in estimates of abundance and distribution of North Sea cod (Gadus morhua) due to strong winds prevailing prior or during a survey

    DEFF Research Database (Denmark)

    Wieland, Kai; Olesen, Hans Jakob; Pedersen, Eva Maria

    2011-01-01

    The impact of strong winds on catches of cod (Gadus morhua) was studied using different fishing methods during small-scale surveys with commercial fishing vessels in the north-eastern central North Sea. Catch per unit effort of a flyshooter and a trawler were considerably lower in the shallower c...

  5. Effects of cold fronts on ozone in the Houston-Galveston-Brazoria Area

    Science.gov (United States)

    Lei, R.; Talbot, R. W.; Wang, Y.; Wang, S. C.; Estes, M. J.

    2017-12-01

    A cold front may have confounding effects on ozone by bringing in contaminated air masses to an area and causing lower temperatures which likely lead to low ozone production rates. Literature reports on individual cold front events showing increasing and decreasing effects on ozone. The Houston-Galveston-Brazoria (HGB) area as the energy capital of USA suffers relatively high ozone levels. The effect of cold fronts on HGB ozone in the long-term range remains unknown. Weather Prediction Center (WPC) Surface Analysis Archive from National Oceanic and Atmospheric Administration (NOAA) which records cold fronts' positions since 2003 has been employed in this study. The results show the count of cold fronts passing the HGB area shows no clear trend but great interannual variation. Cold front appearance in summer is much less than in other seasons. In general, both mean MDA8 and background ozone during cold front days increased compared non-cold front days. This increasing effect has been enhanced during post-front days and summer season. Cluster analysis on meteorological parameters shows cold front days with high precipitation or wind speed could lower the MDA8 and background ozone but the proportion of those days are low in all cold front days. It may explain why cold fronts show increasing effects on ozone in the HGB area.

  6. Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings

    Science.gov (United States)

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851

  7. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  8. The origin of stellar winds: Subatmospheric nonthermal storage modes versus radiation pressure

    International Nuclear Information System (INIS)

    Cannon, C.J.; Thomas, R.N.

    1977-01-01

    Most current models of matter-flux in hot stars place its origin in radiation pressure, and then model the flow explicitly to produce no chromosphere-corona. Our model of the stellar atmosphere as a transition zone between stellar interior and interstellar medium places the origin of matter-flux, chromosphere-corona, and spectral ''emission classes'' in subatmospheric nonthermal kinetic energy storage, equally for all stars, hot or cold. Current observations of both hot and cold stars suggest chromospheres to be a universal phenomenon, correlated with matter-fluxes, and enhanced in ''emission-class'' stars. To clarify the difference between the two kinds of models above, we reformulate the wind-tunnel analogy to stellar winds, suggesting that stars satisfy and ''imperfect,'' such model;i.e., transsonic shocks occur before the throat, corresponding to an imposed outward velocity in the storage section, or subatmosphere. We then investigate the stability of an arbitrary stellar atmosphere, hot or cold, to suggest a cause for such an outward subatmospheric velocity

  9. Prior history of Mistral and Tramontane winds modulates heavy precipitation events in southern France

    Directory of Open Access Journals (Sweden)

    Ségolène Berthou

    2014-11-01

    Full Text Available Heavy precipitation events (HPEs are frequent in southern France in autumn. An HPE results from landward transport of low-level moisture from the Western Mediterranean: large potential instability is then released by local convergence and/or orography. In the upstream zone, the sea surface temperature (SST undergoes significant variations at the submonthly time scale primarily driven by episodic highly energetic events of relatively cold outflows from the neighbouring mountain ranges (the Mistral and Tramontane winds. Here, we study the HPE of 22–23 September 1994 which is preceded by a strong SST cooling due to the Mistral and Tramontane winds. This case confirms that the location of the precipitation is modulated by the SST in the upstream zone. In fact, changes in latent and sensible heat fluxes due to SST changes induce pressure and stratification changes which affect the low-level dynamics. Using three companion regional climate simulations running from 1989 to 2009, this article statistically shows that anomalies in the HPEs significantly correlate with the SST anomalies in the Western Mediterranean, and hence with the prior history of Mistral and Tramontane winds. In such cases, the role of the ocean as an integrator of the effect of past wind events over one or several weeks does indeed have an impact on HPEs in southern France.

  10. Extreme Winds from the NCEP/NCAR Reanalysis Data

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, Jakob

    2009-01-01

    wind. We examined extreme winds in different places where the strongest wind events are weather phenomena of different scales, including the mid-latitude lows in Denmark, channelling winds in the Gulf of Suez, typhoons in the western North Pacific, cyclones in the Caribbean Sea, local strong winds...

  11. Terral De Vicuna, a Foehnlike Wind in Semiarid Northern Chile: Meteorological Aspects and Implications for the Fulfillment of Chill Requirements in Deciduous Fruit Trees

    Science.gov (United States)

    Montes, Carlo; Rutllant, Jose A.; Aguirre, Anita; Bascunan-Godoy, Luisa; Julia, Cristobal

    2016-01-01

    The terral de Vicuña is a warm and dry wind that flows down the Elqui Valley in north-central Chile typically at dawn and early morning. Given that most terral episodes occur in austral winter when chill accumulation by deciduous fruit trees proceeds, negative effects on agriculture may be expected. During 11 (2004-14) winters a meteorological characterization of terral winds and the assessment of their impact on chill accumulation, by the modified Utah Model and the Dynamic Model, were performed. Within this period, 67 terral days (TD) were identified as those in which nighttime to early morning wind direction and speed, air temperature, and relative humidity reached defined thresholds on an hourly basis (terral hours). Most frequent TD featured 6-9 consecutive terral hours; duration is considered here as a proxy for their intensity. Synoptic-scale meteorological analysis shows that 65% of moderate and strong terral events develop as a cold, migratory anticyclone drifts poleward of the study area, coinciding with the onset of a midtropospheric ridge over central Chile, bringing southwest winds on top of the Andes (approximately 500-hPa level). The remaining 35% are either associated with 500-hPa easterlies (foehn like), with prefrontal conditions ahead of a trough driving northwest 500-hPa winds, or with transitional 500-hPa westerlies.Assessments of chill accumulation during TD show that, although present average and cold winter conditions do not represent a major TD hazard to local agriculture, lower chill accumulation associated with anomalously high nocturnal temperatures could be significantly more important during present and future warmer winters.

  12. Effects of Icing on Wind Turbine Fatigue Loads

    International Nuclear Information System (INIS)

    Frohboese, Peter; Anders, Andreas

    2007-01-01

    The external conditions occurring at cold climate sites will affect wind turbines in different ways. The effects of ice accretion on wind turbines and the influence on the turbine fatigue loads are examined. The amount of icing prior to turbine installation needs to be estimated by using standard measurement data and considering the geometry of the proposed turbine. A procedure to calculate the expected ice accretion on wind turbines out of standard measurement data is explained and the results are discussed. Different parameters to describe the accreted ice on the turbine are examined separately in a fatigue load calculation. The results of the fatigue load calculation are discussed and selected cases are presented

  13. Optimal Control of Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Pawel Pijarski

    2018-03-01

    Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.

  14. Observations of neutral winds, wind shears, and wave structure during a sporadic-E/QP event

    Directory of Open Access Journals (Sweden)

    M. F. Larsen

    2005-10-01

    Full Text Available The second Sporadic E Experiment over Kyushu (SEEK-2 was carried out on 3 August 2002, during an active sporadic-E event that also showed quasi-periodic (QP echoes. Two rockets were launched into the event from Kagoshima Space Center in southern Japan 15 min apart. Both carried a suite of instruments, but the second rocket also released a trimethyl aluminum (TMA trail to measure the neutral winds and turbulence structure. In a number of earlier measurements in similar conditions, large winds and shears that were either unstable or close to instability were observed in the altitude range where the ionization layer occurred. The SEEK-2 wind measurements showed similar vertical structure, but unlike earlier experiments, there was a significant difference between the up-leg and down-leg wind profiles. In addition, wave or billow-like fluctuations were evident in the up-leg portion of the trail, while the lower portion of the down-leg trail was found to have extremely strong turbulence that led to a rapid break-up of the trail. The large east-west gradient in the winds and the strong turbulence have not been observed before. The wind profiles and shears, as well as the qualitative characteristics of the strong turbulence are presented, along with a discussion of the implications of the dynamical features. Keywords. Ionosphere (Mid-latitude ionosphere; Ionospheric irregularities; Electric field and currents

  15. Pilot project wind power - Large scale wind power in northern Sweden; Pilotprojekt vindkraft - Storskalig vindkraft i norra Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Swedish Energy Agency granted 2009-04-20 Svevind AB financial aid to implement {sup P}ilot project wind power- Large scale wind power in northern Sweden{sup .} The purpose of the aid is to implement pilot sub-projects in wind power, to to increase knowledge for the larger establishments. The Energy Agency said in its decision that the projects Dragaliden and Gabriel Mountain is of 'great importance for future large-scale development of wind power in Sweden'. The special conditions prevailing in the project, forest environment and cold climate, gives the possibility of studies of wind turbines on birds, reindeer herding and hunting and the more technical aspects, such as de-icing and obstacle lighting. The objectives of the project, in addition to the construction and operation of 32 wind turbines, has been to include evaluating the permit process, studying the social effects around the wind power, to study the impact on small game hunting, perform tests of the de-icing system, investigate impacts on reindeer herding and explain the outcome of the project-generated rural funds. Some of the above sub-projects have been completed, which are reported in this report. For the sub-projects still in progress, the report presents the results to date, until the completion.

  16. Downscaling of Airborne Wind Energy Systems

    NARCIS (Netherlands)

    Fechner, U.; Schmehl, R.

    2016-01-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that can not be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the

  17. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    Science.gov (United States)

    Safi, Kamran; Kranstauber, Bart; Weinzierl, Rolf P.; Griffin, Larry; Reese, Eileen C.; Cabot, David; Cruz, Sebastian; Proaño, Carolina; Takekawa, John Y.; Newman, Scott H.; Waldenström, Jonas; Bengtsson, Daniel; Kays, Roland; Wikelski, Martin; Bohrer, Gil

    2013-01-01

    Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey.Results: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight.Conclusions: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for

  18. Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Charlotte Bay Hasager

    2015-06-01

    Full Text Available Offshore wind farm cluster effects between neighboring wind farms increase rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes observed from Synthetic Aperture Radar (SAR are sometimes visible and atmospheric and wake models are here shown to convincingly reproduce the observed very long wind farm wakes. The present study mainly focuses on wind farm wake climatology based on Envisat ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev has been used for geo-located wind farm wake studies. However, the results are difficult to interpret due to mainly three issues: the limited number of samples per wind directional sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. A new methodology is developed and presented. This method overcomes effectively the first issue and in most cases, but not always, the second. In the new method all wind field maps are rotated such that the wind is always coming from the same relative direction. By applying the new method to the SAR wind maps, mesoscale and microscale model wake aggregated wind-fields results are compared. The SAR-based findings strongly support the model results at Horns Rev 1.

  19. On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm

    Directory of Open Access Journals (Sweden)

    A. Peña

    2018-04-01

    Full Text Available We investigate wake effects at the Anholt offshore wind farm in Denmark, which is a farm experiencing strong horizontal wind-speed gradients because of its size and proximity to land. Mesoscale model simulations are used to study the horizontal wind-speed gradients over the wind farm. From analysis of the mesoscale simulations and supervisory control and data acquisition (SCADA, we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly used wake models: two engineering approaches (the Park and G. C. Larsen models and a linearized Reynolds-averaged Navier–Stokes approach (Fuga. The effect of the horizontal wind-speed gradient on annual energy production estimates is not found to be critical compared to estimates from both the average undisturbed wind climate of all turbines' positions and the undisturbed wind climate of a position in the middle of the wind farm. However, annual energy production estimates can largely differ when using wind climates at positions that are strongly influenced by the horizontal wind-speed gradient. When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate the wake losses (the median relative model error is 8.75 % and the engineering wake models are as uncertain as Fuga. These results are specific for

  20. Operation and control of large wind turbines and wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Thomsen, Kenneth (and others)

    2005-09-01

    This report is the final report of a Danish research project 'Operation and control of large wind turbines and wind farms'. The objective of the project has been to analyse and assess operational strategies and possibilities for control of different types of wind turbines and different wind farm concepts. The potentials of optimising the lifetime/energy production ratio by means of using revised operational strategies for the individual wind turbines are investigated. Different strategies have been simulated, where the power production is decreased to an optimum when taking loads and actual price of produced electricity into account. Dynamic models and control strategies for the wind farms have also been developed, with the aim to optimise the operation of the wind farms considering participation in power system control of power (frequency) and reactive power (voltage), maximise power production, keep good power quality and limit mechanical loads and life time consumption. The project developed models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept is based on pitch controlled wind turbines using doubly fed induction generators. The models were applied to simulate the behaviour of the wind farm control when they were connected to a strong grid, and some initial simulations were performed to study the behaviour of the wind farms when it was isolated from the main grid on a local grid. Also the possibility to use the available information from the wind turbine controllers to predict the wind speed has been investigated. The main idea has been to predict the wind speed at a wind turbine using up-wind measurements of the wind speed in another wind turbine. (au)

  1. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption

    DEFF Research Database (Denmark)

    Masaru, Abuku; Janssen, Hans; Roels, Staf

    2009-01-01

    This paper gives an onset to whole building hygrothermal modelling in which the interaction between interior and exterior climates via building enclosures is simulated under a moderately cold and humid climate. The focus is particularly on the impact of wind-driven rain (WDR) oil the hygrothermal...... response, mould growth at interior wall surfaces, indoor climate and energy consumption. First the WDR load oil the facades of a 4 m x 4 m x 10 m tower is determined. Then the hygrothermal behaviour of the brick walls is analysed oil a horizontal slice through the tower. The simulations demonstrate...

  2. Effects of lightweight outdoor clothing on the prevention of hypothermia during low-intensity exercise in the cold.

    Science.gov (United States)

    Burtscher, Martin; Kofler, Philipp; Gatterer, Hannes; Faulhaber, Martin; Philippe, Marc; Fischer, Kathrin; Walther, Rebekka; Herten, Anne

    2012-11-01

    To study protective effects of windbreaker jacket and pants during exercise in the cold. Randomized pilot study. Climate chamber. Nine well-trained (V[Combining Dot Above]O2max 61.7 ± 6.6 mL/min/kg) sport students (6 male and 3 female participants). Subjects started walking for 1 hour in a climate chamber (0°C ambient temperature and wind speed of 10 km/h) at 70% V[Combining Dot Above]O2max wearing gloves, a T-shirt, and shorts. Then, the walking speed was reduced to 30% V[Combining Dot Above]O2max for an additional 60 minutes or until core temperature dropped below 35.5°C. Subsequently, 3 groups of 3 participants continued walking without change of clothing or obtaining additionally a cap and a windbreaker jacket or windbreaker jacket and pants. Core and skin temperature, thermal comfort. The main findings of this study were that exercising at 70% V[Combining Dot Above]O2max in the cold was sufficient to prevent hypothermia and that during low-intensity exercise (30% V[Combining Dot Above]O2max), the combined use of a polyester cap, lightweight windbreaker jacket, and pants was necessary to increase a prehypothermic core temperature. We strongly recommend taking a cap, windbreaker jacket, and pants for the prevention of hypothermia during exhaustive walking or running in cold weather conditions.

  3. Operation and control of large wind turbines and wind farms. Final report

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Thomsen, Kenneth

    2005-01-01

    good power quality and limit mechanical loads and life time consumption. The projectdeveloped models for 3 different concepts for wind farms. Two of the concepts use active stall controlled wind turbines, one with AC connection and one with modern HVDC/VSC connection of the wind farm. The third concept...... is based on pitch controlled windturbines using doubly fed induction generators. The models were applied to simulate the behaviour of the wind farm control when they were connected to a strong grid, and some initial simulations were performed to study the behaviour of the wind farms whenit was isolated...... concepts. The potentials of optimising the lifetime/energy production ratio by means of using revised operational strategies for the individual wind turbines are investigated. Different strategies have beensimulated, where the power production is decreased to an optimum when taking loads and actual price...

  4. Swainson's Thrushes do not show strong wind selectivity prior to crossing the Gulf of Mexico.

    Science.gov (United States)

    Bolus, Rachel T; Diehl, Robert H; Moore, Frank R; Deppe, Jill L; Ward, Michael P; Smolinsky, Jaclyn; Zenzal, Theodore J

    2017-10-27

    During long-distance fall migrations, nocturnally migrating Swainson's Thrushes often stop on the northern Gulf of Mexico coast before flying across the Gulf. To minimize energetic costs, trans-Gulf migrants should stop over when they encounter crosswinds or headwinds, and depart with supportive tailwinds. However, time constrained migrants should be less selective, balancing costs of headwinds with benefits of continuing their migrations. To test the hypotheses that birds select supportive winds and that selectivity is mediated by seasonal time constraints, we examined whether local winds affected Swainson's Thrushes' arrival and departure at Ft. Morgan, Alabama, USA at annual, seasonal, and nightly time scales. Additionally, migrants could benefit from forecasting future wind conditions, crossing on nights when winds are consistently supportive across the Gulf, thereby avoiding the potentially lethal consequences of depleting their energetic reserves over water. To test whether birds forecast, we developed a movement model, calculated to what extent departure winds were predictive of future Gulf winds, and tested whether birds responded to predictability. Swainson's Thrushes were only slightly selective and did not appear to forecast. By following the simple rule of avoiding only the strongest headwinds at departure, Swainson's Thrushes could survive the 1500 km flight between Alabama and Veracruz, Mexico.

  5. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  6. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  7. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K

    2016-05-18

    We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d, n i, of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive - for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them \\'Tom\\' and \\'Jerry\\' for \\'big\\' and \\'small\\') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate. © 2016 IOP Publishing Ltd.

  8. Supper strong nanostructured TWIP steels for automotive applications

    Directory of Open Access Journals (Sweden)

    G.W. Yuan

    2014-02-01

    Full Text Available A ductile and super strong nanostructured twinning-induced plasticity (TWIP steels were fabricated by cold rolling and recovery treatment. This strong and ductile nanostructured alloy can be used for the anti-intrusion part of body-in-white. Cold rolling was used to produce intensive nano-twins so that the microstructure was greatly refined. Recovery is employed to anneal dislocations for improving the ductility. A physical model is proposed to describe the relationship between the yield stress and the twin density. Furthermore, the present work also found that the activation energy for recovery is ~160 J/mol, which implies that the recovery mechanism is governed by dislocation core diffusion.

  9. Light localization in cold and dense atomic ensemble

    International Nuclear Information System (INIS)

    Sokolov, Igor

    2017-01-01

    We report on results of theoretical analysis of possibilities of light strong (Anderson) localization in a cold atomic ensemble. We predict appearance of localization in dense atomic systems in strong magnetic field. We prove that in absence of the field the light localization is impossible. (paper)

  10. Atmospheric air density analysis with Meteo-40S wind monitoring system

    Directory of Open Access Journals (Sweden)

    Zahariea Dănuţ

    2017-01-01

    Full Text Available In order to estimate the wind potential of wind turbine sites, the wind resource maps can be used for mean annual wind speed, wind speed frequency distribution and mean annual wind power density determination. The general evaluation of the wind resource and the wind turbine ratings are based on the standard air density measured at sea level and at 15°C, ρs=1.225 kg/m3. Based on the experimental data obtained for a continental climate specific location, this study will present the relative error between the standard air density and the density of the dry and the moist air. Considering a cold day, for example on Friday 10th February 2017, on 1-second measurement rate and 10-minute measuring interval starting at 16:20, the mean relative errors obtained are 10.4145% for dry air, and 10.3634% for moist air. Based on these results, a correction for temperature, atmospheric air pressure and relative humidity should be always considered for wind resource assessment, as well as for the predicting the wind turbines performance.

  11. CERN experiment provides first glimpse inside cold antihydrogen

    CERN Multimedia

    2002-01-01

    "The ATRAP experiment at the Antiproton Decelerator at CERN has detected and measured large numbers of cold antihydrogen atoms. Relying on ionization of the cold antiatoms when they pass through a strong electric field gradient, the ATRAP measurement provides the first glimpse inside an antiatom, and the first information about the physics of antihydrogen. The results have been accepted for publication in Physical Review Letters" (1 page).

  12. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  13. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-08

    Wind power capacity in the United States experienced strong growth in 2016. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—as well as a myriad of state-level policies. Wind additions have also been driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers.

  14. Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements

    Science.gov (United States)

    Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.

    2018-03-01

    We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.

  15. Offshore Wind Energy: Wind and Sea Surface Temperature from Satellite Observations

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    as the entire atmosphere above. Under conditions of light winds and strong solar insolation, warming of the upper oceanic layer may occur. In this PhD study, remote sensing from satellites is used to obtain information for the near-surface ocean wind and the sea surface temperature over the North Sea......, demonstrate that wind information from SAR is more appropriate when small scale local features are of interest, not resolved by scatterometers. Hourly satellite observations of the sea surface temperature, from a thermal infra-red sensor, are used to identify and quantify the daily variability of the sea...

  16. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  17. Wind on the moors

    International Nuclear Information System (INIS)

    Martin, S.

    1992-01-01

    A local town councillor describes the setting up of a wind farm in the south Pennines which plans to sell electricity to the local electricity suppliers. The Coal Clough wind farm will generate sufficient electricity to meet the average demand of 7,500 households and will be managed by a consortium known as Wind Resources Limited linking the construction company and the utilities aiming to buy the electricity produced. While wind power offers many environmental advantages over other means of power generation, local opposition was strong on the basis of the noise produced and clearly visible structures in an area designated as being of outstanding natural beauty. (UK)

  18. Wind farm radar study

    International Nuclear Information System (INIS)

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  19. The contribution of sting-jet windstorms to extreme wind risk in the North Atlantic

    Science.gov (United States)

    Hart, Neil C.; Gray, Suzanne L.; Clark, Peter A.

    2016-04-01

    Windstorms are a major winter weather risk for many countries in Europe. These storms are predominantly associated with explosively-developing extratropical cyclones that track across the region. A substantial body of literature exists on the synoptic-scale dynamics, predictability and climatology of such storms. More recently, interest in the mesoscale variability of the most damaging winds has led to a focus on the role of sting jets in enhancing windstorm severity. We present a present-era climatology of North Atlantic cyclones that had potential to produce sting jets. Considering only explosively-developing cyclones, those with sting-jet potential are more likely to have higher relative vorticity and associated low-level wind maxima. Furthermore, the strongest winds for sting-jet cyclones are more often in the cool sector, behind the cold front, when compared with other explosively-developing cyclones which commonly have strong warm-sector winds too. The tracks of sting-jet cyclones, and explosively-developing cyclones in general, show little offset from the climatological storm track. While rare over Europe, sting-jet cyclones are relatively frequent within the main storm track with up to one third of extratropical cyclones exhibiting sting-jet potential. Thus, the rarity and, until recently, lack of description of sting-jet windstorms is more due to the climatological storm track location away from highly-populated land masses, than due to an actual rarity of such storms in nature.

  20. Development of CFD-based icing model for wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Marie Cecilie; Martinez, Benjamin; Yin, Chungen

    2015-01-01

    Operation of wind turbines in cold climate areas is challenged by icing-induced problems, such as loss of production, safety issues and blade fatique. Production losses are especially a big issue in Sweden, and due to difficulties with on-site measurements, simulations are often used to get an un...

  1. Cold weather damages promising species in the Wind River Arboretum.

    Science.gov (United States)

    R.W. Steele

    1954-01-01

    Before an introduced tree species is. recommended for wide-scale forest planting, its adaption to the local climate and soil should be carefully checked over a long period of years. This need has been clearly demonstrated at the Wind River Arboretum where many introduced species are being evaluated for possible use in plantations. The purpose of this note is to call...

  2. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-02-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  3. Observations of a cold front with strong vertical undulations during the ARM RCS-IOP

    Energy Technology Data Exchange (ETDEWEB)

    Starr, D.O`C.; Whiteman, D.N. [Goddard Space Flight Center, Greenbelt, MD (United States); Melfi, S.H. [Univ. of Maryland, Baltimore, MD (United States)] [and others

    1996-04-01

    Passage of a cold front was observed on the night of April 14-15, 1994, during the Atmospheric Radiation Measurement (ARM) Remote Cloud Sensing (RCS) Intensive Observatios Period (IOP) at the Southern Great Plains Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. The observations are described.

  4. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  5. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  6. Galactic Winds Driven by Supernovae and Radiation Pressure: Theory and Simulations

    Science.gov (United States)

    Zhang, Dong; Davis, Shane

    2018-01-01

    Galactic winds are ubiquitous in most rapidly star-forming galaxies. They are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Although important, the physics of galactic winds is still unclear. Winds may be driven by many mechanisms including overlapping supernovae explosions, radiation pressure of starlight on dust grains, and cosmic rays. However, the growing observations of multiphase structure in galactic winds in a large number of galaxies have not been well explained by any models. In this talk I will focus on the models of supernova- and radiation-pressure-driven winds. Using the state-of-the-art numerical simulations, I will assess the relative merits of these driving mechanisms for accelerating cold and warm clouds to observed velocities, and momentum flux boost during wind propagation.

  7. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  8. Detection of cold pain, cold allodynia and cold hyperalgesia in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Woolf Clifford J

    2005-12-01

    Full Text Available Abstract Background Pain is elicited by cold, and a major feature of many neuropathic pain states is that normally innocuous cool stimuli begin to produce pain (cold allodynia. To expand our understanding of cold induced pain states we have studied cold pain behaviors over a range of temperatures in several animal models of chronic pain. Results We demonstrate that a Peltier-cooled cold plate with ± 1°C sensitivity enables quantitative measurement of a detection withdrawal response to cold stimuli in unrestrained rats. In naïve rats the threshold for eliciting cold pain behavior is 5°C. The withdrawal threshold for cold allodynia is 15°C in both the spared nerve injury and spinal nerve ligation models of neuropathic pain. Cold hyperalgesia is present in the spared nerve injury model animals, manifesting as a reduced latency of withdrawal response threshold at temperatures that elicit cold pain in naïve rats. We also show that following the peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant, a hypersensitivity to cold occurs. Conclusion The peltier-cooled provides an effective means of assaying cold sensitivity in unrestrained rats. Behavioral testing of cold allodynia, hyperalgesia and pain will greatly facilitate the study of the neurobiological mechanisms involved in cold/cool sensations and enable measurement of the efficacy of pharmacological treatments to reduce these symptoms.

  9. Costs and benefits of cold acclimation in field released Drosophila

    DEFF Research Database (Denmark)

    Kristensen, Torsten N; Hoffmann, Ary A; Overgaard, Johannes

    2008-01-01

    -acclimated were up to 36 times more likely to find food than the cold-acclimated flies when temperatures were warm. Such costs and strong benefits were not evident in laboratory tests where we found no reduction in heat survival of the cold-acclimated flies. Field release studies, therefore, reveal costs of cold......One way animals can counter the effects of climatic extremes is via physiological acclimation, but acclimating to one extreme might decrease performance under different conditions. Here, we use field releases of Drosophila melanogaster on two continents across a range of temperatures to test...... for costs and benefits of developmental or adult cold acclimation. Both types of cold acclimation had enormous benefits at low temperatures in the field; in the coldest releases only cold-acclimated flies were able to find a resource. However, this advantage came at a huge cost; flies that had not been cold...

  10. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  11. Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth

    International Nuclear Information System (INIS)

    Bolinger, Mark; Wiser, Ryan

    2009-01-01

    The amount of wind power capacity being installed globally is surging, with the United States the world leader in terms of annual market share for three years running (2005-2007). The rapidly growing market for wind has been a double-edged sword, however, as the resulting supply-demand imbalance in wind turbines, along with the rising cost of materials and weakness in the US dollar, has put upward pressure on wind turbine costs, and ultimately, wind power prices. Two mitigating factors-reductions in the cost of equity provided to wind projects and improvements in project-level capacity factors-have helped to relieve some of the upward pressure on wind power prices over the last few years. Because neither of these two factors can be relied upon to further cushion the blow going forward, policymakers should recognize that continued financial support may be necessary to sustain the wind sector at its current pace of development, at least in the near term. Though this article emphasizes developments in the US market for wind power, those trends are similar to, and hold implications for, the worldwide wind power market

  12. Wind-waves interactions in the Gulf of Eilat

    Science.gov (United States)

    Shani-Zerbib, Almog; Liberzon, Dan; T-SAIL Team

    2017-11-01

    The Gulf of Eilat, at the southern tip of Israel, with its elongated rectangular shape and unique diurnal wind pattern is an appealing location for wind-waves interactions research. Results of experimental work will be reported analyzing a continuous, 50 hour long, data. Using a combined array of wind and waves sensing instruments, the wave field statistics and its response to variations of wind forcing were investigated. Correlations between diurnal fluctuations in wind magnitude and direction and the wave field response will be discussed. The directional spread of waves' energy, as estimated by the Wavelet Directional Method, showed a strong response to small variations in wind flow direction attributed to the unique topography of the gulf surroundings and its bathymetry. Influenced by relatively strong winds during the light hours, the wave field was dominated by a significant amount of breakings that are well pronounced in the saturation range of waves spectra. Temporal growth and decay behavior of the waves during the morning and evening wind transition periods was examined. Sea state induced roughness, as experienced by the wind flow turbulent boundary layer, is examined in view of the critical layer theory. Israel Science Foundation Grant # 1521/15.

  13. Numerical Modeling of the Severe Cold Weather Event over Central Europe (January 2006

    Directory of Open Access Journals (Sweden)

    D. Hari Prasad

    2010-01-01

    Full Text Available Cold waves commonly occur in higher latitudes under prevailing high pressure systems especially during winter season which cause serious economical loss and cold related death. Accurate prediction of such severe weather events is important for decision making by administrators and for mitigation planning. An Advanced high resolution Weather Research and Forecasting mesoscale model is used to simulate a severe cold wave event occurred during January 2006 over Europe. The model is integrated for 31 days starting from 00UTC of 1 January 2006 with 30 km horizontal resolution. Comparison of the model derived area averaged daily mean temperatures at 2m height from different zones over the central Europe with observations indicates that the model is able to simulate the occurrence of the cold wave with the observed time lag of 1 to 3days but with lesser intensity. The temperature, winds, surface pressure and the geopential heights at 500 hPa reveal that the cold wave development associates with the southward progression of a high pressure system and cold air advection. The results have good agreement with the analysis fields indicates that the model has the ability to reproduce the time evolution of the cold wave event.

  14. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  15. Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian

    Directory of Open Access Journals (Sweden)

    Zak K.

    2009-07-01

    Full Text Available Cold Wind Cave, located at elevations ranging between 1,600 and 1,700 m a. s. l. in the main range of the Nízke Tatry Mountains(Slovakia, is linked in origin with the adjacent Dead Bats Cave. Together, these caves form a major cave system located within anarrow tectonic slice of Triassic sediments. Both caves have undergone complex multiphase development. A system of sub-horizontalcave levels characterized by large, tunnel-like corridors was formed during the Tertiary, when elevation differences surroundingthe cave were less pronounced than today. The central part of the Nízke Tatry Mountains, together with the cave systems, wasuplifted during the Neogene and Lower Pleistocene, which changed the drainage pattern of the area completely. The formation ofnumerous steep-sloped vadose channels and widespread cave roof frost shattering characterized cave development throughout theQuaternary.In the Cold Wind Cave, extensive accumulations of loose, morphologically variable crystal aggregates of secondary cave carbonateranging in size between less than 1 mm to about 35 mm was found on the surface of fallen limestone blocks. Based on the C andO stable isotope compositions of the carbonate (δ13C: 0.72 to 6.34 ‰, δ18O: –22.61 to –13.68 ‰ V-PDB and the negative relationbetween δ13C and δ18O, the carbonate crystal aggregates are interpreted as being cryogenic cave carbonate (CCC. Publishedmodels suggest the formation of CCC in slowly freezing water pools, probably on the surface of cave ice, most probably duringtransitions from stadials to interstadials. Though the formation of these carbonates is likely one of the youngest events in thesequence of formation of cave sediments of the studied caves, the 230Th/234U ages of three samples (79.7±2.3, 104.0±2.9, and180.0±6.3 ka are the oldest so far obtained for CCC in Central Europe. This is the first description of CCC formation in one caveduring two glacial periods (Saalian and Weichselian.

  16. Wind power: a guide for farms and rural businesses

    International Nuclear Information System (INIS)

    1998-03-01

    This Guide is mainly concerned with single wind turbines rather than large windfarms, concentrating on the opportunities for existing businesses and new partnerships to gain value from their own local wind resource. There is a wide range of types of business that can use windpower and there are many types of application. Heavy power users are good candidates, and these include intensive livestock farms, feed mills, distilleries, vegetable cold stores, food and fish processing factories, quarries, tourist and leisure complexes, and so on. There are also many cases where using wind power is the least expensive of a number of costly options, for example where the grid is inaccessible; wind power can be used to supply heat and to pump water. The aim of this Guide is to illustrate and explain these uses, and to place them firmly in the context of business opportunity for rural areas. (author)

  17. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  18. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, Derek van der [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Curry, Charles L. [Environment Canada University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Monahan, Adam H. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada)

    2012-04-15

    A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979-2006. A predictor set was developed from principal component analysis of the three wind components at 500 hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well. (orig.)

  19. Thermal Recovery from Cold-Working in Type K Bare-Wire Thermocouples

    Science.gov (United States)

    Greenen, A. D.; Webster, E. S.

    2017-12-01

    Cold-working of most thermocouples has a significant, direct impact on the Seebeck coefficient which can lead to regions of thermoelectric inhomogeneity and accelerated drift. Cold-working can occur during the wire swaging process, when winding the wire onto a bobbin, or during handling by the end user—either accidentally or deliberately. Swaging-induced cold-work in thermocouples, if uniformly applied, may result in a high level of homogeneity. However, on exposure to elevated temperatures, the subsequent recovery process from the cold-working can then result in significant drift, and this can in turn lead to erroneous temperature measurements, often in excess of the specified manufacturer tolerances. Several studies have investigated the effects of cold-work in Type K thermocouples usually by bending, or swaging. However, the amount of cold-work applied to the thermocouple is often difficult to quantify, as the mechanisms for applying the strains are typically nonlinear when applied in this fashion. A repeatable level of cold-working is applied to the different wires using a tensional loading apparatus to apply a known yield displacement to the thermoelements. The effects of thermal recovery from cold-working can then be accurately quantified as a function of temperature, using a linear gradient furnace and a high-resolution homogeneity scanner. Variation in these effects due to differing alloy compositions in Type K wire is also explored, which is obtained by sourcing wire from a selection of manufacturers. The information gathered in this way will inform users of Type K thermocouples about the potential consequences of varying levels of cold-working and its impact on the Seebeck coefficient at a range of temperatures between ˜ 70°C and 600° C. This study will also guide users on the temperatures required to rapidly alleviate the effects of cold-working using thermal annealing treatments.

  20. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    Science.gov (United States)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  1. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low wind power potentials

    Science.gov (United States)

    Miller, Lee; Kleidon, Axel

    2017-04-01

    Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power potentials that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m-2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m-2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m-2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

  2. Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet

    Science.gov (United States)

    Bai, Shichen; Shi, Quanqi; Tian, Anmin; Nowada, Motoharu; Degeling, Alexander W.; Zhou, Xu-Zhi; Zong, Qiu-Gang; Rae, I. Jonathan; Fu, Suiyan; Zhang, Hui; Pu, Zuyin; Fazakerly, Andrew N.

    2018-01-01

    The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996-2015) are used to investigate the seasonal variation of IMF Bz under northward IMF conditions. We find a semiannual variation of IMF Bz, which is consistent with the Russell-McPherron (R-M) effect. We therefore suggest that the semiannual variation of CDPS may be related to the R-M effect.

  3. High temperature co-axial winding transformers

    Science.gov (United States)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  4. Cusp-core problem and strong gravitational lensing

    International Nuclear Information System (INIS)

    Li Nan; Chen Daming

    2009-01-01

    Cosmological numerical simulations of galaxy formation have led to the cuspy density profile of a pure cold dark matter halo toward the center, which is in sharp contradiction with the observations of the rotation curves of cold dark matter-dominated dwarf and low surface brightness disk galaxies, with the latter tending to favor mass profiles with a flat central core. Many efforts have been devoted to resolving this cusp-core problem in recent years, among them, baryon-cold dark matter interactions are considered to be the main physical mechanisms erasing the cold dark matter (CDM) cusp into a flat core in the centers of all CDM halos. Clearly, baryon-cold dark matter interactions are not customized only for CDM-dominated disk galaxies, but for all types, including giant ellipticals. We first fit the most recent high resolution observations of rotation curves with the Burkert profile, then use the constrained core size-halo mass relation to calculate the lensing frequency, and compare the predicted results with strong lensing observations. Unfortunately, it turns out that the core size constrained from rotation curves of disk galaxies cannot be extrapolated to giant ellipticals. We conclude that, in the standard cosmological paradigm, baryon-cold dark matter interactions are not universal mechanisms for galaxy formation, and therefore, they cannot be true solutions to the cusp-core problem.

  5. The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma

    Science.gov (United States)

    Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.

    2016-12-01

    We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.

  6. Wind influence on a coastal buoyant outflow

    Science.gov (United States)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  7. Observational and numerical study of the Vardaris wind regime in northern Greece

    Science.gov (United States)

    Koletsis, I.; Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.

    2016-05-01

    The Axios Valley, located in central-northern Greece, is surrounded by complex topography that plays a significant role in the modification of wind flow, both in terms of speed and direction. The characteristic wind regime of this valley is Vardaris, a northwesterly wind that prevails in this region, especially during the cold period of the year. Vardaris is well known for its consistent direction and high intensity, as well as for the effective advection of cold and dry air, often resulting to significant damages in local infrastructures and agriculture. A field campaign under the name AXIOS took place during the period from November 2007 through May 2008 in order to examine this particular wind flow. The analysis of the in situ observational data, which was funded by the research program THESPIA-KRIPIS, showed that topography plays a key role in intensifying Vardaris, generating gusts that approximated 30 m s- 1 during the experimental period. The air temperature and humidity fields were also found to be significantly influenced. In addition to the observational study, an intense Vardaris episode was simulated with the Weather Research and Forecasting (WRF) model at high horizontal resolution. Results revealed that the model was able to reproduce the favorable environmental conditions that lead to Vardaris occurrence, providing a useful insight on the physical mechanisms explaining its structure.

  8. Nearshore circulation on a sea breeze dominated beach during intense wind events

    Science.gov (United States)

    Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio

    2017-12-01

    A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play

  9. Active Galactic Nucleus Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    Science.gov (United States)

    Dorodnitsyn, Anton V.; Kallman, Timothy R.

    2012-01-01

    We present calculations of active galactic nucleus winds at approx.parsec scales along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L = 0.05-0.6 L(sub Edd), the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72deg - 75deg regardless of the luminosity. At L > or approx. 0.1, the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) > or approx.70deg and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR-supported flow. At luminosities < or = 0.1 L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion. Key words: acceleration of particles . galaxies: active . hydrodynamics . methods: numerical Online-only material: color figures

  10. Optimal application of climate data to the development of design wind speeds

    DEFF Research Database (Denmark)

    Kruger, Andries C.; Retief, Johan V.; Goliger, Adam M.

    2014-01-01

    Africa (WASA project) focuses, amongst others, on the development of a Regional Extreme Wind Climate (REWC) for South Africa. Wind farms are planned for areas with relatively strong and sustained winds, with wind turbines classed according to their suitability for different wind conditions. The REWC...... statistics are used during the construction and design phase to make assumptions about the local strong wind climate that the wind turbines will be exposed to, with the local environment and topography as additional input. The simultaneous development of the REWC and revision of the extreme wind statistics...... of South Africa created an opportunity to bring together a range of expertise that could contribute to the optimal development of design wind speed information. These include the knowledge of the statistical extraction of extreme wind observations from reanalysis and model data, the quality control...

  11. Pitch Angle Control for Variable Speed Wind Turbines

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, M

    2008-01-01

    Pitch angle control is the most common means for adjusting the aerodynamic torque of the wind turbine when wind speed is above rated speed and various controlling variables may be chosen, such as wind speed, generator speed and generator power. As conventional pitch control usually use PI...... controller, the mathematical model of the system should be known well. A fuzzy logic pitch angle controller is developed in this paper, in which it does not need well known about the system and the mean wind speed is used to compensate the non-linear sensitivity. The fuzzy logic control strategy may have...... the potential when the system contains strong non-linearity, such as wind turbulence is strong, or the control objectives include fatigue loads. The design of the fuzzy logic controller and the comparisons with conversional pitch angle control strategies with various controlling variables are carried out...

  12. Wind Farm Wake: The Horns Rev Photo Case

    Directory of Open Access Journals (Sweden)

    Pierre-Elouan Réthoré

    2013-02-01

    Full Text Available The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea surface temperature as well as ground-based information at and near the wind farm, including Supervisory Control and Data Acquisition (SCADA data. The SCADA data reveal that the case of fog formation occurred 12 February 2008 on the 10:10 UTC. The fog formation is due to very special atmospheric conditions where a layer of cold humid air above a warmer sea surface re-condensates to fog in the wake of the turbines. The process is fed by warm humid air up-drafted from below in the counter-rotating swirl generated by the clock-wise rotating rotors. The condensation appears to take place primarily in the wake regions with relatively high axial velocities and high turbulent kinetic energy. The wind speed is near cut-in and most turbines produce very little power. The rotational pattern of spiraling bands produces the large-scale structure of the wake fog.

  13. A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11

    Science.gov (United States)

    Cradden, Lucy C.; McDermott, Frank

    2018-05-01

    Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.

  14. Numerical modeling of the pulsar wind interaction with ISM

    NARCIS (Netherlands)

    Bogovalov, S. V.; Chechetkin, V. M.; Koldoba, A. V.; Ustyugova, G. V.; Battiston, R; Shea, MA; Rakowski, C; Chatterjee, S

    2006-01-01

    Time dependent numerical simulation of relativistic wind interaction with interstellar medium was performed. The winds are ejected from magnetosphere of rotation powered pulsars. The particle flux in the winds is assumed to be isotropic. The energy flux is taken as strongly anisotropic in accordance

  15. An intercomparison of mesoscale models at simple sites for wind energy applications

    DEFF Research Database (Denmark)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria

    2017-01-01

    of the output from 25 NWP models is presented for three sites in northern Europe characterized by simple terrain. The models are evaluated sing a number of statistical properties relevant to wind energy and verified with observations. On average the models have small wind speed biases offshore and aloft ( ... %) and larger biases closer to the surface over land (> 7 %). A similar pattern is detected for the inter-model spread. Strongly stable and strongly unstable atmospheric stability conditions are associated with larger wind speed errors. Strong indications are found that using a grid spacing larger than 3 km...... decreases the accuracy of the models, but we found no evidence that using a grid spacing smaller than 3 km is necessary for these simple sites. Applying the models to a simple wind energy offshore wind farm highlights the importance of capturing the correct distributions of wind speed and direction....

  16. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  17. Implication of collider experiments for detecting cold dark matter

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    Investigation of Minimal Supersymmetry Standard Model shows, that any discovery with high-energy colliders at least one supersymmetric particle would strongly enhance importance of very accurate experiments. which search for lightest supersymmetric neutralinos as cold dark matter particles. Form other side, non-observations of any signal of cold dark matter in such experiments would force us to change strategy of searching for, for instance, light charged Higgs bosons at high energies [ru

  18. Prospects for generating electricity by large onshore and offshore wind farms

    Science.gov (United States)

    Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.

    2017-03-01

    The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.

  19. Turbulence Simulation of Laboratory Wind-Wave Interaction in High Winds and Upscaling to Ocean Conditions

    Science.gov (United States)

    2016-12-22

    Oceanogr., 46, 1377-1397 Cebeci, T. & P. Bradshaw, 1988: physical and computational aspects of convective heat transfer , Springer-Verlag, p.487...on surface properties and flow separation. Strongly-forced wind seas are characterized by enhanced group modulation , as significant additional...energy flux from the wind augments the hydrodynamic modulations . Using compact steep chirped wave packets, we investigated for the first time the

  20. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  1. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  2. Manual performance deterioration in the cold estimated using the wind chill equivalent temperature

    NARCIS (Netherlands)

    Daanen, H.A.M.

    2009-01-01

    Manual performance during work in cold and windy climates is severely hampered by decreased dexterity, but valid dexterity decrease predictors based on climatic factors are scarce. Therefore, this study investigated the decrease in finger- and hand dexterity and grip force for nine combinations of

  3. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  4. Illinois Wind Workers Group

    Energy Technology Data Exchange (ETDEWEB)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  5. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    Science.gov (United States)

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  6. Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.

    Science.gov (United States)

    Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica

    2015-01-01

    Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.

  7. SSC collider quadrupole cold mass design and development

    International Nuclear Information System (INIS)

    Farrell, R.A.; Murray, F.S.; Jonas, P.A.; Mischler, W.R.; Blecher, L.

    1992-01-01

    Approximately 1,664 focussing and defocussing superconducting quadrupoles are required for the two SSC collider rings. Collider quadruple magnets (CQMS) must satisfy stringent performance, reliability, life and low cost criteria. Performance requirements include field uniformity, training, quench, tracking, thermal cycling and alignment. The CQM cold mass design presented incorporates lessons IGC and Alsthom Intermagnetics S.A. (AISA), our joint venture with GEC-Alsthom, learned in the design, development and manufacture of 500 MRI, 160 high-field custom and 126 HERA quadruple superconducting magnets. This baseline design reflects careful quantitative assessment of coil winding placement and collar material, evaluation of field uniformity and mechanical performance of the magnet coil ends using 3-D modeling and analysis, and considers tolerance and process variability. Selected CQM cold mass design highlights and a proposed prototype development program that allows incorporation of test feedback into the design to minimize risk are detailed in this paper. This information may be helpful to SSCL in the design and development of prototype CQM'S

  8. Thermal comfort sustained by cold protective clothing in Arctic open-pit mining-a thermal manikin and questionnaire study.

    Science.gov (United States)

    Jussila, Kirsi; Rissanen, Sirkka; Aminoff, Anna; Wahlström, Jens; Vaktskjold, Arild; Talykova, Ljudmila; Remes, Jouko; Mänttäri, Satu; Rintamäki, Hannu

    2017-12-07

    Workers in the Arctic open-pit mines are exposed to harsh weather conditions. Employers are required to provide protective clothing for workers. This can be the outer layer, but sometimes also inner or middle layers are provided. This study aimed to determine how Arctic open-pit miners protect themselves against cold and the sufficiency, and the selection criteria of the garments. Workers' cold experiences and the clothing in four Arctic open-pit mines in Finland, Sweden, Norway and Russia were evaluated by a questionnaire (n=1,323). Basic thermal insulation (I cl ) of the reported clothing was estimated (ISO 9920). The I cl of clothing from the mines were also measured by thermal manikin (standing/walking) in 0.3 and 4.0 m/s wind. The questionnaire showed that the I cl of the selected clothing was on average 1.2 and 1.5 clo in mild (-5 to +5°C) and dry cold (-20 to -10°C) conditions, respectively. The I cl of the clothing measured by thermal manikin was 1.9-2.3 clo. The results show that the Arctic open-pit miners' selected their clothing based on occupational (time outdoors), environmental (temperature, wind, moisture) and individual factors (cold sensitivity, general health). However, the selected clothing was not sufficient to prevent cooling completely at ambient temperatures below -10°C.

  9. Alberta wind integration. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Kehler, John; Aksomitis, Kris; Duchesne, Jacques [Alberta Electric System Operator (AESO), Calgary, AB (Canada)

    2010-07-01

    Alberta has excellent wind resources with over 600 MW of wind generation currently operating on the Alberta Interconnected Electric System (AIES) and there continues to be strong interest in wind development. Integration of large-scale wind power, however, is still relatively new and presents new operational opportunities and challenges. The AESO currently has over 7,700 MW in potential wind power development in Alberta in our interconnection queue. The Alberta system peak load is 10, 236 MW with 12,763 MW installed generation capacity and limited interconnection capability to neighboring jurisdictions. The AESO recognizes that it is important, both to system reliability and to the successful development of renewable resources in Alberta, that the impact on power system operations and the obligations of market participants are understood as Alberta reaches higher levels of wind penetration. The paper discusses the current status and future outlook on wind integration in Alberta. (orig.)

  10. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  11. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    Science.gov (United States)

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  12. Hypothermic general cold adaptation induced by local cold acclimation.

    Science.gov (United States)

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P syndrome" occurring during LCA.

  13. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments.

    Science.gov (United States)

    Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng

    2017-06-07

    Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase ( CIPKs ), receptor-like protein kinases , and protein kinases . The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata . These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata . In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance.

  14. SAR Observation and Modeling of Gap Winds in the Prince William Sound of Alaska.

    Science.gov (United States)

    Liu, Haibo; Olsson, Peter Q; Volz, Karl

    2008-08-22

    Alaska's Prince William Sound (PWS) is a unique locale tending to have strong gap winds, especially in the winter season. To characterize and understand these strong surface winds, which have great impacts on the local marine and aviation activities, the surface wind retrieval from the Synthetic Aperture Radar data (SAR-wind) is combined with a numerical mesoscale model. Helped with the SAR-wind observations, the mesoscale model is used to study cases of strong winds and relatively weak winds to depict the nature of these winds, including the area of extent and possible causes of the wind regimes. The gap winds from the Wells Passage and the Valdez Arm are the most dominant gap winds in PWS. Though the Valdez Arm is north-south trending and Wells Passage is east-west oriented, gap winds often develop simultaneously in these two places when a low pressure system is present in the Northern Gulf of Alaska. These two gap winds often converge at the center of PWS and extend further out of the Sound through the Hinchinbrook Entrance. The pressure gradients imposed over these areas are the main driving forces for these gap winds. Additionally, the drainage from the upper stream glaciers and the blocking effect of the banks of the Valdez Arm probably play an important role in enhancing the gap wind.

  15. SAR Observation and Modeling of Gap Winds in the Prince William Sound of Alaska

    Directory of Open Access Journals (Sweden)

    Karl Volz

    2008-08-01

    Full Text Available Alaska’s Prince William Sound (PWS is a unique locale tending to have strong gap winds, especially in the winter season. To characterize and understand these strong surface winds, which have great impacts on the local marine and aviation activities, the surface wind retrieval from the Synthetic Aperture Radar data (SAR-wind is combined with a numerical mesoscale model. Helped with the SAR-wind observations, the mesoscale model is used to study cases of strong winds and relatively weak winds to depict the nature of these winds, including the area of extent and possible causes of the wind regimes. The gap winds from the Wells Passage and the Valdez Arm are the most dominant gap winds in PWS. Though the Valdez Arm is north-south trending and Wells Passage is east-west oriented, gap winds often develop simultaneously in these two places when a low pressure system is present in the Northern Gulf of Alaska. These two gap winds often converge at the center of PWS and extend further out of the Sound through the Hinchinbrook Entrance. The pressure gradients imposed over these areas are the main driving forces for these gap winds. Additionally, the drainage from the upper stream glaciers and the blocking effect of the banks of the Valdez Arm probably play an important role in enhancing the gap wind.

  16. Volumetric scans of wind turbine wakes performed with three simultaneous wind LiDARs under different atmospheric stability regimes

    International Nuclear Information System (INIS)

    Iungo, Giacomo Valerio; Porté-Agel, Fernando

    2014-01-01

    Aerodynamic optimization of wind farm layout is a crucial task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, such as wind shear and turbulence intensity, which are in turn affected by the ABL thermal stability. In order to characterize the downstream evolution of wakes produced by full-scale wind turbines under different atmospheric conditions, wind velocity measurements were performed with three wind LiDARs. The volumetric scans are performed by continuously sweeping azimuthal and elevation angles of the LiDARs in order to cover a 3D volume that includes the wind turbine wake. The minimum wake velocity deficit is then evaluated as a function of the downstream location for different atmospheric conditions. It is observed that the ABL thermal stability has a significant effect on the wake evolution, and the wake recovers faster under convective conditions

  17. An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen

    2016-01-01

    Wind Turbine is highly nonlinear plant whose dynamics changes with change in aerodynamics of the rotor blade. Power extracted from the wind turbine is a function of coefficient of power (Cp). Wind turbine installed in the cold climate areas has an icing on its rotor blade which might change its...... aerodynamics. This paper is an experimental investigation of the aerodynamic changes occur due to effect of ice accumulated on the rotor blades of wind turbine. We have tested three small scale model of the NREL's 5MW rotor blade with same profile but simulated different icing effect on them. These models...... are printed with 3D printer and tested one by one in a Wind Tunnel. Lift, drag and moment coefficients are calculated from the measured experimental data and program WT-Perf based on blade-element momentum (BEM) theory is used to predict the performance of wind turbine. Cp curves generated from the test...

  18. Modern wind energy technology for Russian applications. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Winther-Jensen, M., Bindner, H.W. [and others

    1999-05-01

    The general objective of the project is to establish a technical foundation for an intensified application of wind energy in Russia with medium to large wind turbines and transfer/adaptation of Danish and European wind turbine technology as a basis for future joint ventures and technology exports. More specifically, the objective is to develop and establish the basic knowledge and design criteria for adaptation and development of Danish wind turbine technology for application under Russian conditions. The research programme is envisaged to be carried out in three phases, the first phase being the project reported herein. The main purpose of phase 1 is to assess the needs for modifications and adaptations of established standard (in casu Danish) wind turbine designs for decentralised energy systems with a limited number of medium sized wind turbines and for grid connected wind turbines in cold climate and in-land sites of Russia. As part of this work it is necessary to clarify the types of operational conditions and requirements that are to be met by wind turbines operating in such conditions, and to outline suitable test procedures and test set-up is for verifications of such adapted and modified wind turbines. The reporting of this project is made in one main report and four topical reports, all of them issued as Risoe reports. This is the Main Report, (Risoe-R-1069), summing up the activities and findings of phase 1 and outlining a strategy for Russian-Danish cooperation in wind energy as agreed upon between the Russian and the Danish parties. (au)

  19. Conflict Resolution for Wind-Optimal Aircraft Trajectories in North Atlantic Oceanic Airspace with Wind Uncertainties

    Science.gov (United States)

    Rodionova, Olga; Sridhar, Banavar; Ng, Hok K.

    2016-01-01

    Air traffic in the North Atlantic oceanic airspace (NAT) experiences very strong winds caused by jet streams. Flying wind-optimal trajectories increases individual flight efficiency, which is advantageous when operating in the NAT. However, as the NAT is highly congested during peak hours, a large number of potential conflicts between flights are detected for the sets of wind-optimal trajectories. Conflict resolution performed at the strategic level of flight planning can significantly reduce the airspace congestion. However, being completed far in advance, strategic planning can only use predicted environmental conditions that may significantly differ from the real conditions experienced further by aircraft. The forecast uncertainties result in uncertainties in conflict prediction, and thus, conflict resolution becomes less efficient. This work considers wind uncertainties in order to improve the robustness of conflict resolution in the NAT. First, the influence of wind uncertainties on conflict prediction is investigated. Then, conflict resolution methods accounting for wind uncertainties are proposed.

  20. Cold Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH COLD STRESS Recommend on Facebook Tweet Share Compartir Workers who ... cold environments may be at risk of cold stress. Extreme cold weather is a dangerous situation that ...

  1. Wind energy in Europe

    International Nuclear Information System (INIS)

    Sesto, E.

    1992-02-01

    Interest in wind energy as a supplementary source for the production of electricity has recently gained renewed momentum due to widespread concern about environmental impacts from the large scale use of fossil fuels and nuclear energy. In addition, political unrest in the Middle East has drawn attention to the importance of national energy self-sufficiency. European government administrations, however, have not yet fully appreciated the real worth of the 'clean energy' afforded by wind energy. In this regard, the European Wind Energy Association (EWEA) is acting as a strong voice to inform the public and energy planners by stimulating international wind energy R ampersand D cooperation, and organizing conferences to explain the advantages of wind energy. In October 1991, EWEA published a strategy document giving a picture of the real possibilities offered by wind energy within the geographical, social, and European economic context. This paper provides an overview of the more significant features to emerge from this document which represents a useful guideline for wind power plant technical/economic feasibility studies in that it contains brief notes on resource availability, land requirements, visual and acoustic impacts, turbine sizing, performance, interconnection to utility grids, maintenance and operating costs, safety, as well as, on marketing aspects

  2. Ion acoustic waves in the solar wind

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Frank, L.A.

    1978-01-01

    Plasma wave measurements on the Helios I and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are short-wavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered

  3. [Imperial Oil's Cold Lake oil sands operations

    International Nuclear Information System (INIS)

    Dingle, H. B.

    1999-01-01

    Imperial Oil Limited's Cold Lake oil sands resources, production and operations in Alberta are discussed. Cold Lake is the company's largest single asset and its largest source of crude oil production. In 1998, Cold Lake accounted for just under half of Imperial's total liquid production, averaging more than 135,000 barrels of bitumen a day. Despite the very difficult operating conditions experienced by the oil sands industry in 1998, Imperial Oil's Cold Lake operations generated a positive cash flow and earnings. Just as important, the near and long-term potential of Cold Lake property continues to be strong, even with the tough market conditions today and the foreseeable future. Proved reserves at the end of 1997 were 1.3 billions barrels, equal to about 24 years of current production, but even more important is Imperial's resource base in the Athabasca region, which represents 150 years of production at current rates. Although production forecasts for the near future are are revised downward because of production shut-in due to low prices, the company is confident of its long-term prospects mainly because of existing infrastructure, superior reservoir quality, 30 years worth of operating improvements and established bitumen-blend markets. Details of the company's future Cold Lake development plans are discussed. The need to continue technology development, which has been at the core of the industry's growth in the past and will continue to be the key to the future, are emphasized

  4. Charge States of Krypton and Xenon in the Solar Wind

    Science.gov (United States)

    Bochsler, Peter; Fludra, Andrzej; Giunta, Alessandra

    2017-09-01

    We calculate charge state distributions of Kr and Xe in a model for two different types of solar wind using the effective ionization and recombination rates provided from the OPEN_ADAS data base. The charge states of heavy elements in the solar wind are essential for estimating the efficiency of Coulomb drag in the inner corona. We find that xenon ions experience particularly low Coulomb drag from protons in the inner corona, comparable to the notoriously weak drag of protons on helium ions. It has been found long ago that helium in the solar wind can be strongly depleted near interplanetary current sheets, whereas coronal mass ejecta are sometimes strongly enriched in helium. We argue that if the extraordinary variability of the helium abundance in the solar wind is due to inefficient Coulomb drag, the xenon abundance must vary strongly. In fact, a secular decrease of the solar wind xenon abundance relative to the other heavier noble gases (Ne, Ar, Kr) has been postulated based on a comparison of noble gases in recently irradiated and ancient samples of ilmenite in the lunar regolith. We conclude that decreasing solar activity and decreasing frequency of coronal mass ejections over the solar lifetime might be responsible for a secularly decreasing abundance of xenon in the solar wind.

  5. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    Science.gov (United States)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind

  6. Review: Wind impacts on plant growth, mechanics and damage.

    Science.gov (United States)

    Gardiner, Barry; Berry, Peter; Moulia, Bruno

    2016-04-01

    Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  8. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  9. The New WindForS Wind Energy Test Site in Southern Germany

    Science.gov (United States)

    Clifton, A. J.

    2017-12-01

    Wind turbines are increasingly being installed in complex terrain where patchy landcover, forestry, steep slopes, and complex regional and local atmospheric conditions lead to major challenges for traditional numerical weather prediction methods. In this presentation, the new WindForS complex terrain test site will be introduced. WindForS is a southern Germany-based research consortium of more than 20 groups at higher education and research institutes, with strong links to regional government and industry. The new test site will be located in the hilly, forested terrain of the Swabian Alps between Stuttgart and Germany, and will consist of two wind turbines with four meteorological towers. The test site will be used for accompanying ecological research and will also have mobile eddy covariance measurement stations as well as bird and bat monitoring systems. Seismic and noise monitoring systems are also planned. The large number of auxiliary measurements at this facility are intended to allow the complete atmosphere-wind turbine-environment-people system to be characterized. This presentation will show some of the numerical weather prediction work and measurements done at the site so far, and inform the audience about WindForS' plans for the future. A major focus of the presentation will be on opportunities for collaboration through field campaigns or model validation.

  10. Wind tunnel study of the power output spectrum in a micro wind farm

    International Nuclear Information System (INIS)

    Bossuyt, Juliaan; Meyers, Johan; Howland, Michael F.; Meneveau, Charles

    2016-01-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies. (paper)

  11. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    Science.gov (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  12. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    Science.gov (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  13. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    Science.gov (United States)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  14. Angular distribution in ternary cold fission

    International Nuclear Information System (INIS)

    Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.

    2003-01-01

    We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)

  15. Viscoelastic behaviour of cold recycled asphalt mixes

    Science.gov (United States)

    Cizkova, Zuzana; Suda, Jan

    2017-09-01

    Behaviour of cold recycled mixes depends strongly on both the bituminous binder content (bituminous emulsion or foamed bitumen) and the hydraulic binder content (usually cement). In the case of cold recycled mixes rich in bitumen and with low hydraulic binder content, behaviour is close to the viscoelastic behaviour of traditional hot mix asphalt. With decreasing bituminous binder content together with increasing hydraulic binder content, mixes are characteristic with brittle behaviour, typical for concrete pavements or hydraulically bound layers. The behaviour of cold recycled mixes with low content of both types of binders is similar to behaviour of unbound materials. This paper is dedicated to analysing of the viscoelastic behaviour of the cold recycled mixes. Therefore, the tested mixes contained higher amount of the bituminous binder (both foamed bitumen and bituminous emulsion). The best way to characterize any viscoelastic material in a wide range of temperatures and frequencies is through the master curves. This paper includes interesting findings concerning the dependency of both parts of the complex modulus (elastic and viscous) on the testing frequency (which simulates the speed of heavy traffic passing) and on the testing temperature (which simulates the changing climate conditions a real pavement is subjected to).

  16. Probing the clumpy winds of giant stars with high mass X-ray binaries

    Science.gov (United States)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  17. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  18. Review of the Phenomenon of Ice Shedding from Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    H Xue

    2016-08-01

    Full Text Available Wind power is a sustainable source of energy. However, there are certain challenges to be  overcome. One of the operational challenges is the phenomenon of ice shedding. Icing happens on wind turbine blades in cold regions. When ice grows to a certain size, it separates from the wind turbine blades resulting in the phenomenon of ice shedding. This phenomenon is of significantly dangerous for equipment and personnel in the region. Ice shedding may happen either because of vibrations or bending in blades. However, it was noticed by operators at Nygårdsfjell wind park, Narvik, Norway that ice shedding is more probable to happen when blades are stopped and turned back on. This observation reveals the fact that bending of blades (from loaded to unloaded positions allows the ice to separate and hence result in ice shedding. This can be linked to the phenomenon of icing, mechanical and adhesive properties of ice. This paper reviews above in detail.

  19. DO HYDROGEN-DEFICIENT CARBON STARS HAVE WINDS?

    International Nuclear Information System (INIS)

    Geballe, T. R.; Rao, N. Kameswara; Clayton, Geoffrey C.

    2009-01-01

    We present high resolution spectra of the five known hydrogen-deficient carbon (HdC) stars in the vicinity of the 10830 A line of neutral helium. In R Coronae Borealis (RCB) stars the He I line is known to be strong and broad, often with a P Cygni profile, and must be formed in the powerful winds of those stars. RCB stars have similar chemical abundances as HdC stars and also share greatly enhanced 18 O abundances with them, indicating a common origin for these two classes of stars, which has been suggested to be white dwarf mergers. A narrow He I absorption line may be present in the hotter HdC stars, but no line is seen in the cooler stars, and no evidence for a wind is found in any of them. The presence of wind lines in the RCB stars is strongly correlated with dust formation episodes so the absence of wind lines in the HdC stars, which do not make dust, is as expected.

  20. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  1. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

    Science.gov (United States)

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  2. The response of the Red Sea to a strong wind jet near the Tokar Gap in summer

    KAUST Repository

    Zhai, Ping; Bower, Amy

    2013-01-01

    [1] Remote sensing and in situ observations are used to investigate the ocean response to the Tokar Wind Jet in the Red Sea. The wind jet blows down the atmospheric pressure gradient through the Tokar Gap on the Sudanese coast, at about 19°N, during

  3. Challenges and solutions of implementing and supporting wind diesel applications in remote (AK) locations

    Energy Technology Data Exchange (ETDEWEB)

    Pingree, B. [Northern Power Systems, Barre, VT (United States)

    2010-07-01

    This PowerPoint presentation discussed the methods used by Northern Power Systems to install and support wind-diesel applications in remote locations in Alaska. Over 90 wind turbines have been installed in the state over the last 5 years. Drivers behind the increase in wind turbine installations include the recent energy crisis as well as the introduction of several financial incentives for renewable energy. The correct equipment is needed to overcome the technical challenges associated with wind-diesel systems in remote cold temperature areas. Multiple projects are synchronized within regions, and remote energy management software is used. Centralized power production is promoted where possible, and technicians are trained locally. The wind-diesel market has become successful in Alaska as a result of leadership, a streamline grant and permitting process, and a program that supports First Nations empowerment. Photographs of various Northern Power Systems projects in Alaska were included. tabs., figs.

  4. Numerical simulation of wind loads on solar panels

    Science.gov (United States)

    Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung

    2018-05-01

    Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

  5. Cold injuries.

    Science.gov (United States)

    Kruse, R J

    1995-01-01

    There are two categories of cold injury. The first is hypothermia, which is a systemic injury to cold, and the second is frostbite, which is a local injury. Throughout history, entire armies, from George Washington to the Germans on the Russian Front in World War II, have fallen prey to prolonged cold exposure. Cold injury is common and can occur in all seasons if ambient temperature is lower than the core body temperature. In the 1985 Boston Marathon, even though it was 76 degrees and sunny, there were 75 runners treated for hypothermia. In general, humans adapt poorly to cold exposure. Children are at particular risk because of their relatively greater surface area/body mass ratio, causing them to cool even more rapidly than adults. Because of this, the human's best defense against cold injury is to limit his/her exposure to cold and to dress appropriately. If cold injury has occurred and is mild, often simple passive rewarming such as dry blankets and a warm room are sufficient treatment.

  6. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine

    Science.gov (United States)

    Xu, Y. Y.; Chen, B.; Liu, J.

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  7. WIND VARIABILITY IN BZ CAMELOPARDALIS

    International Nuclear Information System (INIS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-01-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  8. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    International Nuclear Information System (INIS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-01-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point

  9. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  10. On the reality of the Venus winds. [Venera satellite and Mariner space probe data

    Science.gov (United States)

    Ainsworth, J. E.; Herman, J. R.

    1975-01-01

    The Venera measurements of wind speed along with the Mariner measurements of lower-region of strong turbulence are evidence for a wide band of variable high speed retrograde horizontal winds which girdle Venus at the equator. In one interpretation of the Mariner 10 UV photographs, the 20km region above the top of the visible cloud is characterized by variable high-speed retrograde horizontal winds which orbit Venus with an average period of 4 earth days, and by many features indicating vertical convection. This suggests that the Venera-Mariner band of winds at 45km extends to the top of the UV cloud and beyond, and that the upper-region of strong turbulence detected by the Mariners may result from vertical convection currents carried along by high speed horizontal winds. In another interpretation, the predominate motions are attributed to wavelike disturbances with a 4-day period. For this case the upper-region of strong turbulence may be due in large part to vertical wind-shear resulting from a rapid decrease in wind speed within a relatively short distance about the Venera-Mariner band of high speed winds.

  11. Does the recent warming hiatus exist over northern Asia for winter wind chill temperature?

    Science.gov (United States)

    Ma, Ying

    2017-04-01

    Wind chill temperature (WCT) describes the joint effect of wind velocity and air temperature on exposed body skin and could support policy makers in designing plans to reduce the risks of notably cold and windy weather. This study examined winter WCT over northern Asia during 1973-2013 by analyzing in situ station data. The winter WCT warming rate over the Tibetan Plateau slowed during 1999-2013 (-0.04 °C/decade) compared with that during 1973-1998 (0.67 °C/decade). The winter WCT warming hiatus has also been observed in the remainder of Northern Asia with trends of 1.11 °C/decade during 1973-1998 but -1.02 °C/decade during 1999-2013, except for the Far East of Russia (FE), where the winter WCT has continued to heat up during both the earlier period of 1973-1998 (0.54 °C/decade) and the recent period of 1999-2013 (0.75 °C/decade). The results indicate that the influence of temperature on winter WCT is greater than that of wind speed over northern Asia. Atmospheric circulation changes associated with air temperature and wind speed were analyzed to identify the causes for the warming hiatus of winter WCT over northern Asia. The distributions of sea level pressure and 500 hPa height anomalies during 1999-2013 transported cold air from the high latitudes to middle latitudes, resulting in low air temperature over Northern Asia except for the Far East of Russia. Over the Tibetan Plateau, the increase in wind speed offset the increase in air temperature during 1999-2013. For the Far East, the southerly wind from the Western Pacific drove the temperature up during the 1999-2013 period via warm advection.

  12. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  13. Forced pitch motion of wind turbines

    Science.gov (United States)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  14. Forced pitch motion of wind turbines

    International Nuclear Information System (INIS)

    Leble, V; Barakos, G

    2016-01-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance. (paper)

  15. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Shuangwen

    2015-10-25

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then, the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.

  16. Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan

    Science.gov (United States)

    Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu

    2017-12-01

    The coastal areas of the Sea of Japan are a well-known hotspot of winter lightning activity. This study distinguishes between three common types of winter lightning in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A lightning occurs with high frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's lightning frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in lightning frequency distribution in Japan's Tohoku and Hokuriku districts.

  17. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  18. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  19. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  20. The formation of a cold-core eddy in the East Australian Current

    Science.gov (United States)

    Macdonald, H. S.; Roughan, M.; Baird, M. E.; Wilkin, J.

    2016-02-01

    Cold-core eddies (CCEs) frequently form in western boundary currents and can affect continental shelf processes. It is not always clear, however, if baroclinic or barotropic instabilities contribute more to their formation. The Regional Ocean Modelling System (ROMS) is used to investigate the ocean state during the formation of a CCE in the East Australian Current (EAC) during October 2009. The observed eddy initially appeared as a small billow (approx. 50 km in length) that perturbed the landward edge of the EAC. The billow grew into a mesoscale CCE (approx. 100 km in diameter), diverting the EAC around it. A ROMS simulation with a realistic wind field reproduced a similar eddy. This eddy formed from negative vorticity waters found on the continental shelf south of the EAC separation point. A sensitivity analysis is performed whereby the impact of 3 different wind forcing scenarios, upwelling, downwelling, and no winds, are investigated. A CCE formed in all wind scenarios despite the wind induced changes in hydrographic conditions in the continental shelf and slope waters. As such, the source of energy for eddy formation did not come from the interactions of wind with the continental shelf waters. Analysis of strain and energy transformation confirms this by showing that the prevailing source of CCE energy was kinetic energy of the offshore EAC. These results clearly link the formation of the CCE to the swift flowing EAC and barotropic instabilities.

  1. Validity of VR Technology on the Smartphone for the Study of Wind Park Soundscapes

    Directory of Open Access Journals (Sweden)

    Tianhong YU

    2018-04-01

    Full Text Available The virtual reality of the landscape environment supplies a high level of realism of the real environment, and may improve the public awareness and acceptance of wind park projects. The soundscape around wind parks could have a strong influence on the acceptance and annoyance of wind parks. To explore this VR technology on realism and subjective responses toward different soundscapes of ambient wind parks, three different types of virtual reality on the smartphone tests were performed: aural only, visual only, and aural–visual combined. In total, 21 aural and visual combinations were presented to 40 participants. The aural and visual information used were of near wind park settings and rural spaces. Perceived annoyance levels and realism of the wind park environment were measured. Results indicated that most simulations were rated with relatively strong realism. Perceived realism was strongly correlated with light, color, and vegetation of the simulation. Most wind park landscapes were enthusiastically accepted by the participants. The addition of aural information was found to have a strong impact on whether the participant was annoyed. Furthermore, evaluation of the soundscape on a multidimensional scale revealed the key components influencing the individual’s annoyance by wind parks were the factors of “calmness/relaxation” and “naturality/pleasantness”. “Diversity” of the soundscape might correlate with perceived realism. Finally, the dynamic aural–visual stimuli using virtual reality technology could improve the environmental assessment of the wind park landscapes, and thus, provide a more comprehensible scientific decision than conventional tools. In addition, this study could improve the participatory planning process for more acceptable wind park landscapes.

  2. The Effects of Ram Pressure on the Cold Clouds in the Centers of Galaxy Clusters

    Science.gov (United States)

    Li, Yuan; Ruszkowski, Mateusz; Tremblay, Grant

    2018-02-01

    We discuss the effect of ram pressure on the cold clouds in the centers of cool-core galaxy clusters, and in particular, how it reduces cloud velocity and sometimes causes an offset between the cold gas and young stars. The velocities of the molecular gas in both observations and our simulations fall in the range of 100–400 km s‑1, which is much lower than expected if they fall from a few tens of kiloparsecs ballistically. If the intracluster medium (ICM) is at rest, the ram pressure of the ICM only slightly reduces the velocity of the clouds. When we assume that the clouds are actually “fluffier” because they are co-moving with a warm-hot layer, the velocity becomes smaller. If we also consider the active galactic nucleus wind in the cluster center by adding a wind profile measured from the simulation, the clouds are further slowed down at small radii, and the resulting velocities are in general agreement with the observations and simulations. Because ram pressure only affects gas but not stars, it can cause a separation between a filament and young stars that formed in the filament as they move through the ICM together. This separation has been observed in Perseus and also exists in our simulations. We show that the star-filament offset, combined with line-of-sight velocity measurements, can help determine the true motion of the cold gas, and thus distinguish between inflows and outflows.

  3. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  4. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines...... to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines...

  5. Study of large-scale vertical axis wind turbine wake through numerical modelling and fullscale experiments

    DEFF Research Database (Denmark)

    Immas, Alexandre; Kluczewska-Bordier, Joanna; Beneditti, Pascal

    Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One k...... horizontal axis wind turbine wind farm....... improvement that could make offshore wind more attractive is the reduction of the wake effect [1]. The latter corresponds to the velocity deficit generated by each wind turbine wake which affects the production of the others. This effect accounts for approximately 10% of the energy losses for a typical......Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One key...

  6. Early stages of wind wave and drift current generation under non-stationary wind conditions.

    Science.gov (United States)

    Robles-Diaz, Lucia; Ocampo-Torres, Francisco J.; Branger, Hubert

    2016-04-01

    observed that the wave growth presents a linear tendency in the earliest stage of the accelerated wind period. This is associated with local wind-wave generation. Then, when the wind velocity reaches 2-3 m/s, the wave growth is exponential due to the presence, the evolution and propagation of waves along the tank. The injection energy from wind to currents seems to be a continuous process that starts with the development of the air turbulent boundary layer. The increased surface current intensity is associated with increased wind friction velocity, . However, wave evolution depends more on the intensity of wind-acceleration, and therefore on the development stage of air turbulent boundary layer. For lower acceleration experiments, it exists a further development of the air turbulent boundary layer: there is first a downshift of the wave-spectral peak frequency, then this downshift is followed by an increase of the significant wave height. On the other hand, when the acceleration is high, the boundary layer is poorly developed, and the increase of the wave height occurs before the frequency peak downshift. For intermediate wind accelerations, the current and wave evolution occur at the same time. Some results for the wind-deceleration period will be also presented. • Kahma, K. K., and Donelan, M. A. 1988. "A laboratory study of the minimum wind speed for wind wave generation." Journal of Fluid Mechanics, 192: 339-364. • Large, W. G., and S. Pond. 1981. "Open Ocean Momentum Flux Measurements in Moderate to Strong Winds." Journal of Physical Oceanography 11: 324-36. • Miles, J. W. 1957. "On the generation of surface waves by shear flows." Journal of Fluid Mechanics, 3: 185-204. • Ocampo-Torres, F. J. et al. 2010. "The INTOA Experiment: A Study of Ocean-Atmosphere Interactions Under Moderate to Strong Offshore Winds and Opposing Swell Conditions in the Gulf of Tehuantepec, Mexico." Boundary-Layer Meteorology 138: 433-51. • Phillips, O. M. 1957. "On the generation of

  7. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    International Nuclear Information System (INIS)

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas

  8. Study of exposure to cold stress and body physiological responses in auto mechanic employees in Hamadan city

    Directory of Open Access Journals (Sweden)

    Keivan Saedpanah

    2017-09-01

    Full Text Available Introduction: Continuous exposure to cold air is considered to be a hazardous agent in the workplace in cold seasons. This study aimed to determine the level of cold stress and relation with physiological responses in auto mechanic employees. Method: This cross-sectional study was conducted in the winter of 1395 on auto mechanic employees in Hamadan city. Physiological responses during daily activity were measured in accordance with ISO 9886 standard method. Environmental air measures like air temperature and air velocity were measured simultaneously and cold stress indexes were also determined. Data was analyzed using SPSS 21 software. Result: The result showed that mean wind chill index, equivalent chill temperature and required clothing insulation were 489.97±47.679 kcal/m2.h, 13.78± 1.869 0c and 2.04 ± 0.246 clo, respectively. According to the results of cold stress indexes, the studied employees are exposed to cold stress. Pearson correlation test showed that there are significant relationship between cold stress indexes with physiological responses (p<0.05, however, IREQ min showed more correlation than the others.  There is also a significant relationship between body fat percentage and deep temperature (p<0.05, r=0.314. Conclusion: The result confirmed that IREQ min index has high validity for estimation of cold stress among auto mechanic employees. Moreover, the increase of body fat percentage leads to an increase of cold tolerance power of employees.

  9. Sensing the wind profile

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.

    2009-03-15

    This thesis consists of two parts. The first is a synopsis of the theoretical progress of the study that is based on a number of journal papers. The papers, which constitute the second part of the report, aim to analyze, measure, and model the wind prole in and beyond the surface layer by combining observations from cup anemometers with lidars. The lidar is necessary to extend the measurements on masts at the Horns Rev offshore wind farm and over at land at Hoevsoere, Denmark. Both sensing techniques show a high degree of agreement for wind speed measurements performed at either sites. The wind speed measurements are averaged for several stability conditions and compare well with the surface-layer wind profile. At Hoevsoere, it is sufficient to scale the wind speed with the surface friction velocity, whereas at Horns Rev a new scaling is added, due to the variant roughness length. This new scaling is coupled to wind prole models derived for flow over the sea and tested against the wind proles up to 160 m at Horns Rev. The models, which account for the boundary-layer height in stable conditions, show better agreement with the measurements than compared to the traditional theory. Mixing-length parameterizations for the neutral wind prole compare well with length-scale measurements up to 300 m at Hoevsoere and 950 m at Leipzig. The mixing-length-derived wind proles strongly deviate from the logarithmic wind prole, but agree better with the wind speed measurements. The length-scale measurements are compared to the length scale derived from a spectral analysis performed up to 160 m at Hoevsoere showing high agreement. Mixing-length parameterizations are corrected to account for stability and used to derive wind prole models. These compared better to wind speed measurements up to 300 m at Hoevsoere than the surface-layer wind prole. The boundary-layer height is derived in nearneutral and stable conditions based on turbulent momentum uxes only and in unstable conditions

  10. Steady-state heat transfer to boiling liquid helium in simulated coil windings

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1981-01-01

    The present data show that the worst case steady-state stability in the GE/LCT magnet windings is at a horizontal conductor orientation. The heat transfer improves with inclination of the conductor from horizontal. Calculations show that for these small regions normal zones will recover by cold-end conduction from the inclined conductor on either end

  11. China Wind Power Outlook 2010

    International Nuclear Information System (INIS)

    Junfeng, Li; Pengfei, Shi; Hu, Gao

    2010-10-01

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  12. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  13. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  14. Effects of the wind profile at night on wind turbine sound

    NARCIS (Netherlands)

    van den Berg, GP

    2004-01-01

    Since the start of the operation of a 30 MW, 17 turbine wind park, residents living 500 in and more from the park have reacted strongly to the noise; residents up to 1900 in distance expressed annoyance. To assess actual sound immission, long term measurements (a total of over 400 night hours in 4

  15. Measured and modelled local wind field over a frozen lake in a mountainous area

    Energy Technology Data Exchange (ETDEWEB)

    Smedman, A.S.; Bergstroem, H.; Hoegstroem, U. [Uppsala Univ. (Sweden). Dept. of Meteorology

    1996-03-01

    The study is a follow-up of a previous paper and concentrates on two very characteristic flow regimes: forced channeling, where the driving geostrophic wind and the lake axis are roughly aligned, and pressure-driven channeling or gap winds, which are characterized by a geostrophic wind direction more or less perpendicular to the lake axis. Both situations produce winds along the main axis of the lake. In the forced channeling case the wind direction varies insignificantly with height and the wind speed increases monotonically with height. The gap wind flow, which can give supergeostrophic speed, is restricted to the lowest 500 m above the lake surface, drops in speed to near zero just above that layer, changing to an across-wind direction higher up. Gap winds are found to require slightly stable stratification for their existence; strong stability forces the flow to go round the mountains rather than over, and neutral conditions give a turbulent wake in the lee of the mountains. The gap wind starts at any occasion as a sudden warm front approaching from either of the two along-lake directions (115 or 295 degrees). It is argued that the relative warmth of the `gap wind air` is due to air originally flowing at mountain top height across the lake axis being gradually turned and accelerated along the synoptic pressure gradient while descending. The strongly sheared layer at the top of the gap wind region is dynamically highly unstable, giving rise to vertically coherent variations in wind speed and direction which appear to be triggered by gravity waves. When the driving geostrophic wind is high enough, the disturbed region reaches all the way down to the ground surface. Then periods with strong turbulence and low mean wind alternate with pronounced gap winds on typically a 10 minute scale. 11 refs, 18 figs

  16. Community onsite treatment of cold strong sewage in a UASB-septic tank.

    Science.gov (United States)

    Al-Jamal, Wafa; Mahmoud, Nidal

    2009-02-01

    Two community onsite UASB-septic tanks namely R1 and R2 were operated under two different HRT (2 days for R1 and 4 days for R2) in parallel over a year and monitored over the cold half of the year. During the monitoring period, the sewage was characterised by a high COD(tot) of 905mg/l with a high fraction of COD(ss), viz. about 43.7%, and rather low temperature of 17.3 degrees C. The achieved removal efficiencies in R1 and R2 for COD(tot), COD(sus), COD(col), COD(dis), BOD(5) and TSS were "51%, 83%, 20%, 24%, 45% and 74%" and "54%, 87%, 10%, 28%, 49% and 78%", respectively. The difference in the removal efficiencies of those parameters in R1 and R2 is marginal and was only significant (pseptic tank system is a robust and compact system as it can be adequately designed in Palestine at 2 days HRT.

  17. Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast

    Science.gov (United States)

    Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.

    2017-12-01

    Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.

  18. Low-level wind response to mesoscale pressure systems

    Science.gov (United States)

    Garratt, J. R.; Physick, W. L.

    1983-09-01

    Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.

  19. Design of fresh food sensory perceptual system for cold chain logistics

    Directory of Open Access Journals (Sweden)

    Zhang Ying

    2018-01-01

    Full Text Available According to the present stage low-level information of China's cold chain preservation, designed a kind of fresh food sensory perceptual system for cold chain logistics based on Internet of things. This system highly integrated applied many technologies such as the Internet of things technology, forecasting technology for fruits and vegetables preservation period, RFID and Planar bar code technology, big data and cloud computing technology and so on.Designed as a four-layer structure including sensing layer, network layer, control layer and user layer. The system can implement the real-time temperature and humidity environment parameters monitoring and early warning of the whole cold chain logistics for fresh agricultural products from picking, storage, transportation and processing link. It greatly improved the information level of cold chain circulation in our country and has a strong marketing value.

  20. Effect of climate change on wind waves generated by anticyclonic cold front intrusions in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Hernández-Lasheras, Jaime; Meza-Padilla, Rafael; Kurczyn, Jorge A.

    2018-01-01

    Anticyclonic cold surges entering the Gulf of Mexico (Nortes) generate ocean waves that disrupt maritime activities. Norte derived waves are less energetic than the devastating waves from tropical cyclones, but more frequent ( 22 events/year) and with larger spatial influence. Despite their importance, few studies characterize Nortes derived waves and assess the effects of climate change on their occurrence. This study presents a method to identify and characterize Nortes with relation to their derived waves in the Gulf of Mexico. We based the identification of Nortes on synoptic measurements of pressure differences between Yucatan and Texas and wind speed at different buoy locations in the Gulf of Mexico. Subsequently, we identified the events in the CFSR reanalysis (present climate) and the CNRM-M5 model for the present climate and the RCP 8.5 scenario. We then forced a wave model to characterize the wave power generated by each event, followed by a principal component analysis and classification by k-means clustering analysis. Five different Nortes types were identified, each one representing a characteristic intensity and area of influence of the Norte driven waves. Finally, we estimated the occurrence of each Norte type for the present and future climates, where the CNRM-M5 results indicate that the high-intensity events will be less frequent in a warming climate, while mild events will become more frequent. The consequences of such changes may provide relief for maritime and coastal operations because of reduced downtimes. This result is particularly relevant for the operational design of coastal and marine facilities.

  1. Numerical simulation of a mistral wind event occuring

    Science.gov (United States)

    Guenard, V.; Caccia, J. L.; Tedeschi, G.

    2003-04-01

    The experimental network of the ESCOMPTE field experiment (june-july 2001) is turned into account to investigate the Mistral wind affecting the Marseille area (South of France). Mistral wind is a northerly flow blowing across the Rhône valley and toward the Mediterranean sea resulting from the dynamical low pressure generated in the wake of the Alps ridge. It brings cold, dry air masses and clear sky conditions over the south-eastern part of France. Up to now, few scientific studies have been carried out on the Mistral wind especially the evolution of its 3-D structure so that its mesoscale numerical simulation is still relevant. Non-hydrostatic RAMS model is performed to better investigate this mesoscale phenomena. Simulations at a 12 km horizontal resolution are compared to boundary layer wind profilers and ground measurements. Preliminary results suit quite well with the Mistral statistical studies carried out by the operational service of Météo-France and observed wind profiles are correctly reproduced by the numerical model RAMS which appears to be an efficient tool for its understanding of Mistral. Owing to the absence of diabatic effect in Mistral events which complicates numerical simulations, the present work is the first step for the validation of RAMS model in that area. Further works will consist on the study of the interaction of Mistral wind with land-sea breeze. Also, RAMS simulations will be combined with aerosol production and ocean circulation models to supply chemists and oceanographers with some answers for their studies.

  2. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  3. How Nuclear South Asia is Like Cold War Europe:

    DEFF Research Database (Denmark)

    Cohen, Michael David

    2013-01-01

    Conventional wisdom states that the stability-instability paradox does not explain the effect of nuclear proliferation on the conflict propensity of South Asia and that nuclear weapons have had a different and more dangerous impact in South Asia than Cold War Europe. I argue that the paradox...... Europe and South Asia. Pakistani President Pervez Musharraf may have adopted more moderate foreign policy towards India after experiencing fear of imminent nuclear war during the ten month mobilised crisis in 2002 as Nikita Khrushchev did forty years earlier. I argue that the stability-instability...... explains nuclear South Asia, that the similarities between nuclear South Asia and Cold War Europe are strong, and that conventional instability does not cause revisionist challenges in the long run. I develop and probe a psychological causal mechanism that explains the impact of nuclear weapons on Cold War...

  4. Radiation-driven winds in x-ray binaries

    International Nuclear Information System (INIS)

    Friend, D.B.; Castor, J.I.

    1982-01-01

    We discuss the properties of a radiation-driven stellar wind in an X-ray binary system. The Castor, Abbott, Klein line-driven wind model is used, but the effects of the compact companion (gravity and continuum radiation pressure) and the centrifugal force due to orbital motion are included. These forces destroy the spherical symmetry of the wind and can make the mass loss and accretion strong functions of the size of the primary relative to its critical potential lobe. We in most systems the wind alone could power the X-ray emission. It also appears that, in the evolution of these systems, there would be a continuous transition from wind accretion to critical potential lobe overflow. The model is also used to make a prediction about the nature of a suspected binary system which is not known to be an X-ray emitter

  5. Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion

    Czech Academy of Sciences Publication Activity Database

    Raschmanová, N.; Miklisová, D.; Kováč, L.; Šustr, Vladimír

    2015-01-01

    Roč. 70, č. 6 (2015), s. 802-811 ISSN 0006-3088 Grant - others:VEGA(SK) 1/0199/14; VEGA(SK) 1/3267/06 Institutional support: RVO:60077344 Keywords : cold tolerance * collapse doline * karst landform * microclimatic gradient * soil Collembola Subject RIV: EG - Zoology Impact factor: 0.719, year: 2015

  6. The (R)evolution of China: Offshore Wind Diffusion

    DEFF Research Database (Denmark)

    Poulsen, Thomas; Hasager, Charlotte Bay

    2017-01-01

    This research presents an industry level gap analysis for Chinese offshore wind, which serves as a way to illuminate how China may fast track industry evolution. The research findings provide insight into how the Chinese government strongly and systematically decrees state-owned Chinese firms...... successfully forge long-term alliances also for future Chinese wind energy export projects. Examples of past efforts of collaboration not yielding desired results have been included as well. At policy level, recommendations are provided on how the evolution of the Chinese offshore wind power industry can...... be fast-tracked to mirror the revolutionary pace, volume, and velocity which the Chinese onshore wind power industry has mustered....

  7. Lightning and severe thunderstorms in event management.

    Science.gov (United States)

    Walsh, Katie M

    2012-01-01

    There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.

  8. Conceptualizing Cold Disasters

    DEFF Research Database (Denmark)

    Lauta, Kristian Cedervall; Dahlberg, Rasmus; Vendelø, Morten Thanning

    2017-01-01

    In the present article, we explore in more depth the particular circumstances and characteristics of governing what we call ‘cold disasters’, and thereby, the paper sets out to investigate how disasters in cold contexts distinguish themselves from other disasters, and what the implications hereof...... are for the conceptualization and governance of cold disasters. Hence, the paper can also be viewed as a response to Alexander’s (2012a) recent call for new theory in the field of disaster risk reduction. The article is structured in four overall parts. The first part, Cold Context, provides an overview of the specific...... conditions in a cold context, exemplified by the Arctic, and zooms in on Greenland to provide more specific background for the paper. The second part, Disasters in Cold Contexts, discusses “cold disasters” in relation to disaster theory, in order to, elucidate how cold disasters challenge existing...

  9. Transport of transient solar wind particles in Earth's cusps

    International Nuclear Information System (INIS)

    Parks, G. K.; Lee, E.; Teste, A.; Wilber, M.; Lin, N.; Canu, P.; Dandouras, I.; Reme, H.; Fu, S. Y.; Goldstein, M. L.

    2008-01-01

    An important problem in space physics still not understood well is how the solar wind enters the Earth's magnetosphere. Evidence is presented that transient solar wind particles produced by solar disturbances can appear in the Earth's mid-altitude (∼5 R E geocentric) cusps with densities nearly equal to those in the magnetosheath. That these are magnetosheath particles is established by showing they have the same ''flattop'' electron distributions as magnetosheath electrons behind the bow shock. The transient ions are moving parallel to the magnetic field (B) toward Earth and often coexist with ionospheric particles that are flowing out. The accompanying waves include electromagnetic and broadband electrostatic noise emissions and Bernstein mode waves. Phase-space distributions show a mixture of hot and cold electrons and multiple ion species including field-aligned ionospheric O + beams

  10. Detection of icing on wind turbine blades by means of vibration and power curve analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Kleani, Karolina; Mijatovic, Nenad

    2016-01-01

    accelerometers and power performance analysis. Features extracted from these two techniques serve as inputs in a decision-making scheme, allowing early activation of de-icing systems or shut down of the wind turbine. An additional parameter is the month of operation, assuring consistent outcomes in both winter......Ice accretion on wind turbines' blades is one of the main challenges of systems installed in cold climate locations, resulting in power performance deterioration and excessive nacelle oscillation. In this work, consistent detection of icing events is achieved utilizing indications from the nacelle...

  11. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  12. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    International Nuclear Information System (INIS)

    Liu Heping; Blanken, Peter D; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-01-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32 deg. 26'N, 90 0 02'W; which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  13. China Wind Power Outlook 2010

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li; Pengfei, Shi; Hu, Gao [Chinese Renewable Energy Industries Association CREIA, Beijing (China)

    2010-10-15

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  14. Alfvénic fluctuations in "newborn"' polar solar wind

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2005-06-01

    Full Text Available The 3-D structure of the solar wind is strongly dependent upon the Sun's activity cycle. At low solar activity a bimodal structure is dominant, with a fast and uniform flow at the high latitudes, and slow and variable flows at low latitudes. Around solar maximum, in sharp contrast, variable flows are observed at all latitudes. This last kind of pattern, however, is a relatively short-lived feature, and quite soon after solar maximum the polar wind tends to regain its role. The plasma parameter distributions for these newborn polar flows appear very similar to those typically observed in polar wind at low solar activity. The point addressed here is about polar wind fluctuations. As is well known, the low-solar-activity polar wind is characterized by a strong flow of Alfvénic fluctuations. Does this hold for the new polar flows too? An answer to this question is given here through a comparative statistical analysis on parameters such as total energy, cross helicity, and residual energy, that are of general use to describe the Alfvénic character of fluctuations. Our results indicate that the main features of the Alfvénic fluctuations observed in low-solar-activity polar wind have been quickly recovered in the new polar flows developed shortly after solar maximum. Keywords. Interplanetary physics (MHD waves and turbulence; Sources of the solar wind – Space plasma physics (Turbulence

  15. Cold - an underrated risk factor for health

    International Nuclear Information System (INIS)

    Mercer, James B.

    2003-01-01

    Cardiovascular diseases (CVD) are responsible for around 20% of all deaths worldwide (approximately 14 million) and are the principal cause of death in all developed countries, accounting for 50% of all deaths. Variations in the annual per capita death rates in different countries are well documented. Less well known are seasonal variations in death rates, with the highest levels occurring during the colder winter months, which have been described in many countries. This phenomenon is referred to as excess winter mortality. CVD-related deaths account for the majority of excess winter deaths (up to 70% in some countries), while about half of the remaining are due to increases in respiratory diseases. Paradoxically, CVD mortality increases to a greater extent with a given fall in temperature in regions with warm winters. While much of the indirect evidence points to the notion that cold is somehow involved in explaining excess winter deaths, the mechanism by which seemingly mild exposure to cold ambient conditions can increase the risk of death remains unclear. The strong indirect epidemiological evidence coupling cold climate to mortality may be related to indoor rather than outdoor climatic conditions (e.g., cold/damp houses versus arm/dry houses) coupled with a plethora of factors including health status, ageing-related deterioration in physiological and behavioral thermoregulation, toxicology, and socioeconomic factors

  16. Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels

    Science.gov (United States)

    Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo

    2017-11-01

    Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.

  17. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  18. The 1991 Japan Solar Energy Society. Japan Wind Energy Association Joint Conference

    Science.gov (United States)

    1991-09-01

    Thie paper summarizes the lectures presented at the research presentation conference held by the Japan Solar Energy Society and the Japan Wind Energy Association. The contents include a lecture relating to photovoltaic cells intended for efficiency improvement; a lecture relating to a light power generation system including the field test reports, improvements on peripheral devices and output characteristics; a lecture relating to optical chemistry; a lecture relating to heat pumps utilizing solar heat and well water; a lecture relating air conditioning utilizing photovoltaic cells; a lecture relating to heat systems utilizing solar heat directly; a lecture relating to heat collection; a lecture relating to cold heat for cooling using earth tubes; a lecture relating to direct utilization of ground water heat and solar heat; a lecture relating to underground heat storage; a lecture relating to accumulation of cold heat and hot heat; a lecture relating to insolation on the amount of insolation and spectroscopy; a lecture relating to light collection intended of energy saving; a lecture relating to improving materials including light collecting plates and thin films; a lecture relating to development and characteristics of solar cars; and a lecture relating to wind energy.

  19. Theories for the winds from Wolf Rayet stars

    International Nuclear Information System (INIS)

    Cassinelli, J.P.

    1982-01-01

    The massive and fast winds of Wolf Rayet stars present a serious momentum problem for the line-driven wind theories that are commonly used to explain the fast winds of early type stars. It is perhaps possible for the winds to be driven by lines, if multiple scattering occurs and if there are a sufficient number of lines in the spectrum so that large fraction of the continuum is blocked by line opacity in the winds. Several other mechanisms are discussed, in particular two that rely on strong magnetic fields: a) Alfven wave driven wind models like those recently developed by Hartmann and MacGregor for late type supergiants and b) the ''Fast Magnetic Rotator'' model that was developed by Belcher and MacGregor for the winds from pre-main sequence stars. In either model, large magnetic fields (approximately equal to 10 4 gauss) are required to drive the massive and fast winds of Wolf Rayet stars. Smaller fields might be possible if the multiple scattering line radiation force can be relied on to provide a final acceleration to terminal velocity. (Auth.)

  20. Representativeness of wind measurements in moderately complex terrain

    Science.gov (United States)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  1. Large-scale wind power in New Brunswick : a regional scenario study towards 2025

    International Nuclear Information System (INIS)

    2008-08-01

    This paper discussed the large-scale development of wind power in New Brunswick and evaluated Danish experiences with wind development as a template for developing wind resources in the Maritimes region. The study showed that New Brunswick and the Maritimes region have good wind resources, and that the province will gain significant economic benefits from deploying between 5500 and 7500 MW of wind power capacity by 2025. Wind power development will contribute to the security of supply in the region and reduce air pollution. Carbon regulation and renewable portfolio standards will improve the competitiveness of wind power. Electricity generated by wind power plants in the Maritimes can be sold to other provinces in Canada, as well as to the heavily populated New England region of the United States. A high level of cooperation between markets in the Maritimes area and neighbouring New England and Quebec systems will be required in addition to load flow analyses of electricity systems. Denmark's experiences with developing wind power indicate that existing market designs must be restructured to allow for higher levels of competition. A strong system operator is required to integrate wind power into the system. It was concluded that strong political leadership is required to ensure the sustainable development of the region. 5 refs., 4 tabs., 9 figs

  2. Design Load Basis for Offshore Wind turbines

    DEFF Research Database (Denmark)

    Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

    2016-01-01

    DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...... with the challenges faced by the industry and therefore ensures that our research continues to have a strong foundation in this interaction. Furthermore, the use of a full DLB that follows the current standard can improve and increase the feedback from the research at DTU Wind Energy to the international...

  3. On the estimation of wind comfort in a building environment by micro-scale simulation

    Directory of Open Access Journals (Sweden)

    Günter Gross

    2014-06-01

    Full Text Available A three-dimensional micro-scale model is used to study some aspects of wind comfort in a built-up area. The equations for calculating the mean wind have been extended by a Markov approach for short-term wind fluctuations. The model components have been successfully verified against wind tunnel measurements and observations of a field experiment. The simulated time series are used to estimate wind comfort measures. It turns out that the frequency of exceedance of prescribed thresholds depends strongly on the specification of the gust duration time. It was also possible to calculate the spatial distribution of a gust factor g$g$ depending on local wind characteristics. The simulated range is much broader than a value of g=3–3.5$g=3\\text{--}3.5$ commonly used for wind comfort assessments. Again, the order of magnitude and the bandwidth of g$g$ depends strongly on the definition of a gust.

  4. Prospects for generating electricity by large onshore and offshore wind farms

    DEFF Research Database (Denmark)

    Volker, Patrick; Hahmann, Andrea N.; Badger, Jake

    2017-01-01

    large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm......The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very...... on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m−2, whereas in offshore regions with very strong winds it exceeds 3 W m−2. Despite a relatively low power density, onshore...

  5. Correlation of mesoscale wind speeds over the sea

    DEFF Research Database (Denmark)

    Mehrens, Anna R.; Hahmann, Andrea N.; Hahmann, Andrea N.

    2016-01-01

    A large offshore observational data set from stations across the North and Baltic Sea is used to investigate the planetary boundary layer wind characteristics and their coherence, correlation and power spectra. The data of thirteen sites, with pairs of sites at a horizontal distance of 4 to 848 km...... on measurements and the WRF-derived time series. By normalising the frequency axes with the distance and mean wind speed it can be demonstrated that even for data with a wide range of distances, the coherence is a function of the frequency, mean wind and distance, which is consistent with earlier studies....... The correlation coefficient as a function of the distance calculated from WRF is however higher than observed in the measurements. For the power spectra, wind speed and wind speed step changes distribution the results for all sites are quite similar. The land masses strongly influence the individual wind...

  6. The influence of reactive current on wind farm LVRT behavior

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing; Zhang, Mei; He, Jing; Qin, Shi-yao [China Electric Power Research Institute, Beijing (China)

    2012-07-01

    The Low voltage ride through (LVRT) capability of the whole wind farm is required in Chinese grid code published in 2011. In order to analyze the influence of reactive current on wind farm during grid fault, a 100 MW wind farm was simulated with the wind turbines which have been tested. Based on the validated wind turbine model, the wind farm was detailed modelled in DigSILENT/PowerFactory. The model of wind turbines, transformers, feeders, main transformers, static var compensator, and transmission lines was considered in the simulation. Under the weak and strong grid conditions, the wind farm was simulated with different wind turbine reactive current behavior during grid fault, respectively. The voltage distribution, active and reactive power transient behavior at the point of interconnection was analyzed. The results show that wind farm LVRT behavior is related to reactive current and LVRT capability of wind turbine, wind farm electrical structure and grid conditions. And it is very important for wind turbine to have a flexible dynamic reactive current control capability. (orig.)

  7. Warm-season severe wind events in Germany

    Science.gov (United States)

    Gatzen, Christoph

    2013-04-01

    A 15-year data set of wind measurements was analyzed with regard to warm season severe wind gusts in Germany. For April to September of the years 1997 to 2011, 1035 wind measurements of 26 m/s or greater were found. These wind reports were associated with 268 wind events. In total, 252 convective wind events contributed to 837 (81%) of the wind reports, 16 non-convective synoptic-scale wind events contributed to 198 reports (19%). Severe wind events were found with synoptic situations characterized by rather strong mid-level flow and advancing mid-level troughs. Severe convective wind events were analyzed using radar images and classified with respect to the observed radar structure. The most important convective mode was squall lines that were associated with one third of all severe wind gusts, followed by groups, bow echo complexes, and bow echoes. Supercells and cells were not associated with many wind reports. The low contribution of isolated cells indicates that rather large-scale forcing by synoptic-scale features like fronts is important for German severe wind events. Bow echoes were found to be present for 58% of all wind reports. The movement speed of bow echoes indicated a large variation with a maximum speed of 33 m/s. Extreme wind events as well as events with more than 15 wind reports were found to be related to higher movement speeds. Concentrating on the most intense events, derechos seem to be very important to the warm season wind threat in Germany. Convective events with a path length of more than 400 km contributed to 36% of all warm-season wind gusts in this data set. Furthermore, eight of nine extreme gusts exceeding 40 m/s were recorded with derecho events.

  8. Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.

    2018-02-01

    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.

  9. Main processes of the Atlantic cold tongue interannual variability

    Science.gov (United States)

    Planton, Yann; Voldoire, Aurore; Giordani, Hervé; Caniaux, Guy

    2018-03-01

    The interannual variability of the Atlantic cold tongue (ACT) is studied by means of a mixed-layer heat budget analysis. A method to classify extreme cold and warm ACT events is proposed and applied to ten various analysis and reanalysis products. This classification allows 5 cold and 5 warm ACT events to be selected over the period 1982-2007. Cold (warm) ACT events are defined by the presence of negative (positive) sea surface temperature (SST) anomalies at the center of the equatorial Atlantic in late boreal spring, preceded by negative (positive) zonal wind stress anomalies in the western equatorial Atlantic. An ocean general circulation model capable of reconstructing the interannual variability of the ACT correctly is used to demonstrate that cold ACT events develop rapidly from May to June mainly due to intense cooling by vertical mixing and horizontal advection. The simulated cooling at the center of the basin is the result of the combined effects of non-local and local processes. The non-local process is an upwelling associated with an eastward-propagating Kelvin wave, which makes the mixed-layer more shallow and preconditions the upper layers to be cooled by an intense heat loss at the base of the mixed-layer, which is amplified by a stronger local injection of energy from the atmosphere. The early cooling by vertical mixing in March is also shown to be a good predictor of June cooling. In July, horizontal advection starts to warm the mixed-layer abnormally and damps SST anomalies. The advection anomalies, which result from changes in the horizontal temperature gradient, are associated in some cases with the propagation of Rossby waves along the equator. During warm ACT events, processes are reversed, generating positive SST anomalies: a downwelling Kelvin wave triggers stratification anomalies and mixed-layer depth anomalies, amplified by a weaker injection of energy from the atmosphere in May-June. In July, warm ACT events are abnormally cooled due to

  10. Wind power potential and integration in Africa

    Directory of Open Access Journals (Sweden)

    Agbetuyi, A.F.

    2013-03-01

    Full Text Available Wind energy penetration into power networks is increasing very rapidly all over the world. The great concern about global warming and continued apprehensions about nuclear power around the world should drive most countries in Africa into strong demand for wind generation because of its advantages which include the absence of harmful emissions, very clean and almost infinite availability of wind that is converted into electricity. This paper shows the power available in the wind. It also gives an overview of the wind power potential and integration in some selected Africa countries like Egypt, Morocco, South Africa and Nigeria and the challenges of wind power integration in Africa’s continent are also discussed. The Northern part of Africa is known to be Africa’s Wind pioneers having installed and connected the Wind Energy Converters (WEC to the grid. About 97% of the continent’s total wind installations are located in Egypt, Morocco and Tunisia. Research work should commence on the identified sites with high wind speeds in those selected Africa countries, so that those potential sites can be connected to the grid. This is because the ability of a site to sufficiently accommodate wind generation not only depends on wind speeds but on its ability to interconnect to the existing grid. If these wind energy potentials are tapped and connected to the grid, the erratic and epileptic power supply facing most countries in Africa will be reduced; thereby reducing rural-urban migration and more jobs will be created.

  11. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    Science.gov (United States)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  12. Short-Term Wind Speed Hybrid Forecasting Model Based on Bias Correcting Study and Its Application

    OpenAIRE

    Mingfei Niu; Shaolong Sun; Jie Wu; Yuanlei Zhang

    2015-01-01

    The accuracy of wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. In particular, reliable short-term wind speed forecasting can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, due to the strong stochastic nature and dynamic uncertainty of wind speed, the forecasting of wind speed data using different patterns is difficult. This paper proposes a novel combination bias c...

  13. Optimum Operational Parameters for Yawed Wind Turbines

    Directory of Open Access Journals (Sweden)

    David A. Peters

    2011-01-01

    Full Text Available A set of systematical optimum operational parameters for wind turbines under various wind directions is derived by using combined momentum-energy and blade-element-energy concepts. The derivations are solved numerically by fixing some parameters at practical values. Then, the interactions between the produced power and the influential factors of it are generated in the figures. It is shown that the maximum power produced is strongly affected by the wind direction, the tip speed, the pitch angle of the rotor, and the drag coefficient, which are specifically indicated by figures. It also turns out that the maximum power can take place at two different optimum tip speeds in some cases. The equations derived herein can also be used in the modeling of tethered wind turbines which can keep aloft and deliver energy.

  14. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    Science.gov (United States)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  15. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  16. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND

    International Nuclear Information System (INIS)

    Bai Xuening; Stone, James M.

    2013-01-01

    We perform local, vertically stratified shearing-box MHD simulations of protoplanetary disks (PPDs) at a fiducial radius of 1 AU that take into account the effects of both Ohmic resistivity and ambipolar diffusion (AD). The magnetic diffusion coefficients are evaluated self-consistently from a look-up table based on equilibrium chemistry. We first show that the inclusion of AD dramatically changes the conventional picture of layered accretion. Without net vertical magnetic field, the system evolves into a toroidal field dominated configuration with extremely weak turbulence in the far-UV ionization layer that is far too inefficient to drive rapid accretion. In the presence of a weak net vertical field (plasma β ∼ 10 5 at midplane), we find that the magnetorotational instability (MRI) is completely suppressed, resulting in a fully laminar flow throughout the vertical extent of the disk. A strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum and easily accounts for the observed accretion rate in PPDs. Moreover, under a physical disk wind geometry, all the accretion flow proceeds through a strong current layer with a thickness of ∼0.3H that is offset from disk midplane with radial velocity of up to 0.4 times the sound speed. Both Ohmic resistivity and AD are essential for the suppression of the MRI and wind launching. The efficiency of wind transport increases with increasing net vertical magnetic flux and the penetration depth of the FUV ionization. Our laminar wind solution has important implications on planet formation and global evolution of PPDs.

  17. The Low-Level Wind Shear Alert System (LLWSAS)

    Science.gov (United States)

    1980-05-01

    ALERT SYSTEM (LLWSAS). (May R.. a.-ol - 8..’P" Imng Organization Report No, 9, Perfo~ring Or~ni-otlon Ro-r. -andAddress 10. Work Unit No. (TRAIS) Federal...rather than electronic approach. The 2-minute average adheres to recommended International Civil Aviation Organization (ICAO) standards (referernce 14...speed of 140 knots. **Cold front. 80 ’ # 90 0 STRONG CASES: COFF , 1975 80 9STRONG CASES: UNPU1BLISHED 70 60 A STRONG CASES: COFF , et al., 1978 50 \\ 50 -0

  18. Wind offering in energy and reserve markets

    Science.gov (United States)

    Soares, T.; Pinson, P.; Morais, H.

    2016-09-01

    The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day- ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.

  19. Aspects of cold intrusions over Greece during autumn

    Science.gov (United States)

    Mita, Constantina; Marinaki, Aggeliki; Zeini, Konstantina; Konstantara, Metaxia

    2010-05-01

    the 25 years, the slight trends identified, decreasing in the number of cold intrusions and increasing in the maximum temperature decrease at the level of 850 hPa were statistically insignificant. Finally, special attention is given to an exceptional event of cold intrusion which followed an extreme high temperature period for the season, in the beginning of October 1991. For this particular case, the underlying physical generation mechanism is studied thoroughly by analysing synoptic maps from ECMWF (0000 UTC and 1200 UTC) at the levels of 500 hPa, 850 hPa and MSL for the period 1/10/1991-6/10/1991. Additionally, the evolution of the cold intrusion as it passes over the country is examined in detail in conjunction with the observed physical phenomena such as gale force winds, moderate snowfall, heavy rainfall and thunderstorms.

  20. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K; Miculis, K; Bezuglov, N N; Ekers, Aigars

    2016-01-01

    with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate

  1. Extreme hydrometeorological events in the Peruvian Central Andes during austral summer and their relationship with the large-scale circulation

    Science.gov (United States)

    Sulca, Juan C.

    In this Master's dissertation, atmospheric circulation patterns associated with extreme hydrometeorological events in the Mantaro Basin, Peruvian Central Andes, and their teleconnections during the austral summer (December-January-February-March) are addressed. Extreme rainfall events in the Mantaro basin are related to variations of the large-scale circulation as indicated by the changing strength of the Bolivian High-Nordeste Low (BH-NL) system. Dry (wet) spells are associated with a weakening (strengthening) of the BH-NL system and reduced (enhanced) influx of moist air from the lowlands to the east due to strengthened westerly (easterly) wind anomalies at mid- and upper-tropospheric levels. At the same time extreme rainfall events of the opposite sign occur over northeastern Brazil (NEB) due to enhanced (inhibited) convective activity in conjunction with a strengthened (weakened) Nordeste Low. Cold episodes in the Mantaro Basin are grouped in three types: weak, strong and extraordinary cold episodes. Weak and strong cold episodes in the MB are mainly associated with a weakening of the BH-NL system due to tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the potential for development of convective cloud cover. The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below the 10-percentile. Extraordinary cold episodes in the MB are associated with cold and dry polar air advection at all tropospheric levels toward the central Peruvian Andes. Therefore, weak and strong cold episodes in the MB appear to be caused by radiative cooling associated with reduced cloudiness, rather than cold air advection, while the latter plays an important role for extraordinary cold episodes only.

  2. Synoptic climatology evaluation of wind fields in the alpine region

    International Nuclear Information System (INIS)

    Lotteraner, C.

    2009-01-01

    The present investigation basically consists of two parts: In the first part, a 22-year set of 3-hourly 2D-wind analyses (1980-2001) that have been generated within the framework of the VERACLIM (VERA-Climatology) project are evaluated climatologically over the Alpine region. VERACLIM makes use of the VERA (Vienna Enhanced Resolution Analysis) analysis system, combining both the high spatial resolution as provided by the analysis algorithm and the high temporal resolution of a comprehensive synop data set, provided by ECMWF's (European Centre for Medium-Range Weather Forecasts) data archives. The obtained charts of averaged wind speed and the mean wind vector as well as the evaluations of frequency distribution of wind speed and wind direction on gridpoints for several different time periods should be interpreted very carefully as orographic influence is not taken into consideration in the analysis algorithm. However, the 3-hourly wind analyses of the time period 1980-2001 are suitable for investigation of the so-called Alpine Pumping. For that purpose, an arbitrarily chosen border has been drawn around the Alps and the Gauss theorem has been applied in a way that the mean diurnal variations of the two-dimensional divergence over the Alps could be evaluated. The sinusoidal run of the curve not only visualizes the 'breathing of the Alps' in an impressive way, it also enables us to roughly estimate the diurnal air volume exchange on days with a weak large-scale pressure gradient and strong incoming solar radiation. The second part of this investigation deals with the development of three different 'wind-fingerprints' which are included in the VERA-system in order to improve the analysis quality. The wind-fingerprints are designed in a way that they reflect the wind field pattern in the Alpine region on days with weak large-scale pressure gradient and strong incoming solar radiation. Using the fingerprints, both the effects of channelling as well as thermally induced

  3. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Science.gov (United States)

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  4. Multi-component wind measurements of wind turbine wakes performed with three LiDARs

    Science.gov (United States)

    Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.

    2012-04-01

    LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.

  5. The effect of roll gap geometry on microstructure in cold-rolled aluminum

    DEFF Research Database (Denmark)

    Mishin, Oleg; Bay, B.; Winther, G.

    2004-01-01

    Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling-type tex......Microstructure and texture are analyzed through the thickness of two aluminum plates cold-rolled 40% with different roll gap geometries. It is found that both texture and microstructure are strongly affected by the rolling geometry. After rolling with intermediate-size draughts a rolling...... layers. In these layers, extended planar dislocation boundaries are frequently found to be inclined closely to the rolling direction. The subsurface and central layers of this plate exhibit microstructures similar to those in the plate rolled with intermediate draughts. It is suggested...

  6. The effect of baroclinicity on the wind in the planetary boundary layer

    DEFF Research Database (Denmark)

    Floors, Rogier Ralph; Peña, Alfredo; Gryning, Sven-Erik

    2015-01-01

    close to zero and a standard deviation of approximately 3ms−1km−1. The geostrophic wind shear had a strong seasonal dependence because of temperature differences between land and sea. The mean wind profile in Hamburg, observed during an intensive campaign using radio sounding and during the whole year...... using the wind lidar, was influenced by baroclinicity. For easterly winds at Høvsøre, the estimated gradient wind decreased rapidly with height, resulting in a mean low-level jet. The turning of the wind in the boundary layer, the boundary-layer height and the empirical constants in the geostrophic drag...

  7. Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation

    OpenAIRE

    Kwan, Kelvin Y.; Corey, David P.

    2009-01-01

    Soon after its discovery ten years ago, the ion channel TRPA1 was proposed as a sensor of noxious cold. Evidence for its activation by painfully cold temperatures (below ~15° C) has been mixed, however. Some groups found that cold elicits a nonselective conductance in cells expressing TRPA1; others found no activation, or argued that activation is an indirect effect of elevated \\(Ca^{ 2+}\\) . Sensory cells from the trigeminal and dorsal root ganglia that are activated by cold were sometimes c...

  8. Galactic cluster winds in presence of a dark energy

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Merafina, M.

    2013-10-01

    We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.

  9. The Huygens Doppler Wind Experiment: Ten Years Ago

    Science.gov (United States)

    Bird, Michael; Dutta-Roy, Robin; Dzierma, Yvonne; Atkinson, David; Allison, Michael; Asmar, Sami; Folkner, William; Preston, Robert; Plettemeier, Dirk; Tyler, Len; Edenhofer, Peter

    2015-04-01

    The Huygens Doppler Wind Experiment (DWE) achieved its primary scientific goal: the derivation of Titan's vertical wind profile from the start of Probe descent to the surface. The carrier frequency of the ultra-stable Huygens radio signal at 2040 MHz was recorded using special narrow-band receivers at two large radio telescopes on Earth: the Green Bank Telescope in West Virginia and the Parkes Radio Telescope in Australia. Huygens drifted predominantly eastward during the parachute descent, providing the first in situ confirmation of Titan's prograde super-rotational zonal winds. A region of surprisingly weak wind with associated strong vertical shear reversal was discovered within the range of altitudes from 65 to 100 km. Below this level, the zonal wind subsided monotonically from 35 m/s to about 7 km, at which point it reversed direction. The vertical profile of the near-surface winds implies the existence of a planetary boundary layer. Recent results on Titan atmospheric circulation within the context of the DWE will be reviewed.

  10. On Multiple Reconnection X-lines and Tripolar Perturbations of Strong Guide Magnetic Fields

    Science.gov (United States)

    Eriksson, S.; Lapenta, G.; Newman, D. L.; Phan, T. D.; Gosling, J. T.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.; Goldman, M. V.

    2015-05-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field BM which is almost four times as strong as the reversing field BL. The novel tripolar field consists of two narrow regions of depressed BM, with an observed 7%-14% ΔBM magnitude relative to the external field, which are found adjacent to a wide region of enhanced BM within the exhaust. A stronger reversing field is associated with each BM depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔBM/ΔXN over the normal width ΔXN between a BM minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  11. Determining Wind Erosion in the Great Plains

    OpenAIRE

    Elwin G. Smith; Burton C. English

    1982-01-01

    Wind erosion is defined as the movement of soil particles resulting from strong turbulent winds. The movement of soil particles can be categorized as suspension, saltation, or surface creep. Fine soil particles can be suspended in the atmosphere and carried for great distances. Particles too large to be suspended move in a jumping action along the soil surface, known as saltation. Heavier particles have a rolling movement along the surface and this type of erosion is surface creep.

  12. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  13. Neutron measurements in search of cold fusion

    International Nuclear Information System (INIS)

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-μs intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term ''neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs

  14. Analysis of wind energy market and jobs in France

    International Nuclear Information System (INIS)

    Perot, Olivier; Autier, Emmanuel

    2014-10-01

    This report presents an overview of wind energy production and of the wind energy sector in France. Illustrated by maps, graphs and tables, it notices and comments the steady situation of jobs, and the existence of a structured value chain, and a variety of actors. It describes and analyses job locations in metropolitan France and outlines that the wind energy sector is a lever for development and creates opportunities for regions. The second part addresses the wind energy market. It proposes an assessment of the French market (a new start in 2014, a competitive market with some dynamic regions) and a review of the technological evolution of the wind energy industry (continuous evolutions, strong emergence of wind farms, and an increasing production). Appendices propose presentations of actors per category (developers, operators, machine manufacturers, component manufacturer, public works and logistics, maintenance, consultants and experts), and sheets indicating the presence of actors, installed power and number of wind farms in the different French regions

  15. Solar Panel Buffeted by Wind at Phoenix Site

    Science.gov (United States)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing. The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site. These conditions were anticipated and the wind is not expected to do any harm to the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Thermoelectric transport and Peltier cooling of cold atomic gases

    Science.gov (United States)

    Grenier, Charles; Kollath, Corinna; Georges, Antoine

    2016-12-01

    This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and 'thermoelectric' transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.

  17. Momentum flux of the solar wind near planetary magnetospheres: a comparative study

    International Nuclear Information System (INIS)

    Perez de Tejada, H.

    1985-01-01

    A study of the velocity profiles of the shocked solar wind exterior to the magnetospheres of the Earth, Mars and Venus is presented. A characteristic difference exists between the conditions present in planets with and without a strong intrinsic magnetic field. In a strongly magnetized planet (as it is the case in the earth), the velocity of the solar wind near the magnetopause remains nearly constant along directions normal to that boundary. In weakly magnetized planets (Venus, Mars), on the other hand, the velocity profile near the magnetopause/ionopause exhibits a transverse gradient which implies decreased values of the momentum flux of the solar wind in those regions. The implications of the different behavior of the shocked solar wind are discussed in connection with the nature of the interaction process that takes place in each case. (author)

  18. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  19. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  20. Parallel electric fields from ionospheric winds

    International Nuclear Information System (INIS)

    Nakada, M.P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes

  1. On wind speed pattern and energy potential in Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Oyewola, O.M.

    2011-01-01

    The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. - Research Highlights: → Review of wind speed distribution and wind energy availability in Nigeria in presented. → The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. → The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified.

  2. Distribution and solar wind control of compressional solar wind-magnetic anomaly interactions observed at the Moon by ARTEMIS

    Science.gov (United States)

    Halekas, J. S.; Poppe, A. R.; Lue, C.; Farrell, W. M.; McFadden, J. P.

    2017-06-01

    A statistical investigation of 5 years of observations from the two-probe Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission reveals that strong compressional interactions occur infrequently at high altitudes near the ecliptic but can form in a wide range of solar wind conditions and can occur up to two lunar radii downstream from the lunar limb. The compressional events, some of which may represent small-scale collisionless shocks ("limb shocks"), occur in both steady and variable interplanetary magnetic field (IMF) conditions, with those forming in steady IMF well organized by the location of lunar remanent crustal magnetization. The events observed by ARTEMIS have similarities to ion foreshock phenomena, and those observed in variable IMF conditions may result from either local lunar interactions or distant terrestrial foreshock interactions. Observed velocity deflections associated with compressional events are always outward from the lunar wake, regardless of location and solar wind conditions. However, events for which the observed velocity deflection is parallel to the upstream motional electric field form in distinctly different solar wind conditions and locations than events with antiparallel deflections. Consideration of the momentum transfer between incoming and reflected solar wind populations helps explain the observed characteristics of the different groups of events.Plain Language SummaryWe survey the environment around the Moon to determine when and where strong amplifications in the charged particle density and magnetic field strength occur. These structures may be some of the smallest shock waves in the solar system, and learning about their formation informs us about the interaction of charged particles with small-scale magnetic fields throughout the solar system and beyond. We find that these compressions occur in an extended region downstream from the lunar dawn and dusk regions and

  3. Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Markfort, Corey D. [University of Minnesota, Saint Anthony Falls Laboratory, Department of Civil Engineering, Minneapolis, MN (United States); Porte-Agel, Fernando [Ecole Polytechnique Federale de Lausanne (EPFL), ENAC-IIE-WIRE, Wind Engineering and Renewable Energy Laboratory (WIRE), Lausanne (Switzerland)

    2012-05-15

    Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (x-z) and vertical span-wise planes (y-z). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and

  4. 75 FR 23263 - Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC...

    Science.gov (United States)

    2010-05-03

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-62-000] Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC; Alta Wind VI, LLC; Alta Wind VII, LLC; Alta Wind VIII, LLC; Alta Windpower Development, LLC; TGP Development Company, LLC...

  5. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Science.gov (United States)

    2012-05-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-68-000] Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC, Alta Wind XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, TGP Development Company, LLC...

  6. Synoptic maps of solar wind parameters from in situ spacecraft observations

    Science.gov (United States)

    Gazis, P. R.

    1995-01-01

    Solar wind observations from the Interplanetary Monitoring Platform-8 (IMP-8) and Pioneer Venus Orbiter (PVO) spacecraft from 1982 until 1988 are combined to construct synoptic maps of solar wind parameters near 1 AU. Each map consists of 6 months of hourly averaged solar wind data, binned by heliographic latitude and Carrington longitude and projected back to the Sun. These maps show the structure and time evolution of solar wind streams near 1 AU in the heliographic latitudes of +/- 7.25 deg and provide and explicit picture of several phenomena, such as gradients, changes in the inclination of the heliospheric current sheet, and the relative positions of various structures in the inner heliosphere, that is difficult to obtain from single-spacecraft observations. The stream structure varied significantly during the last solar cycle. Between 1982 and early 1985, solar wind parameters did not depend strongly on heliographic latitude. During the last solar minimum, the solar wind developed significant latitudinal structure, and high-speed streams were excluded from the vicinity of the solar equator. The interplanetary magnetic field was strongly correlated with the coronal field, and the current sheet tended to coincide with the coronal neutral line. The solar wind speed showed the expected correlations with temperature, interplanetary magnetic field, and distance from the current sheet. The solar wind speed was anticorrelated with density, but the regions of highest density occurred east of the heliospheric current sheet and the regions of lowest solar wind speed. This is consistent with compression at the leading edge of high-speed streams.

  7. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  8. Grooved cold moderator tests

    International Nuclear Information System (INIS)

    Inoue, K.; Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Ikeda, S.; Carpenter, J.M.; Ishikawa, Y.

    1983-01-01

    We performed some grooved cold moderator experiments for methane at 20 K by using the Hokkaido University linac to obtain information to be used in the planning of the KENS-I' project. Cold neutron gains, spatial distribution of emitted beams and time distribution of the neutrons in the grooved cold moderator were measured. Furthermore, we assessed the effects of the grooved cold moderator on the performances of the spectrometers presently installed at the KENS-I cold source. We concluded that the grooved cold moderator benefited appreciably the performances of the spectrometers

  9. Relationship Between Storage and Recording with Quality of DPT Vaccine Cold Chain in Puskesmas

    Directory of Open Access Journals (Sweden)

    Faradiba Hikmarida

    2014-09-01

    Full Text Available ABSTRACT Increasing number of diphteria cases in Sidoarjo Regency, with occurrence of cases in those who had received DPT immunization shows the existence of problem concerning to immunization. The efficacy itself, depends on the quality of vaccines given. Insufficiency in cold chain may lower the quality of DPT vaccines. The purpose of this study was to analyze relationship between DPT vaccine storage and recording for DPT vaccines cold chain with quality of DPT vaccine cold chain in puskesmas Sidoarjo Regency. This research is a descriptive research with cross sectional design. Sample used were total population, which includes all 26 puskesmas within Sidoarjo. The variables were DPT vaccine storage, recording for DPT vaccines cold chain and quality of DPT vaccine cold chain. The result of this study showed that DPT vaccine storage was good (58%, recording for DPT vaccines cold chain were insufficient (77%, and quality of DPT vaccine cold chain in puskesmas was also good (62%. Spearman correlation test showed relationship between DPT vaccine storage and quality of DPT vaccine cold chain in Puskesmas was strong and positive (r = 0,561. Relationship between recording for DPT vaccines cold chain and quality of DPT vaccine cold chain in puskesmas was moderate and positive (r = 0,421. the better the storage for DPT vaccines and recording for DPT vaccines cold chain in puskesmas, the better its cold chain quality in puskesmas. Improvement in officers’ obedience in storing DPT vaccine and its recording concerning to the cold chain which appropriate according to procedures, were really needed. Keywords: storage, recording, quality, cold chain, DPT vaccine

  10. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    Science.gov (United States)

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  11. Influence of Icing on the Modal Behavior of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Sudhakar Gantasala

    2016-10-01

    Full Text Available Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the blade, while changes in the aerofoil shapes affect its aerodynamic behavior. Thus, the structural and aerodynamic changes due to icing affect the modal behavior of wind turbine blades. In this study, aeroelastic equations of the wind turbine blade vibrations are derived to analyze modal behavior of the Tjaereborg 2 MW wind turbine blade with ice. Structural vibrations of the blade are coupled with a Beddoes-Leishman unsteady attached flow aerodynamics model and the resulting aeroelastic equations are analyzed using the finite element method (FEM. A linearly increasing ice mass distribution is considered from the blade root to half-length and thereafter constant ice mass distribution to the blade tip, as defined by Germanischer Lloyd (GL for the certification of wind turbines. Both structural and aerodynamic properties of the iced blades are evaluated and used to determine their influence on aeroelastic natural frequencies and damping factors. Blade natural frequencies reduce with ice mass and the amount of reduction in frequencies depends on how the ice mass is distributed along the blade length; but the reduction in damping factors depends on the ice shape. The variations in the natural frequencies of the iced blades with wind velocities are negligible; however, the damping factors change with wind velocity and become negative at some wind velocities. This study shows that the aerodynamic changes in the iced blade can cause violent vibrations within the operating wind velocity range of this turbine.

  12. Intelligent control for large-scale variable speed variable pitch wind turbines

    Institute of Scientific and Technical Information of China (English)

    Xinfang ZHANG; Daping XU; Yibing LIU

    2004-01-01

    Large-scale wind turbine generator systems have strong nonlinear multivariable characteristics with many uncertain factors and disturbances.Automatic control is crucial for the efficiency and reliability of wind turbines.On the basis of simplified and proper model of variable speed variable pitch wind turbines,the effective wind speed is estimated using extended Kalman filter.Intelligent control schemes proposed in the paper include two loops which operate in synchronism with each other.At below-rated wind speed,the inner loop adopts adaptive fuzzy control based on variable universe for generator torque regulation to realize maximum wind energy capture.At above-rated wind speed, a controller based on least square support vector machine is proposed to adjust pitch angle and keep rated output power.The simulation shows the effectiveness of the intelligent control.

  13. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-10

    more than 101,000 full-time workers at the end of 2016. For wind projects recently installed in the U.S., domestically manufactured content is highest for nacelle assembly (>90%), towers (65-80%), and blades and hubs (50-70%), but is much lower (<20%) for most components internal to the turbine. -Continued strong growth in wind capacity is anticipated in the near term: With federal tax incentives still available, though declining, various forecasts for the domestic market show expected wind power capacity additions averaging more than 9,000 MW/year from 2017 to 2020.

  14. WIND SPEED Monitoring in Northern Eurasia

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be

  15. Wind profiler observations of a monsoon low-level jet over a tropical Indian station

    Directory of Open Access Journals (Sweden)

    M. C. R. Kalapureddy

    2007-11-01

    Full Text Available Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ over a tropical station, Gadanki (13.5° N, 79.2° E, with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.

  16. Wind effect in turbulence parametrization

    Science.gov (United States)

    Colombini, M.; Stocchino, A.

    2005-09-01

    The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.

  17. Wind impact on the Black Sea ecosystem

    Science.gov (United States)

    Stanichny, Sergey; Ratner, Yuriy; Shokurov, Mike; Stanychna, Rimma; Soloviev, Dmytro; Burdyugov, Vyacheslav

    2010-05-01

    Combination of the recent satellite and meteorological data for the regional investigation allowed to describe new features of the processes in marine ecosystem and detect some relations with wind variability for different time scales. Next topics are highlighted in presentation: 1. Inter-annual variability of the wind stress curl over the Black Sea. Shift in the atmospheric processes after 2003 year and related variations in chlorophyll concentration and intensity of the mesoscale currents. 2. Like-tropical cyclone in September 2005 and its impact o the Black Sea upper layer. 3. Strong storm November 11, 2007 and oil pollutions of the Kerch Strait. 4. Relation of the Danube waters transport with wind fields for summer 2007 and 2008. 5. "Valley" wind in the Eastern part of the Black Sea and its impact on the Rim current formation. 6. Low wind conditions and blue -green algae bloom. NCEP, SKIRON and MHI MM5 wind data together with AVHRR, MODIS, MERIS, ETM+, QuikSCAT, ASAR (ESA) satellite data were used for investigation. Work was done with support of the SESAME FP7, "Stable Ecosystem" and Operational Oceanography NASU projects.

  18. Fuzzy Control of Cold Storage Refrigeration System with Dynamic Coupling Compensation

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2018-01-01

    Full Text Available Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.

  19. ANISOTROPIC WINDS FROM CLOSE-IN EXTRASOLAR PLANETS

    International Nuclear Information System (INIS)

    Stone, James M.; Proga, Daniel

    2009-01-01

    We present two-dimensional hydrodynamic models of thermally driven winds from highly irradiated, close-in extrasolar planets. We adopt a very simple treatment of the radiative heating processes at the base of the wind, and instead focus on the differences between the properties of outflows in multidimensions in comparison to spherically symmetric models computed with the same methods. For hot (T ∼> 2 x 10 4 K) or highly ionized gas, we find that strong (supersonic) polar flows are formed above the planet surface which produce weak shocks and outflow on the night side. In comparison to a spherically symmetric wind with the same parameters, the sonic surface on the day side is much closer to the planet surface in multidimensions, and the total mass-loss rate is reduced by almost a factor of 4. We also compute the steady-state structure of interacting planetary and stellar winds. Both winds end in a termination shock, with a parabolic contact discontinuity which is draped over the planet separating the two shocked winds. The planetary wind termination shock and the sonic surface in the wind are well separated, so that the mass-loss rate from the planet is essentially unaffected. However, the confinement of the planetary wind to the small volume bounded by the contact discontinuity greatly enhances the column density close to the planet, which might be important for the interpretation of observations of absorption lines formed by gas surrounding transiting planets.

  20. Link between western Arabian sea surface temperature and summer monsoon strength and high-latitude abrupt climate events

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    Artificial Neural Networks (ANN's) based on quantitative analyses of planktic foraminifera. High seasonal SST contrast between winter and summer during the last glacial period indicates weak upwelling and strong cold northeasterly winds. Minimum seasonal SST...

  1. The influence of atmospheric cold fronts on larval supply and settlement of intertidal invertebrates: Case studies in the Cabo Frio coastal upwelling system (SE Brazil)

    Science.gov (United States)

    de Azevedo Mazzuco, Ana Carolina; Christofoletti, Ronaldo Adriano; Coutinho, Ricardo; Ciotti, Áurea Maria

    2018-07-01

    Atmospheric fronts such as cold fronts are dynamic mesoscale systems with potential effects on the ecology of marine communities. In this study, larval dynamics in subtropical rocky shore communities were evaluated under the influence of atmospheric frontal systems. The hypothesis is that these systems may promote favorable conditions for larval supply and settlement regardless of taxa or site, and that supply and settlement vary in association with fluctuations of meteorological and oceanographic conditions driven by the fronts. This study was carried out in the Southeastern Brazil littoral region under the influence of coastal upwelling events (Cabo Frio) and subject to weekly atmospheric frontal systems, cold polar fronts. The spatial and temporal variability of larvae and settlers of barnacles and mussels were assessed by collecting daily samples at three sites before, during and after atmospheric cold fronts, and the atmospheric and pelagic conditions were monitored. Contrasts among rates, events and sites were tested using discriminant function analysis, analyses of variance and correlation analysis. Atmospheric frontal systems were considered to influence the sites when wind direction changed to SW-S-SE and persisted for at least a day, and waves from SW-SW-SE increased in height. The results corroborate the hypothesis that cold fronts are important regulators of larval dynamics and intertidal communities on rocky shores of the studied area. Both larval supply and settlement were highly correlated with fluctuations in wind speed and direction. Higher settlement rates of barnacles occurred one-day prior, or on the onset of cold fronts. Mussels species tended to settle during all conditions, but on average, settlement rates were higher during the cold fronts. Some temporal trends were site specific and variability was detected among taxa and larval stages. Our findings suggest that mesoscale oceanographic/atmospheric systems are particularly relevant on the

  2. 2016 Fee Wind energy directory

    International Nuclear Information System (INIS)

    2015-12-01

    France is currently engaged in the energy transition where ambitious goals are at stake to allow the country to be one of the leading European countries in renewable energies. The cost of onshore wind is getting more and more competitive and for this reason, wind energy professionals are committed in contributing actively to reach the 32 % objective of renewable energies in the final energy consumption and 40 % of renewable energies in the electricity mix for 2030. 2014 was marked by a swift growth of the installed onshore wind energy, the positive trend is confirmed in 2015 with more than 500 MW connected to the grid in the first half of the year, corresponding to the annual forecast of 1,200 MW for 2015. Thanks to the energy transition law, operational policies will be implemented through the multi-annual energy programming (PPE- programmation pluriannuelle de l'energie). France will therefore continue increasing its development of renewable energies. This law will also allow France to develop offshore wind energy and to strengthen its position regarding wind energy: with an objective of 15 GW of fixed offshore wind energy and 6 GW of floating wind energy to be built in the 2030 horizon, the sector will be able to guarantee its development, especially in the current context of strong worldwide competition. Some 10,000 direct and indirect jobs are awaited for offshore wind energy on the national territory and wind energy professionals underline that the development of the offshore wind sector will contribute to the economic dynamism of the country. This sector is thus a job creating sector as confirmed in the figures of the wind employment monitor (observatoire de l'emploi) in France, recording a significant growth in 2013 with 10,800 jobs. This upward trend was confirmed in 2014. This proves the continuous commitment of the wind industry in seeing the success of the energy transition in France in a context marked by numerous energy and climate events

  3. Cold acclimation increases cold tolerance independently of diapause programing in the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Rozsypal, J; Moos, M; Goto, S G

    2017-10-17

    The bean bug (Riptortus pedestris) is a pest of soybeans and other legumes in Japan and other Asian countries. It enters a facultative adult diapause on exposure to short days. While photoperiodism and diapause are well understood in R. pedestris, knowledge of cold tolerance is very limited, as is information on the effect of diapause on cold tolerance. We examined the effect of photoperiod, cold acclimation, and feeding status on cold tolerance in R. pedestris. We found that cold acclimation significantly increased survival at -10°C in both long- and short-day adult R. pedestris. Since the difference in cold survival between long- and short-day cold-acclimated groups was only marginal, we conclude that entering diapause is not crucial for R. pedestris to successfully pass through cold acclimation and become cold tolerant. We observed similar effects in 5th instar nymphs, with both long- and short-day cold-acclimated groups surviving longer cold exposures compared with non-acclimated groups. Starvation, which was tested only in adult bugs, had only a negligible and negative impact on cold survival. Although cold tolerance significantly increased with cold acclimation in adult bugs, supercooling capacity unexpectedly decreased. Our results suggest that changes in supercooling capacity as well as in water content are unrelated to cold tolerance in R. pedestris. An analysis of metabolites revealed differences between the treatments, and while several metabolites markedly increased with cold acclimation, their concentrations were too low to have a significant effect on cold tolerance.

  4. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations.

    Science.gov (United States)

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.

  5. Study on optimal design of wind turbine blade airfoil and its application

    International Nuclear Information System (INIS)

    Sun, Min Young; Kim, Dong Yong; Lim, Jae Kyoo

    2012-01-01

    This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of the folding blade. In general, in large sized (MW) wind turbines, damage is prevented in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production

  6. Study on optimal design of wind turbine blade airfoil and its application

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Min Young; Kim, Dong Yong; Lim, Jae Kyoo [Chonbuk Nat' l Univ., Jeonju (Korea, Republic of)

    2012-05-15

    This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of the folding blade. In general, in large sized (MW) wind turbines, damage is prevented in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.

  7. Extreme winds in the Western North Pacific

    DEFF Research Database (Denmark)

    Ott, Søren

    2006-01-01

    satellite images is discussed with emphasis on the empirical basis, which, unfortunately, is not very strong. This is stressed by the fact that Japanese and US agencies arrive at markedly different estimates. Onthe other hand, best track data records cover a long period of time and if not perfect......A statistical model for extreme winds in the western North Pacific is developed, the region on the Planet where tropical cyclones are most common. The model is based on best track data derived mostly from satellite images of tropical cyclones. The methodsused to estimate surface wind speeds from...... they are at least coherent over time in their imperfections. Applying the the Holland model to the best track data, wind profiles can be assigned along the tracks. Fromthis annual wind speed maxima at any particular point in the region can be derived. The annual maxima, in turn, are fitted to a Gumbel distribution...

  8. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  9. Preliminary study of the offshore wind and temperature profiles at the North of the Yucatan Peninsula

    International Nuclear Information System (INIS)

    Soler-Bientz, Rolando; Watson, Simon; Infield, David; Ricalde-Cab, Lifter

    2011-01-01

    Highlights: → This is the first study that reports the properties of the vertical wind resources for the offshore conditions of the North coast of the Yucatan Peninsula. → A significant and detailed analysis of the thermal patterns has revealed a complex structure of the atmospheric boundary layer close to the shore. → The structure of the diurnal wind patterns was assessed to produce an important reference for the wind resource availability in the study region. → It was identified that the sea breeze blows in directions almost parallel to the shoreline of the North of the Yucatan Peninsula during the majority of the 24 h cycle. → The analysis of the offshore data revealed a persistent non-uniform surface boundary layer developed as result of the advection of a warn air over a cold sea. - Abstract: The stability conditions in the atmospheric boundary layer, the intensity of the wind speeds and consequently the energy potential available in offshore conditions are highly influenced by the distance from the coastline and the differences between the air and sea temperatures. This paper presents a preliminary research undertook to study the offshore wind and temperature vertical profiles at the North-West of the Yucatan Peninsula coast. Ten minute averages were recorded over approximately 2 years from sensors installed at two different heights on a communication tower located at 6.65 km from the coastline. The results have shown that the offshore wind is thermally driven by differential heating of land and sea producing breeze patterns which veer to blow parallel to the coast under the action of the Coriolis force. To investigate further, a dataset of hourly sea surface temperatures derived from GEOS Satellite thermal maps was combined with the onsite measured data to study its effect on the vertical temperature profile. The results suggested largely unstable conditions and the potentially development of a shallow Stable Internal Boundary Layer which occurs

  10. Layered Multi-mode Optimal Control Strategy for Multi-MW Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    KONG Yi-gang; WANG Zhi-xin

    2008-01-01

    The control strategy is one of the most important renewable technology, and an increasing number of multi-MW wind turbines are being developed with a variable speed-variable pitch (VS-VP) technology. The main objective of adopting a VS-VP technology is to improve the fast response speed and capture maximum energy. But the power generated by wind turbine changes rapidly because of the centinuous fluctuation of wind speed and direction. At the same time, wind energy conversion systems are of high order, time delays and strong nonlinear characteristics because of many uncertain factors. Based on analyzing the all dynamic processes of wind turbine, a kind of layered multi-mode optimal control strategy is presented which is that three control strategies: bang-bang, fuzzy and adaptive proportienai integral derivative (PID) are adopted according to different stages and expected performance of wind turbine to capture optimum wind power, compensate the nonlinearity and improve the wind turbine performance at low, rated and high wind speed.

  11. POST-PERIASTRON GAMMA-RAY FLARE FROM PSR B1259-63/LS 2883 AS A RESULT OF COMPTONIZATION OF THE COLD PULSAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [Department of Molecular Physics, National Research Nuclear University (MEPHI), Kashirskoe shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-06-10

    We argue that the bright flare of the binary pulsar PSR B1259-63/LS2883 detected by the Fermi Large Area Telescope is due to the inverse Compton scattering of the unshocked electron-positron pulsar wind with a Lorentz factor {Gamma}{sub 0} Almost-Equal-To 10{sup 4}. The combination of two effects both linked to the circumstellar disk (CD) is a key element in the proposed model. The first effect is related to the impact of the surrounding medium on the termination of the pulsar wind. Inside the disk, the 'early' termination of the wind results in suppression of its gamma-ray luminosity. When the pulsar escapes the disk, the conditions for termination of the wind undergo significant changes. This would lead to a dramatic increase of the pulsar wind zone, and thus to the proportional increase of the gamma-ray flux. On the other hand, if the parts of the CD disturbed by the pulsar can supply infrared photons of density high enough for efficient Comptonization of the wind, almost the entire kinetic energy of the pulsar wind would be converted to radiation, thus the gamma-ray luminosity of the wind could approach the level of the pulsar's spin-down luminosity as reported by the Fermi Collaboration.

  12. DEWEK '98: 4. German wind power conference; DEWEK '98: 4. Deutsche Windenergie-Konferenz. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, B [ed.

    1999-07-01

    The conference report comprises 90 papers and posters on the following subjects: 1. Technological developments (e.g. use of adaptive structures systems, active stalle wind power systems, systems for early detection of errors); 2. Design and optimisation; 3. Wind forecasts; 4. Operation analyses (e.g. active and passive stall, collective loads, wind power systems in cold climates); 5. Wind power systems and the environment; 6. Offshore wind power generation; 7. Electric characteristics (e.g. modelling of flicker, energy conditioning in distribution systems with a high wind power share); 8. Economic efficiency (e.g. economic efficiency of offshore wind parks on the North Sea coast); 9. Network quality; 10. Rotor development (e.g. noise reduction); 11. Certification and methods of measurement. [German] Der Tagungsband enhaelt 90 Fach- und Posterbeitraege, die sich mit den folgenden Schwerpunkten befassen: 1. Technologische Entwicklungen (z.B. Einsatz von adaptiven Struktursystemen; Active-Stall-WKA; Fehlerfrueherkennungssystemen). 2. Auslegung und Optimierung. 3. Windprognosen. 4. Betriebsanalysen (z.B. Aktive Stall/Passive Stall im Vergleich; Lastkollektive von WKA; WKA in kaltem Klima). 5. Windenergieanlagen und Umwelt. 6. Offshore-Windenergienutzung. 7. Elektrische Eigenschaften (z.B. Modellierung des 'Flickerverhaltens' von WKA; Energiekonditionierung in Verteilnetzen mit hohem Windenergieanteil). 8. Wirtschaftlichkeit (z.B. Wirtschaftlichkeit von Offshore-Windparks der Norddeutschen Kuestenlinie). 9. Netzqualitaet. 10. Rotorentwicklung (z.B. Reduzierung der Schallabstrahlung von WKAs). 11. Zertifizierung von Messmethoden. (AKF)

  13. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  14. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  15. Solar Illumination Control of the Polar Wind

    Science.gov (United States)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  16. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    Directory of Open Access Journals (Sweden)

    Clément Sayrin

    2015-12-01

    Full Text Available The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.

  17. Dynamics of wind setdown at Suez and the Eastern Nile Delta.

    Directory of Open Access Journals (Sweden)

    Carl Drews

    Full Text Available BACKGROUND: Wind setdown is the drop in water level caused by wind stress acting on the surface of a body of water for an extended period of time. As the wind blows, water recedes from the upwind shore and exposes terrain that was formerly underwater. Previous researchers have suggested wind setdown as a possible hydrodynamic explanation for Moses crossing the Red Sea, as described in Exodus 14. METHODOLOGY/PRINCIPAL FINDINGS: This study analyzes the hydrodynamic mechanism proposed by earlier studies, focusing on the time needed to reach a steady-state solution. In addition, the authors investigate a site in the eastern Nile delta, where the ancient Pelusiac branch of the Nile once flowed into a coastal lagoon then known as the Lake of Tanis. We conduct a satellite and modeling survey to analyze this location, using geological evidence of the ancient bathymetry and a historical description of a strong wind event in 1882. A suite of model experiments are performed to demonstrate a new hydrodynamic mechanism that can cause an angular body of water to divide under wind stress, and to test the behavior of our study location and reconstructed topography. CONCLUSIONS/SIGNIFICANCE: Under a uniform 28 m/s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud flats where the river mouth opens into the lake. This land bridge is 3-4 km long and 5 km wide, and it remains open for 4 hours. Model results indicate that navigation in shallow-water harbors can be significantly curtailed by wind setdown when strong winds blow offshore.

  18. Fiscal 1999 research report. Support project for formation of the energy and environment technology demonstration project (International joint demonstration research). FS study on construction of wind-farms in Sakhalin and Kurile Islands; 1999 nendo Sakhalin, Chishima retto ni okeru wind farm kensetsu no tame no FS kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For Sakhalin Electric Power's plan for coal fuel saving and stable power supply by introducing wind power generation for Sakhalin island in great difficulty, this research surveys its feasibility from the viewpoint of wind condition estimation, power system and wind turbine facility. The research result showed 3 promising candidate power generation sites with a sufficient profitability in Sakhalin island. In particular, 2 sites among them have excellent conditions from the viewpoint of traffic, transport and construction, and because these sites require only a small investment, earlier start of construction at these sites is expected. Since Kurile Islands and the Far East area also have excellent wind conditions, their wind resources are very promising. For total estimated wind power generation of 56MW, power system interconnection is possible with the existing substation facilities without any technical problem. Protective measures against the cold for wind turbine facilities are also possible by excellent technology of European suppliers. (NEDO)

  19. Constructing China’s wind energy innovation system

    International Nuclear Information System (INIS)

    Klagge, Britta; Liu Zhigao; Campos Silva, Pedro

    2012-01-01

    The rapid rise of China as the largest wind energy market worldwide with several global leaders in turbine manufacturing received much attention from both scholarly and policy-analytical work. However, little attention has been given to the innovation activities of the Chinese wind industry. In our paper, we aim to address this gap, based on second-hand sources and over 50 personal interviews with wind energy-related experts. We argue that China’s wind industry has made great progress in terms of manufacturing and installing, but is confronted with various challenges and problems regarding the development of its indigenous innovation capabilities. Using innovation systems approaches as an analytical tool and focusing on institutions, actors, technology and their interaction in supporting innovation activities, we decompose the elements of China’s wind energy innovation system and their role in developing the domestic wind industry. Against this backdrop we identify and discuss challenges and obstacles in the development of an innovation-driven wind industry in China. The paper strongly argues that more attention should be paid to improve the coordination and cooperation among the various actors of the wind energy innovation system, to the build-up of a market-oriented education and training system as well as to intellectual property protection. - Highlights: ► Innovation systems concepts as analytical tool to understand wind energy in China. ► Focus on institutions, actor constellations and technology development in China. ► Analysis of success in manufacturing and the rapid rise of China’s wind industry. ► Identification of challenges and problems regarding innovation activities. ► Recommendation to (better) integrate innovation policy and wind industry policy.

  20. Estimation and correlation of strengthening components to the evolution of microstructure following cold work and articial aging in AA6111 aluminium

    International Nuclear Information System (INIS)

    Quainoo, G K; Yannacopoulos, S; Sargent, C M

    2010-01-01

    In this study, the contributions of the various strengthening components following the application of cold work and precipitation in AA6111 has been evaluated and correlated by means of tensile testing and transmission electron microscopy (TEM). The results show a considerable improvement in yield and tensile strength with increasing level of cold work. The component of strength developed from cold work and precipitation respectively increases with increasing level of cold work. The recovery strength (softening) also increases with increasing level of cold work. TEM showed a strong interaction of strengthening precipitates with dislocations. The density of dislocation tangles is shown to increase with increasing degree of cold work.

  1. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Eriksson, S.; Gosling, J. T.; Lapenta, G.; Newman, D. L.; Goldman, M. V.; Phan, T. D.; Lavraud, B.; Khotyaintsev, Yu. V.; Carr, C. M.; Markidis, S.

    2015-01-01

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B M   which is almost four times as strong as the reversing field B L . The novel tripolar field consists of two narrow regions of depressed B M , with an observed 7%–14% ΔB M magnitude relative to the external field, which are found adjacent to a wide region of enhanced B M within the exhaust. A stronger reversing field is associated with each B M depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB M /ΔX N over the normal width ΔX N between a B M minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field

  2. Nitrogen and phosphorus transport between Fourleague Bay, LA, and the Gulf of Mexico: The role of winter cold fronts and Atchafalaya River discharge

    Science.gov (United States)

    Perez, B.C.; Day, J.W.; Justic, D.; Twilley, R.R.

    2003-01-01

    Nutrient fluxes were measured between Fourleague Bay, a shallow Louisiana estuary, and the Gulf of Mexico every 3 h between February 1 and April 30, 1994 to determine how high velocity winds associated with cold fronts and peak Atchafalaya River discharge influenced transport. Net water fluxes were ebb-dominated throughout the study because of wind forcing and high volumes of water entering the northern Bay from the Atchafalaya River. Flushing time of the Bay averaged winds with approximately 56% of the volume of the Bay exported to the Gulf in 1 day during the strongest flushing event. Higher nitrate + nitrite (NO2+ NO3), total nitrogen (TN), and total phosphorus (TP) concentrations were indicative of Atchafalaya River input and fluxes were greater when influenced by high velocity northerly winds associated with frontal passage. Net exports of NO2 + NO3, TN, and TP were 43.5, 98.5, and 13.6 g s-1, respectively, for the 89-day study. An average of 10.6 g s-1 of ammonium (NH4) was exported to the Gulf over the study; however, concentrations were lower when associated with riverine influence and wind-driven exports suggesting the importance of biological processes. Phosphate (PO4) fluxes were nearly balanced over the study with fairly stable concentrations indicating a well-buffered system. The results indicate that the high energy subsidy provided by natural pulsing events such as atmospheric cold fronts and seasonal river discharge are efficient mechanisms of nutrient delivery to adjacent wetlands and nearshore coastal ecosystems and are important in maintaining coastal sustainability. ?? 2003 Elsevier Ltd. All rights reserved.

  3. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Astrup, P.; Nielsen, M. (and others)

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  4. SAT-WIND project. Final report[Winds from satellites for offshore and coastal wind energy mapping and wind-indexing

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C B; Astrup, P; Nielsen, M [and others

    2007-04-15

    The SAT-WIND project 'Winds from satellites for offshore and coastal wind energy mapping and wind-indexing' was a research project funded by STVF/DSF in the years 2003 to 2006 (Sagsnr. 2058-03-0006). The goal of the project was to verify the applicability of satellite wind maps derived from passive microwave, altimeter, scatterometer and imaging Synthetic Aperture Radar (SAR) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas including the North Sea, interior seas and the Baltic Sea. The report describes technical details on the satellite data sources including: 1) passive microwave (SSM/I, AMSR-E), 2) passive microwave polarimetric (WindSat), 3) scatterometer (ERS, QuikSCAT, Midori-2 and NSCAT), 4) altimeter (ERS, Topex, Poseidon, GFO-1, Jason-1), 5) SAR (ERS, Envisat). The SAR wind maps were treated in S-WAsP developed by Risoe National Laboratory in cooperation with GRAS A/S in the innovative project SAT-WIND-SMV (Sagsnr. 2104-05-0084) in the years 2005 and 2006 in parallel with SAT-WIND. The results from the SAT-WIND project are presented. These include ocean wind statistics, offshore wind resource estimates and comparison results for wind-indexing. (au)

  5. Numerical Simulation of Wind Turbine Blade-Tower Interaction

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Hu Zhou; Decheng Wan

    2012-01-01

    Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes (PANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory (NREL) phase Ⅵ wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.

  6. Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction

    OpenAIRE

    Ju Feng; Wen Zhong Shen

    2015-01-01

    Reliable wind modelling is of crucial importance for wind farm development. The common practice of using sector-wise Weibull distributions has been found inappropriate for wind farm layout optimization. In this study, we propose a simple and easily implementable method to construct joint distributions of wind speed and wind direction, which is based on the parameters of sector-wise Weibull distributions and interpolations between direction sectors. It is applied to the wind measurement data a...

  7. Social attitude towards wind energy applications in Greece

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2005-01-01

    During the last 3 yr (1999-2002) a significant increase in the utilization of the existing wind power has taken place in Greece, after a long period (1993-1998) of inactivity. Unfortunately, the largest part of new scheduled installations is concentrated in a few geographical regions, in an attempt to take advantage of the existing electrical network capabilities and the acceptable infrastructure situation. This significant concentration of very large size wind turbines, rapidly installed in a few geographical areas, led to serious reactions from the local population, which in some cases even led to the complete cancellation of the wind power projects. In this context, an extensive study is conducted, concerning the public attitude towards wind energy applications, in several island and mainland Greek territories possessing high wind potential and investment interest. The results obtained significantly reveal acceptance of the existing wind parks, being, however, rather against new installations. More specifically, in the Greek islands the public attitude is clearly supportive, while in the Greek mainland the public attitude is either divided or definitely against wind power applications. The most troublesome outcome of this survey is the existence of a specific minority that is strongly against wind energy applications, disregarding any financial benefits. Among the primary conclusions drawn, one may underline the necessity of additional public information regarding the wind energy sector

  8. The structure and strength of public attitudes towards wind farm development

    Science.gov (United States)

    Bidwell, David Charles

    A growing social science literature seeks to understand why, despite broad public support for wind energy, proposals for specific projects are often met with strong local opposition. This gap between general and specific attitudes is viewed as a significant obstacle to the deployment of wind energy technologies. This dissertation applies theoretical perspectives and methodological tools from social psychology to provide insights on the structure and strength of attitudes towards the potential development of commercial wind farm in three coastal areas of Michigan. A survey of attitudes was completed by 375 residents in these communities and structural equation modeling was used to explore the relationship among variables. The analysis found that attitudes towards wind farm development are shaped by anticipated economic benefits to the community, but expectations of economic benefit are driven by personal values. Social psychology has long recognized that all attitudes are not created equal. Weak attitudes are fleeting and prone to change, while strong attitudes are stable over time and resistant to change. There are two fundamental paths to strong attitudes: repeated experience with an attitude object or the application of deeply held principles or values to that object. Structural equation models were also used to understand the strength of attitudes among the survey respondents. Both the anticipated effects of wind farm development and personal values were found to influence the strength of attitudes towards wind farms. However, while expectations that wind farm development will have positive effects on the economy bolster two measures of attitude strength (collective identity and importance), these expectations are associated with a decline in a third measure (confidence). A follow-up survey asking identical questions was completed by completed by 187 respondents to the initial survey. Linear regressions models were used to determine the effects of attitude

  9. Retrieval of Wind Speed Using an L-band Synthetic Aperture Radar

    DEFF Research Database (Denmark)

    Monaldo, Frank M.; Thompson, Donald R.; Badger, Merete

    2007-01-01

    Retrieval of wind speed using L-band synthetic aperture radar (SAR) is both an old and new endeavor. Although the Seasat L-band SAR in 1978 was not well calibrated, early results indicated a strong relationship between observed SAR image intensity and wind speed. The JERS-1 L-band SAR had limited...

  10. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    surface profile information plus attenuation measurements trended with porosity. The ultrasound measurements, however, may be limited to geometries where the substrate back-wall is normal to the cold spray surface and not too thick. Eddy current showed a strong correlation with porosity. Eddy currents can also be sensitive to cracks and do not need fluid coupling to make measurements, but are not sensitive to coating thicknesses in most cases. Vickers hardness measurements also tracked well with porosity; however, these types of hardness measurements are also not sensitive to coating thickness. An NDE program may include multiple measurements.

  11. Cold formability of steels

    International Nuclear Information System (INIS)

    Lafond, G.; Leclerq, G.; Moliexe, F.; Namdar, R.; Roesch, L.; Sanz, G.

    1977-01-01

    This work was essentially aimed to the study of the following three questions. Is it possible to assess the cold formability of steels using simple material properties as criteria. What values of mechanical properties can one expect to reach in cold formed parts. Are there simple ways of characterizing the speroidization treatments carried out on steels before cold forming operations. The present report describes the results obtained during this investigation. It is logically divided into three separate parts. Experimental study of cold formability in wire drawing. Influence of metallurgical variables on mechanical properties of high carbon cold drawn wires. Contribution to the study of characterization methods of cold forming steels subjected to a spheroidization heat treatment

  12. A Laminar Model for the Magnetic Field Structure in Bow-Shock Pulsar Wind Nebulae

    Science.gov (United States)

    Bucciantini, N.

    2018-05-01

    Bow Shock Pulsar Wind Nebulae are a class of non-thermal sources, that form when the wind of a pulsar moving at supersonic speed interacts with the ambient medium, either the ISM or in a few cases the cold ejecta of the parent supernova. These systems have attracted attention in recent years, because they allow us to investigate the properties of the pulsar wind in a different environment from that of canonical Pulsar Wind Nebulae in Supernova Remnants. However, due to the complexity of the interaction, a full-fledged multidimensional analysis is still laking. We present here a simplified approach, based on Lagrangian tracers, to model the magnetic field structure in these systems, and use it to compute the magnetic field geometry, for various configurations in terms of relative orientation of the magnetic axis, pulsar speed and observer direction. Based on our solutions we have computed a set of radio emission maps, including polarization, to investigate the variety of possible appearances, and how the observed emission pattern can be used to constrain the orientation of the system, and the possible presence of turbulence.

  13. Galactic winds and the hubble sequence

    International Nuclear Information System (INIS)

    Bregman, J.N.

    1978-01-01

    The conditions for maintenance of supernova-driven galactic winds have been investigated to assess their role in the morphology of disk-bulge galaxies. A fluid mechanical model with gas and stars which includes galactic rotation has been used to investigate several classes of winds. It is found that many galaxies, once their initial gas is depleted, can maintain a wind throughout the entire galaxy, a conditon most easily satisfied by systems with a small bulge-to-disk ratio. If the ratio of supernova heating to total mass loss falls below a critical value that depends on galaxy type and mass, only a partial wind exterior to a critical surface can exist, with infall occurring at interior points. Galaxies in which only the bulge was depleted of gas may support a bulge wind that does not interact with the colder and denser gas in the disk.These results indicate that if SO galaxies are a transition class between elliptical and spiral galaxies, it is probably because early galactic winds, which may initially deplete a galaxy of gas, are more prevalent in SO than in spiral galaxies. However, if SO's form a parallel sequence with spirals, the initial gas-depletion mechanism must be independent of bulge-to-disk ratio. These results are not strongly influenced by altering the galactic mass model, including electron conduction in the flow equations, or adding massive halos

  14. Human whole body cold adaptation.

    Science.gov (United States)

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold.

  15. A climatology of low level wind regimes over Central America using a weather type classification approach.

    Directory of Open Access Journals (Sweden)

    Fernán eSáenz

    2015-04-01

    Full Text Available Based on the potential of the weather types classification method to study synoptic features, this study proposes the application of such methodology for the identification of the main large scale patterns related with weather in Central America. Using ERA Interim low-level winds in a domain that encompasses the intra-Americas sea, the eastern tropical Pacific, southern North America, Central America and northern South America; the K-means clustering algorithm was applied to find recurrent regimes of low-level winds. Eleven regimes were identified and good coherency between the results and known features of regional circulation was found. It was determined that the main large scale patterns can be either locally forced or a response to tropical-extratropical interactions. Moreover, the local forcing dominates the summer regimes whereas mid latitude interactions lead winter regimes. The study of the relationship between the large scale patterns and regional precipitation shows that winter regimes are related with the Caribbean-Pacific precipitation seesaw. Summer regimes, on the other hand, enhance the Caribbean-Pacific precipitation contrasting distribution as a function of the dominant regimes. A strong influence of ENSO on the frequency and duration of the regimes was found. It was determined that the specific effect of ENSO on the regimes depends on whether the circulation is locally forced or lead by the interaction between the tropics and the mid-latitudes. The study of the cold surges using the information of the identified regimes revealed that three regimes are linkable with the occurrence of cold surges that affect Central America and its precipitation. As the winter regimes are largely dependent of mid-latitude interaction with the tropics, the effect that ENSO has on the Jet Stream is reflected in the winter regimes. An automated analysis of large scale conditions based on reanalysis and/or model data seems useful for both dynamical

  16. Dimensional crossover and cold-atom realization of topological Mott insulators

    Science.gov (United States)

    Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.

    2015-02-01

    Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers.

  17. Simplified formulae for the estimation of offshore wind turbines clutter on marine radars.

    Science.gov (United States)

    Grande, Olatz; Cañizo, Josune; Angulo, Itziar; Jenn, David; Danoon, Laith R; Guerra, David; de la Vega, David

    2014-01-01

    The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.

  18. The impact of cold spells on mortality and effect modification by cold spell characteristics

    Science.gov (United States)

    Wang, Lijun; Liu, Tao; Hu, Mengjue; Zeng, Weilin; Zhang, Yonghui; Rutherford, Shannon; Lin, Hualiang; Xiao, Jianpeng; Yin, Peng; Liu, Jiangmei; Chu, Cordia; Tong, Shilu; Ma, Wenjun; Zhou, Maigeng

    2016-12-01

    In China, the health impact of cold weather has received little attention, which limits our understanding of the health impacts of climate change. We collected daily mortality and meteorological data in 66 communities across China from 2006 to 2011. Within each community, we estimated the effect of cold spell exposure on mortality using a Distributed Lag Nonlinear Model (DLNM). We also examined the modification effect of cold spell characteristics (intensity, duration, and timing) and individual-specific factors (causes of death, age, gender and education). Meta-analysis method was finally used to estimate the overall effects. The overall cumulative excess risk (CER) of non-accidental mortality during cold spell days was 28.2% (95% CI: 21.4%, 35.3%) compared with non-cold spell days. There was a significant increase in mortality when the cold spell duration and intensity increased or occurred earlier in the season. Cold spell effects and effect modification by cold spell characteristics were more pronounced in south China. The elderly, people with low education level and those with respiratory diseases were generally more vulnerable to cold spells. Cold spells statistically significantly increase mortality risk in China, with greater effects in southern China. This effect is modified by cold spell characteristics and individual-level factors.

  19. Properties of volcanic soils in cold climate conditions

    Science.gov (United States)

    Kuznetsova, Elena

    2017-04-01

    Layers of volcanic ash and the Andosol soils derived from them may play an important role in preserving snow and ice as well as developing permafrost conditions in the immediate vicinity of volcanoes of high elevation or those situated at high latitudes, and land areas, often distant from volcanic activity that are either prone to permafrost or covered by snow and ice, but are affected by the deposition of subaerial ash. The special properties of volcanic ash that are responsible are critically reviewed particularly in relation to recent research in Kamchatka in the Far East of Russia. Of particular importance are the thermal properties and the unfrozen water contents of ash layers and the rate at which the weathering of volcanic glass takes place. Volcanic glass is the most easily weathered component of volcanic ejecta (Shoji et al., 1993; Kimble et al., 2000). There are many specific environmental conditions, including paleoclimate and present-day climate, the composition of volcanic tephra and glaciation history, which cause the differences in weathering and development of volcanic ash soils (Zehetner et al., 2003). The preservation of in situ, unweathered, and unaltered surficial ash-fall deposits in the cold regions has important implications for paleoclimate and glacial history. Ash-fall deposits, which trap and preserve the soils, sediments, and landforms on which they fall, can be used to resolve local climate conditions (temperature and moisture) at the ash site during ash-fall deposition. The preservation of detailed sedimentary features (e.g. bedding in the ash, sharpness of stratigraphic contacts) can tell us about their post-depositional history, whether they have been redeposited by wind or water, or overridden by glaciers (Marchant et al., 1996). Weathering of volcanic glass results in the development of amorphous clay minerals (e.g. allophane, opal, palagonite) but this takes place much slower in cold than under warmer climate conditions. Only few

  20. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  1. Comparison and validation of full-scale data from wind measurements in the Cape Peninsula, South Africa

    DEFF Research Database (Denmark)

    Kruger, Andries C.; Goliger, Adam M.; Larsén, Xiaoli Guo

    2014-01-01

    . These differences between the wind at the different locations are further complicated by the main strong wind mechanisms prevailing in the region, i.e. north-westerly winds from passing extratropical cyclones, mainly in the austral winter, and south-easterlies from ridging high-pressure systems, mainly...

  2. Listen, wind energy costs nothing

    International Nuclear Information System (INIS)

    Poizat, F.

    2008-09-01

    The author discusses the affirmation of the ADEME and the Environmental and sustainable development Ministry: the french wind park will costs in 2008 0,5 euro year for each household. He criticizes strongly this calculi, bringing many data on energy real cost today and in the next 10 years. Many references are provided. (A.L.B.)

  3. Impact of cold temperature on Euro 6 passenger car emissions.

    Science.gov (United States)

    Suarez-Bertoa, Ricardo; Astorga, Covadonga

    2018-03-01

    Hydrocarbons, CO, NOx, NH 3 , N 2 O, CO 2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 10 11 # km -1 ) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  5. Wind-drive coastal currents in the Gulf of Tehuatepec: HF radar observations and numerical model simulations.

    Science.gov (United States)

    Velazquez, F. A.; Martinez, J. A.; Durazo, R.; Flament, P.

    2007-12-01

    Most of the studies on coastal dynamics in the Gulf of Tehuatepec (GT) have been focused on mixing processes and mesoscale eddies generated due to strong off-shore wind events, know as Nortes or Tehuanos. In order to investigate the spatial and temporal mesoscale variability of surface dynamic in the GT in February 2005, two HF Radar model WERA were deployed along the shore of Oaxaca, Mexico. The spatial coverage of radars reaches up to 120 km off-shore. The radial velocities were processed to obtain total velocity maps every hour in a regular grid of 5.5 km. space resolution. The information of surface velocity and quickscat/NCEP wind obtained during the first sample days show that exist a coastal current toward the west and, during the wind events, is accelerated and steered toward the southwest. In this same period, we find that spatial density of kinetic energy and divergence of velocity field increase during wind events while the vorticity becomes negative. When strong wind events are not present the surface circulation is weakened, mainly for the zonal component of the wind that is mostly positive (westward). These results are in agreement with the upwelling processes observed on the coast and the anticyclonic eddie generation west of the GT during Tehuanos. Images of sea surface temperature and chlorophyll concentration are also used to observe the signature of wind events near the shore. Complementary to field observations, numerical simulation using a 3D primitive equations model (POM) are used to study the wind-driven circulation in the GT. It has been commonly accepted in previous studies that the strong wind events generate mesoscale eddies. We discuss the limited effect of the wind and the interaction of the wind with a coastal current required to generate long life eddies.

  6. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations

    OpenAIRE

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    2016-01-01

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena?especially the wind situation?when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31?m?s?1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were lik...

  7. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2013-08-01

    Full Text Available We analyzed the nighttime horizontal neutral winds in the middle atmosphere (~ 87 and ~ 98 km and thermosphere (~ 250 km derived from a Fabry–Perot interferometer (FPI, which was installed at Xinglong station (40.2° N, 117.4° E in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ~ 87 km, ~ 98 km and ~ 250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07. Our results show the following: (1 at ~ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2 At ~ 98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3 There are large discrepancies between the observed and HWM07 winds at ~ 250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ~ 87 and ~ 98 km than that at ~ 250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1 the seasonally averaged zonal winds at ~ 87 and ~ 98 km typically have small variations throughout the night. (2 The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ~ 87 km and ~ 98 km. (3 At ~ 250 km, model zonal wind compares well with the observation in the winter. For spring and

  8. Are wind farms set to become the next dotcom bubble?

    International Nuclear Information System (INIS)

    Desbarres, A.

    2008-01-01

    In the current context of soaring turbine prices, supply bottlenecks and record wind farm valuations, carefully crafted entry strategies are key to growing profitable and competitive wind portfolios. The wind energy industry is growing rapidly on the back of technological advancements, political will and government subsidies. Utility companies, independent power providers, institutional investors and oil companies are all seeking to capitalise on lucrative support mechanisms to unlock greater commercial and competitive advantages, meet their renewables targets and boost their green credentials. Strong growth therefore continues on the back of record sustainable energy investments, yet record wind-farm development costs and valuations are now driving 'dotcom' comparisons as the economics of wind farming projects come under increasing pressure. However, a new series of reports by market analyst Datamonitor reveals that wind farm projects can still be profitable and competitive under very specific financial, technical, regulatory and legislative conditions [nl

  9. Magnetized Disk Winds in NGC 3783

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  10. Plans for laser spectroscopy of trapped cold hydrogen-like HCI

    International Nuclear Information System (INIS)

    Winters, D.F.A.; Abdulla, A.M.; Castrejon Pita, J.R.; Lange, A. de; Segal, D.M.; Thompson, R.C.

    2005-01-01

    Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented

  11. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  12. SAPS effects on thermospheric winds during the 17 March 2013 storm

    Science.gov (United States)

    Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.

    2017-12-01

    Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.

  13. Robust multi-model control of an autonomous wind power system

    Energy Technology Data Exchange (ETDEWEB)

    Cutululis, Nicolas Antonio; Hansen, Anca Daniela; Soerensen, Poul [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Ceanga, Emil [' Dunarea de Jos' Univ., Faculty of Electrical Engineering, Galati (Romania)

    2006-07-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. (Author)

  14. Robust multi-model control of an autonomous wind power system

    Science.gov (United States)

    Cutululis, Nicolas Antonio; Ceanga, Emil; Hansen, Anca Daniela; Sørensen, Poul

    2006-09-01

    This article presents a robust multi-model control structure for a wind power system that uses a variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) connected to a local grid. The control problem consists in maximizing the energy captured from the wind for varying wind speeds. The VSWT-PMSG linearized model analysis reveals the resonant nature of its dynamic at points on the optimal regimes characteristic (ORC). The natural frequency of the system and the damping factor are strongly dependent on the operating point on the ORC. Under these circumstances a robust multi-model control structure is designed. The simulation results prove the viability of the proposed control structure. Copyright

  15. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  16. On the conditions of existence of cold-blanket systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-12-01

    An extende analysis of the partially ionized boundary layer of a magnetized plasma has been performed, leading to the following results: (i) In a first approximation the ion density at the inner ''edge'' of the layer becomes related to the wall-near neutral gas density, in a way being independent of the spatial distribution of the ionization rate. (ii) The particle and momentum balance equations, and the associated impermeability condition of the plasma with respect to neutral gas penetration, are not sufficient to specify a cold-blanket state, but have to be combined with considerations of the heat blance. This leads to lower and upper power input limits, thus defining conditions for the existence of a cold-blanket state. At decreasing beta values , or increasing radiation losses, there are situations where such a state cannot exist at all. (iii) It should become possible to fulfill the cold-blanket conditions in full-scale reactors as well as in certain model experiments. Probably these conditions can also be satisfied in large tokamaks like JET, and by fast gas injection in devices such as Alcator, but not in medium-size tokamaks being operated at moderately high ion densities. (iv) A strong ''boundary layer stabilization'' mechanism due to the joint viscosity-resistivity-pressure effects is available under cold-blanket conditions. (author)

  17. Characterization of commercially cold sprayed copper coatings and determination of the effects of impacting copper powder velocities

    Energy Technology Data Exchange (ETDEWEB)

    Jakupi, P. [Western University, Dept. of Chemistry, London Ontario, N6A 3K7 (Canada); Keech, P.G. [Nuclear Waste Management Organization, 22 St. Clair Ave. E., Toronto Ontario, M4T 2S3 (Canada); Barker, I. [Western University, Dept. of Earth Sciences, London Ontario, N6A 3K7 (Canada); Ramamurthy, S.; Jacklin, R.L. [Western University, Surface Science Western, 999 Collip Circle, LL31 (Lower), London, Ontario, N6G OJ3 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.ca [Western University, Surface Science Western, 999 Collip Circle, LL31 (Lower), London, Ontario, N6G OJ3 (Canada); Moser, D.E. [Western University, Dept. of Earth Sciences, London Ontario, N6A 3K7 (Canada)

    2015-11-15

    Copper coated steel containers are being developed for the disposal of high level nuclear waste using processes such as cold spray and electrodeposition. Electron Back-Scatter Diffraction has been used to determine the microstructural properties and the quality of the steel-copper coating interface. The influence of the nature of the cold-spray carrier gas as well as its temperature and pressure (velocity) on the coating's plastic strain and recrystallization behaviour have been investigated, and one commercially-produced electrodeposited coating characterized. The quality of the coatings was assessed using the coincident site lattice model to analyse the properties of the grain boundaries. For cold spray coatings the grain size and number of coincident site lattice grain boundaries increased, and plastic strain decreased, with carrier gas velocity. In all cases annealing improved the quality of the coatings by increasing texture and coincidence site-lattices, but also increased the number of physical voids, especially when a low temperature cold spray carrier gas was used. Comparatively, the average grain size and number of coincident site-lattices was considerably larger for the strongly textured electrodeposited coating. Tensile testing showed the electrodeposited coating was much more strongly adherent to the steel substrate.

  18. Characterization of commercially cold sprayed copper coatings and determination of the effects of impacting copper powder velocities

    Science.gov (United States)

    Jakupi, P.; Keech, P. G.; Barker, I.; Ramamurthy, S.; Jacklin, R. L.; Shoesmith, D. W.; Moser, D. E.

    2015-11-01

    Copper coated steel containers are being developed for the disposal of high level nuclear waste using processes such as cold spray and electrodeposition. Electron Back-Scatter Diffraction has been used to determine the microstructural properties and the quality of the steel-copper coating interface. The influence of the nature of the cold-spray carrier gas as well as its temperature and pressure (velocity) on the coating's plastic strain and recrystallization behaviour have been investigated, and one commercially-produced electrodeposited coating characterized. The quality of the coatings was assessed using the coincident site lattice model to analyse the properties of the grain boundaries. For cold spray coatings the grain size and number of coincident site lattice grain boundaries increased, and plastic strain decreased, with carrier gas velocity. In all cases annealing improved the quality of the coatings by increasing texture and coincidence site-lattices, but also increased the number of physical voids, especially when a low temperature cold spray carrier gas was used. Comparatively, the average grain size and number of coincident site-lattices was considerably larger for the strongly textured electrodeposited coating. Tensile testing showed the electrodeposited coating was much more strongly adherent to the steel substrate.

  19. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  20. Night-shift work increases cold pain perception.

    Science.gov (United States)

    Pieh, Christoph; Jank, Robert; Waiß, Christoph; Pfeifer, Christian; Probst, Thomas; Lahmann, Claas; Oberndorfer, Stefan

    2018-05-01

    Although night-shift work (NSW) is associated with a higher risk for several physical and mental disorders, the impact of NSW on pain perception is still unclear. This study investigates the impact of NSW on cold pain perception considering the impact of mood and sleepiness. Quantitative sensory testing (QST) was performed in healthy night-shift workers. Cold pain threshold as well as tonic cold pain was assessed after one habitual night (T1), after a 12-hour NSW (T2) and after one recovery night (T3). Sleep quality was measured with the Pittsburgh Sleep Quality Index (PSQI) before T1, sleepiness with the Stanford Sleepiness Scale (SSS) and mood with a German short-version of the Profile of Mood States (ASTS) at T1, T2 and T3. Depending on the distribution of the data, ANOVAs or Friedman tests as well as t- or Wilcoxon tests were performed. Nineteen healthy shift-workers (13 females; 29.7 ± 7.5 years old; 8.1 ± 6.6 years in shift work, PSQI: 4.7 ± 2.2) were included. Tonic cold pain showed a significant difference between T1 (48.2 ± 27.5 mm), T2 (61.7 ± 26.6 mm; effect size: Cohen's d=.49; percent change 28%), and T3 (52.1 ± 28.7 mm) on a 0-100 mm Visual Analog Scale (p = 0.007). Cold pain threshold changed from 11.0 ± 7.9 °C (T1) to 14.5 ± 8.8 °C (T2) (p = 0.04), however, an ANOVA comparing T1, T2, and T3 was not significant (p = 0.095). Sleepiness (SSS) and mood (ASTS) changed significantly between T1, T2 and T3 (p-values night. Increases in cold pain perception due to NSW appear to be more strongly related to changes in mood as compared to changes in sleepiness. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    Science.gov (United States)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  2. Characteristics for wind energy and wind turbines by considering vertical wind shear

    Institute of Scientific and Technical Information of China (English)

    郑玉巧; 赵荣珍

    2015-01-01

    The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.

  3. Aero-Acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun

    2008-01-01

    both for laminar and turbulent flows. Results have shown that sound generation is due to the unsteadiness of the flow field and the spectrum of sound has a strong relation with fluctuating forces on the solid body. Flow and acoustic simulation were also carried out for a wind turbine where general...

  4. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  5. Latin America wind market assessment. Forecast 2013-2022

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    Wind Power Activities by Country: Developers/Owners, Wind Plant Sizes, Wind Turbines Deployed, Commissioning Dates, Market Share, and Capacity Forecasts Latin American markets are a subject of intense interest from the global wind industry. Wind plant construction across Latin America is modest compared to the more established markets like the United States, Europe, and China, but it is an emerging market that is taking off at a rapid pace. The region has become the hottest alternative growth market for the wind energy industry at a time when growth rates in other markets are flat due to a variety of policy and macroeconomic challenges. Globalization is driving sustainable economic growth in most Latin American countries, resulting in greater energy demand. Wind is increasingly viewed as a valuable and essential answer to increasing electricity generation across most markets in Latin America. Strong wind resources, coupled with today's sophisticated wind turbines, are providing cost-effective generation that is competitive with fossil fuel generation. Most Latin American countries also rely heavily on hydroelectricity, which balances well with variable wind generation. Navigant Research forecasts that if most wind plants under construction with planned commissioning go online as scheduled, annual wind power installations in Latin America will grow from nearly 2.2 GW in 2013 to 4.3 GW by 2022. This Navigant Research report provides a comprehensive view of the wind energy market dynamics at play in Latin America. It offers a country-by-country analysis, outlining the key energy policies and development opportunities and barriers and identifying which companies own operational wind plants and which wind turbine vendors supplied those projects. Market forecasts for wind power installations, capacity, and market share in Latin America, segmented by country and company, extend through 2022. The report also offers an especially close analysis of Brazil and Mexico

  6. Climate change and wind power in Australia

    International Nuclear Information System (INIS)

    Millais, C.

    2001-01-01

    The article represents a stern criticism of Australia's attitude to climate change. Its climate change policy is described as 'Neanderthal'. The Australian government is said to be strongly opposed to ratification of the Kyoto Protocol. The Government's policy appears to be driven by vested interests in fossil fuels. A list of eight flaws in Australia's 2% renewables target is given; the target is said to be far too small for a country with so much renewables potential. However, investment in the country's enormous wind power potential is increasing and targets are given; six reasons why Australia needs to invest in wind power are given. It is suggested that by the end of this decade, 10% of Australia's electricity could come from wind power - a web site address giving further details is given

  7. Functional characterization of the Hyles euphorbiae hawkmoth transcriptome reveals strong expression of phorbol ester detoxification and seasonal cold hardiness genes.

    Science.gov (United States)

    Barth, M Benjamin; Buchwalder, Katja; Kawahara, Akito Y; Zhou, Xin; Liu, Shanlin; Krezdorn, Nicolas; Rotter, Björn; Horres, Ralf; Hundsdoerfer, Anna K

    2018-01-01

    The European spurge hawkmoth, Hyles euphorbiae (Lepidoptera, Sphingidae), has been intensively studied as a model organism for insect chemical ecology, cold hardiness and evolution of species delineation. To understand species isolation mechanisms at a molecular level, this study aims at determining genetic factors underlying two adaptive ecological trait candidates, phorbol ester (TPA) detoxification and seasonal cold acclimation. A draft transcriptome of H. euphorbiae was generated using Illumina sequencing, providing the first genomic resource for the hawkmoth subfamily Macroglossinae. RNA expression levels in tissues of experimental TPA feeding larvae and cooled pupae was compared to levels in control larvae and pupae using 26 bp RNA sequence tag libraries (DeepSuperSAGE). Differential gene expression was assessed by homology searches of the tags in the transcriptome. In total, 389 and 605 differentially expressed transcripts for detoxification and cold hardiness, respectively, could be identified and annotated with proteins. The majority (22 of 28) of differentially expressed detox transcripts of the four 'drug metabolism' enzyme groups (cytochrome P450 (CYP), carboxylesterases (CES), glutathione S-transferases (GST) and lipases) are up-regulated. Triacylglycerol lipase was significantly over proportionally annotated among up-regulated detox transcripts. We record several up-regulated lipases, GSTe2, two CESs, CYP9A21, CYP6BD6 and CYP9A17 as candidate genes for further H. euphorbiae TPA detoxification analyses. Differential gene expression of the cold acclimation treatment is marked by metabolic depression with enriched Gene Ontology terms among down-regulated transcripts almost exclusively comprising metabolism, aerobic respiration and dissimilative functions. Down-regulated transcripts include energy expensive respiratory proteins like NADH dehydrogenase, cytochrome oxidase and ATP synthase. Gene expression patterns show shifts in carbohydrate

  8. Cough & Cold Medicine Abuse

    Science.gov (United States)

    ... Videos for Educators Search English Español Cough & Cold Medicine Abuse KidsHealth / For Teens / Cough & Cold Medicine Abuse ... resfriado Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  9. Winds in the high-latitude lower thermosphere: Dependence on the interplanetary magnetic field

    DEFF Research Database (Denmark)

    Richmond, A.D.; Lathuillere, C.; Vennerstrøm, Susanne

    2003-01-01

    -side cyclonic vortex that responds more strongly to B-z variations. The dependence of the wind on the IMF is nonlinear, especially with respect to IMF B-z. For positive B-z the difference winds are largely confined to the polar cap, while for negative B-z the difference winds extend to subauroral latitudes...... of similar to20 hours, a B-y-dependent magnetic-zonal-mean zonal wind generally exists, with maximum wind speeds at 80 magnetic latitude, typically 10 m/s at 105 km, increasing to about 60 m/s at 123 km and 80 m/s at 200 km. In the southern hemisphere the wind is cyclonic when the time-averaged B...

  10. All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold.

    Science.gov (United States)

    Plantamp, Christophe; Salort, Katleen; Gibert, Patricia; Dumet, Adeline; Mialdea, Gladys; Mondy, Nathalie; Voituron, Yann

    2016-06-01

    Winter severity and overwintering capacity are key ecological factors in successful invasions, especially in ectotherms. The integration of physiological approaches into the study of invasion processes is emerging and promising. Physiological information describes the mechanisms underlying observed survival and reproductive capacities, and it can be used to predict an organism's response to environmental perturbations such as cold temperatures. We investigated the effects of various cold treatments on life history and physiological traits of an invasive pest species, Drosophila suzukii, such as survival, fertility and oxidative balance. This species, a native of temperate Asian areas, is known to survive where cold temperatures are particularly harsh and has been recently introduced into Europe and North America. We found that cold treatments had a strong impact on adult survival but no effect on female's fertility. Although only minor changes were observed after cold treatment on studied physiological traits, a strong sex-based difference was observed in both survival and physiological markers (antioxidant defences and oxidative markers). Females exhibited higher survival, reduced oxidative defences, less damage to nucleic acids, and more damage to lipids. These results suggest that D. suzukii relies on a pathway other than oxidative balance to resist cold injury. Altogether, our results provide information concerning the mechanisms of successful invasion by D. suzukii. These findings may assist in the development of population models that predict the current and future geographic ranges of this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Wind-power installation on the Guetsch in Switzerland; Windkraftanlage Guetsch, EW Ursern, Andermatt UR

    Energy Technology Data Exchange (ETDEWEB)

    Russi, M.

    2006-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at the 800 kW wind turbine installed in 2001/2002 by the Ursern electricity utility near Andermatt, Switzerland, at a height of 2350 meters above sea level. The original prototype wind turbine contained various components from Swiss industry, such as the generator and the inverter. Because of difficulties (cracks in rotor blades, bankruptcy of the manufacturer, etc.) this installation was replaced by an Enercon 600-kW-wind turbine in 2004. Characteristic features of this turbine, such as is its adaptation for use under turbulent wind conditions at cold locations, are discussed. The results obtained in 2005 made it obvious that the utilisation of wind energy in alpine regions is possible and that the extreme conditions at this location do not significantly affect the efficient and safe operation of such an installation. Together with the presence of a meteorological station in the vicinity, optimal operating conditions prevail at this site for further research projects in connection with icing-up of turbine blades and wind energy. The report describes the installation and de-installation of the first turbine and the installation of the present one. Initial experience gained with the installation and its certification by the 'Naturemade' eco-power programme is discussed, as is future expansion at the site.

  12. SEEWIND - South-East European Wind Energy Exploitation. Wind energy research in South East Europe under the EC FP6 programme; SEEWIND - South-East European Wind Energy Exploitation. Windenergieforschung im 6. Rahmenprogramm der Europaeischen Union in Suedosteuropa

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmeier, H. [Verein Energiewerkstatt (Austria)

    2008-08-15

    Large areas in South East Europe offer perfect conditions for the Utilisation of Wind Energy. Local wind systems like ''Bora'', which occurs along the Adriatic Sea, or ''Koshava'', which flows between the ridge of the Carpathian Mountains and the Balkan Mountains from Romania over to Serbia, are generated through differences in pressure and temperature between the adjacent regions. Those wind systems therefore can be described as 'home made' and have very individual characteristics. Despite the excellent wind conditions of those locations, the mainly cliffy and complex terrain and the extreme wind conditions with turbulences and strong gusts make great demands on the design and operation of the wind turbines. Exactly those problems the European Commission asked to be investigated and therefore defined 'Complex terrain and local wind systems' as one of the research topics in the last call of the 6th Framework Programme. Under the lead management of Verein Energiewerkstatt, a consortium of ten partners from seven middle- and southeast European countries took part in this call for proposals and received acceptance for the submitted Project ''SEEWIND - South-East European Wind Energy Exploitation''. (orig.)

  13. ON MULTIPLE RECONNECTION X-LINES AND TRIPOLAR PERTURBATIONS OF STRONG GUIDE MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, S.; Gosling, J. T. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department of Mathematics, University of Leuven, Leuven (Belgium); Newman, D. L.; Goldman, M. V. [Center for Integrated Plasma Studies, University of Colorado, Boulder, CO (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Lavraud, B. [Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Toulouse (France); Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Carr, C. M. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Markidis, S., E-mail: eriksson@lasp.colorado.edu [High Performance Computing and Visualization Department, KTH, Stockholm (Sweden)

    2015-05-20

    We report new multi-spacecraft Cluster observations of tripolar guide magnetic field perturbations at a solar wind reconnection exhaust in the presence of a guide field B{sub M} {sub  }which is almost four times as strong as the reversing field B{sub L}. The novel tripolar field consists of two narrow regions of depressed B{sub M}, with an observed 7%–14% ΔB{sub M} magnitude relative to the external field, which are found adjacent to a wide region of enhanced B{sub M} within the exhaust. A stronger reversing field is associated with each B{sub M} depression. A kinetic reconnection simulation for realistic solar wind conditions and the observed strong guide field reveals that tripolar magnetic fields preferentially form across current sheets in the presence of multiple X-lines as magnetic islands approach one another and merge into fewer and larger islands. The simulated ΔB{sub M}/ΔX{sub N} over the normal width ΔX{sub N} between a B{sub M} minimum and the edge of the external region agree with the normalized values observed by Cluster. We propose that a tripolar guide field perturbation may be used to identify candidate regions containing multiple X-lines and interacting magnetic islands at individual solar wind current sheets with a strong guide field.

  14. Aerodynamic study of a small horizontal-axis wind turbine

    Directory of Open Access Journals (Sweden)

    Cornelia NITA

    2012-06-01

    Full Text Available The wind energy is deemed as one of the most durable energetic variants of the future because the wind resources are immense. Furthermore, one predicts that the small wind turbine will play a vital role in the urban environment. Unfortunately, nowadays, the noise emissions from wind turbines represent one of the main obstacles to widespread the use in populated zones. Moreover, the energetic efficiency of these wind turbines has to be high even at low and medium wind velocities because, usually the cities are not windy places. The numerical results clearly show that the wakes after the trailing edge are the main noise sources. In order to decrease the power of these noise sources, we should try to decrease the intensity of wakes after the trailing edge, i.e. the aerodynamic fields from pressure and suction sides would have to be almost the same near trailing edge. Furthermore, one observes a strong link between transport (circumferential velocity and acoustic power level, i.e. if the transport velocity increases, the acoustic power level also augments.

  15. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  16. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  17. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  18. Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Meneveau, Charles

    2014-01-01

    Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind-farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly

  19. SANS study of understanding mechanism of cold gelation of globular proteins

    International Nuclear Information System (INIS)

    Chinchalikar, A. J.; Kumar, Sugam; Aswal, V. K.; Wagh, A. G.; Kohlbrecher, J.

    2014-01-01

    Small-angle neutron scattering (SANS) has been used to probe the evolution of interaction and the resultant structures in the cold gelation of globular proteins. The cold gelation involves two steps consisting of irreversible protein deformation by heating followed by some means (e.g. increasing ionic strength) to bring them together at room temperature. We have examined the role of different salts in cold gelation of preheated aqueous Bovine Serum Albumin (BSA) protein solutions. The interactions have been modeled by two Yukawa potential combining short-range attraction and long-range repulsion. We show that in step 1 (preheated temperature effect) the deformation of protein increases the magnitude of attractive interaction but not sufficient to induce gel. The attractive interaction is further enhanced in step 2 (salt effect) to result in gel formation. The salt effect is found to be strongly depending on the valency of the counterions. The gel structure has been characterized by the mass fractals

  20. Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season

    Directory of Open Access Journals (Sweden)

    Y. Umemoto

    2004-11-01

    Full Text Available A special observation campaign (X-BAIU, using various instruments (wind profilers, C-band weather radars, X-band Doppler radars, rawinsondes, etc., was carried out in Kyushu (western Japan during the Baiu season, from 1998 to 2002. In the X-BAIU-99 and -02 observations, a line-shaped orographic rainband extending northeastward from the Koshikijima Islands appeared in the low-level strong wind with warm-moist airs. The weather radar observation indicated that the rainband was maintained for 11h. The maximum length and width of the rainband observed in 1999 was ~200km and ~20km, respectively. The rainband observed in 2002 was not so developed compared with the case in 1999. The Froude number averaged from sea level to the top of the Koshikijima Islands (~600m was large (>1, and the lifting condensation level was below the tops of the Koshikijima Islands. Thus, it is suggested that the clouds organizing the rainband are formed by the triggering of the mountains on the airflow passing over them. The vertical profile of horizontal wind in/around the rainband was investigated in the wind profiler observations. In the downdraft region 60km from the Koshikijima Islands, strong wind and its clockwise rotation with increasing height was observed below 3km altitude. In addition, a strong wind component perpendicular to the rainband was observed when the rainband was well developed. These wind behaviors were related to the evolution of the rainband.

  1. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  2. Gap winds and their effects on regional oceanography Part II: Kodiak Island, Alaska

    Science.gov (United States)

    Ladd, Carol; Cheng, Wei; Salo, Sigrid

    2016-10-01

    Frequent gap winds, defined here as offshore-directed flow channeled through mountain gaps, have been observed near Kodiak Island in the Gulf of Alaska (GOA). Gap winds from the Iliamna Lake gap were investigated using QuikSCAT wind data. The influence of these wind events on the regional ocean was examined using satellite and in situ data combined with Regional Ocean Modeling System (ROMS) model runs. Gap winds influence the entire shelf width (> 200 km) northeast of Kodiak Island and extend an additional 150 km off-shelf. Due to strong gradients in the along-shelf direction, they can result in vertical velocities in the ocean of over 20 m d-1 due to Ekman pumping. The wind events also disrupt flow of the Alaska Coastal Current (ACC), resulting in decreased flow down Shelikof Strait and increased velocities on the outer shelf. This disruption of the ACC has implications for freshwater transport into the Bering Sea. The oceanographic response to gap winds may influence the survival of larval fishes as Arrowtooth Flounder recruitment is negatively correlated with the interannual frequency of gap-wind events, and Pacific Cod recruitment is positively correlated. The frequency of offshore directed winds exhibits a strong seasonal cycle averaging 7 days per month during winter and 2 days per month during summer. Interannual variability is correlated with the Pacific North America Index and shows a linear trend, increasing by 1.35 days per year. An accompanying paper discusses part I of our study (Ladd and Cheng, 2016) focusing on gap-wind events flowing out of Cross Sound in the eastern GOA.

  3. Solar wind and its interaction with the Earth magnetosphere

    International Nuclear Information System (INIS)

    Grib, S.A.

    1978-01-01

    A critical review is given regarding the research of the stationary and non-stationary interaction of the solar wind with the Earth magnetosphere. Highlighted is the significance of the interplanetary magnetic field in the non-stationary movement of the solar wind flux. The problem of the solar wind shock waves interaction with the ''bow wave-Earth's magnetosphere'' system is being solved. Considered are the secondary phenomena, as a result of which the depression-type wave occurs, that lowers the pressure on the Earth's maanetosphere. The law, governing the movement of the magnetosphere subsolar point during the abrupt start of a geomagnetic storm has been discovered. Stationary circumvention of the magnetosphere by the solar wind flux is well described by the gas dynamic theory of the hypersonic flux. Non-stationary interaction of the solar wind shock waves with the magnetosphere is magnetohydrodynamic. It is pointed out, that the problems under consideration are important for the forecasting of strong geomagnetic perturbations on the basis of cosmic observations

  4. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  5. Black hole winds II: Hyper-Eddington winds and feedback

    Science.gov (United States)

    King, Andrew; Muldrew, Stuart I.

    2016-01-01

    We show that black holes supplied with mass at hyper-Eddington rates drive outflows with mildly sub-relativistic velocities. These are ˜0.1-0.2c for Eddington accretion factors {dot{m}_acc}˜ 10-100, and ˜1500 km s-1 for {dot{m}_acc}˜ 10^4. Winds like this are seen in the X-ray spectra of ultraluminous sources (ULXs), strongly supporting the view that ULXs are stellar-mass compact binaries in hyper-Eddington accretion states. SS433 appears to be an extreme ULX system ({dot{m}_acc}˜ 10^4) viewed from outside the main X-ray emission cone. For less-extreme Eddington factors {dot{m}_acc}˜ 10-100 the photospheric temperatures of the winds are ˜100 eV, consistent with the picture that the ultraluminous supersoft sources (ULSs) are ULXs seen outside the medium-energy X-ray beam, unifying the ULX/ULS populations and SS433 (actually a ULS but with photospheric emission too soft to detect). For supermassive black holes (SMBHs), feedback from hyper-Eddington accretion is significantly more powerful than the usual near-Eddington (`UFO') case, and if realized in nature would imply M - σ masses noticeably smaller than observed. We suggest that the likely warping of the accretion disc in such cases may lead to much of the disc mass being expelled, severely reducing the incidence of such strong feedback. We show that hyper-Eddington feedback from bright ULXs can have major effects on their host galaxies. This is likely to have important consequences for the formation and survival of small galaxies.

  6. On the Wind Energy Resource and Its Trend in the East China Sea

    Directory of Open Access Journals (Sweden)

    Adekunle Ayodotun Osinowo

    2017-01-01

    Full Text Available This study utilizes a 30-year (1980–2009 10 m wind field dataset obtained from the European Center for Medium Range Weather Forecast to investigate the wind energy potential in the East China Sea (ECS by using Weibull shape and scale parameters. The region generally showed good wind characteristics. The calculated annual mean of the wind power resource revealed the potential of the region for large-scale grid-connected wind turbine applications. Furthermore, the spatiotemporal variations showed strong trends in wind power in regions surrounding Taiwan Island. These regions were evaluated with high wind potential and were rated as excellent locations for installation of large wind turbines for electrical energy generation. Nonsignificant and negative trends dominated the ECS and the rest of the regions; therefore, these locations were found to be suitable for small wind applications. The wind power density exhibited an insignificant trend in the ECS throughout the study period. The trend was strongest during spring and weakest during autumn.

  7. Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Petrosyan, D.; Valiente, M.

    2015-01-01

    We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...

  8. Characterization of cold sensitivity and thermal preference using an operant orofacial assay

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2006-12-01

    Full Text Available Abstract Background A hallmark of many orofacial pain disorders is cold sensitivity, but relative to heat-related pain, mechanisms of cold perception and the development of cold allodynia are not clearly understood. Molecular mediators of cold sensation such as TRPM8 have been recently identified and characterized using in vitro studies. In this study we characterized operant behavior with respect to individually presented cold stimuli (24, 10, 2, and -4°C and in a thermal preference task where rats chose between -4 and 48°C stimulation. We also evaluated the effects of menthol, a TRPM8 agonist, on operant responses to cold stimulation (24, 10, and -4°C. Male and female rats were trained to drink sweetened milk while pressing their shaved faces against a thermode. This presents a conflict paradigm between milk reward and thermal stimulation. Results We demonstrated that the cold stimulus response function was modest compared to heat. There was a significant effect of temperature on facial (stimulus contacts, the ratio of licking contacts to stimulus contacts, and the stimulus duration/contact ratio. Males and females differed only in their facial contacts at 10°C. In the preference task, males preferred 48°C to -4°C, despite the fact that 48°C and -4°C were equally painful as based on their reward/stimulus and duration/contact ratios. We were able to induce hypersensitivity to cold using menthol at 10°C, but not at 24 or -4°C. Conclusion Our results indicate a strong role for an affective component in processing of cold stimuli, more so than for heat, which is in concordance with human psychophysical findings. The induction of allodynia with menthol provides a model for cold allodynia. This study provides the basis for future studies involving orofacial pain and analgesics, and is translatable to the human experience.

  9. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing...

  10. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  11. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  12. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  13. Cold-water coral distributions in the drake passage area from towed camera observations--initial interpretations.

    Directory of Open Access Journals (Sweden)

    Rhian G Waller

    Full Text Available Seamounts are unique deep-sea features that create habitats thought to have high levels of endemic fauna, productive fisheries and benthic communities vulnerable to anthropogenic impacts. Many seamounts are isolated features, occurring in the high seas, where access is limited and thus biological data scarce. There are numerous seamounts within the Drake Passage (Southern Ocean, yet high winds, frequent storms and strong currents make seafloor sampling particularly difficult. As a result, few attempts to collect biological data have been made, leading to a paucity of information on benthic habitats or fauna in this area, particularly those on primarily hard-bottom seamounts and ridges. During a research cruise in 2008 six locations were examined (two on the Antarctic margin, one on the Shackleton Fracture Zone, and three on seamounts within the Drake Passage, using a towed camera with onboard instruments to measure conductivity, temperature, depth and turbidity. Dominant fauna and bottom type were categorized from 200 randomized photos from each location. Cold-water corals were present in high numbers in habitats both on the Antarctic margin and on the current swept seamounts of the Drake Passage, though the diversity of orders varied. Though the Scleractinia (hard corals were abundant on the sedimented margin, they were poorly represented in the primarily hard-bottom areas of the central Drake Passage. The two seamount sites and the Shackleton Fracture Zone showed high numbers of stylasterid (lace and alcyonacean (soft corals, as well as large numbers of sponges. Though data are preliminary, the geological and environmental variability (particularly in temperature between sample sites may be influencing cold-water coral biogeography in this region. Each area observed also showed little similarity in faunal diversity with other sites examined for this study within all phyla counted. This manuscript highlights how little is understood of these

  14. Commemoration of a cold war

    DEFF Research Database (Denmark)

    Farbøl, Rosanna

    2015-01-01

    This article brings together the fields of Cold War studies and memory studies. In Denmark, a remarkable institutionalisation of Cold War memory has taken place in the midst of a heated ideological battle over the past and whether to remember the Cold War as a ‘war’. Using Danish Cold War museums...... and heritage sites as case studies, this article sheds new light on the politics of history involved in Cold War commemoration. It suggests that the Cold War is commemorated as a war, yet this war memory is of a particular kind: it is a war memory without victims....

  15. DEWEK '98: 4. German wind power conference; DEWEK '98: 4. Deutsche Windenergie-Konferenz. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, B. [ed.

    1999-07-01

    The conference report comprises 90 papers and posters on the following subjects: 1. Technological developments (e.g. use of adaptive structures systems, active stalle wind power systems, systems for early detection of errors); 2. Design and optimisation; 3. Wind forecasts; 4. Operation analyses (e.g. active and passive stall, collective loads, wind power systems in cold climates); 5. Wind power systems and the environment; 6. Offshore wind power generation; 7. Electric characteristics (e.g. modelling of flicker, energy conditioning in distribution systems with a high wind power share); 8. Economic efficiency (e.g. economic efficiency of offshore wind parks on the North Sea coast); 9. Network quality; 10. Rotor development (e.g. noise reduction); 11. Certification and methods of measurement. [German] Der Tagungsband enhaelt 90 Fach- und Posterbeitraege, die sich mit den folgenden Schwerpunkten befassen: 1. Technologische Entwicklungen (z.B. Einsatz von adaptiven Struktursystemen; Active-Stall-WKA; Fehlerfrueherkennungssystemen). 2. Auslegung und Optimierung. 3. Windprognosen. 4. Betriebsanalysen (z.B. Aktive Stall/Passive Stall im Vergleich; Lastkollektive von WKA; WKA in kaltem Klima). 5. Windenergieanlagen und Umwelt. 6. Offshore-Windenergienutzung. 7. Elektrische Eigenschaften (z.B. Modellierung des 'Flickerverhaltens' von WKA; Energiekonditionierung in Verteilnetzen mit hohem Windenergieanteil). 8. Wirtschaftlichkeit (z.B. Wirtschaftlichkeit von Offshore-Windparks der Norddeutschen Kuestenlinie). 9. Netzqualitaet. 10. Rotorentwicklung (z.B. Reduzierung der Schallabstrahlung von WKAs). 11. Zertifizierung von Messmethoden. (AKF)

  16. Cold thermal injury from cold caps used for the prevention of chemotherapy-induced alopecia.

    Science.gov (United States)

    Belum, Viswanath Reddy; de Barros Silva, Giselle; Laloni, Mariana Tosello; Ciccolini, Kathryn; Goldfarb, Shari B; Norton, Larry; Sklarin, Nancy T; Lacouture, Mario E

    2016-06-01

    The use of scalp cooling for the prevention of chemotherapy-induced alopecia (CIA) is increasing. Cold caps are placed onto the hair-bearing areas of the scalp for varying time periods before, during, and after cytotoxic chemotherapy. Although not yet reported, improper application procedures could result in adverse events (AEs). At present, there are no evidence-based scalp cooling protocols, and there is no regulatory oversight of their use. To report the occurrence of cold thermal injury (frostbite) on the scalp, following the use of cold caps for the prevention of CIA. We identified four patients who developed cold thermal injuries on the scalp following the application of cold caps. Medical records were analyzed to retrieve the demographic and clinical characteristics. The cold thermal injuries in our patients were grade 1/2 in severity and improved with topical interventions and interruption of cold cap use, although grade 1 persistent alopecia ensued in 3 patients. The true incidence of such injuries in this setting, however, remains unknown. Cold thermal injuries are likely infrequent and preventable AEs that may result from improper device application procedures during cold cap use. Although these untoward events are usually mild to moderate in severity, the potential occurrence of long-term sequelae (e.g., permanent alopecia and scarring) or the need to discontinue cold cap use, are not known. Prospective studies are needed to further elucidate the risk and standardize healthcare delivery methods, and to improve patient/supportive/healthcare provider education.

  17. Ecological consequences of the expansion of N2-fixing plants in cold biomes

    Science.gov (United States)

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D.; Reed, Sasha C.; Sigurdsson, Bjarni D.; Körner, Christian

    2014-01-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem’s capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  18. The relation between Puelche wind and the occurrence of forest fires in Bio Bio region, Chile

    International Nuclear Information System (INIS)

    Inzunza, Juan Carlos

    2009-01-01

    This paper presents a study of the relation between Puelche wind and forest fires in the Bio Bio Region, Chile. To establish a relationship between Puelche wind and forest fire generation, different data analysis methods and statistics test were applied. The relation between the total number of fires in the season and the days with Puelche wind were not statistically significant. When analyzing daily averages of fires produced with and without Puelche wind for each season, the highest daily fire occurrence values were found when there is Puelche wind, indicating that this event produces a strong effect on the daily occurrence of fires since these increased by 90% in comparison to the days without Puelche wind. The results of the difference between the number of fires with and without Puelche wind with respect to the average number of total fires indicate that the days with Puelche wind surpass both the total and the average values for days without Puelche wind, confirming the strong effect that a Puelche wind day has on forest fires. The greatest number of fires produced with Puelche wind occurs in the Province of Concepcion. This Province is the most affected by Puelche wind conditions despite having the smallest surface area for the region studied. Still, it is the most populous province of the region and has the greatest surface area with forests and plantations with respect to its size. Consequently, Puelche wind is a factor that increases the occurrence of forest fires and favors their propagation.

  19. Considering induction factor using BEM method in wind farm layout optimization

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Dehghan, M.; Torabi, F.

    2014-01-01

    For wind farm layout optimization process, a simple linear model has been mostly used for considering the wake effect of a wind turbine on its downstream turbines. In this model, the wind velocity in the wake behind a turbine is obtained as a function of turbine induction factor which...... was considered to be 0.324 almost in all the previous studies. However, it is obviously evident that this factor is a strong function of turbine blade geometry and operational conditions. In the present study, a new method is introduced by which the induction factor for wind turbines can be calculated based...... on the method of Blade Element Momentum theory. By this method, the effect of blade profile, wind speed and angular velocity of wind turbine on the induction factor can be easily taken into account. The results show that for different blade profiles and operational conditions, the induction factor differs from...

  20. Wind resource estimation and siting of wind turbines

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, N.G.; Landberg, L.

    1994-01-01

    Detailed knowledge of the characteristics of the natural wind is necessary for the design, planning and operational aspect of wind energy systems. Here, we shall only be concerned with those meteorological aspects of wind energy planning that are termed wind resource estimation. The estimation...... of the wind resource ranges from the overall estimation of the mean energy content of the wind over a large area - called regional assessment - to the prediction of the average yearly energy production of a specific wind turbine at a specific location - called siting. A regional assessment will most often...... lead to a so-called wind atlas. A precise prediction of the wind speed at a given site is essential because for aerodynamic reasons the power output of a wind turbine is proportional to the third power of the wind speed, hence even small errors in prediction of wind speed may result in large deviations...

  1. Regional stratospheric warmings in the Pacific-Western Canada (PWC sector during winter 2004/2005: implications for temperatures, winds, chemical constituents and the characterization of the Polar vortex

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2008-11-01

    Full Text Available The vortex during winter 2004/2005 was interesting for several reasons. It has been described as "cold" stratospherically, with relatively strong westerly winds. Losses of ozone until the final warming in March were considerable, and comparable to the cold 1999–2000 winter. There were also modest warming events, indicated by peaks in 10 hPa zonal mean temperatures at high latitudes, near 1 January and 1 February. Events associated with a significant regional stratospheric warming in the Pacific-Western Canada (PWC sector then began and peaked toward the end of February, providing strong longitudinal variations in dynamical characteristics (Chshyolkova et al., 2007; hereafter C07. The associated disturbed vortex of 25 February was displaced from the pole and either elongated (upper or split into two cyclonic centres (lower. Observations from Microwave Limb Sounder (MLS on Aura are used here to study the thermal characteristics of the stratosphere in the Canadian-US (253° E and Scandinavian-Europe (16° E sectors. Undisturbed high latitude stratopause (55 km zonal mean temperatures during the mid-winter (December–February reached 270 K, warmer than empirical-models such as CIRA-86, suggesting that seasonal polar warming due to dynamical influences affects the high altitude stratosphere as well as the mesosphere. There were also significant stratopause differences between Scandinavia and Canada during the warming events of 1 January and 1 February, with higher temperatures near 275 K at 16° E. During the 25 February "PWC" event a warming occurred at low and middle stratospheric heights (10–30 km: 220 K at 253° E and the stratopause cooled; while over Scandinavia-Europe the stratosphere below ~30 km was relatively cold at 195 K and the stratopause became even warmer (>295 K and lower (~45 km. The zonal winds followed the associated temperature gradients so that the vertical and latitudinal gradients of the winds differed strongly between

  2. Spatial dependencies of wind power and interrelations with spot price dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Elberg, Christina; Hagspiel, Simeon

    2013-06-15

    Wind power has seen a strong growth over the last decade. Due to its high intermittency, spot prices have become more volatile and exhibit correlated behavior with wind power fed into the system. In this paper, we develop a stochastic simulation model that incorporates the spatial dependencies of wind power and its interrelations with spot prices: We employ a structural supply and demand based model for the electricity spot price that takes into account stochastic production quantities of wind power. Spatial dependencies are modeled with the help of copulas, thus linking the single turbine wind power to the aggregated wind power in a market. The model is applied to the German electricity market where wind power already today makes up a significant share of total power production. Revenue distributions and the market value of different wind power plants are analyzed. We find that the specific location of the considered wind turbine, i.e. its spatial dependency with respect to the aggregated wind power in the system, is of high relevance for its market value. Many of the analyzed locations show an upper tail dependence that adversely impacts the market value. This effect becomes more important for increasing levels of wind power penetration.

  3. Spatial dependencies of wind power and interrelations with spot price dynamics

    International Nuclear Information System (INIS)

    Elberg, Christina; Hagspiel, Simeon

    2013-01-01

    Wind power has seen a strong growth over the last decade. Due to its high intermittency, spot prices have become more volatile and exhibit correlated behavior with wind power fed into the system. In this paper, we develop a stochastic simulation model that incorporates the spatial dependencies of wind power and its interrelations with spot prices: We employ a structural supply and demand based model for the electricity spot price that takes into account stochastic production quantities of wind power. Spatial dependencies are modeled with the help of copulas, thus linking the single turbine wind power to the aggregated wind power in a market. The model is applied to the German electricity market where wind power already today makes up a significant share of total power production. Revenue distributions and the market value of different wind power plants are analyzed. We find that the specific location of the considered wind turbine, i.e. its spatial dependency with respect to the aggregated wind power in the system, is of high relevance for its market value. Many of the analyzed locations show an upper tail dependence that adversely impacts the market value. This effect becomes more important for increasing levels of wind power penetration.

  4. Timoshenko-Wagner-Kappus Torsion Bending Theory and Wind ...

    Indian Academy of Sciences (India)

    Theory and Wind Tunnel Balance Design. S P Govinda ... The study of torsion and bending has always been a favourite ... Since it was difficult to work quietlyin Petersburg, .... should be stiff and strong to endure shocks and ensure long life.

  5. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  6. Cold urticaria: inhibition of cold-induced histamine release by doxantrazole.

    Science.gov (United States)

    Bentley-Phillips, C B; Eady, R A; Greaves, M W

    1978-10-01

    Thirteen patients with cold urticaria were studied to assess the effect of the systemic drug doxantrazole, which has actions resembling disodium cromoglycate, on cold evoked histamine release. The patients, all of whom developed an immediate local whealing response after cooling of the forearm, demonstrated release of histamine into venous blood draining that forearm. Following doxantrazole treatment, significant suppression of histamine release occurred. In some but not all patients this was accompanied by diminution of urtication in response to cooling. A double-blind study was carried out in 3 subjects, all of whom showed diminished cold-stimulated histamine release after doxantrazole. Two of these showed clinical improvement. Doxantrazole had no effect on erythema due to intradermal histamine, but did suppress the erythematous reaction to intradermal injection of compound 48/80. Our results suggest that doxantrazole or related anti-allergic agents might be useful in the treatment of cold urticaria.

  7. Wind farm project economics : value of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  8. 77 FR 43117 - Meeting of the Cold War Advisory Committee for the Cold War Theme Study

    Science.gov (United States)

    2012-07-23

    ... the Cold War Advisory Committee for the Cold War Theme Study AGENCY: National Park Service, Interior... Committee Act, 5 U.S.C. Appendix, that the Cold War Advisory Committee for the Cold War Theme Study will... National Park Service (NPS) concerning the Cold War Theme Study. DATES: The teleconference meeting will be...

  9. Impact of wind turbine noise in the Netherlands.

    Science.gov (United States)

    Verheijen, Edwin; Jabben, Jan; Schreurs, Eric; Smith, Kevin B

    2011-01-01

    The Dutch government aims at an increase of wind energy up to 6 000 MW in 2020 by placing new wind turbines on land or offshore. At the same time, the existing noise legislation for wind turbines is being reconsidered. For the purpose of establishing a new noise reception limit value expressed in L den , the impact of wind turbine noise under the given policy targets needs to be explored. For this purpose, the consequences of different reception limit values for the new Dutch noise legislation have been studied, both in terms of effects on the population and regarding sustainable energy policy targets. On the basis of a nation-wide noise map containing all wind turbines in The Netherlands, it is calculated that 3% of the inhabitants of The Netherlands are currently exposed to noise from wind turbines above 28 dB(A) at the faηade. Newly established dose-response relationships indicate that about 1500 of these inhabitants are likely to be severely annoyed inside their dwellings. The available space for new wind turbines strongly depends on the noise limit value that will be chosen. This study suggests an outdoor A-weighted reception limit of L den = 45 dB as a trade-off between the need for protection against noise annoyance and the feasibility of national targets for renewable energy.

  10. Wind Power Today: Wind Energy Program Highlights 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-05-01

    Wind Power Today is an annual publication that provides an overview of the U.S. Department of Energy's Wind Energy Program accomplishments for the previous year. The purpose of Wind Power Today is to show how DOE's Wind Energy Program supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2001 edition of Wind Power Today also includes discussions about wind industry growth in 2001, how DOE is taking advantage of low wind speed regions through advancing technology, and distributed applications for small wind turbines.

  11. MENTAT: A New Magnetic Meridional Neutral Wind Model for Earth's Thermosphere

    Science.gov (United States)

    Dandenault, P. B.

    2017-12-01

    We present a new model of thermosphere winds in the F region obtained from variations in the altitude of the peak density of the ionosphere (hmF2). The new Magnetic mEridional NeuTrAl Thermospheric (MENTAT) wind model produces magnetic-meridional neutral winds as a function of year, day of year, solar local time, solar flux, geographic latitude, and geographic longitude. The winds compare well with Fabry-Pérot Interferometer (FPI) wind observations and are shown to provide accurate specifications in regions outside of the observational database such as the midnight collapse of hmF2 at Arecibo, Puerto Rico. The model winds are shown to exhibit the expected seasonal, diurnal, and hourly behavior based on geophysical conditions. The magnetic meridional winds are similar to those from the well-known HWM14 model but there are important differences. For example, Townsville, Australia has a strong midnight collapse similar to that at Arecibo, but winds from HWM14 do not reproduce it. Also, the winds from hmF2 exhibit a moderate solar cycle dependence under certain conditions, whereas, HWM14 has no solar activity dependence. For more information, please visit http://www.mentatwinds.net/.

  12. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme.

    Science.gov (United States)

    Park, Ha Ju; Lee, Chang Woo; Kim, Dockyu; Do, Hackwon; Han, Se Jong; Kim, Jung Eun; Koo, Bon-Hun; Lee, Jun Hyuck; Yim, Joung Han

    2018-01-01

    Enzymes isolated from organisms found in cold habitats generally exhibit higher catalytic activity at low temperatures than their mesophilic homologs and are therefore known as cold-active enzymes. Cold-active proteases are very useful in a variety of biotechnological applications, particularly as active ingredients in laundry and dishwashing detergents, where they provide strong protein-degrading activity in cold water. We identified a cold-active protease (Pro21717) from a psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, and determined the crystal structure of its catalytic domain (CD) at a resolution of 1.4 Å. The Pro21717-CD structure shows a conserved subtilisin-like fold with a typical catalytic triad (Asp185, His244, and Ser425) and contains four calcium ions and three disulfide bonds. Interestingly, we observed an unexpected electron density at the substrate-binding site from a co-purified peptide. Although the sequence of this peptide is unknown, analysis of the peptide-complexed structure nonetheless provides some indication of the substrate recognition and binding mode of Pro21717. Moreover, various parameters, including a wide substrate pocket size, an abundant active-site loop content, and a flexible structure provide potential explanations for the cold-adapted properties of Pro21717. In conclusion, this is first structural characterization of a cold-adapted subtilisin-like protease, and these findings provide a structural and functional basis for industrial applications of Pro21717 as a cold-active laundry or dishwashing detergent enzyme.

  13. Climate-conscious architecture. Design and wind testing method for climates in change

    Energy Technology Data Exchange (ETDEWEB)

    Kuismanen, K.

    2008-07-01

    The main objective of this research was to develop practical tools with which it is possible to improve the environment, micro-climate and energy economy of buildings and plans in different climate zones, and take the climate change into account. The parts of the study are: State of art study into existing know-how about climate and planning. Study of the effects of climate change on the built environment. Development of simple micro-climate, nature and built environment analysis methods. Defining the criteria of an acceptable micro-climatic environment. Development of the wind test blower. Presenting ways to interpret test results and draw conclusions. Development of planning and design guidelines for different climate zones. An important part of the research is the development of the CASE wind test instrument, different wind simulation techniques, and the methods of observing the results. Bioclimatic planning and architectural design guidelines for different climate zones are produced. The analyse tools developed give a qualitative overall view, which can be deepened towards a quantitative analyse with wind testing measurements and roughness calculations. No mechanical rules are suggested, but complementary viewpoints and practices introduced to a normal planning process as well as improvement of consultative knowledge. The 'method' is that there is no strict mechanical method, but a deeper understanding of bioclimatic matters. Climate-conscious planning with the developed CASE method, make it possible to design a better micro-climate for new or old built-up areas. Winds can be used in to ventilate exhaust fumes and other pollutants, which improves the quality of air and the healthiness of the urban environment. The analyses and scale-model tests make it possible to shield cold windy areas and to diminish the cooling effect of wind on facades. According to studies in Scandinavian countries this will bring energy savings of 5-15 per cent. The method can

  14. Development of Cold Neutron Activation Station at HANARO Cold Neutron Source

    International Nuclear Information System (INIS)

    Sun, G. M.; Hoang, S. M. T.; Moon, J. H.; Chung, Y. S.; Cho, S. J.; Lee, K. H.; Park, B. G.; Choi, H. D.

    2012-01-01

    A new cold neutron source at the HANARO Research Reactor had been constructed in the framework of a five-year project, and ended in 2009. It has seven neutron guides, among which five guides were already allocated for a number of neutron scattering instruments. A new two-year project to develop a Cold Neutron Activation Station (CONAS) was carried out at the two neutron guides since May 2010, which was supported by the program of the Ministry of Education, Science and Technology, Korea. Fig. 1 shows the location of CONAS. CONAS is a complex facility including several radioanalytical instruments utilizing neutron capture reaction to analyze elements in a sample. It was designed to include three instruments like a CN-PGAA (Cold Neutron - Prompt Gamma Activation Analysis), a CN-NIPS (Cold Neutron - Neutron Induced Pair Spectrometer), and a CN-NDP (Cold Neutron - Neutron-induced prompt charged particle Depth Profiling). Fig. 2 shows the conceptual configuration of the CONAS concrete bioshield and the instruments. CN-PGAA and CN-NIPS measure the gamma-rays promptly emitted from the sample after neutron capture, whereas CN-NDP is a probe to measure the charged particles emitted from the sample surface after neutron capture. For this, we constructed two cold neutron guides called CG1 and CG2B guides from the CNS

  15. Opportunities in Canada's growing wind energy industry

    International Nuclear Information System (INIS)

    Lovshin Moss, S.; Bailey, M.

    2006-01-01

    Investment in Canada's wind sector is projected to reach $8 billion by 2012, and growth of the sector is expected to create over 16,000 jobs. Canada's wind energy capacity grew by 54 per cent in 2005 alone, aided in part by supportive national policies and programs such as the Wind Power Production Incentive (WPPI); the Canadian Renewable Conservation Expense (CRCE) and Class 43.1 Capital Cost Allowance; and support for research and development. Major long-term commitments for clean power purchases, standard offer contracts and renewable portfolio standards in several provinces are encouraging further development of the wind energy sector. This paper argued that the development of a robust Canadian wind turbine manufacturing industry will enhance economic development, create opportunities for export; and mitigate the effects of international wind turbine supply shortages. However, it is not known whether Canadian wind turbine firms are positioned to capitalize on the sector's recent growth. While Canada imports nearly all its large wind turbine generators and components, the country has technology and manufacturing strengths in advanced power electronics and small wind systems, as well as in wind resource mapping. Wind-diesel and wind-hydrogen systems are being developed in Canada, and many of the hybrid systems will offer significant opportunities for remote communities and off-grid applications. Company partnerships for technology transfer, licensing and joint ventures will accelerate Canada's progress. A recent survey conducted by Industry Canada and the Canadian Wind Energy Association (CanWEA) indicated that the total impact of wind energy related expenditures on economic output is nearly $1.38 billion for the entire sector. Annual payroll for jobs in Canada was estimated at $50 million, and substantial employment growth in the next 5 years is expected. Canada offers a strong industrial supply base capable of manufacturing wind turbine generators and

  16. Report on polarised and inelastic cold neutron scattering at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    2004-01-01

    The ANSTO's Instrument Workshop on Polarised and Inelastic Cold Neutron Scattering, was held at Lucas Heights on 27-28 January. 30 participants attended, from 6 Australian Universities, 3 ANSTO Divisions, and 5 overseas countries in Asia, Europe and North America. All participants had the opportunity to give their vision for work in 2005 and beyond. The recommendation was that ANSTO proceed with a monochromator/ shield/ polariser system and appropriate dance floor on a cold guide, in such a way that alternative secondary spectrometers (3-axis, LONGPOL-type, reflectometry) can be installed. If the National Science Council of Taiwan proceeds with its cold 3-axis project, ANSTO should then implement the LONGPOL / polarised-beam reflectometry option. If not, ANSTO should implement the cold 3-axis spectrometer. The workshop came to the following additional conclusions: There was a strong sense that any 3-axis spectrometer should have a multi-analyser/multidetector combination, or at least an upgrade path to this. At this stage, there is no case for 2 cold-neutron triple-axis spectrometers at the RRR. The desired Q-range is 0.02-5 Angstroms -1 ; with an energy transfer range of 20 μeV - 15 meV. The instrument is likely to run unpolarised for 2/3 of the time and polarised for the remainder, and the instrument(s) should be designed to allow easy changeover between polarised and unpolarised operation. We expect roughly equal interest/demand in studying single crystals, powders, surfaces/interfaces and naturally disordered systems. There was a strong sense that the facility should eventually have a cold-neutron time-of-flight spectrometer of the IN5 or IN6 type, with a polarised incident beam option, and designed in such a way that polarisation analysis could be implemented if inexpensive large-area analysers become available. This should be a high priority for the next wave of instruments that ANSTO plans to build after 2005

  17. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  18. Effect of cold work and processing orientation on the SCC behavior of Alloy 600

    International Nuclear Information System (INIS)

    Moshier, W.C.; Brown, C.M.

    1999-01-01

    Cold work accelerates SCC growth rates in Alloy 600. However, the variation in crack growth rates generated from cold worker material has been significant, and the effect has been difficult to quantify. A study was performed in hydrogenated water adjusted to pH 10.2 to systematically evaluate the effect of cold work on Alloy 600 as a function of temperature, amount of cold work, stress intensity factor, and processing orientation. Cold work was introduced into the material by either tensile prestraining or cold rolling plate product. Crack growth rates were determined between 252 and 360 C, stress intensity factors between 21 and 55 MPa√m, and yield strengths between 201 and 827 MPa. The material with the highest yield strength was cold rolled and tested in the longitudinal-transverse (LT) and short-transverse (ST) orientations. Crack growth rates increased with increasing temperature, stress intensity factor, and yield strength. Furthermore, crack growth rates were a strong function of the processing orientation in the cold rolled plate, with growth rates being approximately an order of magnitude greater in the ST orientation compared to the LT orientation. Crack growth rates in the LT orientation were measured between 0.003 and 1.95 x 10 -9 m/s and between 0.066 and 6.3 x 10 -9 m/s in the ST orientation. Activation energies were slightly greater in the ST orientation, ranging from 154 to 191 kcal/mole, compared to activation energies between 126 and 157 kJ/mole in the LT orientation. The results of this study demonstrate that although cold work can be used to accelerate SCC, the orientation of crack growth can significantly affect the results, and must be taken into account when analyzing data from cold worked material

  19. The Nav1.9 Channel Is a Key Determinant of Cold Pain Sensation and Cold Allodynia

    Directory of Open Access Journals (Sweden)

    Stéphane Lolignier

    2015-05-01

    Full Text Available Cold-triggered pain is essential to avoid prolonged exposure to harmfully low temperatures. However, the molecular basis of noxious cold sensing in mammals is still not completely understood. Here, we show that the voltage-gated Nav1.9 sodium channel is important for the perception of pain in response to noxious cold. Nav1.9 activity is upregulated in a subpopulation of damage-sensing sensory neurons responding to cooling, which allows the channel to amplify subthreshold depolarizations generated by the activation of cold transducers. Consequently, cold-triggered firing is impaired in Nav1.9−/− neurons, and Nav1.9 null mice and knockdown rats show increased cold pain thresholds. Disrupting Nav1.9 expression in rodents also alleviates cold pain hypersensitivity induced by the antineoplastic agent oxaliplatin. We conclude that Nav1.9 acts as a subthreshold amplifier in cold-sensitive nociceptive neurons and is required for the perception of cold pain under normal and pathological conditions.

  20. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner