WorldWideScience

Sample records for strong base materials

  1. Phase transition transistors based on strongly-correlated materials

    Science.gov (United States)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  2. Exceptionally strong, stiff and hard hybrid material based on an elastomer and isotropically shaped ceramic nanoparticles.

    Science.gov (United States)

    Georgopanos, Prokopios; Schneider, Gerold A; Dreyer, Axel; Handge, Ulrich A; Filiz, Volkan; Feld, Artur; Yilmaz, Ezgi D; Krekeler, Tobias; Ritter, Martin; Weller, Horst; Abetz, Volker

    2017-08-04

    In this work the fabrication of hard, stiff and strong nanocomposites based on polybutadiene and iron oxide nanoparticles is presented. The nanocomposites are fabricated via a general concept for mechanically superior nanocomposites not based on the brick and mortar structure, thus on globular nanoparticles with nanosized organic shells. For the fabrication of the composites oleic acid functionalized iron oxide nanoparticles are decorated via ligand exchange with an α,ω-polybutadiene dicarboxylic acid. The functionalized particles were processed at 145 °C. Since polybutadiene contains double bonds the nanocomposites obtained a crosslinked structure which was enhanced by the presence of oxygen or sulfur. It was found that the crosslinking and filler percolation yields high elastic moduli of approximately 12-20 GPa and hardness of 15-18 GPa, although the polymer volume fraction is up to 40%. We attribute our results to a catalytically enhanced crosslinking reaction of the polymer chains induced by oxygen or sulfur and to the microstructure of the nanocomposite.

  3. Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors

    International Nuclear Information System (INIS)

    Classen, Laura

    2016-01-01

    In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.

  4. Competing orders in strongly correlated systems. Dirac materials and iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Laura

    2016-11-04

    In this work we address the collective phenomena appearing in interacting fermion systems due to the competition of distinct orders at the example of Dirac materials and iron-based superconductors. On the one hand we determine leading ordering tendencies in an unbiased way, when Fermi liquid instabilities are expected simultaneously in the particle-particle and particle-hole channel. In this context we analyze the impact of electron-phonon interactions on the many-body instabilities of electrons on the honeycomb lattice. Furthermore we investigate the interplay between superconductivity, magnetism and orbital order in five-pocket iron-based superconductors including the full orbital composition of low-energy excitations. On the other hand we study how the close proximity of different phases affects the structure of the phase diagram and the nature of transitions, as well as the corresponding quantum multicritical behavior. To this end we consider the semimetal-insulator transitions to an antiferromagnetic and a staggered-density state of low-energy Dirac fermions. To account for the decisive role of interactions and the various degrees of freedom in these models, modern renormalization group techniques are applied.

  5. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  6. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    Science.gov (United States)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  7. Towards TDDFT for Strongly Correlated Materials

    Directory of Open Access Journals (Sweden)

    Shree Ram Acharya

    2016-09-01

    Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.

  8. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.

    Science.gov (United States)

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie

    2013-02-13

    Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.

  9. Supramolecular fluorene based materials

    OpenAIRE

    Abbel, R.J.

    2008-01-01

    This thesis describes the use of noncovalent interactions in order to manipulate and control the self-assembly and morphology of electroactive fluorene-based materials. The supramolecular arrangement of p-conjugated polymers and oligomers can strongly influence their electronic and photophysical properties. Therefore, a detailed understanding of such organisation processes is essential for the optimisation of the performance of these materials as applied in optoelectronic devices. In order to...

  10. Supramolecular fluorene based materials

    NARCIS (Netherlands)

    Abbel, R.J.

    2008-01-01

    This thesis describes the use of noncovalent interactions in order to manipulate and control the self-assembly and morphology of electroactive fluorene-based materials. The supramolecular arrangement of p-conjugated polymers and oligomers can strongly influence their electronic and photophysical

  11. Diffraction analysis of materials under strong plastic deformation

    International Nuclear Information System (INIS)

    Pyzalla, A.

    2001-01-01

    The applicability of X-ray diffraction in analyses of the microstructure texture and intrinsic stresses of materials under strong plastic deformation is illustrated by examples and discussed. The experimental methods and findings are supplemented by numeric calculations. It is shown how the microstructure, texture and intrinsic stresses can thus be optimized already in the production process. Analyses of changes in materials during operation of a component provide information on loads and material response to loads which can then be used for optimization of the component, e.g. by constructional modifications or selective heat treatment [de

  12. Strong industrial base vital for economic revival

    CERN Multimedia

    2001-01-01

    At the inauguration of a 2-day conference on nuclear technology in Islamabad, the chairman of PAEC said that Pakistan needs to develop a strong industrial base and capability to export equipment to improve the economic condition of the country. He descibed how Pakistan has already had a breakthrough with the export of equipment to CERN, Geneva (1 page).

  13. Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2005-01-01

    The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.

  14. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  15. Strong Motion Seismograph Based On MEMS Accelerometer

    Science.gov (United States)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  16. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials

    International Nuclear Information System (INIS)

    Hansma, P K; Turner, P J; Ruoff, R S

    2007-01-01

    From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials

  17. Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials

    Energy Technology Data Exchange (ETDEWEB)

    Hansma, P K [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Turner, P J [Physics Department, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Ruoff, R S [Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3111 (United States)

    2007-01-31

    From our investigations of natural composite materials such as abalone shell and bone we have learned the following. (1) Nature is frugal with resources: it uses just a few per cent glue, by weight, to glue together composite materials. (2) Nature does not avoid voids. (3) Nature makes optimized glues with sacrificial bonds and hidden length. We discuss how optimized adhesives combined with high specific stiffness/strength structures such as carbon nanotubes or graphene sheets could yield remarkably strong, lightweight, and damage-resistant materials.

  18. Casting fine grained, fully dense, strong inorganic materials

    Science.gov (United States)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  19. A strong-topological-metal material with multiple Dirac cones

    OpenAIRE

    Ji, Huiwen; Pletikosić, I; Gibson, Q. D.; Sahasrabudhe, Girija; Valla, T.; Cava, R. J.

    2015-01-01

    We report a new, cleavable, strong-topological-metal, Zr2Te2P, which has the same tetradymite-type crystal structure as the topological insulator Bi2Te2Se. Instead of being a semiconductor, however, Zr2Te2P is metallic with a pseudogap between 0.2 and 0.7 eV above the fermi energy (EF). Inside this pseudogap, two Dirac dispersions are predicted: one is a surface-originated Dirac cone protected by time-reversal symmetry (TRS), while the other is a bulk-originated and slightly gapped Dirac cone...

  20. Mott Transition In Strongly Correlated Materials: Many-Body Methods And Realistic Materials Simulations

    Science.gov (United States)

    Lee, Tsung-Han

    Strongly correlated materials are a class of materials that cannot be properly described by the Density Functional Theory (DFT), which is a single-particle approximation to the original many-body electronic Hamiltonian. These systems contain d or f orbital electrons, i.e., transition metals, actinides, and lanthanides compounds, for which the electron-electron interaction (correlation) effects are too strong to be described by the single-particle approximation of DFT. Therefore, complementary many-body methods have been developed, at the model Hamiltonians level, to describe these strong correlation effects. Dynamical Mean Field Theory (DMFT) and Rotationally Invariant Slave-Boson (RISB) approaches are two successful methods that can capture the correlation effects for a broad interaction strength. However, these many-body methods, as applied to model Hamiltonians, treat the electronic structure of realistic materials in a phenomenological fashion, which only allow to describe their properties qualitatively. Consequently, the combination of DFT and many body methods, e.g., Local Density Approximation augmented by RISB and DMFT (LDA+RISB and LDA+DMFT), have been recently proposed to combine the advantages of both methods into a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the possible improvements of these approaches, and tested their accuracy on realistic materials. This dissertation is separated into two parts. In the first part, we studied the extension of DMFT and RISB in three directions. First, we extended DMFT framework to investigate the behavior of the domain wall structure in metal-Mott insulator coexistence regime by studying the unstable solution describing the domain wall. We found that this solution, differing qualitatively from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity while carrying a weak metallic character in its electronic structure. Second, we

  1. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.

    1993-01-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity

  2. [Realistic theories of heavy electron and other strongly correlated materials

    International Nuclear Information System (INIS)

    1993-01-01

    Research on the following topics is summarized: non-perturbative treatments of multi-channel Kondo models, non-perturbative treatments of multi-band models for the quadrupolar fluctuation model of the cuprates, extension of the two-channel Kondo model to other materials and treatment of the infinite-dimensional Hubbard model within the Non-crossing approximation. Data on the specific heat of Y 0.8 U 0.2 Pd 3 and the c-axis susceptibility and specific heat of U in ThRu 2 Si are shown. 5 figs., 84 refs

  3. Proceedings, strongly correlated electronic materials: The Los Alamos symposium 1993

    International Nuclear Information System (INIS)

    Bedell, K.S.

    1994-01-01

    The subject included such topics as high temperature superconductors, heavy-fermion insulators and superconductors, the metal-insulator transition, the superconductor-insulator transition and unusual (non-Fermi liquid) normal metallic states. The symposium was structured around 13 invited review talks; with each talk, there were several (about 30) related short presentations and discussion sections (90 pages). The review talks and short papers were processed separately for the data base

  4. LDEF materials data bases

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  5. [Meeting point Stewart. Buffer bases, base excess and strong ions].

    Science.gov (United States)

    Lang, W

    2007-04-01

    Development of a two-buffer model which simulates the acid-base properties of blood and allows comparison of the different acidbase concepts according to Stewart and to Siggaard-Andersen. The two-buffer model consisted of different aqueous solutions of bicarbonate/CO(2) (pCO(2), sCO(2), pK(1)), HEPES buffer (A(tot), pK(a)) and electrolytes. These were used to calculate the pH from the independent variables according to Stewart - strong ion difference (SID), pCO(2) and total concentration of the weak acids (A(tot)) - from which all other dependent variables (cHCO(3)(-), cA(-), BB, BE) were obtained and compared with the measured values. The normal pH (7.408) was calculated from the normal values for SID (48 mmol/l), pCO(2) (40 mmHg) and A(tot) (45.2 mmol/l) and agreed perfectly with the measured value (7.409+/-0.001). This was also valid for all calculated and measured pH values when the SID was varied: non-respiratory alkalosis ( upward arrow) or acidosis ( downward arrow), pCO(2):respiratory acidosis ( upward arrow) or alkalosis ( downward arrow) and A(tot):hyperproteinemic acidosis ( upward arrow) or hypoproteinemic alkalosis ( downward arrow) were varied and the sum of the buffer bases (BB) was always equal to the SID. All changes and hence BE were also equal, providing that A(tot) was normal. This was not the case, however, if A(tot) was outside the normal range, when BE was then the difference from the normal BB at the respective reference point. Whereas the deviation of the measured pCO(2) was acceptable (1.74+/-0.86 mmHg), this was not the case for the SID (-6.18+/-3.58 mmol/l) calculated from the measured ion concentrations (Na, K, Ca, Cl). Despite controversial discussions, both concepts are much closer than might be expected. Whereas in the Stewart approach the focus of analysis is on plasma, with the Siggaard-Andersen approach it is on blood. Hence, a combined analysis of the blood gases (pH, pCO(2), pO(2), sO(2), cHb, BE) and of the strong ion gap (SIG

  6. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  7. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    Science.gov (United States)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  8. Basicities of Strong Bases in Water: A Computational Study

    OpenAIRE

    Kaupmees, Karl; Trummal, Aleksander; Leito, Ivo

    2014-01-01

    Aqueous pKa values of strong organic bases – DBU, TBD, MTBD, different phosphazene bases, etc – were computed with CPCM, SMD and COSMO-RS approaches. Explicit solvent molecules were not used. Direct computations and computations with reference pKa values were used. The latter were of two types: (1) reliable experimental aqueous pKa value of a reference base with structure similar to the investigated base or (2) reliable experimental pKa value in acetonitrile of the investigated base itself. ...

  9. Strong coupling of collection of emitters on hyperbolic meta-material

    Science.gov (United States)

    Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.

    2018-04-01

    Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.

  10. Pakistan strong industrial base urged for economic progress

    CERN Multimedia

    2001-01-01

    A conference organized by Pakistan Nuclear Society urged that Pakistan should develop a strong industrial base and capability to export equipment for economic progress. The chairmen of PAEC pointed out that Pakistan is already showing remarkable progress in export of science-related equipment to CERN. He also asked scientists to wage a war against Pakistans inability to acquire indigenous technology (1 page).

  11. Materials engineering data base

    Science.gov (United States)

    1995-01-01

    The various types of materials related data that exist at the NASA Marshall Space Flight Center and compiled into databases which could be accessed by all the NASA centers and by other contractors, are presented.

  12. Diamond-based materials for biomedical applications

    CERN Document Server

    Narayan, Roger

    2013-01-01

    Carbon is light-weight, strong, conductive and able to mimic natural materials within the body, making it ideal for many uses within biomedicine. Consequently a great deal of research and funding is being put into this interesting material with a view to increasing the variety of medical applications for which it is suitable. Diamond-based materials for biomedical applications presents readers with the fundamental principles and novel applications of this versatile material. Part one provides a clear introduction to diamond based materials for medical applications. Functionalization of diamond particles and surfaces is discussed, followed by biotribology and biological behaviour of nanocrystalline diamond coatings, and blood compatibility of diamond-like carbon coatings. Part two then goes on to review biomedical applications of diamond based materials, beginning with nanostructured diamond coatings for orthopaedic applications. Topics explored include ultrananocrystalline diamond for neural and ophthalmologi...

  13. Small Fermi surfaces and strong correlation effects in Dirac materials with holography

    Science.gov (United States)

    Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin

    2017-10-01

    Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.

  14. Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    Zhaoxia PU; Joshua HACKER

    2009-01-01

    This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.

  15. Simulation-based marginal likelihood for cluster strong lensing cosmology

    Science.gov (United States)

    Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.

    2018-01-01

    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.

  16. Strong reflector-based beamforming in ultrasound medical imaging.

    Science.gov (United States)

    Szasz, Teodora; Basarab, Adrian; Kouamé, Denis

    2016-03-01

    This paper investigates the use of sparse priors in creating original two-dimensional beamforming methods for ultrasound imaging. The proposed approaches detect the strong reflectors from the scanned medium based on the well known Bayesian Information Criteria used in statistical modeling. Moreover, they allow a parametric selection of the level of speckle in the final beamformed image. These methods are applied on simulated data and on recorded experimental data. Their performance is evaluated considering the standard image quality metrics: contrast ratio (CR), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). A comparison is made with the classical delay-and-sum and minimum variance beamforming methods to confirm the ability of the proposed methods to precisely detect the number and the position of the strong reflectors in a sparse medium and to accurately reduce the speckle and highly enhance the contrast in a non-sparse medium. We confirm that our methods improve the contrast of the final image for both simulated and experimental data. In all experiments, the proposed approaches tend to preserve the speckle, which can be of major interest in clinical examinations, as it can contain useful information. In sparse mediums we achieve a highly improvement in contrast compared with the classical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Chaotic secure communication based on strong tracking filtering

    International Nuclear Information System (INIS)

    Li Xiongjie; Xu Zhengguo; Zhou Donghua

    2008-01-01

    A scheme for implementing secure communication based on chaotic maps and strong tracking filter (STF) is presented, and a modified STF algorithm with message estimation is developed for the special requirement of chaotic secure communication. At the emitter, the message symbol is modulated by chaotic mapping and is output through a nonlinear function. At the receiver, the driving signal is received and the message symbol is recovered dynamically by the STF with estimation of message symbol. Simulation results of Holmes map demonstrate that when message symbols are binary codes, STF can effectively recover the codes of the message from the noisy chaotic signals. Compared with the extended Kalman filter (EKF), STF has a lower bit error rate

  18. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials.

    Science.gov (United States)

    Chung, In; Jang, Joon I; Malliakas, Christos D; Ketterson, John B; Kanatzidis, Mercouri G

    2010-01-13

    We report that the one-dimensional polar selenophosphate compounds APSe(6) (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients chi((2)) of 151.3 and 149.4 pm V(-1) for K(+) and Rb(+) salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe(6) exhibits comparable SHG intensities to the top infrared NLO material AgGaSe(2) without any poling treatments. APSe(6) exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe(6) (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe(6) bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  19. Radiation-induced structural transitions in composite materials with strong interaction of polymer components

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Koztaeva, U.P.

    2002-01-01

    In earlier papers the internal friction (IF) method was applied to studies of structural relaxation in different types of polymer-based composite materials (glass-cloth, paper-based and foiled laminates impregnated by epoxy and phenolic resins) irradiated by 2 MeV electrons in the dose range of 0.1-50.0 MGy. Selectivity and high sensibility of the internal friction method allowed to distinguish glassy transitions in different structural components of the composites. The relaxation processes observed were identified and attributed to structural alterations in the polymer filler, the binder and the boundary layers. It was shown that changes in the parameters of relaxation maximums during irradiation can be considered as quantitative characteristics for the degree of radiation-induced degradation or cross-linking of polymer molecules. This paper deals with specific features of IF spectra in paper-based laminates where both the filler fibers and the binder are strongly interacting polymers. Anisotropy of viscous and elastic properties is very weak for this kind of materials, so that IF measurements give nearly the same result independently on the filler fiber orientation in the sample. The main reasons for it are the rigid chain structure of fillers (polyethylene-terephthalate and cellulose) and the good adhesion strengthened by diffusion of the epoxy or phenolic binder to defect regions of the filler.The IF temperature dependence observed in paper-based laminates is represented by superposition of two very broad relaxation maximums associated with transitions from glassy to high-elastic state in structural components, each based on one of the polymers. The inflection points characteristic for IF temperature dependence in paper-based laminates give a reason to treat them as a superposition of α-peaks associated with transitions from glassy to high-elastic state in structural components of a composite based on the binder and the filler, respectively. Another

  20. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    Science.gov (United States)

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  1. Educational Process Material Base

    OpenAIRE

    Olga Ozerova; Irina Zabaturina; Vera Kuznetsova; Galina Kovaleva

    2012-01-01

    Based on the data obtained by the Institute for Statistical Studies and the Economics of Knowledge, National Research University - Higher School of Economics Olga Ozerova - Head of the Department for Statistics of Education, Institute for Statistical Studies and the Economics of Knowledge, National Research University - Higher School of Economics, Moscow, Russian Federation. Email: Address: 18 Myasnitskaya St., Moscow, 101000, Russian Federation.Irina Zabaturina - senior resea...

  2. Solid-state dewetting and island morphologies in strongly anisotropic materials

    International Nuclear Information System (INIS)

    Jiang, Wei; Wang, Yan; Zhao, Quan; Srolovitz, David J.; Bao, Weizhu

    2016-01-01

    We propose a sharp-interface continuum model based on a thermodynamic variational approach to investigate the strong anisotropic effect on solid-state dewetting including contact line dynamics. For sufficiently strong surface energy anisotropy, we show that multiple equilibrium shapes may appear that cannot be described by the widely employed Winterbottom construction, i.e., the modified Wulff construction for an island on a substrate. We repair the Winterbottom construction to include multiple equilibrium shapes and employ our evolution model to demonstrate that all such shapes are dynamically accessible.

  3. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  4. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer.

    Science.gov (United States)

    Liu, Xiao-Yan; Sun, Lin-Bing; Liu, Xiao-Dan; Li, Ai-Guo; Lu, Feng; Liu, Xiao-Qin

    2013-10-09

    Mesoporous solid strong bases are highly promising for applications as environmentally benign catalysts in various reactions. Their preparation attracts increasing attention for the demand of sustainable chemistry. In the present study, a new strategy was designed to fabricate strong basicity on mesoporous silica by using multifunction of a carbon interlayer. A typical mesoporous silica, SBA-15, was precoated with a layer of carbon prior to the introduction of base precursor LiNO3. The carbon interlayer performs two functions by promoting the conversion of LiNO3 at low temperatures and by improving the alkali-resistant ability of siliceous host. Only a tiny amount of LiNO3 was decomposed on pristine SBA-15 at 400 °C; for the samples containing >8 wt % of carbon, however, LiNO3 can be entirely converted to strongly basic sites Li2O under the same conditions. The guest-host redox reaction was proven to be the answer for the conversion of LiNO3, which breaks the tradition of thermally induced decomposition. More importantly, the residual carbon layer can prevent the siliceous frameworks from corroding by the newly formed strongly basic species, which is different from the complete destruction of mesostructure in the absence of carbon. Therefore, materials possessing both ordered mesostructure and strong basicity were successfully fabricated, which is extremely desirable for catalysis and impossible to realize by conventional methods. We also demonstrated that the resultant mesoporous basic materials are active in heterogeneous synthesis of dimethyl carbonate (DMC) and the yield of DMC can reach 32.4%, which is apparently higher than that over the catalysts without a carbon interlayer (<12.9%) despite the same lithium content. The strong basicity, in combination with the uniform mesopores, is believed to be responsible for such a high activity.

  5. Understanding adults’ strong problem-solving skills based on PIAAC

    OpenAIRE

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic, work-related and everyday life factors that are associated with a strong problem-solving performance. Design/methodology/approach The study builds...

  6. Computational time-resolved and resonant x-ray scattering of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-11-09

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source, literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of x-ray science. In particular, our Collaborative Research Team (CRT) focused on developing viable computational schemes for modeling x-ray scattering and photoemission spectra of strongly correlated materials in the time-domain. The vast arsenal of formal/numerical techniques and approaches encompassed by the members of our CRT were brought to bear through appropriate generalizations and extensions to model the pumped state and the dynamics of this non-equilibrium state, and how it can be probed via x-ray absorption (XAS), emission (XES), resonant and non-resonant x-ray scattering, and photoemission processes. We explored the conceptual connections between the time-domain problems and other second-order spectroscopies, such as resonant inelastic x-ray scattering (RIXS) because RIXS may be effectively thought of as a pump-probe experiment in which the incoming photon acts as the pump, and the fluorescent decay is the probe. Alternatively, when the core-valence interactions are strong, one can view K-edge RIXS for example, as the dynamic response of the material to the transient presence of a strong core-hole potential. Unlike an actual pump-probe experiment, here there is no mechanism for adjusting the time-delay between the pump and the probe. However, the core hole

  7. Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*

    Science.gov (United States)

    Maple, M. Brian

    1996-03-01

    Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f

  8. Triarylborane-Based Materials for OLED Applications

    Directory of Open Access Journals (Sweden)

    Gulsen Turkoglu

    2017-09-01

    Full Text Available Multidisciplinary research on organic fluorescent molecules has been attracting great interest owing to their potential applications in biomedical and material sciences. In recent years, electron deficient systems have been increasingly incorporated into fluorescent materials. Triarylboranes with the empty p orbital of their boron centres are electron deficient and can be used as strong electron acceptors in conjugated organic fluorescent materials. Moreover, their applications in optoelectronic devices, energy harvesting materials and anion sensing, due to their natural Lewis acidity and remarkable solid-state fluorescence properties, have also been investigated. Furthermore, fluorescent triarylborane-based materials have been commonly utilized as emitters and electron transporters in organic light emitting diode (OLED applications. In this review, triarylborane-based small molecules and polymers will be surveyed, covering their structure-property relationships, intramolecular charge transfer properties and solid-state fluorescence quantum yields as functional emissive materials in OLEDs. Also, the importance of the boron atom in triarylborane compounds is emphasized to address the key issues of both fluorescent emitters and their host materials for the construction of high-performance OLEDs.

  9. Strong Generative Capacity and the Empirical Base of Linguistic Theory

    Directory of Open Access Journals (Sweden)

    Dennis Ott

    2017-09-01

    Full Text Available This Perspective traces the evolution of certain central notions in the theory of Generative Grammar (GG. The founding documents of the field suggested a relation between the grammar, construed as recursively enumerating an infinite set of sentences, and the idealized native speaker that was essentially equivalent to the relation between a formal language (a set of well-formed formulas and an automaton that recognizes strings as belonging to the language or not. But this early view was later abandoned, when the focus of the field shifted to the grammar's strong generative capacity as recursive generation of hierarchically structured objects as opposed to strings. The grammar is now no longer seen as specifying a set of well-formed expressions and in fact necessarily constructs expressions of any degree of intuitive “acceptability.” The field of GG, however, has not sufficiently acknowledged the significance of this shift in perspective, as evidenced by the fact that (informal and experimentally-controlled observations about string acceptability continue to be treated as bona fide data and generalizations for the theory of GG. The focus on strong generative capacity, it is argued, requires a new discussion of what constitutes valid empirical evidence for GG beyond observations pertaining to weak generation.

  10. Characterization of weak, fair and strong neutron absorbing materials by means of neutron transmission: Beam hardening effect

    Science.gov (United States)

    Kharfi, F.; Bastuerk, M.; Boucenna, A.

    2006-09-01

    The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.

  11. Numerical simulation of strong evaporation and condensation for plasma-facing materials

    International Nuclear Information System (INIS)

    Kunugi, T.; Yasuda, H.

    1994-01-01

    The thermal response of the divertor plate to the hard plasma disruptions had been analyzed numerically by the two dimensional transient heat transfer code. There are several studies of the vapor shielding effects on the thermal response to the plasma disruption. However, it was pointed out some discrepancies among the numerical results calculated by U.S., EC and Japan for the same disruption conditions by van der Laan. One of the authors studied the sensitivity of some parameters (i.e., the temperature dependency of the thermal properties, an evaporation coefficient and a saturated condensation ratio) of disruption erosion analysis. Though the authors expected that the variations in evaporation models lead to the large variety of the erosion, they gave no significant effects on the surface temperature, the evaporation and melt-layer thickness. In this paper, the authors will describe the development of the numerical simulation codes for the strong evaporation and condensation from the plasma facing materials (PFMs) such as carbon, tungsten and beryllium

  12. Electrical switching of antiferromagnets via strongly spin-orbit coupled materials

    Science.gov (United States)

    Li, Xi-Lai; Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook

    2017-01-01

    Electrically controlled ultra-fast switching of an antiferromagnet (AFM) is shown to be realizable by interfacing it with a material of strong spin-orbit coupling. The proximity interaction between the sublattice magnetic moments of a layered AFM and the spin-polarized free electrons at the interface offers an efficient way to manipulate antiferromagnetic states. A quantitative analysis, using the combination with a topological insulator as an example, demonstrates highly reliable 90° and 180° rotations of AFM magnetic states under two different mechanisms of effective torque generation at the interface. The estimated switching speed and energy requirement are in the ps and aJ ranges, respectively, which are about two-three orders of magnitude better than the ferromagnetic counterparts. The observed differences in the magnetization dynamics may explain the disparate characteristic responses. Unlike the usual precessional/chiral motions in the ferromagnets, those of the AFMs can essentially be described as a damped oscillator with a more direct path. The impact of random thermal fluctuations is also examined.

  13. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  14. Laser based imaging of time depending microscopic scenes with strong light emission

    Science.gov (United States)

    Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik

    2011-10-01

    Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.

  15. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  16. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  17. 3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites

    Science.gov (United States)

    Tabiai, Ilyass; Therriault, Daniel

    Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.

  18. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  19. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  20. Modelling decreased food chain accumulation of HOCs due to strong sorption to carbonaceous materials and metabolic transformation

    NARCIS (Netherlands)

    Moermond, C.T.A.; Traas, T.P.; Roessink, I.; Veltman, K.; Hendriks, A.J.; Koelmans, A.A.

    2007-01-01

    The predictive power of bioaccumulation models may be limited when they do not account for strong sorption of organic contaminants to carbonaceous materials (CM) such as black carbon, and when they do not include metabolic transformation. We tested a food web accumulation model, including sorption

  1. Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability

    Directory of Open Access Journals (Sweden)

    Francesco Tornabene

    2017-07-01

    Full Text Available The authors are presenting a novel formulation based on the Differential Quadrature (DQ method which is used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form finite elements (SFEM or WFEM, according to the numerical scheme employed in the computation. Such numerical methods are applied to solve some structural problems related to the mechanical behavior of plates and shells, made of isotropic or composite materials. The main differences between these two approaches rely on the initial formulation – which is strong or weak (variational – and the implementation of the boundary conditions, that for the former include the continuity of stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. The two methodologies consider also a mapping technique to transform an element of general shape described in Cartesian coordinates into the same element in the computational space. Such technique can be implemented by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or blending functions which allow an “exact mapping” of the element. In particular, the authors are employing NURBS (Not-Uniform Rational B-Splines for such nonlinear mapping in order to use the “exact” shape of CAD designs.

  2. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    Science.gov (United States)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  3. Strong stabilization of the Rayleigh-Taylor instability by material strength at Mbar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Park, H S; Lorenz, K T; Cavallo, R M; Pollaine, S M; Prisbrey, S T; Rudd, R E; Becker, R C; Bernier, J V; Remington, B A

    2009-11-19

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the sample in the solid-state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the RT instability.

  4. Knowledge-based metals & materials

    OpenAIRE

    Sasson, Amir

    2011-01-01

    This study presents the Norwegian metal and material industry (defined as all metal and material related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, R&D and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.

  5. Analytical modeling of light transport in scattering materials with strong absorption.

    Science.gov (United States)

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  6. Catalysis and Downsizing in Mg-Based Hydrogen Storage Materials

    Directory of Open Access Journals (Sweden)

    Jianding Li

    2018-02-01

    Full Text Available Magnesium (Mg-based materials are promising candidates for hydrogen storage due to the low cost, high hydrogen storage capacity and abundant resources of magnesium for the realization of a hydrogen society. However, the sluggish kinetics and strong stability of the metal-hydrogen bonding of Mg-based materials hinder their application, especially for onboard storage. Many researchers are devoted to overcoming these challenges by numerous methods. Here, this review summarizes some advances in the development of Mg-based hydrogen storage materials related to downsizing and catalysis. In particular, the focus is on how downsizing and catalysts affect the hydrogen storage capacity, kinetics and thermodynamics of Mg-based hydrogen storage materials. Finally, the future development and applications of Mg-based hydrogen storage materials is discussed.

  7. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  8. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    International Nuclear Information System (INIS)

    Bansil, Arun

    2016-01-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering-density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization-to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  9. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    Science.gov (United States)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  10. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy

    Science.gov (United States)

    Wu, Jun-Chi; Peng, Xu; Guo, Yu-Qiao; Zhou, Hao-Dong; Zhao, Ji-Yin; Ruan, Ke-Qin; Chu, Wang-Sheng; Wu, Changzheng

    2018-06-01

    Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.

  11. Fifty years old, and still going strong: Transmission electron optical studies of materials

    International Nuclear Information System (INIS)

    Brown, L.M.

    2008-01-01

    Highlights in the history of transmission electron microscopy and scanning transmission electron microscopy include the introduction of diffraction contrast, resolution of periodic lattices by phase contrast and incoherent imaging via the high-angle annular dark-field detector. Convergent-beam electron diffraction and analytical electron microscopy, especially the application of energy-dispersive X-ray and electron energy-loss spectrometry, have provided structural and chemical information in addition to strain contrast from lattice defects. From the outset, novel specimen stages and improvements to aid the operator enhanced the electron-optical engineering provided by the instrument makers. The spatial resolution achieved was mainly determined by the way the instrument was used, and not by the basic resolution limit set by the electron optics. However, the application of computer controlled correction of spherical (and higher order) aberration has resulted in a new generation of instruments capable of sub-Angstrom point-to-point resolution. This improved performance, combined with electron energy-loss spectrometry, promises genuine three-dimensional determination of atomic and electronic structure: an indispensable weapon in the battle to fabricate and control useful nanostructures. The uncertainty principle now fundamentally restricts some of the observations one can make, but much more technical development over the next decades must occur before one can say that the techniques of electron-optical imaging of material structure have reached their fundamental limitations. One can expect remarkable progress over the next few years

  12. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current
    applicability of these materials is limited due to their poor moisture tolerance and
    mechanical properties. Starch is therefore frequently blended with other polymers to make
    the material more

  13. Melanin-Based Functional Materials

    Directory of Open Access Journals (Sweden)

    Marco d’Ischia

    2018-01-01

    Full Text Available Melanin biopolymers are currently the focus of growing interest for a broad range of applications at the cutting edge of biomedical research and technology. This Special Issue presents a collection of papers dealing with melanin-type materials, e.g., polydopamine, for classic and innovative applications, offering a stimulating perspective of current trends in the field. Besides basic scientists, the Special Issue is directed to researchers from industries and companies that are willing to invest in melanin research for innovative and inspiring solutions.

  14. Materiality in a practice-based approach

    DEFF Research Database (Denmark)

    Svabo, Connie

    2009-01-01

    The paper provides an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Common terms for materiality are 'artifact' and 'object'. The interaction between social and material realities is grasped as several processes: object......-oriented activity, symbolization, embodiment, performance, alignment and mediation. Material artifacts both stabilize and destabilize organizational action. They may ensure coordination, communication, and control, but they may also create disturbance and conflict....

  15. Ion exchange behaviour of citrate and EDTA anions on strong and weak base organic ion exchangers

    International Nuclear Information System (INIS)

    Askarieh, M.M.; White, D.A.

    1988-01-01

    The exchange of citrate and EDTA ions with two strong base and two weak base exchangers is considered. Citrate and EDTA analysis for this work was performed using a colorimetric method developed here. The ions most selectively exchanged on the resins are H 2 cit - and H 2 EDTA 2- , though EDTA is generally less strongly sorbed on strong base resins. In contact with weak base resins, deprotonation of the resin occurs during ion exchange with a noticeable drop in solution pH. Although EDTA sorption can be reversed by nitric acid, citrate ions are significantly held on the resin at low pH. The exchange of citrate can be made reversible if bicarbonate is added to the initial solutions. Alkaline regeneration of exchangers loaded with EDTA proved to be very effective. (author)

  16. LDEF materials special investigation group's data bases

    Science.gov (United States)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  17. EPR-based material modelling of soils

    Science.gov (United States)

    Faramarzi, Asaad; Alani, Amir M.

    2013-04-01

    In the past few decades, as a result of the rapid developments in computational software and hardware, alternative computer aided pattern recognition approaches have been introduced to modelling many engineering problems, including constitutive modelling of materials. The main idea behind pattern recognition systems is that they learn adaptively from experience and extract various discriminants, each appropriate for its purpose. In this work an approach is presented for developing material models for soils based on evolutionary polynomial regression (EPR). EPR is a recently developed hybrid data mining technique that searches for structured mathematical equations (representing the behaviour of a system) using genetic algorithm and the least squares method. Stress-strain data from triaxial tests are used to train and develop EPR-based material models for soil. The developed models are compared with some of the well-known conventional material models and it is shown that EPR-based models can provide a better prediction for the behaviour of soils. The main benefits of using EPR-based material models are that it provides a unified approach to constitutive modelling of all materials (i.e., all aspects of material behaviour can be implemented within a unified environment of an EPR model); it does not require any arbitrary choice of constitutive (mathematical) models. In EPR-based material models there are no material parameters to be identified. As the model is trained directly from experimental data therefore, EPR-based material models are the shortest route from experimental research (data) to numerical modelling. Another advantage of EPR-based constitutive model is that as more experimental data become available, the quality of the EPR prediction can be improved by learning from the additional data, and therefore, the EPR model can become more effective and robust. The developed EPR-based material models can be incorporated in finite element (FE) analysis.

  18. New Cork-Based Materials and Applications

    Directory of Open Access Journals (Sweden)

    Luís Gil

    2015-02-01

    Full Text Available This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders, and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before.

  19. New Cork-Based Materials and Applications

    Science.gov (United States)

    Gil, Luís

    2015-01-01

    This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork) for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders), and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before. PMID:28787962

  20. New Cork-Based Materials and Applications.

    Science.gov (United States)

    Gil, Luís

    2015-02-10

    This review work is an update of a previous work reporting the new cork based materials and new applications of cork based materials. Cork is a material which has been used for multiple applications. The most known uses of cork are in stoppers (natural and agglomerated cork) for alcoholic beverages, classic floor covering with composite cork tiles (made by the binding of cork particles with different binders), and thermal/acoustic/vibration insulation with expanded corkboard in buildings and some other industrial fields. Many recent developments have been made leading to new cork based materials. Most of these newly developed cork materials are not yet on the market, but they represent new possibilities for engineers, architects, designers and other professionals which must be known and considered, potentially leading to their industrialization. This paper is a review covering the last five years of innovative cork materials and applications also mentioning previous work not reported before.

  1. Vortex trapping in Pb-alloy Josephson junctions induced by strong sputtering of the base electrode

    International Nuclear Information System (INIS)

    Wada, M.; Nakano, J.; Yanagawa, F.

    1985-01-01

    It is observed that strong rf sputtering of the Pb-alloy base electrodes causes the junctions to trap magnetic vortices and thus induces Josephson current (I/sub J/) suppression. Trapping begins to occur when the rf sputtering that removes the native thermal oxide on the base electrode is carried out prior to rf plasma oxidation. Observed large I/sub J/ suppression is presumably induced by the concentration of vortices into the sputtered area upon cooling the sample below the transition temperature. This suggests a new method of the circumvention of the vortex trapping by strongly rf sputtering the areas of the electrode other than the junction areas

  2. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar; Thingbaijam, Kiran Kumar; Adhikari, M. D.; Nayak, Avinash; Devaraj, N.; Ghosh, Soumalya K.; Mahajan, Arun K.

    2013-01-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  3. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  4. Membrane-based biomolecular smart materials

    International Nuclear Information System (INIS)

    Sarles, Stephen A; Leo, Donald J

    2011-01-01

    Membrane-based biomolecular materials are a new class of smart material that feature networks of artificial lipid bilayers contained within durable synthetic substrates. Bilayers contained within this modular material platform provide an environment that can be tailored to host an enormous diversity of functional biomolecules, where the functionality of the global material system depends on the type(s) and organization(s) of the biomolecules that are chosen. In this paper, we review a series of biomolecular material platforms developed recently within the Leo Group at Virginia Tech and we discuss several novel coupling mechanisms provided by these hybrid material systems. The platforms developed demonstrate that the functions of biomolecules and the properties of synthetic materials can be combined to operate in concert, and the examples provided demonstrate how the formation and properties of a lipid bilayer can respond to a variety of stimuli including mechanical forces and electric fields

  5. Leaching from denture base materials in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lygre, H.; Solheim, E.; Gjerdet, N.R. [School of Medicine, Univ. of Bergen (Norway)

    1995-04-01

    Specimens made from denture base materials were leached in Ringer Solution and in ethanol. The specimens comprised a heat-cured product processed in two different ways and two cold-cured materials. The organic compounds leaching from the specimens to the solutions were separated, identified, and quantified by a combined gas-chromatography and gas-chromatography/mass-spectrometry technique. Additives and degradation products, possibly made by free radical reactions, were released from the denture base materials. In Ringer solution only phthalates could be quantified. In ethanol solvent, biphenyl, dibutyl phthalate, dicyclohexyl phthalate, phenyl benzoate, and phenyl salicylate were quantified. In addition, copper was found in the ethanol solvent from one of the denture base materials. The amount of leachable organic compounds varies among different materials. Processing temperature influences the initial amount of leachable compounds. 36 refs., 7 figs., 1 tab.

  6. Strong Teens: A School-Based Small Group Experience for African American Males

    Science.gov (United States)

    White, Nathan J.; Rayle, Andrea Dixon

    2007-01-01

    This article describes the school-based, small group adaptation of the existing Strong Teens Curriculum (STC) for African American male adolescents in high schools. The STC was created to equip adolescents with skills that promote more effective social interaction and enhance personal emotional and psychological wellness. The authors present a…

  7. Response of base isolated structure during strong ground motions beyond design earthquakes

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Ishida, Katsuhiko; Shiojiri, Hiroo

    1991-01-01

    In Japan, some base isolated structures for fast breeder reactors (FBR) are tried to design. When a base isolated structure are designed, the relative displacement of isolators are generally limited so sa to be remain in linear state of those during design earthquakes. But to estimate safety margin of a base isolated structure, the response of that until the failure must be obtained experimentally to analytically during strong ground motions of beyond design earthquake. The aim of this paper is to investigate the response of a base isolated structure when the stiffness of the isolators hardens and to simulate the response during strong ground motions of beyond design earthquakes. The optimum characteristics of isolators, with which the margin of the structure are increased, are discussed. (author)

  8. Characterization of asphalt treated base course material

    Science.gov (United States)

    2010-06-01

    Asphalt-treated bases are often used in new pavements; the materials are available and low-cost, but there is little data on how these materials perform in cold regions. : This study investigated four ATB types (hot asphalt, emulsion, foamed asphalt,...

  9. Ultra-thin and strong formvar-based membranes with controlled porosity for micro- and nano-scale systems

    Science.gov (United States)

    Auchter, Eric; Marquez, Justin; Stevens, Garrison; Silva, Rebecca; Mcculloch, Quinn; Guengerich, Quintessa; Blair, Andrew; Litchfield, Sebastian; Li, Nan; Sheehan, Chris; Chamberlin, Rebecca; Yarbro, Stephen L.; Dervishi, Enkeleda

    2018-05-01

    We present a methodology for developing ultra-thin and strong formvar-based membranes with controlled morphologies. Formvar is a thin hydrophilic and oleophilic polymer inert to most chemicals and resistant to radiation. The formvar-based membranes are viable materials as support structures in micro- and macro-scale systems depending on thinness and porosity control. Tunable sub-micron thick porous membranes with 20%–65% porosity were synthesized by controlling the ratios of formvar, glycerol, and chloroform. This synthesis process does not require complex separation or handling methods and allows for the production of strong, thin, and porous formvar-based membranes. An expansive array of these membrane characterizations including chemical compatibility, mechanical responses, wettability, as well as the mathematical simulations as a function of porosity has been presented. The wide range of chemical compatibility allows for membrane applications in various environments, where other polymers would not be suitable. Our formvar-based membranes were found to have an elastic modulus of 7.8 GPa, a surface free energy of 50 mN m‑1 and an average thickness of 125 nm. Stochastic model simulations indicate that formvar with the porosity of ∼50% is the optimal membrane formulation, allowing the most material transfer across the membrane while also withstanding the highest simulated pressure loadings before tearing. Development of novel, resilient and versatile membranes with controlled porosity offers a wide range of exciting applications in the fields of nanoscience, microfluidics, and MEMS.

  10. Materiality in a Practice-Based Approach

    Science.gov (United States)

    Svabo, Connie

    2009-01-01

    Purpose: The paper aims to provide an overview of the vocabulary for materiality which is used by practice-based approaches to organizational knowing. Design/methodology/approach: The overview is theoretically generated and is based on the anthology Knowing in Organizations: A Practice-based Approach edited by Nicolini, Gherardi and Yanow. The…

  11. Strong ion difference in urine: new perspectives in acid-base assessment.

    OpenAIRE

    Gattinoni, L.; Carlesso, E.; Cadringher, P.; Caironi, P.

    2006-01-01

    The plasmatic strong ion difference (SID) is the difference between positively and negatively charged strong ions. At pH 7.4, temperature 37°C and partial carbon dioxide tension 40 mmHg, the ideal value of SID is 42 mEq/l. The buffer base is the sum of negatively charged weak acids ([HCO3 -], [A-], [H2PO4 -]) and its normal value is 42 mEq/l. According to the law of electroneutrality, the amount of positive and negative charges must be equal, and therefore the SID value is equal to the buffer...

  12. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  13. A composite material based on recycled tires

    Science.gov (United States)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  14. Attenuation relations of strong motion in Japan using site classification based on predominant period

    International Nuclear Information System (INIS)

    Toshimasa Takahashi; Akihiro Asano; Hidenobu Okada; Kojiro Irikura; Zhao, J.X.; Zhang Jian; Thio, H.K.; Somerville, P.G.; Yasuhiro Fukushima; Yoshimitsu Fukushima

    2005-01-01

    A spectral acceleration attenuation model for Japan is presented. The data set includes a very large number of strong ground motion records up to the end of 2003. Site class terms, instead of individual site correction terms, are used based on a recent study on site classification for strong motion recording stations in Japan. By using site class terms, tectonic source type effects are identified and accounted in the present model. Effects of faulting mechanism for crustal earthquakes are also accounted for. For crustal and interface earthquakes, a simple form of attenuation model is able to capture the main strong motion characteristics and achieves unbiased estimates. For subduction slab events, a simple distance modification factor is employed to achieve plausible and unbiased prediction. Effects of source depth, tectonic source type, and faulting mechanism for crustal earthquakes are significant. (authors)

  15. Optimal Control Strategy for Marine Ssp Podded Propulsion Motor Based on Strong Tracking-Epf

    Directory of Open Access Journals (Sweden)

    Yao Wenlong

    2015-09-01

    Full Text Available Aiming at the non-linearity of state equation and observation equation of SSP (Siemen Schottel Propulsor propulsion motor, an improved particle filter algorithm based on strong tracking extent Kalman filter (ST-EKF was presented, and it was imported into the marine SSP propulsion motor control system. The strong tracking filter was used to update particles in the new algorithm and produce importance densities. As a result, the problems of particle degeneracy and sample impoverishment were ameliorated, the propulsion motor states and the rotor resistance were estimated simultaneously using strong track filter (STF, and the tracking ability of marine SSP propulsion motor control system was improved. Simulation result shown that the improved EPF algorithm was not only improving the prediction accuracy of the motor states and the rotor resistance, but also it can satisfy the requirement of navigation in harbor. It had the better accuracy than EPF algorithm.

  16. Standard test methods for the strong-base resins used in the recovery of uranium

    International Nuclear Information System (INIS)

    Ford, M.A.; Lombaard, L.R.

    1986-01-01

    There are no detailed specifications for the strong-base ion-exchange resins used in continuous ion-exchange plants, and it was considered that a very useful purpose would be served by the publication of a series of standard laboratory tests on which such specifications could be based. This report describes test methods that are relevant to the ion-exchange recovery of uranium. They include tests of the physical properties of strong-base resins (relative density, particle-size distribution, and moisture content) and of their chemical properties (theoretical capacity, equilibrium capacity, kinetics of loading and elution). Included are several supporting procedures that are used in conjunction with these methods

  17. Whole Language-Based English Reading Materials

    Directory of Open Access Journals (Sweden)

    Dian Erlina

    2016-05-01

    Full Text Available This Research and Development (R&D aims at developing English reading materials for undergraduate EFL students of Universitas Islam Negeri (UIN Raden Fatah Palembang, Indonesia. Research data were obtained through questionnaires, tests, and documents. The results of the research show that the existing materials are not relevant to the students’ need, so there is a need for developing new materials based on whole language principles. In general, the new developed materials are considered reliable by the experts, students, and lecturers. The materials are also effective in improving students’ reading achievement. The final product of the materials consists of a course book entitled Whole Language Reading (WLR and a teacher’s manual. WLR provides rich input of reading strategies, variety of topics, concepts, texts, activities, tasks, and evaluations. Using this book makes reading more holistic and meaningful as it provides integration across language skills and subject areas.

  18. Nanocellulose based polymer composite for acoustical materials

    Science.gov (United States)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  19. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Li, Yuchen; Hu, Han; Jiang, Lei; Cheng, Qunfeng

    2015-10-27

    Graphene is the strongest and stiffest material, leading to the development of promising applications in many fields. However, the assembly of graphene nanosheets into macrosized nanocomposites for practical applications remains a challenge. Nacre in its natural form sets the "gold standard" for toughness and strength, which serves as a guide to the assembly of graphene nanosheets into high-performance nanocomposites. Here we show the strong, tough, conductive artificial nacre based on graphene oxide through synergistic interactions of hydrogen and covalent bonding. Tensile strength and toughness was 4 and 10 times higher, respectively, than that of natural nacre. The exceptional integrated strong and tough artificial nacre has promising applications in aerospace, artificial muscle, and tissue engineering, especially for flexible supercapacitor electrodes due to its high electrical conductivity. The use of synergistic interactions is a strategy for the development of high-performance nanocomposites.

  20. Precious-metal-base advanced materials

    International Nuclear Information System (INIS)

    Nowicki, T.; Carbonnaux, C.

    1993-01-01

    Precious metals constitute also the base of several advanced materials used in the industry in hundreds of metric tons. Platinum alloys have been used as structural materials for equipments in the glass industry. The essential reason for this is the excellent resistance of platinum alloys to oxidation and electrolytical corrosion in molten glasses at temperatures as high as 1200-1500 C. The major drawback is a weak creep resistance. The unique way for significant improvement of platinum base materials creep resistance is a strengthening by an oxide dispersion (ODS). In the case of CLAL's patented ''Plativer'' materials, 0.05 wt% of Y 2 O 3 is incorporated within the alloy matrix by the flame spraying process. Further improvement of platinum base materials is related, in the authors opinion, to the development of precious metals base intermetallics. Another interesting applications of precious metals are silver base electrical contacts. They are in fact silver matrix composites containing varying amounts of well-dispersed particles of constituents such as CdO, SnO 2 , Ni, WC or C. In the case of such materials, particular properties are required and tested : resistance to arc erosion, resistance to welding and contact resistance. Many other technically fascinating precious metals base materials exist: brazing alloys for assembling metals, superconductors and ceramics; dental materials including magnetic biocompatible alloys; silver composites for superconductor wire jackets. The observation of current evolution indicates very clearly that precious metals cannot be replaced by common metals because of their unique characteristics due to their atomic level properties

  1. Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions

    Science.gov (United States)

    Sukharev, Maxim; Charron, Eric

    2017-03-01

    We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.

  2. Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Saavedra, J. R. M.; Thygesen, Kristian Sommer

    2017-01-01

    splitting due to this coupling, resulting in a characteristic avoided crossing scheme. We base our results on a computationally efficient approach consisting in including many-body interactions through the electron self-energy. We specify this formalism for a description of plasmons based upon a tight...... nanotriangles with varied size, where we predict remarkable peak splittings and other radical modifications in the spectra due to plasmon interactions with intrinsic optical phonons. Our method is equally applicable to other 2D materials and provides a simple approach for investigating coupling of plasmons...

  3. Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect

    International Nuclear Information System (INIS)

    Hung Nguyen, V; Mazzamuto, F; Saint-Martin, J; Bournel, A; Dollfus, P

    2012-01-01

    Using atomistic quantum simulation based on a tight binding model, we have investigated the transport characteristics of graphene nanomesh-based devices and evaluated the possibilities of observing negative differential conductance. It is shown that by taking advantage of bandgap opening in the graphene nanomesh lattice, a strong negative differential conductance effect can be achieved at room temperature in pn junctions and n-doped structures. Remarkably, the effect is improved very significantly (with a peak-to-valley current ratio of a few hundred) and appears to be weakly sensitive to the transition length in graphene nanomesh pn hetero-junctions when inserting a pristine (gapless) graphene section in the transition region between n and p zones. The study therefore suggests new design strategies for graphene electronic devices which may offer strong advantages in terms of performance and processing over the devices studied previously. (paper)

  4. Starting Strong: Talent-based Branching of Newly Commissioned U.S. Army Officers

    Science.gov (United States)

    2016-04-01

    security policy formulation. iii v Strategic Studies Institute and U.S. Army War College Press STARTING STRONG: TALENT -BASED BRANCHING OF NEWLY...public release; distribution is unlimited. ***** This publication is subject to Title 17, United States Code , Sections 101 and 105. It is in the public...SSI website at www.StrategicStudiesInstitute.army.mil/newsletter. ***** This volume is the 9th in a series of monographs on officer talent management

  5. Multisensor Distributed Track Fusion AlgorithmBased on Strong Tracking Filter and Feedback Integration1)

    Institute of Scientific and Technical Information of China (English)

    YANGGuo-Sheng; WENCheng-Lin; TANMin

    2004-01-01

    A new multisensor distributed track fusion algorithm is put forward based on combiningthe feedback integration with the strong tracking Kalman filter. Firstly, an effective tracking gateis constructed by taking the intersection of the tracking gates formed before and after feedback.Secondly, on the basis of the constructed effective tracking gate, probabilistic data association andstrong tracking Kalman filter are combined to form the new multisensor distributed track fusionalgorithm. At last, simulation is performed on the original algorithm and the algorithm presented.

  6. Some functional properties of composite material based on scrap tires

    Science.gov (United States)

    Plesuma, Renate; Malers, Laimonis

    2013-09-01

    The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

  7. New Liquid Phases for the Gas Chromatographic Separation of Strong Bases on Capillary Columns

    OpenAIRE

    Grob, K.

    2017-01-01

    The current practice of pretreating the solid support with free alkali to increase separation efficiency for basic compounds proved to be unsuitable for capillary columns. Instead of this, homogenous organic materials of high base strength are required. We found polyethylene imine (PEI) and polypropylene imine (PPI) to be very efficient as liquid phases of capillary columns for the separation of bases. The preparation of polymers is mentioned. Silanization or acetylation of the free hydroxyl ...

  8. Identifying and Analyzing Strong Components of an Industrial Network Based on Cycle Degree

    Directory of Open Access Journals (Sweden)

    Zhiying Zhang

    2016-01-01

    Full Text Available In the era of big data and cloud computing, data research focuses not only on describing the individual characteristics but also on depicting the relationships among individuals. Studying dependence and constraint relationships among industries has aroused significant interest in the academic field. From the network perspective, this paper tries to analyze industrial relational structures based on cycle degree. The cycle degree of a vertex, that is, the number of cycles through a vertex in an industrial network, can describe the roles of the vertices of strong components in industrial circulation. In most cases, different vertices in a strong component have different cycle degrees, and the one with a larger cycle degree plays more important roles. However, the concept of cycle degree does not involve the lengths of the cycles, which are also important for circulations. The more indirect the relationship between two industries is, the weaker it is. In order to analyze strong components thoroughly, this paper proposes the concept of circular centrality taking into consideration the influence by two factors: the lengths and the numbers of cycles through a vertex. Exemplification indicates that a profound analysis of strong components in an industrial network can reveal the features of an economy.

  9. Tungsten - Yttrium Based Nuclear Structural Materials

    Science.gov (United States)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  10. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    Science.gov (United States)

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  11. Optical switching based on the manipulation of microparticles in a colloidal liquid using strong scattering force

    International Nuclear Information System (INIS)

    Liu Jin; Liu Zheng-Qi; Feng Tian-Hua; Dai Qiao-Feng; Wu Li-Jun; Lan Sheng

    2010-01-01

    This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a large diameter of 4.3 μm is employed to realize the switching operation. A transparent window is opened for the signal light when the polystyrene spheres originally located at the beam centre are driven out of the beam region by the strong scattering force induced by the control light. The switching dynamics under different incident powers is investigated and compared with that observed in the optical switch based on the formation of optical matter. It is found that a large extinction ratio of ∼ 30 dB and fast switching-on and switching-off times can be achieved in this type of switch. (classical areas of phenomenology)

  12. Sensor-based material tagging system

    International Nuclear Information System (INIS)

    Vercellotti, L.C.; Cox, R.W.; Ravas, R.J.; Schlotterer, J.C.

    1991-01-01

    Electronic identification tags are being developed for tracking material and personnel. In applying electronic identification tags to radioactive materials safeguards, it is important to measure attributes of the material to ensure that the tag remains with the material. The addition of a microcontroller with an on-board analog-to-digital converter to an electronic identification tag application-specific integrated-circuit has been demonstrated as means to provide the tag with sensor data. Each tag is assembled into a housing, which serves as a scale for measuring the weight of a paint-can-sized container and its contents. Temperature rise of the can above ambient is also measured, and a piezoelectric detector detects disturbances and immediately puts the tag into its alarm and beacon mode. Radiation measurement was also considered, but the background from nearby containers was found to be excessive. The sensor-based tagging system allows tracking of the material in cans as it is stored in vaults or is moved through the manufacturing process. The paper presents details of the sensor-based material tagging system and describes a demonstration system

  13. Self-shielding and burn-out effects in the irradiation of strongly-neutron-absorbing material

    International Nuclear Information System (INIS)

    Sekine, T.; Baba, H.

    1978-01-01

    Self-shielding and burn-out effects are discussed in the evaluation of radioisotopes formed by neutron irradiation of a strongly-neutron-absorbing material. A method of the evaluation of such effects is developed both for thermal and epithermal neutrons. Gadolinium oxide uniformly mixed with graphite powder was irradiated by reactor-neutrons together with pieces of a Co-Al alloy wire (the content of Co being 0.475%) as the neutron flux monitor. The configuration of the samples and flux monitors in each of two irradiations is illustrated. The yields of activities produced in the irradiated samples were determined by the γ-spectrometry with a Ge(Li) detector of a relative detection efficiency of 8%. Activities at the end of irradiation were estimated by corrections due to pile-up, self-absorption, detection efficiency, branching ratio, and decay of the activity. Results of the calculation are discussed in comparison with the observed yields of 153 Gd, 160 Tb, and 161 Tb for the case of neutron irradiation of disc-shaped targets of gadolinium oxide. (T.G.)

  14. Identification of strong promoters based on the transcriptome of Bacillus licheniformis.

    Science.gov (United States)

    Liu, Xin; Yang, Haiyan; Zheng, Junwei; Ye, Yanrui; Pan, Li

    2017-06-01

    To expand the repertoire of strong promoters for high level expression of proteins based on the transcriptome of Bacillus licheniformis. The transcriptome of B. licheniformis ATCC14580 grown to the early stationary phase was analyzed and the top 10 highly expressed genes/operons out of the 3959 genes and 1249 operons identified were chosen for study promoter activity. Using beta-galactosidase gene as a reporter, the candidate promoter pBL9 exhibited the strongest activity which was comparable to that of the widely used strong promoter p43. Furthermore, the pro-transglutaminase from Streptomyces mobaraensis (pro-MTG) was expressed under the control of promoter pBL9 and the activity of pro-MTG reached 82 U/ml after 36 h, which is 23% higher than that of promoter p43 (66.8 U/ml). In our analyses of the transcriptome of B. licheniformis, we have identified a strong promoter pBL9, which could be adapted for high level expression of proteins in the host Bacillus subtilis.

  15. Attenuation relation for strong motion in Eastern Java based on appropriate database and method

    Science.gov (United States)

    Mahendra, Rian; Rohadi, Supriyanto; Rudyanto, Ariska

    2017-07-01

    The selection and determination of attenuation relation has become important for seismic hazard assessment in active seismic region. This research initially constructs the appropriate strong motion database, including site condition and type of the earthquake. The data set consisted of large number earthquakes of 5 ≤ Mw ≤ 9 and distance less than 500 km that occurred around Java from 2009 until 2016. The location and depth of earthquake are being relocated using double difference method to improve the quality of database. Strong motion data from twelve BMKG's accelerographs which are located in east Java is used. The site condition is known by using dominant period and Vs30. The type of earthquake is classified into crustal earthquake, interface, and intraslab based on slab geometry analysis. A total of 10 Ground Motion Prediction Equations (GMPEs) are tested using Likelihood (Scherbaum et al., 2004) and Euclidean Distance Ranking method (Kale and Akkar, 2012) with the associated database. The evaluation of these methods lead to a set of GMPEs that can be applied for seismic hazard in East Java where the strong motion data is collected. The result of these methods found that there is still high deviation of GMPEs, so the writer modified some GMPEs using inversion method. Validation was performed by analysing the attenuation curve of the selected GMPE and observation data in period 2015 up to 2016. The results show that the selected GMPE is suitable for estimated PGA value in East Java.

  16. Binary-collision-approximation-based simulation of noble gas irradiation to tungsten materials

    International Nuclear Information System (INIS)

    Saito, Seiki; Takayama, Arimichi; Ito, Atsushi M.; Nakamura, Hiroaki

    2013-01-01

    To reveal the possibility of fuzz formation of tungsten material under noble gas irradiation, helium, neon, and argon atom injections into tungsten materials are performed by binary-collision-approximation-based simulation. The penetration depth is strongly depends on the structure of the target material. Therefore, the penetration depth for amorphous and bcc crystalline structure is carefully investigated in this paper

  17. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  18. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    International Nuclear Information System (INIS)

    Kiesel, Maximilian Ludwig

    2013-01-01

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on

  19. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, Maximilian Ludwig

    2013-02-08

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general

  20. Synthesis and optoelectronic characterization of some triphenylamine-based compounds containing strong acceptor substituents

    Energy Technology Data Exchange (ETDEWEB)

    Grigoras, Mircea, E-mail: grim@icmpp.ro; Ivan, Teofilia; Vacareanu, Loredana; Catargiu, Ana Maria; Tigoianu, Radu

    2014-09-15

    Three novel triphenylamine-based compounds containing strong electron acceptor groups have been synthesized and their comparative photophysical properties are presented. These compounds were obtained by a two-step method: (i) triphenylamine compounds with one, two and three phenylacetylene arms were synthesized by Sonogashira reaction between iodine-substituted triphenylamines and phenylacetylene, followed by (ii) post-modification of these electron-rich alkynes by addition of the strong electron acceptor, tetracyanoethylene. Characterization of all oligomers was made by FTIR, {sup 1}H-NMR, UV–vis and fluorescence spectroscopy. A batochromic shifting of the UV and photoluminescence maxima was observed with the increase of the acceptor group number. The electrochemical behavior was studied by cyclic voltammetry. The cyclic voltammograms have evidenced that triphenylamine-phenylacetylene compounds undergo only oxidation processes while compounds modified with tetracyanoethylene show both oxidation and reduction peaks associated with donor and acceptor groups, respectively. The donor–acceptor compounds coordinate metal ions (i.e., Hg{sup 2+} and Sn{sup 2+}) by cyano groups resulting in the decreasing of charge transfer band intensity, and they can be used as chemosensors. - Highlights: • Three triphenylamine-based ethynylene compounds were prepared by Sonogashira reaction. • Post-modification of ethynylene linkages by tetracyanethylene cycloaddition and retroconversion led to donor–acceptor compounds. • Photophysical properties of donor–acceptor oligomers were studied in different solvents.

  1. Data base on structural materials aging properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1992-01-01

    The US Nuclear Regulatory Commission has initiated a Structural Aging Program at the Oak Ridge National Laboratory to identify potential structural safety issues related to continued service of nuclear power plants and to establish criteria for evaluating and resolving these issues. One of the tasks in this program focuses on the establishment of a Structural Materials Information Center where long-term and environment-dependent properties of concretes and other structural materials are being collected and assembled into a data base. These properties will be used to evaluate the current condition of critical structural components in nuclear power plants and to estimate the future performance of these materials during the continued service period

  2. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    Science.gov (United States)

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  3. Satellite Contamination and Materials Outgassing Knowledge base

    Science.gov (United States)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  4. Protein-Based Drug-Delivery Materials

    Directory of Open Access Journals (Sweden)

    Dave Jao

    2017-05-01

    Full Text Available There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review.

  5. Molybdenum silicide based materials and their properties

    International Nuclear Information System (INIS)

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-01-01

    Molybdenum disilicide (MoSi 2 ) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm 3 ). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi 2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi 2 -based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed

  6. Micromechanics Based Failure Analysis of Heterogeneous Materials

    Science.gov (United States)

    Sertse, Hamsasew M.

    In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses

  7. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  8. Radiation hardened equipment and material data base

    International Nuclear Information System (INIS)

    Sumita, Kenji; Yamaoka, Hitoshi; Kakuta, Tsunemi; Shono, Yoshihiko; Nakamura, Tetsuo; Nakase, Yoshiaki; Furuta, Junichiro.

    1988-01-01

    In order to collect and put in order the results regarding radiation-withstanding equipment and materials, the Osaka Nuclear Science Association organized the committee composed of the experts in various fields in fiscal year 1986 for the purpose of building up the data base, and began the activity. From the trend of the research and development and the usefulness for the future, the fields of collecting data were decided as organic materials, optical fibers, semiconductor elements and compound semiconductors. By fiscal year 1987, the building-up of the prototype data base was aimed at, and system configuration, the making of the formats on the items and attributes of collected data, the action test of the system and so on were carried out. Under the background of the upgrading of LWRs, the development of FBRs and nuclear fusion reactors, the construction of a reprocessing plant and a low level waste storage facility, and the progress of various advanced technologies, the research on the equipment and materials having excellent radiation resistance and the development for heightening the performance have been carried out in many places separately, accordingly the activity for building up the prototype data base was begun, and about 600 cases were collected. (Kako, I.)

  9. Strongly Iridescent Hybrid Photonic Sensors Based on Self-Assembled Nanoparticles for Hazardous Solvent Detection

    Directory of Open Access Journals (Sweden)

    Ayaka Sato

    2018-03-01

    Full Text Available Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.

  10. Periodic Forcing of a 555-IC Based Electronic Oscillator in the Strong Coupling Limit

    Science.gov (United States)

    Santillán, Moisés

    We designed and developed a master-slave electronic oscillatory system (based on the 555-timer IC working in the astable mode), and investigated its dynamic behavior regarding synchronization. For that purpose, we measured the rotation numbers corresponding to the phase-locking rhythms achieved in a large set of values of the normalized forcing frequency (NFF) and of the coupling strength between the master and the slave oscillators. In particular, we were interested in the system behavior in the strong-coupling limit, because such problem has not been extensively studied from an experimental perspective. Our results indicate that, in such a limit, a degenerate codimension-2 bifurcation point at NFF = 2 exists, in which all the phase-locking regions converge. These findings were corroborated by means of a mathematical model developed to that end, as well as by ad hoc further experiments.

  11. Complex coacervate-based materials for biomedicine.

    Science.gov (United States)

    Blocher, Whitney C; Perry, Sarah L

    2017-07-01

    There has been increasing interest in complex coacervates for deriving and transporting biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liquid that results from the electrostatic complexation of oppositely charged macroions. Coacervates have long been used as a strategy for encapsulation, particularly in food and personal care products. More recent efforts have focused on the utility of this class of materials for the encapsulation of small molecules, proteins, RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. Furthermore, coacervate-related materials have found utility in other areas of biomedicine, including cartilage mimics, tissue culture scaffolds, and adhesives for wet, biological environments. Here, we discuss the self-assembly of complex coacervate-based materials, current challenges in the intelligent design of these materials, and their utility applications in the broad field of biomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1442. doi: 10.1002/wnan.1442 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  12. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  13. Fracture behavior of W based materials

    International Nuclear Information System (INIS)

    Hack, J.E.

    1991-01-01

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ''heavy alloy'' and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed in two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general

  14. Resilient Modulus Characterization of Alaskan Granular Base Materials

    Science.gov (United States)

    2010-08-01

    Resilient modulus (MR) of base course material is an important material input for : pavement design. In Alaska, due to distinctiveness of local climate, material source, : fines content and groundwater level, resilient properties of D-1 granular base...

  15. Bibliographic data base for low activation materials

    International Nuclear Information System (INIS)

    Alenina, M.V.; Kolotov, V.P.; Ivanov, L.I.

    2007-01-01

    Full text of publication follows: The analysis of the publications dealing with development of low-activation materials for fusion technology demonstrates that the period of information doubling is about 5-6 years. Such high rate usually is characteristic of the actively developing field of science. To develop an useful instrument for analysis and systematization of the available data a computer based bibliographic system has been developed some time ago. Recently the engine of the system has been significantly modernized. The bibliographic system is based on using of MS SQL server data base which includes main bibliographic information including abstracts. The most important feature of the system is that full-text abstracts searching capabilities are appended with indexing of information by experts to increase its definition. The experts indexes cover the following topics: - Main problems; - Software and methods for calculation; - Libraries of nuclear data; - Spectrum of neutrons for different construction parts of fusion reactor; - Low activation materials; - Technology of production; - Radiation effects; - Utilization of radiation waste; - Estimation of risks; - Designs of fusion reactor; - Nuclear transmutations; - Equipment used for investigations. The primary data base is filling/appending by periodical queries to different bibliographic data bases (INIS, COMPEMDEX and others) via suitable Internet providers including strict analysis of the income information to remove a possible 'information noise' and following data indexing by experts. The data base contains references since 1976 year (when first works in this area have been fulfilled) and until now. The bibliographic system is accessible by means of Internet using different forms developed for queries (http://www.geokhi.ru/~lam_db). (authors)

  16. Bibliographic data base for low activation materials

    Energy Technology Data Exchange (ETDEWEB)

    Alenina, M.V.; Kolotov, V.P. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation); Ivanov, L.I. [A.A. Baikov Institute of Metallurgy and Science of Materials, Russian Academy of Sciences, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: The analysis of the publications dealing with development of low-activation materials for fusion technology demonstrates that the period of information doubling is about 5-6 years. Such high rate usually is characteristic of the actively developing field of science. To develop an useful instrument for analysis and systematization of the available data a computer based bibliographic system has been developed some time ago. Recently the engine of the system has been significantly modernized. The bibliographic system is based on using of MS SQL server data base which includes main bibliographic information including abstracts. The most important feature of the system is that full-text abstracts searching capabilities are appended with indexing of information by experts to increase its definition. The experts indexes cover the following topics: - Main problems; - Software and methods for calculation; - Libraries of nuclear data; - Spectrum of neutrons for different construction parts of fusion reactor; - Low activation materials; - Technology of production; - Radiation effects; - Utilization of radiation waste; - Estimation of risks; - Designs of fusion reactor; - Nuclear transmutations; - Equipment used for investigations. The primary data base is filling/appending by periodical queries to different bibliographic data bases (INIS, COMPEMDEX and others) via suitable Internet providers including strict analysis of the income information to remove a possible 'information noise' and following data indexing by experts. The data base contains references since 1976 year (when first works in this area have been fulfilled) and until now. The bibliographic system is accessible by means of Internet using different forms developed for queries (http://www.geokhi.ru/{approx}lam{sub d}b). (authors)

  17. Attenuation Tomography Based on Strong Motion Data: Case Study of Central Honshu Region, Japan

    Science.gov (United States)

    Kumar, Parveen; Joshi, A.; Verma, O. P.

    2013-12-01

    Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by H ashida and S himazaki (J Phys Earth. 32, 299-316, 1984) and has been used and modified by J oshi (Curr Sci. 90, 581-585, 2006; Nat Hazards. 43, 129-146, 2007) and J oshi et al. (J. Seismol. 14, 247-272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.

  18. Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems

    Science.gov (United States)

    Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram

    2014-12-01

    Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.

  19. Properties of materials based on polybenzimidazopyrrolone

    Energy Technology Data Exchange (ETDEWEB)

    Korshak, L L; Lekaye, I A; Vinogradova, O V; Chatova, L L; Lekaye, T V; Rusanov, A L

    1980-01-01

    Polymers based on polyheteroarylene compounds are characterized by high radiation and ablation resistance and are prepared by a two-stage synthesis:preparation of the soluble polyamidoamino acids (PAAA's), and polycondensation by thermal intramolecular polycyclodehydration of the PAAA's. Three types of polymers were prepared by the reaction in dimethylformamide of 3,3',4,4'-tetraminodiphenyl-oxide with the dianhydrides of diphenyloxide-, benzophenone-, and diphenylsulfon-tetracarbonic acids and pyromellitic acid. An evaluation was made of the optimum regimes for extruding these polymers and of the properties of the extruded material. (JMT)

  20. Membrane materials based on polyheteroarylenes and their application for pervaporation

    International Nuclear Information System (INIS)

    Pulyalina, A Yu; Polotskaya, G A; Toikka, A M

    2016-01-01

    Studies on the transport properties of membrane materials are topical in connection with the need to solve the fundamental problems and to analyze the applied aspects of the theory of membrane separation processes including, in particular, the development of the energy- and resource-saving, environmentally safe technologies. The aim of the review is to generalize the experimental data on the separation of practically valuable mixtures using membranes based on polyheteroarylenes (thermally stable and mechanically strong polymers). First of all, our analysis covers publications that give a detailed description of the physicochemical properties of the membranes and an interpretation of the specific features of mass transfer during pervaporation of liquid mixtures using membrane materials based on polyheteroarylenes. The dependences of the transport parameters of pervaporation on the process conditions and on the methods for production of membrane materials are discussed. The data presented may be useful for the development of the theory of membrane processes taking into account the chemical nature and physicochemical features of polymeric membrane materials. The bibliography includes 151 references

  1. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    Science.gov (United States)

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  2. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  3. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  4. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  5. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  6. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.; Gooneratne, C.P.; Wang, Q.X.; Liu, Y.; Gianchandani, Y.; Kosel, Jü rgen

    2014-01-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials

  7. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.

    Science.gov (United States)

    Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo

    2017-01-09

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  8. Strong neutron sources - How to cope with weapon material production capabilities of fusion and spallation neutron sources?

    International Nuclear Information System (INIS)

    Englert, M.; Franceschini, G.; Liebert, W.

    2013-01-01

    In this article we investigate the potential and relevance for weapon material production in future fusion power plants and spallation neutron sources (SNS) and sketch what should be done to strengthen these technologies against a non-peaceful use. It is shown that future commercial fusion reactors may have military implications: first, they provide an easy source of tritium for weapons, an element that does not fall under safeguards and for which diversion from a plant could probably not be detected even if some tritium accountancy is implemented. Secondly, large fusion reactors - even if not designed for fissile material breeding - could easily produce several hundred kg Pu per year with high weapon quality and very low source material requirements. If fusion-only reactors will prevail over fission-fusion hybrids in the commercialization phase of fusion technology, the safeguard challenge will be more of a legal than of a technical nature. In pure fusion reactors (and in most SNS) there should be no nuclear material present at any time by design. The presence of undeclared nuclear material would indicate a military use of the plant. This fact offers a clear-cut detection criterion for a covert use of a declared facility. Another important point is that tritium does not fall under the definition of 'nuclear material', so a pure fusion reactor or a SNS that do not use nuclear materials are not directly falling under any international non-proliferation treaty requirements. Non-proliferation treaties have to be amended to take into account that fact. (A.C.)

  9. Sulfur based electrode materials for secondary batteries

    Science.gov (United States)

    Hao, Yong

    Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes

  10. The materials processing research base of the Materials Processing Center

    Science.gov (United States)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  11. Strong poly(ethylene oxide) based gel adhesives via oxime cross-linking.

    Science.gov (United States)

    Ghosh, Smita; Cabral, Jaydee D; Hanton, Lyall R; Moratti, Stephen C

    2016-01-01

    There is a demand for materials to replace or augment the use of sutures and staples in surgical procedures. Currently available commercial surgical adhesives provide either high bond strength with biological toxicity or polymer and protein-based products that are biologically acceptable (though with potential sensitizing potential) but have much reduced bond strength. It is desirable to provide novel biocompatible and biodegradable surgical adhesives/sealants capable of high strength with minimal immune or inflammatory response. In this work, we report the end group derivatization of 8-arm star PEOs with aldehyde and amine end groups. Gels were prepared employing the Schiff-base chemistry between the aldehydes and the amines. Gel setting times, swelling behavior and rheological characterization were carried out for these gels. The mechanical-viscoelastic properties were found to be directly proportional to the crosslinking density of the gels, the 10K PEO gel was stiffer in comparison to the 20K PEO gel. The adhesive properties of these gels were tested using porcine skin and showed excellent adhesion properties. Cytotoxicity studies were carried out for the individual gel components using two different methods: (a) Crystal Violet Staining assay (CVS assay) and (b) impedance and cell index measurement by the xCELLigence system at concentrations >5%. Gels prepared by mixing 20% w/w solutions were also tested for cytotoxicity. The results revealed that the individual gel components as well as the prepared gels and their leachables were non-cytotoxic at these concentrations. This work presents a new type of glue that is aimed at surgery applications using a water soluble star shaped polymer. It show excellent adhesion to skin and is tough and easy to use. We show that it is very biocompatible based on tests on live human cells, and could therefore in principle be used for internal surgery. Comparison with other reported and commercial glues shows that it is stronger

  12. Base technology development of new materials for FBR performance innovations

    International Nuclear Information System (INIS)

    Kano, Shigeki; Koyama, Masahiro; Nomura, Shigeo; Morikawa, Satoru; Ueno, Fumiyoshi

    1989-01-01

    This paper describes the base technology development of new materials for FBR performance innovations at the Power Reactor and Nuclear Fuel Development Corporation. The contents are as follows: (1) development of sodium and radiation resistant new materials, (2) development of high performance shielding material, (3) development of high performance control material, (4) development of new functional materials for reactor instrumentation. (author)

  13. Rare earth oxyhalogenide base thermoluminescent material

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1976-01-01

    A process is described that consists to expose a thermoluminescent material to ionizing radiations, the material being a rare earth oxyhalogenide with terbium additions, to heat this material up to the emission of visible radiations and to measure the emitted radiations which are proportional to the ionizing radiation dose [fr

  14. Surface characterization of graphene based materials

    International Nuclear Information System (INIS)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-01-01

    Highlights: • Two kind of samples: commercial graphene on Cu substrate and rGO flakes. • EPES applied to measure the IMFPs in graphene based materials. • Characterization by various techniques like: FE-SEM, AFM, XPS, AES and REELS. • EPES IMFPs for rGO deviated up to 14% from IMFPs calculated using the optical data. - Abstract: In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5–2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  15. Surface characterization of graphene based materials

    Energy Technology Data Exchange (ETDEWEB)

    Pisarek, M., E-mail: mpisarek@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-065 Warsaw (Poland); Jablonski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Two kind of samples: commercial graphene on Cu substrate and rGO flakes. • EPES applied to measure the IMFPs in graphene based materials. • Characterization by various techniques like: FE-SEM, AFM, XPS, AES and REELS. • EPES IMFPs for rGO deviated up to 14% from IMFPs calculated using the optical data. - Abstract: In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5–2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  16. Efficient waveguide coupler based on metal materials

    Science.gov (United States)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  17. Strong inverse association between physical fitness and overweight in adolescents: a large school-based survey

    Directory of Open Access Journals (Sweden)

    Auguste Robert

    2007-06-01

    Full Text Available Abstract Background Studies examining the relationship between physical fitness and obesity in children have had mixed results despite their interrelationship making intuitive sense. We examined the relationship between physical fitness and overweight and obesity in a large sample of adolescents in the Republic of Seychelles (Indian Ocean, African region. Methods All students of four grades of all secondary schools performed nine physical fitness tests. These tests assessed agility, strength and endurance, and included the multistage shuttle run, a validated measure of maximal oxygen uptake. Weight and height were measured, body mass index (BMI calculated, and "overweight" and "obesity" were defined based on the criteria of the International Obesity Task Force. We defined "lean" weight as age- and sex-specific BMI th percentile. Age- and sex-specific percentiles for each fitness test were calculated. "Good" performance was defined as a result ≥75th percentile. Results Data were available in 2203 boys and 2143 girls from a total of 4599 eligible students aged 12–15 years. The prevalence of overweight (including obesity was 11.2% (95% confidence interval: 9.9–12.4 in boys and 17.5% (15.9–19.1 in girls. For 7 of the 9 tests, the relationship between BMI and fitness score, as assessed by locally weighted regression, was characterized by a marked inverse J shape. Students with normal body weight achieved "good" performance markedly more often than overweight or obese students on 7 of the 9 tests of fitness and more often than lean children. For example, good performance for the multistage shuttle run was achieved by 25.6% (SE: 2.1 of lean students, 29.6% (0.8 of normal weight students, 7.9% (1.3 of overweight students and 1.2% (0.9 of obese students. Conclusion This cross-sectional study shows a strong inverse relationship between fitness and excess body weight in adolescents. Improving fitness in adolescents, likely through increasing

  18. Working material. IAEA seismic safety of nuclear power plants. International workshop on lessons learned from strong earthquake

    International Nuclear Information System (INIS)

    2008-08-01

    The International Workshop on Lessons Learned from Strong Earthquake was held at Kashiwazaki civic plaza, Kashiwazaki, Niigata-prefecture, Japan, for three days in June 2008. Kashiwazaki-Kariwa NPP (KK-NPP) is located in the city of Kashiwazaki and the village of Kariwa, and owned and operated by Tokyo Electric Power Company Ltd. (TEPCO). After it experienced the Niigata-ken Chuetsu-oki earthquake in July 2007, IAEA dispatched experts' missions twice and held technical discussions with TEPCO. Through such activities, the IAEA secretariat and experts obtained up-dated information of plant integrity, geological and seismological evaluation and developments of the consultation in the regulatory framework of Japan. Some of the information has been shared with the member states through the reports on findings and lessons learned from the missions to Japan. The international workshop was held to discuss and share the information of lessons learned from strong earthquakes in member states' nuclear installations. It provided the opportunity for participants from abroad to share the information of the recent earthquake and experience in Japan and to visit KK-NPP. And for experts in Japan, the workshop provided the opportunity to share the international approach on seismic-safety-related measures and experiences. The workshop was organised by the IAEA as a part of an extra budgetary project, in cooperation with OECD/NEA, hosted by Japanese organisations including Nuclear and Industrial Safety Agency (NISA), Nuclear Safety Commission (NSC), and Japan Nuclear Energy Safety Organization (JNES). The number of the workshop participants was 70 experts from outside Japan, 27 countries and 2 international organisations, 154 Japanese experts and 81 audience and media personnel, totalling to 305 participants. The three-day workshop was open to the media including the site visit, and covered by NHK (the nation's public broadcasting corporation) and nation-wide and local television

  19. Strong plasma shock structures based on the Navier--Stokes equations

    International Nuclear Information System (INIS)

    Abe, K.

    1975-01-01

    The structure of a plasma collisional shock wave is examined on the basis of the Navier--Stokes equations and simultaneously on the basis of the Fokker--Planck equation. The resultant structures are compared to check the validity of the Navier--Stokes equations applied to the structures of strong shock waves. The Navier--Stokes equations give quite correct structures for weak shock waves. For the strong shock waves, the detailed structures obtained from the Navier--Stokes equations differ from the results of the Fokker--Planck equation, but the shock thicknesses of the two shock waves are in relatively close agreement

  20. Note on a reformulation of the strong cosmic censor conjecture based on computability

    Energy Technology Data Exchange (ETDEWEB)

    Etesi, Gabor

    2002-12-12

    In this Letter we provide a reformulation of the strong cosmic censor conjecture taking into account recent results on Malament-Hogarth space-times. We claim that the strong version of the cosmic censor conjecture can be formulated by postulating that a physically reasonable space-time is either globally hyperbolic or possesses the Malament-Hogarth property. But it is known that a Malament-Hogarth space-time in principle is capable for performing non-Turing computations such as checking consistency of ZFC set theory. In this way we get an intimate conjectured link between the cosmic censorship scenario and computability theory.

  1. Ultra-tough and strong, hybrid thin films based on ionically crosslinked polymers and 2D inorganic platelets

    Science.gov (United States)

    Ji, Dong Hwan; Choi, Suji; Kim, Jaeyun; nanobiomaterials lab Team

    Integration of high strength and toughness tend to be mutually exclusive and synthesized hybrid films with superior mechanical properties have been difficult to fabricate controllable shapes and various scales. Although diverse synthesized hybrid films consisting of organic matrix and inorganic materials with brick-and-mortar structure, show improved mechanical properties, these films are still limited in toughness and fabrication methods. Herein, we report ultra-tough and strong hybrid thin films with self-assembled uniform microstructures with controllable shapes and various scale based on hydrogel-mediated process. Ca2+-crosslinking in alginate chains and well-aligned alumina platelets in alginate matrix lead to a synergistic enhancement of strength and toughness in the resulting film. Consequentially, Ca2+-crosslinked Alg/Alu films showed outstanding toughness of 29 MJ m-3 and tensile strength of 160 MPa. Furthermore, modifying Alu surface with polyvinylpyrrolidone (PVP), tensile strength was further improved up to 200 MPa. Our results suggest an alternative approach to design and processing of self-assembled hydrogel-mediated hybrid films with outstanding mechanical properties.

  2. Theory of the axi-symmetric extrusion process of multi-layer materials with a strong plastic nonhomogeneity

    OpenAIRE

    J. Piwnik; A. Patejuk

    2008-01-01

    A novel simplified r hcorctical solution is found lor thc strcss starcs accompanying thc proccss of cxt ri~siono f ma![ i-laycr matcrialsunder rhc conditions af axial symmetry. Thc solution i~ bawd nn ~ h mc n dcl of pcrfcct plastic material satisfying thc Trcsca yicld condition.thc Haar-Karman conditions bcing sntisficd in each layer. Thc laycrs arc chnnctcrizcd by difrercnt yicld limits and stmng plasticnonhomogeneity. In thc ncighhoi~rhoorol f thc interfaces conrinuous variation of rhc yic...

  3. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  4. Research on the strong optical feedback effects based on spectral analysis method

    Science.gov (United States)

    Zeng, Zhaoli; Qu, XueMin; Li, Weina; Zhang, Min; Wang, Hao; Li, Tuo

    2018-01-01

    The strong optical feedback has the advantage of generating high resolution fringes. However, these feedback fringes usually seem like the noise signal when the feedback level is high. This defect severely limits its practical application. In this paper, the generation mechanism of noise fringes with strong optical feedback is studied by using spectral analysis method. The spectral analysis results show that, in most cases, the noise-like fringes are observed owing to the strong multiple high-order feedback. However, at certain feedback cavity condition, there may be only one high-order feedback beam goes back to the laser cavity, the noise-like fringes can change to the cosine-like fringes. And the resolution of this fringe is dozens times than that of the weak optical feedback. This research provides a method to obtain high resolution cosine-like fringes rather than noise signal in the strong optical feedback, which makes it possible to be used in nanoscale displacement measurements.

  5. Data-based Modeling of the Dynamical Inner Magnetosphere During Strong Geomagnetic Storms

    Science.gov (United States)

    Tsyganenko, N.; Sitnov, M.

    2004-12-01

    This work builds on and extends our previous effort [Tsyganenko et al., 2003] to develop a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996--2000 and concurrent observations of the solar wind and IMF. The essence of the approach is to derive from the data the temporal variation of all major current systems contributing to the geomagnetic field during the entire storm cycle, using a simple model of their growth and decay. Each principal source of the external magnetic field (magnetopause, cross-tail current sheet, axisymmetric and partial ring currents, Birkeland currents) is controlled by a separate driving variable that includes a combination of geoeffective parameters in the form Nλ Vβ Bsγ , where N, V, and Bs are the solar wind density, speed, and the magnitude of the southward component of the IMF, respectively. Each source was also assumed to have an individual relaxation timescale and residual quiet-time strength, so that its partial contribution to the total field was calculated for any moment as a time integral, taking into account the entire history of the external driving of the magnetosphere during each storm. In addition, the magnitudes of the principal field sources were assumed to saturate during extremely large storms with abnormally strong external driving. All the parameters of the model field sources, including their magnitudes, geometrical characteristics, solar wind/IMF driving functions, decay timescales, and saturation thresholds were treated as free variables, to be derived from the data by the least squares. The relaxation timescales of the individual magnetospheric field sources were found to largely differ between each other, from as large as ˜30 hours for the symmetrical ring current to only ˜50 min for the region~1 Birkeland current. The total magnitudes of the currents were also found to dramatically vary in the course of major storms

  6. Sustainable bio-based materials: opportunities and challenges

    NARCIS (Netherlands)

    van der Meer, Yvonne

    2017-01-01

    Research in the area of bio-based materials aims to achieve breakthroughs in bio-based materials development. A novel way is presented to organise bio-based materials research with a value chain approach in which sustainability research is integrated in the research program. This research approach

  7. Rare earth monopnictides and monochalcogenides from first principles: towards an electronic phase diagram of strongly correlated materials

    DEFF Research Database (Denmark)

    Petit, Leon; Tyer, R.; Szotek, Z.

    2010-01-01

    calculated to within ~1.5% of the experimental values, and its ability to describe localization phenomena in solids, makes it a competitive atomistic simulation approach in the search for and design of new materials with specific physical properties and possible technological applications....... and exhibiting valency transitions brought about by a complex interplay between ligand chemistry and lanthanide contraction. The calculations exploit the combined effect of a first-principles methodology, which can adequately describe the dual character of electrons, itinerant versus localized, and high......-throughput computing made possible by the increasing available computational power. Our findings, including the predicted 'intermediate valent' compounds SmO and TmSe, are in excellent overall agreement with the available experimental data. The accuracy of the approach, proven e.g. through the lattice parameters...

  8. A strategy for the preparation of thioantimonates based on the concept of weak acids and corresponding strong bases.

    Science.gov (United States)

    Anderer, Carolin; Delwa de Alarcón, Natalie; Näther, Christian; Bensch, Wolfgang

    2014-12-15

    By following a new synthetic approach, which is based on the in situ formation of a basic medium by the reaction between the strong base Sb(V)S4 (3-) and the weak acid H2 O, it was possible to prepare three layered thioantimonate(III) compounds of composition [TM(2,2'-bipyridine)3 ][Sb6 S10 ] (TM=Ni, Fe) and [Ni(4,4'-dimethyl-2,2'-bipyridine)3 ][Sb6 S10 ] under hydrothermal conditions featuring two different thioantimonate(III) network topologies. The antimony source, Na3 SbS4 ⋅ 9 H2 O, undergoes several decomposition reactions and produces the Sb(III) S3 species, which condenses to generate the layered anion. The application of transition-metal complexes avoids crystallization of dense phases. The reactions are very fast compared to conventional hydrothermal/solvothermal syntheses and are much less sensitive to changes of the reaction parameters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Prediction of strong ground motion based on scaling law of earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1991-01-01

    In order to predict more practically strong ground motion, it is important to study how to use a semi-empirical method in case of having no appropriate observation records for actual small-events as empirical Green's functions. We propose a prediction procedure using artificially simulated small ground motions as substitute for the actual motions. First, we simulate small-event motion by means of stochastic simulation method proposed by Boore (1983) in considering pass effects such as attenuation, and broadening of waveform envelope empirically in the objective region. Finally, we attempt to predict the strong ground motion due to a future large earthquake (M 7, Δ = 13 km) using the same summation procedure as the empirical Green's function method. We obtained the results that the characteristics of the synthetic motion using M 5 motion were in good agreement with those by the empirical Green's function method. (author)

  10. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  11. Theory of the axi-symmetric extrusion process of multi-layer materials with a strong plastic nonhomogeneity

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2008-03-01

    Full Text Available A novel simplified r hcorctical solution is found lor thc strcss starcs accompanying thc proccss of cxt ri~siono f ma![ i-laycr matcrialsunder rhc conditions af axial symmetry. Thc solution i~ bawd nn ~ h mc n dcl of pcrfcct plastic material satisfying thc Trcsca yicld condition.thc Haar-Karman conditions bcing sntisficd in each layer. Thc laycrs arc chnnctcrizcd by difrercnt yicld limits and stmng plasticnonhomogeneity. In thc ncighhoi~rhoorol f thc interfaces conrinuous variation of rhc yicld limit i s a~sunicdZ. hc form of thc plastic zonc nndpsitions or the contact surfi~ccss eparating rhc laycrs nrc assumcd. Shcaring strcsscs and mcan prcssurc in a longitudinal scclion o f t hccxrruded rod arc cxprcsscd in tcrms of filnctions of the axial coordinatc z. Unknown fttnctions of thc singlc coordinatc z arc dctcrmincdFrom thc yicld conditions writtcn for thc contour of thc die. Accitratc analytical relations arc dcrivcd For tllc normal strcss distribution atthc surface of contact bctwccn thc dic and thc matcrial cxlrudcd, Using thc known normal and shcar stress dislrihutions (due to Iriclion,accuratc valuc of thc lower cstimate of thc cxtrusion forcc is dctcrrnincd. Thc sotution may hc applicd lo ~ h cca scs of arbitrary numhcr oflaycrs and arbitrary h rm oithc dic. I t may bc used to a rational analysis o f ~ h pcro ccss of cxirnsiol~o f multi-lnycr cylindrical rods.

  12. Minicomputer based, controlled materials information system

    International Nuclear Information System (INIS)

    Roberts, N.; Jessen, T.; Meadors, O.; Seibel, D.

    1976-01-01

    The LLL, Materials Management Group and Data Processing Services have developed a transaction-oriented, minicomputer system for the management of the Laboratory's controlled materials. The system consists of a multi-vendor hardware system designed for ease of operation, maximum reliability, and quick response and the requirements imposed on the hardware and software systems are discussed

  13. Smart material-based radiation sources

    Science.gov (United States)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  14. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  15. [Preface for special issue on bio-based materials (2016)].

    Science.gov (United States)

    Weng, Yunxuan

    2016-06-25

    Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.

  16. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    International Nuclear Information System (INIS)

    Funk, J.G.; Strickland, J.W.; Davis, J.M.

    1992-10-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included

  17. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    Science.gov (United States)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  18. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    International Nuclear Information System (INIS)

    Efafi, B.; Majles Ara, M.H.; Mousavi, S.S.

    2016-01-01

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  19. Strong blue emission from ZnO nanocrystals synthesized in acetone-based solvent

    Energy Technology Data Exchange (ETDEWEB)

    Efafi, B. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Departments of Physics, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Majles Ara, M.H., E-mail: majlesara@gmail.com [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, S.S. [NanoPhotonics Lab., Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, ZnO nanocrystals were synthesized by an improved sol–gel method. UV–vis, FTIR and photoluminescence spectra of the ZnO solution synthesized by this route indicated different properties compared to the other preparation methods. It was observed from FTIR that the sol (prepared using acetone) with the low concentration contains a noticeable amount of the Zn–O bond. The PL spectrum with a strong blue emission confirmed that these nanocrystals are good candidate for use in applications where a monochromatic emission is required. To the best of our knowledge, monochromatic emission ZnO devices have been fabricated through high technology instruments but this paper introduces a simple method for preparation of ZnO with the high intensity blue peak. The size and morphology of ZnO nanocrystals have been studied using FESEM. The nanocrystal size was estimated about 70 nm which was in good agreement with XRD data. - Highlights: • Preparation of ZnO nanocrystals through a novel method by the use of acetone as the solvent. • Observation of the strong blue emission peak from the ZnO prepared solution. • Reduction of green emission in the synthesized sample compared to the other methods of preparation.

  20. Supercapacitors based on graphene/pseudocapacitive materials

    OpenAIRE

    Sačer Denis; Kralj Magdalena; Sopčić Suzana; Košević Milica; Dekanski Aleksandar; Roković-Kraljić Marijana

    2017-01-01

    Composites of graphene and SnO2 were successfully prepared by a single step simultaneous synthesis of SnO2 and reduction of graphene oxide (GO). Three different compositions of precursor solution resulted in different composite materials containing graphene and SnO2. The reaction was realized by microwave-assisted hydrothermal synthesis. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) gave insight into the morphology and composition of the obtained materials....

  1. Microfiber devices based on carbon materials

    OpenAIRE

    Gengzhi Sun; Xuewan Wang; Peng Chen

    2015-01-01

    Microfiber devices are able to extend the micro/nano functionalities of materials or devices to the macroscopic scale with excellent flexibility and weavability, promising a variety of unique applications and, sometimes, also improved performance as compared with bulk counterparts. The fiber electrodes in these devices are often made of carbon materials (e.g. carbon nanotubes and graphene) because of their exceptional electrical, mechanical, and structural properties. Covering the latest deve...

  2. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  3. Optical ph sensing material prepared from doped sol-gel film for use in acid-base titration

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2017-11-01

    Full Text Available An optical pH sensing material has been prepared in this study by using sol-gel technique. Bromothymol blue, bromophenol blue and thymol blue were chosen in this study as acidbase indicators for strong acid-strong base, strong acid-weak base and weak acid-strong base titration, respectively. The results show that these indicators could be successfully entrapped inside the sol-gel film and still maintain its chemical behaviour as in solution. The entrapped acid-base indicators respond well to any pH changes and could be used to determine the end-point of the acid-base titration.

  4. Time-domain modeling for shielding effectiveness of materials against electromagnetic pulse based on system identification

    International Nuclear Information System (INIS)

    Chen, Xiang; Chen, Yong Guang; Wei, Ming; Hu, Xiao Feng

    2013-01-01

    Shielding effectiveness (SE) of materials against electromagnetic pulse (EMP) cannot be well estimated by traditional test method of SE of materials which only consider the amplitude-frequency characteristic of materials, but ignore the phase-frequency ones. In order to solve this problem, the model of SE of materials against EMP was established based on system identification (SI) method with time-domain linear cosine frequency sweep signal. The feasibility of the method in this paper was examined depending on infinite planar material and the simulation research of coaxial test method and windowed semi-anechoic box of materials. The results show that the amplitude-frequency and phase-frequency information of each frequency can be fully extracted with this method. SE of materials against strong EMP can be evaluated with time-domain low field strength (voltage) of cosine frequency sweep signal. And SE of materials against a variety EMP will be predicted by the model.

  5. Strong source heat transfer simulations based on a GalerKin/Gradient - least - squares method

    International Nuclear Information System (INIS)

    Franca, L.P.; Carmo, E.G.D. do.

    1989-05-01

    Heat conduction problems with temperature-dependent strong sources are modeled by an equation with a laplacian term, a linear term and a given source distribution term. When the linear-temperature-dependent source term is much larger than the laplacian term, we have a singular perturbation problem. In this case, boundary layers are formed to satisfy the Dirichlet boundary conditions. Although this is an elliptic equation, the standard Galerkin method solution is contaminated by spurious oscillations in the neighborhood of the boundary layers. Herein we employ a Galerkin/Gradient-least-squares method which eliminates all pathological phenomena of the Galerkin method. The method is constructed by adding to the Galerkin method a mesh-dependent term obtained by the least-squares form of the gradient of the Euler-Lagrange equation. Error estimates, numerical simulations in one-and multi-dimensions are given that attest the good stability and accuracy properties of the method [pt

  6. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  7. Strong crustal seismic anisotropy in the Kalahari Craton based on Receiver Functions

    DEFF Research Database (Denmark)

    Thybo, Hans; Soliman, Mohammad Youssof Ahmad; Artemieva, Irina

    2015-01-01

    Earlier seismic studies of the Kalahari Craton in southern Africa infer deformation of upper mantle by flow with fast direction of seismic anisotropy being parallel to present plate motion, and/or report anisotropy frozen into the lithospheric mantle. We present evidence for very strong seismic...... is uniform within tectonic units and parallel to orogenic strike in the Limpopo and Cape fold belts. It is further parallel to the strike of major dyke swarms which indicates that a large part of the observed anisotropy is controlled by lithosphere fabrics and macroscopic effects. The directions of the fast...... that the crust and lithospheric mantle may have been coupled since cratonisation. If so, the apparent match between mantle anisotropy and the present plate motion is coincidental....

  8. Strong lethality and teratogenicity of strobilurins on Xenopus tropicalis embryos: Basing on ten agricultural fungicides

    International Nuclear Information System (INIS)

    Li, Dan; Liu, Mengyun; Yang, Yongsheng; Shi, Huahong; Zhou, Junliang; He, Defu

    2016-01-01

    Agricultural chemical inputs have been considered as a risk factor for the global declines in amphibian populations, yet the application of agricultural fungicides has increased dramatically in recent years. Currently little is known about the potential toxicity of fungicides on the embryos of amphibians. We studied the effects of ten commonly used fungicides (four strobilurins, two SDHIs, two triazoles, fludioxonil and folpet) on Xenopus tropicalis embryos. Lethal and teratogenic effects were respectively examined after 48 h exposure. The median lethal concentrations (LC50s) and the median teratogenic concentrations (TC50s) were determined in line with actual exposure concentrations. These fungicides except two triazoles showed obvious lethal effects on embryos; however LC50s of four strobilurins were the lowest and in the range of 6.81–196.59 μg/L. Strobilurins, SDHIs and fludioxonil induced severe malformations in embryos. Among the ten fungicides, the lowest TC50s were observed for four strobilurins in the range of 0.61–84.13 μg/L. The teratogenicity shared similar dose–effect relationship and consistent phenotypes mainly including microcephaly, hypopigmentation, somite segmentation and narrow fins. The findings indicate that the developmental toxicity of currently-used fungicides involved with ecologic risks on amphibians. Especially strobilurins are highly toxic to amphibian embryos at μg/L level, which is close to environmentally relevant concentrations. - Highlights: • Effects of ten agricultural fungicides were tested on Xenopus tropicalis embryos. • Strobilurin fungicides showed strong lethal and teratogenic effects on embryos. • Lowest LC50 and TC50 were observed for strobilurins in ten fungicides. • μg/L level of toxic concentrations for strobilurins was environmentally relevant. • Teratogenicity shared similar dose–effect relationship and main phenotypes. - Strobilurins induced strong lethality and teratogenicity on Xenopus

  9. Supercapacitors based on graphene/pseudocapacitive materials

    Directory of Open Access Journals (Sweden)

    Sačer Denis

    2017-01-01

    Full Text Available Composites of graphene and SnO2 were successfully prepared by a single step simultaneous synthesis of SnO2 and reduction of graphene oxide (GO. Three different compositions of precursor solution resulted in different composite materials containing graphene and SnO2. The reaction was realized by microwave-assisted hydrothermal synthesis. Scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDX gave insight into the morphology and composition of the obtained materials. Good capacitive/pseudocapacitive properties of the obtained material suitable for supercapacitor application were registered by cyclic voltammetry, from where specific capacitance values up to 93 F g-1 were determined. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172060

  10. Design and evaluation of foamed asphalt base materials.

    Science.gov (United States)

    2013-05-01

    Foamed asphalt stabilized base (FASB) combines reclaimed asphalt pavement (RAP), recycled : concrete (RC), and/or graded aggregate base (GAB) with a foamed asphalt binder to produce a : partially stabilized base material. The objectives of this study...

  11. Material recognition based on thermal cues: Mechanisms and applications.

    Science.gov (United States)

    Ho, Hsin-Ni

    2018-01-01

    Some materials feel colder to the touch than others, and we can use this difference in perceived coldness for material recognition. This review focuses on the mechanisms underlying material recognition based on thermal cues. It provides an overview of the physical, perceptual, and cognitive processes involved in material recognition. It also describes engineering domains in which material recognition based on thermal cues have been applied. This includes haptic interfaces that seek to reproduce the sensations associated with contact in virtual environments and tactile sensors aim for automatic material recognition. The review concludes by considering the contributions of this line of research in both science and engineering.

  12. Wheat B-starch based polymeric materials

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Kruliš, Zdeněk; Šárka, E.

    2011-01-01

    Roč. 105, č. 9 (2011), s. 731 ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /7./. 02.11.2011-04.11.2011, Prague] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable plastic * polycaprolactone * B- starch Subject RIV: JI - Composite Materials

  13. Acetylene-Based Materials in Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Fabio Silvestri

    2010-04-01

    Full Text Available Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (polyarylacetylenes that have been used in the field. A general introduction to (polyarylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (copolymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices.

  14. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.

    Science.gov (United States)

    Thygesen, Uffe Høgsbro

    2016-03-01

    We consider organisms which use a renewal strategy such as run-tumble when moving in space, for example to perform chemotaxis in chemical gradients. We derive a diffusion approximation for the motion, applying a central limit theorem due to Anscombe for renewal-reward processes; this theorem has not previously been applied in this context. Our results extend previous work, which has established the mean drift but not the diffusivity. For a classical model of tumble rates applied to chemotaxis, we find that the resulting chemotactic drift saturates to the swimming velocity of the organism when the chemical gradients grow increasingly steep. The dispersal becomes anisotropic in steep gradients, with larger dispersal across the gradient than along the gradient. In contrast to one-dimensional settings, strong bias increases dispersal. We next include Brownian rotation in the model and find that, in limit of high chemotactic sensitivity, the chemotactic drift is 64% of the swimming velocity, independent of the magnitude of the Brownian rotation. We finally derive characteristic timescales of the motion that can be used to assess whether the diffusion limit is justified in a given situation. The proposed technique for obtaining diffusion approximations is conceptually and computationally simple, and applicable also when statistics of the motion is obtained empirically or through Monte Carlo simulation of the motion.

  15. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    Science.gov (United States)

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  16. Optical ph sensing material prepared from doped sol-gel film for use in acid-base titration

    OpenAIRE

    Musa Ahmad; T.W. Tan

    2017-01-01

    An optical pH sensing material has been prepared in this study by using sol-gel technique. Bromothymol blue, bromophenol blue and thymol blue were chosen in this study as acidbase indicators for strong acid-strong base, strong acid-weak base and weak acid-strong base titration, respectively. The results show that these indicators could be successfully entrapped inside the sol-gel film and still maintain its chemical behaviour as in solution. The entrapped acid-base indicators respond well to ...

  17. Knowledge base about earthquakes as a tool to minimize strong events consequences

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej

    2017-04-01

    The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653

  18. Development of structural materials on the base of new technology

    International Nuclear Information System (INIS)

    Belov, A.F.; Anoshkin, N.F.

    1982-01-01

    Some results are considered and possibilities which discovered in development of structural materials connected with development of such new technological processes as skull melting of titanium alloys, granule metallurgy, hot isostatic, diffusion welding are estimated. The method of skull melting with remelted skull is developed. The method assures sufficient possibilities for dissolving of high-heat components of charge and obtaining homogeneous ingots of series of new alloys. Granule metallurgy based on crystallization of the metal with high rate in the form of small (up to 300 μkm) particles and subsequent consolidation of them into compact billet discoveres a wide possibilities of creation of new structural material with more high operation indexes. It is noted that developed processes of granule production, their treatment, compacting and thermal treatment of the billets assure production of metal of high quality, satisfied the strong requirements of present standards. The process of hot isostatic pressing at which the workable metal is subjected to through uniform pressure by compressed gas after heating or semultaneously with its heating up to the temperatures of working in gasostats is one of new technological processes. A certain experience of the HIP use for production of compact billets from granules for diffusion welding of the billets is accumulated. This process has a great possibilities for densification of shaped castings. Investigation and application of the diffusion welding represent combination of elements into details of complex form in vacuum at the temperatures low of melting point under effect of small pressures are investigated both in our country and abroad. Diffusion welding gives a wide possibilities in the development of materials with higher properties at the expence of production of products of large dimensions from thin elements with fine-grained structure as well as products with assigned gradient of chemical composition, structure

  19. Reinforcement of Conducting Silver-based Materials

    Directory of Open Access Journals (Sweden)

    Heike JUNG

    2014-09-01

    Full Text Available Silver is a well-known material in the field of contact materials because of its high electrical and thermal conductivity. However, due to its bad mechanical and switching properties, silver alloys or reinforcements of the ductile silver matrix are required. Different reinforcements, e. g. tungsten, tungsten carbide, nickel, cadmium oxide or tin oxide, are used in different sectors of switches. To reach an optimal distribution of these reinforcements, various manufacturing techniques (e. g. powder blending, preform infiltration, wet-chemical methods, internal oxidation are being used for the production of these contact materials. Each of these manufacturing routes offers different advantages and disadvantages. The mechanical alloying process displays a successful and efficient method to produce particle-reinforced metal-matrix composite powders. This contribution presents the obtained fine disperse microstructure of tungsten-particle-reinforced silver composite powders produced by the mechanical alloying process and displays this technique as possible route to provide feedstock powders for subsequent consolidation processes. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4889

  20. Phase transition study in strongly correlated VO{sub 2} based sensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Simo, A., E-mail: alinesimo.aline@gmail.com [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa); Kaviyarasu, K. [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa); Mwakikunga, B. [Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Madjoe, R. [Physics Department, University of Western Cape, 7535 Belville Cape Town (South Africa); Gibaud, A. [Laboratoire de Physique de l’Etat Condensé, Université du Maine Faculte des sciences, UPRESA 6087, 72085, Le Mans Cedex 9 (France); Maaza, M. [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa)

    2017-04-15

    Highlights: • At 230 °C for about 48 h to prepare successfully VO{sub 2} nanobelts. • 1D shows good sensing performance due to the large active surface of the material. • The good selectivity of methanol compared to acetone and isopropanol. • VOC compounds was observed at room temperature. - Abstract: Intermediate phase monoclinic M2 was observed by inducing in situ X-ray thermo diffraction on VO{sub 2} (M) nanoplatelets. The solid-solid phase transition occurs at around 65 °C assisted with the percolative transition metal-insulator. The existence of an intermediate crystalline phase with room temperature insulator phase and high temperature metallic phase across MIT in VO{sub 2} could be of relevance to understand structural contributions to the phase transition dynamics. In addition, pellet of VO{sub 2} nanostructures have shown to present good sensing properties to various alcohols vapors at room temperature and good selectivity of methanol with 5.54% sensitivity and limit detection below 5 ppm, compared to isopropanol 3.2% and acetone 2.4% respectively.

  1. Neighborhood deprivation is strongly associated with participation in a population-based health check

    DEFF Research Database (Denmark)

    Bender, Anne Mette; Kawachi, Ichiro; Jørgensen, Torben

    2015-01-01

    BACKGROUND: We sought to examine whether neighborhood deprivation is associated with participation in a large population-based health check. Such analyses will help answer the question whether health checks, which are designed to meet the needs of residents in deprived neighborhoods, may increase...... participation and prove to be more effective in preventing disease. In Europe, no study has previously looked at the association between neighborhood deprivation and participation in a population-based health check. METHODS: The study population comprised 12,768 persons invited for a health check including...... screening for ischemic heart disease and lifestyle counseling. The study population was randomly drawn from a population of 179,097 persons living in 73 neighborhoods in Denmark. Data on neighborhood deprivation (percentage with basic education, with low income and not in work) and individual socioeconomic...

  2. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    Science.gov (United States)

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  4. Materials data base as an interface between fusion reactor designs and materials development

    International Nuclear Information System (INIS)

    Ishino, S.; Iwata, S.

    1983-01-01

    The materials data base is an integrated information system of experimental and/or calculated data of materials being compiled to meet the broad needs for materials data by taking advantage of the data base management systems. In this paper the objective of such computerized data base is described from the viewpoint of materials engineers and fusion system designers. Materials data spread themselves widely from the field that relates fundamental understanding of the behaviors of electrons, atoms, vacancies, dislocations and so on to the performance of components, devices, machines and systems. In our approach this information is described as ''relations'' by a set of tables which comprise related variables, for example, a set of values about essential properties for materials selection. This approach based on the relational model enables relational operations, i.e. SELECTION, PROJECTION, JOIN and so on, to select suitable materials, to set trade-off parameters for system designers and to establish design criteria. Stored data comprise (i) fundamental properties for all elements and potential structural materials, (ii) low cycle fatigue, irradiation creep and swelling data for type 316 stainless steels. These data have been selected and evaluated from critical reviews of existing data base of about 2 mega bytes data, some examples of materials selections and extraction of trade-off parameters are shown as a subject of critical issue concerning how to bridge the large gap between materials developments and system designs. (author)

  5. Diatom-Based Material Production Demonstration

    Science.gov (United States)

    2016-03-14

    Haeger 0.02 Sean Hoban 0.05 Leila Kamakele 0.06 Jeff Kataoka 0.08 Randi Keipper 0.16 Brendan Lagather 0.17 Stephen Woods 0.10 Rodney Corpuz 0.13 Aga...to Cathleen Fischer at Dresden University of Technology for testing as a substrate for catalysis. Material is available for any other testing...also thank Dr. Pat Kociolek from University of Colorado for help with identifying girdle bands of GAI-216. Bibliography Jantschke A., C. Fischer

  6. Future perspectives of resin-based dental materials.

    Science.gov (United States)

    Jandt, Klaus D; Sigusch, Bernd W

    2009-08-01

    This concise review and outlook paper gives a view of selected potential future developments in the area of resin-based biomaterials with an emphasis on dental composites. A selection of key publications (1 book, 35 scientific original publications and 1 website source) covering the areas nanotechnology, antimicrobial materials, stimuli responsive materials, self-repairing materials and materials for tissue engineering with direct or indirect relations and/or implications to resin-based dental materials is critically reviewed and discussed. Connections between these fields and their potential for resin-based dental materials are highlighted and put in perspective. The need to improve shrinkage properties and wear resistance is obvious for dental composites, and a vast number of attempts have been made to accomplish these aims. Future resin-based materials may be further improved in this respect if, for example nanotechnology is applied. Dental composites may, however, reach a completely new quality by utilizing new trends from materials science, such as introducing nanostructures, antimicrobial properties, stimuli responsive capabilities, the ability to promote tissue regeneration or repair of dental tissues if the composites were able to repair themselves. This paper shows selected potential future developments in the area of resin-based dental materials, gives basic and industrial researchers in dental materials science, and dental practitioners a glance into the potential future of these materials, and should stimulate discussion about needs and future developments in the area.

  7. Electron holography of Fe-based nanocrystalline magnetic materials (invited)

    International Nuclear Information System (INIS)

    Shindo, Daisuke; Park, Young-Gil; Gao, Youhui; Park, Hyun Soon

    2004-01-01

    Magnetic domain structures of nanocrystalline magnetic materials were extensively investigated by electron holography with a change in temperature or magnetic field applied. In both soft and hard magnetic materials, the distribution of lines of magnetic flux clarified in situ by electron holography was found to correspond well to their magnetic properties. An attempt to produce a strong magnetic field using a sharp needle made of a permanent magnet, whose movement is controlled by piezo drives has been presented. This article demonstrates that the attempt is promising to investigate the magnetization process of hard magnetic materials by electron holography

  8. PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    AHMER ALI

    2014-10-01

    Full Text Available The probabilistic seismic performance of a standard Korean nuclear power plant (NPP with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  9. Strong Authentication Scheme Based on Hand Geometry and Smart Card Factors

    Directory of Open Access Journals (Sweden)

    Ali A. Yassin

    2016-07-01

    Full Text Available In 2009, Xu et al. presented a safe, dynamic, id-based on remote user authentication method that has several advantages such as freely chosen passwords and mutual authentication. In this paper, we review the Xu–Zhu–Feng scheme and indicate many shortcomings in their scheme. Impersonation attacks and insider attacks could be effective. To overcome these drawbacks, we propose a secure biometric-based remote authentication scheme using biometric characteristics of hand-geometry, which is aimed at withstanding well-known attacks and achieving good performance. Furthermore, our work contains many crucial merits such as mutual authentication, user anonymity, freely chosen passwords, secure password changes, session key agreements, revocation by using personal biometrics, and does not need extra device or software for hand geometry in the login phase. Additionally, our scheme is highly efficient and withstands existing known attacks like password guessing, server impersonation, insider attacks, denial of service (DOS attacks, replay attacks, and parallel-session attacks. Compared with the other related schemes, our work is powerful both in communications and computation costs.

  10. Probabilistic seismic assessment of base-isolated NPPs subjected to strong ground motions of Tohoku earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmer; Hayah, Nadin Abu; Kim, Doo Kie [Dept. of Civil and Environmental Engineering, Kunsan National University, Kunsan (Korea, Republic of); Cho, Sung Gook [R and D Center, JACE KOREA Company, Gyeonggido (Korea, Republic of)

    2014-10-15

    The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

  11. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Li Sun

    2014-01-01

    Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.

  12. The Danish Industrial Enzyme Industry - National based Companies with strong internationalised R&D

    DEFF Research Database (Denmark)

    Pedersen, Jørgen Lindgaard; Hansen, Anne Grethe

    Danish industrial enzyme industry consists of three main companies (Chr. Hansen A/S, Novozymes A/S and Danisco A/S) which in total has around 75 percent of the world market for industrial enzymes. Industrial enzymes are catalysts used in biological and chemical processes in food, detergents, paper...... and energy and many other fields. Historically the industry started up in 1874 based on empiric knowledge on use of rennet in production of cheese from Switzerland and Germany and later enriched by scientific knowledge produced in the company and institutions all over the world. Important for the company...... was resources of calve stomachs from which the active stuff can be extracted. The private university, The Carlsberg Laboratory, established nearly at the same time, became after First World War a world leader in research of enzymes. And inspiration from here to the pharmaceutical company in insulin production...

  13. All-Metallic Vertical Transistors Based on Stacked Dirac Materials

    OpenAIRE

    Wang, Yangyang; Ni, Zeyuan; Liu, Qihang; Quhe, Ruge; Zheng, Jiaxin; Ye, Meng; Yu, Dapeng; Shi, Junjie; Yang, Jinbo; Lu, Jing

    2014-01-01

    It is an ongoing pursuit to use metal as a channel material in a field effect transistor. All metallic transistor can be fabricated from pristine semimetallic Dirac materials (such as graphene, silicene, and germanene), but the on/off current ratio is very low. In a vertical heterostructure composed by two Dirac materials, the Dirac cones of the two materials survive the weak interlayer van der Waals interaction based on density functional theory method, and electron transport from the Dirac ...

  14. Advanced three dimensional characterization of silica-based ultraporous materials

    OpenAIRE

    Foray , Genevieve; Roiban , L.; Rong , Q.; Perret , A.; Ihiawakrim , D.; Masenelli-Varlot , K.; Maire , E.; Yrieix , B.

    2016-01-01

    International audience; Whatever the field of application (building, transportation, packaging, etc.) energy losses must be reduced to meet the government target of a 40% cut in CO 2 emissions. This leads to a challenge for materials scientists: designing materials with thermal conductivities lower than 0.015 W m À1 K À1 under ambient conditions. Such a low value requires reducing air molecule mobility in highly porous materials, and silica-based superinsulation materials (SIM) made of packed...

  15. Materials data base for fusion reactors-I

    International Nuclear Information System (INIS)

    Iwata, S.; Nogami, A.; Ishino, S.; Mishima, Y.; Takao, Y.; Aruga, T.; Shiraishi, K.

    1982-01-01

    The materials data base is a set of experimental and/or calculated data being compiled to meet the broad needs for materials data by taking advantage of the data base management systems. In this paper the objective of such computerized data base is described and the characteristics of fusion reactor materials are discussed from the viewpoint of the data base development. The near-term emphasis of the development has been put on the irradiation data for 316 type stainless steels. Through the test of this small data base, it can be concluded that this approach is promising for materials data base management and for the establishment of the interface between fusion reactor designer and materials investigator. (orig.)

  16. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  17. Protein-Based Drug-Delivery Materials

    OpenAIRE

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based pol...

  18. Strategy Iteration Is Strongly Polynomial for 2-Player Turn-Based Stochastic Games with a Constant Discount Factor

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Zwick, Uri

    2013-01-01

    Ye [2011] showed recently that the simplex method with Dantzig’s pivoting rule, as well as Howard’s policy iteration algorithm, solve discounted Markov decision processes (MDPs), with a constant discount factor, in strongly polynomial time. More precisely, Ye showed that both algorithms terminate...... terminates after at most O(m1−γ log n1−γ) iterations. Second, and more importantly, we show that the same bound applies to the number of iterations performed by the strategy iteration (or strategy improvement) algorithm, a generalization of Howard’s policy iteration algorithm used for solving 2-player turn-based...... for 2-player turn-based stochastic games; it is strongly polynomial for a fixed discount factor, and exponential otherwise....

  19. Efficacy of melody-based aphasia therapy may strongly depend on rhythm and conversational speech formulas

    Directory of Open Access Journals (Sweden)

    Benjamin Stahl

    2014-04-01

    Full Text Available Left-hemisphere stroke patients suffering from language and speech disorders are often able to sing entire pieces of text fluently. This finding has inspired a number of melody-based rehabilitation programs – most notable among them a treatment known as Melodic Intonation Therapy – as well as two fundamental research questions. When the experimental design focuses on one point in time (cross section, one may determine whether or not singing has an immediate effect on syllable production in patients with language and speech disorders. When the design focuses on changes over several points in time (longitudinal section, one may gain insight as to whether or not singing has a long-term effect on language and speech recovery. The current work addresses both of these questions with two separate experiments that investigate the interplay of melody, rhythm and lyric type in 32 patients with non-fluent aphasia and apraxia of speech (Stahl et al., 2011; Stahl et al., 2013. Taken together, the experiments deliver three main results. First, singing and rhythmic pacing proved to be equally effective in facilitating immediate syllable production and long-term language and speech recovery. Controlling for various influences such as prosody, syllable duration and phonetic complexity, the data did not reveal any advantage of singing over rhythmic speech. This result was independent of lesion size and lesion location in the patients. Second, patients with extensive left-sided basal ganglia lesions produced more correct syllables when their speech was paced by rhythmic drumbeats. This observation is consistent with the idea that regular auditory cues may partially compensate for corticostriatal damage and thereby improve speech-motor planning (Grahn & Watson, 2013. Third, conversational speech formulas and well-known song lyrics yielded higher rates of correct syllable production than novel word sequences – whether patients were singing or speaking

  20. Modern materials based on refractory compounds

    International Nuclear Information System (INIS)

    Kosolapova, T.Ya.

    1979-01-01

    Discussed are the existing methods for synthesizing powders of binary refractory compounds and high-productivity techniques which hold promise as regards the manufacture of highly disperse and pure powders. Plasmochemical synthesis is shown to be an effective method for obtaining practically all carbides, nitrides and borides. A description is given of three main methods for obtaining single crystals of refractory compounds (TiN, TiC, ZrC, ZrB 2 , NbC) fairly perfect in structure and composition. These processes include deposition from vapour-gas phase, melting in arc plasma and crystallization from solutions in metallic melts. The advantages have been shown of the self-propagating high-temperature synthesis of refractory compounds, ensuring the manufacture of products, close in composition to stoichiometric ones simultaneously with forming of items. Mechanical, thermal, abrasive, and resistive characteristics of the above materials are presented

  1. [Current status of bio-based materials industry in China].

    Science.gov (United States)

    Diao, Xiaoqian; Weng, Yunxuan; Huang, Zhigang; Yang, Nan; Wang, Xiyuan; Zhang, Min; Jin, Yujuan

    2016-06-25

    In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.

  2. Strong Authentication Protocol based on Java Crypto Chip as a Secure Element

    Directory of Open Access Journals (Sweden)

    Majid Mumtaz

    2016-10-01

    Full Text Available Smart electronic devices and gadgets and their applications are becoming more and more popular. Most of those devices and their applications handle personal, financial, medical and other sensitive data that require security and privacy protection. In this paper we describe one aspect of such protection – user authentication protocol based on the use of X.509 certificates. The system uses Public Key Infrastructure (PKI, challenge/response protocol, mobile proxy servers, and Java cards with crypto capabilities used as a Secure Element. Innovative design of the protocol, its implementation, and evaluation results are described. In addition to end-user authentication, the described solution also supports the use of X.509 certificates for additional security services – confidentiality, integrity, and non-repudiation of transactions and data in an open network environment. The system uses Application Programming Interfaces (APIs to access Java cards functions and credentials that can be used as add-ons to enhance any mobile application with security features and services.

  3. Electrospun materials for affinity-based engineering and drug delivery

    International Nuclear Information System (INIS)

    Sill, T J; Von Recum, H A

    2015-01-01

    Electrospinning is a process which can quickly and cheaply create materials of high surface to volume and aspect ratios from many materials, however in application toward drug delivery this can be a strong disadvantage as well. Diffusion of drug is proportional to the thickness of that device. In moving from macro to micro to nano-sized electrospun materials drug release rates change to profiles that are too fast to be therapeutically beneficial. In this work we use molecular interactions to further control the rate of release beyond that capable of diffusion alone. To do this we create materials with molecular pockets, which can 'hold' therapeutic drugs through a reversible interaction such as a host/guest complexation. Through these complexes we show we are able to impact delivery of drug from electrospun materials, and also apply them in tissue engineering for the reversible presentation of biomolecules on a fiber surface. (paper)

  4. Attribute-Based Signcryption: Signer Privacy, Strong Unforgeability and IND-CCA Security in Adaptive-Predicates Model (Extended Version

    Directory of Open Access Journals (Sweden)

    Tapas Pandit

    2016-08-01

    Full Text Available Attribute-Based Signcryption (ABSC is a natural extension of Attribute-Based Encryption (ABE and Attribute-Based Signature (ABS, where one can have the message confidentiality and authenticity together. Since the signer privacy is captured in security of ABS, it is quite natural to expect that the signer privacy will also be preserved in ABSC. In this paper, first we propose an ABSC scheme which is weak existential unforgeable and IND-CCA secure in adaptive-predicates models and, achieves signer privacy. Then, by applying strongly unforgeable one-time signature (OTS, the above scheme is lifted to an ABSC scheme to attain strong existential unforgeability in adaptive-predicates model. Both the ABSC schemes are constructed on common setup, i.e the public parameters and key are same for both the encryption and signature modules. Our first construction is in the flavor of CtE&S paradigm, except one extra component that will be computed using both signature components and ciphertext components. The second proposed construction follows a new paradigm (extension of CtE&S , we call it “Commit then Encrypt and Sign then Sign” (CtE&S . The last signature is generated using a strong OTS scheme. Since, the non-repudiation is achieved by CtE&S paradigm, our systems also achieve the same.

  5. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  6. Listener: a probe into information based material specification

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Karmon, Ayelet

    2011-01-01

    This paper presents the thinking and making of the architectural research probe Listener. Developed as an interdisciplinary collaboration between textile design and architecture, Listener explores how information based fabrication technologies are challenging the material practices of architecture....... The paper investigates how textile design can be understood as a model for architectural production providing new strategies for material specification and allowing the thinking of material as inherently variegated and performative. The paper traces the two fold information based strategies present...

  7. Strong Hearts, Healthy Communities: A Community-Based Randomized Trial for Rural Women.

    Science.gov (United States)

    Seguin, Rebecca A; Paul, Lynn; Folta, Sara C; Nelson, Miriam E; Strogatz, David; Graham, Meredith L; Diffenderfer, Anna; Eldridge, Galen; Parry, Stephen A

    2018-05-01

    The aim of this study was to evaluate a multilevel cardiovascular disease (CVD) prevention program for rural women. This 6-month, community-based, randomized trial enrolled 194 sedentary rural women aged 40 or older with BMI ≥ 25 kg/m 2 . Intervention participants attended 6 months of twice-weekly exercise, nutrition, and heart health classes (48 total) that included individual-, social-, and environment-level components. An education-only control program included didactic healthy lifestyle classes once a month (six total). The primary outcome measures were change in BMI and weight. Within-group and between-group multivariate analyses revealed that only intervention participants decreased BMI (-0.85 units; 95% CI: -1.32 to -0.39; P = 0.001) and weight (-2.24 kg; 95% CI: -3.49 to -0.99; P = 0.002). Compared with controls, intervention participants decreased BMI (difference: -0.71 units; 95% CI: -1.35 to -0.08; P = 0.03) and weight (1.85 kg; 95% CI: -3.55 to -0.16; P = 0.03) and improved C-reactive protein (difference: -1.15 mg/L; 95% CI: -2.16 to -0.15; P = 0.03) and Simple 7, a composite CVD risk score (difference: 0.67; 95% CI: 0.14 to 1.21; P = 0.01). Cholesterol decreased among controls but increased in the intervention group (-7.85 vs. 3.92 mg/dL; difference: 11.77; 95% CI: 0.57 to 22.96; P = 0.04). The multilevel intervention demonstrated modest but superior and meaningful improvements in BMI and other CVD risk factors compared with the control program. © 2018 The Obesity Society.

  8. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  9. Development of bio-hybrid material based on Salmonella ...

    African Journals Online (AJOL)

    The immobilization of a whole microbial cell is an important process used in nanotechnology of biosensors and other related fields, especially the development of bio-hybrid materials based on live organisms and inorganic compounds. Here, we described an essay to develop a bio-hybrid material based on Salmonella ...

  10. Graphene-based materials for flexible supercapacitors.

    Science.gov (United States)

    Shao, Yuanlong; El-Kady, Maher F; Wang, Lisa J; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Mousavi, Mir F; Kaner, Richard B

    2015-06-07

    The demand for flexible/wearable electronic devices that have aesthetic appeal and multi-functionality has stimulated the rapid development of flexible supercapacitors with enhanced electrochemical performance and mechanical flexibility. After a brief introduction to flexible supercapacitors, we summarize current progress made with graphene-based electrodes. Two recently proposed prototypes for flexible supercapacitors, known as micro-supercapacitors and fiber-type supercapacitors, are then discussed. We also present our perspective on the development of graphene-based electrodes for flexible supercapacitors.

  11. When Military Parents Come Home: Building "Strong Families Strong Forces," a Home-Based Intervention for Military Families with Very Young Children

    Science.gov (United States)

    Paris, Ruth; Acker, Michelle L.; Ross, Abigail M.; DeVoe, Ellen R.

    2011-01-01

    The long wars in Afghanistan and Iraq have presented unique challenges to military-connected families with very young children, yet few evidence-based services are available to support these families through deployment and reintegration. Although many military families have shown remarkable resilience throughout the intense demands of the wars,…

  12. Surface characterization of graphene based materials

    Science.gov (United States)

    Pisarek, M.; Holdynski, M.; Krawczyk, M.; Nowakowski, R.; Roguska, A.; Malolepszy, A.; Stobinski, L.; Jablonski, A.

    2016-12-01

    In the present study, two kind of samples were used: (i) a monolayer graphene film with a thickness of 0.345 nm deposited by the CVD method on Cu foil, (ii) graphene flakes obtained by modified Hummers method and followed by reduction of graphene oxide. The inelastic mean free path (IMFP), characterizing electron transport in graphene/Cu sample and reduced graphene oxide material, which determines the sampling depth of XPS and AES were evaluated from relative Elastic Peak Electron Spectroscopy (EPES) measurements with the Au standard in the energy range 0.5-2 keV. The measured IMFPs were compared with IMFPs resulting from experimental optical data published in the literature for the graphite sample. The EPES IMFP values at 0.5 and 1.5 keV was practically identical to that calculated from optical data for graphite (less than 4% deviation). For energies 1 and 2 keV, the EPES IMFPs for rGO were deviated up to 14% from IMFPs calculated using the optical data by Tanuma et al. [1]. Before EPES measurements all samples were characterized by various techniques like: FE-SEM, AFM, XPS, AES and REELS to visualize the surface morphology/topography and identify the chemical composition.

  13. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  14. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  15. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    Energy Technology Data Exchange (ETDEWEB)

    Çalamak, Semih [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey); Erdoğdu, Ceren; Özalp, Meral [Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, 06100 Ankara (Turkey); Ulubayram, Kezban, E-mail: ukezban@hacettepe.edu.tr [Hacettepe University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 06100 Ankara (Turkey); Hacettepe University, Department of Nanotechnology and Nanomedicine, 06800 Ankara (Turkey)

    2014-10-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line.

  16. Silk fibroin based antibacterial bionanotextiles as wound dressing materials

    International Nuclear Information System (INIS)

    Çalamak, Semih; Erdoğdu, Ceren; Özalp, Meral; Ulubayram, Kezban

    2014-01-01

    New applications for medical biotextiles have been identified with the development of nanotechnological manufacturing technologies. Combination of nanotechnology and biotextile technology has resulted into a new field called bionanotextiles. Bionanotextiles are used in many areas which include wound dressings, bandages and tissue scaffolds. Silk fibroin (SF) from the cocoon of Bombyx mori, is one of the most favorable wound dressing materials due to its unique properties including biocompatibility, permeability, biodegradability, morphologic flexibility, and proper mechanical properties. The modification of antimicrobial properties of SFs can provide a barrier for bacterial penetration as wound dressing materials. In the present study, antibacterial polyethylenimine (PEI) (10, 20 and 30% (w/w)) was blended with SF and bionanotextiles were successfully fabricated by electrospinning. In addition, silk fibroin nanofibers were also functionalized with sulphate group in order to test whether they exhibit an antibacterial activity or not. Fibroin based bionanotextiles were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The cytotoxicity evaluations were carried out by L929 fibroblasts with MTT assay. The indirect cytotoxicity results demonstrate that all fibroin and PEI/fibroin extracts have no cytotoxicity on L929 cancer cell line. PEI/fibroin bionanotextiles showed strong antibacterial activities against gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa. - Highlights: • Bionanotextiles are combination of nanotechnology and biotextile technology. • Bionanotextiles have good antibacterial activity against both of S. aureus and P. aeruginosa. • Antibacterial bionanotextiles are applicable to most of the infected wounds. • No cytotoxicity was observed on L929 cell line

  17. Theory of titration curves-VII The properties of derivative titration curves for strong acid-strong base and other isovalent ion-combination titrations.

    Science.gov (United States)

    Meites, T; Meites, L

    1970-06-01

    This paper deals with isovalent ion-combination titrations based on reactions that can be represented by the equation M(n+) + X(n-) --> MX, where the activity of the product MX is invariant throughout a titration, and with the derivative titration curves obtained by plotting d[M(+)]/dfversus f for such titrations. It describes some of the ways in which such curves can be obtained; it compares and contrasts them both with potentiometric titration curves, which resemble them in shape, and with segmented titration curves, from which they are derived; and it discusses their properties in detail.

  18. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  19. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  20. Group Targets Tracking Using Multiple Models GGIW-CPHD Based on Best-Fitting Gaussian Approximation and Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2016-01-01

    Full Text Available Gamma Gaussian inverse Wishart cardinalized probability hypothesis density (GGIW-CPHD algorithm was always used to track group targets in the presence of cluttered measurements and missing detections. A multiple models GGIW-CPHD algorithm based on best-fitting Gaussian approximation method (BFG and strong tracking filter (STF is proposed aiming at the defect that the tracking error of GGIW-CPHD algorithm will increase when the group targets are maneuvering. The best-fitting Gaussian approximation method is proposed to implement the fusion of multiple models using the strong tracking filter to correct the predicted covariance matrix of the GGIW component. The corresponding likelihood functions are deduced to update the probability of multiple tracking models. From the simulation results we can see that the proposed tracking algorithm MM-GGIW-CPHD can effectively deal with the combination/spawning of groups and the tracking error of group targets in the maneuvering stage is decreased.

  1. A data base for aging of structural materials

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.; Jerath, S.

    1993-01-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a Structural Aging (SAG) Program at the Oak Ridge National Laboratory (ORNL). The objective of the program is to provide assistance in identifying potential structural safety issues and to establish acceptance criteria for use in nuclear power plant evaluations for continued service. One of the main parts of the program focuses on the development of a Structural Materials Information Center where long-term and environment-dependent material properties are being collected and assembled into a data base. This data base is presented in two complementary formats. The Structural Materials Handbook is an expandable, hard-copy reference document that contains the complete data base for each material. The Structural Materials Electronic Data Base is accessible using an IBM-compatible personal computer. This paper presents an overview of the Structural Materials Information Center and briefly describes the features of the handbook and the electronic data base. In addition, a proposed method for using the data base to establish current property values for materials in existing concrete structures and to estimate the future performance of these materials is also presented. (author)

  2. A data base for aging of structural materials

    International Nuclear Information System (INIS)

    Oland, C.B.; Naus, D.J.; Jerath, S.

    1993-01-01

    USNRC initiated a Structural Aging (SAG) Program ORNL. The objective of the program is to provide assistance in identifying potential structural safety issues and to establish acceptance criteria for use in nuclear power plant evaluations for continued service. One main part focuses on the development of a Structural Materials Information Center where long-term and environment-dependent material properties are being collected and assembled into a data base. This data base is presented in two complementary formats. The Structural Materials Handbook is an expandable, hard-copy reference document that contains the complete data base for each material. The Structural Materials Electronic Data Base is accessible using an IBM-compatible personal computer. This paper presents an overview of the Structural Materials Information Center and briefly describes the features of the handbook and the electronic data base. In addition, a proposed method for using the data base to establish current property values for materials in existing concrete structures and to estimate the future performance of these materials is also presented

  3. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  4. Topological Material-Based Spin Devices

    Science.gov (United States)

    Zhang, Minhao; Wang, Xuefeng

    Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.

  5. Environmental assessment of biomass based materials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel

    of these impacts in LCA, in order to get a realistic picture of the overall impacts from a biomass feedstock crop establishment, and thus downstream products. However, there is a challenge in terms of e.g. the preliminary state of methods, and the requirements to availability of local data. Available biomass...... level. The temporal scope is defined by the impact category considered. The technological scope includes both current environmental performance of biomaterials and a discussion of future perspectives, including potentials for future change in their environmental impacts compared to fossil based...... place in biomaterials, on which there is currently no consensus. Other important environmental aspects related to biomaterials that are currently not generally included in LCAs are land use and land use change (LULUC) related impacts, such as changes in biogenic carbon stocks (especially including soil...

  6. Biofuels 2020: Biorefineries based on lignocellulosic materials.

    Science.gov (United States)

    Valdivia, Miguel; Galan, Jose Luis; Laffarga, Joaquina; Ramos, Juan-Luis

    2016-09-01

    The production of liquid biofuels to blend with gasoline is of worldwide importance to secure the energy supply while reducing the use of fossil fuels, supporting the development of rural technology with knowledge-based jobs and mitigating greenhouse gas emissions. Today, engineering for plant construction is accessible and new processes using agricultural residues and municipal solid wastes have reached a good degree of maturity and high conversion yields (almost 90% of polysaccharides are converted into monosaccharides ready for fermentation). For the complete success of the 2G technology, it is still necessary to overcome a number of limitations that prevent a first-of-a-kind plant from operating at nominal capacity. We also claim that the triumph of 2G technology requires the development of favourable logistics to guarantee biomass supply and make all actors (farmers, investors, industrial entrepreneurs, government, others) aware that success relies on agreement advances. The growth of ethanol production for 2020 seems to be secured with a number of 2G plants, but public/private investments are still necessary to enable 2G technology to move on ahead from its very early stages to a more mature consolidated technology. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Propagation law of impact elastic wave based on specific materials

    Directory of Open Access Journals (Sweden)

    Chunmin CHEN

    2017-02-01

    Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.

  8. Silicon based light-emitting materials and devices

    International Nuclear Information System (INIS)

    Chen Weide

    1999-01-01

    Silicon based light-emitting materials and devices are the key to optoelectronic integration. Recently, there has been significant progress in materials engineering methods. The author reviews the latest developments in this area including erbium doped silicon, porous silicon, nanocrystalline silicon and Si/SiO 2 superlattice structures. The incorporation of these different materials into devices is described and future device prospects are assessed

  9. Biogas Filter Based on Local Natural Zeolite Materials

    OpenAIRE

    Krido Wahono, Satriyo; Anggo Rizal, Wahyu

    2014-01-01

    UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as ...

  10. Graphene-Based Carbon Materials for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2013-01-01

    Full Text Available Because of their unique 2D structure and numerous fascinating properties, graphene-based materials have attracted particular attention for their potential applications in energy storage devices. In this review paper, we focus on the latest work regarding the development of electrode materials for batteries and supercapacitors from graphene and graphene-based carbon materials. To begin, the advantages of graphene as an electrode material and the existing problems facing its use in this application will be discussed. The next several sections deal with three different methods for improving the energy storage performance of graphene: the restacking of the nanosheets, the doping of graphene with other elements, and the creation of defects on graphene planes. State-of-the-art work is reviewed. Finally, the prospects and further developments in the field of graphene-based materials for electrochemical energy storage are discussed.

  11. Strategy iteration is strongly polynomial for 2-player turn-based stochastic games with a constant discount factor

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Zwick, Uri

    2011-01-01

    Ye showed recently that the simplex method with Dantzig pivoting rule, as well as Howard's policy iteration algorithm, solve discounted Markov decision processes (MDPs), with a constant discount factor, in strongly polynomial time. More precisely, Ye showed that both algorithms terminate after...... iterations. Second, and more importantly, we show that the same bound applies to the number of iterations performed by the strategy iteration (or strategy improvement) algorithm, a generalization of Howard's policy iteration algorithm used for solving 2-player turn-based stochastic games with discounted zero...

  12. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1994-01-01

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. (author)

  13. <strong>Mini-project>

    DEFF Research Database (Denmark)

    Katajainen, Jyrki

    2008-01-01

    In this project the goal is to develop the safe * family of containers for the CPH STL. The containers to be developed should be safer and more reliable than any of the existing implementations. A special focus should be put on strong exception safety since none of the existing prototypes available...

  14. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    Science.gov (United States)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  15. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W

    2007-01-01

    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  16. Antibacterial properties of nanocomposite materials and compositions on there bases

    International Nuclear Information System (INIS)

    Podol'skaya, V.I.; Vojtenko, O.Yu.; Grishenko, N.I.; Ul'berg, Z.P.; Yakubenko, L.N.

    2012-01-01

    The structured nanobiocomposite materials based on microbial cells and colloidal silver can serve as the new adjuvant systems. These composite materials being filled with active components, in particular the medications allow to prepare the long release preparations with synergetic effect or can just contribute to prolonged drug action

  17. Network-Based Material Requirements Planning (NBMRP) in ...

    African Journals Online (AJOL)

    Network-Based Material Requirements Planning (NBMRP) in Product Development Project. ... International Journal of Development and Management Review ... To address the problems, this study evaluated the existing material planning practice, and formulated a NBMRP model out of the variables of the existing MRP and ...

  18. Ceramic materials based on synthetic calcium phosphate for medical uses

    OpenAIRE

    Toropkov, N. E.; Antonkin, N. S.

    2016-01-01

    This article discusses the different methods of synthesis of hydroxyapatite and receiving on its base of ceramic materials in various ways. We have also developed our own technology. The conditions of compatibility and saddle the assumption and the suitability of the material for implantation.

  19. Mechanical properties of wood-based composite materials

    Science.gov (United States)

    Zhiyong Cai; Robert J. Ross

    2010-01-01

    The term composite is used to describe any wood material bonded together with adhesives. The current product mix ranges from fiberboard to laminated beams and components. In this chapter, wood-based composite materials are classified into the following categories: panel products (plywood, oriented strandboard (OSB), particleboard, fiberboard, medium-density fiberboard...

  20. Sustainable future alternatives to petroleum-based polymeric conservation materials

    DEFF Research Database (Denmark)

    Shashoua, Yvonne; Jankova Atanasova, Katja; Curran, Claire

    2017-01-01

    and coating formulations. Bio-polyethylenes, bio-polyesters and bio-cellulose-based products were evaluated against petroleum-based materials. Bio- and petroleum-based polyethylenes shared optical, chemical and thermal properties. Bamboo and sugarcane fibre containers were also chemically stable. Polyester...

  1. Emerging terahertz photodetectors based on two-dimensional materials

    Science.gov (United States)

    Yang, Jie; Qin, Hua; Zhang, Kai

    2018-01-01

    Inspired by the innovations in photonics and nanotechnology, the remarkable properties of two-dimensional (2D) materials have renewed interest for the development of terahertz (THz) photodetectors. The versatility of these materials enables ultrafast and ultrasensitive photodetection of THz radiation at room temperature. The atomically thin characteristic together with van der Waals interactions among the layers make it easy to scaling down and integrate with other 2D materials based devices, as well as silicon chips. Efforts have increased fast in the past decade in developing proof-of-concept and the further prospective THz photodetectors based on 2D materials. Here, the recent progress on the exploring of THz photodetectors based on 2D materials is reviewed. We summarized the THz photodetectors under different physical mechanism and introduced the state-of-the-art THz photodetectors based on various promising 2D materials, such as graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP) and topological insulators (TIs). A brief discussion on the remaining challenges and a perspective of the 2D materials based THz photodetectors are also given.

  2. Strong interactions

    International Nuclear Information System (INIS)

    Froissart, Marcel

    1976-01-01

    Strong interactions are introduced by their more obvious aspect: nuclear forces. In hadron family, the nucleon octet, OMEGA - decuplet, and quark triply are successively considered. Pion wave having been put at the origin of nuclear forces, low energy phenomena are described, the force being explained as an exchange of structure corresponding to a Regge trajectory in a variable rotating state instead of the exchange of a well defined particle. At high energies the concepts of pomeron, parton and stratons are introduced, pionization and fragmentation are briefly differentiated [fr

  3. Characterization and MCNP simulation of neutron energy spectrum shift after transmission through strong absorbing materials and its impact on tomography reconstructed image.

    Science.gov (United States)

    Hachouf, N; Kharfi, F; Boucenna, A

    2012-10-01

    An ideal neutron radiograph, for quantification and 3D tomographic image reconstruction, should be a transmission image which exactly obeys to the exponential attenuation law of a monochromatic neutron beam. There are many reasons for which this assumption does not hold for high neutron absorbing materials. The main deviations from the ideal are due essentially to neutron beam hardening effect. The main challenges of this work are the characterization of neutron transmission through boron enriched steel materials and the observation of beam hardening. Then, in our work, the influence of beam hardening effect on neutron tomographic image, for samples based on these materials, is studied. MCNP and FBP simulation are performed to adjust linear attenuation coefficients data and to perform 2D tomographic image reconstruction with and without beam hardening corrections. A beam hardening correction procedure is developed and applied based on qualitative and quantitative analyses of the projections data. Results from original and corrected 2D reconstructed images obtained shows the efficiency of the proposed correction procedure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Data base of radiation-resistant dielectric and insulating materials

    International Nuclear Information System (INIS)

    Hama, Yoshimasa; Sunazuka, Hideo; Nashiyama, Isamu; Kakuta, Tsunemi.

    1987-01-01

    In the data base of radiation-resistant dielectric and insulating materials, the data format contains such items as to give the summary; the data sheet contains the data in concrete form of respective properties from the references; the sheet of references contains the references in the former two. In the above three, there are attached code No., data sheet No., reference No. and key words. In the three areas as radiation-resistant dielectric and insulating materials, i.e., organic materials, inorganic materials and optical fibers, the following are explained: data format, data sheet and objectives. (Mori, K.)

  5. Electrical conduction in solid materials physicochemical bases and possible applications

    CERN Document Server

    Suchet, J P

    2013-01-01

    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  6. Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing

    Science.gov (United States)

    Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.

    2018-01-01

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

  7. Effect of Modifying Prosthetic Socket Base Materials by Adding Nanodiamonds

    Directory of Open Access Journals (Sweden)

    Lifang Ma

    2015-01-01

    Full Text Available The curing process of prosthetic socket base materials requires attention owing to a series of associated problems that are yet to be addressed and solved. However, to date, few relevant studies have been reported. In this paper, nanodiamonds modified with a silane coupling agent were dispersed into a prosthetic socket base material, and the performance of the modified base materials was investigated. Adding a predetermined amount of nanodiamonds to the prosthetic socket base material increased the glass transition temperature, improved the mechanical properties of the cured base material, and reduced the influence of the volatile gas formed during the curing process on the environment. With increasing nanodiamond contents, the glass transition temperature increased and the mechanical properties improved slightly. Owing to the high thermal conductivity of the nanodiamonds, the localized heat, as a result of the curing process, could be dissipated and released. Thus, adding nanodiamonds led to a more uniform temperature field forming in the curing system. This improved the curing process and reduced the formation of volatile monomers, thereby decreasing the adverse impact of the generated volatile gases on the environment. All of these provide a potential strategy for modifying prosthetic socket base materials.

  8. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  9. Using learning materials for design-based interventions

    DEFF Research Database (Denmark)

    Gissel, Stig Toke

    2015-01-01

    This article considers a methodological issue concerning the use of learning materials for interventions in design-based research. When the researcher uses existing or creates new didacticised learning materials for research purposes and tests their applicability in authentic contexts, many...... variables are in play. When using or designing a learning material a lot of choices have to be made and effects are difficult to isolate. The advantage of using learning materials for interventions is that results could have high ecological validity. In the article this methodological issue is exemplified...... through a research project using and developing digital learning materials for developing literacy in the early grades. One of many important choices to be made in elaborating this learning material concerns which texts should be used for supporting students’ literacy development in the lower grades...

  10. Design of an intelligent materials data base for the IFR

    International Nuclear Information System (INIS)

    Mikaili, R.; Lambert, J.D.B.; Orth, T.D.

    1992-01-01

    In the development of the integral fast reactor (IFR) concept, there is a consensus that materials considerations are an important part of the reactor design, operation, and maintenance and that materials performance is central to liquid-metal reactor reliability and safety. In the design of the IRF materials data base, artificial intelligence techniques are being used to ensure efficient control of information. Intelligent control will provide for the selection of menus to be displayed, efficient data-base searches, and application-dependent guidance through the data base. The development of the IRF data base has progressed to the point of (a) completing the design of the data-base architecture and tables, (b) installing computer hardware for storing large amounts of data, (c) outlining strategies for data transferal, and (d) identifying ways to validate and secure the integrity of data

  11. Room temperature ferromagnetism in a phthalocyanine based carbon material

    International Nuclear Information System (INIS)

    Honda, Z.; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N.; Hagiwara, M.; Kida, T.

    2014-01-01

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T c  = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material

  12. Development of a materials data base for modeling

    International Nuclear Information System (INIS)

    Iwata, S.; Ashino, T.; Ishino, S.

    1988-01-01

    Materials selection for fusion reactors requires a materials data base and a set of methods to estimate material properties in a ''virtual'' fusion reactor. This estimation process, namely, modeling, is analyzed as compromising of design requirements, available data bases and methods of estimation, and a concept of an ideal computer system to support this modeling process is proposed. The limitations of a commercial DBMS (Data Base Management System) to handle sophisticated materials data are described in accordance with our experiences. Secondly, ways to manipulate analytical expressions are discussed as the next step for computer assisted modeling. Finally, an advanced method is presented which is able to manage models and data in the same manner without paying attention to annoying rules compelled by constraints of using computers. (orig.)

  13. Room temperature ferromagnetism in a phthalocyanine based carbon material

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  14. The research of establishing reactor materials thermophysical properties data base

    International Nuclear Information System (INIS)

    Luo Danhui; Zhong Jianguo; Zhang Lili; Zhao Yongming

    1992-01-01

    In the process of nuclear reactor design and safety analysis, the reactor materials thermophysical properties parameters are very important as the main input data of reactor design and calculation. The goal of this work is to establish a practical, reliable data base of reactor materials thermophysical properties parameters with obvious function in reactor design, operation and safety analysis. At present phase, the focal point of this data base is to collect the materials thermophysical properties data based on the need of safety analysis in light water reactor and heavy water reactor. The materials to be chosen are as follows: Uranium, U-Al alloy, UO 2 , UO 2 -PuO 2 mixture, Zr-2, Zr-4, Zr-1% Ni alloy, Inconel-625, ZrO 2 (oxidic layer), boron carbide, cadmium in stainless steel, silver-indium-cadmium alloy, light water and heavy water, etc. The following thermophysical properties parameters are mainly included in the data base: thermal conductivity, thermal diffusivity, specific heat capacity, heat of melting, coefficient of thermal expansion, emittance, density, heat of vaporization, kinematic viscosity etc. The first phase of this work has been finished, which includes the method of establishing reactor materials thermophysical properties data base, the requirement of data collection, the requirement of establishing data base and the method of the data evaluation. This data base has been established and used on PC computer

  15. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  16. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    Science.gov (United States)

    Xu, Wenjun

    This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performance in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices. Carbon nanotubes were selected from the carbon family due to several advantageous characteristics that this nanomaterial offers. They carry extremely high mechanical strength (Ey=1TPa), superior electrical properties (current density of 4x109 A/cm2), exceptional piezoresistivity (G=2900), and unique spatial format (high aspect ratio hollow nanocylinder), among other properties. If properly utilized, all these merits can give rise to a variety of new types of carbon nanotube based micro- and nanoelectronics that can greatly fulfill the need for the next generation of faster, smaller and better devices. However, before these functions can be fully realized, one substantial issue to cope with is how to implement CNTs into these systems in an effective and controllable fashion. Challenges associated with CNTs integration include very poor dispersibility in solvents, lack of melting/sublimation point, and unfavorable rheology with regard to mixing and processing highly viscous, CNT-loaded polymer solutions. These issues hinder the practical progress of CNTs both in a lab scale and in the industrial level. To this end, a MEMS-assisted electrophoretic deposition technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible microsystems at room temperature with a relatively high throughput. MEMS technology has demonstrated strong capability in developing

  17. Experimental investigations of piping phenomena in bentonite based buffer material

    International Nuclear Information System (INIS)

    Suzuki, K.; Asano, H.; Kobayashi, I.; Sellin, P.; Svemar, C.; Holmqvist, M.

    2012-01-01

    Document available in extended abstract form only. Formation of channels in a clay based buffer material is often referred to as 'piping'. Piping is likely to occur in bentonite based buffer materials in a fractured host rock during the early evolution of the repository when strong hydraulic gradients are present. After water saturation of the repository and reestablishment of the hydraulic gradients piping will not be an issue. However, piping in the early phase may still have implications for long-term performance: 1. if the pipes fail to close there may be remaining conductive pathways in the engineered barrier, and 2. piping may lead to erosion or redistribution of material which needs to be taken into account in the long-term performance assessment. This means that the piping process may affect requirements on rock characterization, water inflow and water management during the installation phase, buffer material properties and buffer installation methodology. As a part of the 'Bentonite re-saturation' program, RWMC has initiated and performed studies of the piping process. The main objectives of the studies are to answer: 1. Under what conditions can pipes form? 2. How do pipes evolve with time? 3. When and how do pipes close/reseal? 4. How does piping affect the buffer properties? 5. How much mass can be lost by erosion? The answers will be used in the development of the requirements stated above as well as input to long term performance assessments. overview of the experiment Test apparatuses were manufactured for investigation of the piping phenomena, see Figure 1. The apparatuses have drainage gutter to prevent clogging to take place with eroded material, and to keep an advection field around specimens. There is also a storage chamber for eroded material on the apparatuses. In the investigation, specimens of bentonite block and pellets were used. The block specimen consisted of a mixture of Japanese Na type bentonite, termed Kunigel V1, and 30 wt% silica

  18. Strong evidence for a genetic contribution to late-onset Alzheimer's disease mortality: a population-based study.

    Directory of Open Access Journals (Sweden)

    John S K Kauwe

    Full Text Available Alzheimer's disease (AD is an international health concern that has a devastating effect on patients and families. While several genetic risk factors for AD have been identified much of the genetic variance in AD remains unexplained. There are limited published assessments of the familiality of Alzheimer's disease. Here we present the largest genealogy-based analysis of AD to date.We assessed the familiality of AD in The Utah Population Database (UPDB, a population-based resource linking electronic health data repositories for the state with the computerized genealogy of the Utah settlers and their descendants. We searched UPDB for significant familial clustering of AD to evaluate the genetic contribution to disease. We compared the Genealogical Index of Familiality (GIF between AD individuals and randomly selected controls and estimated the Relative Risk (RR for a range of family relationships. Finally, we identified pedigrees with a significant excess of AD deaths.The GIF analysis showed that pairs of individuals dying from AD were significantly more related than expected. This excess of relatedness was observed for both close and distant relationships. RRs for death from AD among relatives of individuals dying from AD were significantly increased for both close and more distant relatives. Multiple pedigrees had a significant excess of AD deaths.These data strongly support a genetic contribution to the observed clustering of individuals dying from AD. This report is the first large population-based assessment of the familiality of AD mortality and provides the only reported estimates of relative risk of AD mortality in extended relatives to date. The high-risk pedigrees identified show a true excess of AD mortality (not just multiple cases and are greater in depth and width than published AD pedigrees. The presence of these high-risk pedigrees strongly supports the possibility of rare predisposition variants not yet identified.

  19. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    Science.gov (United States)

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  20. Multiscale experimental mechanics of hierarchical carbon-based materials.

    Science.gov (United States)

    Espinosa, Horacio D; Filleter, Tobin; Naraghi, Mohammad

    2012-06-05

    Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self-organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon-based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro- and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon-based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical-computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Task-Based Approach to Materials Development

    Science.gov (United States)

    Nunan, David

    2010-01-01

    The purpose of this chapter is to present a task-based approach to materials development. In the first part of the chapter, I sketch out the evolution of task based language teaching, drawing on a distinction between synthetic and analytical approaches to syllabus design first articulated by Wilkins (1976).

  2. A Study of Multimedia Annotation of Web-Based Materials

    Science.gov (United States)

    Hwang, Wu-Yuin; Wang, Chin-Yu; Sharples, Mike

    2007-01-01

    Web-based learning has become an important way to enhance learning and teaching, offering many learning opportunities. A limitation of current Web-based learning is the restricted ability of students to personalize and annotate the learning materials. Providing personalized tools and analyzing some types of learning behavior, such as students'…

  3. Using Android-Based Educational Game for Learning Colloid Material

    Science.gov (United States)

    Sari, S.; Anjani, R.; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This research is based on the importance of the development of student’s chemical literacy on Colloid material using Android-based educational game media. Educational game products are developed through research and development design. In the analysis phase, material analysis is performed to generate concept maps, determine chemical literacy indicators, game strategies and set game paths. In the design phase, product packaging is carried out, then validation and feasibility test are performed. Research produces educational game based on Android that has the characteristics that is: Colloid material presented in 12 levels of game in the form of questions and challenges, presents visualization of discourse, images and animation contextually to develop the process of thinking and attitude. Based on the analysis of validation and trial results, the product is considered feasible to use.

  4. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    Science.gov (United States)

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Ontology based heterogeneous materials database integration and semantic query

    Science.gov (United States)

    Zhao, Shuai; Qian, Quan

    2017-10-01

    Materials digital data, high throughput experiments and high throughput computations are regarded as three key pillars of materials genome initiatives. With the fast growth of materials data, the integration and sharing of data is very urgent, that has gradually become a hot topic of materials informatics. Due to the lack of semantic description, it is difficult to integrate data deeply in semantic level when adopting the conventional heterogeneous database integration approaches such as federal database or data warehouse. In this paper, a semantic integration method is proposed to create the semantic ontology by extracting the database schema semi-automatically. Other heterogeneous databases are integrated to the ontology by means of relational algebra and the rooted graph. Based on integrated ontology, semantic query can be done using SPARQL. During the experiments, two world famous First Principle Computational databases, OQMD and Materials Project are used as the integration targets, which show the availability and effectiveness of our method.

  6. Advances in electrode materials for Li-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui [China Academy of Space Technology (CAST), Beijing (China); Mao, Chengyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jianlin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chen, Ruiyong [Korea Inst. of Science and Technology (KIST), Saarbrucken (Germany); Saarland Univ., Saarbrucken (Germany)

    2017-07-05

    Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and new tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.

  7. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  8. Study of New Materials Design based on Hadoop

    Directory of Open Access Journals (Sweden)

    Wu Jun

    2016-01-01

    Full Text Available With the rapid development of information technology, the scientific research shows that the data mining and other information technology could be used in the design of new materials. It is explicit that Intelligent Materials research focuses on using physical and chemical principles combined with computer techniques such as Big Data, Cloud computing and Intelligent modeling and simulation to solve chemical problems. In this paper, based on the cluster based outlier algorithm as the main body, this paper discusses the definition New Materials research In the Hadoop cloud platform, and the parallel processing of Map-Reduce model. The performance this model of new material was established by using the method of Map-Reduction provided the basis for the performance optimization.

  9. Current status of nanostructured tungsten-based materials development

    International Nuclear Information System (INIS)

    Kurishita, H; Matsuo, S; Arakawa, H; Hatakeyama, M; Shikama, T; Sakamoto, T; Kobayashi, S; Nakai, K; Okano, H; Watanabe, H; Yoshida, N; Torikai, Y; Hatano, Y; Takida, T; Kato, M; Ikegaya, A; Ueda, Y

    2014-01-01

    Nanostructured tungsten (W)-based materials offer many advantages for use as plasma facing materials and components exposed to heavy thermal loads combined with irradiation with high-energy neutron and low-energy ion. This paper first presents the recent progress in nanostructured toughened, fine grained, recrystallized W materials. Thermal desorption spectrometry apparatus equipped with an ion gun has been installed in the radiation controlled area in our Center at Tohoku University to systematically investigate the effects of displacement damage due to high-energy neutron irradiation on hydrogen isotope retention in connection with the nano- or micro-structures in W-based materials. In this paper, the effects of high-energy heavy ion irradiation on deuterium retention in W with different microstructures are described as a preliminary work with the prospective view of neutron irradiation effects. (paper)

  10. Data base concepts for managing the DOE nuclear material inventory

    International Nuclear Information System (INIS)

    Beams, J.D.

    1996-01-01

    Information required by nuclear materials managers in the Department of Energy (DOE) is accessible with varying levels of difficulty. Currently, the most readily available information is provided by the Nuclear Materials Management and Safeguards System (NMMSS). Information not provided by NMMSS must be obtained either from field site data bases or collected through physical inventory inspections, both very costly and time-consuming alternatives. This paper discusses the possibility of providing more detailed information at DOE headquarters on nuclear material inventories than is provided by NMMSS. In particular, this paper considers some of the issues associated with managing materials at the lowest-level--the item-level--and uses a hypothetical item-level data base to describe some of the advantages and disadvantages of managing information at the item-level

  11. Multifunctional composite material based on carbon-filled polyurethane

    International Nuclear Information System (INIS)

    Malinovskaya, T; Melentyev, S; Pavlov, S

    2015-01-01

    The research paper deals with the performance of composite resistive material heating coatings based on the polyurethane binder, filled with colloidal-graphite preparation C- 1, which can be used in structures of electric heaters. Frequency dependences of transmission and reflection coefficients, dielectric permeability of composite materials with the various content of carbon fillers (technical carbon, graphite) in polyurethane varnish in ranges of frequencies 26-40 GHz and 110-260 GHz are experimentally investigated. (paper)

  12. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  13. Biogas Filter Based on Local Natural Zeolite Materials

    Directory of Open Access Journals (Sweden)

    Satriyo Krido Wahono

    2014-02-01

    Full Text Available UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as increasing methane contents, increasing heating value, reduction of odors, reduction of corrosion potential, increasing the efficiency and stability of the generator.

  14. Pentanol-based target material with polarized protons

    International Nuclear Information System (INIS)

    Bunyatova, E.I.

    1992-01-01

    1-pentanol is a promising material for a target with polarized protons owing to its high resistance to radiation damage. To develop the target, the solutions of 1-pentanol or 2-pentanol with complexes of pentavalent chromium ware investigated. The material based EHBA-Cr(V) solution in a glass-like matrix, consisting of 1-pentanol, 3-pentanol and 1,2-propanediol, was proposed as a target material. It was investigated by the electron paramagnetic resonance and differential scanning calorimetry methods. 24 refs.; 3 figs.; 1 tab

  15. Molecular tools for the construction of peptide-based materials.

    Science.gov (United States)

    Ramakers, B E I; van Hest, J C M; Löwik, D W P M

    2014-04-21

    Proteins and peptides are fundamental components of living systems where they play crucial roles at both functional and structural level. The versatile biological properties of these molecules make them interesting building blocks for the construction of bio-active and biocompatible materials. A variety of molecular tools can be used to fashion the peptides necessary for the assembly of these materials. In this tutorial review we shall describe five of the main techniques, namely solid phase peptide synthesis, native chemical ligation, Staudinger ligation, NCA polymerisation, and genetic engineering, that have been used to great effect for the construction of a host of peptide-based materials.

  16. Development of knowledge base system linked to material database

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Tsuji, Hirokazu; Mashiko, Shinichi; Miyakawa, Shunichi; Fujita, Mitsutane; Kinugawa, Junichi; Iwata, Shuichi

    2002-01-01

    The distributed material database system named 'Data-Free-Way' has been developed by four organizations (the National Institute for Materials Science, the Japan Atomic Energy Research Institute, the Japan Nuclear Cycle Development Institute, and the Japan Science and Technology Corporation) under a cooperative agreement in order to share fresh and stimulating information as well as accumulated information for the development of advanced nuclear materials, for the design of structural components, etc. In order to create additional values of the system, knowledge base system, in which knowledge extracted from the material database is expressed, is planned to be developed for more effective utilization of Data-Free-Way. XML (eXtensible Markup Language) has been adopted as the description method of the retrieved results and the meaning of them. One knowledge note described with XML is stored as one knowledge which composes the knowledge base. Since this knowledge note is described with XML, the user can easily convert the display form of the table and the graph into the data format which the user usually uses. This paper describes the current status of Data-Free-Way, the description method of knowledge extracted from the material database with XML and the distributed material knowledge base system. (author)

  17. Thermal energy storage based on cementitious materials: A review

    Directory of Open Access Journals (Sweden)

    Khadim Ndiaye

    2018-01-01

    Full Text Available Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Many heat storage materials can be used in the building sector in order to avoid the phase shift between solar radiation and thermal energy demand. However, the use of storage material in the building sector is hampered by problems of investment cost, space requirements, mechanical performance, material stability, and high storage temperature. Cementitious material is increasingly being used as a heat storage material thanks to its low price, mechanical performance and low storage temperature (generally lower than 100 °C. In addition, cementitious materials for heat storage have the prominent advantage of being easy to incorporate into the building landscape as self-supporting structures or even supporting structures (walls, floor, etc.. Concrete solutions for thermal energy storage are usually based on sensible heat transfer and thermal inertia. Phase Change Materials (PCM incorporated in concrete wall have been widely investigated in the aim of improving building energy performance. Cementitious material with high ettringite content stores heat by a combination of physical (adsorption and chemical (chemical reaction processes usable in both the short (daily, weekly and long (seasonal term. Ettringite materials have the advantage of high energy storage density at low temperature (around 60 °C. The encouraging experimental results in the literature on heat storage using cementitious materials suggest that they could be attractive in a number of applications. This paper summarizes the investigation and analysis of the available thermal energy storage systems using cementitious materials for use in various applications.

  18. Base isolation for nuclear power and nuclear material facilities

    International Nuclear Information System (INIS)

    Eidinger, J.M.; Kircher, C.A.; Vaidya, N.; Constantinou, M.; Kelly, J.M.; Seidensticker, R.; Tajirian, F.F.; Ovadia, D.

    1989-01-01

    This report serves to document the status of the practice for the use of base isolation systems in the design and construction of nuclear power and nuclear material facilities. The report first describes past and current (1989) applications of base isolation in nuclear facilities. The report then provides a brief discussion of non-nuclear applications. Finally, the report summarizes the status of known base-isolation codes and standards

  19. Spintronic materials and devices based on antiferromagnetic metals

    OpenAIRE

    Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.

    2017-01-01

    In this paper, we review our recent experimental developments on antiferromagnet (AFM) spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring i...

  20. SYNTHESIS of MOLECULE/POLYMER-BASED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Joel S. [Univ. of Utah, Salt Lake City, UT (United States)

    2016-02-01

    We have synthesized and characterized several families of organic-based magnets, a new area showing that organic species can exhibit the technologically important property of magnetic ordering. Thin film magnets with ordering temperatures exceeding room temperature have been exceeded. Hence, organic-based magnets represent a new class of materials that exhibit magnetic ordering and do not require energy-intensive metallurgical processing and are based upon Earth-abundant elements.

  1. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    Science.gov (United States)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  2. Achieving a Collapsible, Strong, and Highly Thermally Conductive Film Based on Oriented Functionalized Boron Nitride Nanosheets and Cellulose Nanofiber.

    Science.gov (United States)

    Wu, Kai; Fang, Jinchao; Ma, Jinrui; Huang, Rui; Chai, Songgang; Chen, Feng; Fu, Qiang

    2017-09-06

    Boron nitride nanosheet (BNNS) films receive wide attention in both academia and industry because of their high thermal conductivity (TC) and good electrical insulation capability. However, the brittleness and low strength of the BNNS film largely limit its application. Herein, functionalized BNNSs (f-BNNSs) with a well-maintained in-plane crystalline structure were first prepared utilizing urea in the aqueous solution via ball-milling for the purpose of improving their stability in water and enhancing the interaction with the polymer matrix. Then, a biodegradable and highly thermally conductive film with an orderly oriented structure based on cellulose nanofibers (CNFs) and f-BNNSs was prepared just by simple vacuum-assisted filtration. The modification of the BNNS and the introduction of the CNF result in a better orientation of the f-BNNS, sufficient connection between f-BNNS themselves, and strong interaction between f-BNNS and CNF, which not only make the prepared composite film strong and tough but also possess higher in-plane TC. An increase of 70% in-plane TC, 63.2% tensile strength, and 77.8% elongation could be achieved for CNF/f-BNNS films, compared with that for CNF/BNNS films at the filler content of 70%. Although at such a high f-BNNS content, this composite film can be bended and folded. It is even more interesting to find that the in-plane TC could be greatly enhanced with the decrease of the thickness of the film, and a value of 30.25 W/m K can be achieved at the thickness of ∼30 μm for the film containing 70 wt % f-BNNS. We believe that this highly thermally conductive film with good strength and toughness could have potential applications in next-generation highly powerful and collapsible electronic devices.

  3. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    Science.gov (United States)

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  4. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    Directory of Open Access Journals (Sweden)

    Jian Ma

    Full Text Available The aircraft environmental control system (ECS is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  5. Elastoplastic cup model for cement-based materials

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2010-03-01

    Full Text Available Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The case study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.

  6. Recent Progress on PEDOT-Based Thermoelectric Materials.

    Science.gov (United States)

    Wei, Qingshuo; Mukaida, Masakazu; Kirihara, Kazuhiro; Naitoh, Yasuhisa; Ishida, Takao

    2015-02-16

    The thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based materials have attracted attention recently because of their remarkable electrical conductivity, power factor, and figure of merit. In this review, we summarize recent efforts toward improving the thermoelectric properties of PEDOT-based materials. We also discuss thermoelectric measurement techniques and several unsolved problems with the PEDOT system such as the effect of water absorption from the air and the anisotropic thermoelectric properties. In the last part, we describe our work on improving the power output of thermoelectric modules by using PEDOT, and we outline the potential applications of polymer thermoelectric generators.

  7. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  8. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  9. Strongly Agree or Strongly Disagree?

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Nogales-Gómez, Amaya; Morales, Dolores Romero

    2016-01-01

    In linear classifiers, such as the Support Vector Machine (SVM), a score is associated with each feature and objects are assigned to classes based on the linear combination of the scores and the values of the features. Inspired by discrete psychometric scales, which measure the extent to which a ...

  10. Tungsten-based composite materials for fusion reactor shields

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.

    1985-01-01

    Composite tungsten-based materials were recently proposed for the heavy constituent of compact fusion reactor shields. These composite materials will enable the incorporation of tungsten - the most efficient nonfissionable inelastic scattering (as well as good neutron absorbing and very good photon attenuating) material - in the shield in a relatively cheap way and without introducing voids (so as to enable minimizing the shield thickness). It is proposed that these goals be achieved by bonding tungsten powder, which is significantly cheaper than high-density tungsten, with a material having the following properties: good shielding ability and relatively low cost and ease of fabrication. The purpose of this work is to study the effectiveness of the composite materials as a function of their composition, and to estimate the economic benefit that might be gained by the use of these materials. Two materials are being considered for the binder: copper, second to tungsten in its shielding ability, and iron (or stainless steel), the common fusion reactor shield heavy constituent

  11. Neutron shielding material based on colemanite and epoxy resin

    International Nuclear Information System (INIS)

    Okuno, K.

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or up-gradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252 Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use. (authors)

  12. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    Directory of Open Access Journals (Sweden)

    Olaf Mühling

    2010-12-01

    Full Text Available The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field.

  13. Evaluation of nickel-based materials for VHTR heat exchanger

    International Nuclear Information System (INIS)

    Burlet, H.; Gentzbittel, J.M.; Cabet, C.; Lamagnere, P.; Blat, M.; Renaud, D.; Dubiez-Le Goff, S.; Pierron, D.

    2008-01-01

    Two available conventional nickel-based alloys (617 and 230) have been selected as structural materials for the advanced gas-cooled reactors, especially for the heat exchanger. An extensive research programme has been launched in France within the framework of the ANTARES programme to evaluate the performances of these materials in VHTR service environment. The experimental work is focused on mechanical properties, thermal stability and corrosion resistance in the temperature range (700-1 000 deg C) over long time. Thus the experimental work includes creep and fatigue tests on as-received materials, short- and medium-term thermal exposure tests followed by tensile and impact toughness tests, short- and medium-term corrosion exposure tests under impure He environment. The status of the results obtained up to now is given in this paper. Additional tests such as long-term thermal ageing and long-term corrosion tests are required to conclude on the selection of the material. (author)

  14. Experimental Study of Goaf Filling Materials Based on Red Mud

    Science.gov (United States)

    Mu, Mangen; Gao, Xiaozhen; Guo, Taoming; Hu, Xinping

    2018-01-01

    Red mud as soild waste is difficult to treatment. Goaf filling materials can make a large use of red mud. By the experimental study,we find that the red mud, fly ash, ground slag and desulfida-tion gypsum can be used to make goaf filling materials based on the principle of alkali excitation and metalion stability.Through the control variable method, we find that the optimal proportion of goaf filling materials based on red mud is red mud 55%, fly ash 30%, cement 7.5%, fly ash 2.5%, desulfurization gypsum 5%, admixture 1%, and water solid ratio=1:1.2.The 28days final material strength was 2.0 MPa,which achives the technical specification requirements.Through the test of SEM, XRD and IR, it is indicated that the strength formation of goaf filling material based on red mud is from the unformed linking hydration products of amorphous alkali excitation system. With curing time from 3 to 7 days, the unformed linking hydration products grown a lot of vitreous hydration products. When hydration reaction basicly finished after 28 days, the hydration products have developed into a large volume of massive vitreous with an extremely dense structure. The Ca2SiO3 mineral phase is significantly reduced, which is participate in hydration reactions. The decrease of Ca2SiO3 indicates that the Si-O bond in the system have been ruptured and reorganized.

  15. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  16. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Interactive multimedia-based teaching material for 3-dimensional geometry

    Science.gov (United States)

    Prabowo, A.; Anggoro, R. P.; Astuti, D.; Fahmi, S.

    2017-12-01

    This study aims to develop the interactive multimedia-based teaching material for 3-dimensional geometry in junior high school. The product was produced through the stages of define, design, develop, and disseminate. Two media experts and two teaching experts had validated it. They judged that the product developed was valid. It had been revised based on their advice. It has been disseminated to 15 mathematics teachers and tried to 30 students of junior high school. Teachers stated that this product gives a new form of teaching material in 3-dimensional geometry. According to the student, the product is interesting. It can motivate them to study mathematics, help them to master the material and increase their interest in mathematics.

  18. [Evidence-based management of medical disposable materials].

    Science.gov (United States)

    Yang, Hai

    2009-03-01

    Evidence-based management of medical disposable materials pays attention to collect evidence comprehensively and systematically, accumulate and create evidence through its own work and also evaluate evidence strictly. This can be used as a function to guide out job. Medical disposable materials evidence system contains product register qualification, product quality certification, supplier's behavior, internal and external communication evidence. Managers can find different ways in creating and using evidence referring to specific inside and outside condition. Evidence-based management can help accelerating the development of management of medical disposable materials from traditional experience pattern to a systematic and scientific pattern. It also has the very important meaning to improve medical quality, control the unreasonable growth of medical expense and make purchase and supply chain be more efficient.

  19. Plasma deposition of amorphous silicon-based materials

    CERN Document Server

    Bruno, Giovanni; Madan, Arun

    1995-01-01

    Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Key Features * Focuses on the plasma chemistry of amorphous silicon-based materials * Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced * Features an international group of contributors * Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices.

  20. Quantitative analysis of lead in polysulfide-based impression material

    Directory of Open Access Journals (Sweden)

    Aparecida Silva Braga

    2007-06-01

    Full Text Available Permlastic® is a polysulfide-based impression material widely used by dentists in Brazil. It is composed of a base paste and a catalyzer containing lead dioxide. The high toxicity of lead to humans is ground for much concern, since it can attack various systems and organs. The present study involved a quantitative analysis of the concentration of lead in the material Permlastic®. The lead was determined by plasma-induced optical emission spectrometry (Varian model Vista. The percentages of lead found in the two analyzed lots were 38.1 and 40.8%. The lead concentrations in the material under study were high, but the product’s packaging contained no information about these concentrations.

  1. Feasibility of coal fly ash based bricks and roof tiles as construction materials: a review

    Directory of Open Access Journals (Sweden)

    Akhtar M.N.

    2017-01-01

    Full Text Available The aim of present study is to investigate about the potential use of coal fly ash along with other natural and solid wastes for the production of coal fly ash based bricks and roof tiles. The study is based on the comprehensive reviews available from the previous experimental data on coal fly ash based bricks and roof tiles. The study intendeds to provide the essential technical information and data for the use of fly ash mix with other solid wastes and reveal their suitability as construction materials. It has been found that samples were non-hazardous in nature and vigorously used as an additional construction materials and their compositions are perfectly fit to make the strong composite material for bricks and tiles. The three past studies have been demonstrated that, fly ash based bricks and roof tiles provides a sustainable supplement to the traditional clay bricks and roof tiles, that not only increases the efficiency of traditional bricks and roof tiles but also helps significantly to reduce the environmental issues associated with the disposal of these waste materials. In addition to this study highlights the potential use of fly ash for producing sustainable construction materials.

  2. CHAPTER 9 : Virus-based systems for functional materials

    NARCIS (Netherlands)

    Verwegen, Martijn; Cornelissen, Jeroen J.L.M.; Boker, Alexander; van Rijn, Patrick

    2015-01-01

    Virus-based bionanotechnology holds the promise of control over the structure, properties and functionality of materials at the nanometre scale. After all, viruses, and by extension virus-like particles (VLPs), represent some of the largest hierarchical protein constructs found in Nature. Their

  3. Development of bio-hybrid material based on Salmonella ...

    African Journals Online (AJOL)

    Teodoro

    2016-07-13

    Jul 13, 2016 ... Full Length Research Paper. Development of bio-hybrid material based on. Salmonella Typhimurium and layered double hydroxides. Slah Hidouri .... the LDH with co-precipitation synthesis method was successfully done according the study given by Hidouri et al. (2011), Abdelkader et al. (2011), Hidouri et ...

  4. Silane-based hybrid materials for biomedical applications

    NARCIS (Netherlands)

    Kros, A.; Jansen, J.A.; Holder, S.J.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.

    2002-01-01

    In this paper, the preparation of different hybrid silane materials is presented and their possible use in biomedical applications is discussed. The first example describes the development of biocompatible coatings based on sol-gel silicates, which can be used as a protective coating for implantable

  5. Phosphorus-based compounds for EUV multilayer optics materials

    NARCIS (Netherlands)

    Medvedev, Viacheslav; Yakshin, Andrey; van de Kruijs, Robbert Wilhelmus Elisabeth; Bijkerk, Frederik

    2015-01-01

    We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were

  6. Energy enhancer for mask based laser materials processing

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1996-01-01

    A device capable of drastically improving the energy efficiency of present mask based laser materials processing systems is presented. Good accordance between experiments and simulations for a TEA-CO2 laser system designed for laser marking has been demonstrated. The energy efficiency may...... be improved with a factor of 2 - 4 for typical mask transmittances between 10 - 40%....

  7. and O-based composite materials derived from differential ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we have made an effort to determine whether the effective atomic numbers of H-, C-, N- and O-based composite materials would indeed remain a constant over the energy grid of 280–1200 keV wherein incoherent scattering dominates their interaction with photons. For this purpose, the differential ...

  8. Two new inorganic-organic hybrid materials based on inorganic ...

    Indian Academy of Sciences (India)

    fields such as catalysis, pharmacology, medicine, nan- otechnology, and molecular ... such POM-based hybrid materials: (a) organic ligands graft onto POMs directly; .... average value of 6.028, close to the ideal value of 6 for MoVI. The bond ...

  9. Penta-fibrillar assembly: A Building block collagen based materials

    Indian Academy of Sciences (India)

    There is a smartness in the way the penta-fibrils behave in collagen based biomaterials. It is one of the intriguing nano material with a size of about 4 nano meter diagonal size. There are several intermolecular forces that participate in the penta fibrillar assembly, which derive importance in smart behavior of collagen.

  10. A new, 13C-based material for neutron targets

    International Nuclear Information System (INIS)

    Romanenko, A.I.; Anikeeva, O.B.; Gorbachev, R.V.; Zhmurikov, E.I.; Gubin, K.V.; Logachev, P.V.; Avilov, M.S.; Tsybulya, S.V.; Kryukova, G.N.; Burgina, E.B.; Tecchio, L.

    2005-01-01

    A 13 C-based neutron-target material is investigated using X-ray diffraction, IR absorption and Raman scattering spectroscopies, transmission electron microscopy, and electrical (conductivity, magnetoresistance, and Hall effect) measurements before and after high-power electron irradiation for various lengths of time [ru

  11. Finding Environmental Knowledge in SCUBA-Based Textual Materials

    Science.gov (United States)

    Gündogdu, Cemal; Aygün, Yalin; Ilkim, Mehmet

    2018-01-01

    As marine environments within the adventure domain are future key-settings for recreational SCUBA diving experience, SCUBA-based textual materials should provide insight into environmental knowledge that is well connected to the novice divers' behaviour and attitude. This research is concerned with a major recreational SCUBA diver manual for…

  12. A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2015-11-01

    Full Text Available The estimation of state of charge (SOC is a crucial evaluation index in a battery management system (BMS. The value of SOC indicates the remaining capacity of a battery, which provides a good guarantee of safety and reliability of battery operation. It is difficult to get an accurate value of the SOC, being one of the inner states. In this paper, a strong tracking cubature Kalman filter (STCKF based on the cubature Kalman filter is presented to perform accurate and reliable SOC estimation. The STCKF algorithm can adjust gain matrix online by introducing fading factor to the state estimation covariance matrix. The typical second-order resistor-capacitor model is used as the battery’s equivalent circuit model to dynamically simulate characteristics of the battery. The exponential-function fitting method accomplishes the task of relevant parameters identification. Then, the developed STCKF algorithm has been introduced in detail and verified under different operation current profiles such as Dynamic Stress Test (DST and New European Driving Cycle (NEDC. Making a comparison with extended Kalman filter (EKF and CKF algorithm, the experimental results show the merits of the STCKF algorithm in SOC estimation accuracy and robustness.

  13. Graphene-based materials for supercapacitor electrodes – A review

    Directory of Open Access Journals (Sweden)

    Qingqing Ke

    2016-03-01

    Full Text Available The graphene-based materials are promising for applications in supercapacitors and other energy storage devices due to the intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability and excellent mechanical behavior. This review summarizes recent development on graphene-based materials for supercapacitor electrodes, based on their macrostructural complexity, i.e., zero-dimensional (0D (e.g. free-standing graphene dots and particles, one-dimensional (1D (e.g. fiber-type and yarn-type structures, two-dimensional (2D (e.g. graphenes and graphene-based nanocomposite films, and three-dimensional (3D (e.g. graphene foam and hydrogel-based nanocomposites. There are extensive and on-going researches on the rationalization of their structures at varying scales and dimensions, development of effective and low cost synthesis techniques, design and architecturing of graphene-based materials, as well as clarification of their electrochemical performance. It is indicated that future studies should focus on the overall device performance in energy storage devices and large-scale process in low costs for the promising applications in portable and wearable electronic, transport, electrical and hybrid vehicles.

  14. Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials

    Science.gov (United States)

    Hou, Zhilin; Assouar, Badreddine

    2018-02-01

    We theoretically and numerically report on the tunable elastic Parity-Time (PT) symmetric structure based on shunted piezoelectric units. We show that the elastic loss and gain can be archived in piezoelectric materials when they are shunted by external circuits containing positive and negative resistances. We present and discuss, as an example, the strongly dependent relationship between the exceptional points of a three-layered system and the impedance of their external shunted circuit. The achieved results evidence that the PT symmetric structures based on this proposed concept can actively be tuned without any change of their geometric configurations.

  15. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    Energy Technology Data Exchange (ETDEWEB)

    Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

    2014-07-23

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  16. Materiales Maria Maya: community-based materials development.

    Science.gov (United States)

    Moran, B C

    1982-01-01

    Materials Maria Maya (MMM) is a Guatemalan organization which has dedicated itself to making health education more relevant to the rural Mayans who constitute the majority of Guatemala's population. The administration and direction of the project is in the hands of a team of qualified Mayan men and women. Funding is primarily through various charitable international organizations. The content of preexisting health education programs, strongly influenced by the dominant "ladino" Spanish speaking culture was found to be inappropriate to the goal of this program. MMM set about to formulate a new teaching format which would draw upon, rather than trample over, established cultural practices and life styles. By a process of trial and error, involving small scale field tests, a new program format was developed. By questioning local women about perceived priority areas, through the study of morbidity and mortality data, decisions were made as to topics to be covered. Investigators, authors, and artists worked together to form a "materials package" which was then subject to pretesting. Out of this effort, MMM has been able to come up with a method to encourage more effective participative teaching through the use of education materials.

  17. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.

    Science.gov (United States)

    Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng

    2015-09-23

    Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phosphorene and Phosphorene-Based Materials - Prospects for Future Applications.

    Science.gov (United States)

    Batmunkh, Munkhbayar; Bat-Erdene, Munkhjargal; Shapter, Joseph G

    2016-10-01

    Phosphorene, a single- or few-layered semiconductor material obtained from black phosphorus, has recently been introduced as a new member of the family of two-dimensional (2D) layered materials. Since its discovery, phosphorene has attracted significant attention, and due to its unique properties, is a promising material for many applications including transistors, batteries and photovoltaics (PV). However, based on the current progress in phosphorene production, it is clear that a lot remains to be explored before this material can be used for these applications. After providing a comprehensive overview of recent advancements in phosphorene synthesis, advantages and challenges of the currently available methods for phosphorene production are discussed. An overview of the research progress in the use of phosphorene for a wide range of applications is presented, with a focus on enabling important roles that phosphorene would play in next-generation PV cells. Roadmaps that have the potential to address some of the challenges in phosphorene research are examined because it is clear that the unprecedented chemical, physical and electronic properties of phosphorene and phosphorene-based materials are suitable for various applications, including photovoltaics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Material Discrimination Based on K-edge Characteristics

    Directory of Open Access Journals (Sweden)

    Peng He

    2013-01-01

    Full Text Available Spectral/multienergy CT employing the state-of-the-art energy-discriminative photon-counting detector can identify absorption features in the multiple ranges of photon energies and has the potential to distinguish different materials based on K-edge characteristics. K-edge characteristics involve the sudden attenuation increase in the attenuation profile of a relatively high atomic number material. Hence, spectral CT can utilize material K-edge characteristics (sudden attenuation increase to capture images in available energy bins (levels/windows to distinguish different material components. In this paper, we propose an imaging model based on K-edge characteristics for maximum material discrimination with spectral CT. The wider the energy bin width is, the lower the noise level is, but the poorer the reconstructed image contrast is. Here, we introduce the contrast-to-noise ratio (CNR criterion to optimize the energy bin width after the K-edge jump for the maximum CNR. In the simulation, we analyze the reconstructed image quality in different energy bins and demonstrate that our proposed optimization approach can maximize CNR between target region and background region in reconstructed image.

  20. Solution processed nanogap organic diodes based on liquid crystalline materials

    Science.gov (United States)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-09-01

    Co-planar nanogap organic diodes were fabricated with smectic liquid crystalline materials of the benzothienobenzothiophene (BTBT) derivative by a spin-coating technique. A high rectification ratio of the order of 106 at ±3 V was achieved when a liquid crystalline material of 2,7-didecyl benzothieno[3,2-b][1]benzothiophene (10-BTBT-10) was used in a device configuration of Al/10-BTBT-10/pentafluorobenzenethiol-treated Au on a glass substrate, which was 4 orders higher than that of the device based on non-liquid crystalline materials of 2,7-dibutyl benzothieno[3,2-b][1]benzothiophene (4-BTBT-4) and BTBT. Similar results were also observed when another liquid crystalline material of ω, ω'-dioctylterthiophene (8-TTP-8) and a non-liquid crystalline material of terthiophene (TTP) were used. These improved rectifications can be ascribed to the self-assembly properties and controllable molecular orientation of liquid crystalline materials, which made uniform perpendicular oriented polycrystalline films favorable for superior charge transport in nano-channels.

  1. 1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.

    Science.gov (United States)

    Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing

    2018-03-23

    Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.

  2. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-12-08

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices with efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.

  3. Integrating UNESCO ICT-Based Instructional Materials in Chemistry Lessons

    Directory of Open Access Journals (Sweden)

    CHARLIE P. NACARIO

    2014-08-01

    Full Text Available This study determined the effectiveness of the lessons in Chemistry integrating UNESCO ICT-based instructional material on the achievement of Chemistry students at Central Bicol State University of Agriculture. It aimed to identify lessons that may be developed integrating UNESCO ICT-based instructional materials, determine the effect of the developed lessons using the material on: conceptual understanding; science process skills; and attitude towards chemistry and gather insights from the experiences of the students and teacher. The study used the single group pretest and posttest experimental design. Descriptive, quantitative and qualitative techniques were also utilized. Quantitative data were taken from the pretest-posttest results on the Test on Conceptual Understanding, Science Process Skills and Chemistry Attitudinaire. Qualitative data were drawn from the experts’ assessment of the developed lessons and research instruments, and the insights of students and teacher. The developed lessons integrating UNESCO ICT-based instructional materials were Atomic Model and Structure, Periodic Table of Elements, Chemical Bonding, and Balancing Chemical Equation. These lessons increased the conceptual understanding of the students by topic and skill from very low mastery to average mastery level. The students have slightly improved along the different science process skills. After teaching the lessons, the students’ attitude also improved. The students became more motivated and interested in Chemistry and the lessons were student centered and entailed teacher’s competence and flexibility in computer use.

  4. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  5. Biological and chemical sensors based on graphene materials.

    Science.gov (United States)

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  6. Verifiable Distribution of Material Goods Based on Cryptology

    Directory of Open Access Journals (Sweden)

    Radomír Palovský

    2015-12-01

    Full Text Available Counterfeiting of material goods is a general problem. In this paper an architecture for verifiable distribution of material goods is presented. This distribution is based on printing such a QR code on goods, which would contain digitally signed serial number of the product, and validity of this digital signature could be verifiable by a customer. Extension consisting of adding digital signatures to revenue stamps used for state-controlled goods is also presented. Discussion on possibilities in making copies leads to conclusion that cryptographic security needs to be completed by technical difficulties of copying.

  7. Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials

    International Nuclear Information System (INIS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-01-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, K_u, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under −20 dB return loss over a moderate bandwidth). - Graphical abstract: Here, we added the graphical abstract that provides summary the contents of the article in a concise pictorial form. - Highlights: • Flexible lightweight, thin, reconfigurable radar absorbing materials are proposed. • Polyacrylonitrile (PAN) fabrics are coated with nickel, cobalt magnetic materials. • The coating times affects microwave constitutive parameters and absorption. • Microwave absorption measurements were done via transmission line technique. • Microwave absorption is due to dielectric losses rather than magnetic losses.

  8. Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Teber, Ahmet, E-mail: aht10003@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States); Unver, Ibrahim, E-mail: iunver@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Kavas, Huseyin, E-mail: huseyin.kavas@medeniyet.edu.tr [Department of Physics, Istanbul Medeniyet University, Istanbul 34000 (Turkey); Aktas, Bekir, E-mail: aktas@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Bansal, Rajeev, E-mail: rajeev@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2016-05-15

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, K{sub u}, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under −20 dB return loss over a moderate bandwidth). - Graphical abstract: Here, we added the graphical abstract that provides summary the contents of the article in a concise pictorial form. - Highlights: • Flexible lightweight, thin, reconfigurable radar absorbing materials are proposed. • Polyacrylonitrile (PAN) fabrics are coated with nickel, cobalt magnetic materials. • The coating times affects microwave constitutive parameters and absorption. • Microwave absorption measurements were done via transmission line technique. • Microwave absorption is due to dielectric losses rather than magnetic losses.

  9. Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Zhu, Kaizheng; Nyström, Bo

    2013-01-01

    block), a class of ionic supramolecules are successfully synthesized whose molecular architecture consists of a poly(styrene) PS block (Linear block) covalently connected to a strongly amphiphilic comb-like block (AmphComb block), i.e. Linear-b-AmphComb. In the melt state, these ionic supramolecules can.......20 (SLL/C and SBCC/C) and ∼0.28 (C/L). Finally, the specific influences of the strongly amphiphilic nature of the AmphComb blocks on the observed morphological and hierarchical behaviours of our system are discussed. For reference, stoichiometric strongly amphiphilic comb-like (AmphComb) ionic...

  10. Using bio-based polymers for curing cement-based materials

    NARCIS (Netherlands)

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying

  11. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    Science.gov (United States)

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MATERIALS AND (LANGUAGE LEARNING ENVIRONMENT BASED ON MONTESSORI CONCEPTS

    Directory of Open Access Journals (Sweden)

    Christina Kristiyani

    2018-04-01

    Full Text Available Montessori Education is widely spread in almost all countries in the world. Even though this school is meant for all kinds of learners including “normal” learners, the Montessori education concepts used in Montessori schools will be very supportive education for children with special needs. Therefore, the schools which adopt Montessori education concepts can facilitate inclusion, especially with the concepts of ‘I can do it myself.’ Inclusive education needs to be carefully prepared and implemented by schools. The movement brings about some challenges for teachers. This paper explores the environment and materials based on Montessori education concepts. The environment and materials are suitable for all types of learners and thus can be an option to be implemented in the inclusive education setting. Teaching materials rooted in Montessori education concepts indeed cater all ages and embrace the needs of all students.

  13. Quantum engineering of transistors based on 2D materials heterostructures

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  14. Carbon-Based Materials for Photo-Triggered Theranostic Applications

    Directory of Open Access Journals (Sweden)

    Karunya Albert

    2016-11-01

    Full Text Available Carbon-based nanomaterials serve as a type of smart material for photo-triggered disease theranostics. The inherent physicochemical properties of these nanomaterials facilitate their use for less invasive treatments. This review summarizes the properties and applications of materials including fullerene, nanotubes, nanohorns, nanodots and nanographenes for photodynamic nanomedicine in cancer and antimicrobial therapies. Carbon nanomaterials themselves do not usually act as photodynamic therapy (PDT agents owing to the high hydrophobicity, however, when the surface is passivated or functionalized, these materials become great vehicles for PDT. Moreover, conjugation of carbonaceous nanomaterials with the photosensitizer (PS and relevant targeting ligands enhances properties such as selectivity, stability, and high quantum yield, making them readily available for versatile biomedical applications.

  15. Thermal analysis of charring materials based on pyrolysis interface model

    Directory of Open Access Journals (Sweden)

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  16. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  17. Quantum engineering of transistors based on 2D materials heterostructures.

    Science.gov (United States)

    Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca

    2018-03-01

    Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

  18. XRD Investigation of Some Thermal Degraded Starch Based Materials

    Directory of Open Access Journals (Sweden)

    Mihai Todica

    2016-01-01

    Full Text Available The thermal degradation of some starch based materials was investigated using XRD method. The samples were obtained by thermal extrusion of mixtures of different proportions of starch, glycerol, and water. Such materials are suitable for the manufacturing of low pollutant packaging. Thermal degradation is one of the simplest ways to destroy such materials and this process is followed by structural modification of the local ordering of samples, water evaporation, crystallization, oxidation, or destruction of the chemical bonds. These modifications need to be studied in order to reduce to the minimum production of pollutant residues by burning process. XRD measurements show modification of the local ordering of the starch molecules depending on the temperature and initial composition of the samples. The molecular ordering perturbation is more pronounced in samples with low content of starch.

  19. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  20. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    Science.gov (United States)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  1. The electrical properties of a strongly disordered system based on lightly doped germanium compensated by disordered regions

    International Nuclear Information System (INIS)

    Evseev, V.A.; Konopleva, R.F.; Yuferev, A.A.

    1976-01-01

    A study was made of lightly doped (Nsub(Sb) approximately 10 15 cm -3 ) n-Ge, heavily compensated (K = Nsub(A)/N sub(D) approximately 1) by fast neutrons from a reactor. Irradiation is shown to produce, near n-p conversion (annealing has the same effect near p-n conversion), a random relief of electrostatic potential which is caused by the overlap of the space-charge regions surrounding disordered regions (DR). the random potential field results in a spatial 'bending' of the whole band spectrum of germanium, similar to the way it is observed in amorphous semiconductors because of their disorder. Experiments show the conduction in the DR overlap region to be of an activated nature, associated with the ejection of carriers to the corresponding 'percolation' levels. The activation energy of such conduction varies with the degree of compensation. The shift of the Fermi level depends on the degree of compensation here in a much more sensitive way than in the case of compensation by chemical impurities. The properties of Ge obtained by DR overlap and by compensation with chemical impurities are compared. A superlinear I-V characteristic producing the switching effect is observed in strong electric fields (E approximately 10 3 V cm -1 ). A suggestion is made that a study of disordered systems, based on lightly doped germanium which is compensated with DRs produced by high-energy particles, should both help to obtain new information on the parameters of the DRs proper and help to simulate the properties of the amorphous semiconductors. (author)

  2. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  3. Technical Education Outreach in Materials Science and Technology Based on NASA's Materials Research

    Science.gov (United States)

    Jacobs, James A.

    2003-01-01

    The grant NAG-1 -2125, Technical Education Outreach in Materials Science and Technology, based on NASA s Materials Research, involves collaborative effort among the National Aeronautics and Space Administration s Langley Research Center (NASA-LaRC), Norfolk State University (NSU), national research centers, private industry, technical societies, colleges and universities. The collaboration aims to strengthen math, science and technology education by providing outreach related to materials science and technology (MST). The goal of the project is to transfer new developments from LaRC s Center for Excellence for Structures and Materials and other NASA materials research into technical education across the nation to provide educational outreach and strengthen technical education. To achieve this goal we are employing two main strategies: 1) development of the gateway website and 2) using the National Educators Workshop: Update in Engineering Materials, Science and Technology (NEW:Updates). We have also participated in a number of national projects, presented talks at technical meetings and published articles aimed at improving k-12 technical education. Through the three years of this project the NSU team developed the successful MST-Online site and continued to upgrade and update it as our limited resources permitted. Three annual NEW:Updates conducted from 2000 though 2002 overcame the challenges presented first by the September 11,2001 terrorist attacks and the slow U.S. economy and still managed to conduct very effective workshops and expand our outreach efforts. Plans began on NEW:Update 2003 to be hosted by NASA Langley as a part of the celebration of the Centennial of Controlled Flight.

  4. A fuzzy logic based PROMETHEE method for material selection problems

    Directory of Open Access Journals (Sweden)

    Muhammet Gul

    2018-03-01

    Full Text Available Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper presents a fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation method based on trapezoidal fuzzy interval numbers that can be applied to the selection of materials for an automotive instrument panel. Also, it presents uniqueness in making a significant contribution to the literature in terms of the application of fuzzy decision-making approach to material selection problems. The method is illustrated, validated, and compared against three different fuzzy MCDM methods (fuzzy VIKOR, fuzzy TOPSIS, and fuzzy ELECTRE in terms of its ranking performance. Also, the relationships between the compared methods and the proposed scenarios for fuzzy PROMETHEE are evaluated via the Spearman’s correlation coefficient. Styrene Maleic Anhydride and Polypropylene are determined optionally as suitable materials for the automotive instrument panel case. We propose a generic fuzzy MCDM methodology that can be practically implemented to material selection problem. The main advantages of the methodology are consideration of the vagueness, uncertainty, and fuzziness to decision making environment.

  5. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  6. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  7. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-11-01

    Full Text Available Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  8. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  9. RIM as the data base management system for a material properties data base

    Science.gov (United States)

    Karr, P. H.; Wilson, D. J.

    1984-01-01

    Relational Information Management (RIM) was selected as the data base management system for a prototype engineering materials data base. The data base provides a central repository for engineering material properties data, which facilitates their control. Numerous RIM capabilities are exploited to satisfy prototype data base requirements. Numerical, text, tabular, and graphical data and references are being stored for five material types. Data retrieval will be accomplished both interactively and through a FORTRAN interface. The experience gained in creating and exercising the prototype will be used in specifying requirements for a production system.

  10. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  11. Bulk Material Based Thermoelectric Energy Harvesting for Wireless Sensor Applications

    International Nuclear Information System (INIS)

    Wang, W S; Magnin, W; Wang, N; Hayes, M; O'Flynn, B; O'Mathuna, C

    2011-01-01

    The trend towards smart building and modern manufacturing demands ubiquitous sensing in the foreseeable future. Self-powered Wireless sensor networks (WSNs) are essential for such applications. This paper describes bulk material based thermoelectric generator (TEG) design and implementation for WSN. A 20cm 2 Bi 0.5 Sb 1.5 Te 3 based TEG was created with optimized configuration and generates 2.7mW in typical condition. A novel load matching method is used to maximize the power output. The implemented power management module delivers 651μW to WSN in 50 deg. C. With average power consumption of Tyndall WSN measured at 72μW, feasibility of utilizing bulk material TEG to power WSN is demonstrated.

  12. Material quality assessment of silk nanofibers based on swarm intelligence

    Science.gov (United States)

    Brandoli Machado, Bruno; Nunes Gonçalves, Wesley; Martinez Bruno, Odemir

    2013-02-01

    In this paper, we propose a novel approach for texture analysis based on artificial crawler model. Our method assumes that each agent can interact with the environment and each other. The evolution process converges to an equilibrium state according to the set of rules. For each textured image, the feature vector is composed by signatures of the live agents curve at each time. Experimental results revealed that combining the minimum and maximum signatures into one increase the classification rate. In addition, we pioneer the use of autonomous agents for characterizing silk fibroin scaffolds. The results strongly suggest that our approach can be successfully employed for texture analysis.

  13. Semiconductor neutron detectors based on new types of materials

    International Nuclear Information System (INIS)

    Pochet, T.; Foulon, F.

    1993-01-01

    Neutron detection in hostile environments such as nuclear reactors has been performed using a new kind of semiconductor detector. So far, crystalline semiconductor detectors are not used in nuclear reactor instrumentation because of their sensitivity to radiation damage. For doses in excess of a few tens of kilo rads, radiation induced lattice defects produce a strong loss in the standard semiconductor detector performances. In the last few years, new semiconductor materials having amorphous or polycrystalline structures such as silicon, silicon carbide or CVD diamond, became available. These semiconductors, produced by Chemical Vapor Deposition, come in the form of thin layers being typically a few tens of micron thick. Their crystalline structure is particularly resistant to radiation damage up to a few Mrads but prevent the material use in spectrometry measurements. Nevertheless, these detectors, working in a counting mode, are suitable for the detection of alpha particles produced by the neutron capture reaction with boron. Such thin film detectors have a very poor sensitivity to γ-ray background. Furthermore, they are easier and cheaper to implement than current neutron gas counters. Preliminary results obtained with diamond and amorphous silicon diodes exposed to α particles are presented. (authors). 7 figs., 3 tabs., 11 refs

  14. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces......, is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant...

  15. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  16. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  17. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  18. Moisture measurement in wood, wood-based materials and building materials - a literature review

    International Nuclear Information System (INIS)

    Kober, A.; Mehlhorn, L.; Plinke, B.

    1989-10-01

    Methods of moisture measurement in solid substances, especially on wood, wood-based materials and building materials were examined and evaluated according to the literature available. The question was which methods of examining the moisture distribution in building elements at climate loading offer the best accuracy and spatial resolution as well as which methods are the most appropriate at present and in future for the solution of measurement problems in the wood and wood-based industry. The most common methods are electric measurement methods which are utilizing either the moisture-depending conductivity or the dielectric constant or the reflectivity of the material for infrared radiation but they offer only a limited accuracy. The same is valid for the rarely used microwave methods or X-ray and NMR tomography. Simple electric methods will further on play an important role in the industrial process measuring technique. For the examination of building elements, methods using nuclear radiation still offer possibilities for a further development. (orig.) With 207 refs., 13 figs [de

  19. Energy-based ferromagnetic material model with magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Steentjes, Simon, E-mail: simon.steentjes@iem.rwth-aachen.de [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany); Henrotte, François, E-mail: francois.henrotte@uclouvain.be [Institute of Mechanics Materials and Civil Engineering - UCL, Av. G. Lemaître 4-6, B-1348 Louvain-la-Neuve (Belgium); Hameyer, Kay [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany)

    2017-03-01

    Non-oriented soft magnetic materials are commonly assumed to be magnetically isotropic. However, due to the rolling process a preferred direction exists along the rolling direction. This uniaxial magnetic anisotropy, and the related magnetostriction effect, are critical to the accurate calculation of iron losses and magnetic forces in rotating electrical machines. This paper proposes an extension of an isotropic energy-based vector hysteresis model to account for these two effects. - Highlights: • Energy-based vector hysteresis model with magnetic anisotropy. • Two-scale model to account for pinning field distribution. • Pinning force and reluctivity are extended to anisotropic case.

  20. Modeling of ferrite-based materials for shielding enclosures

    International Nuclear Information System (INIS)

    Koledintseva, Marina; Drewniak, James; Zhang Yaojiang; Lenn, James; Thoms, Melanie

    2009-01-01

    An analytical model for a magneto-dielectric composite material is presented based on the Maxwell Garnett rule for a dielectric mixture, and on Bruggeman's effective medium theory for permeability of a ferrite powder embedded in a dielectric. In order to simultaneously treat frequency-dispersive permittivity and permeability of a composite in a full-wave FDTD code, a new algorithm based on discretized auxiliary differential equations has been implemented. In this paper, numerical examples of modeling structures containing different magneto-dielectric mixtures are presented

  1. A new silver based composite material for SPA water disinfection.

    Science.gov (United States)

    Tartanson, M A; Soussan, L; Rivallin, M; Chis, C; Penaranda, D; Lapergue, R; Calmels, P; Faur, C

    2014-10-15

    A new composite material based on alumina (Al2O3) modified by two surface nanocoatings - titanium dioxide (TiO2) and silver (Ag) - was studied for spa water disinfection. Regarding the most common microorganisms in bathing waters, two non-pathogenic bacteria Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram positive) were selected as surrogates for bacterial contamination. The bactericidal properties of the Al2O3-TiO2-Ag material were demonstrated under various operating conditions encountered in spa water (temperature: 22-37 °C, presence of salt: CaCO3 or CaCl2, high oxygen content, etc.). Total removal of 10(8) CFU mL(-1) of bacteria was obtained in less than 10 min with 16 g L(-1) of material. Best results were observed for both conditions: a temperature of 37 °C and under aerobic condition; this latest favouring Reactive Oxygen Species (ROS) generation. The CaCO3 salt had no impact on the bactericidal activity of the composite material and CaCl2 considerably stabilized the silver desorption from the material surface thanks to the formation of AgCl precipitate. Preliminary tests of the Al2O3-TiO2-Ag bactericidal behaviour in a continuous water flow confirmed that 2 g L(-1) of material eliminated more than 90% of a 2.0 × 10(8) CFU mL(-1) bacterial mixture after one water treatment recycle and reached the disinfection standard recommended by EPA (coliform removal = 6 log) within 22 h. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Degradation of carbon-based materials under ablative conditions produced by a high enthalpy plasma jet

    Directory of Open Access Journals (Sweden)

    Gilberto Petraconi

    2010-04-01

    Full Text Available A stationary experiment was performed to study the degradation of carbon-based materials by immersion in a plasma jet. In the experiment, graphite and C/C composite were chosen as the target materials, and the reactive plasma jet was generated by an air plasma torch. For macroscopic study of the material degradation, the sample’s mass losses were measured as function of the exposure time under various temperatures on the sample surface. A microscopic analysis was then carried out for the study of microscopic aspects of the erosion of material surface. These experiments showed that the mass loss per unit area is approximately proportional to the exposure time and strongly depends on the temperature of the material surface. The mass erosion rate of graphite was appreciably higher than the C/C composite. The ablation rate in the carbon matrix region in C/C composite was also noticeably higher than that in the fiber region. In addition, the latter varied according to the orientation of fibers relatively to the flow direction. These tests indicated an excellent ablation resistance of the C/C composite, thus being a reliable material for rocket nozzles and heat shielding elements of the protection systems of hypersonic apparatuses from aerodynamic heating.

  3. Learning material recommendation based on case-based reasoning similarity scores

    Science.gov (United States)

    Masood, Mona; Mokmin, Nur Azlina Mohamed

    2017-10-01

    A personalized learning material recommendation is important in any Intelligent Tutoring System (ITS). Case-based Reasoning (CBR) is an Artificial Intelligent Algorithm that has been widely used in the development of ITS applications. This study has developed an ITS application that applied the CBR algorithm in the development process. The application has the ability to recommend the most suitable learning material to the specific student based on information in the student profile. In order to test the ability of the application in recommending learning material, two versions of the application were created. The first version displayed the most suitable learning material and the second version displayed the least preferable learning material. The results show the application has successfully assigned the students to the most suitable learning material.

  4. Optimum permeability for a cement based backfill material

    International Nuclear Information System (INIS)

    Jacobs, F.; Wittmann, F.H.; Iriya, K.

    1989-01-01

    In Switzerland it is planned to dispose low- and intermediate radioactive waste (LLW/ILW) in an underground repository. Between the materials present in a repository different chemical reactions may occur. Due to radiolytic decomposition, microbiological degradation and corrosion gas (mainly hydrogen) may be produced. The release of gas can cause the build-up of pressure in the cavern and finally lead to the formation of cracks and/or serious damage in the concrete structure or host rock. Through cracks a contamination of the groundwater and the biosphere could be possible. This investigation develops a suitable cement based material which can be used as backfill for the repository. Besides other aspects mentioned later a suitable backfill material has to be characterized by a certain minimum gas permeability and a as low as possible hydraulic conductivity. On the one hand gas permeability is necessary to release gas overpressure and on the other hand a low hydraulic conductivity should prevent leaching of backfill materials and contamination of the environment

  5. Modification of clay-based waste containment materials

    International Nuclear Information System (INIS)

    Adu-Wusu, K.; Whang, J.M.; McDevitt, M.F.

    1997-01-01

    Bentonite clays are used extensively for waste containment barriers to help impede the flow of water in the subsurface because of their low permeability characteristics. However, they do little to prevent diffusion of contaminants, which is the major transport mechanism at low water flows. A more effective way of minimizing contaminant migration in the subsurface is to modify the bentonite clay with highly sorptive materials. Batch sorption studies were conducted to evaluate the sorptive capabilities of organo-clays and humic- and iron-based materials. These materials proved to be effective sorbents for the organic contaminants 1,2,4-trichlorobenzene, nitrobenzene, and aniline in water, humic acid, and methanol solution media. The sorption capacities were several orders of magnitude greater than that of unmodified bentonite clay. Modeling results indicate that with small amounts of these materials used as additives in clay barriers, contaminant flux through walls could be kept very small for 100 years or more. The cost of such levels of additives can be small compared to overall construction costs

  6. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    Science.gov (United States)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  7. Basic properties of a zirconia based fuel material for LWRs

    International Nuclear Information System (INIS)

    Degueldre, C.; Paratte, J.M.

    1997-01-01

    The properties of zirconia cubic solid solutions doped with yttria, erbia and ceria or thoria are investigated with emphasis on the potential use of this material as inert matrix fuel for plutonium incineration in a light water reactor (LWR). The material is selected on the basis of its neutronic properties. Zr and Y are not neutron absorbers. Among the rare earth elements, Er was identified as a suitable burnable poison. The high density cubic solid solution is stable for a rather large range of compositions and from room temperature up to about 3000 K. Samples irradiated under low and high energy Xe ion irradiation up to a fluence of 1.8.10 16 Xe.cm -2 were investigated by transmission electron microscopy. Low energy (60 keV) Xe ions did not produce amorphization. From the observed bubble formation, swelling values during irradiation at room temperature or at high temperature (925 K) were estimated to be 0.1-0.72% by volume. Furthermore, no amorphization was obtained by Xe irradiation under extreme conditions such as high energy (1.5 MeV) Xe ion irradiation and low temperature (20 K). This confirms the robustness of this material and argues in favour of the selection of a zirconia based material as an advanced nuclear fuel for plutonium incineration. (author) 5 figs., 1 tab., 17 refs

  8. Corrosion of candidate iron-base waste package structural barrier materials in moist salt environments

    International Nuclear Information System (INIS)

    Westerman, R.E.; Pitman, S.G.

    1984-11-01

    Mild steels are considered to be strong candidates for waste package structural barrier (e.g., overpack) applications in salt repositories. Corrosion rates of these materials determined in autoclave tests utilizing a simulated intrusion brine based on Permian Basin core samples are low, generally <25 μm (1 mil) per year. When the steels are exposed to moist salts containing simulated inclusion brines, the corrosion rates are found to increase significantly. The magnesium in the inclusion brine component of the environment is believed to be responsible for the increased corrosion rates. 1 reference, 4 figures, 2 tables

  9. Femtosecond laser ablation of single-wall carbon nanotube-based material

    International Nuclear Information System (INIS)

    Danilov, Pavel A; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Mel’nik, Nikolay N; Rudenko, Andrey A; Yurovskikh, Vladislav I; Zayarny, Dmitry V; Lednev, Vasily N; Obraztsova, Elena D; Pershin, Sergey M; Bunkin, Alexey F

    2014-01-01

    Single- and multi-shot femtosecond laser surface ablation of a single-wall carbon nanotube-based substrate at 515- and 1030 nm wavelengths was studied by scanning electron microscopy and micro-Raman spectroscopy. The laser ablation proceeds in two ways: as the low-fluence mesoscopic shallow disintegration of the surface nanotube packing, preserving the individual integrity and the semiconducting character of the nanotubes or as the high-fluence deep material removal apparently triggered by the strong intrinsic or impurity-mediated ablation of the individual carbon nanotubes on the substrate surface. (letter)

  10. Interactive teaching materials based on scientific approach: triangles and quadrilaterals

    Directory of Open Access Journals (Sweden)

    Pujiastuti Heni

    2018-01-01

    Full Text Available One of the Indonesian government’s efforts to improve the quality of education is by changing the curriculum. Currently the Curriculum 2013 is being implemented in schools. Implementation of Curriculum 2013 is require teaching materials in accordance with the characteristics of the students, utilizing computer technology facilities, and contains the components of the scientific approach. Therefore, it is necessary to develop teaching materials in accordance with the Curriculum 2013. In this research we developed the Interactive Teaching Materials based on Scientific Approach (ITMSA. The research method is research and development (R&D which consist of ten steps. The product design validation performed by multimedia, mathematics, and mathematics education expert involving lecturers and mathematics teacher. Utility testing of product conducted on junior high school students in Serang City, Banten Province, Indonesia. Based on research known that the ITMSA obtained a total score 85,30% from mathematics expert, 87,80% from mathematics education expert, 83,60% from multimedia expert, and 89,40% from students. In addition, students mathematical concept understanding who learn by using ITMSA better than student who learn without ITMSA. From these results concluded that the ITMSA is considered feasible and can be used in mathematics teaching in schools.

  11. Development of antimicrobial active packaging materials based on gluten proteins.

    Science.gov (United States)

    Gómez-Heincke, Diana; Martínez, Inmaculada; Partal, Pedro; Guerrero, Antonio; Gallegos, Críspulo

    2016-08-01

    The incorporation of natural biocide agents into protein-based bioplastics, a source of biodegradable polymeric materials, manufactured by a thermo-mechanical method is a way to contribute to a sustainable food packaging industry. This study assesses the antimicrobial activity of 10 different biocides incorporated into wheat gluten-based bioplastics. The effect that formulation, processing, and further thermal treatments exert on the thermo-mechanical properties, water absorption characteristics and rheological behaviour of these materials is also studied. Bioplastics containing six of the 10 examined bioactive agents have demonstrated suitable antimicrobial activity at 37 °C after their incorporation into the bioplastic. Moreover, the essential oils are able to create an antimicrobial atmosphere within a Petri dish. Depending on the selected biocide, its addition may alter the bioplastics protein network in a different extent, which leads to materials exhibiting less water uptake and different rheological and thermo-mechanical behaviours. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Investigation of graphene-based nanoscale radiation sensitive materials

    Science.gov (United States)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  13. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    San Juan, A; Montembault, A; Royaud, I; David, L; Gillet, D; Say, J P; Rouif, S; Bouet, T

    2012-01-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  14. Safety issues of tooth whitening using peroxide-based materials.

    Science.gov (United States)

    Li, Y; Greenwall, L

    2013-07-01

    In-office tooth whitening using hydrogen peroxide (H₂O₂) has been practised in dentistry without significant safety concerns for more than a century. While few disputes exist regarding the efficacy of peroxide-based at-home whitening since its first introduction in 1989, its safety has been the cause of controversy and concern. This article reviews and discusses safety issues of tooth whitening using peroxide-based materials, including biological properties and toxicology of H₂O₂, use of chlorine dioxide, safety studies on tooth whitening, and clinical considerations of its use. Data accumulated during the last two decades demonstrate that, when used properly, peroxide-based tooth whitening is safe and effective. The most commonly seen side effects are tooth sensitivity and gingival irritation, which are usually mild to moderate and transient. So far there is no evidence of significant health risks associated with tooth whitening; however, potential adverse effects can occur with inappropriate application, abuse, or the use of inappropriate whitening products. With the knowledge on peroxide-based whitening materials and the recognition of potential adverse effects associated with the procedure, dental professionals are able to formulate an effective and safe tooth whitening regimen for individual patients to achieve maximal benefits while minimising potential risks.

  15. Competitive light absorbers in photoactive dental resin-based materials.

    Science.gov (United States)

    Hadis, Mohammed A; Shortall, Adrian C; Palin, William M

    2012-08-01

    The absorbance profile of photoinitiators prior to, during and following polymerization of light curable resin-based materials will have a significant effect on the cure and color properties of the final material. So-called "colorless" photoinitiators are used in some light-activated resin-based composite restorative materials to lessen the yellowing effect of camphoroquinone (CQ) in order to improve the esthetic quality of dental restorations. This work characterizes absorption properties of commonly used photoinitiators, an acylphosphine oxide (TPO) and CQ, and assesses their influence on material discoloration. Dimethacrylate resin formulations contained low (0.0134 mol/dm(3)), intermediate (0.0405 mol/dm(3)) or high (0.0678 mol/dm(3)) concentrations of the photoinitiators and the inhibitor, butylated hydroxytoluene (BHT) at 0, 0.1 or 0.2% by mass. Disc shaped specimens (n = 3) of each resin were polymerized for 60s using a halogen light curing unit. Dynamic measurements of photoinitiator absorption, polymer conversion and reaction temperature were performed. A spectrophotometer was used to measure the color change before and after cure. GLM three-way analysis of variance revealed significant differences (pphotoinitiator type (df = 1; F = 176.12)>% BHT (df = 2, F = 13.17). BHT concentration affected the rate of polymerization and produced lower conversion in some of the CQ-based resins. Significant differences between photoinitiator type and concentrations were seen in color (where TPO resins became yellower and camphoroquinone resins became less yellow upon irradiation). Reaction temperature, kinetics and conversion also differed significantly for both initiators (presins producing a visually perceptible color change upon polymerization, the color change was significantly less than that produced with CQ-based resins. Although some photoinitiators such as TPO may be a more esthetic alternative to CQ, they may actually cause significant color contamination when

  16. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators.

    Science.gov (United States)

    Reichmann, Klaus; Feteira, Antonio; Li, Ming

    2015-12-04

    The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  17. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  18. REQUIREMENTS FOR DRILLING CUTTINGS AND EARTH-BASED BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Chertes Konstantin L'vovich

    2017-08-01

    Full Text Available In this article, the problem of utilization of drilling cuttings by means of scavenging, is researched. The product received could be used for the restoration of lands disturbed during construction and economic activities. When assessing technogenic formations, the binary approach was used, as a system of two components. The purpose of the study is to assess the state and possibility of utilizing drilling cuttings as raw materials in order to produce technogenic building materials; to study the effect of the degree of homogeneity of initial mixtures based on drilling cuttings, on kinetics of their hardening which leads to obtaining final products for various applications . As a result of research, relations of hardening and subsequent strengthening of slurry-cement mixtures were obtained; the plan of the process area for treatment of drilling cuttings is presented on the spot of demolished drilling pit.

  19. Development of Web Based Learning Material in Physics Subject for Kalor and Temperature Material

    Directory of Open Access Journals (Sweden)

    Fatwa Aji Kurniawan

    2015-12-01

    Full Text Available It has been done, the research which aims to develop a web-based teaching materials on the subjects of physics subject with subject mater of temperature and heat. This study using a modified model of the 4D development by eliminating the deployment phase. The validation of product development conducted by validator media experts and experts matter of physics, whereas small-scale trials conducted by physics teacher and 10 students. Validator review results stating that the quality of the product development were included in the category very well with the average percentage rating of 83.93%. The percentage value assigned by media expert by 75% in the good category and the percentage of the value provided by a matter expert 92.85% were in the very good category. Experiments by physics teacher to obtain result of equal to 94.44% were in the very good category and the average percentage of the test results by the students of 90.5% were in the very good category. The characteristics of the products developed include material composition using the curriculum in 2013, there was a recording facility and the results of evaluation of students' activities, there were feedback evaluation results were immediately known by the students and there were some links related to the material either youtube or other learning website.

  20. Marine fungi: Degraders of poly-3-hydroxyalkanoate based plastic materials

    Directory of Open Access Journals (Sweden)

    Matavulj Milan

    2009-01-01

    Full Text Available The search for new biosynthetic and biodegradable materials to save nonrenewable resources and reduce global pollution problems is an urgent task. Recently, materials like thermoplastic poly-3-hydroxyalkanoates (PHA, have been found synthesized by bacteria as storage materials. The major PHAs synthesized are poly-b-hydroxybutyrate (PHB, poly-b-hydroxyvalerate (PHV and their copolymers. They are already commercially produced and used as BIOPOLTM (ICI, England. Their complete degradability by bacteria has already been shown. Today, oceans and estuaries serve as major landfills, and since fungi are an important part of the degrading microbiota, in order to prove their participation in the degradation process, a simple degradation test suitable for fungi and marine conditions had to be developed. Several solid media based on artificial sea water, differing in the content of non-alkanoate organics and supplemented with 0.1% PHA (or BIOPOLTM as a main source of carbon have been tested. The testing principle consists of clearing the turbid medium in test tube or plates caused by suspended granules of PHA. All media tested supported the growth of fungi. For the discrete and transparent clearing of zones, a mineral medium with 0.01% peptone, 0.01% yeast extract, and 0.1% PHB or BIOPOLTM was finally chosen where the fine and evenly distributed turbidity is accomplished by a specific procedure. This method allows the investigation of degradability of PHA-based plastic materials as well as screening for fungal ability to depolymerise pure PHA homopolymers. Using this medium, 32 strains of marine yeasts and 102 strains of marine mycelial fungi belonging to different systematic and ecological groups were tested for their ability to degrade PHAs. Only about 4% of the strains were able to degrade BIOPOLTM and about 6% depolymerised pure PHB homopolymer. This is in sharp contrast to the results of our previous experiments with 143 strains of terrestrial fungi

  1. Graphene-Based Materials for Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Phitsini Suvarnaphaet

    2017-09-01

    Full Text Available The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO, reduced graphene oxide (RGO and graphene quantum dot (GQD. The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications.

  2. Friction behavior of cobalt base and nickel base hardfacing materials in high temperature sodium

    International Nuclear Information System (INIS)

    Mizobuchi, Syotaro; Kano, Shigeki; Nakayama, Kohichi; Atsumo, Hideo

    1980-01-01

    A friction behavior of the hardfacing materials such as cobalt base alloy ''Stellite'' and nickel base alloy ''Colmonoy'' used in the sliding components of a sodium cooled fast breeder reactor was investigated in various sodium environments. Also, friction tests on these materials were carried out in argon environment. And they were compared with those in sodium environment. The results obtained are as follows: (1) In argon, the cobalt base hardfacing alloy showed better friction behavior than the nickel base hardfacing alloy. In sodium, the latter was observed to have the better friction behavior being independent of the sodium temperature. (2) The friction coefficient of each material tends to become lower by pre-exposure in sodium. Particularly, this tendency was remarkable for the nickel base hardfacing alloy. (3) The friction coefficient between SUS 316 and one of these hardfacing materials was higher than that between latter materials. Also, some elements of hardfacing alloys were recognized to transfer on the friction surface of SUS 316 material. (4) It was observed that each tested material has a greater friction coefficient with a decrease of the oxygen content in sodium. (author)

  3. Porous materials based on foaming solutions obtained from industrial waste

    Science.gov (United States)

    Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.

    2018-03-01

    This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.

  4. Single-crystal growth of ceria-based materials

    International Nuclear Information System (INIS)

    Ulbrich, Gregor

    2015-01-01

    In this work it could be shown that Skull-Melting is a suitable method for growing ceria single crystals. Twenty different ceria-based single crystals could be manufactured. It was possible to dope ceria single crystals with Gd, Sm, Y, Zr, Ti, Ta, and Pr in different concentrations. Also co-doping with the named metals was realized. However, there remain some problems for growing ceria-based single crystals by Skull-Melting. As ignition metal zirconium was used because no ceria-based material works well. For that reason all single crystals show small zirconium contamination. Another problem is the formation of oxygen by the heat-induced reduction of ceria during the melting process. Because of that the skull of sintered material is often destroyed by gas pressure. This problem had to be solved individually for every single crystal. The obtained single crystals were characterized using different methods. To ensure the single crystal character the y were examined by Laue diffraction. All manufactured crystals are single crystals. Also powder diffraction patterns of the milled and oxidized samples were measured. For the determination of symmetry and metric the structural parameters were analyzed by the Rietveld method. All synthesized materials crystallize in space group Fm-3m known from calcium fluoride. The cubic lattice parameter a was determined for all crystals. In the case of series with different cerium and zirconium concentrations a linear correlation between cerium content and cubic lattice parameter was detected. The elemental composition was determined by WDX. All crystals show a homogeneous elemental distribution. The oxygen content was calculated because the WDX method isn't useful for determination.

  5. New gadolinium based glasses for gamma-rays shielding materials

    International Nuclear Information System (INIS)

    Kaewjang, S.; Maghanemi, U.; Kothan, S.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • Gd 2 O 3 based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd 2 O 3. • All the glasses of Gd 2 O 3 compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd 2 O 3 based glass matrices. - Abstract: In this work, Gd 2 O 3 based glasses in compositions (80−x)B 2 O 3 -10SiO 2 -10CaO-xGd 2 O 3 (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd 2 O 3 concentration. The experimental values of mass attenuation coefficients (μ m ), effective atomic number (Z eff ) and effective electron densities (N e ) of the glasses were found to increase with the increasing of Gd 2 O 3 concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd 2 O 3 compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials

  6. New gadolinium based glasses for gamma-rays shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaewjang, S.; Maghanemi, U.; Kothan, S. [Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chang Mai University, Chang Mai 50200 (Thailand); Kim, H.J. [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Limkitjaroenporn, P. [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand)

    2014-12-15

    Highlights: • Gd{sub 2}O{sub 3} based glasses have been fabricated and investigated radiation shielding properties between 223 and 662 keV. • Density of the glass increases with increasing of Gd{sub 2}O{sub 3.} • All the glasses of Gd{sub 2}O{sub 3} compositions studied had been shown lower HVL than X-rays shielding window. • Prepared glasses to be utilized as radiation shielding material with Pb-free advantage. • This work is the first to reports on radiation shielding properties of Gd{sub 2}O{sub 3} based glass matrices. - Abstract: In this work, Gd{sub 2}O{sub 3} based glasses in compositions (80−x)B{sub 2}O{sub 3}-10SiO{sub 2}-10CaO-xGd{sub 2}O{sub 3} (where x = 15, 20, 25, 30 and 35 mol%) have been fabricated and investigated for their radiation shielding, physical and optical properties. The density of the glass was found to increase with the increasing of Gd{sub 2}O{sub 3} concentration. The experimental values of mass attenuation coefficients (μ{sub m}), effective atomic number (Z{sub eff}) and effective electron densities (N{sub e}) of the glasses were found to increase with the increasing of Gd{sub 2}O{sub 3} concentration and also with the decreasing of photon energy from 223 to 662 keV. The glasses of all Gd{sub 2}O{sub 3} compositions studied have been shown with lower HVL values in comparison to an X-rays shielding window, ordinary concrete and commercial window; indicating their potential as radiation shielding materials with Pb-free advantage. Optical spectra of the glasses in the present study had been shown with light transparency; an advantage when used as radiation shielding materials.

  7. K2 Au(IO3)5 and β-KAu(IO3)4: Polar Materials with Strong SHG Responses Originating from Synergistic Effect of AuO4 and IO3 Units.

    Science.gov (United States)

    Xu, Xiang; Hu, Chun-Li; Li, Bing-Xuan; Mao, Jiang-Gao

    2016-01-26

    Two new polar potassium gold iodates, namely, K2 Au(IO3)5 (Cmc21) and β-KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero-dimensional polar [Au(IO3)4](-) units composed of an AuO4 square-planar unit coordinated by four IO3(-) ions in a monodentate fashion. In β-KAu(IO3)4, isolated [Au(IO3)4](-) ions are separated by K(+) ions, whereas in K2 Au(IO3)5, isolated [Au(IO3)4](-) ions and non-coordinated IO3(-) units are separated by K(+) ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800-2500 nm) with measured optical band gaps of 2.65 eV for K2 Au(IO3 )5 and 2.75 eV for β-KAu(IO3)4. Powder second-harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2 Au(IO3)5 and β-KAu(IO3)4 are both phase-matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  9. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds

    International Nuclear Information System (INIS)

    Fiejdasz, Sylwia; Szczubiałka, Krzysztof; Lewandowska-Łańcucka, Joanna; Nowakowska, Maria; Osyczka, Anna M

    2013-01-01

    The progress in tissue regeneration is strongly dependent on the development of biocompatible materials with properties resembling those of a native tissue. Also, the application of noninvasive methods of delivering the scaffold into the tissue defect is of great importance. In this study we present a group of biopolymer-based materials as potential injectable scaffolds. In contrast to other studies involving collagen neutralization or additional incubation of gel in genipin solution, we propose collagen and collagen–chitosan gels crosslinked in situ with genipin. Since some parameters of the cells should be considered in the microscale, the steady-state fluorescence anisotropy was applied to study the microenvironment of the gels. To our knowledge we are the first to report on microrheological properties, such as gel time and microviscosity, for this group of hydrogels. Rapid gelation at physiological temperatures found makes these materials of special interest in applications requiring gel injectability. Physico-chemical investigation showed the influence of the crosslinking agent concentration and chitosan addition on the crosslinking degree, swelling ratio, gel microviscosity, and the degradation rate. Strong correlation was revealed between the surface wettability and the viability of cultured mesenchymal stem cells. Cytotoxicity studies indicated that the collagen–chitosan hydrogels showed the best biocompatibility. (paper)

  10. Ohmic contacts to InN-based materials

    Directory of Open Access Journals (Sweden)

    Sai P. O.

    2016-10-01

    Full Text Available The key aspects of ohmic contact formation to InN-based materials were investigated. Detailed analysis of studies conducted over the past three decades, allows determining the basic principles of such contacts. The contact structure properties and optimal conditions for them are presented. Different types of metallization are considered, the advantages and disadvantages of each are determined, including the basic requirements that such contact must meet. There is emphasis on the using multilayer metallization with the barrier layers. In the case of the InAlN/GaN systems, the general approaches of forming ohmic contacts were considered.

  11. Behavior of W-based materials in hot helium gas

    Directory of Open Access Journals (Sweden)

    J. Matějíček

    2016-12-01

    A number of W-based materials (pure tungsten and some of its alloys prepared by powder metallurgy techniques was exposed to He atmosphere at 720ºC and 500kPa for 500h. Morphological surface changes were observed by SEM, chemical and phase composition was analyzed by EDS and XRD, respectively. The internal microstructure was observed by a combination of SEM, FIB and TEM techniques. Mechanical properties were determined by instrumented indentation. Some alloys developed a thin oxide layer, in some cases new morphological features were observed, while some samples remained mostly intact. The observed changes are correlated with specific compositions and microstructures.

  12. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  13. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    of the dopants and dopant concentrations, a large power factor was obtainable. The sample with the composition of Zn0.9Cd0.1Sc0.01O obtained the highest zT ∼0.3 @1173 K, ~0.24 @1073K, and a good average zT which is better than the state-of-the-art n-type thermoelectric oxide materials. Meanwhile, Sc-doped Zn......This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped Zn......O. Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...

  14. Material flow-based economic assessment of landfill mining processes.

    Science.gov (United States)

    Kieckhäfer, Karsten; Breitenstein, Anna; Spengler, Thomas S

    2017-02-01

    This paper provides an economic assessment of alternative processes for landfill mining compared to landfill aftercare with the goal of assisting landfill operators with the decision to choose between the two alternatives. A material flow-based assessment approach is developed and applied to a landfill in Germany. In addition to landfill aftercare, six alternative landfill mining processes are considered. These range from simple approaches where most of the material is incinerated or landfilled again to sophisticated technology combinations that allow for recovering highly differentiated products such as metals, plastics, glass, recycling sand, and gravel. For the alternatives, the net present value of all relevant cash flows associated with plant installation and operation, supply, recycling, and disposal of material flows, recovery of land and landfill airspace, as well as landfill closure and aftercare is computed with an extensive sensitivity analyses. The economic performance of landfill mining processes is found to be significantly influenced by the prices of thermal treatment (waste incineration as well as refuse-derived fuels incineration plant) and recovered land or airspace. The results indicate that the simple process alternatives have the highest economic potential, which contradicts the aim of recovering most of the resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Base technology approaches in materials research for future nuclear applications

    International Nuclear Information System (INIS)

    Kondo, Tatsuo

    1992-01-01

    In the development of advanced nuclear systems for future, majority of critical issues in material research and development are more or less related with the effects of neutron irradiation. The approaches to those issues in the past have been mainly concerned with interpretation of the facts and minor modification of existing materials, having been inevitably of passive nature. In combating against predicted complex effects arising from variety of critical parameters, approaches must be reviewed more strategically. Some attempts of shifting research programs to such a direction have been made at JAERI in the Base (Common) Technology Programs either by adding to or restructuring the existing tasks. Major tasks currently in progress after the reorientation are categorized in several disciplines including new tasks for material innovation and concept development for neutron sources. The efforts have been set forth since 1988, and a few of them are now mature to transfer to the tasks in the projects of advanced reactors. The paper reviews the status of some typical activities emphasizing the effects of the reorientation and possible extensions of the outcomes to future applications. (author)

  16. Novel high-strength Fe-based composite materials with large plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzna; Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Siegel, Uwe; Bartusch, Birgit; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland)

    2007-07-01

    Among glass-forming alloy systems reported so far, Fe-based bulk metallic glasses play a special role. Compared to other amorphous alloys e.g. Zr-, Ti-based, such glasses show superior mechanical strength. However, due to the general brittleness their wider application as structural materials is strongly restricted. The alternative approach to overcome this defect is to design BMG composites. In this work we present a series of new Fe-Cr-Mo-Ga-(Si,C) composite materials derived from an Fe-Cr-Mo-Ga-C-P-B glassy alloy, with the aim to improve the ductility of this high-strength material. The effect of the composition and the phase formation on the resulting mechanical properties was investigated. It has been found that the formation of a complex microstructure, which essentially consists of soft Ga-rich dendrites embedded in a hard Cr- and Mo-rich matrix, leads to a material with excellent compressive mechanical properties. While the obtained values of true strength are comparable with data reported for Fe-Cr-Mo-Ga-C-P-B BMG, the values of true strain are greatly improved for investigated composites.

  17. The constitutive compatibility method for identification of material parameters based on full-field measurements

    KAUST Repository

    Moussawi, Ali

    2013-10-01

    We revisit here the concept of the constitutive relation error for the identification of elastic material parameters based on image correlation. An additional concept, so called constitutive compatibility of stress, is introduced defining a subspace of the classical space of statically admissible stresses. The key idea is to define stresses as compatible with the observed deformation field through the chosen class of constitutive equation. This makes possible the uncoupling of the identification of stress from the identification of the material parameters. As a result, the global cost of the identification is strongly reduced. This uncoupling also leads to parametrized solutions in cases where the solution is non-unique as demonstrated on 2D numerical examples. © 2013 Elsevier B.V.

  18. Beyond the Compositional Threshold of Nanoparticle-Based Materials.

    Science.gov (United States)

    Portehault, David; Delacroix, Simon; Gouget, Guillaume; Grosjean, Rémi; Chan-Chang, Tsou-Hsi-Camille

    2018-04-17

    The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion

  19. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    Science.gov (United States)

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  20. Stem cell homing-based tissue engineering using bioactive materials

    Science.gov (United States)

    Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei

    2017-06-01

    Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.

  1. DNA based identification of medicinal materials in Chinese patent medicines

    Science.gov (United States)

    Chen, Rong; Dong, Juan; Cui, Xin; Wang, Wei; Yasmeen, Afshan; Deng, Yun; Zeng, Xiaomao; Tang, Zhuo

    2012-12-01

    Chinese patent medicines (CPM) are highly processed and easy to use Traditional Chinese Medicine (TCM). The market for CPM in China alone is tens of billions US dollars annually and some of the CPM are also used as dietary supplements for health augmentation in the western countries. But concerns continue to be raised about the legality, safety and efficacy of many popular CPM. Here we report a pioneer work of applying molecular biotechnology to the identification of CPM, particularly well refined oral liquids and injections. What's more, this PCR based method can also be developed to an easy to use and cost-effective visual chip by taking advantage of G-quadruplex based Hybridization Chain Reaction. This study demonstrates that DNA identification of specific Medicinal materials is an efficient and cost-effective way to audit highly processed CPM and will assist in monitoring their quality and legality.

  2. N,O-Type Carborane-Based Materials

    Directory of Open Access Journals (Sweden)

    José Giner Planas

    2016-05-01

    Full Text Available This review summarizes the synthesis and coordination chemistry of a series of carboranyl ligands containing N,O donors. Such carborane-based ligands are scarcely reported in the literature when compared to other heteroatom-containing donors. The synthetic routes for metal complexes of these N,O-type carborane ligands are summarized and the properties of such complexes are described in detail. Particular attention is paid to the effect that the incorporation of carboranes has into the coordination chemistry of the otherwise carbon-based ligands and the properties of such materials. The reported complexes show a variety of properties such as those used in magnetic, chiroptical, nonlinear optical, catalytic and biomedical applications.

  3. Smart Material-Actuated Flexible Tendon-Based Snake Robot

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ahmed

    2016-05-01

    Full Text Available A flexible snake robot has better navigation ability compare with the existing electrical motor-based rigid snake robot, due to its excellent bending capability during navigation inside a narrow maze. This paper discusses the modelling, simulation and experiment of a flexible snake robot. The modelling consists of the kinematic analysis and the dynamic analysis of the snake robot. A platform based on the Incompletely Restrained Positioning Mechanism (IRPM is proposed, which uses the external force provided by a compliant flexible beam in each of the actuators. The compliant central column allows the configuration to achieve three degrees of freedom (3DOFs with three tendons. The proposed flexible snake robot has been built using smart material, such as electroactive polymers (EAPs, which can be activated by applying power to it. Finally, the physical prototype of the snake robot has been built. An experiment has been performed in order to justify the proposed model.

  4. Fe-based composite materials with improved mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Werniewicz, Katarzyna [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Kuehn, Uta; Mattern, Norbert; Eckert, Juergen; Schultz, Ludwig [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Kulik, Tadeusz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland)

    2008-07-01

    Following a previous study by the authors two new compositions (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 91}C{sub 9} and (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} have been developed with the aim of improving the ductility of Fe{sub 65.5}Cr{sub 4}Mo{sub 4}Ga{sub 4}P{sub 12}C{sub 5}B{sub 5.5} bulk metallic glass (BMG). In contrast to the alloys in that study, the recently prepared Fe-based materials are Ga-free. It was expected that the variations in the composition will lead to the changes in the phase formation and, hence, in the mechanical response of the investigated alloys. It was recognized that in-situ formed Fe-based composites show superior plasticity ({epsilon}{sub pl}{approx}37%) for the alloy with lower C content and ({epsilon}{sub pl}{approx}4%) for the alloy with higher C content compared to monolithic glass ({epsilon}{sub pl}{approx}0.2%). Furthermore, on the basis of present as well as previous investigations it has been shown that the Ga addition is beneficial for the plasticity of these Fe-based alloys. It was observed that the (Fe{sub 89.0}Cr{sub 5.5}Mo{sub 5.5}){sub 83}C{sub 17} alloy exhibits a significantly smaller fracture strain ({epsilon}{sub f}{approx}5%) compared to its Ga-containing counterpart ({epsilon}{sub f}{approx}16%). Therefore, it can be concluded that appropriate alloying additions are crucial in enhancing the mechanical properties of the complex Fe-based materials developed here.

  5. Corrosion of copper-based materials in gamma radiation

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1986-06-01

    The corrosion behaviors of pure copper (CDA 101), 7% aluminum-copper bronze (CDA 613) and 30% nickel-copper (CDA 715) are being studied in a gamma radiation field of 1 x 10 5 R/h. These studies are in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, by Lawrence Livermore National Laboratory (LLNL), of copper-based materials for possible use in container systems for the permanent geologic burial of nuclear waste. Weight loss, tear drop (stressed), and crevice specimens of the three materials were exposed to water vapor-air atmospheres at 95 0 C and 150 0 C and to liquid water at 95 0 C for periods of one, three, and six months. Longer exposures are in progress. Measurements include: changes in the chemical composition of the gas and water, specimen weight changes, oxide film weights, evidence of microcracking and crevice corrosion, and chemical composition of the oxide films by Auger electron spectroscopy and x-ray diffraction. Interim results show considerable pit and under-film corrosion of alloys CDA 613 and CDA 715. Uniform corrosion rates range from 0.012 mil/yr (0.30 μm/yr) to 0.22 mil/yr (5.6 μm/yr), based on specimen weight losses during six- and seven-month exposures. The time dependencies will be determined as more data become available

  6. Graphene-Based Materials for Stem Cell Applications

    Directory of Open Access Journals (Sweden)

    Tae-Hyung Kim

    2015-12-01

    Full Text Available Although graphene and its derivatives have been proven to be suitable for several biomedical applications such as for cancer therapy and biosensing, the use of graphene for stem cell research is a relatively new area that has only recently started to be investigated. For stem cell applications, graphene has been utilized by itself or in combination with other types of materials such as nanoparticles, nanofibers, and polymer scaffolds to take advantage of the several unique properties of graphene, such as the flexibility in size, shape, hydrophilicity, as well as its excellent biocompatibility. In this review, we will highlight a number of previous studies that have investigated the potential of graphene or its derivatives for stem cell applications, with a particular focus on guiding stem cell differentiation into specific lineages (e.g., osteogenesis, neurogenesis, and oligodendrogenesis, promoting stem cell growth, stem cell delivery/transplantation, and effective monitoring of their differentiation. We hope that this review promotes and accelerates the use of graphene-based materials for regenerative therapies, especially for stem cell-based approaches to cure various incurable diseases/disorders such as neurological diseases (e.g., Alzheimer’s disease and Parkinson’s disease, stroke, spinal cord injuries, bone/cartilage defects, and cardiovascular diseases.

  7. Strong, sudden cooling alleviates the inflammatory responses in heat-stressed dairy cows based on iTRAQ proteomic analysis

    Science.gov (United States)

    Cheng, Jianbo; Min, Li; Zheng, Nan; Fan, Caiyun; Zhao, Shengguo; Zhang, Yangdong; Wang, Jiaqi

    2018-02-01

    This study was designed to investigate the effects of sudden cooling on the physiological responses of 12 heat-stressed Holstein dairy cows using an isobaric tags for relative and absolute quantification (iTRAQ) labeling approach. Plasma samples were collected from these cows during heat stress (HS), and after strong, sudden cooling in the summer (16 days later). We compared plasma proteomic data before and after sudden cooling to identify the differentially abundant proteins. The results showed that sudden cooling in summer effectively alleviated the negative consequences of HS on body temperature and production variables. Expressions of plasma hemoglobin alpha and hemoglobin beta were upregulated, whereas lipopolysaccharide-binding protein (LBP) and haptoglobin were downregulated in this process. The increase of hemoglobin after cooling may improve oxygen transport and alleviate the rise in respiration rates in heat-stressed dairy cows. The decrease of LBP and haptoglobin suggests that the inflammatory responses caused by HS are relieved after cooling. Our findings provide new insight into the physiological changes that occur when heat-stressed dairy cows experience strong, sudden cooling.

  8. Removal of Chromium by Using of Adsorption onto Strong Base Anion Resin: Study of Equilibrium and Kinetic

    Directory of Open Access Journals (Sweden)

    Mehdi Shirzad Siboni

    2011-10-01

    Full Text Available Chromium is one of the heavy metals that is found in industrial effluents and is very toxic for human and environment. In this work the removal of hexavalent chromium by using of adsorption onto strongly basic anion was investigated. Various parameters such as pH, initial hexavalent chromium concentration, contact time and resin dosage were studied. Experimental data were expressed by Langmiur and Freundlich isotherm Pseudo-first order, Pseudo-second order and modified Pseudo-first order kinetic models. The results showed chromium removal was increased by increase of contact time and resin dosage, while decreased by increase of pH and initial hexavalent chromium concentration. At contact time equal 120 min, resin dosage 0.2 g/100 ml and initial hexavalent chromium concentration of 30 mg/l, by increasing pH from 3 to 11, removal efficiency was decreased from 93.56 % to 69.12 %. In addition, by increasing contact time from 5 min to 120 min, removal efficiency was increased from 39.51 % to 94.41 %. The results also showed hexavalent chromium sorption follows Langmiur isotherm model. Pseudo second order models best describe chromium removal by using of adsorption onto strongly basic anion resin. The results revealed that removal of hexavalent chromium from aqueous solution by using of adsorption onto stringly basic onion resins can be done quick and effective.

  9. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Science.gov (United States)

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  10. High-frequency Total Focusing Method (TFM) imaging in strongly attenuating materials with the decomposition of the time reversal operator associated with orthogonal coded excitations

    Science.gov (United States)

    Villaverde, Eduardo Lopez; Robert, Sébastien; Prada, Claire

    2017-02-01

    In the present work, the Total Focusing Method (TFM) is used to image defects in a High Density Polyethylene (HDPE) pipe. The viscoelastic attenuation of this material corrupts the images with a high electronic noise. In order to improve the image quality, the Decomposition of the Time Reversal Operator (DORT) filtering is combined with spatial Walsh-Hadamard coded transmissions before calculating the images. Experiments on a complex HDPE joint demonstrate that this method improves the signal-to-noise ratio by more than 40 dB in comparison with the conventional TFM.

  11. Towards socio-material approaches in simulation-based education: lessons from complexity theory.

    Science.gov (United States)

    Fenwick, Tara; Dahlgren, Madeleine Abrandt

    2015-04-01

    Review studies of simulation-based education (SBE) consistently point out that theory-driven research is lacking. The literature to date is dominated by discourses of fidelity and authenticity - creating the 'real' - with a strong focus on the developing of clinical procedural skills. Little of this writing incorporates the theory and research proliferating in professional studies more broadly, which show how professional learning is embodied, relational and situated in social - material relations. A key concern for medical educators concerns how to better prepare students for the unpredictable and dynamic ambiguity of professional practice; this has stimulated the movement towards socio-material theories in education that address precisely this question. Among the various socio-material theories that are informing new developments in professional education, complexity theory has been of particular importance for medical educators interested in updating current practices. This paper outlines key elements of complexity theory, illustrated with examples from empirical study, to argue its particular relevance for improving SBE. Complexity theory can make visible important material dynamics, and their problematic consequences, that are not often noticed in simulated experiences in medical training. It also offers conceptual tools that can be put to practical use. This paper focuses on concepts of emergence, attunement, disturbance and experimentation. These suggest useful new approaches for designing simulated settings and scenarios, and for effective pedagogies before, during and following simulation sessions. Socio-material approaches such as complexity theory are spreading through research and practice in many aspects of professional education across disciplines. Here, we argue for the transformative potential of complexity theory in medical education using simulation as our focus. Complexity tools open questions about the socio-material contradictions inherent in

  12. Nanostructured carbon materials based electrothermal air pump actuators

    Science.gov (United States)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with

  13. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    Science.gov (United States)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue

  14. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature

    Science.gov (United States)

    Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan

    2018-06-01

    Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.

  15. A theory-based dual-focus alcohol intervention for preadolescents: the Strong African American Families Program.

    Science.gov (United States)

    Gerrard, Meg; Gibbons, Frederick X; Brody, Gene H; Murry, Velma McBride; Cleveland, Michael J; Wills, Thomas A

    2006-06-01

    This study examined mediators of the Strong African American Families Program, a randomized, dual-focus prevention trial intended to delay the onset of alcohol use and reduce alcohol consumption among rural African American youths. More specifically, it demonstrated that changes in consumption 2 yrs after the intervention were mediated through 2 different paths, a social reaction path and a reasoned/intention path. The social reaction path provided evidence that relative to the control condition, the intervention decreased children's willingness to drink by making their images of drinkers less favorable. The reasoned/intention path provided evidence that the intervention influenced the children's intentions to drink by increasing targeted parenting behaviors related to alcohol. Furthermore, the data demonstrate that these changes in willingness and intentions were independently associated with alcohol consumption at the follow-up, and they suggest that a dual-process model approach that targets both intentions and willingness can be more successful than either approach alone.

  16. Organic material in clay-based buffer materials and its potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Goulard, M.; Stroes-Gascoyne, S.; Haveman, S.A.; Bachinski, D.B.; Hamon, C.J.; Comba, R.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. In this disposal concept used fuel would be emplaced in corrosion-resistant containers which would be surrounded by clay-based buffer and backfill materials. Once groundwater is able to penetrate the buffer and corrosion-resistant container, radionuclides could be transported from the waste form to the surrounding geosphere, and eventually to the biosphere. The release of radionuclides from the waste form and their subsequent transport would be determined by the geochemistry of the disposal vault and surrounding geosphere. Organic substances affect the geochemistry of radionuclides through complexation reactions that increase solubility and alter mobility, by affecting the redox of certain radionuclides and by providing food for microbes. The purpose of this study was to determine whether the buffer and backfill materials proposed for use in a disposal vault contain organics that could be leached by groundwater in large enough quantities to complex with radionuclides and affect their mobility within the disposal vault and surrounding geosphere. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon, humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 deg C and 90 deg C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. Humic substances were isolated from the leachates to determine the concentrations of humic and fulvic acids and to determine their functional group content by acid-base titrations. The results showed that groundwater would leach significant amounts of organics that would complex with radionuclides such as

  17. 25 years and still going strong: 2'-O-(pyren-1-yl)methylribonucleotides - versatile building blocks for applications in molecular biology, diagnostics and materials science.

    Science.gov (United States)

    Hrdlicka, Patrick J; Karmakar, Saswata

    2017-11-29

    Oligonucleotides (ONs) modified with 2'-O-(pyren-1-yl)methylribonucleotides have been explored for a range of applications in molecular biology, nucleic acid diagnostics, and materials science for more than 25 years. The first part of this review provides an overview of synthetic strategies toward 2'-O-(pyren-1-yl)methylribonucleotides and is followed by a summary of biophysical properties of nucleic acid duplexes modified with these building blocks. Insights from structural studies are then presented to rationalize the reported properties. In the second part, applications of ONs modified with 2'-O-(pyren-1-yl)methyl-RNA monomers are reviewed, which include detection of RNA targets, discrimination of single nucleotide polymorphisms, formation of self-assembled pyrene arrays on nucleic acid scaffolds, the study of charge transfer phenomena in nucleic acid duplexes, and sequence-unrestricted recognition of double-stranded DNA. The predictable binding mode of the pyrene moiety, coupled with the microenvironment-dependent properties and synthetic feasibility, render 2'-O-(pyren-1-yl)methyl-RNA monomers as a promising class of pyrene-functionalized nucleotide building blocks for new applications in molecular biology, nucleic acid diagnostics, and materials science.

  18. Generation of warm dense matter and strongly coupled plasmas using the High Radiation on Materials facility at the CERN Super Proton Synchrotron

    CERN Document Server

    Tahir, N A; Brugger, M; Assmann, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Udrea, S; Hoffmann, D H H; Fortov, V E; Deutsch, C

    2009-01-01

    A dedicated facility named High Radiation on Materials (HiRadMat) is being constructed at CERN to study the interaction of the 450 GeV protons generated by the Super Proton Synchrotron (SPS) with fixed solid targets of different materials. The main purpose of these future experiments is to study the generation and propagation of thermal shock waves in the target in order to assess the damage caused to the equipment, including collimators and absorbers, in case of an accident involving an uncontrolled release of the entire beam at a given point. Detailed numerical simulations of the beam-target interaction of several cases of interest have been carried out. In this paper we present simulations of the thermodynamic and the hydrodynamic response of a solid tungsten cylindrical target that is facially irradiated with the SPS beam with nominal parameters. These calculations have been carried out in two steps. First, the energy loss of the protons is calculated in the solid target using the FLUKA code (Fasso et al....

  19. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes.

    Directory of Open Access Journals (Sweden)

    Monica Poggianella

    Full Text Available Dengue virus (DENV infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well.

  20. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  1. Oxidation of carbon based first wall materials of ITER

    International Nuclear Information System (INIS)

    Moormann, R.R.M.; Hinssen, H.K.; Wu, C.H.

    2001-01-01

    The safety relevance of oxidation reactions on carbon materials in fusion reactors is discussed. Because tritium codeposited in ITER will probably exceed tolerable limits, countermeasures have to be developed: In this paper ozone is tested as oxidising agent for removal of codeposited layers on thick a-C:D-flakes from TEXTOR. In preceeding experiments the advantageous features of using ozonised air instead of ozonised oxygen, reported in literature for reactions with graphite, is not found for nuclear grade graphite. At 185 deg. C = 458 K ozone (0.8-3.4 vol-% in oxygen) is able to gasify the carbon content of these flakes with initial rates, comparable to initial rates in oxygen (21 kPa) for the same material at >200K higher temperatures. The layer reduction rate in ozone drops with increasing burn-off rapidly from about 0.9-2.0 μm/h to 0.20-0.25 μm/h, but in oxygen it drops to zero for all temperatures ≤ 450 deg. C = 723 K, before carbon is completely gasified. Altogether, ozone seems to be a promising oxidising agent for removal of codeposited layers, but further studies are necessary with respect to rate dependence on temperature and ozone concentration even on other kinds of codeposited layers. Further on, the optimum reaction temperature considering the limited thermal stability of ozone has to be found out and studies on the general reaction mechanism have to be done. Besides these examinations on codeposited layers, a short overview on the status of our oxidation studies on different types of fusion relevant C-based materials is given; open problems in this field are outlined. (author)

  2. Gamma irradiation induced effects of butyl rubber based damping material

    Science.gov (United States)

    Chen, Hong-Bing; Wang, Pu-Cheng; Liu, Bo; Zhang, Feng-Shun; Ao, Yin-Yong

    2018-04-01

    The effects of gamma irradiation on the butyl rubber based damping material (BRP) at various doses in nitrogen were investigated in this study. The results show that irradiation leads to radiolysis of BRP, with extractives increasing from 14.9 ± 0.8% of control to 37.2 ± 1.2% of sample irradiated at 350 kGy, while the swelling ratio increasing from 294 ± 3% to 766 ± 4%. The further investigation of the extractives with FTIR shows that the newly generated extractives are organic compounds containing C-H and C˭C bonds, with molecular weight ranging from 26,500 to 46,300. SEM characterization shows smoother surface with holes disappearing with increasing absorbed doses, consistent with "softer" material because of radiolysis. Dynamic mechanical study of BRP show that tan δ first slightly then obviously increases with increasing absorbed dose, while storage modulus slightly decreases. The tensile testing shows that the tensile strength decreases while the elongation at break increases with increasing dose. The positron annihilation lifetime spectroscopy show no obvious relations between free volume parameters and the damping properties, indicating the complicated influencing factors of damping properties.

  3. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Di Zhou

    2018-01-01

    Full Text Available A novel all-solid-state, hybrid solar cell based on organic-inorganic metal halide perovskite (CH3NH3PbX3 materials has attracted great attention from the researchers all over the world and is considered to be one of the top 10 scientific breakthroughs in 2013. The perovskite materials can be used not only as light-absorbing layer, but also as an electron/hole transport layer due to the advantages of its high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. The photoelectric power conversion efficiency of the perovskite solar cells has increased from 3.8% in 2009 to 22.1% in 2016, making perovskite solar cells the best potential candidate for the new generation of solar cells to replace traditional silicon solar cells in the future. In this paper, we introduce the development and mechanism of perovskite solar cells, describe the specific function of each layer, and focus on the improvement in the function of such layers and its influence on the cell performance. Next, the synthesis methods of the perovskite light-absorbing layer and the performance characteristics are discussed. Finally, the challenges and prospects for the development of perovskite solar cells are also briefly presented.

  4. A nonlinear CDM based damage growth law for ductile materials

    Science.gov (United States)

    Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar

    2018-02-01

    A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.

  5. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  6. Planning meeting to form the CMSN Team: Building a unified computational model for the resonant X-ray scattering of strongly correlated materials. Final report

    International Nuclear Information System (INIS)

    van Veenendaal, M.

    2008-01-01

    The planning meeting was held May 21-23 2008 at Argonne National Laboratory (ANL). The purpose of the meeting was to establish a network on building computational model for resonant elastic and inelastic x-ray scattering. This course of action was recommended by program officer Dale Koelling after the initial submission of a proposal for a Computational Materials Science Network to Basic Energy Sciences. The meeting consisted of talks and discussion. At the end of the meeting three subgroups were formed. After the successful formation of the team, a new proposal was written which was funded by BES. Since this was a planning meeting there were no proceedings. The program and titles of talks are given.

  7. Spintronic materials and devices based on antiferromagnetic metals

    Directory of Open Access Journals (Sweden)

    Y.Y. Wang

    2017-04-01

    Full Text Available In this paper, we review our recent experimental developments on antiferromagnet (AFM spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring is realized by adopting ionic liquid. In addition, promising spin-orbit effects in AFM as well as spin transfer via AFM spin waves reported by different groups have also been reviewed, indicating that the AFM can serve as an efficient spin current source. To explore the crucial role of AFM acting as efficient generators, transmitters, and detectors of spin currents is an emerging topic in the field of magnetism today. AFM metals are now ready to join the rapidly developing fields of basic and applied spintronics, enriching this area of solid-state physics and microelectronics.

  8. The digital divide in Internet-based patient education materials.

    Science.gov (United States)

    Sun, Gordon H

    2012-11-01

    The ubiquity of the Internet has led to the widespread availability of health-related information to the public, and the subsequent empowerment of patients has fundamentally altered the patient-physician relationship. Among several concerns of physicians is the possibility that patients may be misinformed by information obtained from the Internet. One opportunity for health care providers to address this problem exists within Internet-based patient education materials (IPEMs). According to recent research in Otolaryngology-Head and Neck Surgery, IPEMs found within professional otolaryngology websites are written at the 8th- to 18th-grade reading comprehension level, essentially unchanged over the past 3 years. This greatly exceeds the fourth- to sixth-grade reading level recommended by the National Institutes of Health. Benefits, strategies, and challenges to improving the readability of IPEMs are discussed.

  9. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  10. Hydrothermal stability of bentonite-based buffer materials

    International Nuclear Information System (INIS)

    Johnston, R.M.; Miller, H.G.

    1985-02-01

    The reactions expected in bentonite-based buffer materials under conditions typical of a nuclear fuel waste disposal include mineral transformations (e.g. smectite to illite; smectite to zeolite) and a range of low-temperature cementation reactions. The probable extent and significance of these reactions are reviewed, and other reactions involving proposed filler sands are also examined briefly. The effects of mineral transformations on buffer performance will be insignificant if disposal vault temperatures do not exceed 100-120 degrees C and pH remains in the range 4 to 8. At pH > 9, zeolitization and silica dissolution may occur and buffer stability cannot be assured. The effects of cementation reactions may be significant, but are difficult to predict and require further investigation

  11. A sensor-based automation system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool

  12. Graphene based 2D-materials for supercapacitors

    International Nuclear Information System (INIS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-01-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed. (topical review)

  13. Densification and properties of HfB2 based materials

    International Nuclear Information System (INIS)

    Sonber, J.K.; Ch Murthy, T.S.R.; Bedse, R.D.; Subramanian, C.; Kumar, Sunil; Fotedar, R.K.; Krishnamurthy, N.; Suri, A.K.

    2011-01-01

    This paper presents the results of investigation carried out on densification and properties of HfB 2 based materials. Densification study of HfB 2 with and without sinter additive was carried out by hot pressing. TiSi 2 and CrSi 2 were used as sinter additive. Monolithic HfB 2 was densified to only 80%ρ th at 1850 deg C with a pressure of 35 MPa. Addition of 10 wt% TiSi 2 resulted in a density of 95% TD at a relatively low temperature of 1650 deg C and a low pressure of 20 MPa. Addition of 10% CrSi 2 resulted in a density of 99% TD at the same operating conditions. All the samples were characterized by SEM/EDS and mechanical property measurement. (author)

  14. Polymeric Materials for Printed-Based Electroanalytical (BioApplications

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-11-01

    Full Text Available Advances in design of selective interfaces and printed technology have mighty contributed to the expansion of the electroanalysis fame. The real advantage in electroanalytical field is the possibility to manufacture and customize plenty of different sensing platforms, thus avoiding expensive equipment, hiring skilled personnel, and expending economic effort. Growing developments in polymer science have led to further improvements in electroanalytical methods such as sensitivity, selectivity, reproducibility, and accuracy. This review provides an overview of the technical procedures that are used in order to establish polymer effectiveness in printed-based electroanalytical methods. Particular emphasis is placed on the development of electronalytical sensors and biosensors, which highlights the diverse role of the polymeric materials depending on their specific application. A wide overview is provided, taking into account the most significant findings that have been reported from 2010 to 2017.

  15. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  16. Self Passivating W-based Alloys as Plasma Facing Material

    International Nuclear Information System (INIS)

    Koch, F.; Koeppl, S.; Bolt, H.

    2007-01-01

    Full text of publication follows: Tungsten (W) is presently the main candidate material for the plasma-facing protection of future fusion power reactors due to the low sputter erosion under bombardment by energetic D, T and He ions. Thus a W-based protection material may provide a wall erosion lifetime of the order of five years which is a pre-requisite for economic fusion reactor operation. A potential problem with the use of pure W in a fusion reactor is the formation of radioactive and highly volatile WO 3 compounds and their potential release under accidental conditions. A loss-of-coolant event in a He-cooled reactor would lead to a temperature rise to 1100 deg. C after approx. 10 to 30 days due to the nuclear decay heat of the in-vessel components. In such a situation additional accidental intense air ingress into the reactor vessel would lead to the formation of WO 3 and subsequent evaporation of radioactive (WO 3 ) x -clusters. The use of self passivating W alloys either as bulk material or as thick coating on the steel wall may be a passively safe alternative for the plasma-facing protection. The use of this material would eliminate the above mentioned concern related to pure W. To enable the formation of a protective film in oxidizing atmosphere which seals the tungsten surface from further oxidation, different elements have been investigated as corrosion protection additives. Therefore binary and ternary tungsten alloys were synthesised using magnetron sputtering. The oxidation behaviour of films deposited on inert substrates was measured with a thermo-balance set up under synthetic air at temperatures up to 1000 deg. C. Binary alloys of W-Si showed good self passivation properties by forming a SiO 2 film at the surface. The oxidation rate of a compound containing 11 wt.% Si was reduced by a factor of 10 2 compared to pure tungsten between 800 deg. C and 1000 deg. C. Using ternary alloys the oxidation behaviour could be further improved. A compound of W

  17. Enhanced Materials Based on Submonolayer Type-II Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Tamargo, Maria C [City College of New York, NY (United States); Kuskovsky, Igor L. [City Univ. (CUNY), NY (United States) Queens College; Meriles, Carlos [City College of New York, NY (United States); Noyan, Ismail C. [Columbia Univ., New York, NY (United States)

    2017-04-15

    We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refining the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.

  18. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms

    Science.gov (United States)

    Janson, Isaac A.; Putnam, Andrew J.

    2014-01-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cue can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells’ responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors, We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design. PMID:24910444

  19. Resolving glass transition in Te-based phase-change materials by modulated differential scanning calorimetry

    Science.gov (United States)

    Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping

    2017-10-01

    Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.

  20. Generation of highly stable and active strong base sites on organized nano-porous alumina by calcium oxide

    Science.gov (United States)

    Tarlani, Aliakbar; Zarabadi, Mir Pouyan

    2013-02-01

    In a new approach, strong basic sites has been successfully prepared by loading of calcium nitrate (Ca) on organized nano-porous alumina (ONPA). The prepared CaONPAs were characterized by low-angle X-ray diffraction (XRD), N2 adsorption-desorption isotherms (Brunauer-Emmett-Teller (BET)-Barret-Joyner-Halenda (BJH)), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Measuring of the amount of the basic sites and the basicity was carried out by titration method, temperature-programmed desorption (TPD-CO2) and Hammett indicators. Resistance of the basic sites was also tested by washing with water. N2 sorption measurements showed that supporting of the calcium nitrate on ONPA can lead to the bimodal porosity at lower loading. BET surface area of the bare ONPA was 212 m2/g which decreased to 111 m2/g for the 25% of loading of Ca (25CaONPA). The results pointed out that CaONPA samples have basicity between 18.4 < H_ < 22 for 15 and 25% of loadings and well-preserved of the basicity after washing with water especially for 5 and 15% samples. Also no crystalline phase of CaO was observed for 25CaONPA which was calcined at 600 °C.

  1. Carbon superfine materials as a promising material for Gluconobacter oxydans based microbial fuel cells

    Science.gov (United States)

    Tenchurin, Timur K.; Reshetilov, Anatoly N.; Plekhanova, Yuliya V.; Tarasov, Sergey E.; Bykov, Aleksandr G.; Gutorov, Michail A.; Alferov, Sergey V.; Chvalun, Sergei N.; Orekhov, Anton S.; Shepelev, Alexey D.; Gotovtsev, Pavel M.; Vasilov, Raif G.

    2018-02-01

    We have investigated the properties of a several bioelectrodes based on the immobilization of Gluconobacter oxydans bacterial cells on carbon superfine materials (CFMs). We use three types of CFMs (as adopted by the working classification CFM 1-3). All bioelectrodes was formed by covering the surface of the CFM via suspension of bacteria in a chitosan gel. The properties of samples are evaluated by measuring the physiological state of the bacteria immobilized: (a) recording the intensity of cellular respiration, (b) for measuring the charge transport characteristics of electrode (bioelectrocatalysis), and (c) by measuring the electrode impedance. Measurements (b) and (c) are made on two and three-electrode circuits in the oxidation of ethanol in the presence of 2,6-dichlorophenol electron transport mediator. For CFMs 1 and 2 the electron transport by the oxidation of the substrate is not registered, while for CFM 3 the current generation occurs. The resistance of CFM 3 bioelectrode is below the resistance of CFMs 1 and 2 both before (39.6 kΩ/cm2 for CFM 3, 630 Ω/cm2 for CFM 2, and 1329 Ω/cm2 for CFM 1) and after the addition of the substrate (2.9 kΩ/cm2 for CFM 3, 45 kΩ/cm2 for CFM 2, and 58 kΩ/cm2 for CFM 1). The bioelectrode made of CFM 3 has a capacitance of 196 μF/cm2—greater than two orders of magnitude of the bioelectrode capacity of CFMs 1 and 2 (0.51 and 0.58 μF/cm2, respectively). It is important to further study the properties of the CFM class of materials, which are promising as the basis of mechanically flexible electrodes with controlled parameters.

  2. Text Based Analogy in Overcoming Student Misconception on Simple Electricity Circuit Material

    Science.gov (United States)

    Hesti, R.; Maknun, J.; Feranie, S.

    2017-09-01

    Some researcher have found that the use of analogy in learning and teaching physics was effective enough in giving comprehension in a complicated physics concept such as electrical circuits. Meanwhile, misconception become main cause that makes students failed when learning physics. To provide teaching physics effectively, the misconception should be resolved. Using Text Based Analogy is one of the way to identifying misconceptions and it is enough to assist teachers in conveying scientific truths in order to overcome misconceptions. The purpose of the study to investigate the use of text based analogy in overcoming students misconception on simple electrical circuit material. The samples of this research were 28 of junior high school students taken purposively from one high school in South Jakarta. The method use in this research is pre-experimental and design in one shot case study. Students who are the participants of sample have been identified misconception on the electrical circuit material by using the Diagnostic Test of Simple Electricity Circuit. The results of this study found that TBA can replace the misconceptions of the concept possessed by students with scientific truths conveyed in the text in a way that is easily understood so that TBA is strongly recommended to use in other physics materials.

  3. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    International Nuclear Information System (INIS)

    Kovalenko, Andriy

    2014-01-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology

  4. Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems

    Science.gov (United States)

    Kovalenko, Andriy

    2014-08-01

    Cellulose Nanocrysals (CNC) is a renewable biodegradable biopolymer with outstanding mechanical properties made from highly abundant natural source, and therefore is very attractive as reinforcing additive to replace petroleum-based plastics in biocomposite materials, foams, and gels. Large-scale applications of CNC are currently limited due to its low solubility in non-polar organic solvents used in existing polymerization technologies. The solvation properties of CNC can be improved by chemical modification of its surface. Development of effective surface modifications has been rather slow because extensive chemical modifications destabilize the hydrogen bonding network of cellulose and deteriorate the mechanical properties of CNC. We employ predictive multiscale theory, modeling, and simulation to gain a fundamental insight into the effect of CNC surface modifications on hydrogen bonding, CNC crystallinity, solvation thermodynamics, and CNC compatibilization with the existing polymerization technologies, so as to rationally design green nanomaterials with improved solubility in non-polar solvents, controlled liquid crystal ordering and optimized extrusion properties. An essential part of this multiscale modeling approach is the statistical- mechanical 3D-RISM-KH molecular theory of solvation, coupled with quantum mechanics, molecular mechanics, and multistep molecular dynamics simulation. The 3D-RISM-KH theory provides predictive modeling of both polar and non-polar solvents, solvent mixtures, and electrolyte solutions in a wide range of concentrations and thermodynamic states. It properly accounts for effective interactions in solution such as steric effects, hydrophobicity and hydrophilicity, hydrogen bonding, salt bridges, buffer, co-solvent, and successfully predicts solvation effects and processes in bulk liquids, solvation layers at solid surface, and in pockets and other inner spaces of macromolecules and supramolecular assemblies. This methodology

  5. Theoretical backgrounds of non-tempered materials production based on new raw materials

    Science.gov (United States)

    Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.

    2018-03-01

    One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.

  6. Improved Concrete Materials with Hydrogel-Based Internal Curing Agents

    Directory of Open Access Journals (Sweden)

    Matthew J. Krafcik

    2017-11-01

    Full Text Available This research article will describe the design and use of polyelectrolyte hydrogel particles as internal curing agents in concrete and present new results on relevant hydrogel-ion interactions. When incorporated into concrete, hydrogel particles release their stored water to fuel the curing reaction, resulting in reduced volumetric shrinkage and cracking and thus increasing concrete service life. The hydrogel’s swelling performance and mechanical properties are strongly sensitive to multivalent cations that are naturally present in concrete mixtures, including calcium and aluminum. Model poly(acrylic acid(AA-acrylamide(AM-based hydrogel particles with different chemical compositions (AA:AM monomer ratio were synthesized and immersed in sodium, calcium, and aluminum salt solutions. The presence of multivalent cations resulted in decreased swelling capacity and altered swelling kinetics to the point where some hydrogel compositions displayed rapid deswelling behavior and the formation of a mechanically stiff shell. Interestingly, when incorporated into mortar, hydrogel particles reduced mixture shrinkage while encouraging the formation of specific inorganic phases (calcium hydroxide and calcium silicate hydrate within the void space previously occupied by the swollen particle.

  7. Analysis of carbon based materials under fusion relevant thermal loads

    International Nuclear Information System (INIS)

    Compan, Jeremie Saint-Helene

    2008-01-01

    Carbon based materials (CBMs) are used in fusion devices as plasma facing materials for decades. They have been selected due to the inherent advantages of carbon for fusion applications. The main ones are its low atomic number and the fact that it does not melt but sublimate (above 3000 C) under the planned working conditions. In addition, graphitic materials retain their mechanical properties at elevated temperatures and their thermal shock resistance is one of the highest, making them suitable for thermal management purpose during long or extremely short heat pulses. Nuclear grade fine grain graphite was the prime form of CBM which was set as a standard but when it comes to large fusion devices created nowadays, thermo-mechanical constraints created during transient heat loads (few GW.m-2 can be deposited in few ms) are so high that carbon/carbon composites (so-called Carbon Fiber Composites (CFCs)) have to be utilized. CFCs can achieve superior thermal conductivity as well as mechanical properties than fine grain graphite. However, all the thermo-mechanical properties of CFCs are highly dependent on the loading direction as a consequence of the graphite structure. In this work, the background on the anisotropy of the graphitic structures but also on the production of fine grain graphite and CFCs is highlighted, showing the major principles which are relevant for the further understanding of the study. Nine advanced CBMs were then compared in terms of microstructure and thermo-mechanical properties. Among them, two fine grain graphites were considered as useful reference materials to allow comparing advantages reached by the developed CFCs. The presented microstructural investigation methods permitted to make statements which can be applied for CFCs presenting similarities in terms of fiber architecture. Determination of the volumetric percentage of the major sub-units of CFCs, i.e. laminates, felt layers or needled fiber groups, lead to a better understanding on

  8. Application of a net-based baseline correction scheme to strong-motion records of the 2011 Mw 9.0 Tohoku earthquake

    Science.gov (United States)

    Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.

    2014-06-01

    The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.

  9. Effects of intravenous hyperosmotic sodium bicarbonate on arterial and cerebrospinal fluid acid-base status and cardiovascular function in calves with experimentally induced respiratory and strong ion acidosis.

    Science.gov (United States)

    Berchtold, Joachim F; Constable, Peter D; Smith, Geoffrey W; Mathur, Sheerin M; Morin, Dawn E; Tranquilli, William J

    2005-01-01

    The objectives of this study were to determine the effects of hyperosmotic sodium bicarbonate (HSB) administration on arterial and cerebrospinal fluid (CSF) acid-base balance and cardiovascular function in calves with experimentally induced respiratory and strong ion (metabolic) acidosis. Ten healthy male Holstein calves (30-47 kg body weight) were instrumented under halothane anesthesia to permit cardiovascular monitoring and collection of blood samples and CSE Respiratory acidosis was induced by allowing the calves to spontaneously ventilate, and strong ion acidosis was subsequently induced by i.v. administration of L-lactic acid. Calves were then randomly assigned to receive either HSB (8.4% NaHCO3; 5 ml/kg over 5 minutes, i.v.; n=5) or no treatment (controls, n=5) and monitored for 1 hour. Mixed respiratory and strong ion acidosis was accompanied by increased heart rate, cardiac index, mean arterial pressure, cardiac contractility (maximal rate of change of left ventricular pressure), and mean pulmonary artery pressure. Rapid administration of HSB immediately corrected the strong ion acidosis, transiently increased arterial partial pressure of carbon dioxide (P(CO2)), and expanded the plasma volume. The transient increase in arterial P(CO2) did not alter CSF P(CO2) or induce paradoxical CSF acidosis. Compared to untreated control calves, HSB-treated calves had higher cardiac index and contractility and a faster rate of left ventricular relaxation for 1 hour after treatment, indicating that HSB administration improved myocardial systolic function. We conclude that rapid i.v. administration of HSB provided an effective and safe method for treating strong ion acidosis in normovolemic halothane-anesthetized calves with experimentally induced respiratory and strong ion acidosis. Fear of inducing paradoxical CSF acidosis is not a valid reason for withholding HSB administration in calves with mixed respiratory and strong ion acidosis.

  10. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  11. Photonic devices based on black phosphorus and related hybrid materials

    International Nuclear Information System (INIS)

    Vitiello, M.S.; Viti, L.

    2016-01-01

    Artificial semiconductor heterostructures played a pivotal role in modern electronic and photonic technologies, providing a highly effective means for the manipulation and control of carriers, from the visible to the far-infrared, leading to the development of highly efficient devices like sources, detectors and modulators. The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in devices based on inorganic two-dimensional (2D) materials. Amongst them, black phosphorus (BP) recently showed an extraordinary potential in a variety of applications across micro-electronics and photonics. With an energy gap between the gapless graphene and the larger gap transition metal dichalcogenides, BP can form the basis for a new generation of high-performance photonic devices that could be specifically engineered to comply with different applications, like transparent saturable absorbers, fast photocounductive switches and low noise photodetectors, exploiting its peculiar electrical, thermal and optical anisotropy. This paper will review the latest achievements in black-phosphorus–based THz photonics and discuss future perspectives of this rapidly developing research field.

  12. The potential of organic polymer-based hydrogen storage materials.

    Science.gov (United States)

    Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan

    2007-04-21

    The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.

  13. Towards highly sensitive strain sensing based on nanostructured materials

    International Nuclear Information System (INIS)

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  14. PEDOT-based composites as electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Zhao, Zhiheng; Richardson, Georgia F; Meng, Qingshi; Ma, Jun; Zhu, Shenmin; Kuan, Hsu-Chiang

    2016-01-01

    Poly (3, 4-ethylenedioxythiophene) (denoted PEDOT) already has a brief history of being used as an active material in supercapacitors. It has many advantages such as low-cost, flexibility, and good electrical conductivity and pseudocapacitance. However, the major drawback is low stability, which means an obvious capacitance drop after a certain number of charge–discharge cycles. Another disadvantage is its limited capacitance and this becomes an issue for industrial applications. To solve these problems, there are several approaches including the addition of conducting nanofillers to increase conductivity, and mixing or depositing metal oxide to enhance capacitance. Furthermore, expanding the surface area of PEDOT is one of the main methods to improve its performance in energy storage applications through special processes; for example using a three-dimensional substrate or preparing PEDOT aerogel through freeze drying. This paper reviews recent techniques and outcomes of PEDOT based composites for supercapacitors, as well as detailed calculations about capacitances. Finally, this paper outlines the new direction and recent challenges of PEDOT based composites for supercapacitor applications. (topical review)

  15. Characterization techniques for graphene-based materials in catalysis

    Directory of Open Access Journals (Sweden)

    Maocong Hu

    2017-06-01

    Full Text Available Graphene-based materials have been studied in a wide range of applications including catalysis due to the outstanding electronic, thermal, and mechanical properties. The unprecedented features of graphene-based catalysts, which are believed to be responsible for their superior performance, have been characterized by many techniques. In this article, we comprehensively summarized the characterization methods covering bulk and surface structure analysis, chemisorption ability determination, and reaction mechanism investigation. We reviewed the advantages/disadvantages of different techniques including Raman spectroscopy, X-ray photoelectron spectroscopy (XPS, Fourier transform infrared spectroscopy (FTIR and Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS, X-Ray diffraction (XRD, X-ray absorption near edge structure (XANES and X-ray absorption fine structure (XAFS, atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, ultraviolet-visible spectroscopy (UV-vis, X-ray fluorescence (XRF, inductively coupled plasma mass spectrometry (ICP, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET, and scanning tunneling microscopy (STM. The application of temperature-programmed reduction (TPR, CO chemisorption, and NH3/CO2-temperature-programmed desorption (TPD was also briefly introduced. Finally, we discussed the challenges and provided possible suggestions on choosing characterization techniques. This review provides key information to catalysis community to adopt suitable characterization techniques for their research.

  16. Development of polylactic acid-based materials through reactive modification

    Science.gov (United States)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  17. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen

    Science.gov (United States)

    Cole, J.J.; Carpenter, S.R.; Kitchell, J.; Pace, M.L.; Solomon, C.T.; Weidel, B.

    2011-01-01

    Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ???20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.

  18. Fast Hydrazone Reactants: Electronic and Acid/Base Effects Strongly Influence Rate at Biological pH

    OpenAIRE

    Kool, Eric T.; Park, Do-Hyoung; Crisalli, Pete

    2013-01-01

    Kinetics studies with structurally varied aldehydes and ketones in aqueous buffer at pH 7.4 reveal that carbonyl compounds with neighboring acid/base groups form hydrazones at accelerated rates. Similarly, tests of a hydrazine with a neighboring carboxylic acid group show that it also reacts at an accelerated rate. Rate constants for the fastest carbonyl/hydrazine combinations are 2–20 M−1sec−1, which is faster than recent strain-promoted cycloaddition reactions.

  19. Longevity of borehole and shaft sealing materials: characterization of cement-based ancient building materials

    International Nuclear Information System (INIS)

    Roy, D.M.; Langton, C.A.

    1982-09-01

    Durability and long-term stability of cements, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate and contain nuclear waste within deep geological repositories. The present study consists of a preliminary examination of selected ancient, old, and modern building materials (14 specimens) and was intended to document and explain the remarkable durability of these portland cement-related materials. This study has provided insights into reasons for the durability of certain structures and also into the long-term stability of calcium silicate binders (cements) used in archaeologic materials. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehole environment. A multimethod analysis was used and included: macroscopic and microscopic (petrographic and SEM) analyses, chemical analyses, and x-ray diffraction analyses. 61 figures, 11 tables

  20. Developing Novel Protein-based Materials using Ultrabithorax: Production, Characterization, and Functionalization

    Science.gov (United States)

    Huang, Zhao

    2011-12-01

    Compared to 'conventional' materials made from metal, glass, or ceramics, protein-based materials have unique mechanical properties. Furthermore, the morphology, mechanical properties, and functionality of protein-based materials may be optimized via sequence engineering for use in a variety of applications, including textile materials, biosensors, and tissue engineering scaffolds. The development of recombinant DNA technology has enabled the production and engineering of protein-based materials ex vivo. However, harsh production conditions can compromise the mechanical properties of protein-based materials and diminish their ability to incorporate functional proteins. Developing a new generation of protein-based materials is crucial to (i) improve materials assembly conditions, (ii) create novel mechanical properties, and (iii) expand the capacity to carry functional protein/peptide sequences. This thesis describes development of novel protein-based materials using Ultrabithorax, a member of the Hox family of proteins that regulate developmental pathways in Drosophila melanogaster. The experiments presented (i) establish the conditions required for the assembly of Ubx-based materials, (ii) generate a wide range of Ubx morphologies, (iii) examine the mechanical properties of Ubx fibers, (iv) incorporate protein functions to Ubx-based materials via gene fusion, (v) pattern protein functions within the Ubx materials, and (vi) examine the biocompatibility of Ubx materials in vitro. Ubx-based materials assemble at mild conditions compatible with protein folding and activity, which enables Ubx chimeric materials to retain the function of appended proteins in spatial patterns determined by materials assembly. Ubx-based materials also display mechanical properties comparable to existing protein-based materials and demonstrate good biocompatibility with living cells in vitro. Taken together, this research demonstrates the unique features and future potential of novel Ubx-based

  1. Longevity of borehole and shaft sealing materials: characterization of ancient cement based building materials

    International Nuclear Information System (INIS)

    Langton, C.A.; Roy, D.M.

    1983-01-01

    Durability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehold environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques. 7 references, 5 figures, 2 tables

  2. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.

  3. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    Science.gov (United States)

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  4. Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study

    Science.gov (United States)

    Muniz Terrera, Graciela; Keage, Hannah; Rahkonen, Terhi; Oinas, Minna; Matthews, Fiona E.; Cunningham, Colm; Polvikoski, Tuomo; Sulkava, Raimo; MacLullich, Alasdair M. J.; Brayne, Carol

    2012-01-01

    .1–3.5, P = 0.02), but in those with a history of delirium, there was no significant relationship (odds ratio 1.2, 95% confidence interval 0.2–6.7, P = 0.85). This trend for odds ratios to be closer to unity in the delirium and dementia group was observed for neuritic amyloid, apolipoprotein ε status, presence of infarcts, α-synucleinopathy and neuronal loss in substantia nigra. These findings are the first to demonstrate in a true population study that delirium is a strong risk factor for incident dementia and cognitive decline in the oldest-old. However, in this study, the relationship did not appear to be mediated by classical neuropathologies associated with dementia. PMID:22879644

  5. Strong anisotropy effect in an iron-based superconductor CaFe0.882Co0.118AsF

    Science.gov (United States)

    Ma, Yonghui; Ji, Qiucheng; Hu, Kangkang; Gao, Bo; Li, Wei; Mu, Gang; Xie, Xiaoming

    2017-07-01

    The anisotropy of iron-based superconductors is much smaller than that of the cuprates and that predicted by theoretical calculations. A credible understanding for this experimental fact is still lacking up to now. Here we experimentally study the magnetic-field-angle dependence of electronic resistivity in the superconducting phase of an iron-based superconductor CaFe{}0.882Co{}0.118AsF, and find the strongest anisotropy effect of the upper critical field among the iron-based superconductors based on the framework of Ginzburg-Landau theory. The evidence of the energy band structure and charge density distribution from electronic structure calculations demonstrates that the observed strong anisotropic effect mainly comes from the strong ionic bonding in between the ions of Ca2+ and F-, which weakens the interlayer coupling between the layers of FeAs and CaF. This finding provides a significant insight into the nature of the experimentally-observed strong anisotropic effect of electronic resistivity, and also paves the way for designing exotic two-dimensional artificial unconventional superconductors in the future.

  6. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  8. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  9. Characterization of electrical and optical properties of silicon based materials

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Guobin

    2009-12-04

    In this work, the electrical and luminescence properties of a series of silicon based materials used for photovoltaics, microelectronics and nanoelectronics have been investigated by means of electron beam induced current (EBIC), cathodoluminescence (CL), photoluminescence (PL) and electroluminescence (EL) methods. Photovoltaic materials produced by block casting have been investigated by EBIC on wafers sliced from different parts of the ingot. Various solar cell processings have been compared in parallel wafers by means of EBIC collection efficiency measurements and contrast-temperature C(T) behaviors of the extended defects, i. e. dislocations and grain boundaries (GBs). It was found that the solar cell processing with phosphorus diffusion gettering (PDG) followed with a SiN firing greatly reduces the recombination activity of extended defects at room temperature, and improves the bulk property simultaneously. A remaining activity of the dislocations indicates the limitation of the PDG at extended defects. Abnormal behavior of the dislocation activity after certain solar cell processes was also observed in the region with high dislocation density, the dislocations are activated after certain solar cell processings. In order to evaluate the properties of a thin polycrystalline silicon layer prepared by Al-induced layer exchange (Alile) technique, epitaxially layer grown on silicon substrate with different orientations was used as a model system to investigate the impact by the process temperature and the substrates. EBIC energy dependent collection efficiency measurements reveal an improvement of the epilayer quality with increasing substrate temperature during the growth from 450 C to 650 C, and a decrease of epilayer quality at 700 C. PL measurements on the epitaxially grown Si layer on silicon substrates revealed no characteristic dislocation-related luminescence (DRL) lines at room temperature and 77 K, while in the samples prepared by Alile process, intense

  10. Method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material

    NARCIS (Netherlands)

    Kattenberg, H.R.; Willemsen, J.H.A.; Starmans, D.A.J.; Hoving, H.D.; Winters, M.G.M.

    2002-01-01

    Described is a method for recovering aroma concentrate from a caffeine- or theobromine-comprising food base material, such as coffee or tea, and in particular cocoa, at least comprising the steps of: introducing the food base material into an aqueous extractant and incubating the food base material

  11. Recent Advances in the Sound Insulation Properties of Bio-based Materials

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhu

    2013-12-01

    Full Text Available Many bio-based materials, which have lower environmental impact than traditional synthetic materials, show good sound absorbing and sound insulation performances. This review highlights progress in sound transmission properties of bio-based materials and provides a comprehensive account of various multiporous bio-based materials and multilayered structures used in sound absorption and insulation products. Furthermore, principal models of sound transmission are discussed in order to aid in an understanding of sound transmission properties of bio-based materials. In addition, the review presents discussions on the composite structure optimization and future research in using co-extruded wood plastic composite for sound insulation control. This review contributes to the body of knowledge on the sound transmission properties of bio-based materials, provides a better understanding of the models of some multiporous bio-based materials and multilayered structures, and contributes to the wider adoption of bio-based materials as sound absorbers.

  12. Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes.

    Science.gov (United States)

    Fischer, Dennis; Gottfried, Jennifer L; Klapötke, Thomas M; Karaghiosoff, Konstantin; Stierstorfer, Jörg; Witkowski, Tomasz G

    2016-12-23

    Herein we present the preparation and characterization of three new bispyrazolyl-based energetic compounds with great potential as explosive materials. The reaction of sodium 4-amino-3,5-dinitropyrazolate (5) with dimethyl iodide yielded bis(4-amino-3,5-dinitropyrazolyl)methane (6), which is a secondary explosive with high heat resistance (T dec =310 °C). The oxidation of this compound afforded bis(3,4,5-trinitropyrazolyl)methane (7), which is a combined nitrogen- and oxygen-rich secondary explosive with very high theoretical and estimated experimental detonation performance (V det (theor)=9304 m s -1 versus V det (exp)=9910 m s -1 ) in the range of that of CL-20. Also, the thermal stability (T dec =205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4-diazo-5-nitro-3-oxopyrazolyl)methane (8), which showed superior properties to those of currently used diazodinitrophenol (DDNP). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  14. Anisotropy-based crystalline oxide-on-semiconductor material

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  15. A 252Cf based nondestructive assay system for fissile material

    International Nuclear Information System (INIS)

    Menlove, H.O.; Crane, T.W.

    1978-01-01

    A modulated 252 Cf source assay system 'Shuffler' based on fast-or-thermal-neutron interrogation combined with delayed-neutron counting has been developed for the assay of fissile material. The 252 Cf neutron source is repetitively transferred from the interrogation position to a shielded position while the delayed neutrons are counted in a high efficiency 3 He neutron well-counter. For samples containing plutonium, this well-counter is also used in the passive coincidence mode to assay the effective 240 Pu content. The design of an optimized neutron tailoring assembly for fast-neutron interrogation using a Monte Carlo Neutron Computer Code is described. The Shuffler system has been applied to the assay of fuel pellets, inventory samples, irradiated fuel and plutonium mixed-oxide fuel. The system can assay samples with fissile contents from a few milligrams up to several kilograms using thermal-neutron interrogation for the low mass samples and fast-neutron interrogation for the high mass samples. Samples containing 235 U- 238 U, or 233 U-Th, or UO 2 -PuO 2 fuel mixtures have been assayed with the Shuffler system. (Auth.)

  16. Power loss separation in Fe-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Peter, E-mail: peter.kollar@upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Safarik University, Park Angelinum 9, 04154 Kosice (Slovakia); Bircakova, Zuzana; Fuezer, Jan [Institute of Physics, Faculty of Science, Pavol Jozef Safarik University, Park Angelinum 9, 04154 Kosice (Slovakia); Bures, Radovan; Faberova, Maria [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice (Slovakia)

    2013-02-15

    The frequency dependence of total losses measured in the frequency range from dc to 1 kHz of two Fe-based soft magnetic composites (prepared by compaction of an ASC 100.29 iron powder mixture with 10 vol% of commercial thermoset resin and of a Somaloy{sup Registered-Sign} 700 powder) was analyzed. We found out that hysteresis losses (per volume unit) are higher for the composite with lower volume concentration of iron particles (i.e. mixture of iron with resin) and consequently weaker magnetic interaction between particles. On the other hand, higher specific resistivity of the sample with lower magnetic fraction causes lower contribution of eddy current losses to the total losses. A linear dependence of the total energy losses on frequency was observed and from them the contribution of excess losses was obtained. The detailed study of the excess losses resulted in an explanation of the frequency dependence of these losses in composite materials. - Highlights: Black-Right-Pointing-Pointer It was observed that excess losses in SMC depend on the frequency linearly. Black-Right-Pointing-Pointer Two components of eddy current losses (inter- and intra-particle) were analyzed. Black-Right-Pointing-Pointer Larger amount of insulator causes the eddy current inside ferromagnetic particles.

  17. Neuronal cells on GaN-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H.; Charpentier, M.; Mueller, M.; Garke, B.; Veit, P.; Hempel, T.; Diez, A.; Reiher, A.; Dadgar, A.; Christen, J.; Krost, A. [Inst. of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Voigt, T. [Inst. of Physiology, Otto-von-Guericke-University Magdeburg, Magdeburg (Germany); Deliano, M.; Ohl, F. [Leibniz Institute of Neurobiology, Magdeburg (Germany)

    2008-07-01

    Group-III-nitride-based devices can be used for recording electrical activities of cell signals using the main advantage of high chemical and physiological stability. However, for the application of these materials in neural tissue their biocompatibility should be proofed. We have investigated the interactions between group-III-semiconductors and (1) dissociated neuron networks of embryonic rat cerebral cortex, and (2) neurons within the primary auditory cortex of Mongolian gerbils (rodents). The neuron networks were cultured within more than two days on the surfaces of GaN, AlGaN, AlN and GaO/GaN layers and were analyzed using optical and electron microscopy. In addition, pieces of nitrides were implanted into the cortex of living gerbils and remained there for several months. The reactions of the ambient neuron tissue were investigated by histological methods. Furthermore, the impact of the neuron cell cultures on the substrate surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy. All investigations showed the stability and the non-toxic behavior of the pure GaN layers whereas the Al-containing layers were somewhat affected.

  18. Preparation and Characterization of Lignin-based Membrane Material

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2015-07-01

    Full Text Available Lignin-based membrane material was prepared from lignosulfonate extracted from sulfite pulping. The effects of formaldehyde, polyvinyl alcohol (PVA, urea, borax, glutaraldehyde (GD, and dimethyl phthalate (DMP on tensile strength and water absorption were investigated. The experimental results showed that the optimum conditions were as follows: a reaction temperature of 85 °C, 22.22 wt.% lignosulfonate, 1.59 wt.% borax, 22.22 wt.% urea, 31.75 wt.% formaldehyde, 22.22 wt.% PVA, 32.32 wt.% GD (to PVA glue, and 32.32 wt.% DMP (to PVA glue. Under these conditions, the tensile strength reached 2.2 ×104 Pa and the water absorption was 35.2%. The products were characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The results showed that the product components were compatible in this system, and the introduction of cross-linking agents may have resulted in a decrease in pore size.

  19. Bases for extrapolating materials durability in fuel storage pools

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at ∼ 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage

  20. Design-based modeling of magnetically actuated soft diaphragm materials

    Science.gov (United States)

    Jayaneththi, V. R.; Aw, K. C.; McDaid, A. J.

    2018-04-01

    Magnetic polymer composites (MPC) have shown promise for emerging biomedical applications such as lab-on-a-chip and implantable drug delivery. These soft material actuators are capable of fast response, large deformation and wireless actuation. Existing MPC modeling approaches are computationally expensive and unsuitable for rapid design prototyping and real-time control applications. This paper proposes a macro-scale 1-DOF model capable of predicting force and displacement of an MPC diaphragm actuator. Model validation confirmed both blocked force and displacement can be accurately predicted in a variety of working conditions i.e. different magnetic field strengths, static/dynamic fields, and gap distances. The contribution of this work includes a comprehensive experimental investigation of a macro-scale diaphragm actuator; the derivation and validation of a new phenomenological model to describe MPC actuation; and insights into the proposed model’s design-based functionality i.e. scalability and generalizability in terms of magnetic filler concentration and diaphragm diameter. Due to the lumped element modeling approach, the proposed model can also be adapted to alternative actuator configurations, and thus presents a useful tool for design, control and simulation of novel MPC applications.