WorldWideScience

Sample records for strong astronomical component

  1. UCLA, British astronomers discover wake of planet around nearby star. Strong evidence for solar system like ours

    CERN Multimedia

    2002-01-01

    "An international team of astronomers reports the first strong evidence for the existence of massive planets on wide orbits - like those of Saturn, Uranus and Neptune - around many stars. The new research provides some of the strongest evidence so far that solar systems similar to our own, or even larger, are likely to exist: (1 page).

  2. Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

    Science.gov (United States)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-09-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency. Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in

  3. Selection of astrophysical/astronomical/solar sites at the Argentina East Andes range taking into account atmospheric components

    Czech Academy of Sciences Publication Activity Database

    Piacentini, R.D.; García, B.; Micheletti, M.I.; Salum, G.; Freire, M.; Maya, J.; Mancilla, A.; Crinó, E.; Mandát, Dušan; Pech, M.; Bulik, T.

    2016-01-01

    Roč. 57, č. 12 (2016), s. 2559-2574 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) 7AMB14AR005; GA MŠk LE13012; GA MŠk LG14019; GA MŠk LM2015046 Institutional support: RVO:68378271 Keywords : astrophysical * astronomical * solar: sites * Argentina-Andes: atmospheric components Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  4. Symbolic Computation of Strongly Connected Components Using Saturation

    Science.gov (United States)

    Zhao, Yang; Ciardo, Gianfranco

    2010-01-01

    Finding strongly connected components (SCCs) in the state-space of discrete-state models is a critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of reachable states and SCCs constitutes a formidable challenge. This paper is concerned with computing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel algorithm and transitive closure. First, saturation speeds up state-space exploration when computing each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute the transitive closure using saturation. Experimental results indicate that our improved algorithms achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive closure computation algorithm, up to 10(exp 150) SCCs can be explored within a few seconds.

  5. Modern astronomical knowledge as component of general education for sustainable development

    Science.gov (United States)

    Nurgaliev, I.

    {It is shown that 1) astronomical knowledge was a foundation of emerging modern physics and natural sciences based on mathematics, 2) mathematical basis of the natural sciences serves as an orientation of progress in the true objective of social sciences. The last example for this chain of impacts is the discovery of the fundamental demographic equation (N=aN^2-bN) full of the astronomical analogy [9]. Modern age endorses new imperatives on education. Reckless exploitation of the natural resources will cause irreversible exhaustion of the agro- and bio-potential of the planet during lifetime of a few generations. The adequate respond to the challenge lies in modern technologies and educating responsible (socially oriented) professionals. That is why the importance of teaching modern technologies along with providing the students with the understanding of global long term consequences of the human industrial activities is growing. The course ``Theoretical Foundations of Modern Technologies" at the Moscow State Agricultural University (Timiryazev Academy) taught by the author is discussed. New experimental project ``Space Technologies, Ecology and Safe Energetics in School of the Future" is presented as a project of a new age in the process of implementing at the Moscow city secondary schools by the colleagues and by the author. The new cosmological models in the frame of the Newtonian and general relativistic treatments developed by the author are considered in this report as an example of immediate implementation of new astro-knowledge into the education for modern agrarian students. The centrifugal forces acting between particles rotating randomly around each other are shown to be able to reverse gravitational collapse.

  6. Blind Astronomers

    Science.gov (United States)

    Hockey, Thomas A.

    2011-01-01

    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  7. Astronomical Cybersketching

    CERN Document Server

    Grego, Peter

    2009-01-01

    Outlines the techniques involved in making observational sketches and more detailed 'scientific' drawings of a wide variety of astronomical subjects using modern digital equipment; primarily PDAs and tablet PCs. This book also discusses about choosing hardware and software

  8. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps

    DEFF Research Database (Denmark)

    Bellotti, Filipe Furlan; Salami Dehkharghani, Amin; Zinner, Nikolaj Thomas

    2017-01-01

    We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous...

  9. Analytical thermodynamics of a strongly attractive three-component Fermi gas in one dimension

    International Nuclear Information System (INIS)

    He Peng; Yin Xiangguo; Wang Yupeng; Guan Xiwen; Batchelor, Murray T.

    2010-01-01

    Ultracold three-component atomic Fermi gases in one dimension are expected to exhibit rich physics due to the presence of trions and different pairing states. Quantum phase transitions from the trion state into a paired phase and a normal Fermi liquid occur at zero temperature. We derive the analytical thermodynamics of strongly attractive three-component one-dimensional fermions with SU(3) symmetry via the thermodynamic Bethe ansatz method in unequal Zeeman splitting fields H 1 and H 2 . We find explicitly that for low temperature the system acts like either a two-component or a three-component Tomonaga-Luttinger liquid dependent on the system parameters. The phase diagrams for the chemical potential and specific heat are presented for illustrative values of the Zeeman splitting. We also demonstrate that crossover between different Tomonaga-Luttinger-liquid phases exhibit singular behavior in specific heat and entropy as the temperature tends to zero. Beyond Tomonaga-Luttinger-liquid physics, we obtain the equation of state which provides a precise description of universal thermodynamics and quantum criticality in three-component, strongly attractive Fermi gases.

  10. Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach

    International Nuclear Information System (INIS)

    Arkhipov, Yu. V.; Askaruly, A.; Davletov, A. E.; Ballester, D.; Tkachenko, I. M.; Zwicknagel, G.

    2010-01-01

    The dynamic characteristics of strongly coupled one-component plasmas are studied within the moment approach. Our results on the dynamic structure factor and the dynamic local-field correction satisfy the sum rules and other exact relations automatically. A quantitative agreement is obtained with numerous simulation data on the plasma dynamic properties, including the dispersion and decay of collective modes. Our approach allows us to correct and complement the results previously found with other treatments.

  11. Astronomical optics

    CERN Document Server

    Schroeder, Daniel J

    1988-01-01

    Written by a recognized expert in the field, this clearly presented, well-illustrated book provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today.Key Features* Written by a recognized expert in the field* Provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic i

  12. Ionospheric convection response to changes of interplanetary magnetic field B-z component during strong B-y component

    DEFF Research Database (Denmark)

    Huang, C.S.; Murr, D.; Sofko, G.J.

    2000-01-01

    enough, the B-z reorientation causes changes in the flow intensity but not in the shape of the convection pattern. The results show the characteristics of ionospheric convection response during strong B-y and suggest that the convection reconfiguration is not only determined by the changing B-z but also...... the dawn-dusk meridian plane, which is interpreted as propagation or expansion of newly generated convection cells in the cusp region. Other studies showed that the change in convection pattern in response to IMF reorientations is spatially fixed. In this paper, we investigate the ionospheric convection...... response to IMF Bz changes during strong IMF BZ. On March 23, 1995, B-x was small, B-y was strongly positive (7-11 nT), and the B-z polarity changed several times after 1300 UT. The dayside ionospheric convection is dominated by a large clockwise convection cell. The cell focus (the "eye" of the convection...

  13. Company Slogan and a Vivid Image of a Trademark - as Main Components of a Strong Brand

    Directory of Open Access Journals (Sweden)

    Igor BELOSTECINIC

    2015-12-01

    Full Text Available Among other methods, good brand managers always affect clients and strengthen their fidelity to the brand by means of company advertising slogans and vivid images associated with this brand. Slogans may function as useful “levers” or “hooks” helping clients to understand the essence of a trademark and its peculiarity, as well as to nail in clients' minds the established image of a strong brand. One of the “hooks” attracting attention to brand and helping to nail it in a common man's mind – is a company (advertising slogan - short message or motto, which actively presents the key theme of the brand in general or of a certain advertising campaign, and contains substantial information, reflecting the essence of campaign's or product's marketing offer. One must admit that it is nice to recall favorite philosopher's aphorisms or sayings while getting up in the morning, and to whistle an aria from a renowned opera on your way to work. However, more often people sing unsophisticated verses about the “sign of a good taste” and get annoyed by a trivial call to “have a break” going round in their heads. This means that the advertisement of popular chocolate bars and drinks has hit its target. The main lever for success in generation of a positive and recognizable brand image - is the slogan and its graphic image in consumer's mind. Together with other brand components (logo, corporate colors, sound or music image a slogan generates the system of constant elements which ensure the brand's internal unity and are aimed at creation of exposure effect. To some extent, we all are “ad eaters” and are always capable of estimating an ad, even if it is at the level of feelings: whether we like it or not. So why a certain advertisement can make us smile, elicit good feelings and cause an urge to buy product/service that is being advertised, and another one - evokes disappointment and annoyance? The answer is obvious: the first one was

  14. Ionospheric convection response to changes of interplanetary magnetic field B-z component during strong B-y component

    DEFF Research Database (Denmark)

    Huang, C.S.; Murr, D.; Sofko, G.J.

    2000-01-01

    the dawn-dusk meridian plane, which is interpreted as propagation or expansion of newly generated convection cells in the cusp region. Other studies showed that the change in convection pattern in response to IMF reorientations is spatially fixed. In this paper, we investigate the ionospheric convection...... response to IMF Bz changes during strong IMF BZ. On March 23, 1995, B-x was small, B-y was strongly positive (7-11 nT), and the B-z polarity changed several times after 1300 UT. The dayside ionospheric convection is dominated by a large clockwise convection cell. The cell focus (the "eye" of the convection...... pattern) is located in the prenoon sector for northward B-z and in the postnoon sector for southward B-z. It is found that the cell focus shifts from the prenoon sector to the postnoon sector following a southward BL turning and vice versa for a northward B-z turning. However, the motion of the convection...

  15. Biographical encyclopedia of astronomers

    CERN Document Server

    Trimble, Virginia; Williams, Thomas; Bracher, Katherine; Jarrell, Richard; Marché, Jordan; Palmeri, JoAnn; Green, Daniel

    2014-01-01

    The Biographical Encyclopedia of Astronomers is a unique and valuable resource for historians and astronomers alike. It includes approx. 1850 biographical sketches on astronomers from antiquity to modern times. It is the collective work of 430 authors edited by an editorial board of 8 historians and astronomers. This reference provides biographical information on astronomers and cosmologists by utilizing contemporary historical scholarship. The fully corrected and updated second edition adds approximately 300 biographical sketches. Based on ongoing research and feedback from the community, the new entries will fill gaps and provide expansions. In addition, greater emphasis on Russo phone astronomers and radio astronomers is given. Individual entries vary from 100 to 1500 words, including the likes of the super luminaries such as Newton and Einstein, as well as lesser-known astronomers like Galileo's acolyte, Mario Guiducci.

  16. Derivation of the one component plasma fluid equation of state in strong coupling

    International Nuclear Information System (INIS)

    DeWitt, H.E.; Rosenfeld, Y.

    1979-01-01

    A variational calculation of the one component plasma energy using the hard sphere Percus-Yevick g(r) and the virial entropy gives U/NkT = a GAMMA + b GAMMAsup(1/4) + c + d/ GAMMAsup(1/4) + ... in agreement with the empirical fit to Monte Carlo data. (orig.)

  17. Astronomical Institute of Athens

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The Astronomical Institute of Athens is the oldest research institute of modern Greece (it faces the Parthenon). The Astronomical Institute (AI) of the National Observatory of Athens (NOA) started its observational projects in 1847. The modern computer and research center are housed at the Penteli Astronomical Station with major projects and international collaborations focused on extragalactic ...

  18. Using a quantum well heterostructure to study the longitudinal and transverse electric field components of a strongly focused laser beam

    NARCIS (Netherlands)

    Kihara Rurimo, G.; Schardt, M.; Quabis, S.; Malzer, S.; Dotzler, C.; Winkler, A.; Leuchs, G.; Döhler, G.H.; Driscoll, D.; Hanson, M.; Gossard, A.C.; Pereira, S.F.

    2006-01-01

    We report a method to measure the electric energy density of longitudinal and transverse electric field components of strongly focused polarized laser beams. We used a quantum well photodetector and exploited the polarization dependent optical transitions of light holes and heavy holes to probe the

  19. Postabortion Care: 20 Years of Strong Evidence on Emergency Treatment, Family Planning, and Other Programming Components.

    Science.gov (United States)

    Huber, Douglas; Curtis, Carolyn; Irani, Laili; Pappa, Sara; Arrington, Lauren

    2016-09-28

    Worldwide 75 million women need postabortion care (PAC) services each year following safe or unsafe induced abortions and miscarriages. We reviewed more than 550 studies on PAC published between 1994 and 2013 in the peer-reviewed and gray literature, covering emergency treatment, postabortion family planning, organization of services, and related topics that impact practices and health outcomes, particularly in the Global South. In this article, we present findings from studies with strong evidence that have major implications for programs and practice. For example, vacuum aspiration reduced morbidity, costs, and time in comparison to sharp curettage. Misoprostol 400 mcg sublingually or 600 mcg orally achieved 89% to 99% complete evacuation rates within 2 weeks in multiple studies and was comparable in effectiveness, safety, and acceptability to manual vacuum aspiration. Misoprostol was safely introduced in several PAC programs through mid-level providers, extending services to secondary hospitals and primary health centers. In multiple studies, postabortion family planning uptake before discharge increased by 30-70 percentage points within 1-3 years of strengthening postabortion family planning services; in some cases, increases up to 60 percentage points in 4 months were achieved. Immediate postabortion contraceptive acceptance increased on average from 32% before the interventions to 69% post-intervention. Several studies found that women receiving immediate postabortion intrauterine devices and implants had fewer unintended pregnancies and repeat abortions than those who were offered delayed insertions. Postabortion family planning is endorsed by the professional organizations of obstetricians/gynecologists, midwives, and nurses as a standard of practice; major donors agree, and governments should be encouraged to provide universal access to postabortion family planning. Important program recommendations include offering all postabortion women family planning

  20. Armenian Astronomical Heritage

    Science.gov (United States)

    Mickaelian, A. M.

    2014-10-01

    A review is given on the Armenian Astronomical Heritage from ancient times to nowadays. Armenian ancient astronomy includes the division of the skies into constellations, rock art, ancient Armenian calendar, ancient observatories (such as Metsamor and Karahunge), records of astronomical events (such as Halley's Comet recorded on Tigranes the Great's coin), ancient names of celestial bodies (planets, stars, constellations), etc. The Medieval Armenian astronomy includes two more calendars, Anania Shirakatsi's scientific heritage, the record of 1054 Supernova, sky maps by Luca Vanandetsi and Mkhitar Sebastatsi, etc. Modern Armenian astronomical heritage first of all consists of the famous Byurakan Astrophysical Observatory founded in 1946 by Viktor Ambartsumian, as well as Yerevan Astronomical Observatory, Armenian Astronomical Society, Armenian Virtual Observatory, Yerevan State University Department of Astrophysics, Astrofizika journal, and brilliant young students who systematically win high positions at International Astronomical Olympiads.

  1. Astronomical Software Directory Service

    Science.gov (United States)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  2. Faint Object Spectrograph Spectra of the UV Emission Lines in NGC 5558: Detection of Strong Narrow Components

    Science.gov (United States)

    Crenshaw, D. Michael; Boggess, Albert; Wu, Chi-Chao

    1993-01-01

    Ultraviolet spectra of the Seyfert 1 galaxy NGC 5548 were obtained with the Faint Object Spectrograph (FOS) on the Hubble Space Telescope on 1992 July 5, when the UV continuum and broad emission lines were at their lowest ever observed level. The high resolution of the spectra, relative to previous UV observations, and the low state of NGC 5548 allow the detection and accurate measurement of strong narrow components of the emission lines of Ly alpha, C IV 1549, and C III 1909. Isolation of the UV narrow components enables a detailed comparison of narrow-line region (NLR) properties in Seyfert 1 and 2 galaxies, and removal of their contribution is important for studies of the broad-line region (BLR). Relative to the other narrow lines, C IV 1549 is much stronger in NGC 5548 than in Seyfert 2 galaxies, and Mg II 2798 is very weak or absent.

  3. An astronomical murder?

    Science.gov (United States)

    Belenkiy, Ari

    2010-04-01

    Ari Belenkiy examines the murder of Hypatia of Alexandria, wondering whether problems with astronomical observations and the date of Easter led to her becoming a casualty of fifth-century political intrigue.

  4. UKRVO Astronomical WEB Services

    Directory of Open Access Journals (Sweden)

    Mazhaev, O.E.

    2017-01-01

    Full Text Available Ukraine Virtual Observatory (UkrVO has been a member of the International Virtual Observatory Alliance (IVOA since 2011. The virtual observatory (VO is not a magic solution to all problems of data storing and processing, but it provides certain standards for building infrastructure of astronomical data center. The astronomical databases help data mining and offer to users an easy access to observation metadata, images within celestial sphere and results of image processing. The astronomical web services (AWS of UkrVO give to users handy tools for data selection from large astronomical catalogues for a relatively small region of interest in the sky. Examples of the AWS usage are showed.

  5. The amateur astronomer

    CERN Document Server

    Moore, Patrick

    2006-01-01

    Introduces astronomy and amateur observing together. This edition includes photographs and illustrations. The comprehensive appendices provide hints and tips, as well as data for every aspect of amateur astronomy. This work is useful for amateur astronomers

  6. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert

    2011-01-01

    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  7. Poznan acute Astronomical Observatory

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    This Poznan acute Astronomical Observatory is a unit of the Adam Mickiewicz University, located in Poznan acute, Poland. From its foundation in 1919, it has specialized in astrometry and celestial mechanics (reference frames, dynamics of satellites and small solar system bodies). Recently, research activities have also included planetary and stellar astrophysics (asteroid photometry, catalysmic b...

  8. Astronomical Spectroscopy -16 ...

    Indian Academy of Sciences (India)

    led by the famous French astronomer, Pierre Janssen. Both were conducting pioneering spectroscopic observations of the eclipsed sun. They were particularly interested in the spectrum of the chromosphere, which flashes out at the beginning and the end of totality. They noticed many lines due to known elements,.

  9. Old Georgian Astronomical Manuscripts

    Science.gov (United States)

    Simonia, I.

    2004-12-01

    A general overview of Georgian astronomical manuscripts is given, and the contents of a few, dating from the 12th to the 19th centuries, are given. A partial translation and commentary of manuscript A883, entitled "Cosmos", and dating from the 18th century, is presented.

  10. The Automated Astronomic Positioning System (AAPS)

    Science.gov (United States)

    Williams, O. N.

    1973-01-01

    Two prototype systems of The Automated Astronomic Positioning System (AAPS) have been delivered to Defense Mapping Agency (DMA). The AAPS was developed to automate and expedite the determination of astronomic positions (latitude and longitude). This equipment is capable of defining astronomic positions to an accuracy sigma = 0.3 in each component within a two hour span of stellar observations which are acquired automatically. The basic concept acquires observations by timing stellar images as they cross a series of slits, comparing these observations to a stored star catalogue, and automatically deducing position and accuracy by least squares using pre-set convergence criteria. An exhaustive DMA operational test program has been initiated to evaluate the capabilities of the AAPS in a variety of environments (both climatic and positional). Status of the operational test is discussed.

  11. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein

    2014-01-01

    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  12. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  13. Astronomers as Software Developers

    Science.gov (United States)

    Pildis, Rachel A.

    2016-01-01

    Astronomers know that their research requires writing, adapting, and documenting computer software. Furthermore, they often have to learn new computer languages and figure out how existing programs work without much documentation or guidance and with extreme time pressure. These are all skills that can lead to a software development job, but recruiters and employers probably won't know that. I will discuss all the highly useful experience that astronomers may not know that they already have, and how to explain that knowledge to others when looking for non-academic software positions. I will also talk about some of the pitfalls I have run into while interviewing for jobs and working as a developer, and encourage you to embrace the curiosity employers might have about your non-standard background.

  14. South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1987-01-01

    Work at the South African Astronomical Observatory (SAAO) in recent years, by both staff and visitors, has made major contributions to the fields of astrophysics and astronomy. During 1986 the SAAO has been involved in studies of the following: galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galactic structure; binary star phenomena; nebulae and interstellar matter; stellar astrophysics; open clusters; globular clusters, and solar systems

  15. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  16. Astrobiology: An astronomer's perspective

    Science.gov (United States)

    Bergin, Edwin A.

    2014-12-01

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.

  17. Astronomical Instruments in India

    Science.gov (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  18. World's fastest and most sensitive astronomical camera

    Science.gov (United States)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  19. The Biographical Encyclopedia of Astronomers

    CERN Document Server

    Hockey, Thomas; Williams, Thomas R; Bracher, Katherine; Jarrell, Richard A; Marché, Jordan D; Ragep, F. Jamil; Palmeri, JoAnn; Bolt, Marvin

    2007-01-01

    The Biographical Encyclopedia of Astronomers is a unique and valuable resource for historians and astronomers alike. The two volumes include approximately 1550 biographical sketches on astronomers from antiquity to modern times. It is the collective work of about 400 authors edited by an editorial board of 9 historians and astronomers, and provides additional details on the nature of an entry and some summary statistics on the content of entries. This new reference provides biographical information on astronomers and cosmologists by utilizing contemporary historical scholarship. Individual entries vary from 100 to 1500 words, including the likes of the superluminaries such as Newton and Einstein, as well as lesser-known astronomers like Galileo's acolyte, Mario Guiducci. A comprehensive contributor index helps researchers to identify the authors of important scientific topics and treatises.

  20. Grigor Narekatsi's astronomical insights

    Science.gov (United States)

    Poghosyan, Samvel

    2015-07-01

    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  1. Getting Astronomers Involved in the IYA: Astronomer in the Classroom

    Science.gov (United States)

    Koenig, Kris

    2008-05-01

    The Astronomer in the Classroom program provides professional astronomers the opportunity to engage with 3rd-12th grade students across the nation in grade appropriate discussions of their recent research, and provides students with rich STEM content in a personalized forum, bringing greater access to scientific knowledge for underserved populations. 21st Century Learning and Interstellar Studios, the producer of the 400 Years of the Telescope documentary along with their educational partners, will provide the resources necessary to facilitate the Astronomer in the Classroom program, allowing students to interact with astronomers throughout the IYA2009. PROGRAM DESCRIPTION One of hundreds of astronomers will be available to interact with students via live webcast daily during Spring/Fall 2009. The astronomer for the day will conduct three 20-minute discussions (Grades 3-5 /6-8/9-12), beginning with a five-minute PowerPoint on their research or area of interest. The discussion will be followed by a question and answer period. The students will participate in real-time from their school computer(s) with the technology provided by 21st Century Learning. They will see and hear the astronomer on their screen, and pose questions from their keyboard. Teachers will choose from three daily sessions; 11:30 a.m., 12:00 p.m., 12:30 p.m. Eastern Time. This schedule overlaps all US time zones, and marginalizes bandwidth usage, preventing technological barriers to web access. The educational partners and astronomers will post materials online, providing easy access to information that will prepare teachers and students for the chosen discussion. The astronomers, invited to participate from the AAS and IAU, will receive a web cam shipment with instructions, a brief training and conductivity test, and prepaid postage for shipment of the web cam to the next astronomer on the list. The anticipated astronomer time required is 3-hours, not including the time to develop the PowerPoint.

  2. Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet.

    Science.gov (United States)

    Shiokawa, Yuka; Date, Yasuhiro; Kikuchi, Jun

    2018-02-21

    Computer-based technological innovation provides advancements in sophisticated and diverse analytical instruments, enabling massive amounts of data collection with relative ease. This is accompanied by a fast-growing demand for technological progress in data mining methods for analysis of big data derived from chemical and biological systems. From this perspective, use of a general "linear" multivariate analysis alone limits interpretations due to "non-linear" variations in metabolic data from living organisms. Here we describe a kernel principal component analysis (KPCA)-incorporated analytical approach for extracting useful information from metabolic profiling data. To overcome the limitation of important variable (metabolite) determinations, we incorporated a random forest conditional variable importance measure into our KPCA-based analytical approach to demonstrate the relative importance of metabolites. Using a market basket analysis, hippurate, the most important variable detected in the importance measure, was associated with high levels of some vitamins and minerals present in foods eaten the previous day, suggesting a relationship between increased hippurate and intake of a wide variety of vegetables and fruits. Therefore, the KPCA-incorporated analytical approach described herein enabled us to capture input-output responses, and should be useful not only for metabolic profiling but also for profiling in other areas of biological and environmental systems.

  3. TPCs in high-energy astronomical polarimetry

    International Nuclear Information System (INIS)

    Black, J K

    2007-01-01

    High-energy astrophysics has yet to exploit the unique and important information that polarimetry could provide, largely due to the limited sensitivity of previously available polarimeters. In recent years, numerous efforts have been initiated to develop instruments with the sensitivity required for astronomical polarimetry over the 100 eV to 10 GeV band. Time projection chambers (TPCs), with their high-resolution event imaging capability, are an integral part of some of these efforts. After a brief overview of current astronomical polarimeter development efforts, the role of TPCs will be described in more detail. These include TPCs as photoelectric X-ray polarimeters and TPCs as components of polarizationsensitive Compton and pair-production telescopes

  4. Image enhancement for astronomical scenes

    Science.gov (United States)

    Lucas, Jacob; Calef, Brandoch; Knox, Keith

    2013-09-01

    Telescope images of astronomical objects and man-made satellites are frequently characterized by high dynamic range and low SNR. We consider the problem of how to enhance these images, with the aim of making them visually useful rather than radiometrically accurate. Standard contrast and histogram adjustment tends to strongly amplify noise in dark regions of the image. Sophisticated techniques have been developed to address this problem in the context of natural scenes. However, these techniques often misbehave when confronted with low-SNR scenes that are also mostly empty space. We compare two classes of algorithms: contrast-limited adaptive histogram equalization, which achieves spatial localization via a tiling of the image, and gradient-domain techniques, which perform localized contrast adjustment by non-linearly remapping the gradient of the image in a content-dependent manner. We extend these to include a priori knowledge of SNR and the processing (e.g. deconvolution) that was applied in the preparation of the image. The methods will be illustrated with images of satellites from a ground-based telescope.

  5. Astronomical Instrumentation System Markup Language

    Science.gov (United States)

    Goldbaum, Jesse M.

    2016-05-01

    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  6. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  7. The South African astronomical observatory

    International Nuclear Information System (INIS)

    Feast, M.

    1985-01-01

    A few examples of the activities of the South African Astronomical Observatory are discussed. This includes the studying of stellar evolution, dust around stars, the determination of distances to galaxies and collaboration with space experiments

  8. Sixteenth Century Astronomical Telescopy

    Science.gov (United States)

    Usher, P. D.

    2001-12-01

    Ophelia in Shakespeare's Hamlet is named for the ``moist star" which in mythology is the partner of Hamlet's royal Sun. Together the couple seem destined to rule on earth just as their celestial counterparts rule the heavens, but the tragedy is that they are afflicted, just as the Sun and Moon are blemished. In 1.3 Laertes lectures Ophelia on love and chastity, describing first Cytherean phases (crescent to gibbous) and then Lunar craters. Spots mar the Sun (1.1, 3.1). Also reported are Jupiter's Red Spot (3.4) and the resolution of the Milky Way into stars (2.2). These interpretations are well-founded and support the cosmic allegory. Observations must have been made with optical aid, probably the perspective glass of Leonard Digges, father of Thomas Digges. Notably absent from Hamlet is mention of the Galilean moons, owing perhaps to the narrow field-of-view of the telescope. That discovery is later celebrated in Cymbeline, published soon after Galileo's Siderius Nuncius in 1610. In 5.4 of Cymbeline the four ghosts dance ``in imitation of planetary motions" and at Jupiter's behest place a book on the chest of Posthumus Leonatus. His name identifies the Digges father and son as the source of data in Hamlet since Jupiter's moons were discovered after the deaths of Leonard (``leon+hart") and Thomas (the ``lion's whelp"). Lines in 5.4 urge us not to read more into the book than is contained between its covers; this is understandable because Hamlet had already reported the other data in support of heliocentricism and the cosmic model discussed and depicted by Thomas Digges in 1576. I conclude therefore that astronomical telescopy began in England before the last quarter of the sixteenth century.

  9. Enthusiastic Little Astronomers

    Science.gov (United States)

    Novak, Ines

    2016-04-01

    Younger primary school students often show great interest in the vast Universe hiding behind the starry night's sky, but don't have a way of learning about it and exploring it in regular classes. Some of them would search children's books, Internet or encyclopedias for information or facts they are interested in, but there are those whose hunger for knowledge would go unfulfilled. Such students were the real initiators of our extracurricular activity called Little Astronomers. With great enthusiasm they would name everything that interests them about the Universe that we live in and I would provide the information in a fun and interactive yet acceptable way for their level of understanding. In our class we learn about Earth and its place in the Solar System, we learn about the planets and other objects of our Solar System and about the Sun itself. We also explore the night sky using programs such as Stellarium, learning to recognize constellations and name them. Most of our activities are done using a PowerPoint presentation, YouTube videos, and Internet simulations followed by some practical work the students do themselves. Because of the lack of available materials and funds, most of materials are hand made by the teacher leading the class. We also use the school's galileoscope as often as possible. Every year the students are given the opportunity to go to an observatory in a town 90 km away so that they could gaze at the sky through the real telescope for the first time. Our goal is to start stepping into the world of astronomy by exploring the secrets of the Universe and understanding the process of rotation and revolution of our planet and its effects on our everyday lives and also to become more aware of our own role in our part of the Universe. The hunger for knowledge and enthusiasm these students have is contagious. They are becoming more aware of their surroundings and also understanding their place in the Universe that helps them remain humble and helps

  10. The New Amateur Astronomer

    Science.gov (United States)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as possible. A poor

  11. Choosing and using astronomical eyepieces

    CERN Document Server

    Paolini, William

    2013-01-01

    This valuable reference fills a number of needs in the field of astronomical eyepieces, including that of a buyer's guide, observer's field guide and technical desk reference. It documents the past market for eyepieces and its evolution right up to the present day. In addition to appealing to practical astronomers - and potentially saving them money - it is useful both as a historical reference and as a detailed review of the current market place for this bustling astronomical consumer product. What distinguishes this book from other publications on astronomy is the involvement of observers from all aspects of the astronomical community, and also the major manufacturers of equipment. It not only catalogs the technical aspects of the many modern eyepieces but also documents amateur observer reactions and impressions of their utility over the years, using many different eyepieces. Eyepieces are the most talked-about accessories and collectible items available to the amateur astronomer. No other item of equi...

  12. Astronomical Image and Data Analysis

    CERN Document Server

    Starck, J.-L

    2006-01-01

    With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with to...

  13. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  14. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1989-01-01

    The research work discussed in this report covers a wide range, from work on the nearest stars to studies of the distant quasars, and the astronomers who have carried out this work come from universities and observatories spread around the world as well as from South African universities and from the South African Astronomical Observatory (SAAO) staff itself. A characteristic of much of this work has been its collaborative character. SAAO studies in 1989 included: supernovae 1987A; galaxies; ground-based observations of celestial x-ray sources; the Magellanic Clouds; pulsating variables; galactic structure; binary star phenomena; the provision of photometric standards; nebulous matter; stellar astrophysics, and astrometry

  15. [Effects of sowing date and planting density on the grain' s protein component and quality of strong and medium gluten winter wheat cultivars].

    Science.gov (United States)

    Yan, Cui-ping; Zhang, Yong-qing; Zhang, Ding-yi; Dang, Jian-you

    2008-08-01

    In a field experiment with split-split plot design, the effects of sowing date and planting density on the grain's protein component and quality of strong gluten wheat cultivar Linyou 145 and medium gluten wheat cultivar Linyou 2018 were studied. The results showed that proper sowing date brought the highest protein content and yield in wheat grain. With sowing date postponed, the grain's gliadin and glutenin contents of Linyou 145 increased obviously, while those of Linyou 2018 changed little. The grain quality of Linyou 145 was more affected by sowing date, compared with that of Linyou 2018. When sowing at proper date, the grain's protein and glutenin contents had significant correlations with its wet gluten content, sedimentation value, dough stability time, softness, and evaluation value; while when the sowing date postponed, there existed a positive correlation between the contents of gliadin and wet gluten. The change of the proportions of different protein components in wheat grain induced by the variation of sowing date could be the main reason of the improvement in wheat grain quality. Within the test range (2.25 million - 3.75 million plants x hm(-2)) of planting density, the grain's protein content was less affected, but the grain quality of Linyou 145 was affected to a certain extent. Low planting density (2.25 million plants x hm(-2)) brought the best grain quality of Linyou 2018.

  16. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  17. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  18. Focus on astronomical predictable events

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2006-01-01

    At the Steno Museum Planetarium we have for many occasions used a countdown clock to get focus om astronomical events. A countdown clock can provide actuality to predictable events, for example The Venus Transit, Opportunity landing on Mars and The Solar Eclipse. The movement of the clock attracs...

  19. Latin American astronomers and the International Astronomical Union

    Science.gov (United States)

    Torres-Peimbert, S.

    2017-07-01

    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  20. The astronomical tables of Giovanni Bianchini

    CERN Document Server

    Chabas, Jose

    2009-01-01

    This book describes and analyses, for the first time, the astronomical tables of Giovanni Bianchini of Ferrara (d. after 1469), explains their context, inserts them into an astronomical tradition that began in Toledo, and addresses their diffusion.

  1. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  2. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  3. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  4. Anaximandro : astronomía

    OpenAIRE

    Alonso Bernal, Sonsoles

    2009-01-01

    Anaximander successfully speculated about the origin of the cosmos: an initial explosion which condensated fragments form the stars. He also worked as an empirical astronomer who observed with a helioscope the Sun’s gaseous surface and its protuberances. He observed Solar and Lunar expectrums of light, probably working with certain set of pinhole cameras that he could optimize with fitted mirrors. Anaximandro especuló acertadamente sobre el origen del cosmos: describe una explosión inicial...

  5. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1988-01-01

    The geographical position, climate and equipment at the South African Astronomical Observatory (SAAO), together with the enthusiasm and efforts of SAAO scientific and technical staff and of visiting scientists, have enabled the Observatory to make a major contribution to the fields of astrophysics and cosmology. During 1987 the SAAO has been involved in studies of the following: supernovae; galaxies, including Seyfert galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galatic structure; binary star phenomena; nebulae; interstellar matter and stellar astrophysics

  6. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  7. Accelerating the Rate of Astronomical Discovery

    Science.gov (United States)

    Norris, Ray P. Ruggles, Clive L. N.

    2010-05-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress - paradigmatic, technological, organisational, and political - examining each issue both from modern and historical perspectives, and drawing lessons to guide future progress. A number of issues were identified which potentially regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  8. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  9. Astronomical database and VO-tools of Nikolaev Astronomical Observatory

    Science.gov (United States)

    Mazhaev, A. E.; Protsyuk, Yu. I.

    2010-05-01

    Results of work in 2006-2009 on creation of astronomical databases aiming at development of Nikolaev Virtual Observatory (NVO) are presented in this abstract. Results of observations and theirreduction, which were obtained during the whole history of Nikolaev Astronomical Observatory (NAO), are included in the databases. The databases may be considered as a basis for construction of a data centre. Images of different regions of the celestial sphere have been stored in NAO since 1929. About 8000 photo plates were obtained during observations in the 20th century. Observations with CCD have been started since 1996. Annually, telescopes of NAO, using CCD cameras, create data volume of several tens of gigabytes (GB) in the form of CCD images and up to 100 GB of video records. At the end of 2008, the volume of accumulated data in the form of CCD images was about 300 GB. Problems of data volume growth are common in astronomy, nuclear physics and bioinformatics. Therefore, the astronomical community needs to use archives, databases and distributed grid computing to cope with this problem in astronomy. The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to "enable the international utilization of astronomical archives..." The NVO was created at the NAO website in 2008, and consists of three main parts. The first part contains 27 astrometric stellar catalogues with short descriptions. The files of catalogues were compiled in the standard VOTable format using eXtensible Markup Language (XML), and they are available for downloading. This is an example of the so-called science-ready product. The VOTable format was developed by the International Virtual Observatory Alliance (IVOA) for exchange of tabular data. A user may download these catalogues and open them using any standalone application that supports standards of the IVOA. There are several directions of development for such applications, for example, search of catalogues and images

  10. astroplan: Observation Planning for Astronomers

    Science.gov (United States)

    Morris, Brett

    2016-03-01

    Astroplan is an observation planning package for astronomers. It is an astropy-affiliated package which began as a Google Summer of Code project. Astroplan facilitates convenient calculation of common observational quantities, like target altitudes and azimuths, airmasses, and rise/set times. Astroplan also computes when targets are observable given various extensible observing constraints, for example: within a range of airmasses or altitudes, or at a given separation from the Moon. Astroplan is taught in the undergraduate programming for astronomy class, and enables observational Pre- MAP projects at the University of Washington. In the near future, we plan to implement scheduling capabilities in astroplan on top of the constraints framework.

  11. Strasbourg Astronomical Data Center (CDS

    Directory of Open Access Journals (Sweden)

    F Genova

    2013-01-01

    Full Text Available The Centre de Donnees astronomiques de Strasbourg (CDS, created in 1972, has been a pioneer in the dissemination of digital scientific data. Ensuring sustainability for several decades has been a major issue because science and technology evolve continuously and the data flow increases endlessly. The paper briefly describes CDS activities, major services, and its R&D strategy to take advantage of new technologies. The next frontiers for CDS are the new Web 2.0/3.0 paradigm and, at a more general level, global interoperability of astronomical on-line resources in the Virtual Observatory framework.

  12. Explanatory supplement to the astronomical almanac

    CERN Document Server

    Urban, Sean E

    2013-01-01

    The Explanatory Supplement to the Astronomical Almanac offers explanatory material, supplemental information and detailed descriptions of the computational models and algorithms used to produce The Astronomical Almanac, which is an annual publication prepared jointly by the US Naval Observatory and Her Majesty's Nautical Almanac Office in the UK. Like The Astronomical Almanac, The Explanatory Supplement provides detailed coverage of modern positional astronomy. Chapters are devoted to the celestial and terrestrial reference frames, orbital ephemerides, precession, nutation, Earth rotation, and coordinate transformations. These topics have undergone substantial revisions since the last edition was published. Astronomical positions are intertwined with timescales and relativity in The Astronomical Almanac, so related chapters are provided in The Explanatory Supplement. The Astronomical Almanac also includes information on lunar and solar eclipses, physical ephemerides of solar system bodies, and calendars, so T...

  13. The Infrared Astronomical Mission AKARI*

    Science.gov (United States)

    Murakami, Hiroshi; Baba, Hajime; Barthel, Peter; Clements, David L.; Cohen, Martin; Doi, Yasuo; Enya, Keigo; Figueredo, Elysandra; Fujishiro, Naofumi; Fujiwara, Hideaki; Fujiwara, Mikio; Garcia-Lario, Pedro; Goto, Tomotsugu; Hasegawa, Sunao; Hibi, Yasunori; Hirao, Takanori; Hiromoto, Norihisa; Hong, Seung Soo; Imai, Koji; Ishigaki, Miho; Ishiguro, Masateru; Ishihara, Daisuke; Ita, Yoshifusa; Jeong, Woong-Seob; Jeong, Kyung Sook; Kaneda, Hidehiro; Kataza, Hirokazu; Kawada, Mitsunobu; Kawai, Toshihide; Kawamura, Akiko; Kessler, Martin F.; Kester, Do; Kii, Tsuneo; Kim, Dong Chan; Kim, Woojung; Kobayashi, Hisato; Koo, Bon Chul; Kwon, Suk Minn; Lee, Hyung Mok; Lorente, Rosario; Makiuti, Sin'itirou; Matsuhara, Hideo; Matsumoto, Toshio; Matsuo, Hiroshi; Matsuura, Shuji; MÜller, Thomas G.; Murakami, Noriko; Nagata, Hirohisa; Nakagawa, Takao; Naoi, Takahiro; Narita, Masanao; Noda, Manabu; Oh, Sang Hoon; Ohnishi, Akira; Ohyama, Youichi; Okada, Yoko; Okuda, Haruyuki; Oliver, Sebastian; Onaka, Takashi; Ootsubo, Takafumi; Oyabu, Shinki; Pak, Soojong; Park, Yong-Sun; Pearson, Chris P.; Rowan-Robinson, Michael; Saito, Toshinobu; Sakon, Itsuki; Salama, Alberto; Sato, Shinji; Savage, Richard S.; Serjeant, Stephen; Shibai, Hiroshi; Shirahata, Mai; Sohn, Jungjoo; Suzuki, Toyoaki; Takagi, Toshinobu; Takahashi, Hidenori; TanabÉ, Toshihiko; Takeuchi, Tsutomu T.; Takita, Satoshi; Thomson, Matthew; Uemizu, Kazunori; Ueno, Munetaka; Usui, Fumihiko; Verdugo, Eva; Wada, Takehiko; Wang, Lingyu; Watabe, Toyoki; Watarai, Hidenori; White, Glenn J.; Yamamura, Issei; Yamauchi, Chisato; Yasuda, Akiko

    2007-10-01

    AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from the mid- to far-infrared. The instruments also have the capability for imaging and spectroscopy in the wavelength range 2 - 180 micron in the pointed observation mode, occasionally inserted into the continuous survey operation. The in-orbit cryogen lifetime is expected to be one and a half years. The All-Sky Survey will cover more than 90 percent of the whole sky with higher spatial resolution and wider wavelength coverage than that of the previous IRAS all-sky survey. Point source catalogues of the All-Sky Survey will be released to the astronomical community. The pointed observations will be used for deep surveys of selected sky areas and systematic observations of important astronomical targets. These will become an additional future heritage of this mission.

  14. LGBT Workplace Issues for Astronomers

    Science.gov (United States)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro

    2011-01-01

    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  15. On the Astronomical Knowledge and Traditions of Aboriginal Australians

    Science.gov (United States)

    Hamacher, Duane W.

    2011-12-01

    Historian of science David Pingree defines science in a broad context as the process of systematically explaining perceived or imaginary phenomena. Although Westerners tend to think of science being restricted to Western culture, I argue in this thesis that astronomical scientific knowledge is found in Aboriginal traditions. Although research into the astronomical traditions of Aboriginal Australians stretches back for more than 150 years, it is relatively scant in the literature. We do know that the sun, moon, and night sky have been an important and inseparable component of the landscape to hundreds of Australian Aboriginal groups for thousands (perhaps tens-of-thousands) of years. The literature reveals that astronomical knowledge was used for time keeping, denoting seasonal change and the availability of food sources, navigation, and tidal prediction. It was also important for rituals and ceremonies, birth totems, marriage systems, cultural mnemonics, and folklore. Despite this, the field remains relatively unresearched considering the diversity of Aboriginal cultures and the length of time people have inhabited Australia (well over 40,000 years). Additionally, very little research investigating the nature and role of transient celestial phenomena has been conducted, leaving our understanding of Indigenous astronomical knowledge grossly incomplete. This thesis is an attempt to overcome this deficiency, with a specific focus on transient celestial phenomena. My research, situated in the field of cultural astronomy, draws from the sub-disciplines of archaeoastronomy, ethnoastronomy, historical astronomy, and geomythology. This approach incorporates the methodologies and theories of disciplines in the natural sciences, social sciences, and humanities. This thesis, by publication, makes use of archaeological, ethnographic, and historical records, astronomical software packages, and geographic programs to better understand the ages of astronomical traditions and the

  16. BOOK REVIEW: The Wandering Astronomer

    Science.gov (United States)

    Swinbank, Elizabeth

    2000-09-01

    Fans of Patrick Moore will like this book. I enjoyed it more than I expected, having anticipated a collection of personal anecdotes of the type favoured by certain tedious after-dinner speakers. Some of the 41 short items it contains do tend towards that category, but there are also some nuggets which might enliven your physics teaching. For example, did you know that, in a murder trial in 1787, the defendant's belief that the Sun was inhabited was cited as evidence of his insanity? This was despite his views being shared by many astronomers of the day including William Herschel. Or that Clyde Tombaugh had a cat called Pluto after the planet he discovered, which was itself named by an eleven-year-old girl? Another gem concerns a brief flurry, in the early 1990s, over a suspected planet orbiting a pulsar; variations in the arrival time of its radio pulses indicated the presence of an orbiting body. These shifts were later found to arise from an error in a computer program that corrected for the Earth's motion. The programmer had assumed a circular orbit for the Earth whereas it is actually elliptical. The book is clearly intended for amateur astronomers and followers of Patrick Moore's TV programmes. There is plenty of astronomy, with an emphasis on the solar system, but very little astrophysics. The author's metricophobia means that quantities are given in imperial units throughout, with metric equivalents added in brackets (by an editor, I suspect) which can get irritating, particularly as powers-of-ten notation is avoided. It is quite a novelty to see the temperature for hydrogen fusion quoted as 18 000 000 °F (10 000 000 °C). By way of contrast, astronomical terms are used freely - ecliptic, first-magnitude star, and so on. Such terms are defined in a glossary at the end, but attention is not drawn to this and I only stumbled across it by chance. Patrick Moore obviously knows his public, and this book will serve them well. For physics teachers and students

  17. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  18. An astronomical observatory for Peru

    Science.gov (United States)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  19. Astronomical Data in Undergraduate courses

    Science.gov (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.

    2016-06-01

    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  20. Query driven visualization of astronomical catalogs

    NARCIS (Netherlands)

    Buddelmeijer, Hugo; Valentijn, Edwin A.

    Interactive visualization of astronomical catalogs requires novel techniques due to the huge volumes and complex structure of the data produced by existing and upcoming astronomical surveys. The creation as well as the disclosure of the catalogs can be handled by data pulling mechanisms

  1. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  2. Novel Algorithms for Astronomical Plate Analyses

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness ...

  3. Young Astronomers' Observe with ESO Telescopes

    Science.gov (United States)

    1995-11-01

    axis (NGC 1448) and the dust lane (NGC 1947), respectively. Strong emission lines of H-alpha, ionized nitrogen [N II] and ionized sulphur [S II] were seen in both galaxies; they originate in interstellar gas clouds within their confines. From the exact wavelengths of these lines, the velocity of the galaxies can be measured. The team found values near 1100-1200 km/sec for both galaxies, in full agreement with the published values. Moreover, the variations of these line wavelengths at increasing distance from the galaxy centres allow to determine the rotation curves with good accuracy. A total amplitude of about 400 km/sec was observed in both galaxies. The velocity gradient is very steep at the centre, indicating the presence of a large mass in this area. Indeed, total masses of the order of 10e9 or even 10e10 solar masses were calculated for the innermost region of the galaxies. Team 2a: D'elia, Hardy, Janhonen, Lesuffleur, Nellen, Nykyri, Pudano; Team leader: Jacco van Loon This team obtained high-dispersion spectra (resolution about 80,000) with the Coude Echelle Spectrometer and the 1.4-m Coude Auxiliary Telescope (CAT) of 5 late-type gaint and supergiant stars. These stars have arrived at a late phase of their lives. The heaviest, i.e. the supergiants may soon become supernovae, while the less heavy, the giants, may develop into a White Dwarf via the intermediate Planetary Nebula stage. The team wanted to find out which of these stars would develop which way by classifying them. The spectra covered two spectral regions, at the hydrogen H-alpha 6562 A line and at the ionized calcium Ca II 8542 A line. The calcium line serves for spectral classification; the deeper and broader this line is, the higher is the luminosity of the star. Of the five stars, T Microscopis and nu Eridanis were found to have a rather weak and narrow Ca II line and are therefore giants; the others had higher luminosity, in particular Alpha Orionis. In astronomical terms, the latter may in fact

  4. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, V. A. R. M. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Russo, P. [EU Universe Awareness, Leiden Observatory, Leiden University, PO 9513 Leiden, 2300 RA (Netherlands); Cárdenas-Avendaño, A., E-mail: vribeiro@ast.uct.ac.za, E-mail: russo@strw.leidenuniv.nl [Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No 26-85, Edificio Gutierréz, Bogotá, DC (Colombia)

    2013-12-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  5. A SURVEY OF ASTRONOMICAL RESEARCH: A BASELINE FOR ASTRONOMICAL DEVELOPMENT

    International Nuclear Information System (INIS)

    Ribeiro, V. A. R. M.; Russo, P.; Cárdenas-Avendaño, A.

    2013-01-01

    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009

  6. ISO Results Presented at International Astronomical Union

    Science.gov (United States)

    1997-08-01

    describes several stages in our cosmic ancestry, revealed when ISO examines their counterparts still observable today. The evolving galaxies In the beginning was hydrogen, mixed with helium and minute traces of other light atoms. These were the atomic products of the Big Bang, the hypothetical cataclysm that created the Universe more than 10 billion years ago. The primeval gas was very dull. Nature could not make dust from it, never mind a living creature. But gravity gathered the hydrogen and helium into stars, and by nuclear reactions the stars glowed. As the first stars aged, the reactions made novel chemical elements like carbon, oxygen and silicon. Expelled into the stars' surroundings, these materials reacted with one another and with hydrogen to make the icy, tarry and stony grains of cosmic dust. The vast assemblies of stars called galaxies became crucibles where Nature could use physics and chemistry to make new materials and new stars. Rays from the most distant galaxies have taken so many billions of years to reach us that we see them as they were when they were young. The farthest galaxy observed so far by ISO is a quasar called BR 1202-0225, dating from a time when the Universe was less than one-tenth of its present age. Already it is dusty. ISO has also observed many galaxies at about half the age of the Universe, by staring long and hard through a window in the dust of our own Milky Way Galaxy, called the Lockman Hole. In those that glow most brightly in the infrared, astronomers suspect that frantic star-making is in progress, in episodes called starbursts. In nearer galaxies, ISO's astronomers can relate strong infrared emissions to collisions and to violent eruptions in the galactic cores, which have punctuated the evolution of the galaxies. "Having ISO in space brings special opportunities for the study of the history of the galaxies," says the Japanese astronomer Yoshiaki Taniguchi of Tohoku University. "By detecting infrared wavelengths that are hard to

  7. Eighth Scientific Meeting of the Spanish Astronomical Society

    CERN Document Server

    Diego, Jose M; González-Serrano, J. Ignacio; Gorgas, Javier; Highlights of Spanish Astrophysics V

    2010-01-01

    This volume collects the invited contributions and plenary sessions presented at the Eighth Scientific Meeting of the Spanish Astronomical Society (Sociedad Española de Astronomía, SEA) held on July 7-11, 2008 in Santander. These contributions cover all fields of astronomy and astrophysics, i.e., the Sun and solar system, the galaxy and its components, galaxies and cosmology, observatories and instrumentation, as well as astronomy teaching and dissemination. Further plenary sessions were devoted to selected hot topics, including the exploration of the solar system, gravitational lensing, exoplanets, X-ray binaries, solar magnetism, gravitational waves, the ALHAMBRA collaboration, and the OSIRIS instrument on the new 10-m GTC. Abstracts of the contributions presented at the parallels sessions and posters are also included in the book. Complete versions of those papers are available online.

  8. Nikolay N. Donitch - the astronomer

    Science.gov (United States)

    Gaina, Alex B.; Volyanskaya, M. Yu.

    1999-08-01

    The article is devoted to milestones of life and scientific activity of the eminent astronomer Nikolay Nikolaevich Donitch (Nicolae N. Donici) (1874-1956), a graduate from the Odessa (Novorossiski) university. He was a wellknown expert in the field of reseacrh of objects of Solar system. A person highly cultured, which built the first in Bessarabia (actually a part of the Republic of Moldova) observatory. He was borne in Kishinev (Chisinau) in a nobles family of notable Moldavian landersmen. N.D. graduated from the Richelieu lyceym in Odessa and afterwards, in 1897, graduated from the Odessa (Novorossiysky) University. A.K. Kononovich (1850-1910)headed the chair of astronomy and the Observatory at that time - a foremost authority in the field of astrophysics and stellar astronomy. Many of his disciples became eminent scientists of their time. N. Donitch was among them. N.D. worked till 1918 at Pulkovo Observatory and became a master in the field of studying of such phenomena as solar and lunar eclipses. To observe the Sun N.D., could afford to design and manufacture a spectroheliograph, the first in Russia, with the assistance of a famous Odessa mechanic J.A. Timchenko. This instrument enabled him to obtain topquality photos of the Sun's surface and prominences. It was mounted together with coelostat in the private observatory of N.D. , built in the village Staryie Doubossary in 1908. Besides the heliograoph, the observatory was equiped with a five inch refractor-equatorial with numerous instruments for various observations. Of the other instruments should be mentioned : "a comet triplet" - an instrument consisting of guiding refractor, a photographic camera and a spectrograph with an objective prism. N.D. was lucky enough to observe rare astronomical phenomena. He observed the transit of Mercury through the disk of the Sun on November 14, 1907 and showed the athmosphere absence around this planet, observed the Halley's comet in 1910, the bright Pons-Winneke comet

  9. Astronomical pipeline processing using fuzzy logic

    Science.gov (United States)

    Shamir, Lior

    In the past few years, pipelines providing astronomical data have been becoming increasingly important. The wide use of robotic telescopes has provided significant discoveries, and sky survey projects such as SDSS and the future LSST are now considered among the premier projects in the field astronomy. The huge amount of data produced by these pipelines raises the need for automatic processing. Astronomical pipelines introduce several well-defined problems such as astronomical image compression, cosmic-ray hit rejection, transient detection, meteor triangulation and association of point sources with their corresponding known stellar objects. We developed and applied soft computing algorithms that provide new or improved solutions to these growing problems in the field of pipeline processing of astronomical data. One new approach that we use is fuzzy logic-based algorithms, which enables the automatic analysis of the astronomical pipelines and allows mining the data for not-yet-known astronomical discoveries such as optical transients and variable stars. The developed algorithms have been tested with excellent results on the NightSkyLive sky survey, which provides a pipeline of 150 astronomical pictures per hour, and covers almost the entire global night sky.

  10. Lunar astronomical observatories - Design studies

    Science.gov (United States)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.

    1990-01-01

    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  11. Astronomical Knowledge in Holy Books

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2015-08-01

    We investigate religious myths related to astronomy from different cultures in an attempt to identify common subjects and characteristics. The paper focuses on astronomy in religion. The initial review covers records from Holy books about sky related superstitious beliefs and cosmological understanding. The purpose of this study is to introduce sky related religious and national traditions (particularly based on different calendars; Solar or Lunar). We carried out a comparative study of astronomical issues contained in a number of Holy books: Ancient Egyptian Religion (Pyramid Texts), Zoroastrianism (Avesta), Hinduism (Vedas), Buddhism (Tipitaka), Confucianism (Five Classics), Sikhism (Guru Granth Sahib), Christianity (Bible), Islam (Quran), Druidism (Mabinogion) and Maya Religion (Popol Vuh). These books include various information on the creation of the Universe, Sun and Moon, the age of the Universe, Cosmic sizes, understanding about the planets, stars, Milky Way and description of the Heavens in different religions. We come to the conclusion that the perception of celestial objects varies from culture to culture, and from religion to religion and preastronomical views had a significant impact on humankind, particularly on religious diversities. We prove that Astronomy is the basis of cultures, and that national identity and mythology and religion were formed due to the special understanding of celestial objects.

  12. Chrysanthos Notaras as an Astronomer

    Science.gov (United States)

    Rovithis, P.

    The aim of the present work is to emphasize the contribution of Chrysanthos Notaras (16??-1731) in the dispersion of Astronomy in the begining of the eighteenth century. Chysanthos Notaras, Partiarch of Jerusalem (1707-1731), is included among the most educated Greeks of his epoch. Although his first studies were suitable for ecclesiastic offices and religion, (since he studied ecclesiastic low, at Patavio, Italy), he continued at Paris for additional studies in Astronomy and Geography (1700). He became student of G.D. Cassini, who was the Director of Paris Observatory at that time, and he served as observer and astronomical instruments constructor, under Cassini's supervision. Chrysanthos Notaras included the teaching of "Astronomy" as a lesson in the schools of the Holy Sepulchre, in order to disperse the new ideas and knowledge about the earth and the universe among the young students. He published the first International Map (of the known world) in the Greek language in 1700 and in 1716 his book "Intoduction in Geography and Sphericals" was published in Paris. This book, written before 1707, was mainly an introduction to Astronomy and was used by the afterwards authors as an essential and basic manual and offered a lot to the enlightenment of the enslavement Greeks.

  13. Astronomical problems an introductory course in astronomy

    CERN Document Server

    Vorontsov-Vel'Yaminov, B A

    1969-01-01

    Astronomical Problems: An Introductory Course in Astronomy covers astronomical problems, together with a summary of the theory and the formula to be exercised. The book discusses the types of problems solved with the help of the celestial globe and how to solve astronomical problems. The text tackles problems on interpolation, the celestial sphere, systems of celestial coordinates, and culmination. Problems about the rising and setting of a heavenly body, precession, planetary movement, and parallax and aberration are also considered. The book presents problems about refraction, the apparent m

  14. Astronomers no longer in the dark

    CERN Multimedia

    MacMillan, L

    2002-01-01

    In a significant breakthrough, British and US astronomers have begun to pin down the most elusive material in the universe. They have made a map of dark matter - the heavy, invisible stuff that gives the galaxies their shape (1 page).

  15. Longwave Imaging for Astronomical Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  16. The Soviet center of astronomical data

    International Nuclear Information System (INIS)

    Dluzhnevskaya, O.B.

    1982-01-01

    On the basis of the current French-Soviet cooperation in science and technology, the Astronomical Council of the U.S.S.R. Academy of Sciences and the Strasbourg Center signed in 1977 an agreement on setting up the Soviet Center of Astronomical Data as its filial branch. The Soviet Center was created on the basis of a computation center at the Zvenigorod station of the Astronomical Council of the U.S.S.R. Academy of Sciences, which had already had considerable experience of working with stellar catalogues. In 1979 the Center was equipped with a EC-1033 computer. In 1978-1979 the Soviet Center of Astronomical Data (C.A.D.) received from Strasbourg 96 of the most important catalogues. By September 1981 the list of catalogues available at the Soviet Center has reached 140 catalogues some of which are described. (Auth.)

  17. Astronomers find distant planet like Jupiter

    CERN Multimedia

    2003-01-01

    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  18. Information seeking behavior of Greek astronomers

    OpenAIRE

    Brindesi, Hara; Kapidakis, Sarantos

    2011-01-01

    This study examines three aspects of information seeking behaviour of astronomers in Greece including a) the importance they place in keeping up- to-date with current developments b) the methods they depend on for keeping up-to-date and c) the information sources they mostly use. We adopted an intradisciplinary approach in order to investigate similarities and differences in information seeking behaviour among astronomers when examining them as groups bearing different characteristics, includ...

  19. Eight Physicists and Astronomers: Biographical Portraits

    OpenAIRE

    Kragh, Helge

    2012-01-01

    This essay provides concise biographical information about eight physicists, astronomers, astrophysicists, and cosmologists from the twentieth century. The portrayed scientists are Hermann Bondi (1919-2005), Charles L. Critchfield (1910-1994), Arthur E. Haas (1884-1941), Chushiro Hayashi (1920-2010, Gustave Le Bon (1841-1931), Wilhelm Lenz (1888-1957), Franz Selety (1893-1933?), and S. Elis Str\\"omgren (1870-1947). Because the entries were written for a biographical dictionary of astronomers,...

  20. Future Directions for Astronomical Image Display

    Science.gov (United States)

    Mandel, Eric

    2000-01-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  1. Astronomical technology - the past and the future

    OpenAIRE

    Appenzeller, Immo

    2017-01-01

    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be ...

  2. Direct Detection of Ultralight Dark Matter via Astronomical Ephemeris

    OpenAIRE

    Fukuda, Hajime; Matsumoto, Shigeki; Yanagida, Tsutomu T.

    2018-01-01

    A novel idea of the direct detection to search for a ultralight dark matter based on the interaction between the dark matter and a nucleon is proposed. Solar system bodies feel the dark matter wind and it acts as a resistant force opposing their motions. The astronomical ephemeris of solar system bodies is so precise that it has a strong capability to detect a dark matter whose mass is much lighter than O(1) eV. We have estimated the resistant force based on the calculation of the elastic sca...

  3. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes.

    Science.gov (United States)

    Lindbäck, T; Okstad, O A; Rishovd, A L; Kolstø, A B

    1999-11-01

    Haemolysin BL (HBL) is a Bacillus cereus toxin composed of a binding component, B, and two lytic components, L1 and L2. HBL is also the enterotoxin responsible for the diarrhoeal food poisoning syndrome caused by several strains of B. cereus. The three genes encoding the HBL components constitute an operon and are transcribed from a promoter 608 bp upstream of the hblC translational start site. The first gene of the hbl operon, hblC, in the B. cereus type strain, ATCC 14579, was inactivated in this study. Inactivation of hblC strongly reduced both the enterotoxigenic activity of B. cereus ATCC 14579 and the haemolytic activity against sheep erythrocytes, while maintaining full haemolytic activity against human erythrocytes.

  4. Book Review: Scientific Writing for Young Astronomers

    Science.gov (United States)

    Uyttenhove, Jos

    2011-12-01

    EDP Sciences, Les Ulis, France. Part 1 : 162 pp. € 35 ISBN 978-2-7598-0506-8 Part 2 : 298 pp. € 60 ISBN 978-2-7598-0639-3 The journal Astronomy & Astrophysics (A&A) and EDP Sciences decided in 2007 to organize a School on the various aspects of scientific writing and publishing. In 2008 and 2009 Scientific Writing for Young Astronomers (SWYA) Schools were held in Blankenberge (B) under the direction of Christiaan Sterken (FWO-VUB). These two books (EAS publication series, Vol. 49 and 50) reflect the outcome of these Schools. Part 1 contains a set of contributions that discuss various aspects of scientific publication; it includes A&A Editors' view of the peer review and publishing process. A very interesting short paper by S.R. Pottasch (Kapteyn Astronomical Institute, Groningen, and one of the two first Editors-in Chief of A&A) deals with the history of the creation of the journal Astronomy & Astrophysics. Two papers by J. Adams et al. (Observatoire de Paris) discuss language editing, including a detailed guide for any non-native user of the English language. In 2002 the Board of Directors decided that all articles in A&A must be written in clear and correct English. Part 2 consists of three very extensive and elaborated papers by Christiaan Sterken, supplying guidelines to PhD students and postdoctoral fellows to help them compose scientific papers for different forums (journals, proceedings, thesis, etc.). This part is of interest not only for young astronomers but it is very useful for scholars of all ages and disciplines. Paper I "The writing process" (60 pp.) copes with the preparation of manuscripts, with communicating with editors and referees and with avoiding common errors. Delicate problems on authorship, refereeing, revising multi-authored papers etc. are treated in 26 FAQ's. Paper II "Communication by graphics" (120 pp.) is entirely dedicated to the important topic of communication with images, graphs, diagrams, tables etc. Design types of graphs

  5. Magnetohydrodynamics turbulence: An astronomical perspective

    Indian Academy of Sciences (India)

    solar-wind turbulence show that there is more power in Alfvén waves that travel away from the. Sun than towards it. .... to ˆz is called the Alfvén wave, and the other orthogonal component is called the Slow. (magnetosonic) ...... advanced in the text suffices for our phenomenological account in this review. [46] A Beresnyak ...

  6. Design of a multifunction astronomical CCD camera

    Science.gov (United States)

    Yao, Dalei; Wen, Desheng; Xue, Jianru; Chen, Zhi; Wen, Yan; Jiang, Baotan; Xi, Jiangbo

    2015-07-01

    To satisfy the requirement of the astronomical observation, a novel timing sequence of frame transfer CCD is proposed. The multiple functions such as the adjustments of work pattern, exposure time and frame frequency are achieved. There are four work patterns: normal, standby, zero exposure and test. The adjustment of exposure time can set multiple exposure time according to the astronomical observation. The fame frequency can be adjusted when dark target is imaged and the maximum exposure time cannot satisfy the requirement. On the design of the video processing, offset correction and adjustment of multiple gains are proposed. Offset correction is used for eliminating the fixed pattern noise of CCD. Three gains pattern can improve the signal to noise ratio of astronomical observation. Finally, the images in different situations are collected and the system readout noise is calculated. The calculation results show that the designs in this paper are practicable.

  7. Toward an Internally Consistent Astronomical Distance Scale

    Science.gov (United States)

    de Grijs, Richard; Courbin, Frédéric; Martínez-Vázquez, Clara E.; Monelli, Matteo; Oguri, Masamune; Suyu, Sherry H.

    2017-11-01

    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.

  8. Decoding the mechanisms of Antikythera astronomical device

    CERN Document Server

    Lin, Jian-Liang

    2016-01-01

    This book presents a systematic design methodology for decoding the interior structure of the Antikythera mechanism, an astronomical device from ancient Greece. The historical background, surviving evidence and reconstructions of the mechanism are introduced, and the historical development of astronomical achievements and various astronomical instruments are investigated. Pursuing an approach based on the conceptual design of modern mechanisms and bearing in mind the standards of science and technology at the time, all feasible designs of the six lost/incomplete/unclear subsystems are synthesized as illustrated examples, and 48 feasible designs of the complete interior structure are presented. This approach provides not only a logical tool for applying modern mechanical engineering knowledge to the reconstruction of the Antikythera mechanism, but also an innovative research direction for identifying the original structures of the mechanism in the future. In short, the book offers valuable new insights for all...

  9. Thirteenth Joint European and National Astronomical Meeting

    CERN Document Server

    Iniesta, J C

    2006-01-01

    The book gathers the invited talks to the XIII JENAM conference, organized this time by the European Astronomical Society (EAS) and the Spanish Astronomical Society (SEA), and hosted by the Instituto de Astrofísica de Andalucía (CSIC). All branches of astrophysics are encompassed from the largest scales and cosmology to the solar system and the Sun, through the galaxies and the stars, including a section on astronomical instrumentation. Very relevant experts from all over the world speak in a single book about the most recent, exciting results from their fields in a way which is useful for both researchers in these fields and colleagues working in other disciplines. The book is accompanied by a CD-ROM including the remaining contributions of the meeting in PDF format, hence opening a wide panorama of what is going on in astrophysics nowadays.

  10. A Brief History of Manchester Astronomical Society

    Science.gov (United States)

    Kilburn, K. J.

    Manchester Astronomical Society celebrated its centenary in September 2003. But that centenary was of a hundred years as the MAS: the history of the society goes back much further, and can be traced directly to that great era of.public awareness of astronomy and amateur interest in Victorian England in the last half of the nineteenth century. Allan Chapman has discussed this period in detail, so the present paper concentrates on the MAS's particular influence on Manchester astronomers and recent work on the history of the society.

  11. Coronagraph for astronomical imaging and spectrophotometry

    Science.gov (United States)

    Vilas, Faith; Smith, Bradford A.

    1987-01-01

    A coronagraph designed to minimize scattered light in astronomical observations caused by the structure of the primary mirror, secondary mirror, and secondary support structure of a Cassegrainian telescope is described. Direct (1:1) and reducing (2.7:1) imaging of astronomical fields are possible. High-quality images are produced. The coronagraph can be used with either a two-dimensional charge-coupled device or photographic film camera. The addition of transmission dispersing optics converts the coronagraph into a low-resolution spectrograph. The instrument is modular and portable for transport to different observatories.

  12. Novel Algorithms for Astronomical Plate Analyses

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.

    2011-01-01

    Roč. 32, 1-2 (2011), s. 121-123 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * astronomical algorithms Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  13. What makes astronomical heritage valuable? Identifying potential Outstanding Universal Value in cultural properties relating to astronomy

    Science.gov (United States)

    Cotte, Michel

    2016-10-01

    This communication presents the situation regarding astronomical and archaeoastronomical heritage related to the World Heritage Convention through recent years up until today. Some parallel events and works were promoted strongly within the IAU-UNESCO Initiative during the International Year of Astronomy (2009). This was followed by a joint program by the IAU and ICOMOS-an official advisory body assisting the World Heritage Committee in the evaluation of nomination dossiers. The result of that work is an important publication by around 40 authors from 20 different countries all around the world: Heritage Sites of Astronomy and Archaeoastronomy in the Context of the UNESCO World Heritage Convention (Ruggles & Cotte 2010). A second volume is under preparation (2015). It was also accompanied by some initiatives such as the ``Windows to the Universe" organisation and the parallel constitution of local ``Starlight Reserves''. Some regional meetings studying specific facets or regional heritage in the field giving significant knowledge progresses also accompanied the global trend for astronomical heritage. WH assessment is defined by a relatively strict format and methodology. A key phrase is ``demonstration of Outstanding Universal Value'' to justify the WH Listing by the Committee. This communication first examines the requirements and evaluation practices about of demonstrating OUV for a given place in the context of astronomical or archaeoastronomical heritage. That means the examination of the tangible attributes, an inventory of the property in terms of immoveable and moveable components and an inventory of intangible issues related to the history (history of the place in the context of the history of astronomy and cultural history). This is also related to the application to the site of the concept of integrity and authenticity, as regards the place itself and in comparison with other similar places (WH sites already listed, sites on national WH Tentative Lists

  14. Astronomers Get New Tools for Gravitational-Wave Detection

    Science.gov (United States)

    2010-01-01

    exclaimed. "Fermi showed us where to look." "This is a huge help in our effort to use millisecond pulsars to detect gravitational waves," Ransom said. The more such pulsars scientists can find and observe over time, the more likely they are to detect gravitational waves, he explained. He said that astronomers now have barely enough millisecond pulsars to make a convincing gravitational-wave detection. "With Fermi guiding the way, though, we can change that picture quickly," Ray said. "We've just started to follow up on the objects located by Fermi, and have many more to go, with a great success rate so far," he added. Ransom, along with his colleague Mallory Roberts of Eureka Scientific, used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to find eight of the 17 new pulsars. The scientists announced their discoveries at the American Astronomical Society's meeting in Washington, DC. Pulsars are neutron stars -- the dense cores left after a massive star has exploded as a supernova. About as large as a medium-sized city, these neutron stars have strong magnetic fields that channel lighthouse-like beams of radio waves that sweep through space as the star rotates. When such a beam strikes the Earth, radio telescopes can detect the strong radio waves. As they age, pulsars slow their rotation rates. However, if the pulsar is part of a binary-star system and can draw in material from its companion, its rotation can be sped up. When the neutron star has been sped up to rotate hundreds of times a second, it is called a millisecond pulsar. In addition to helping scientists detect gravitational waves, study of millisecond pulars also can yield important new information about other effects of General Relativity and about fundamental particle physics. "This new ability to find many more millisecond pulsars really is a treasure chest that can yield many valuable gems of scientific discovery," Ransom said.

  15. Early Astronomical Sequential Photography, 1873-1923

    Science.gov (United States)

    Bonifácio, Vitor

    2011-11-01

    In 1873 Jules Janssen conceived the first automatic sequential photographic apparatus to observe the eagerly anticipated 1874 transit of Venus. This device, the 'photographic revolver', is commonly considered today as the earliest cinema precursor. In the following years, in order to study the variability or the motion of celestial objects, several instruments, either manually or automatically actuated, were devised to obtain as many photographs as possible of astronomical events in a short time interval. In this paper we strive to identify from the available documents the attempts made between 1873 and 1923, and discuss the motivations behind them and the results obtained. During the time period studied astronomical sequential photography was employed to determine the time of the instants of contact in transits and occultations, and to study total solar eclipses. The technique was seldom used but apparently the modern film camera invention played no role on this situation. Astronomical sequential photographs were obtained both before and after 1895. We conclude that the development of astronomical sequential photography was constrained by the reduced number of subjects to which the technique could be applied.

  16. Astronomía en la cultura

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  17. The Virtual Astronomical Observatory Users Forum

    Science.gov (United States)

    Muench, August A.; Emery Bunn, S.; Astronomical Observatory, Virtual

    2013-01-01

    We present the online forum astrobabel.com, which has the goal of being a gathering place for the collective community intelligence about astronomical computing. The audience for this forum is anyone engaged in the analysis of astronomical or planetary data, whether that data be observational or theoretical. It is a free, community driven site where discussions are formulated primarily around the "question and answer" format. Current topics on the forum range from “Is there a photometry package in Python?” to “Where are the support forums for astronomy software packages?” and “Why is my SDSS SkyQuery query missing galaxies?” The poster will detail the full scope of discussions in the forum, and provide some basic guidelines for ensuring high quality forum posts. We will highlight the ways astronomers can discover and participate in discussions. Further, we view this as an excellent opportunity to gather feedback and feature requests from AAS221 attendees. Acknowledgement: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  18. Cosmological field theory for observational astronomers

    International Nuclear Information System (INIS)

    Zel'Dovich, Y.B.

    1987-01-01

    Theories of the very early Universe that use scalar fields (i.e., the so-called inflationary models of the Universe) have now come into wide use. The inflationary universe approach may perhaps solve some of the most difficult enigmas about the Universe as a whole. The inflationary universe forms a good bridge between the quantum theory of the birth of the Universe (which is still in the initial stages of development) and the standard hot Big Bang theory (which is well established, at least qualitatively). Therefore, an understanding of the basic ideas of inflation is a must for astronomers interested in the broad picture of the science. Astronomers are mathematically oriented enough (via celestial mechanics, electromagnetic theory, magnetohydrodynamics, nuclear reactions,etc.) that there is no negative attitude towards formulae in general. What the astronomer lacks is a knowledge of recent developments in particle physics and field theory. The astronomer should not be blamed for this, because these branches of physics are developing in a very peculiar fashion: some subfields of it are progressing comparatively slowly, with experimental verifications at each and every step, while other subfields progress rapidly

  19. Astronomical Plate Archives and Binary Blazars Studies

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... There are about 3 million astronomical photographic plates around the globe, representing an important data source for various aspects of astrophysics. The main advantage is the large time coverage of 100 years or even more. Recent digitization efforts, together with the development of dedicated ...

  20. The Astronomical Low-Frequency Array

    Science.gov (United States)

    Jones, D. L.; Allen, R. J.; Blume, W. H.; Desch, M. M.; Erickson, W. C.; Kaiser, M. L.; Kassim, N. E.; Kuiper, T. B. H.; Mahoney, M. J.; Marsh, K. A.; hide

    1996-01-01

    An array of satellites is proposed to make astronomic observations in the low frequency range of a few tens of MHz down to roughly 100 kHz, a range that cannot be observed through the ionosphere. The array would be in a solar orbit to avoid radio interference from Earth and to simplify trajectory tracking and control.

  1. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  2. Sociological Profile of Astronomers in Spain

    Science.gov (United States)

    Iglesias de Ussel, Julio; Trinidad, Antonio; Ruiz, Diego; Battaner, Eduardo; Delgado, Antonio J.; Rodriguez-Espinosa, José M.; Salvador-Solé, Eduard; Torrelles, José M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of Astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish Astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of Astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines Astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of Astronomy in Spain in comparison with that of other European countries.

  3. New Life for Astronomical Instruments of the Past at the Astronomical Observatory of Taras Shevchenko

    Science.gov (United States)

    Kazantseva, Liliya

    2012-09-01

    Astronomical instruments of the past are certainly valuable artifacts of the history of science and education. Like other collections of scientific equipment, they also demonstrate i) development of scientific and technical ideas, ii) technological features of the historical period, iii) professional features of artists or companies -- manufacturers, and iv) national and local specificity of production. However, astronomical instruments are also devices made for observations of rare phenomena -- solar eclipses, transits of planets of the solar disk, etc. Instruments used to study these rare events were very different for each event, since the science changed quickly between events. The Astronomical Observatory of Kyiv National Taras Shevchenko University has a collection of tools made by leading European and local shops from the early nineteenth century. These include tools for optically observing the first artificial Earth satellites, photography, chronometry, and meteorology. In addition, it has assembled a library of descriptions of astronomical instruments and makers'price-lists. Of particular interest are the large stationary tools that are still active in their pavilions. Almost every instrument has a long interesting history. Museification of astronomical instruments gives them a second life, expanding educational programs and tracing the development of astronomy in general and scientific institution and region in particular. It would be advisable to first create a regional database of these rare astronomical instruments (which is already being done in Ukraine), then a common global database. By combining all the historical information about astronomical instruments with the advantages of the Internet, you can show the full evolution of an astronomical instrument with all its features. Time is relentless, and much is destroyed, badly kept and thrown in the garbage. We need time to protect, capture, and tell about it.

  4. Cosmic Blasts Much More Common, Astronomers Discover

    Science.gov (United States)

    2006-08-01

    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  5. Towards a robust and consistent middle Eocene astronomical timescale

    Science.gov (United States)

    Boulila, Slah; Vahlenkamp, Maximilian; De Vleeschouwer, David; Laskar, Jacques; Yamamoto, Yuhji; Pälike, Heiko; Kirtland Turner, Sandra; Sexton, Philip F.; Westerhold, Thomas; Röhl, Ursula

    2018-03-01

    Until now, the middle Eocene has remained a poorly constrained interval of efforts to produce an astrochronological timescale for the entire Cenozoic. This has given rise to a so-called "Eocene astronomical timescale gap" (Vandenberghe et al., 2012). A high-resolution astrochronological calibration for this interval has proven to be difficult to realize, mainly because carbonate-rich deep-marine sequences of this age are scarce. In this paper, we present records from middle Eocene carbonate-rich sequences from the North Atlantic Southeast Newfoundland Ridge (IODP Exp. 342, Sites U1408 and U1410), of which the cyclical sedimentary patterns allow for an orbital calibration of the geologic timescale between ∼38 and ∼48 Ma. These carbonate-rich cyclic sediments at Sites U1408 and U1410 were deposited as drift deposits and exhibit prominent lithological alternations (couplets) between greenish nannofossil-rich clay and white nannofossil ooze. The principal lithological couplet is driven by the obliquity of Earth's axial tilt, and the intensity of their expression is modulated by a cyclicity of about 173 kyr. This cyclicity corresponds to the interference of secular frequencies s3 and s6 (related to the precession of nodes of the Earth and Saturn, respectively). This 173-kyr obliquity amplitude modulation cycle is exceptionally well recorded in the XRF (X-ray fluorescence)-derived Ca/Fe ratio. In this work, we first demonstrate the stability of the (s3-s6) cycles using the latest astronomical solutions. Results show that this orbital component is stable back to at least 50 Ma, and can thus serve as a powerful geochronometer in the mid-Eocene portion of the Cenozoic timescale. We then exploit this potential by calibrating the geochronology of the recovered middle Eocene timescale between magnetic polarity Chrons C18n.1n and C21n. Comparison with previous timescales shows similarities, but also notable differences in durations of certain magnetic polarity chrons. We

  6. Finding Hidden Treasures: Investigations in US Astronomical Plate Archives

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.

    2013-01-01

    Roč. 53, č. 1 (2013), s. 23-26 ISSN 1210-2709 R&D Projects: GA ČR GA205/08/1207 Institutional support: RVO:67985815 Keywords : astronomical data archives * astronomical photography * astronomical photographic archives Subject RIV: BH - Optics, Masers, Lasers

  7. Astronomical Plate Archives and Binary Blazars Studies Rene Hudec

    Indian Academy of Sciences (India)

    data mining and data analyses by powerful computers with these archives. Examples of blazars proposed and/or investigated on the astronomical plates are presented and discussed. Key words. Astronomical plates—astronomical archives—binary blazars. 1. Introduction. The study of long-term activity of astrophysical ...

  8. Revista Mexicana de Astronomía y Astrofísica, a real option for astronomical publication

    Science.gov (United States)

    Torres-Peimbert, S.; Allen, C.

    2011-10-01

    We present statistical data about the Revista Mexicana de Astronomía y Astrofísica. We consider that this journal is well positioned in the international astronomical literature. Similarly we present information about the Serie de Conferencias, which also has a wide level of acceptance by the astronomical community.

  9. Astronomical Photometry Past, Present, and Future

    CERN Document Server

    Milone, Eugene F

    2011-01-01

    This book brings together experts in the field of astronomical photometry to discuss how their subfields provide the precision and accuracy in astronomical energy flux measurements that are needed to permit tests of astrophysical theories. Differential photometers and photometry, improvements in infrared precision, the improvements in precision and accuracy of CCD photometry, the absolute calibration of flux, the development of the Johnson UBVRI photometric system and other passband systems to measure and precisely classify specific types of stars and astrophysical quantities, and the current capabilities of spectrophotometry and polarimetry to provide precise and accurate data, are all discussed in this volume. The discussion of `differential’ or `two-star’ photometers ranges from early experiments in visual photometry through the Harvard and Princeton polarizing photometers to the pioneering work of Walraven and differential photometers designed to minimize effects of atmospheric extinction and to count...

  10. Isaac Newton and the astronomical refraction.

    Science.gov (United States)

    Lehn, Waldemar H

    2008-12-01

    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  11. Recruitment and Retention of LGBTIQ Astronomers

    Science.gov (United States)

    Dixon, William Van Dyke

    2012-01-01

    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  12. International Astronomical Union Sympoisum No.50

    CERN Document Server

    Westerlund, B

    1973-01-01

    Dr J. Landi Dessy, Director of the Astronomical Observatory, Cordoba, Argentina, invited the International Astronomical Union to hold a Symposium in Cordoba in connection with the celebration of the Centennial of the Cordoba Observatory; the date of foundation is October 24, 1871. He proposed that the Symposium should deal with Spectral Classification and Multicolour Photometry as seven years had elapsed since the Symposium No. 24 in Saltsj6baden, and much development had occurred in the field. The invitation and the proposal were accepted by the IAU, and the Symposium was held in Villa Carlos Paz, near Cordoba, between October 18 and October 24, 1971. It was attended by about 50 scientists representing Argentina, Canada, Chile, Den­ mark, France, Germany, Italy, Mexico, Sweden, Switzerland, U.K., U.S.A., Vatican City State and Venezuela. The Symposium was divided into four sessions: 1. Classification of slit spectra, 2. Classification of objective-prism spectra, 3. Photometric classification, 4. Catalogues ...

  13. Astronomía Mocoví

    Science.gov (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  14. Statistical methods for astronomical data analysis

    CERN Document Server

    Chattopadhyay, Asis Kumar

    2014-01-01

    This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...

  15. The data analysis facilities that astronomers want

    International Nuclear Information System (INIS)

    Disney, M.

    1985-01-01

    This paper discusses the need and importance of data analysis facilities and what astronomers ideally want. A brief survey is presented of what is available now and some of the main deficiencies and problems with today's systems are discussed. The main sources of astronomical data are presented incuding: optical photographic, optical TV/CCD, VLA, optical spectros, imaging x-ray satellite, and satellite planetary camera. Landmark discoveries are listed in a table, some of which include: our galaxy as an island, distance to stars, H-R diagram (stellar structure), size of our galaxy, and missing mass in clusters. The main problems at present are discussed including lack of coordinated effort and central planning, differences in hardware, and measuring performance

  16. The origins of Ptolemy's astronomical tables.

    Science.gov (United States)

    Newton, R. R.

    Following the line set by his earlier book 'The crime of Claudius Ptolemy' the author discusses here the numerous astronomical tables in Ptolemy's work that have been calculated with the aid of trigonometric tables, as well as a few that are nonlinear but that do not involve trigonometry. The purpose in this study is to determine, if possible, whether Ptolemy calculated these tables or whether he copied them from now-lost original works. The conclusion isthat Ptolemy made few if any original contributions to astronomy, either observational or computational.Contents: 1. Introduction; thetable of chords. 2. The tables of the latitude and of gnomon shadows.3. Tables of the Sun. 4. Astronomical geography. 5. The tables of theMoon. 6. Eclipse tables. 7. Tables of the planets. 8. The empirical basis for Hipparchus's mean motions of the Moon. 9. Summary and conclusions.

  17. Fabry-Perot interferometry: astronomical applications

    International Nuclear Information System (INIS)

    Pismis, P.

    1982-01-01

    Some properties of the interference of light are presented with emphasis on interferometry by means of a Fabry-Perot etalon. The application of the etalon with a focal reducer to astronomical problems is discussed related in particular to the determination of radial velocities of extended emission objects, in galactic and extragalactic nebulae. Mention is also made of the work carried out in Mexico in this field as well as of developments under way. (author)

  18. International astronomical remote present observation on IRC.

    Science.gov (United States)

    Ji, Kaifan; Cao, Wenda; Song, Qian

    On March 6 - 7, 1997, an international astronomical remote present observation (RPO) was made on Internet Relay Chat (IRC) for the first time. Seven groups in four countries, China, United States, Canada and Great Britain, used the 1 meter telescope of Yunnan observatory together by the way of remote present observation. Within minutes, images were "On-line" by FTP, and every one was able to get them by anonymous ftp and discuss them on IRC from different widely separated sites.

  19. AstroWeb -- Internet Resources for Astronomers

    Science.gov (United States)

    Jackson, R. E.; Adorf, H.-M.; Egret, D.; Heck, A.; Koekemoer, A.; Murtagh, F.; Wells, D. C.

    AstroWeb is a World Wide Web (WWW) interface to a collection of Internet accessible resources aimed at the astronomical community. The collection currently contains more than 1000 WWW, Gopher, Wide Area Information System (WAIS), Telnet, and Anonymous FTP resources, and it is still growing. AstroWeb provides the additional value-added services: categorization of each resource; descriptive paragraphs for some resources; searchable index of all resource information; 3 times daily search for ``dead'' or ``unreliable'' resources.

  20. The astronomical pulse of global extinction events.

    Science.gov (United States)

    Lewis, David F V; Dorne, Jean-Lou C M

    2006-06-23

    The linkage between astronomical cycles and the periodicity of mass extinctions is reviewed and discussed. In particular, the apparent 26 million year cycle of global extinctions may be related to the motion of the solar system around the galaxy, especially perpendicular to the galactic plane. The potential relevance of Milankovitch cycles is also explored in the light of current evidence for the possible causes of extinction events over a geological timescale.

  1. The Astronomical Pulse of Global Extinction Events

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis

    2006-01-01

    Full Text Available The linkage between astronomical cycles and the periodicity of mass extinctions is reviewed and discussed. In particular, the apparent 26 million year cycle of global extinctions may be related to the motion of the solar system around the galaxy, especially perpendicular to the galactic plane. The potential relevance of Milankovitch cycles is also explored in the light of current evidence for the possible causes of extinction events over a geological timescale.

  2. A website for astronomical news in Spanish

    Science.gov (United States)

    Ortiz-Gil, A.

    2008-06-01

    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  3. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    Science.gov (United States)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  4. Astrobiology: An astronomer's perspective

    International Nuclear Information System (INIS)

    Bergin, Edwin A.

    2014-01-01

    In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the process of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface

  5. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  6. SpS5: Accelerating the Rate of Astronomical Discovery

    Science.gov (United States)

    Norris, Ray P.

    2010-11-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress: paradigmatic, technological, organizational, and political. It examined each issue both from modern and historical perspectives, and drew lessons to guide future progress. A number of issues were identified which may regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  7. Amateur astronomers in support of observing campaigns

    Science.gov (United States)

    Yanamandra-Fisher, P.

    2014-07-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  8. Properties of galactic dark matter: Constraints from astronomical observations

    International Nuclear Information System (INIS)

    Burch, B.; Cowsik, R.

    2013-01-01

    The distributions of normal matter and of dark matter in the Galaxy are coupled to each other as they both move in the common gravitational potential. In order to fully exploit this interplay and to derive the various properties of dark matter relevant to their direct and indirect detection, we have comprehensively reviewed the astronomical observations of the spatial and velocity distributions of the components of normal matter. We then postulate that the phase-space distribution of dark matter follows a lowered-isothermal form and self-consistently solve Poisson's equation to construct several models for the spatial and velocity distributions of dark matter. In this paper, we compute the total gravitational potential of the normal and dark matter components and investigate their consistency with current observations of the rotation curve of the Galaxy and of the spatial and velocity distributions of blue horizontal-branch and blue straggler stars. Even with this demand of consistency, a large number of models with a range of parameters characterizing the dark matter distribution remain. We find that the best choice of parameters, within the range of allowed values for the surface density of the disk 55 M ☉ pc –2 , are the following: the dark matter density at the Galactic center ρ DM, c ≈ 100-250 GeV cm –3 , the local dark matter density ρ DM (R 0 ) ≈ 0.56-0.72 GeV cm –3 , and the rms speed of dark matter particles 〈v DM 2 (R 0 )〉 1/2 ≈490−−550 km s –1 . We also discuss possible astronomical observations that may further limit the range of the allowed models. The predictions of the allowed models for direct and indirect detection will be discussed separately in a companion paper.

  9. Next VLT Instrument Ready for the Astronomers

    Science.gov (United States)

    2000-02-01

    FORS2 Commissioning Period Successfully Terminated The commissioning of the FORS2 multi-mode astronomical instrument at KUEYEN , the second FOcal Reducer/low dispersion Spectrograph at the ESO Very Large Telescope, was successfully finished today. This important work - that may be likened with the test driving of a new car model - took place during two periods, from October 22 to November 21, 1999, and January 22 to February 8, 2000. The overall goal was to thoroughly test the functioning of the new instrument, its conformity to specifications and to optimize its operation at the telescope. FORS2 is now ready to be handed over to the astronomers on April 1, 2000. Observing time for a six-month period until October 1 has already been allocated to a large number of research programmes. Two of the images that were obtained with FORS2 during the commissioning period are shown here. An early report about this instrument is available as ESO PR 17/99. The many modes of FORS2 The FORS Commissioning Team carried out a comprehensive test programme for all observing modes. These tests were done with "observation blocks (OBs)" that describe the set-up of the instrument and telescope for each exposure in all details, e.g., position in the sky of the object to be observed, filters, exposure time, etc.. Whenever an OB is "activated" from the control console, the corresponding observation is automatically performed. Additional information about the VLT Data Flow System is available in ESO PR 10/99. The FORS2 observing modes include direct imaging, long-slit and multi-object spectroscopy, exactly as in its twin, FORS1 at ANTU . In addition, FORS2 contains the "Mask Exchange Unit" , a motorized magazine that holds 10 masks made of thin metal plates into which the slits are cut by means of a laser. The advantage of this particular observing method is that more spectra (of more objects) can be taken with a single exposure (up to approximately 80) and that the shape of the slits can be

  10. Algorithms for classification of astronomical object spectra

    Science.gov (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  11. Blind Source Separation of Multispectral Astronomical Images

    Science.gov (United States)

    Bijaoui, Albert; Nuzillard, Danielle

    Multispectral images lead to classify pixels, but often with the drawback that each pixel value is the result of a combination of different sources. We examined the ability of Blind Source Separation (BSS) methods to restore the independent sources. We tested different tools on HST images of the Seyfert galaxy 3C120: the Karhunen-Loéve expansion based on the diagonalization of the cross correlation matrix, algorithms which maximize contrast functions and programs which take into account the cross correlation between shift sources. With the last tools we obtained similar decompositions corresponding mainly to real phenomena. BSS can be considered as an interesting exploratory tool for astronomical data mining.

  12. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques

    2011-01-01

    variation thanks to the recovery of well preserved Maastrichtian sedimentary series from ODP (Ocean Drilling Program) Holes 1258A (Leg 207, Equatorial Atlantic), 1267B (Leg 208, South Atlantic), 762C (Leg 122, Indian Ocean) and DSDP (Deep Sea Drilling Program) Hole 525A (Leg 74, South Atlantic......). Cyclostratigraphic analysis is performed on high resolution measurements of magnetic susceptibility on sediments cored during Legs 207 and 208, and gray level variations of sediment color obtained from core photographs from Legs 122 and 74. Astronomical control on sedimentation is evident at every site...

  13. Astronomical Beliefs in Medieval Georgia: Innovative Approaches

    Science.gov (United States)

    Sauter, Jefferson; Orchiston, W.; Stephenson, F.

    2014-01-01

    Written sources from medieval Georgia show, among other things, how astronomical ideas were adapted on the periphery of the Byzantine and Islamic worlds. In this paper, we investigate a number of Georgian beliefs about the heavens from a calendrical work and a celestial prognostication text, but also from less expected sources including the medieval life of a saint and an epic poem. For the most part, these sources were derived from Byzantine or Persian models. We show the extent to which the sources nevertheless conform to a specifically Georgian view of the cosmos. We argue that, in so doing, medieval Georgian authors employed several innovative approaches hitherto unnoticed by modern scholars.

  14. Far-infrared spectrophotometer for astronomical observations

    Science.gov (United States)

    Moseley, H.; Silverberg, R. F.

    1981-01-01

    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  15. The astronomical revolution Copernicus, Kepler, Borelli

    CERN Document Server

    Koyre, Alexandre

    2013-01-01

    Originally published in English in 1973. This volume traces the development of the revolution which so drastically altered man's view of the universe in the sixteenth and seventeenth centuries. The ""astronomical revolution"" was accomplished in three stages, each linked with the work of one man. With Copernicus, the sun became the centre of the universe. With Kepler, celestial dynamics replaced the kinematics of circles and spheres used by Copernicus. With Borelli the unification of celestial and terrestrial physics was completed by abandonment of the circle in favour the straight line to inf

  16. Le Verrier magnificent and detestable astronomer

    CERN Document Server

    Lequeux, James

    2013-01-01

    Le Verrier was a superb scientist. His discovery of Neptune in 1846 made him the most famous astronomer of his time. He produced a complete theory of the motions of the planets which served as a basis for planetary ephemeris for a full century. Doing this, he discovered an anomaly in the motion of Mercury which later became the first proof of General Relativity. He also founded European meteorology. However his arrogance and bad temper created many enemies, and he was even fired from his position of Director of the Paris Observatory.

  17. Penn State astronomical image processing system

    International Nuclear Information System (INIS)

    Truax, R.J.; Nousek, J.A.; Feigelson, E.D.; Lonsdale, C.J.

    1987-01-01

    The needs of modern astronomy for image processing set demanding standards in simultaneously requiring fast computation speed, high-quality graphic display, large data storage, and interactive response. An innovative image processing system was designed, integrated, and used; it is based on a supermicro architecture which is tailored specifically for astronomy, which provides a highly cost-effective alternative to the traditional minicomputer installation. The paper describes the design rationale, equipment selection, and software developed to allow other astronomers with similar needs to benefit from the present experience. 9 references

  18. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    2011-01-01

    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  19. Education and Outreach Opportunities in New Astronomical Facilities

    Science.gov (United States)

    Mould, J. R.; Pompea, S.

    2002-12-01

    Astronomy presents extraordinary opportunities for engaging young people in science from an early age. The National Optical Astronomy Observatory (NOAO), supported by the National Science Foundation, leverages the attraction of astronomy with a suite of formal and informal education programs that engage our scientists and education and public outreach professionals in effective, strategic programs that capitalize on NOAO's role as a leader in science and in the design of new astronomical facilities. The core of the science education group at NOAO in Tucson consists of a group of Ph.D.-level scientists with experience in educational program management, curriculum and instructional materials development, teacher/scientist partnerships, and teacher professional development. This core group of scientist/educators hybrids has a strong background in earth and space science education as well as experience in working with and teaching about the technology that has enabled new astronomical discoveries. NOAO has a vigorous public affairs/media program and a history of effectively working locally, regionally, and nationally with the media, schools, science centers, and, planetaria. In particular, NOAO has created successful programs exploring how research data and tools can be used most effectively in the classroom. For example, the Teacher Leaders in Research Based Science Education explores how teachers can most effectively integrate astronomical research on novae, active galactic nuclei, and the Sun into classroom-based investigations. With immersive summer workshops at Kitt Peak National Observatory and the National Solar Observatory at Sacramento Peak, teachers learn research and instrumentation skills and how to encourage and maintain research activities in their classrooms. Some of the new facilities proposed in the recent decadal plan, Astronomy and Astrophysics in the New Millennium (National Academy Press), can provide extended opportunities for incorporating

  20. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow

    2005-01-01

    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  1. Scholastic intercourse between Shogunal Astronomer Shibukawa Kagesuke and Nagasaki-based astronomer Mine Gensuke

    Science.gov (United States)

    Ito, Setsuko

    2004-04-01

    It is important to know how scholastic tradition of Tenmon-kata (Shogunal Astronomical Office) was transferred to local astronomers over the 19th century, since it is likely that modernization of Japan in science and technology after the Meiji-restoration (1868) has its root in the pre-Meiji period. In this report, as a case-study of such line-of-thoughts, I took up a local astronomer Mine Gensuke, from Omura-han (clan) of Nagasaki. Mine, at his age of 25 (1850), came to Edo and learned astronomy for six years under the supervision of Shibukawa Kagesuke, the top-ranking Shogunal astronomer at that time. After returning to Nagasaki, Mine was assigned to be the land-surveyer of Omura-han. In Mine's book-collection preserved at the Nagasaki Municipal Museum, I found several books and notebooks copied and annotated by Mine, whose original author was Shibukawa. Through a research to those materials, I discuss what and how Mine learned from Shibukawa.

  2. Astronomical and Meteorological Conditions of a Solar System Operation

    Science.gov (United States)

    Proszak-Miąsik, Danuta; Bukowska, Maria; Nowak, Krzysztof; Rabczak, Sławomir

    2017-10-01

    Acquisition and processing of as much solar energy for heating and electricity generation in Poland and in the world is a very important objective in the policy of alternative energy sources. The main problem with the reception of solar energy by solar collectors is vary energy supply at different times of day and year and low flux density of radiation. The term of solar radiation one mean transmission or emission of energy in the form of electromagnetic waves. The radiation emitted from the surface of the sun spreads out in all directions in space, reaches the Earth’s surface in only partly, especially the solar collectors. The most important parameters characterizing solar radiation are daily, monthly and annual sum of solar radiation. Its express the amount of solar energy which falls on a unit area at a given time. Number of hours of sunshine during the day are dependent on two key factors. The first one is the time from the sunrise to sunset, which strongly depends on the date and latitude. The second factor is the weather (clouds), influences solar radiation, radiation in touch with clouds is absorbed and dissipated. This publication shows the impact on the energy yield of the flat collector installation and astronomical conditions (angle of inclination and declination of solar), and climate. The calculations of determining the astronomical conditions of the place where the installation is located ware analyzed. The solar installation is located in Rzeszow (Poland) and the plate collector placed on the roof of building. Based on specific methodology for selected days the calculation of the elevation angle of the Sun, hourly angle, the sun azimuth and angle of incidence of the radiation on any plane were set. The results are shown in diagrams. The effect of cloud cover on the acquisition of solar energy by the collector is also shown.

  3. The astronomical observatory of the Land of Blue Skies

    International Nuclear Information System (INIS)

    Kolenberg, K; Batmunkh, D; Batsukh, G; Tsolmon, R; Tuguldur, S

    2008-01-01

    The Astronomical Observatory of Mongolia is presented. Besides a heritage steeped in rich culture and tradition, Mongolia offers endless steppes and blue skies of such intensity that they gave the country its name. This astronomically advantageous feature, the high level of education and motivation among its young inhabitants, plus the fact that there are few observatories in Central Asia, make Mongolia a very suitable place for astronomical observations.

  4. Sketching the moon an astronomical artist's guide

    CERN Document Server

    Handy, Richard; McCague, Thomas; Rix, Erika; Russell, Sally

    2012-01-01

    Soon after you begin studying the sky through your small telescope or binoculars, you will probably be encouraged by others to make sketches of what you see. Sketching is a time-honored tradition in amateur astronomy and dates back to the earliest times, when telescopes were invented. Even though we have lots of new imaging technologies nowadays, including astrophotography, most observers still use sketching to keep a record of what they see, make them better observers, and in hopes of perhaps contributing something to the body of scientific knowledge about the Moon. Some even sketch because it satisfies their artistic side. The Moon presents some unique challenges to the astronomer-artist, the Moon being so fond of tricks of the light. Sketching the Moon: An Astronomical Artist’s Guide, by five of the best lunar observer-artists working today, will guide you along your way and help you to achieve really high-quality sketches. All the major types of lunar features are covered, with a variety of sketching te...

  5. Astronomical large Ge immersion grating by Canon

    Science.gov (United States)

    Sukegawa, Takashi; Suzuki, Takeshi; Kitamura, Tsuyoshi

    2016-07-01

    Immersion grating is a powerful optical device for thee infrared high-resolution spectroscope. Germanium (GGe) is the best material for a mid-infrared immersion grating because of Ge has very large reflective index (n=4.0). On the other hands, there is no practical Ge immersion grating under 5umm use. It was very difficult for a fragile IR crystal to manufacture a diffraction grating precisely. Our original free-forming machine has accuracy of a few nano-meter in positioning and stability. We already fabricated the large CdZnTe immersion grating. (Sukegawa et al. (2012), Ikeda et al. (2015)) Wee are developing Ge immersion grating that can be a good solution for high-resolution infrared spectroscopy with the large ground-based/space telescopes. We succeeded practical Ge immersion grating with the grooved area off 75mm (ruled direction) x 119mm (grove width) and the blaze angle of 75 degrees. Our astronomical large Ge immersion grating has the grooved area of 155mm (ruled direction) x 41mmm (groove width) and groove pitch off 91.74um. We also report optical performance of astronomical large Ge immersion grating with a metal coating on the diffraction surface.

  6. Major Conference about Astronomical Technology in Munich

    Science.gov (United States)

    2000-03-01

    Press Conference on Monday, March 27, 2000 Which are the latest astronomical discoveries made with the new 8-10 metre class astronomical telescopes? Will it be possible to construct even more powerful instruments on the ground and in space to explore the near and distant Universe at all wavelengths from gamma-rays to radio waves? Which research areas in this dynamical science are likely to achieve break-throughs with emerging new technologies? These are some of the central themes that will be discussed by more than 600 specialists from all over the world at an international conference in Munich (Germany), "Astronomical Telescopes and Instruments 2000" , beginning on Monday, March 27, 2000. During five days, the modern architecture of the new International Congress Center in the Bavarian capital will be the scene of lively exchanges about recent progress at the world's top-class astronomical research facilities and the presentation of inspired new ideas about future technological opportunities. The conference will be accompanied by numerous on-site exhibition stands by the major industries and research organisations in this wide field. This meeting is the latest in a series, organised every second year, alternatively in the USA and Europe by the International Society for Optical Engineering (SPIE) , this year with the European Southern Observatory (ESO) as co-sponsor and host institution. The conference will be opened in the morning of March 27 by the Bavarian Minister of Science, Research and Arts, Hans Zehetmair . His address will be followed by keynote speeches by Massimo Tarenghi (European Southern Observatory), James B. Breckenridge (National Science Foundation, USA), Harvey Butcher (Netherlands Foundation for Research in Astronomy) and Albrecht Ruediger (Max Planck Institut für Quantenoptik, Germany). The conference is subtitled "Power Telescopes and Instrumentation into the New Millennium" and will be attended by leading scientists and engineers from all

  7. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.

    2007-01-01

    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...

  8. Dacic Ancient Astronomical Research in Sarmizegetuza

    Directory of Open Access Journals (Sweden)

    Emanuel George Oprea

    2015-11-01

    Full Text Available The actual Romanian territory belongs to Carpatho-Danubian Space and to Ancient Europe. The Ancient European Society was a vast cultural entity based on a theocratic, matriarchal society, peaceful and art creating.Temples of Sarmizegetusa have given rise to several theories over time, proven by historians with the most diverse arguments. The largest complex of temples and sanctuaries was founded in Sarmizegetusa Regia, the Dacian’s main fortress and ancient capital of Dacia in the time of King Decebalus. The mysterious form of settlements has led researchers to the conclusion that the locations were astronomical observation shrines. Among the places of Dacian worship in Orastie Mountains the most impressive is the Great Circular Sanctuary, used to perform some celestial observations, and also as original solar calendar. This paper had the purpose to re-discover the Dacian Civilization and Dacian cosmogony based on the accumulated knowledge upon our country’s past.

  9. From Casual Stargazer to Amateur Astronomer

    Science.gov (United States)

    Eagle, Dave

    The word amateur stems from the French word Amour, meaning "Lover Of". And there is a whole army of amateur astronomers around the world who just love doing astronomy. They don't get paid for the privilege of experiencing the sky in all its glory, but by making detailed observations they do make a very important contribution towards the Science. These observations are especially useful when organized as a collective effort. Citizen science has really taken off in the last few years and the GAIA project will soon be producing so much data, that the professionals just will not have enough manpower to tackle all the data. They will rely on amateurs sitting on their computers at home. But it is under a dark sky that astronomy really comes alive. The fact that you have picked up this book, must mean that you are interested in taking the hobby a step forward.

  10. Simon Newcomb: America's Unofficial Astronomer Royal

    Science.gov (United States)

    Graham, John

    2007-10-01

    Bill Carter and Merri Sue Carter Mantazas; xiii + 213 pp.; ISBN 1-59113-803-5 2006; $26.95 This book introduced me to a commanding figure in American science from the late nineteenth century: Simon Newcomb. Newcomb has been called the nineteenth-century equivalent of Carl Sagan and Albert Einstein. He rose from humble beginnings to be the preeminent American astronomer of his generation. He made basic, far-reaching, and enduring contributions to positional astronomy and planetary dynamics. On the more practical side, he determined a remarkably accurate value for the velocity of light, one within 0.01% of the value accepted today. His work provided an experimental grounding for the special and general theories of relativity to be formulated by Einstein in the coming twentieth century.

  11. Multinational History of Strasbourg Astronomical Observatory

    CERN Document Server

    Heck, André

    2005-01-01

    Strasbourg Astronomical Observatory is quite an interesting place for historians: several changes of nationality between France and Germany, high-profile scientists having been based there, big projects born or installed in its walls, and so on. Most of the documents circulating on the history of the Observatory and on related matters have however been so far poorly referenced, if at all. This made necessary the compilation of a volume such as this one, offering fully-documented historical facts and references on the first decades of the Observatory history, authored by both French and German specialists. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in the details of European history. After an introductory chapter by the Editor, contributions by Wolfschmidt and by Duerbeck respectively deal extensively with the German periods and review people and instrumentation, while another paper by Duerbeck is more...

  12. Fundamental and applied aspects of astronomical seeing

    International Nuclear Information System (INIS)

    Coulman, C.E.

    1985-01-01

    It is pointed out that despite recent advances in the use of spacecraft as observatory platforms, much astronomy is still conducted from the surface of the earth. The literature on astronomical seeing and observatory site selection is widely scattered throughout journals and conference reports concerned with various disciplines. This survey has the objective to represent the state of the subject up to 1982. A description of the history and prospects of the considered subject is presented, and the optics of seeing are examined. The meteorology of seeing is discussed, taking into account aspects of micrometeorology and small-scale turbulence near the surface, the diurnal cycle in the planetary boundary layer, the temperature structure above the planetary boundary layer, and the effects of terrain. Attention is given to the calculation of system performance from microthermal data, optical methods for the measurement of seeing, and techniques for minimizing image-degrading effects of the atmosphere. 279 references

  13. Thirty years of astronomical discovery with UKIRT

    CERN Document Server

    Davies, John; Robson, Ian; The Scientific Achievement of the United Kingdom InfraRed Telescope

    2013-01-01

    These are the proceedings of an international meeting hosted by the Royal Observatory, Edinburgh, to commemorate the 30th anniversary of the dedication of the UKIRT, the United Kingdom InfraRed Telescope. The volume comprises 31 professional level papers. The first part of the book has 10 thorough reviews of the conception, design and build of the telescope, as well as accounts of some its key instruments such as IRCAM (the common-user infrared camera), CGS4 (the fourth Cooled Grating Spectrometer) and the Wide Field Camera. The second part of the book comprises 14 reviews of scientific achievements during its twenty years of visitor mode operations. The final part of the book is a series of 7 reviews of the results from the multiple surveys being done as part of UKIDSS (UKIRT Infrared Deep Sky Survey). The authors are all experts in their respective fields, for example instrument scientists, operations staff and leading astronomers.

  14. Astronomical results from SHARC-II

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Moseley, S. Harvey; Dowell, C. Darren

    2004-03-01

    The Submillimeter High Angular Resolution Camera (SHARC-II) is a facility instrument for far-infrared (350μm) imaging at the Caltech Submillimeter Observatory (CSO). With 384 pixels, SHARC-II uses the world's largest bolometer array for astronomical observations. SHARC-II is most efficiently utilized for observations of extended sources and for deep sky surveys. The low 1/f detector noise allows total power measurements without the need to observe an emission free ``off position''. This is possible because the sky emission can be distinguished from the celestial emission when the array scans over the sky at sufficient speed. Here we present a representative set of SHARC-II observations, which highlight the capabilities of the instrument. The observations show the submillimeter continuum emission from our own Galactic center, the nearby galaxy M51, and the gravitationally lensed high-z Cloverleaf galaxy H1413+1143.

  15. Astronomical results from SHARC-II

    International Nuclear Information System (INIS)

    Staguhn, Johannes G.; Benford, Dominic J.; Moseley, S. Harvey; Dowell, C. Darren

    2004-01-01

    The Submillimeter High Angular Resolution Camera (SHARC-II) is a facility instrument for far-infrared (350 μm) imaging at the Caltech Submillimeter Observatory (CSO). With 384 pixels, SHARC-II uses the world's largest bolometer array for astronomical observations. SHARC-II is most efficiently utilized for observations of extended sources and for deep sky surveys. The low 1/f detector noise allows total power measurements without the need to observe an emission free 'off position'. This is possible because the sky emission can be distinguished from the celestial emission when the array scans over the sky at sufficient speed. Here we present a representative set of SHARC-II observations, which highlight the capabilities of the instrument. The observations show the submillimeter continuum emission from our own Galactic center, the nearby galaxy M51, and the gravitationally lensed high-z Cloverleaf galaxy H1413+1143

  16. Astronomical results from SHARC-II

    Energy Technology Data Exchange (ETDEWEB)

    Staguhn, Johannes G. E-mail: staguhn@stars.gsfc.nasa.govjohannes.staguhn@gsfc.nasa.gov; Benford, Dominic J.; Moseley, S. Harvey; Dowell, C. Darren

    2004-03-11

    The Submillimeter High Angular Resolution Camera (SHARC-II) is a facility instrument for far-infrared (350 {mu}m) imaging at the Caltech Submillimeter Observatory (CSO). With 384 pixels, SHARC-II uses the world's largest bolometer array for astronomical observations. SHARC-II is most efficiently utilized for observations of extended sources and for deep sky surveys. The low 1/f detector noise allows total power measurements without the need to observe an emission free 'off position'. This is possible because the sky emission can be distinguished from the celestial emission when the array scans over the sky at sufficient speed. Here we present a representative set of SHARC-II observations, which highlight the capabilities of the instrument. The observations show the submillimeter continuum emission from our own Galactic center, the nearby galaxy M51, and the gravitationally lensed high-z Cloverleaf galaxy H1413+1143.

  17. Astronomical knowledge transmission through illustrated Aratea manuscripts

    CERN Document Server

    Dolan, Marion

    2017-01-01

    This carefully researched monograph is a historical investigation of the illustrated Aratea astronomical manuscript and its many interpretations over the centuries. Aratus' 270 B.C.E. Greek poem describing the constellations and astrological phenomena was translated and copied over 800 years into illuminated manuscripts that preserved and illustrated these ancient stories about the constellations. The Aratea survives in its entirety due to multiple translations from Greek to Latin and even to Arabic, with many illuminated versions being commissioned over the ages. The survey encompasses four interrelated disciplines: history of literature, history of myth, history of science, and history of art. Aratea manuscripts by their nature are a meeting place of these distinct branches, and the culling of information from historical literature and from the manuscripts themselves focuses on a wider, holistic view; a narrow approach could not provide a proper prospective. What is most essential to know about this work is...

  18. Phase coupling gravity and astronomical mass discrepancies

    International Nuclear Information System (INIS)

    Sanders, R.H.

    1988-01-01

    A previous author has proposed a new theory of gravity in which an additional long-range force is associated with a complex scalar field. The unique aspect of the theory is that only the phase of the complex scalar field couples to matter; hence, the designation 'phase coupling gravity'. The scalar field Lagrangian density contains a self-interaction potential which, in original form, depends upon the sixth power of the scalar amplitude because then the resulting weak field phenomenology is similar to that of MOND, the empirically motivated modification of Newton's law in the limit of low accelerations previously suggested in order to account for the observed mass discrepancies in large astronomical systems. In the present paper I explore versions of phase coupling gravity with alternative forms for the scalar self-interaction. (author)

  19. An Astronomer's View of Climate Change

    Science.gov (United States)

    Morton, Donald C.

    2014-01-01

    There are several astronomical effects that could be important for understanding climate changes such as the ice ages, the Medieval Maximum, the Little Ice Age, the 20th century temperature rise and the small decrease during the past 15 years. These effects include variations in the sun's luminosity, periodic changes in the earth's orbital parameters, the sun's orbit around our galaxy, the solar wind, the variability of solar activity and the anticorrelation of the galactic cosmic ray flux with that activity. With the publication of the Fifth Assessment Report to the Intergoverment Panel on Climate Change, it is useful to review these effects and the extent to which that report and previoius ones have recognized them. This paper also discusses recent trends in solar activity and global temperatures and compares the latter with the predictions of climate models.

  20. Shirakatsi Astronomical and Natural Philosophical Views

    Science.gov (United States)

    Mkrtchyan, Lilit

    2016-12-01

    Our work is aimed at presenting Shirakatsi astronomical and natural philosophical views. Karl Anania Shirakatsi is classified as one of the world-class intellectual geniuses. He was endowed with exceptional talent and analyzing scientific understanding of natural phenomena. He refers his philosophical works to almost all fields of science, cosmography, mathematics, calendarology, historiography, etc. Shirakatsy's earnings of natural science and natural philosophy in medieval is too big He was the first prominent scholar and thinker of his time, creating a unique, comprehensive gitapilisopayakan system that still feeds the human mind. The scientific value of Shirakatsi has great importance not only for Armenians but also for the whole world of science, history, culture and philosophy. Shirakatsi can be considered not only national but also universal greatness.

  1. Leslie Peltier, Amateur Astronomer and Observer Extraordinaire

    Science.gov (United States)

    Corbin, B. G.

    2003-12-01

    Leslie Copus Peltier, (Jan. 2, 1900-May 10, 1980) was called "the world's greatest non-professional astronomer" by none other than Harlow Shapley, and also referred to as the "the world's greatest living amateur astronomer". He began observing variable stars on March 1, 1918 with an observation of R. Leonis and at the time of his death had made a total of 132,123 observations of variable stars. These were reported to the AAVSO on a consecutive monthly basis stretching from 1918 to his death in 1980. As of October 2003, he was still on AAVSO's list of the top 25 observers in its history. Born on a farm near Delphos, Ohio, his parents were well read and their home was filled with books on different subjects, including nature guides. As a young man he studied the flora and fauna of the area and in 1915 began his study of the heavens with Vega being the first star he identified. After the purchase of a 2-inch spyglass, his observations of variable stars began to be noticed by professional astronomers and the AAVSO loaned him a 4-inch Mogey refractor; shortly thereafter Henry Norris Russell of Princeton loaned him via the AAVSO a 6-inch refractor, a comet seeker of short focus. He discovered 12 comets, 10 of which carry his name, and 6 novae or recurring novae. His design of the "Merry-Go-Round Observatory" was a novel approach with the whole observatory revolving around the observer while seated in his observing chair. Miami University (Ohio) later donated to him their 12-inch Clark refractor with its dome. His first book, Starlight Nights: The Adventures of a Star-Gazer, appeared in 1965. This autobiography, an ode to the joys of observing both the night sky and nature, was written in beautifully descriptive language that helped lead countless readers into astronomy. Departing from astronomy, in 1977 he published The Place on Jennings Creek. Written in the style of the 19th century naturalist, the book was devoted to his family's home, Brookhaven, and its natural

  2. Period Estimation in Astronomical Time Series

    Science.gov (United States)

    Protopapas, Pavlos

    2011-09-01

    Detection of periodicity and period estimation in non-uniformly sampled time series data is frequently a goal in Astronomical data analysis. There are various problems faced: Firstly, data is sampled non-uniformly which makes it difficult to use simple Fourier transform for performing spectral analysis. Secondly, there are large gaps in data which makes it difficult to interpolate the signal for re-sampling. Finally, in data sets with smaller time periods the non-uniformity in sampling and noise in data pose even greater problems because of the lesser number of samples per period. In this talk we review existing methods and then we propose new approaches in determining periods. We first use correntropy (an alternative to autocorrelation) that encapsulates non-linear correlations using a spatio-temporal kernel to estimate accurately the time period of the data. The other uses periodic kernels in non-parametric Gaussian process. These new techniques are also used for identifying periodic signals.

  3. US Astronomers Access to SIMBAD in Strasbourg

    Science.gov (United States)

    Oliversen, Ronald (Technical Monitor); Eichhorn, Guenther

    2004-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 4500 US users registered. We also provided user support by answering questions from users and handling requests for lost passwords when still necessary. Even though almost all users now access SIMBAD without a password, based on hostnames/IP addresses, there are still some users that need individual passwords. We continued to maintain the mirror copy of the SIMBAD database on a server at SAO. This allows much faster access for the US users. During the past year we again moved this mirror to a faster server to improve access for the US users. We again supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We provided support for the demonstration activities at the SIMBAD booth. We paid part of the fee for the SIMBAD demonstration. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SA0 makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. During the last year we also installed a mirror copy of the Vizier system from the CDS, in addition to the SIMBAD mirror.

  4. US Gateway to SIMBAD Astronomical Database

    Science.gov (United States)

    Eichhorn, G.; Oliversen, R. (Technical Monitor)

    1999-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 3400 US users registered. We also provide user support by answering questions from users and handling requests for lost passwords when still necessary. We have implemented in cooperation with the CDS SIMBAD project access to the SIMBAD database for US users on an Internet address basis. This allows most US users to access SIMBAD without having to enter passwords. We have maintained the mirror copy of the SIMBAD database on a server at SAO. This has allowed much faster access for the US users. We also supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We shipped computer equipment to the meeting and provided support for the demonstration activities at the SIMBAD booth. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative called Urania. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers.

  5. Old Star's "Rebirth" Gives Astronomers Surprises

    Science.gov (United States)

    2005-04-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the

  6. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  7. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Directory of Open Access Journals (Sweden)

    Ki-Won Lee

    2008-06-01

    Full Text Available We investigate astronomical materials listed in the book of Bibliographie Coreenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (部 and thirty six Classes (類, and published them as three volumes (ranging from 1894 to 1896 and one supplement (in 1901. In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho 天文類抄, Si-Heon-Seo 時憲書, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do 天象列次分野之圖, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (種 are related to astronomy or astrology, and verified that most of them are located in the Kyujanggak Royal Library 奎章閣. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do 渾天總星列次分野之圖. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  8. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Science.gov (United States)

    Lee, Ki-Won; Yang, Hong-Jin; Park, Myeong-Gu

    2008-06-01

    We investigate astronomical materials listed in the book of Bibliographie Coréenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (?) and thirty six Classes (?), and published them as three volumes (ranging from 1894 to 1896) and one supplement (in 1901). In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho ????, Si-Heon-Seo ??????, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do ????????, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (?) are related to astronomy or astrology, and verified that most ! of them are located in the Kyujanggak Royal Library ???. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do ??????????. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  9. Decorative Elements with Astronomical Subjects on Medieval Buildings in Transylvania

    Science.gov (United States)

    Oproiu, Tiberiu; Pica, Elisabeta Ana

    2008-09-01

    In this paper we present several buildings from the Middle Age with astronomical subjects from Transylvania. In particular, there are analyzed sundials from churches and old houses situated in Cluj-Napoca, Alba Iulia and Sibiu towns. The investigations are performed according to the idea of IAU Commission No. 41 (History of Astronomy) concerning the ``Conservation of Astronomical Archives and Instruments.''

  10. The Victorian Amateur Astronomer: Independent Astronomical Research in Britain 1820-1920

    Science.gov (United States)

    Chapman, Allan

    1999-01-01

    This is the first book to look in detail at amateur astronomy in Victorian Britain. It deals with the technical issues that were active in Victorian astronomy, and reviews the problems of finance, patronage and the dissemination of scientific ideas. It also examines the relationship between the amateur and professional in Britain. It contains a wealth of previously unpublished biographical and anecdotal material, and an extended bibliography with notes incorporating much new scholarship. In The Victorian Amateur Astronomer, Allan Chapman shows that while on the continent astronomical research was lavishly supported by the state, in Britain such research was paid for out of the pockets of highly educated, wealthy gentlemen the so-called Grand Amateurs . It was these powerful individuals who commissioned the telescopes, built the observatories, ran the learned societies, and often stole discoveries from their state-employed colleagues abroad. In addition to the Grand Amateurs , Victorian Britain also contained many self-taught amateurs. Although they belonged to no learned societies, these people provide a barometer of the popularity of astronomy in that age. In the late 19th century, the comfortable middle classes clergymen, lawyers, physicians and retired military officers took to astronomy as a serious hobby. They formed societies which focused on observation, lectures and discussions, and it was through this medium that women first came to play a significant role in British astronomy. Readership: Undergraduate and postgraduate students studying the history of science or humanities, professional historians of science, engineering and technology, particularly those with an interest in astronomy, the development of astronomical ideas, scientific instrument makers, and amateur astronomers.

  11. Linking Young Astronomers in Southeast Asia: The SEAYAC Story

    Science.gov (United States)

    Dionisio Sese, Rogel Mari

    2015-08-01

    The importance of involving young astronomers in developing astronomy cannot be overemphasized. This is very much true in areas where astronomy is still an emerging and minor field, such as in the Southeast Asian (SEA) region. However, recent years have seen a sudden spark of interest in developing professional astronomy within SEA, primarily for young astronomers and students. This was especially highlighted during the 2009 International Year of Astronomy. In this presentation, we introduce the Southeast Asian Young Astronomers Collaboration (SEAYAC), a recently formed organization that aims to provide a venue for professional and personal interaction for young astronomers in the SEA region. Here we present the background and rationale behind the formation of SEAYAC, its current status as well as planned future activities aimed at developing collaborations between young astronomers in the SEA region. We will also discuss the problems and challenges being faced by SEAYAC as well as its future plan of actions.

  12. Astronomers Get Closest Look Yet At Milky Way's Mysterious Core

    Science.gov (United States)

    2005-11-01

    Astronomers have gotten their deepest glimpse into the heart of our Milky Way Galaxy, peering closer to the supermassive black hole at the Galaxy's core then ever before. Using the National Science Foundation's continent-wide Very Long Baseline Array (VLBA), they found that a radio-wave-emitting object at the Galaxy's center would nearly fit between the Earth and the Sun. This is half the size measured in any previous observation. "We're getting tantalizingly close to being able to see an unmistakable signature that would provide the first concrete proof of a supermassive black hole at a galaxy's center," said Zhi-Qiang Shen, of the Shanghai Astronomical Observatory and the Chinese Academy of Sciences. A black hole is a concentration of mass so dense that not even light can escape its powerful gravitational pull. Milky Way Nucleus The Milky Way's nucleus, as seen with the VLA. Sagittarius A* is the bright white dot at center. CREDIT: NRAO/AUI/NSF, Jun-Hui Zhao, W.M. Goss (Click on Image for Larger Version) The astronomers used the VLBA to measure the size of an object called Sagittarius A* (pronounced "A-star") that marks the exact center of our Galaxy. Last year, a different team announced that their measurements showed the object would fit inside the complete circle of Earth's orbit around the Sun. Shen and his team, by observing at a higher radio frequency, measured Sagittarius A* as half that size. A mass equal to four million Suns is known to lie within Sagittarius A*, and the new measurement makes the case for a black hole even more compelling than it was previously. Scientists simply don't know of any long-lasting object other than a black hole that could contain this much mass in such a small area. However, they would like to see even stronger proof of a black hole. "The extremely strong gravitational pull of a black hole has several effects that would produce a distinctive 'shadow' that we think we could see if we can image details about half as small as

  13. Astronomers Discover Fastest-Spinning Pulsar

    Science.gov (United States)

    2006-01-01

    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  14. NRAO Astronomer Wins Prestigious Guggenheim Fellowship

    Science.gov (United States)

    2010-04-01

    Dr. Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, has been awarded a prestigious Guggenheim Fellowship, according to the John Simon Guggenheim Memorial Foundation. The Guggenheim Foundation describes its fellowships as "mid-career" awards "intended for men and women who have already demonstrated exceptional capacity for productive scholarship or exceptional creative ability in the arts." Frail, 48, has worked at the NRAO for more than 20 years, first as a postdoctoral fellow, and then as a staff scientist. He received his bachelor's degree in physics from Acadia University in Nova Scotia, and his Ph.D in astronomy from the University of Toronto. Frail is best known for his landmark contributions to the understanding of gamma ray bursts, making critical measurements that provided key insights into the mechanisms of these superenergetic and once-mysterious explosions. He also has made important contributions to the understanding of other astronomical phenomena, including pulsars and their neighborhoods, supernova remnants, and magnetars. In 1992, he was the co-discoverer, with Alex Wolszczan, of the first planets outside our own solar system. "We congratulate Dale on this well-deserved honor that recognizes not only his past achievements but also his potential for exciting scientific work in the future," said Dr. Fred K.Y. Lo, NRAO Director. "We're very proud to see one of our scientists receive such a great honor," Lo added. Frail is one of 180 recipients of this year's Guggenheim Fellowships, chosen from some 3,000 applicants. The fellowships were established in 1925 and past recipients include photographer Ansel Adams, author Saul Bellow, former Secretary of State Henry Kissinger, and chemist Linus Pauling. 102 Guggenheim Fellows have subsequently won Nobel Prizes, and others have received Pulitzer Prizes and other honors. As a Guggenheim Fellow, Frail intends to intensify his research in the areas of pulsars

  15. Astronomical pacing of methane release in the Early Jurassic period.

    Science.gov (United States)

    Kemp, David B; Coe, Angela L; Cohen, Anthony S; Schwark, Lorenz

    2005-09-15

    A pronounced negative carbon-isotope (delta13C) excursion of approximately 5-7 per thousand (refs 1-7) indicates the occurrence of a significant perturbation to the global carbon cycle during the Early Jurassic period (early Toarcian age, approximately 183 million years ago). The rapid release of 12C-enriched biogenic methane as a result of continental-shelf methane hydrate dissociation has been put forward as a possible explanation for this observation. Here we report high-resolution organic carbon-isotope data from well-preserved mudrocks in Yorkshire, UK, which demonstrate that the carbon-isotope excursion occurred in three abrupt stages, each showing a shift of -2 per thousand to -3 per thousand. Spectral analysis of these carbon-isotope measurements and of high-resolution carbonate abundance data reveals a regular cyclicity. We interpret these results as providing strong evidence that methane release proceeded in three rapid pulses and that these pulses were controlled by astronomically forced changes in climate, superimposed upon longer-term global warming. We also find that the first two pulses of methane release each coincided with the extinction of a large proportion of marine species.

  16. Optimizing significance testing of astronomical forcing in cyclostratigraphy

    Science.gov (United States)

    Kemp, David B.

    2016-12-01

    The recognition of astronomically forced (Milankovitch) climate cycles in geological archives marked a major advance in Earth science, revealing a heartbeat within the climate system of general importance and key utility. Power spectral analysis is the primary tool used to facilitate identification of astronomical cycles in stratigraphic data, but commonly employed methods for testing the statistical significance of relatively high narrow-band variance of potential astronomical origin in spectra have been criticized for inadequately balancing the respective probabilities of type I (false positive) and type II (false negative) errors. This has led to suggestions that the importance of astronomical forcing in Earth history is overstated. It can be readily demonstrated, however, that the imperfect nature of the stratigraphic record and the quasiperiodicity of astronomical cycles sets an upper limit on the attainable significance of astronomical signals. Optimized significance testing is that which minimizes the combined probability of type I and type II errors. Numerical simulations of stratigraphically preserved astronomical signals suggest that optimum significance levels at which to reject a null hypothesis of no astronomical forcing are between 0.01 and 0.001 (i.e., 99-99.9% confidence level). This is lower than commonly employed in the literature (90-99% confidence levels). Nevertheless, in consonance with the emergent view from other scientific disciplines, fixed-value null hypothesis significance testing of power spectra is implicitly ill suited to demonstrating astronomical forcing, and the use of spectral analysis remains a difficult and subjective endeavor in the absence of additional supporting evidence.

  17. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  18. Conceptualizing Astronomical Distances for Urban Populations

    Science.gov (United States)

    Popinchalk, Mark; Olson, Kristen; Ingber, Jenny; O'Brien, Mariel

    2017-01-01

    Students living in urban environments may have a washed-out night sky, but their enthusiasm for astronomy can still shine bright. As an educator, it can sometimes be a challenge to see the opportunities afforded by city living to the teaching of astronomy; however, several benefits can be identified. For example, the intrinsic understanding children have of the distances and scales involved in their everyday life is enhanced when they live in a regimented urban structure. This existing understanding of scale is critical to building a foundation for later conceptualizing of the universe.Leveraging the assets of New York City and the resources found in the American Museum of Natural History, The Science and Nature Program offers students (PreK through 8th grade) robust science learning experiences. To address concepts important for studying astronomy, we present a novel twist on the classic lesson “Earth as a Peppercorn,” by scaling the solar system to the size of New York City. Using local landmarks and their distance in relation to the Museum to represent the planets, students can use their prior knowledge of their surroundings to appreciate the impressive scale of our neighborhood in space in the context of their own neighborhoods. We correlate the activity with NGSS standards, present preliminary feedback on it’s success, and discuss the opportunities to apply a similar model lesson to other astronomical systems.

  19. Astronomical optical interferometry, I: Methods and instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2010-01-01

    Full Text Available Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas resolution and astrometry with micro-arcsecond (µas precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are discussed as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers. Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  20. Is astronomical research appropriate for developing countries?

    Science.gov (United States)

    Snowden, Michael S.

    An unproductive 45-cm astronomical telescope, given by JICA (Japan) to Sri Lanka, raises general questions as to the reasons for unproductive pure science in developing countries. Before installation, site, maintenance, and scientific objectives were discussed. The facility was launched with a conference organised by the UN Office for Outer Space Affairs. Unfortunately, no research or significant education has resulted after four years. The annual operating cost is U.S. $5000 per year, including salary for a trainee, maintenance, and a modest promotional programme. Comparison with a similar installation in Auckland suggests lack of funding or technical competence do not explain the failure in Sri Lanka. The facility in New Zealand, on the roof of Auckland University's Physics Department, has a slightly smaller budget but has led to modest but useful research and teaching. Lack of financial backing and expertise are often blamed for weak science in developing countries, but examination shows most of these countries have adequately skilled people, and plenty of resources for religion and military. General lack of motivation for science appears to be the principal reason. This lack of interest and highly inefficient bureaucracies are common to scientifically unproductive countries. They mostly lack the cultural and philosophical base of the European Renaissance that motivate the pursuit of modern science, an activity that violates human preferences. There are excellent facilities (ESO, SAAO, Cerro Tololo, and GONG) in some of these same countries, when administered from the West.

  1. Astronomical Constraints on Quantum Cold Dark Matter

    Science.gov (United States)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  2. Astronomical Content in Rongorongo Tablet Keiti

    DEFF Research Database (Denmark)

    Wieczorek, Rafal

    2011-01-01

    Th e fi eld of rongorongo research: the study of Easter Island’s native script is in a peculiar state at the moment. While relative progress has been made in structural and statistical analysis in the last decades, at the level of both single glyphs as well as entire texts, little to no advanceme...... has been achieved in the actual decipherment. To shed new light on rongorongo research, a hypothesis regarding the contents of tablet Keiti, one of the 25 obtained artifacts, is proposed. Th e content, as well as the meaning, of all but one of these 25 rongorongo texts is still unknown....... In this publication, an interpretation for the recto side of tablet Keiti is presented. It is argued that the tablet contains astronomical observations or instructions regarding the Rapa Nui lunar calendar, and is similar in content to the only other rongorongo text whose function has been partially ascertained......: tablet Mamari. If the calendrical contents of this artifact were confi rmed, this would be a major boost to our understanding of Oceania’s only native script....

  3. 3D Visualization of Astronomical Data with Blender

    Science.gov (United States)

    Kent, B. R.

    2015-09-01

    We present the innovative use of Blender, a 3D graphics package, for astronomical visualization. With a Python API and feature rich interface, Blender lends itself well to many 3D data visualization scenarios including data cube rendering, N-body simulations, catalog displays, and surface maps. We focus on the aspects of the software most useful to astronomers such as visual data exploration, applying data to Blender object constructs, and using graphics processing units (GPUs) for rendering. We share examples from both observational data and theoretical models to illustrate how the software can fit into an astronomer's toolkit.

  4. High School Astronomical Research at the Army and Navy Academy

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2016-06-01

    school counseling and curricula. Active assistance from amateur astronomers and parental engagement are critical to sustainability, growth, and outreach. Possibly most important is the continuing leadership of strong advocates at the school.

  5. Application of digital image processing techniques to astronomical imagery 1977

    Science.gov (United States)

    Lorre, J. J.; Lynn, D. J.

    1978-01-01

    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  6. Lessons from the masters current concepts in astronomical image processing

    CERN Document Server

    2013-01-01

    There are currently thousands of amateur astronomers around the world engaged in astrophotography at increasingly sophisticated levels. Their ranks far outnumber professional astronomers doing the same and their contributions both technically and artistically are the dominant drivers of progress in the field today. This book is a unique collaboration of individuals, all world-renowned in their particular area, and covers in detail each of the major sub-disciplines of astrophotography. This approach offers the reader the greatest opportunity to learn the most current information and the latest techniques directly from the foremost innovators in the field today.   The book as a whole covers all types of astronomical image processing, including processing of eclipses and solar phenomena, extracting detail from deep-sky, planetary, and widefield images, and offers solutions to some of the most challenging and vexing problems in astronomical image processing. Recognized chapter authors include deep sky experts su...

  7. Database retrieval systems for nuclear and astronomical data

    International Nuclear Information System (INIS)

    Suda, Takuma; Korennov, Sergei; Otuka, Naohiko; Yamada, Shimako; Katsuta, Yutaka; Ohnishi, Akira; Kato, Kiyoshi; Fujimoto, Masayuki Y.

    2006-01-01

    Data retrieval and plot systems of nuclear and astronomical data are constructed on a common platform. Web-based systems will soon be opened to the users of both fields of nuclear physics and astronomy. (author)

  8. Spectroscopy for amateur astronomers recording, processing, analysis and interpretation

    CERN Document Server

    Trypsteen , Marc F M

    2017-01-01

    This accessible guide presents the astrophysical concepts behind astronomical spectroscopy, covering both the theory and the practical elements of recording, processing, analysing and interpreting your spectra. It covers astronomical objects, such as stars, planets, nebulae, novae, supernovae, and events such as eclipses and comet passages. Suitable for anyone with only a little background knowledge and access to amateur-level equipment, the guide's many illustrations, sketches and figures will help you understand and practise this scientifically important and growing field of amateur astronomy, up to the level of Pro-Am collaborations. Accessible to non-academics, it benefits many groups from novices and learners in astronomy clubs, to advanced students and teachers of astrophysics. This volume is the perfect companion to the Spectral Atlas for Amateur Astronomers, which provides detailed commented spectral profiles of more than 100 astronomical objects.

  9. Proximity Glare Suppression for Astronomical Coronagraphy, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a critical need for stray light suppression in advanced astronomical telescopes and imaging systems. For optical instruments that are required to view...

  10. PPARC: Grid technology helps astronomers keep pace with the Universe

    CERN Multimedia

    2003-01-01

    "Intelligent Agent" computer programs are roaming the Internet and watching the skies. These programs, using Grid computing technology, will help astronomers detect some of the most dramatic events in the universe, such as massive supernova explosions (1 page).

  11. Astronomical sketching a step-by-step introduction

    CERN Document Server

    Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol

    2007-01-01

    This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.

  12. Astronomers Trace Microquasar's Path Back in Time

    Science.gov (United States)

    2003-01-01

    Astronomers have traced the orbit through our Milky Way Galaxy of a voracious neutron star and a companion star it is cannibalizing, and conclude that the pair joined more than 30 million years ago and probably were catapulted out of a cluster of stars far from the Galaxy's center. Path of Microquasar and Sun Path of Microquasar (red) and Sun (yellow) through the Milky Way Galaxy for the past 230 million years. Animations: GIF Version MPEG Version CREDIT: Mirabel & Rodrigues, NRAO/AUI/NSF The pair of stars, called Scorpius X-1, form a "microquasar," in which material sucked from the "normal" star forms a rapidly-rotating disk around the superdense neutron star. The disk becomes so hot it emits X-rays, and also spits out "jets" of subatomic particles at nearly the speed of light. Using precise positional data from the National Science Foundation's Very Long Baseline Array (VLBA) and from optical telescopes, Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission, and Irapuan Rodrigues, also of the French Atomic Energy Commission, calculated that Scorpius X-1 is not orbiting the Milky Way's center in step with most other stars, but instead follows an eccentric path far above and below the Galaxy's plane. Scorpius X-1, discovered with a rocket-borne X-ray telescope in 1962, is about 9,000 light-years from Earth. It is the brightest continuous source of X-rays beyond the Solar System. The 1962 discovery and associated work earned a share of the 2002 Nobel Prize in physics for Riccardo Giacconi. Mirabel and Rodrigues used a number of published observations to calculate the path of Scorpius X-1 over the past few million years. "This is the most accurate determination we have made of the path of an X-ray binary," said Mirabel. By tracing the object's path backward in time, the scientists were able to conclude that the neutron star and its companion have been traveling together for more than 30

  13. Profile fitting in crowded astronomical images

    Science.gov (United States)

    Manish, Raja

    Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.

  14. Applying artificial intelligence to astronomical databases - a surveyof applicable technology.

    Science.gov (United States)

    Rosenthal, D. A.

    This paper surveys several emerging technologies which are relevant to astronomical database issues such as interface technology, internal database representation, and intelligent data reduction aids. Among the technologies discussed are natural language understanding, frame and object representations, planning, pattern analysis, machine learning and the nascent study of simulated neural nets. These techniques will become increasingly important for astronomical research, and in particular, for applications with large databases.

  15. Blowing bubbles in the cosmos astronomical winds, jets, and explosions

    CERN Document Server

    Hartquist, T W; Ruffle, D P

    2004-01-01

    1. The First Discoveries of Astronomical Winds2. The Magnitudes of Astronomical Quantities3. Stellar Evolution4. Basic Structures of Winds and Windblown Bubbles5. Star Formation and Low-Mass Young Stellar Objects6. Regions of High-Mass Star Formation7. Winds from Main-Sequence and Post-Main-Sequence Stars8. Supernovae and Their Remnants9. Galactic Winds, Starburst Superwinds, and the Epoch of Galaxy Formation10. Active Galaxies and Their Nuclei11. Some Other Windy and Explosive Sources

  16. Astronomical Plate Archives and Amateur Variable Star Researchers

    Czech Academy of Sciences Publication Activity Database

    Hudec, René

    -, č. 75 (2007), s. 3-8 ISSN 1801-5964. [Conference on Variable Star s Research /38./. Valašské Meziříčí, 17.11.2006-19.11.2006] R&D Projects: GA AV ČR IAA3003206 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical archives * astronomical plates Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  17. AstroGrid-D: Enhancing Astronomic Science with Grid Technology

    OpenAIRE

    Enke, H.; Steinmetz, M.; Radke, T.; Reiser, A.; Röblitz, T.; Högqvist, M.

    2007-01-01

    We present AstroGrid-D, a project bringing together astronomers and experts in Grid technology to enhance astronomic science in many aspects. First, by sharing currently dispersed resources, scientists can calculate their models in more detail. Second, by developing new mechanisms to efficiently access and process existing datasets, scientific problems can be investigated that were until now impossible to solve. Third, by adopting Grid technology large instruments such as roboti...

  18. Despite Appearances, Cosmic Explosions Have Common Origin, Astronomers Discover

    Science.gov (United States)

    2003-11-01

    A Fourth of July fireworks display features bright explosions that light the sky with different colors, yet all have the same cause. They just put their explosive energy into different colors of light. Similarly, astronomers have discovered, a variety of bright cosmic explosions all have the same origin and the same amount of total energy. This is the conclusion of an international team of astronomers that used the National Science Foundation's Very Large Array (VLA) radio telescope to study the closest known gamma-ray burst earlier this year. Artist's conception of burst Artist's Conception of Twin Jets in Energetic Cosmic Explosion CREDIT: Dana Berry, SkyWorks Digital (Click on Image for Larger Version) "For some reason we don't yet understand, these explosions put greatly varying percentages of their explosive energy into the gamma-ray portion of their output," said Dale Frail, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. That means, he said, that both strong and weak gamma-ray bursts, along with X-ray flashes, which emit almost no gamma rays, are just different forms of the same cosmic beast. The research team reported their results in the November 13 issue of the scientific journal Nature. The scientists trained the VLA on a gamma-ray burst discovered using NASA's HETE-2 satellite last March 29. This burst, dubbed GRB 030329, was the closest such burst yet seen, about 2.6 billion light-years from Earth. Because of this relative proximity, the burst was bright, with visible light from its explosion reaching a level that could be seen in amateur telescopes. As the burst faded, astronomers noted an underlying distinctive signature of a supernova explosion, confirming that the event was associated with the death of a massive star. Since 1999, astronomers have known that the strong outbursts of gamma rays, X-rays, visible light and radio waves from these bursts form beams, like those from a flashlight, rather than spreading in all directions

  19. The Expansion of the Astronomical Photographic Data Archive at PARI

    Science.gov (United States)

    Cline, J. Donald; Barker, Thurburn; Castelaz, Michael

    2017-01-01

    A diverse set of photometric, astrometric, spectral and surface brightness data exist on decades of photographic glass plates. The Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI) was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format.In 2016, APDA expanded from 50 collections with about 220,000 plates to more than 55 collections and more than 340,000 plates and films. These account for more than 30% of all astronomical photographic data in the United States. The largest of the new acquisitions are the astronomical photographic plates in the Yale University collection. We present details of the newly added collections and review of other collections in APDA.

  20. How Much Mass Makes a Black Hole? - Astronomers Challenge Current Theories

    Science.gov (United States)

    2010-08-01

    Using ESO's Very Large Telescope, European astronomers have for the first time demonstrated that a magnetar - an unusual type of neutron star - was formed from a star with at least 40 times as much mass as the Sun. The result presents great challenges to current theories of how stars evolve, as a star as massive as this was expected to become a black hole, not a magnetar. This now raises a fundamental question: just how massive does a star really have to be to become a black hole? To reach their conclusions, the astronomers looked in detail at the extraordinary star cluster Westerlund 1 [1], located 16 000 light-years away in the southern constellation of Ara (the Altar). From previous studies (eso0510), the astronomers knew that Westerlund 1 was the closest super star cluster known, containing hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two thousand times the diameter of the Sun (as large as the orbit of Saturn). "If the Sun were located at the heart of this remarkable cluster, our night sky would be full of hundreds of stars as bright as the full Moon," says Ben Ritchie, lead author of the paper reporting these results. Westerlund 1 is a fantastic stellar zoo, with a diverse and exotic population of stars. The stars in the cluster share one thing: they all have the same age, estimated at between 3.5 and 5 million years, as the cluster was formed in a single star-formation event. A magnetar (eso0831) is a type of neutron star with an incredibly strong magnetic field - a million billion times stronger than that of the Earth, which is formed when certain stars undergo supernova explosions. The Westerlund 1 cluster hosts one of the few magnetars known in the Milky Way. Thanks to its home in the cluster, the astronomers were able to make the remarkable deduction that this magnetar must have formed from a star at least 40 times as massive as the Sun. As all the stars in Westerlund 1 have the same age, the star that

  1. Force That Increases at Larger Distance Has Some Psychological and Astronomical Evidence Supporting its Existence

    Science.gov (United States)

    Struck, James

    2011-09-01

    Force that Increases with distance is different than dark energy as I am arguing for existence of force based on psychological and astronomical bases. Hubble shift, doppler shift, comet return, quasar zoo and quasars and psychological evidence of interest in distant objects lends support to a force like gravity, nuclear, weak, strong, virtual, decay, biological, growth forces which increases its intensity with distance unlike gravity which decreases in intensity with distance. Jane Frances Back Struck contributed to this finding with her request that her grandparents have "perfect justice" even though her grandparents had died before she was born; interest increasing with distance from grandparents.

  2. European astronomers' successes with the Hubble Space Telescope*

    Science.gov (United States)

    1997-02-01

    American opposite number, John Bahcall, prefers to stress those quasar hosts that look like undisturbed galaxies. But the important thing is that we have wonderfully clear pictures to argue about. Quasar theories were mostly pure speculation before we had Hubble." The history of the elements Astronomers at the Hamburger Sternwarte use the Faint Object Spectrograph to analyse ultraviolet light from distant quasars, which they also examine by visible light from the ground. They trace the origin, through cosmic time, of elements like carbon, silicon and iron, from which planets and living things can be built. On its way to Hubble, the quasar light passes through various intervening galaxies and gas clouds, like the skewer of a kebab. Each object visited absorbs some of the quasar light, depending on the local abundances of the elements. As they detect more and more objects, Dieter Reimers and his colleagues form an impression of galaxies building up their stocks of elements progressively through time, by the alchemy of successive generations of stars. Apart from primordial hydrogen the second lightest element, helium, has also been abundant since the origin of the Universe. The first major discovery after Hubble's last refurbishment came from Peter Jakobsen of ESA's Space Science Department at Noordwijk, who detected ionized helium in the remote Universe, by the light of a very distant quasar, 0302-003. That was in January 1994, and since then Jakobsen has looked for the ionized helium using other quasars. He now suspects that this helium is nearly all gathered in clumps, rather than scattered freely through intergalactic space. If so, it greatly increases the estimates of the total mass of ordinary matter in the Universe. Through a lens to the early Universe Natural lenses scattered through the cosmos reveal distant galaxies, and make an astronomical tool for Richard Ellis of the Institute of Astronomy, Cambridge (UK). The strong gravity of an intervening cluster of galaxies

  3. Astronomical Data Integration Beyond the Virtual Observatory

    Science.gov (United States)

    Lemson, G.; Laurino, O.

    2015-09-01

    "Data integration" generally refers to the process of combining data from different source data bases into a unified view. Much work has been devoted in this area by the International Virtual Observatory Alliance (IVOA), allowing users to discover and access databases through standard protocols. However, different archives present their data through their own schemas and users must still select, filter, and combine data for each archive individually. An important reason for this is that the creation of common data models that satisfy all sub-disciplines is fraught with difficulties. Furthermore it requires a substantial amount of work for data providers to present their data according to some standard representation. We will argue that existing standards allow us to build a data integration framework that works around these problems. The particular framework requires the implementation of the IVOA Table Access Protocol (TAP) only. It uses the newly developed VO data modelling language (VO-DML) specification, which allows one to define extensible object-oriented data models using a subset of UML concepts through a simple XML serialization language. A rich mapping language allows one to describe how instances of VO-DML data models are represented by the TAP service, bridging the possible mismatch between a local archive's schema and some agreed-upon representation of the astronomical domain. In this so called local-as-view approach to data integration, “mediators" use the mapping prescriptions to translate queries phrased in terms of the common schema to the underlying TAP service. This mapping language has a graphical representation, which we expose through a web based graphical “drag-and-drop-and-connect" interface. This service allows any user to map the holdings of any TAP service to the data model(s) of choice. The mappings are defined and stored outside of the data sources themselves, which allows the interface to be used in a kind of crowd-sourcing effort

  4. SPHEREx: Science Opportunities for the Astronomical Community

    Science.gov (United States)

    Cooray, Asantha; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 microns. The survey will reach 18.3 AB mag (5 sigma) in R=41 filters, with R=135 coverage between 4.2 - 5.0 microns. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.4 billion galaxies, with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for most WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including 300 bright QSOs at z > 7 during the epoch of reionization, based on observational extrapolations. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx produces all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will show example science studies the broader astronomical community will be able to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software

  5. MOEMS devices designed and tested for astronomical instrumentation in space

    Science.gov (United States)

    Zamkotsian, Frederic; Noell, Wilfried

    2012-03-01

    Next-generation astronomical instrumentation for ground-based and space telescopes could use MOEMS devices. Among them, Multi-Object Spectrographs (MOS) are the major instruments for studying primary galaxies and remote and faint objects. A promising solution for the object selection system is the use of MOEMS devices such as micromirror arrays (MMA) which allow the remote control of the multi-slit configuration in real time. We are engaged in a European development of MMA for generating reflective slit masks. Prototypes of MMA with 2048 individually addressable micromirrors made of single-crystal silicon were successfully designed, fabricated and tested. 100×200μm2 micromirrors can be tilted by electrostatic actuation yielding 24° mechanical tilt-angle. The micromirrors were successfully actuated before, during and after cryogenic cooling at 162K. Line-column addressing for individual mirrors has also been demonstrated. We were also engaged in a technical assessment of using a 2048 × 1080 DMD from Texas Instruments for space applications. For a MOS in space, the device should work in vacuum and at low temperature. Our tests reveal that the DMD remains fully operational at -40°C and in vacuum. A 1038 hours life test in space survey conditions, Total Ionizing Dose radiation, thermal cycling and vibrations/shocks have also been successfully completed. These results do not reveal any show-stopper concerning the ability of the DMD to meet environmental space requirements. These developments and tests demonstrate the full ability of this type of components for space instrumentation, especially in multi-object spectroscopy applications.

  6. UVMULTIFIT: A versatile tool for fitting astronomical radio interferometric data

    Science.gov (United States)

    Martí-Vidal, I.; Vlemmings, W. H. T.; Muller, S.; Casey, S.

    2014-03-01

    Context. The analysis of astronomical interferometric data is often performed on the images obtained after deconvolving the interferometer's point spread function. This strategy can be understood (especially for cases of sparse arrays) as fitting models to models, since the deconvolved images are already non-unique model representations of the actual data (i.e., the visibilities). Indeed, the interferometric images may be affected by visibility gridding, weighting schemes (e.g., natural vs. uniform), and the particulars of the (non-linear) deconvolution algorithms. Fitting models to the direct interferometric observables (i.e., the visibilities) is preferable in the cases of simple (analytical) sky intensity distributions. Aims: We present UVMULTIFIT, a versatile library for fitting visibility data, implemented in a Python-based framework. Our software is currently based on the CASA package, but can be easily adapted to other analysis packages, provided they have a Python API. Methods: The user can simultaneously fit an indefinite number of source components to the data, each of which depend on any algebraic combination of fitting parameters. Fits to individual spectral-line channels or simultaneous fits to all frequency channels are allowed. Results: We have tested the software with synthetic data and with real observations. In some cases (e.g., sources with sizes smaller than the diffraction limit of the interferometer), the results from the fit to the visibilities (e.g., spectra of close by sources) are far superior to the output obtained from the mere analysis of the deconvolved images. Conclusions: UVMULTIFIT is a powerful improvement of existing tasks to extract the maximum amount of information from visibility data, especially in cases close to the sensitivity/resolution limits of interferometric observations.

  7. The Sensitization of French Observatory Directors to Astronomical Heritage

    Science.gov (United States)

    Le Guet Tully, Françoise; Davoigneau, Jean

    2012-09-01

    An inventory of the heritage of historical astronomical observatories was launched in the mid 1990s as part of a collaboration between the Ministry of Research and the Ministry of Culture. This has produced a significant body of knowledge not only on astronomical instruments, but also on the specificities of astronomical sites and on the architecture of observatories. Other major results of this operation are (i) the development of numerous works on the institutional history of observatories and (ii), at the request of a few directors, the protection as "historical monuments" of some buildings and of collections of instruments. Given that knowledge about astronomical heritage is a prerequisite for proper conservation and intelligent outreach, and given also that the protection of such heritage (as historical monuments) is a major asset that bolsters its cultural value, the long term sustainability of such heritage depends on political decisions and the search for financial support. We shall describe the complex administrative situation of French observatories and outline the various actions undertaken recently to sensitize their directors to astronomical heritage issues.

  8. What Astronomers and the AAS Need to be Doing to Curb Light Pollution

    Science.gov (United States)

    Green, D. W. E.

    2001-12-01

    Astronomers and especially the AAS are doing apalling little in the war on light pollution. This is quite surprising, considering that optical groundbased astronomy may become nearly extinct in the 21st century if we don't get more serious about the loss of our night skies to artificial lighting. Part of the blame must be placed on astronomers throughout the 20th century (particularly before 1980), as very few of them seem to have set an example by starting an early crusade against bad outdoor night lighting (save for a handful of important individuals near large U.S. observatories, and a few connected with smaller observatories); this apathy of earlier generations of astronomers fueled the current general apathy within the AAS and aided the opening of the floodgates in terms of the disastrous lighting situation now upon us in terms of drowning out the night sky. There are possible solutions, and they need to be discussed and acted upon quickly. For example, the AAS should require that all members include a useful amount (say, \\$30) in annual membership fees to be directly transmitted to the International Dark Sky Association, and the AAS should make constant visible strides to educate the public and government officials of the absolute need to reduce outdoor lighting levels and to fully shield all outdoor lighting. There are many other areas of research into outdoor lighting that the AAS should fund or officially/strongly support, so that the astronomical community can better be educated (and can better educate the public) on the evils of bad and thoughtless outdoor-lighting practices; such research includes developing a comprehensive database of national statistics on numbers and types of different outdoor lamps, as a function of time (thus, historical), and also a comprehensive database including all local, state, and federal lighting laws and ordinances together with legal court cases (and their outcomes) involving outdoor night lighting. And professional

  9. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects

    Science.gov (United States)

    2005-03-01

    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  10. Studying Aerosol Properties with Astronomical Observations Using a Scattered Moonlight Model

    Science.gov (United States)

    Jones, Amy; Noll, Stefan; Kausch, Wolfgang; Szyszka, Cezary; Kimeswenger, Stefan

    2013-04-01

    We are developing a new technique for monitoring the atmosphere with astronomical observations and our scattered moonlight model. This could be used to determine the size distributions and amounts of various aerosol particles. By taking the Moon as an illuminating source in sky observations, it is possible to iteratively find aerosol properties for a given time and location. There is a wealth of astronomical data over the last decade taken at Cerro Paranal in Chile where this technique can be applied. Our advanced scattered moonlight model is part of a sky radiance and transmission model developed for the Very Large Telescope of the European Southern Observatory. The moon model can calculate the amount of scattered moonlight present in a given astronomical observation based on the positions of the Moon and target, lunar phase, and atmospheric properties. This model is more physical than previous works in astronomy, which were almost completely empirical. For the original astronomical purpose, the model uses typical size distributions of remote continental tropospheric and stratospheric aerosols and the measured extinction curve from standard star observations to calculate the scattering and absorption of the moonlight to determine the amount of light that would eventually arrive to the telescope. Because the model incorporates the properties of the aerosols, in principle we can use this model with sky background observations to find the aerosol composition. The sky observations would first need to be analysed with our full sky model to calculate the other sky background components, and a derived extinction curve from standard star observations. Then with our moon model we could iteratively find the best aerosol composition for the data. This would require optical and near infrared spectra for an unique, optimized solution. This technique for studying aerosol properties would provide data from a new perspective. The investigated aerosols would be nocturnal, from a

  11. Astronomers Discover Most Massive Neutron Star Yet Known

    Science.gov (United States)

    2010-10-01

    Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered the most massive neutron star yet found, a discovery with strong and wide-ranging impacts across several fields of physics and astrophysics. "This neutron star is twice as massive as our Sun. This is surprising, and that much mass means that several theoretical models for the internal composition of neutron stars now are ruled out," said Paul Demorest, of the National Radio Astronomy Observatory (NRAO). "This mass measurement also has implications for our understanding of all matter at extremely high densities and many details of nuclear physics," he added. Neutron stars are the superdense "corpses" of massive stars that have exploded as supernovae. With all their mass packed into a sphere the size of a small city, their protons and electrons are crushed together into neutrons. A neutron star can be several times more dense than an atomic nucleus, and a thimbleful of neutron-star material would weigh more than 500 million tons. This tremendous density makes neutron stars an ideal natural "laboratory" for studying the most dense and exotic states of matter known to physics. The scientists used an effect of Albert Einstein's theory of General Relativity to measure the mass of the neutron star and its orbiting companion, a white dwarf star. The neutron star is a pulsar, emitting lighthouse-like beams of radio waves that sweep through space as it rotates. This pulsar, called PSR J1614-2230, spins 317 times per second, and the companion completes an orbit in just under nine days. The pair, some 3,000 light-years distant, are in an orbit seen almost exactly edge-on from Earth. That orientation was the key to making the mass measurement. As the orbit carries the white dwarf directly in front of the pulsar, the radio waves from the pulsar that reach Earth must travel very close to the white dwarf. This close passage causes them to be delayed in their arrival by the distortion of

  12. Advanced optical coatings for astronomical instrumentation

    Science.gov (United States)

    Pradal, Fabien; Leplan, Hervé; Vayssade, Hervé; Geyl, Roland

    2016-07-01

    Recently Safran Reosc worked and progressed on various thin film technology for: Large mirrors with low stress and stable coatings. Large lens elements with strong curvature and precise layer specifications. Large filters with high spectral response uniformity specifications. IR coatings with low stress and excellent resistance to cryogenic environment for NIR to LWIR domains. Pixelated coatings. Results will be presented and discussed on the basis of several examples.

  13. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance"

    Science.gov (United States)

    2009-12-01

    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  14. Profiling Some of the Lesser-Known Historical Women Astronomers

    Science.gov (United States)

    Pagnotta, Ashley

    2016-01-01

    Although some historical women astronomers such as Henrietta Swan Leavitt and Cecilia Payne Gaposchkin have recently become somewhat well known among the astronomical community, many others--especially those from non-Western cultures--remain a mystery even to those of us who are actively aware of and interested in the role of early women in astronomy. As part of a project to educate myself on some of these women, I started a blog series (http://ashpags.tumblr.com/tagged/lady-astronomers) to share this newfound knowledge with a population that is on average relatively young, extremely tech savvy, and generally would not consider themselves to be science-inclined. I will discuss some of the more interesting women I have profiled, as well as my observations on the efficacy of this method of history education.

  15. The Astronomer Alexander I. Postoiev (1900-1976)

    Science.gov (United States)

    Dos Santos, P. M.; Matsuura, O. T.

    This is a biographical note on the life of Dr Alexander I. Postoiev, a victim of Stalin's purge of Soviet astronomers in 1936-1937 (McCutcheon, 1985). Along with his family, he left the Soviet Union in 1943, and lived in Germany as a refugee and "displaced person" until 1952, when he moved to Brazil. Then he started the second part of his professional career. Thanks to his efforts the Astronomical and Geophysical Institute (IAG) from the University of Sao Paulo (USP) was involved, for the first time, in programme of international cooperation, thus contributing to the institutional consolidation of IAG/USP as a leading centre of astronomical research and teaching today in Brazil.

  16. Astronomical and Cosmological Aspects of Maya Architecture and Urbanism

    Science.gov (United States)

    Šprajc, I.

    2009-08-01

    Archaeoastronomical studies carried out so far have shown that the orientations in the ancient Maya architecture were, like elsewhere in Mesoamerica, largely astronomical, mostly referring to sunrises and sunsets on particular dates and allowing the use of observational calendars that facilitated a proper scheduling of agricultural activities. However, the astronomical alignments cannot be understood in purely utilitarian terms. Since the repeatedly occurring directions are most consistently incorporated in monumental architecture of civic and ceremonial urban cores, they must have had an important place in religion and worldview. The characteristics of urban layouts, as well as architectural and other elements associated with important buildings, reveal that the Maya architectural and urban planning was dictated by a complex set of rules, in which astronomical considerations related to practical needs were embedded in a broader framework of cosmological concepts substantiated by political ideology.

  17. Eminent Astronomers - Odessa University Graduates - In European Astronomy

    Science.gov (United States)

    Volyanskaya, M. Yu.

    1998-09-01

    A brief description of scientific activity of some eminent astronomers - graduates of the Odessa University named after I.I. Mechnikov (earlier - Novorossiiski University) in European astronomy is given: * Stratonov V.V. (1869-1938), professor, wellknown specialist in stellar astronomy, who was exiled abroad in 1992 among many scientists and writers, lived in Germany and Prague, where died; * Gansky A.P. (1870-1908) - famous investagator of the Sun, worked at the Meudon Observatory, ascended 9 times to Mount Blanc to make observations, was awarded by P.Z.C. Jansen medal of the Paris Academy of Sciences; * Donitch N.N. (1874-1956) - wellknown investigator of the Solar system, one of the first Romanian astronomers, a brilliant personality of the astronomical community of his time, a honorary member of the Romanian Academy of Sciences, died in Nice (France); * Zalesky Bogdan (1887-1927), specialist in astrometry, which became a wellknown astronomer in Poland. One of the founders and the first director of the University Observatory in Poznan; * Witkowsky Josef (1892- 1976) - specialist in astrometry, practical astronomy, and tidal phenomena studies, history of astronomy. Professor, Director of the Astronomical Centre in Poznan; *Stoiko N.M. ((1894-1976) - investigator of the irregularities of the Earth's rotation, the Earth's poles motions and the universal time determination. A member of many scientific societies. He was awarded by prizes of the Paris Academy of Sciences, of the French astronomical society, of the Royal Academy of Belgium. He worked at the Paris Observatory and was one of the Directors of the International Time Service; * Jardecky (Zhardecky) Vietcheslaw (1896-1962), worked at the Department of Mathematics of the Beograd University; eminent specialist in the field of Mechanics of Fluids; After the Second World War he emmigrated to the USA, Professor of Geophysics at the Columbia Univeristy (New York), where died.

  18. The Research Tools of the Virtual Astronomical Observatory

    Science.gov (United States)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO

    2013-01-01

    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  19. The Potential of Deep Learning with Astronomical Data

    Science.gov (United States)

    Schafer, Chad

    2017-06-01

    Modern astronomical surveys yield massive catalogs of noisy high-dimensional objects, e.g., images, spectra, and light curves. Valuable information stored in individual objects can be lost when ad hoc approaches of feature extraction are used in an effort to build data sets amenable to established data analysis tools. Deep learning procedures provide a promising avenue to enabling the use of data in their raw form and hence allowing both for estimates of greater accuracy and for novel discoveries with greater confidence. This talk will give an overview of deep learning and its potential in astronomical applications.

  20. Lunar dust - Implications for astronomical observatories

    Science.gov (United States)

    Johnson, Stewart W.; Chua, Koon M.; Burns, Jack O.; Slane, Frederic A.

    1991-01-01

    The properties, origins, and previous operational experiences with lunar dust are discussed, with emphasis on the implications for world-class astronomy on the moon. The mechanisms that may govern the behavior of the fine particles are suggested, and working hypotheses for mitigating the dust hazard are advanced. Future experiments, both on the moon and in terrestrial simulations, that will assist in establishing effective and suitable means of limiting deleterious effects of dust on observatory operations are outlined. Dust studies of components returned by Surveyor 3 are presented. The performance of laser retroreflectors under conditions of moon dust is discussed.

  1. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  2. Jan Hendrik Oort – A Complete Astronomer (1900 –1992)

    Indian Academy of Sciences (India)

    IAS Admin

    Jan Oort represented the spirit of modern astrophysics more than anyone in the last century. What sets the field of astrophysics apart from other branches of physics, is the sync between theory and observations, as well as the wide range of topics that astronomers work on. Oort's work ranged from the birth of comets to the ...

  3. Automatic optimized discovery, creation and processing of astronomical catalogs

    NARCIS (Netherlands)

    Buddelmeijer, Hugo; Boxhoorn, Danny; Valentijn, Edwin A.

    We present the design of a novel way of handling astronomical catalogs in Astro-WISE in order to achieve the scalability required for the data produced by large scale surveys. A high level of automation and abstraction is achieved in order to facilitate interoperation with visualization software for

  4. Leveraging data lineage to infer logical relationships between astronomical catalogs

    NARCIS (Netherlands)

    Buddelmeijer, Hugo; Valentijn, Edwin A.

    A novel method to infer logical relationships between sets is presented. These sets can be any collection of elements, for example astronomical catalogs of celestial objects. The method does not require the contents of the sets to be known explicitly. It combines incomplete knowledge about the

  5. Astronomical data fusion tool based on PostgreSQL

    Science.gov (United States)

    Han, Bo; Zhang, Yan-Xia; Zhong, Shou-Bo; Zhao, Yong-Heng

    2016-11-01

    With the application of advanced astronomical technologies, equipments and methods all over the world, astronomical observations cover the range from radio, infrared, visible light, ultraviolet, X-ray and gamma-ray bands, and enter into the era of full wavelength astronomy. How to effectively integrate data from different ground- and space-based observation equipments, different observers, different bands and different observation times, requires data fusion technology. In this paper we introduce a cross-match tool that is developed in the Python language, is based on the PostgreSQL database and uses Q3C as the core index, facilitating the cross-match work of massive astronomical data. It provides four different cross-match functions, namely: (I) cross-match of the custom error range; (II) cross-match of catalog errors; (III) cross-match based on the elliptic error range; (IV) cross-match of the nearest neighbor algorithm. The resulting cross-matched set provides a good foundation for subsequent data mining and statistics based on multiwavelength data. The most advantageous aspect of this tool is a user-oriented tool applied locally by users. By means of this tool, users can easily create their own databases, manage their own data and cross-match databases according to their requirements. In addition, this tool is also able to transfer data from one database into another database. More importantly, it is easy to get started with the tool and it can be used by astronomers without writing any code.

  6. Use of Astronomical Principles in Indian Temple Architecture

    Science.gov (United States)

    Shylaja, B. S.

    Temples, identified as places of worship, served an important role in building religious tradition and culture in Indian society. Many of them are known to have astronomical elements incorporated in their architecture to facilitate their role in timekeeping and calendar making. In this chapter, we present examples of the use of astronomy in temple architecture.

  7. Astronomy for Astronomical Numbers: A Worldwide Massive Open Online Class

    Science.gov (United States)

    Impey, Chris D.; Wenger, Matthew C.; Austin, Carmen L.

    2015-01-01

    Astronomy: State of the Art is a massive, open, online class (MOOC) offered through Udemy by an instructional team at the University of Arizona. With nearly 24,000 enrolled as of early 2015, it is the largest astronomy MOOC available. The astronomical numbers enrolled do not translate into a similar level of engagement. The content consists of 14…

  8. Paired and Interacting Galaxies: International Astronomical Union Colloquium No. 124

    Science.gov (United States)

    Sulentic, Jack W. (Editor); Keel, William C. (Editor); Telesco, C. M. (Editor)

    1990-01-01

    The proceedings of the International Astronomical Union Colloquium No. 124, held at the University of Alabama at Tuscaloosa, on December 4 to 7, are given. The purpose of the conference was to describe the current state of theoretical and observational knowledge of interacting galaxies, with particular emphasis on galaxies in pairs.

  9. Radio astronomical interferometry and x-ray's computerized tomography

    International Nuclear Information System (INIS)

    Rodriguez, L.F.

    1982-01-01

    Radio astronomical interferometry and computerized tomography are techniques of great importance for astronomy and medicine, respectively. In this paper we emphasize that both techniques are based on the same mathematical principles, and present them as an example of interaction between basic and applied science. (author)

  10. Factors Contributing to Lifelong Science Learning: Amateur Astronomers and Birders

    Science.gov (United States)

    Jones, M. Gail; Corin, Elysa Nicole; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    This research examined lifelong science learning reported by amateur astronomers and birders. One hundred seven adults who reported engaging in an informal (out-of-school) science interest were interviewed as part of an ongoing series of studies of lifelong science learners. The goal of the study was to gain insight into how and why amateur…

  11. Recent Advances for LGBT Astronomers in the United States

    Science.gov (United States)

    Dixon, William V.; Rigby, Jane; Oppenheimer, Rebecca

    2015-08-01

    The legal environment for lesbian, gay, bisexual, and transgender (LGBT) astronomers in the United States has changed dramatically in recent years. In 2013, the Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA), which had barred the federal government from recognizing same-sex marriages, was unconstitutional. This decision particularly affects astronomers, since astronomers in the U.S. are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In 2014, the Attorney General directed the Department of Justice to take the position in litigation that the protection of Title VII of the Civil Rights Act of 1964 extends to claims of discrimination based on an individual’s gender identity, including transgender status. Title VII makes it unlawful for employers to discriminate in the employment of an individual “because of such individual’s... sex,” among other protected characteristics. As of March 2015, more than 70% of the population lives in states that recognize same-sex marriage, and the Supreme Court is expected to rule on the constitutionality of the remaining same-sex marriage bans during the current term. In this poster, we discuss these advances and their implications for the personal and professional lives of LGBT astronomers across the United States.

  12. How did the Supreme Court ruling on DOMA affect astronomers?

    Science.gov (United States)

    Rigby, Jane R.; The AAS Working Group on LGBTIQ Equality

    2014-01-01

    In June 2013, the United States Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA) was unconstitutional. Section 3 had barred the federal government from recognizing same-sex marriages. The decision in United States v. Windsor, made headlines around the world, and particularly affected astronomers, since astronomers in the US are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In this poster, we highlight some of the real-world ways that the Windsor case has affected US astronomers and our profession. Bi-national couples can now apply for green cards granting permanent residency. Scientists who work for the federal government, including NASA and the NSF, can now obtain health insurance for a same-sex spouse. From taxes to death benefits, health insurance to daycare, immigration to ethics laws, the end of S3 of DOMA has had profoundly improved the lives of US scientists who are lesbian, gay, bisexual, or transgender (LGBT). Here we, highlight several real-world examples of how DOMA's demise has improved the lives and careers of US astronomer.

  13. Instrument Remote Control via the Astronomical Instrument Markup Language

    Science.gov (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  14. Education and Outreach with the Virtual Astronomical Observatory

    Science.gov (United States)

    Lawton, Brandon L.; Eisenhamer, B.; Raddick, M. J.; Mattson, B. J.; Harris, J.

    2012-01-01

    The Virtual Observatory (VO) is an international effort to bring a large-scale electronic integration of astronomy data, tools, and services to the global community. The Virtual Astronomical Observatory (VAO) is the U.S. NSF- and NASA-funded VO effort that seeks to put efficient astronomical tools in the hands of U.S. astronomers, students, educators, and public outreach leaders. These tools will make use of data collected by the multitude of ground- and space-based missions over the previous decades. Many future missions will also be incorporated into the VAO tools when they launch. The Education and Public Outreach (E/PO) program for the VAO is led by the Space Telescope Science Institute in collaboration with the HEASARC E/PO program and Johns Hopkins University. VAO E/PO efforts seek to bring technology, real-world astronomical data, and the story of the development and infrastructure of the VAO to the general public, formal education, and informal education communities. Our E/PO efforts will be structured to provide uniform access to VAO information, enabling educational opportunities across multiple wavelengths and time-series data sets. The VAO team recognizes that many VO programs have built powerful tools for E/PO purposes, such as Microsoft's World Wide Telescope, SDSS Sky Server, Aladin, and a multitude of citizen-science tools available from Zooniverse. We are building partnerships with Microsoft, Zooniverse, and NASA's Night Sky Network to leverage the communities and tools that already exist to meet the needs of our audiences. Our formal education program is standards-based and aims to give teachers the tools to use real astronomical data to teach the STEM subjects. To determine which tools the VAO will incorporate into the formal education program, needs assessments will be conducted with educators across the U.S.

  15. Astronomical Outreach Through Visual and Interactive Demonstrations

    Science.gov (United States)

    Jones, Ty R.; Morey, S. M.; Sanders, N. E.; DeCamp, S. J.

    2010-01-01

    Science Theatre is a science outreach program run by undergraduates at Michigan State University aimed to educate and excite the public about science. Currently the organization has created and is further developing an hour long presentation focusing on important concepts in astronomy such as solar system scale, phases of the moon, seasons, comets, and craters. In order to effectively engage K-12 students, Science Theatre will use visual and interactive demonstrations which break down the concepts into simple and easily accessible components that are modified in accordance with the age level and curriculum. For example, to teach students about the composition of a comet, Science Theatre performers will guide students through the construction of a small model comet using materials and a recipe provided by Science Theatre. The demonstrations are designed and documented so they may be performed by undergraduate volunteers at MSU, who may not have an extensive background in astronomy, with only limited training. Science Theatre will perform this show at no cost to schools across Michigan using materials and methods to which educators may not otherwise have access.

  16. Special astronomical configurations, solar activity and deep degassing as a trigger of natural hazards

    Science.gov (United States)

    Natyaganov, Vladimir; Syvorotkin, Vladimir; Fedorov, Valeriy; Shopin, Sergey

    2016-04-01

    Extraordinary cases of tectonic events (strong earthquakes, volcano eruptions), mine explosions, typhoons, hurricanes, tornado outbreak sequences, ball lightnings, transient luminous events are analyzed in relation with special astronomical configurations, which are specific relative positions of the Sun, Earth, Moon and the closest planets of the Solar System (Venus, Mars and Jupiter) [1]. Usage of special astronomical coordinate systems give evidence not only of correlations but also of hidden causes-and-effect relations between the analyzed phenomena. The geocentric ecliptic latitude system is an example of such astronomical coordinate systems. It gives clear evidence of coherence between strong earthquakes and the maximal Moon declination from the plane of the ecliptic. Extraordinary cases of planet activity from the beginning of XX century till the present time are shown in the years of special astronomical configurations and abrupt increasing of solar activity. According to the empirical scheme of short-term earthquake prediction [3], geomagnetic disturbances are the triggers of earthquakes. Geomagnetic disturbances perform electromagnetic pumping (electromagnetic excitation) of the Earth's interior in the regions of intersections of seismomagnetic meridians with the plate boundaries as a result of electrothermal breakdowns in the heterogeneous medium of tectonic faults. This results in the local intensification of deep degassing [4], decreasing of shear strength of the medium that triggers earthquakes usually after 2 or 3 weeks (±2 days) after the geomagnetic disturbance. Examples of officially registered predictions of Kamchatka earthquakes with M7+ without missing events, including deep-focus earthquakes in the Okhotsk Sea since the year of 2002, are shown. It is discussed correlations and possible cause-and-effect relations between a different phenomena such as - dangerous natural hazardous events such as the record tornado outbreak sequences in the USA

  17. The impact of astronomical forcing on the Late Devonian greenhouse climate

    Science.gov (United States)

    De Vleeschouwer, David; Crucifix, Michel; Bounceur, Nabila; Claeys, Philippe

    2014-05-01

    The geological record of the Paleozoic often exhibits cyclical or rhythmical characteristics, in many cases the result of cyclical changes in paleoclimate. However, a thorough understanding of the climatic processes that were driving Paleozoic climate change remains a challenge, for example because of relatively poor time-control on much of the Paleozoic paleoclimate archives. A good comprehension of the Paleozoic climate is crucial in order to grasp how the Earth's climate system works under conditions completely different than the ones of today. We apply Late Devonian (375 Ma) preconditions to the Hadley Centre general circulation model (HadSM3). In this work, we constrain the climatic steering role of the astronomical parameters, by keeping all other potential forcing factors (e.g. paleogeography, pCO2, vegetation distribution) fixed. Thirty-one different "snapshots" of Late Devonian climates were simulated, by running the model into steady-state with 31 different combinations of eccentricity, obliquity and precession. To assess the performance of the model, we confronted a simulated Late Devonian climate with a moderate astronomical forcing regime to lithic indicators of paleoclimate and oxygen-isotope paleothermometry. This model-data confrontation provides good comparison, indicating that the model succeeds in simulating reasonable climates for the Late Devonian. The different simulations demonstrate that the coldest and driest global climates occur under low obliquity and low eccentricity. Under low obliquity, northern hemispheric sea-ice can form and the Gondwanan winter snow cover reaches a maximal extent, triggering an albedo-feedback mechanism and thus global coolness. However, even those coolest global climates undergo too hot austral summers for continental ice to build up in the southern hemisphere. Tropical and monsoonal precipitation intensity demonstrates a strong direct dependence on precession-driven quantity of summer insolation. Temperature, on

  18. Investigating Student Understanding of the Universe: Perceptions of Astronomical Sizes and Distances

    Science.gov (United States)

    Camarillo, Carmelita; Coble, K.; Hayes, V.; Nickerson, M.; Cochran, G. L.; Bailey, J. M.; McLin, K. M.; Cominsky, L. R.

    2011-05-01

    Student perceptions regarding astronomical sizes and distances are being analyzed for Chicago State University's Basic Astronomy course. This area is of great interest to further understand the students’ learning processes and to produce more effective instruction. Insights from cognitive psychology have shown that perceptions are related to prior experiences and current knowledge. Students enter into this course with different mental representations, and these representations can affect their learning. Through a repeated measures design, perceptions are analyzed through several instruments. The instruments implemented are pre-tests surveys (before lab), exams (after lab), lab comments, and interviews. Preliminary analysis reveals that students who have difficulty with astronomical sizes and distances have been more strongly influenced by culture and the media whereas those who had less difficulty expanded on their personal prior experiences. This project is part of a larger study; also see our posters on the structure of the universe, dark matter, the age and expansion of the universe. This work was supported by NASA ROSES E/PO Grant #NNXlOAC89G, as well as by the Illinois Space Grant Consortium and National Science Foundation CCLI Grant #0632563 at Chicago State University and the Fermi E/PO program at Sonoma State University.

  19. Catching Stardust and Bringing it Home: The Astronomical Importance of Sample Return

    Science.gov (United States)

    Brownlee, D.

    2002-12-01

    The return of lunar samples by the Apollo program provided the first opportunity to perform detailed laboratory studies of ancient solid materials from a known astronomical body. The highly detailed study of the samples, using the best available laboratory instruments and techniques, revolutionized our understanding of the Moon and provided fundamental insight into the remarkable and violent processes that occur early in the history of moons and terrestrial planets. This type of astronomical paleontology is only possible with samples and yet the last US sample return was made by Apollo 17- over thirty years ago! The NASA Stardust mission, began a new era of sample missions with its 1999 launch to retrieve samples from the short period comet Wild 2. Genesis (a solar wind collector) was launched in 2001, the Japanese MUSES-C asteroid sample return mission will launch in 2003 and Mars sample return missions are under study. All of these missions will use sophisticated ground-based instrumentation to provide types of information that cannot be obtained by astronomical and spacecraft remote sensing methods. In the case of Stardust, the goal is to determine the fundamental nature of the initial solid building blocks of solar systems at atomic-scale spatial resolution. The samples returned by the mission will be samples from the Kuiper Belt region and they are probably composed of submicron silicate and organic materials of both presolar and nebular origin. Unlocking the detailed records contained in the elemental, chemical, isotopic and mineralogical composition of these tiny components can only be appropriately explored with full power, precision and flexibility of laboratory instrumentation. Laboratory instrumentation has the advantage that is state-of-the-art and is not limited by serious considerations of power, mass, cost or even reliability. The comparison of the comet sample, accumulated beyond Neptune, with asteroidal meteorites that accumulated just beyond the

  20. Top astronomers head to the city. Experts to talk on exciting quasar discoveries.

    CERN Multimedia

    Grant, S

    2002-01-01

    The UK National Astronomy Meeting - NAM 2002 - is at Bristol University this week. The meeting is one of the most important regular gatherings of astronomers in the UK. Sponsored by the Royal Astronomical Society and PPARC, it should attract about 300 astronomers from the UK and beyond.

  1. Astronomical control on climate and vegetation history at the Triassic-Jurassic transition

    Science.gov (United States)

    Ruhl, Micha; Bonis, Nina R.; Deenen, Martijn H. L.; Abels, Hemmo A.; Krijgsman, Wout; Kurschner, Wolfram M.

    2010-05-01

    The end-Triassic mass extinction (~201.5 Ma), marked by major terrestrial ecosystem changes and a 50% loss in marine biodiversity, closely coincides with the onset of intensified volcanic activity in the Central Atlantic Magmatic Province (CAMP), the largest igneous province on earth. The end-Triassic environmental crisis is followed by successive recovery in the early Jurassic Hettangian stage. However, accurate timing of events is poorly constrained. Here we present combined chemical and biological proxy records and field observations, covering the uppermost Triassic and lower Jurassic marine successions of St. Audrie's Bay and East Quantoxhead (UK). A floating astronomical time-scale of ~2.5 Myr has been constructed based on the recognition of ~100-kyr eccentricity cycles. Individual black shale occurrences are interpreted to reflect precession-controlled changes in monsoon intensity. Gaseous CO2 release by the increased volcanic activity strongly enhanced greenhouse warming and likely caused a shift from a diverse gymnosperm vegetation to a monotonous Cheirolepidiaceous conifer vegetation. Vegetation distribution at the Triassic-Jurassic transition was likely influenced by the strong temperature and humidity gradient from the oceans to the interior of Pangea. Vegetation cover was mostly situated in coastal regions, with the inlands being more arid. Strong eccentricity-scale paced increases in pollen concentrations suggest the inland expansion of Cheirolepidiaceous vegetation cover, which is likely caused by intensified monsoon activity. Our palynological data further shows precession-scale paced peaks in spore abundance during the mass extinction interval, suggesting astronomical forcing of the hydrological cycle under extreme climatic conditions.

  2. Light Pollution: A Primer for Astronomers to Engage in Teaching and Outreach

    Science.gov (United States)

    Caton, Daniel Bruce

    2018-01-01

    Most astronomers are familiar with the basic problem of light pollution but may not have explored how to teach their students about the problem or to inform officials in their community in order to help mitigate the problem. Indeed, many professional and amateur astronomers leave their light-polluted community to observe the sky from dark research observatories and rural star parties,, and then return to take no action to alleviate and reduce the light pollution in their own community. This is not a sustainable approach, and eventually this will lead to fewer sites to do their observations.In this presentation we give the basics of the problem and provide information on effective solutions. A link will be provided to download a sample PowerPoint, with Notes providing guidance to edit it to include images of both good and bad lighting in their own community. This can be shown to students as part of introductory astronomy and observational techniques courses, so the students might be able to help their with the problem in their own communities. Indeed this may satisfy curriculum requirements as a component of sustainable development. It may also be presented to local planning and permitting officials to develop at least a simple outdoor lighting ordinance.

  3. The PACA Project: When Amateur Astronomers Become Citizen Scientists

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-12-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  4. Assessing the influence of astronomical phenomena on the Earth's biosphere

    Science.gov (United States)

    Feng, F.; Bailer-Jones, C. A. L.

    2012-09-01

    The fossil record suggests that biodiversity has varied considerably over Phanerozoic eon (past 550 Myr). Some claim the presence of a periodic component in this variation [8,9], which could be caused by some astronomical mechanism related to Sun's orbit through the Galaxy [3-5]. The periodic component supposedly arises from the (quasi)-periodic motion of the Sun about the Galactic plane and/or through the spiral arms. However, many researchers have pointed out that methods used to analyze the data and even the data themselves are problematic [1, 6, 10]. In order to assess the plausibility of the Sun's orbit modulating biodiversity, we have first studied the stability of its periodic motion. Second, assuming that the extinction rate is proportional to the local stellar density (implying some non-specific extinction mechanism), we assess how well different dynamical models of the solar orbit can explain the fossil record. For the first task, we test the sensitivity of the periodicity of the solar orbit to initial conditions and parameters of the Galactic potential model, in order to test claims that the solar orbit could produce periodic extinctions at all. We adopt the Galactic potential model of [4] and the logarithmic spiral arm model of [11] with a pattern speed given in [7] (Figure 1). We then produce a large sample of orbits by perturbing the initial conditions. We find that a strict periodic orbit arises only when there is an exact circular orbit, or at specific values of the initial conditions which give rise to a resonance between the perpendicular and azimuthal motions. The periods of these two kinds of orbits are determined primarily by the initial radius, R(t = 0), and initial angular velocity. ˙φ(t = 0), if we fix the other model parameters. However, we do find that about 90% of orbits have plane-crossing aperiodicities less than 10% (Figure 2). So while a strict periodicity is unlikely, a quasi-periodicity is likely. Second, to assess the influence

  5. Astronomers celebrate a year of new Hubble results

    Science.gov (United States)

    1995-02-01

    "We are beginning to understand that because of these observations we are going to have to change the way we look at the Universe," said ESA's Dr Duccio Macchetto, Associate Director for Science Programs at the Space Telescope Science Institute (STScI), Baltimore, Maryland, USA. The European Space Agency plays a major role in the Hubble Space Telescope programme. The Agency provided one of the telescope's four major instruments, called the Faint Object Camera, and two sets of electricity-generating solar arrays. In addition, 15 ESA scientific and technical staff work at the STScI. In return for this contribution, European astronomers are entitled to 15 percent of the telescope's observing time, although currently they account for 20 percent of all observations. "This is a testimony to the quality of the European science community", said Dr Roger Bonnet, Director of Science at ESA. "We are only guaranteed 15 percent of the telescope's use, but consistently receive much more than that." Astronomers from universities, observatories and research institutes across Europe lead more than 60 investigations planned for the telescope's fifth observing cycle, which begins this summer. Many more Europeans contribute to teams led by other astronomers. Looking back to the very start of time European astronomer Dr Peter Jakobsen used ESA's Faint Object Camera to confirm that helium was present in the early Universe. Astronomers had long predicted that 90 percent of the newly born Universe consisted of hydrogen, with helium making up the remainder. Before the refurbished Hubble came along, it was easy to detect the hydrogen, but the primordial helium remained elusive. The ultraviolet capabilities of the telescope, combined with the improvement in spatial resolution following the repair, made it possible for Dr Jakobsen to obtain an image of a quasar close to the edge of the known Universe. A spectral analysis of this picture revealed the quasar's light, which took 13 billion years

  6. ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Fumihiko; Hasegawa, Sunao; Matsuhara, Hideo [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara 252-5210 (Japan); Kasuga, Toshihiro [Public Relations Center, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, San 56-1, Shillim-dong Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata-cho, Asakuchi, Okayama 719-0232 (Japan); Mueller, Thomas G. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Ootsubo, Takafumi, E-mail: usui@ir.isas.jaxa.jp [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2013-01-01

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAs brighter than the absolute magnitude of H < 10.3, which corresponds to the diameter of d > 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the

  7. AstroNomical Information System at CeSAM

    Science.gov (United States)

    Gimenez, S.; Moreau, C.; Agneray, F.; Roehlly, Y.

    2014-05-01

    AstroNomical Information System (ANIS), developed by the Centre de donnéeS Astrophysique de Marseille (CeSAM), is a generic tool aimed at facilitating and homogenizing the implementation of astronomical data of various kinds and in dedicated Information Systems. ANIS provides high level services like: search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces, as well as download of catalogs and complete datasets. With ANIS, the CeSAM offers web access to VO compliant Information Systems for different projects VVDS, HeDAM, ExoDat, HST-COSMOS, etc.), including ancillary data that are cross-matched before ingestion.

  8. Unveiling galaxies the role of images in astronomical discovery

    CERN Document Server

    Roy, Jean-René

    2017-01-01

    Galaxies are known as the building blocks of the universe, but arriving at this understanding has been a thousand-year odyssey. This journey is told through the lens of the evolving use of images as investigative tools. Initial chapters explore how early insights developed in line with new methods of scientific imaging, particularly photography. The volume then explores the impact of optical, radio and x-ray imaging techniques. The final part of the story discusses the importance of atlases of galaxies; how astronomers organised images in ways that educated, promoted ideas and pushed for new knowledge. Images that created confusion as well as advanced knowledge are included to demonstrate the challenges faced by astronomers and the long road to understanding galaxies. By examining developments in imaging, this text places the study of galaxies in its broader historical context, contributing to both astronomy and the history of science.

  9. Cryogenic Capacitive Transimpedance Amplifier for Astronomical Infrared Detectors

    Science.gov (United States)

    Nagata, H.; Shibai, H.; Hirao, T.; Watabe, T.; Noda, M.; Hibi, Y.; Kawada, M.; Nakagawa, T.

    2004-02-01

    We have developed a new capacitive transimpedance amplifier (CTIA) that can be operated at 2 K, and have good performance as readout circuits of astronomical far-infrared array detectors. The circuit design of the present CTIA consists of silicon p-MOSFETs and other passive elements. The process is a standard Bi-CMOS process with 0.5$mu$m design rule. The open-loop gain of the CTIA is more than 300, resulting in good integration performance. The output voltage swing of the CTIA was 270 mV. The power consumption for each CTIA is less than 10$mu$W. The noise at the output showed a$1/rm f$noise spectrum of 4$mu$V/$surdhbox Hz$at 1 Hz. The performance of this CTIA nearly fulfills the requirements for the far-infrared array detectors onboard ASTRO-F, Japanese infrared astronomical satellite to be launched in 2005.

  10. Astrophysics is easy! an introduction for the amateur astronomer

    CERN Document Server

    Inglis, Mike

    2007-01-01

    With some justification, many amateur astronomers believe astrophysics is a very difficult subject, requiring at least degree-level mathematics to understand it properly. This isn’t necessarily the case. Mike Inglis' quantitative approach to the subject explains all aspects of astrophysics in simple terms and cuts through the incomprehensible mathematics with which this fascinating subject is all too often associated. Astrophysics is Easy! begins by looking at the H-R diagram and other basic tools of astrophysics, then ranges across the universe, from a first look at the interstellar medium and nebulae, through the birth, evolution and death of stars, to the physics of galaxies and clusters of galaxies. A unique feature of this book is the way that Dr. Inglis lists example objects for practical observation at every stage, so that practical astronomers can go and look at the object or objects under discussion – using only easily-available commercial amateur equipment.

  11. A Further Survey of Multiple Authorship in the Astronomical Literature

    Science.gov (United States)

    Smith, Graeme H.

    2017-11-01

    Authorship trends within the astronomical community have been studied using data drawn from the publication records of 12 refereed journals. The period covered by the study is 1991-2015. Across all journals, the annual fraction of papers with one or two authors has decreased with time, typically accompanied by an increased propensity for papers to have six or more co-authors. There is considerable variability in the behavior of three-to-five author papers. Reports on instrumentation developments within Publications of the Astronomical Society of the Pacific (PASP), a journal that places specific emphasis on publishing instrumentation papers, have a higher number of authors than average. The trends away from one-to-two author papers and toward papers with six or more authors show no correlation with either the annual number of papers per journal or the geographical diversity of the contributing author pools.

  12. C++, objected-oriented programming, and astronomical data models

    Science.gov (United States)

    Farris, A.

    1992-01-01

    Contemporary astronomy is characterized by increasingly complex instruments and observational techniques, higher data collection rates, and large data archives, placing severe stress on software analysis systems. The object-oriented paradigm represents a significant new approach to software design and implementation that holds great promise for dealing with this increased complexity. The basic concepts of this approach will be characterized in contrast to more traditional procedure-oriented approaches. The fundamental features of objected-oriented programming will be discussed from a C++ programming language perspective, using examples familiar to astronomers. This discussion will focus on objects, classes and their relevance to the data type system; the principle of information hiding; and the use of inheritance to implement generalization/specialization relationships. Drawing on the object-oriented approach, features of a new database model to support astronomical data analysis will be presented.

  13. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (Abstract)

    Science.gov (United States)

    Goldbaum, J.

    2017-12-01

    (Abstract only) The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  14. Astronomically speaking a dictionary of quotations on astronomy and physics

    CERN Document Server

    Gaither, CC

    2003-01-01

    To understand the history, accomplishments, failures, and meanings of astronomy requires a knowledge of what has been said about astronomy by philosophers, novelists, playwrights, poets, scientists, and laymen. With this in mind, Astronomically Speaking: A Dictionary of Quotations on Astronomy and Physics serves as a guide to what has been said about astronomy through the ages. Containing approximately 1,550 quotations and numerous illustrations, this resource is the largest compilation of astronomy and astrophysics quotations published to date.Devoted to astronomy and the closely related areas of mathematics and physics, this resource helps form an accurate picture of these interconnected disciplines. It is designed as an aid for general readers with little knowledge of astronomy who are interested in astronomical topics. Students can use the book to increase their understanding of the complexity and richness that exists in scientific disciplines. In addition, experienced scientists will find it as a handy s...

  15. Keeping the Biographical Encyclopedia of Astronomers Relevant for a Generation

    Science.gov (United States)

    Rothenberg, Marc

    2017-01-01

    The Biographical Encyclopedia of Astronomers is a magnificent accomplishment, but like all such compilations, it faces potentially rapid obsolescence. Relying on my experience as an encyclopedia editor and a contributor to more than 20 other biographical reference works, I will highlight potential pitfalls for the BEA in the future and suggest ways in which the publisher can ensure that the BEA will continue to remain relevant for a generation.

  16. The Organization and Management of the Virtual Astronomical Observatory

    Science.gov (United States)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  17. Astronomers Travel in Time and Space with Light

    Science.gov (United States)

    Mather, John C.

    2016-01-01

    This is an excerpt of John Mather's in a book titled: INSPIRED BY LIGHT, Reflections from the International Year of Light 2015. It was produced in January 2016 by SPIE, the European Physical Society (EPS), and The Abdus Salam International Centre for Theoretical Physics (ICTP) to commemorate the International Year of Light and Light-based Technologies 2015. The excerpt discusses how astronomers use light.

  18. The Astronomical Orientation of the Urban Plan of Alexandria

    OpenAIRE

    Luisa, Ferro; Giulio, Magli

    2012-01-01

    Alexander the Great founded Alexandria in 331 BC. The newly founded town was conceived as an orthogonal grid based on a main longitudinal axis, later called Canopic Road. We analyse here the astronomical orientation of the project and propose that the main axis was deliberately oriented towards the rising sun on the day of birth of Alexander the Great. The argument is admittedly speculative as any Archaeoastronomy argument not backed up by written sources. However, it is nested accurately int...

  19. Observing the Moon: The Modern Astronomer's Guide, Second Edition

    Science.gov (United States)

    Vickers, Martin

    2009-05-01

    Even before the ancient Greeks invented optical lenses, humans peered into the heavens with wonder. Notable figures such as Galileo and Isaac Newton are among the more famous astronomers who have helped humanity understand the solar system and our place within it. The study of the Moon has enhanced our understanding of the solar system, including our own planet. The Moon, in addition to being a fascinating feature in the night sky, has prompted great works of art and literature the world over.

  20. The Panchasiddhhantika : The Astronomical Work of Varaha Mihira

    Science.gov (United States)

    Thibaut, G.; Dvivedi, Mahamahopadhyaya Sudhakara

    The lamentable state of the text as appearing in the two original manuscripts (of Varah Mihira) at the disposal of the authors, was a lesser problem then the greater disadvantage under which they laboured with the absence of a commentary. Commentaries can be hardly done without in the case of any Sanskrit astronomical work; much less so, when the text, as that of the Panchasiddhantika, describes many mathematical processes more or less diverging from those commonly employed.

  1. A Mythological, Philosophical and Astronomical approach of our solar system

    Science.gov (United States)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  2. Restoration of multitemporal short-exposure astronomical images

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Šimberová, Stanislava

    2005-01-01

    Roč. 3540,- (2005), s.1037-1046 ISSN 0302-9743. [SCIA 2005 /14./. Lappeenranta, 19.06.2005-22.06.2005] R&D Projects: GA AV ČR IAA2075302; GA ČR GA102/04/0155; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : astronomical image restoration * spatial probabilistic models Subject RIV: BD - Theory of Information

  3. Period Estimation in Astronomical Time Series Using Slotted Correntropy

    OpenAIRE

    Huijse, Pablo; Estévez, Pablo A.; Zegers, Pablo; Príncipe, José; Protopapas, Pavlos

    2011-01-01

    In this letter, we propose a method for period estimation in light curves from periodic variable stars using correntropy. Light curves are astronomical time series of stellar brightness over time, and are characterized as being noisy and unevenly sampled. We propose to use slotted time lags in order to estimate correntropy directly from irregularly sampled time series. A new information theoretic metric is proposed for discriminating among the peaks of the correntropy spectral density. The sl...

  4. A Case of Racial Discrimination: Azeglio Bemporad, Astronomer Poet

    Science.gov (United States)

    Mangano, A.

    2015-04-01

    The stories from our archives do not only speak of scientific progress, tools, and data, but also of the events of the astronomers as men, and how their work is intertwined in their private, political, and social life. In the case of Azeglio Bemporad, who worked at Catania Astrophysical Observatory until 1938, year of purge against Jews in Italy, the painful history of Fascism fully enters our scientific institutions, changing the life of a person who had never dealt with politics.

  5. Skype Me! Astronomers, Students, and Cutting-Edge Research

    Science.gov (United States)

    Hickox, Ryan C.; Gauthier, Adrienne J.

    2014-06-01

    A primary goal of many university science courses is to promote understanding of the process of contemporary scientific inquiry. One powerful way to achieve this is for students to explore current research and then interact directly with the leading scientist, the feasibility of which has recently increased dramatically due to free online video communication tools. We report on a program implemented at Dartmouth College in which students connect with a guest astronomer through Skype (video chat). The Skype session is wrapped in a larger activity where students explore current research articles, interact with the astronomer, and then reflect on the experience. The in-class Skype discussions require a small time commitment from scientists (20-30 minutes, with little or no need for preparation) while providing students direct access to researchers at the cutting edge of modern astronomy. We outline the procedures used to implement these discussions, and present qualitative assessments of student's understanding of the process of research, as well as feedback from the guest astronomers.

  6. National and international astronomical activities in Chile 1849--2002

    Science.gov (United States)

    Duerbeck, H. W.

    2003-03-01

    At all times and in many ways, Chilean astronomy has been influenced externally, either by astronomical expeditions from other parts of the world, or by astronomers that immigrated from other countries. We outline the history of the Chilean National Observatory, beginning with its origins out of Gilliss' US Naval Expedition to the Southern Hemisphere, over its directors Moesta, Vergara, Obrecht, Ristenpart to the middle of the 20th century, as well as the astronomical development at the Universidad Católica. In addition, various international expeditions, which aimed at observations of solar eclipses, the Venus transit of 1882, and the Mars opposition of 1907, were carried out. While a major photometric project of Harvard Observatory was active for only six weeks in the north of Chile, the spectroscopic Mills expedition of Lick Observatory in Santiago lasted several decades, and the solar observatory of the Smithsonian Astrophysical Observatory near Calama even longer. Finally we give a brief overview of the evolution and the actual state of the international observatories Cerro Tololo, La Silla, Paranal, and Las Campanas.

  7. Using Distributed Sensor Network Architecture to Link Heterogeneous Astronomical Assets

    Science.gov (United States)

    White, R.; Evans, S.; Pergande, J.; Vestrand, W.; Wozniak, P.; Wren, J.

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in this type of instrumentation. Here we present the Telescope ALert Operations Network System (TALONS), a network software suite that allows intercommunication between external and internal astronomical resources and controls the distribution of information to each of the resources. TALONS is an fundamental element of the Thinking Telescopes System, in operation at Los Alamos National Laboratory, and has been enabling great science for the past four years. The system allows a distributed network of telescopes to perform more efficiently in synchronous operation than as individual instruments. TALONS is designed as a merger between a standard server/client architecture and a Distributed Sensor Network (DSN). It can dynamically regulate its client base, allowing any number of heterogeneous resources to be linked together and communicate. TALONS couples that capability with collaborative analysis and maintenance modules so that it can respond quickly to external requests and changing network environments. TALONS clients connect via an intelligent agent, which acts in proxy for the scientist, allowing the telescope to analyze incoming information and respond autonomously. TALONS has a proven track record of effectively supporting the instruments at Los Alamos and other astronomical resources around the world.

  8. The War's Positive Impact on the Canadian Astronomical Community

    Science.gov (United States)

    Broughton, Peter

    2015-01-01

    At the beginning of WWI, the Canadian astronomical community was tiny and astrophysical research was just beginning. By the end of the war, the country had established the forerunner of its National Research Council and had the world's largest fully operational telescope, thanks to the late entry of the USA into the conflict. By 1918, Canada was on the verge of making significant contributions to science.In spite of the immense loss of life in this pointless war, I am aware of only one casualty affecting Canadian professional astronomers, and that was the indirect death of James Chant, son of University of Toronto's only professor of astronomy. Other Canadian astronomers, including Tom Parker, Bert Topham, and Harry Plaskett were on active service; each of their stories is unique.Among those engaged in scientific work during the war were two Canadians temporarily in England: John McLennan whose helium research for dirigibles led him to establish a cryogenic lab in Toronto where the green line in the spectrum of the aurora was identified in 1925, and Allie Douglas who worked as a statistician in the War Office. Later work with Eddington led her to become his biographer and to her distinction as the first person in Canada to earn a PhD in astronomy (in 1926).

  9. American Zodiac: Astronomical signs in Dickinson, Melville, and Poe

    Science.gov (United States)

    Ricca, Bradley James

    2003-11-01

    Science and literature, two means of inquiry now thought in opposition (if not posed as outright contradiction) emerged for a moment in the nineteenth century as provocatively complimentary in their methods of reading. In America, astronomy in particular provided a rich, complex subject for writers of the imagination to think about in terms of content and methodology. The purpose of my study is to uncover these unacknowledged astronomical referents in the works of Emily Dickinson, Herman Melville, and Edgar Allan Poe, and engage them as interpretive contexts in new readings of their most esoteric projects; specifically, Dickinson's solstice and circumference poetry, the Plinlimmon pamphlet in Melville's Pierre, and Poe's Eureka. After providing historical context through the shared public experience of the 1833 Leonid Meteor Storm, I uncover several astronomical and scientific sources for these writers: Denison Olmsted for Dickinson; Gauss and Plotinus for Melville; and Kepler and Alexander von Humboldt for Poe, among others. Exploring these sources in close readings of their works, I find that these authors employ astronomical facts in very different, metaphorical ways in response to the larger challenge of navigating their own poetics between the emerging new laws of science and the immeasurability of human feeling evoked by the unknown Universe.

  10. The Growth of Interest in Astronomical X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Frédéric Marin

    2018-03-01

    Full Text Available Astronomical X-ray polarimetry was first explored in the end of the 1960s by pioneering rocket instruments. The craze arising from the first discoveries of stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters to early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled with long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000s, observing astronomical X-ray polarization has become feasible, and scientists are now ready to explore our high-energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (rockets, balloons, and satellites will create new observational opportunities. Interest in astronomical X-ray polarimetry field has thus been renewed, and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of this interest.

  11. Breakthrough! 100 astronomical images that changed the world

    CERN Document Server

    Gendler, Robert

    2015-01-01

    This unique volume by two renowned astrophotographers unveils the science and history behind 100 of the most significant astronomical images of all time. The authors have carefully selected their list of images from across time and technology to bring to the reader the most relevant photographic images spanning all eras of modern astronomical history.    Based on scientific evidence today we have a basic notion of how Earth and the universe came to be. The road to this knowledge was paved with 175 years of astronomical images acquired by the coupling of two revolutionary technologies – the camera and telescope. With ingenuity and determination humankind would quickly embrace these technologies to tell the story of the cosmos and unravel its mysteries.   This book presents in pictures and words a photographic chronology of our aspiration to understand the universe. From the first fledgling attempts to photograph the Moon, planets, and stars to the marvels of orbiting observatories that record the cosmos a...

  12. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  13. Strong Cosmic Censorship

    Science.gov (United States)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  14. Spectral atlas for amateur astronomers a guide to the spectra of astronomical objects and terrestrial light sources

    CERN Document Server

    Walker, Richard

    2017-01-01

    Featuring detailed commented spectral profiles of more than one hundred astronomical objects, in colour, this spectral guide documents most of the important and spectroscopically observable objects accessible using typical amateur equipment. It allows you to read and interpret the recorded spectra of the main stellar classes, as well as most of the steps from protostars through to the final stages of stellar evolution as planetary nebulae, white dwarfs or the different types of supernovae. It also presents integrated spectra of stellar clusters, galaxies and quasars, and the reference spectra of some terrestrial light sources, for calibration purposes. Whether used as the principal reference for comparing with your recorded spectra or for inspiring independent observing projects, this atlas provides a breathtaking view into our Universe's past. The atlas is accompanied and supplemented by Spectroscopy for Amateur Astronomers, which explains in detail the methods for recording, processing, analysing and interp...

  15. ASTRONOMICAL CALIBRATION OF THE UPPER LANGHIAN/LOWERSERRAVALLIAN RECORD OF RAS IL PELLEGRIN SECTION (MALTA ISLAND, CENTRAL MEDITERRANEAN

    Directory of Open Access Journals (Sweden)

    MARIO SPROVIERI

    2002-07-01

    Full Text Available A high-resolution geochemical and micropaleontological data set has been obtained from the uppermost Langhian/lower Serravallian marly sediments of the Ras il Pellegrin section (Malta Island. A combination of the recorded stratal organization with the results of spectral analyses performed on CaCO3 data and faunal signals shows a dominance of the classic Milankovitch periodicities as modulating forcing of the studied succession. The application of band-pass filters allowed us to select the different Milankovitch frequencies (precession, obliquity and short- and long-eccentricity from the original faunal and geochemical signals and to compare them with the same components of the astronomical curve. The reliability of the short-term astronomical tuning has been tested by using the larger-order cyclicity (100-400 kyr as control. The good match of the different records with the selected insolation curve is consistent with the results of the cross-spectral analysis showing high coherency values in all the considered frequency bands. The calibration provided astronomical ages for the sedimentary cycles and consequently for all the bioevents recorded in the section. In particular, an age of 13.59 Ma has been obtained for the last occurrence (LO of Sphenolitus heteromorphus, at present considered the best bioevent useful for recognizing the Langhian/Serravallian boundary. Moreover, an age of 12.62 Ma has been obtained for the first occurrence (FO of Paragloborotalia partimlabiata. 

  16. The caracol tower at chichen itza: an ancient astronomical observatory?

    Science.gov (United States)

    Aveni, A F; Gibbs, S L; Hartung, H

    1975-06-06

    Although our investigations reveal a number of significant astronomical events coinciding with many of the measured alignments presented in Table 1, not every alignment appears to have an astronomical match which we can recognize. It may be that only some of the sighting possibilities we have discussed were actually functional. Moreover, our search of significant astronomical events to match the alignments has included only those which seem of obvious functional importance to us: sun, moon, and planetary extremes and the setting positions of the brightest stars. We have emphasized those celestial bodies which are documented in the literature as having been of importance. Perhaps hitherto unrecognized constellations were sighted in the windows, perhaps fainter stars, the heliacal rising and setting times of which could have served to mark important dates in the calendar. While we propose no grand cosmic scheme for the astronomical design of the Caracol it can be inferred that the building, apart from being a monument related to Quetzalcoatl, was erected primarily for the purpose of embodying in its architecture certain significant astronomical event alignments, in the same sense that a modern astronomical ephemeris exhibits information of importance to us in the keeping of the current calendar. There are examples in the Mesoamerican historical literature of deliberate attempts to align buildings with astronomical directions of importance. For example, Maudslay (33) quotes Father Motolinia, who tells us that in Tenochtitlan the festival called Tlacaxipeualistli "took place when the sun stood in the middle of Huicholobos, which was at the equinox, and because it was a little out of the straight, Montezuma wished to pull it down and set it right." According to Maudslay, worshipers were probably facing east to watch the sun rise between the two oratories on the Great Temple of Tenochtitlan at the time of the equinox. The directions of the faces of the Lower and Upper

  17. Quantifying the astronomical contribution to Pleistocene climate change: A non-linear, statistical approach

    Science.gov (United States)

    Crucifix, Michel; Wilkinson, Richard; Carson, Jake; Preston, Simon; Alemeida, Carlos; Rougier, Jonathan

    2013-04-01

    The existence of an action of astronomical forcing on the Pleistocene climate is almost undisputed. However, quantifying this action is not straightforward. In particular, the phenomenon of deglaciation is generally interpreted as a manifestation of instability, which is typical of non-linear systems. As a consequence, explaining the Pleistocene climate record as the addition of an astronomical contribution and noise-as often done using harmonic analysis tools-is potentially deceptive. Rather, we advocate a methodology in which non-linear stochastic dynamical systems are calibrated on the Pleistocene climate record. The exercise, though, requires careful statistical reasoning and state-of-the-art techniques. In fact, the problem has been judged to be mathematically 'intractable and unsolved' and some pragmatism is justified. In order to illustrate the methodology we consider one dynamical system that potentially captures four dynamical features of the Pleistocene climate : the existence of a saddle-node bifurcation in at least one of its slow components, a time-scale separation between a slow and a fast component, the action of astronomical forcing, and the existence a stochastic contribution to the system dynamics. This model is obviously not the only possible representation of Pleistocene dynamics, but it encapsulates well enough both our theoretical and empirical knowledge into a very simple form to constitute a valid starting point. The purpose of this poster is to outline the practical challenges in calibrating such a model on paleoclimate observations. Just as in time series analysis, there is no one single and universal test or criteria that would demonstrate the validity of an approach. Several methods exist to calibrate the model and judgement develops by the confrontation of the results of the different methods. In particular, we consider here the Kalman filter variants, the Particle Monte-Carlo Markov Chain, and two other variants of Sequential Monte

  18. Four criteria to find an optimal location in Colombia for a millimeter wave astronomical observatory

    Science.gov (United States)

    Ramírez Suárez, O. L.; Martínez Mercado, A. M.; Restrepo Gaitán, O. A.; Chaparro Molano, G.

    2017-07-01

    To find an optimal location for a mm-wave astronomical observatory, all factors that directly or indirectly affect the water vapor column density should be considered. After estimating a weighted classification of these factors to obtain a range of acceptable values, places satisfying as many of these suitability conditions can be proposed as candidates. Here we analyze data from NASA and IDEAM to find places satisfying the best conditions to build a mm-wave astronomical observatory in Colombia, according to seven variables grouped into four classes. From NASA, we analyze the satellite data of: (i) relative humidity and (ii) cloud coverage/direct normal radiation, averaged monthly from 1983 to 2005. From IDEAM, we analyze data of relative humidity, sunshine, and (iii) precipitation/number of days with rain, averaged yearly over each month from 1981 to 2010. The data has been obtained in-situ by 2046 weather monitoring stations across Colombia, for which their (iv) altitude is known. For each quantity, we do a Principal Component Analysis, reducing the dimensionality of the yearly-averaged data to 2 components covering >90% of the variance. After this, we make a classification of the reduced-dimension data using a 4 cluster Gaussian Mixture Model (GMM), identifying similar geographic and climatological patterns. After selecting clusters of stations sharing optimal conditions (i.e. high altitude, low rain, etc.), we group and look for geographical clusters by applying a GMM on a Monte Carlo sampling of latitude, longitude, and altitude data in order to correct for biases. This method allows us to find regions of interest where further in-situ measurements of atmospheric absorption of mm-wave should be carried out in the future.

  19. Strong Arcwise Connectedness

    OpenAIRE

    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana

    2012-01-01

    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  20. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2009-01-01

    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  1. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.

    1992-01-01

    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  2. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  3. US Astronomers Access to SIMBAD in Strasbourg, France

    Science.gov (United States)

    Eichhorn, G.; Oliverson, Ronald J. (Technical Monitor)

    2003-01-01

    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 4300 US users registered. We also provided user support by answering questions from users and handling requests for lost passwords when still necessary. Even though almost all users now access SIMBAD without a password, based on hostnames/IP addresses, there are still some users that need individual passwords. We continued to maintain the mirror copy of the SIMBAD database on a server at SAO. This allows much faster access for the US users. During the past year we moved this mirror to a faster server to improve access for the US users. We again supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We provided support for the demonstration activities at the SIMBAD booth. We paid part of the fee for the SIMBAD demonstration. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers. We continue this collaboration in order to provide better services to both the US and European astronomical community. This collaboration is even more important in light of the developments for the Virtual Observatory projects in the different countries.

  4. The Red Rectangle: An Astronomical Example of Mach Bands?

    Science.gov (United States)

    Brecher, K.

    2005-12-01

    Recently, the Hubble Space Telescope (HST) produced spectacular images of the "Red Rectangle". This appears to be a binary star system undergoing recurrent mass loss episodes. The image-processed HST photographs display distinctive diagonal lightness enhancements. Some of the visual appearance undoubtedly arises from actual variations in the luminosity distribution of the light of the nebula itself, i.e., due to limb brightening. Psychophysical enhancement similar to the Vasarely or pyramid effect also seems to be involved in the visual impression conveyed by the HST images. This effect is related to Mach bands (as well as to the Chevreul and Craik-O'Brien-Cornsweet effects). The effect can be produced by stacking concentric squares (or other geometrical figures such as rectangles or hexagons) of linearly increasing or decreasing size and lightness, one on top of another. We have constructed controllable Flash applets of this effect as part of the NSF supported "Project LITE: Light Inquiry Through Experiments". They can be found in the vision section of the LITE web site at http://lite.bu.edu. Mach band effects have previously been seen in medical x-ray images. Here we report for the first time the possibility that such effects play a role in the interpretation of astronomical images. Specifically, we examine to what extent the visual impressions of the Red Rectangle and other extended astronomical objects are purely physical (photometric) in origin and to what degree they are enhanced by psychophysical processes. To help assess the relative physical and psychophysical contributions to the perceived lightness effects, we have made use of a center-surround (Difference of Gaussians) filter we developed for MatLab. We conclude that local (lateral inhibition) and longer range human visual perception effects probably do contribute to the lightness features seen in astronomical objects like the Red Rectangle. Project LITE is supported by NSF Grant # DUE-0125992.

  5. Constructing Concept Schemes From Astronomical Telegrams Via Natural Language Clustering

    Science.gov (United States)

    Graham, Matthew; Zhang, M.; Djorgovski, S. G.; Donalek, C.; Drake, A. J.; Mahabal, A.

    2012-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using hierarchical clustering of processed natural language. This allows us to automatically organize ATELs based on the vocabulary used. We conclude that we can use simple algorithms to process and extract meaning from astronomical textual data.

  6. Laboratory measurements and astronomical search for the HSO radical.

    Science.gov (United States)

    Cazzoli, Gabriele; Lattanzi, Valerio; Kirsch, Till; Gauss, Jürgen; Tercero, Belén; Cernicharo, José; Puzzarini, Cristina

    2016-07-01

    Despite the fact that many sulfur-bearing molecules, ranging from simple diatomic species up to astronomical complex molecules, have been detected in the interstellar medium, the sulfur chemistry in space is largely unknown and a depletion in the abundance of S-containing species has been observed in the cold, dense interstellar medium (ISM). The chemical form of the missing sulfur has yet to be identified. For these reasons, in view of the fact that there is a large abundance of triatomic species harbouring sulfur, oxygen, and hydrogen, we decided to investigate the HSO radical in the laboratory to try its astronomical detection. High-resolution measurements of the rotational spectrum of the HSO radical were carried out within a frequency range well up into the THz region. Subsequently, a rigorous search for HSO in the two most studied high-mass star-forming regions, Orion KL and Sagittarius (Sgr) B2, and in the cold dark cloud Barnard 1 (B1-b) was performed. The frequency coverage and the spectral resolution of our measurements allowed us to improve and extend the existing dataset of spectroscopic parameters, thus enabling accurate frequency predictions up to the THz range. These were used to derive the synthetic spectrum of HSO, by means of the MADEX code, according to the physical parameters of the astronomical source under consideration. For all sources investigated, the lack of HSO lines above the confusion limit of the data is evident. The derived upper limit to the abundance of HSO clearly indicates that this molecule does not achieve significant abundances in either the gas phase or in the ice mantles of dust grains.

  7. Learning from FITS: Limitations in use in modern astronomical research

    Science.gov (United States)

    Thomas, B.; Jenness, T.; Economou, F.; Greenfield, P.; Hirst, P.; Berry, D. S.; Bray, E.; Gray, N.; Muna, D.; Turner, J.; de Val-Borro, M.; Santander-Vela, J.; Shupe, D.; Good, J.; Berriman, G. B.; Kitaeff, S.; Fay, J.; Laurino, O.; Alexov, A.; Landry, W.; Masters, J.; Brazier, A.; Schaaf, R.; Edwards, K.; Redman, R. O.; Marsh, T. R.; Streicher, O.; Norris, P.; Pascual, S.; Davie, M.; Droettboom, M.; Robitaille, T.; Campana, R.; Hagen, A.; Hartogh, P.; Klaes, D.; Craig, M. W.; Homeier, D.

    2015-09-01

    The Flexible Image Transport System (FITS) standard has been a great boon to astronomy, allowing observatories, scientists and the public to exchange astronomical information easily. The FITS standard, however, is showing its age. Developed in the late 1970s, the FITS authors made a number of implementation choices that, while common at the time, are now seen to limit its utility with modern data. The authors of the FITS standard could not anticipate the challenges which we are facing today in astronomical computing. Difficulties we now face include, but are not limited to, addressing the need to handle an expanded range of specialized data product types (data models), being more conducive to the networked exchange and storage of data, handling very large datasets, and capturing significantly more complex metadata and data relationships. There are members of the community today who find some or all of these limitations unworkable, and have decided to move ahead with storing data in other formats. If this fragmentation continues, we risk abandoning the advantages of broad interoperability, and ready archivability, that the FITS format provides for astronomy. In this paper we detail some selected important problems which exist within the FITS standard today. These problems may provide insight into deeper underlying issues which reside in the format and we provide a discussion of some lessons learned. It is not our intention here to prescribe specific remedies to these issues; rather, it is to call attention of the FITS and greater astronomical computing communities to these problems in the hope that it will spur action to address them.

  8. In the Jungle of Astronomical On--line Data Services

    Science.gov (United States)

    Egret, D.

    The author tried to survive in the jungle of astronomical on--line data services. In order to find efficient answers to common scientific data retrieval requests, he had to collect many pieces of information, in order to formulate typical user scenarios, and try them against a number of different data bases, catalogue services, or information systems. He discovered soon how frustrating treasure coffers may be when their keys are not available, but he realized also that nice widgets and gadgets are of no help when the information is not there. And, before long, he knew he would have to navigate through several systems because no one was yet offering a general answer to all his questions. I will present examples of common user scenarios and show how they were tested against a number of services. I will propose some elements of classification which should help the end-user to evaluate how adequate the different services may be for providing satisfying answers to specific queries. For that, many aspects of the user interaction will be considered: documentation, access, query formulation, functionalities, qualification of the data, overall efficiency, etc. I will also suggest possible improvements to the present situation: the first of them being to encourage system managers to increase collaboration between one another, for the benefit of the whole astronomical community. The subjective review I will present, is based on publicly available astronomical on--line services from the U.S. and from Europe, most of which (excepting the newcomers) were described in ``Databases and On-Line Data in Astronomy", (Albrecht & Egret, eds, 1991): this includes databases (such as NED and Simbad ), catalog services ( StarCat , DIRA , XCatScan , etc.), and information systems ( ADS and ESIS ).

  9. Astronomical Orientation of Pyramid Tombs in North China

    Science.gov (United States)

    Rusell Tiede, Vance

    2010-01-01

    Two ancient Chinese texts, the Chou Bei Suan Ching and Chou Li (Western Han Dynasty, ca. 100 BC), record that the Imperial Astronomer (Feng Hsian Shin) made solar observations to determine the solstices and equinoxes, and for determining the cardinal directions with a circle and gnomon. By combining the techniques of astro-archaeology (G. S. Hawkins, 1968) with both overhead imagery and ground survey, the present study seeks to link historical Chinese descriptions of astronomical phenomena with contemporary architectural orientation. In the process, several unexpected astronomical orientation patterns emerged which apparently do not appear in the surviving historical record. For example, at the imperial Western Han capital of Ch'ang-an (N 34° latitude), the diagonals of cardinally oriented square pyramid mounds (ling) align to zenith (+34° declination) and nadir (-34° declination) star rise and set points on the skyline. This is in accord with the Chou (Zhou) Dynasty's name of Chung-Kuo, meaning Central Country or Middle Kingdom. That is, the imperial capital is centered both politico-geographically with respect to its vassal states of the Eastern Yi, Southern Man, Western Rong, and Northern Di, as well as astro-geomantically regarding the color-coded Five Sacred Directions East-South-West-North-Zenith/Nadir in the Cosmos. Our ground survey also confirmed pyramid orientation to the lunar standstills (+28°, +18° and +5° declination) that we reported from overhead imagery in 1980 (155th AAS Meeting, HAD 18.CE.12, Lunar and Solar Alignments of Ancient Chinese Pyramids). Grateful acknowledgment is given to the Chinese Academy of Sciences for the invitation to conduct an astro-archaeological survey of the Wei-ho valley, Shensi (Shaanxi) Province.

  10. Astronomical Observations Astronomy and the Study of Deep Space

    CERN Document Server

    2010-01-01

    Our Search for knowledge about the universe has been remarkable, heartbreaking, fantastical, and inspiring, and this search is just beginning. Astronomical Observations is part of a 7 book series that takes readers through a virtual time warp of our discovery. From the nascent space programs of the 1960's to today's space tourism and the promise of distant planet colonization, readers will be transfixed. Throughout this journey of the mind, Earth-bound explorers gain keen insight into the celestial phenomena that have fascinated humans for centuries. Thrilling narratives about indefatigable sc

  11. Illustrated Guide to Astronomical Wonders From Novice to Master Observer

    CERN Document Server

    Thompson, Robert

    2011-01-01

    With the advent of inexpensive, high-power telescopes priced at under 250, amateur astronomy is now within the reach of anyone, and this is the ideal book to get you started. The Illustrated Guide to Astronomical Wonders offers you a guide to the equipment you need, and shows you how and where to find hundreds of spectacular objects in the deep sky -- double and multiple stars as well as spectacular star clusters, nebulae, and galaxies. You get a solid grounding in the fundamental concepts and terminology of astronomy, and specific advice about choosing, buying, using, and maintaining the eq

  12. MOEMs devices for future astronomical instrumentation in space

    Science.gov (United States)

    Zamkotsian, Frédéric; Liotard, Arnaud; Lanzoni, Patrick; ElHadi, Kacem; Waldis, Severin; Noell, Wilfried; de Rooij, Nico; Conedera, Veronique; Fabre, Norbert; Muratet, Sylvaine; Camon, Henri

    2017-11-01

    Based on the micro-electronics fabrication process, Micro-Opto-Electro-Mechanical Systems (MOEMS) are under study in order to be integrated in next-generation astronomical instruments for ground-based and space telescopes. Their main advantages are their compactness, scalability, specific task customization using elementary building blocks, and remote control. At Laboratoire d'Astrophysique de Marseille, we are engaged since several years in the design, realization and characterization of programmable slit masks for multi-object spectroscopy and micro-deformable mirrors for wavefront correction. First prototypes have been developed and show results matching with the requirements.

  13. Astronomical theory of climatic change: support from new Guinea.

    Science.gov (United States)

    Veeh, H H; Chappell, J

    1970-02-06

    Radiocarbon and thorium-230 dates of uplifted coral reef terraces on New Guinea appear to support theories of glaciation which utilize Milankovitch cycles as a controlling trigger mechanism. In addition to high sealevel stands recognized by other workers, the New Guinea data clearly indicate a marine transgression between 50,000 and 35,000 years before the present. A eustatic sea level curve reconstructed from field observations and radiometric dates shows a close correlation with temperature fluctuations in high latitudes as predicted by astronomical data.

  14. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  15. Cryogenic Capacitive Transimpedance Amplifier for Astronomical Infrared Detectors

    OpenAIRE

    Nagata, Hirohisa; Shibai, Hiroshi; Hirao, Takanori; Watabe, Toyoki; Noda, Manabu; Hibi, Yasunori; Kawada, Mitsunobu; Nakagawa, Takao

    2004-01-01

    We have developed a new capacitive transimpedance amplifier (CTIA) that can be operated at 2 K, and have good performance as readout circuits of astronomical far-infrared array detectors. The circuit design of the present CTIA consists of silicon p-MOSFETs and other passive elements. The process is a standard Bi-CMOS process with 0.5$mu$m design rule. The open-loop gain of the CTIA is more than 300, resulting in good integration performance. The output voltage swing of the CTIA was 270 mV. Th...

  16. PRAIA - Platform for Reduction of Astronomical Images Automatically

    Science.gov (United States)

    Assafin, M.; Vieira Martins, R.; Camargo, J. I. B.; Andrei, A. H.; Da Silva Neto, D. N.; Braga-Ribas, F.

    2011-06-01

    PRAIA performs high precision differential photometry and astrometry on digitized images (CCD frames, Schmidt plate surveys, etc). The package main characteristics are automation, accuracy and processing speed. Written in FORTRAN 77, it can run in scripts and interact with any visualization and analysis software. PRAIA is in cope with the ever growing amount of observational data available from private and public sources, including data mining and next generation fast telescope all sky surveys, like SDSS, Pan-STARRS and others. PRAIA was officially assigned as the astrometric supporting tool for participants in the GAIA-FUNSSO activities and will be freely available for the astronomical community.

  17. An intelligent object recognizer and classification system for astronomical use

    Science.gov (United States)

    Bernat, Andrew P.; Mcgraw, John T.

    1986-01-01

    An account is given of an image-processing system based on AI concepts, which allows input images produced by the CCT/Transit Instrument to be compared with a standard-object hierarchylike network of prototypes presented within the computer as 'frames'. Each frame contains information concerning either a standard object or the links among such objects. This method, by comparison to conventional, statistically-based pattern recognition systems, classifies data as an astronomer would and thereby lends credibility to its conclusions; it also furnishes a natural avenue for the machine's serendipitous discovery of new classes of objects.

  18. Superluminal Sweeping Spot Pair Events in Astronomical Settings

    Science.gov (United States)

    Nemiroff, Robert J.

    2015-01-01

    Sweeping beams of light can cast spots that move superluminally across scattering surfaces. Such faster-than-light speeds are well-known phenomena that do not violate special relativity. It is shown that under certain circumstances, superluminal spot pair creation and annihilation events can occur that provide unique information to observers. These spot pair events are not particle pair events -- they are the sudden creation or annihilation of a pair of relatively illuminated spots on a scattering surface. Astronomical settings where superluminal spot pairs might be found include Earth's Moon, passing asteroids, pulsars, and variable nebula. Potentially recoverable information includes three dimensional imaging, relative geometric size factors, and distances.

  19. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    Science.gov (United States)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  20. Spherical Panorama Visualization of Astronomical Data with Blender and Python

    Science.gov (United States)

    Kent, Brian R.

    2016-06-01

    We describe methodology to generate 360 degree spherical panoramas of both 2D and 3D data. The techniques apply to a variety of astronomical data types - all sky maps, 2D and 3D catalogs as well as planetary surface maps. The results can be viewed in a desktop browser or interactively with a mobile phone or tablet. Static displays or panoramic video renderings of the data can be produced. We review the Python code and usage of the 3D Blender software for projecting maps onto 3D surfaces and the various tools for distributing visualizations.

  1. Period Estimation in Astronomical Time Series Using Slotted Correntropy

    Science.gov (United States)

    Huijse, Pablo; Estevez, Pablo A.; Zegers, Pablo; Principe, José C.; Protopapas, Pavlos

    2011-06-01

    In this letter, we propose a method for period estimation in light curves from periodic variable stars using correntropy. Light curves are astronomical time series of stellar brightness over time, and are characterized as being noisy and unevenly sampled. We propose to use slotted time lags in order to estimate correntropy directly from irregularly sampled time series. A new information theoretic metric is proposed for discriminating among the peaks of the correntropy spectral density. The slotted correntropy method outperformed slotted correlation, string length, VarTools (Lomb-Scargle periodogram and Analysis of Variance), and SigSpec applications on a set of light curves drawn from the MACHO survey.

  2. Other components

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This chapter includes descriptions of electronic and mechanical components which do not merit a chapter to themselves. Other hardware requires mention because of particularly high tolerance or intolerance of exposure to radiation. A more systematic analysis of radiation responses of structures which are definable by material was given in section 3.8. The components discussed here are field effect transistors, transducers, temperature sensors, magnetic components, superconductors, mechanical sensors, and miscellaneous electronic components

  3. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  4. The unforgotten sisters female astronomers and scientists before Caroline Herschel

    CERN Document Server

    Bernardi, Gabriella

    2016-01-01

    Taking inspiration from Siv Cedering’s poem in the form of a fictional letter from Caroline Herschel that refers to “my long, lost sisters, forgotten in the books that record our science”, this book tells the lives of twenty-five female scientists, with specific attention to astronomers and mathematicians. Each of the presented biographies is organized as a kind of "personal file" which sets the biographee’s life in its historical context, documents her main works, highlights some curious facts, and records citations about her. The selected figures are among the most representative of this neglected world, including such luminaries as Hypatia of Alexandra, Hildegard of Bingen, Elisabetha Hevelius, and Maria Gaetana Agnesi. They span a period of about 4000 years, from En HeduAnna, the Akkadian princess, who was one of the first recognized female astronomers, to the dawn of the era of modern astronomy with Caroline Herschel and Mary Somerville. The book will be of interest to all who wish to learn more ...

  5. Astronomical Dating of Monet's Paintings on the Normandy Coast

    Science.gov (United States)

    Olson, D. W.

    2016-01-01

    Claude Monet (1840-1926) is famous for landscapes accurately capturing the changing nature of seas and skies. Monet created almost two thousand paintings during his long career, and several hundred of these works depict the skies above the spectacular cliffs, arches, rocks, harbors, and beaches on the Normandy coast. Our Texas State University group made a research trip to Normandy in the summer of 2012 and found dozens of the locations where Monet set up his easel. Astronomical considerations of daylight, twilight, night skies, and tides can be used to enhance our understanding of the artist's creative process. Monet himself said, “I need the Sun or the cloudy weather to coincide again with the tide, which must be low or high in accordance with my motifs.” Astronomical methods can be used to help in dating these works, many of which have uncertain dates in the existing catalogues and literature about Monet in Normandy. Analysis using the direction of sunlight and the direction of shadows, combined with calculations of lunar phases and tide levels, meteorological records, and the artist's letters, enables us to determine the exact date and the precise time, accurate to the minute, when Monet observed the sky that inspired a painting.

  6. Authentic Astronomical Discovery in Planetariums: Bringing Data to Domes

    Science.gov (United States)

    Wyatt, Ryan Jason; Subbarao, Mark; Christensen, Lars; Emmons, Ben; Hurt, Robert

    2018-01-01

    Planetariums offer a unique opportunity to disseminate astronomical discoveries using data visualization at all levels of complexity: the technical infrastructure to display data and a sizeable cohort of enthusiastic educators to interpret results. “Data to Dome” is an initiative the International Planetarium Society to develop our community’s capacity to integrate data in fulldome planetarium systems—including via open source software platforms such as WorldWide Telescope and OpenSpace. We are cultivating a network of planetarium professionals who integrate data into their presentations and share their content with others. Furthermore, we propose to shorten the delay between discovery and dissemination in planetariums. Currently, the “latest science” is often presented days or weeks after discoveries are announced, and we can shorten this to hours or even minutes. The Data2Dome (D2D) initiative, led by the European Southern Observatory, proposes technical infrastructure and data standards that will streamline content flow from research institutions to planetariums, offering audiences a unique opportunity to access to the latest astronomical data in near real time.

  7. The West African International Summer School for Young Astronomers

    Science.gov (United States)

    Strubbe, Linda; Okere, Bonaventure I.; Chibueze, James; Lepo, Kelly; White, Heidi; Zhang, Jielai; Izuikedinachi Okoh, Daniel; Reid, Michael; Hunter, Lisa; EKEOMA Opara, Fidelis

    2015-08-01

    In October 2013 over 75 undergraduate science students and teachers from Nigeria and Ghana attended the week-long West African International Summer School for Young Astronomers. We expect an even broader audience for the second offering of the school (to be held July 2015), supported by a grant from the OAD (TF1). These schools are organized by a collaboration of astronomers from the University of Toronto, the University of Nigeria, and the Nigerian National Space Research and Development Agency. We design and lead activities that teach astronomy content, promote students' self-identity as scientists, and encourage students to think critically and figure out solutions themselves. Equally important, we design intertwined evaluation strategies to assess the effectiveness of our programs. We will describe the broader context for developing astronomy in West Africa, the inquiry-based and active learning techniques used in the schools, and results from the qualitative and quantitative evaluations of student performance. We will also describe longer-term plans for future schools, supporting our alumni, and building a sustainable partnership between North American and Nigerian universities.

  8. Weird astronomical theories of the solar system and beyond

    CERN Document Server

    Seargent, David

    2016-01-01

    After addressing strange cosmological hypotheses in Weird Universe, David Seargent tackles the no-less bizarre theories closer to home. Alternate views on the Solar System's formation, comet composition, and the evolution of life on Earth are only some of the topics he addresses in this new work. Although these ideas exist on the fringe of mainstream astronomy, they can still shed light on the origins of life and the evolution of the planets. Continuing the author's series of books popularizing strange astronomy facts and knowledge, Weird Astronomical Theories presents an approachable exploration of the still mysterious questions about the origin of comets, the pattern of mass extinctions on Earth, and more. The alternative theories discussed here do not come from untrained amateurs. The scientists whose work is covered includes the mid-20th century Russian S. K. Vsekhsvyatskii, cosmologist Max Tegmark, British astronomers Victor Clube and William Napier, and American Tom Van Flandern, a special...

  9. Wide-field ultraviolet imager for astronomical transient studies

    Science.gov (United States)

    Mathew, Joice; Ambily, S.; Prakash, Ajin; Sarpotdar, Mayuresh; Nirmal, K.; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant; Brosch, Noah

    2018-03-01

    Though the ultraviolet (UV) domain plays a vital role in the studies of astronomical transient events, the UV time-domain sky remains largely unexplored. We have designed a wide-field UV imager that can be flown on a range of available platforms, such as high-altitude balloons, CubeSats, and larger space missions. The major scientific goals are the variability of astronomical sources, detection of transients such as supernovae, novae, tidal disruption events, and characterizing active galactic nuclei variability. The instrument has a 80 mm aperture with a circular field of view of 10.8 degrees, an angular resolution of ˜22 arcsec, and a 240 - 390 nm spectral observation window. The detector for the instrument is a Microchannel Plate (MCP)-based image intensifier with both photon counting and integration capabilities. An FPGA-based detector readout mechanism and real time data processing have been implemented. The imager is designed in such a way that its lightweight and compact nature are well fitted for the CubeSat dimensions. Here we present various design and developmental aspects of this UV wide-field transient explorer.

  10. Statistical algorithms for identification of astronomical X-ray sources

    Science.gov (United States)

    Ziaeepour, H.; Rosen, S.

    2008-01-01

    Observations of present and future X-ray telescopes include a large number of ipitous sources of unknown types. They are a rich source of knowledge about X-ray dominated astronomical objects, their distribution, and their evolution. The large number of these sources does not permit their individual spectroscopical follow-up and classification. Here we use Chandra Multi-Wavelength public data to investigate a number of statistical algorithms for classification of X-ray sources with optical imaging follow-up. We show that up to statistical uncertainties, each class of X-ray sources has specific photometric characteristics that can be used for its classification. We assess the relative and absolute performance of classification methods and measured features by comparing the behaviour of physical quantities for statistically classified objects with what is obtained from spectroscopy. We find that among methods we have studied, multi-dimensional probability distribution is the best for both classifying source type and redshift, but it needs a sufficiently large input (learning) data set. In absence of such data, a mixture of various methods can give a better final result. We discuss some of potential applications of the statistical classification and the enhancement of information obtained in this way. We also assess the effect of classification methods and input data set on the astronomical conclusions such as distribution and properties of X-ray selected sources.

  11. 156th Symposium of the International Astronomical Union

    CERN Document Server

    Kołaczek, Barbara

    1993-01-01

    In this review talk, I would like to report on the proper motion analysis, which has been recently carried out together with M. Soma and M. Yoshizawa: There has been a persistent demand in astronomy for accurate stellar positions and proper motions, which are represented by an inertial reference system constructed on the basis of a set of consistent astronomical constants. In the reference system the precessional constant plays a primary role. In a series of papers Fricke (1967a,b, 1977a,b) has deter­ mined the luni-solar precessional correction to Newcomb's value and the fictitious motion of the equinox, which have been adopted in the "IAU (1976) System of Astronomical Con­ stants". Based on the precessional correction and the equinoctial motion thus established, the fundamental reference system, the FK5 system (Fricke et al. 1988) for positions and proper motions, has been constructed. However, for several years geodetic VLBI (McCarthy & Luzum 1991) and LLR (Williams et at. 1991) observations have bee...

  12. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  13. A buyer's and user's guide to astronomical telescopes and binoculars

    CERN Document Server

    Mullaney, James

    2014-01-01

    Amateur astronomers of all skill levels are always contemplating their next telescope, and this book points the way to the most suitable instruments. Similarly, those who are buying their first telescopes – and these days not necessarily a low-cost one – will be able to compare and contrast different types and manufacturers. This revised new guide provides an extensive overview of binoculars and telescopes. It includes detailed up-to-date information on sources, selection and use of virtually every major type, brand, and model on today’s market, a truly invaluable treasure-trove of information and helpful advice for all amateur astronomers. Originally written in 2006, much of the first edition is inevitably now out of date, as equipment advances and manufacturers come and go. This second edition not only updates all the existing sections but adds two new ones: Astro-imaging and Professional-Amateur collaboration. Thanks to the rapid and amazing developments that have been made in digital cameras it is...

  14. Astronomers Win Protection for Key Part of Radio Spectrum

    Science.gov (United States)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the

  15. Celestial delights the best astronomical events through 2020

    CERN Document Server

    Reddy, Francis

    2012-01-01

    Celestial Delights is the essential 'TV Guide' for the sky. Through extensive graphics integrated with an eight-year-long calendar of sky events, it provides a look at "don't miss" sky events, mostly for naked-eye and binocular observing. It is organized by ease of observation – lunar phases and the brighter planets come first, with solar eclipses, the aurora, and comets coming later. This third edition also includes a hefty dose of sky lore, astronomical history, and clear overviews of current science. It provides a handy reference to upcoming naked-eye events, with information broken out in clear and simple diagrams and tables that are cross-referenced against a detailed almanac for each year covered. This book puts a variety of information all in one place, presents it in a friendly way that does not require prior in-depth astronomical knowledge, and provides the context and historical background for understanding events that astronomy software or web sites lack.

  16. Authentic Astronomical Discovery in Planetariums: Data-Driven Immersive Lectures

    Science.gov (United States)

    Wyatt, Ryan Jason

    2018-01-01

    Planetariums are akin to “branch offices” for astronomy in major cities and other locations around the globe. With immersive, fulldome video technology, modern digital planetariums offer the opportunity to integrate authentic astronomical data into both pre-recorded shows and live lectures. At the California Academy of Sciences Morrison Planetarium, we host the monthly Benjamin Dean Astronomy Lecture Series, which features researchers describing their cutting-edge work to well-informed lay audiences. The Academy’s visualization studio and engineering teams work with researchers to visualize their data in both pre-rendered and real-time formats, and these visualizations are integrated into a variety of programs—including lectures! The assets are then made available to any other planetariums with similar software to support their programming. A lecturer can thus give the same immersive presentation to audiences in a variety of planetariums. The Academy has also collaborated with Chicago’s Adler Planetarium to bring Kavli Fulldome Lecture Series to San Francisco, and the two theaters have also linked together in live “domecasts” to share real-time content with audiences in both cities. These lecture series and other, similar projects suggest a bright future for astronomers to bring their research to the public in an immersive and visually compelling format.

  17. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.

    1984-03-01

    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  18. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.

    1981-01-01

    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  19. Grid-Enabled Interactive Data Language for Astronomical Data, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Grid technologies provide a valuable solution for data intensive scientific applications but are not readily available for astronomical data and Interactive Data...

  20. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  1. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  2. Component testing

    International Nuclear Information System (INIS)

    Hutchings, M.T.; Schofield, Peter; Seymour, W.A.J.

    1986-01-01

    A method for non-destructive testing of an industrial component to ascertain if it is a single crystal, and to find the crystal orientations of those parts of the component which are single crystals, involves irradiating the component with a monochromatic collimated neutron beam. Diffracted neutron beams are observed live by means of LiF/ZnS composite screen, an image intensifier and a television camera and screen. (author)

  3. ESO takes the public on an astronomical journey "Around the World in 80 Telescopes"

    Science.gov (United States)

    2009-03-01

    A live 24-hour free public video webcast, "Around the World in 80 Telescopes", will take place from 3 April 09:00 UT/GMT to 4 April 09:00 UT/GMT, chasing day and night around the globe to let viewers "visit" some of the most advanced astronomical telescopes on and off the planet. The webcast, organised by ESO for the International Year of Astronomy 2009 (IYA2009), is the first time that so many large observatories have been linked together for a public event. ESO PR Photo 13a/09 Map of Participating Observatories ESO PR Photo 13b/09 100 Hours of Astronomy logo Viewers will see new images of the cosmos, find out what observatories in their home countries or on the other side of the planet are discovering, send in questions and messages, and discover what astronomers are doing right now. Participating telescopes include those at observatories in Chile such as ESO's Very Large Telescope and La Silla, the Hawaii-based telescopes Gemini North and Keck, the Anglo-Australian Telescope, telescopes in the Canary Islands, the Southern African Large Telescope, space-based telescopes such as the NASA/ESA Hubble Space Telescope, ESA XMM-Newton and Integral, and many more. "Around the World in 80 Telescopes" will take viewers to every continent, including Antarctica! The webcast production will be hosted at ESO's headquarters near Munich, Germany, with live internet streaming by Ustream.tv. Anyone with a web browser supporting Adobe Flash will be able to follow the show, free of charge, from the website www.100hoursofastronomy.org and be a part of the project by sending messages and questions. The video player can be freely embedded on other websites. TV stations, web portals and science centres can also use the high quality feed. Representatives of the media who wish to report from the "front-line" and interview the team should get in touch. "Around the World in 80 Telescopes" is a major component of the 100 Hours of Astronomy (100HA), a Cornerstone project of the International

  4. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  5. <strong>Relative Biological Effect of Antiprotonsstrong>> strong>

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael

    purpose/objective The AD-4/ACE collaboration has recently performed experiments to directly measure the RBE of antiprotons. Antiprotons have very similar stopping power compared to protons, but when they come to rest, antiprotons will annihilate on a target nucleus and thereby release almost 2 Ge......V of energy. About 30 MeV of this energy is deposited in the vicinity of the Bragg-peak, thereby significantly enhancing it. It is furthermore expected that this additional energy is deposited by radiation which carries a high-LET component. This will have a significant influence on the radiobiological...... nuclear research facility CERN. A beam of 126 MeV antiprotons, corresponding to about 12 cm range in water, was spread out to a SOBP with a width of 1 cm. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film, and the results were used for benchmarking...

  6. Impurity screening in strongly coupled plasma systems

    CERN Document Server

    Kyrkos, S

    2003-01-01

    We present an overview of the problem of screening of an impurity in a strongly coupled one-component plasma within the framework of the linear response (LR) theory. We consider 3D, 2D and quasi-2D layered systems. For a strongly coupled plasma the LR can be determined by way of the known S(k) structure functions. In general, an oscillating screening potential with local overscreening and antiscreening regions emerges. In the case of the bilayer, this phenomenon becomes global, as overscreening develops in the layer of the impurity and antiscreening in the adjacent layer. We comment on the limitations of the LR theory in the strong coupling situation.

  7. 16 years of airglow measurement with astronomical facilities

    Science.gov (United States)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian

    2017-04-01

    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a

  8. ASTRONOMICAL CALIBRATION OF THE SERRAVALLIAN/TORTONIANCASE PELACANI SECTION (SICILY, ITALY

    Directory of Open Access Journals (Sweden)

    ANTONIO CARUSO

    2002-07-01

    Full Text Available We performed a cyclostratigraphic study of a sedimentary sequence (Case Pelacani section outcropping in the south-eastern margin of Sicily (Italy and covering the Upper Serravallian/Lower Tortonian stratigraphic interval. Calcareous plankton biostratigraphic data reported in another paper proved that all the sequence of bio-events generally reported from just below and above the S/T boundary is present in the section. They allowed a detailed correlation with the Gibliscemi section.  Preliminary paleomagnetic data suggest that a secondary remagnetization  component prevents the recognition of the correct sequence of paleomagnetic chrons along the studied interval. The sedimentary record has been compared, on the basis of an integrated calcareous plankton biostratigraphy, with that of the Gibliscemi section. Cyclostratigraphic analysis of the lithological patterns recognized throughout the succession and the application of spectral methodologies to the abundance fluctuations of the planktonic foraminifer Globigerinoides quadrilobatus highlighted the presence in the signal of the classic Milankovitch frequencies (precession, obliquity and eccentricity. Correlation of the lithological patterns and of the different frequency bands extracted by numerical filtering from the faunal record with the same components modulating the insolation curve provided an astronomic calibration of the sedimentary record and, consequently, a precise age for all the calcareous plankton bioevents recognized throughout the studied interval. 

  9. 125th Colloquium of the International Astronomical Union

    CERN Document Server

    Sorochenko, R

    1990-01-01

    Text no 1 Radio Recombination Lines (RRLs), discovered in the USSR in 1964, have become a powerful research tool for astronomers. Available throughout the radio spectrum, these lines carry information regarding the density, temperature, turbulence and velocity of thermal plasmas. Their very existance shows the presence of thermal gas. They also can carry information regarding magnetic fields if Zeeman splitting were to be detected. Containing the proceedings of an IAU Colloquium celebrating the 25th anniversary of their detection, this volume tells us what has happened since. It contains the story of the detection of RRLs and reviews of many areas of physics of the interstellargas from which stars form, HII regions excited by newly formed stars, planetary nebulae involving dying stars, and the structure of our Milky Way and other galaxies reflecting the large-scale morphology of the star formation process. In addition there is an article describing modern laboratory studies of Rydberg atoms to probe the basic...

  10. A List of Astronomical Meetings Available via Mosaic

    Science.gov (United States)

    Bryson, E.; Crabtree, D.

    We have been making a list of astronomical and related meetings available electronically for a number of years. Recently, several meeting organizers have made information about their meetings available via anonymous ftp or even NCSA Mosaic. We have produced a new version of our electronic meeting list available via NCSA Mosaic which provides links to the information being provided electronically. Depending upon the amount of information being provided for an individual meeting, it may be possible for a user browsing the list of meetings to click on the meeting of interest, fill out a registration form, download maps, browse abstracts, etc. We hope the availability of this service will encourage other meeting organizers to make information about their meetings available electronically and to take advantage of new technology such as NCSA Mosaic. URL: http:// cadcwww.dao.nrc.calmeetings/meetings.html

  11. Astronomy for older eyes a guide for aging backyard astronomers

    CERN Document Server

    Chen, James L

    2017-01-01

    This book is for the aging amateur astronomy population, including newcomers to astronomy in their retirement and hobbyists who loved peering through a telescope as a child. Whether a novice or an experienced observer, the practice of astronomy differs over the years. This guide will extend the enjoyment of astronomy well into the Golden Years by addressing topics such as eye and overall health issues, recommendations on telescope equipment, and astronomy-related social activities especially suited for seniors. Many Baby-Boomers reaching retirement age are seeking new activities, and amateur astronomy is a perfect fit as a leisure time activity. Established backyard astronomers who began their love of astronomy in their youth , meanwhile, may face many physical and mental challenges in continuing their lifelong hobby as they age beyond their 55th birthdays. That perfect telescope purchased when they were thirty years old now suddenly at sixty years old feels like an immovable object in the living room. The 20...

  12. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  13. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    Science.gov (United States)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  14. The restoration of astronomical X-ray spectra

    International Nuclear Information System (INIS)

    Blissett, R.J.; Cruise, A.M.

    1979-01-01

    The present limitations in the measurement of astronomical X-ray spectra are discussed with particular regard to the poor spectral resolution of gas proportional counters. The problem of inferring an incident photon spectrum from the data is considered. Current procedures and their drawbacks are outlined, and a direct method of solution is derived by presenting the data as a Fredholm integral equation of the first kind. This approach utilizes singular function decomposition of the resolution operator with appropriate filtering to stabilize the solution in the presence of noise. After illustrating the operation of this technique on computer simulated data, analysis of Ariel V data is presented. The general applicability of this method of analysis in X-ray astronomy is considered. (author)

  15. Milky Way Globular Clusters and the Astronomical Literature

    Science.gov (United States)

    Smith, Graeme H.

    2017-06-01

    Globular clusters of the Milky Way have been the subject of many publications in the astronomical literature. However, there is quite a large dispersion in the level of scrutiny that individual clusters have received from the astronomy research community. The goal of this paper is to address the question: what makes some clusters more popular than others? Several metrics are used to compare the numbers of papers written about each globular cluster of the galaxy prior to 2015. The extent to which the metrics correlate with various intrinsic and extrinsic cluster properties is explored. The metrics are used to highlight the ten most-studied globular clusters, as well as to delineate certain types of clusters that have been least covered by research to date. As a guide to objects that might potentially reward increased study, a list is given of the highest-mass globular clusters that have received relatively little attention to date.

  16. Progresos recientes en Astronomía de Rayos Gamma

    Science.gov (United States)

    Romero, G. E.

    Tras la exitosa misión del Compton Gamma-Ray Observatory durante los años 1990, la astronomía de rayos gamma ha entrado en una etapa de madurez, convirtiéndose en una de las principales herramientas para el estudio de procesos relativistas en el universo. En este reporte, presentaré una revisión de los principales tópicos abordados a través de estudios con rayos gamma en los últimos años, con particular énfasis en los intentos más recientes por establecer la naturaleza de las fuentes de rayos gamma no identificadas, detectadas por el instrumento EGRET.

  17. Survival Strategies for African American Astronomers and Astrophysicists

    Science.gov (United States)

    Holbrook, Jarita C.

    2012-08-01

    The question of how to increase the number of women and minorities in astronomy has been approached from several directions in the United States including examination of admission policies, mentoring, and hiring practices. These point to departmental efforts to improve conditions for some of the students which has the overall benefit of improving conditions for all of the students. However, women and minority astronomers have managed to obtain doctorates even within the non-welcoming environment of certain astronomy and physics departments. I present here six strategies used by African American men and women to persevere if not thrive long enough to earn their doctorate. Embedded in this analysis is the idea of `astronomy culture' and experiencing astronomy culture as a cross-cultural experience including elements of culture shock. These survival strategies are not exclusive to this small subpopulation but have been used by majority students, too.

  18. Future Nuisance Flooding at Boston Caused by Astronomical Tides Alone

    Science.gov (United States)

    Ray, Richard D.; Foster, Grant

    2016-01-01

    Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring tides, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical tides alone, is presented through year 2050. The accuracy of the tide prediction is improved when several unusual properties of Gulf of Maine tides, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.

  19. Proactive Agents to Assist Multimodal Explorative Learning of Astronomical Phenomena

    Directory of Open Access Journals (Sweden)

    Eva Tuominen

    2008-01-01

    Full Text Available This paper focuses on developing, testing, and examining the Proagents multimodal learning environment to support blind children's explorative learning in the area of astronomy. We utilize haptic, auditive, and visual interaction. Haptic and auditory feedbacks make the system accessible to blind children. The system is used as an exploration tool for children's spontaneous and question-driven explorations. High-level interaction and play are essential with environments for young children. Proactive agents support and guide children to deepen their explorations and discover the central concepts and relations in phenomena. It has been challenging to integrate together in a pedagogically relevant way the explorative learning approach, proactive agents' actions, haptic perception's possibilities, and the selected astronomical phenomena. Our tests have shown that children are very interested in using the system and the operations of the agents.

  20. An Information Retrieval and Recommendation System for Astronomical Observatories

    Science.gov (United States)

    Mukund, Nikhil; Thakur, Saurabh; Abraham, Sheelu; Aniyan, A. K.; Mitra, Sanjit; Sajeeth Philip, Ninan; Vaghmare, Kaustubh; Acharjya, D. P.

    2018-03-01

    We present a machine-learning-based information retrieval system for astronomical observatories that tries to address user-defined queries related to an instrument. In the modern instrumentation scenario where heterogeneous systems and talents are simultaneously at work, the ability to supply people with the right information helps speed up the tasks for detector operation, maintenance, and upgradation. The proposed method analyzes existing documented efforts at the site to intelligently group related information to a query and to present it online to the user. The user in response can probe the suggested content and explore previously developed solutions or probable ways to address the present situation optimally. We demonstrate natural language-processing-backed knowledge rediscovery by making use of the open source logbook data from the Laser Interferometric Gravitational Observatory (LIGO). We implement and test a web application that incorporates the above idea for LIGO Livingston, LIGO Hanford, and Virgo observatories.

  1. From microscopic to astronomic, the legacy of Carl Zeiss.

    Science.gov (United States)

    Louw, Deon F; Sutherland, Garnette R; Schulder, Michael

    2003-03-01

    IN 1846, CARL ZEISS established a workshop to make lenses for microscopes, cameras, binoculars, and astronomical observatories. He was a master craftsman and was intolerant of any flaw, destroying microscopes with only minor inaccuracies. His relentless pursuit of perfection brought him into contact with a brilliant physicist, Ernst Abbe. Zeiss combined Abbe's new optical laws with his own technical skills; together, they created a colossus. Their company came to be known not only for exquisite technical standards but also for labor relations that were and remain progressive. The development of microneurosurgery was aided by the active participation of Carl Zeiss, Inc. The history of this company provides a lesson in the power of entrepreneurship and the benefits to humanity that can accrue from a fruitful partnership between medical science and industry.

  2. Conducting Original, Hands-On Astronomical Research in the Classroom

    Science.gov (United States)

    Corneau, M. J.

    2009-12-01

    Since 2007 I have been a Team Leader for the Tzec Maun Foundation, a non-profit foundation dedicated to providing free, research grade, Internet telescopes to students, teachers and researchers around the world. The name Tzec Maun (pronounced “Teh-Zeck-Moan”) comes from Mayan culture. Tzec Maun was the jovial messenger, laughed at adversity. Based on the challenges students, researchers and professional astronomers face with finances, equipment, and telescope access, the jovial mascot seems to fit. Hundreds of hours performing astronomical outreach as a NASA/JPL Solar System Ambassador and Astronomical League Master of outreach taught me that the best way to inspirationally teach astronomy and space science (and most subjects) is actually being at the eyepiece. I’m NOT a fan of the traditional planetarium experience as a teaching tool because it inhibits inspiration and the learning experience to a 2-D mat on a faux horizon with artificial representations. Once, a student at my dark sky observatory excitedly commented that the night sky was like a 3-D planetarium. I have hosted several classes at my own personal dark sky observatory, but this resource is impractical for all but a few lucky students. Experience has taught me that the next best thing to being at the eyepiece is to control a remote telescope via the Internet. Tzec Maun’s arsenal of telescopes is all research capable, linked to the Internet and positioned for round-the-clock dark skies. The final conditions described above, mean that I can enter an 8:30am science class, log onto the Tzec Maun telescope Portal and turn over control of an Australian system (where it is night) to a student or teacher. Working as a group, the class can either begin their investigations. My Tzec Maun science team (TARP) is engaged in searching for potentially hazardous asteroids (PHAs). PHA work excites student and teacher alike. Teaching from telescopes can unleash powerful attention-getting tools that enable

  3. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  4. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  5. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  6. The Undergraduate Research Resources at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Cline, J. Donald; Castelaz, Michael W.

    2016-01-01

    Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.

  7. The application of artificial intelligence to astronomical scheduling problems

    Science.gov (United States)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike

  8. Archaeo-astronomical characteristics of the Kokino archaeological site

    Science.gov (United States)

    Cenev, Gjore

    In the North-East part of Macedonia, near to the peak Tatikjev Kamen, an archaeological site with vast quantity of artifacts, dated in the Bronze Age, was discovered in 2001. For the first time in Republic of Macedonia (FYROM), comprehensive archaeo-astronomical analysis of this site, providing extraordinary important results, was performed in 2002. The site contains a lot of materials typical for a megalithic observatory, 3800 years old. Three stone markers, pointing out the places of the sunrise on the days of the summer and winter solstice, as well as the vernal and autumn equinoxes, were found there. Four stone markers, indicating the places of the full Moon rise above the horizon, are recognized too. They are used in the days when the Moon has maximum or minimum declination - two of them in the summer and two of them - in the winter. There are also two other stone markers used for measuring the length of the lunar month in winter - when it has 29 days, and in summer - when it has 30 days. These markers give clear evidences that the ancient Balkan inhabitants used the observatory not only to monitor the movement of the Moon, but also to develop the lunar calendar with 19-year cycle. The archaeo-astronomical analysis presents also an evidence for the existence of one very characteristic stone marker, used for pointing out the sunrise position in a very important ritual day. This is the day when special ceremonies related to the end of the harvest, as well as to the ritual unification of the community leader with the God Sun, were performed. (Colour versions of the illustrations are presented as Appendix on the site of the journal.)

  9. Lossless Astronomical Image Compression and the Effects of Random Noise

    Science.gov (United States)

    Pence, William

    2009-01-01

    In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.

  10. Contributions of the Spanish Astronomical Society to the International Year of Astronomy 2009

    Science.gov (United States)

    Montesinos, B.

    The Spanish Astronomical Society, SEA in the Spanish acronym of "Sociedad Española de Astronomía", is one of the many institutions contributing to the large number of activities coordinated by the Spanish node of the International Year of Astronomy 2009 (IYA-2009). In this paper I describe the activities programmed with a large participation of members of the Society.

  11. The Music of the Spheres in Education: Using Astronomically Inspired Music

    Science.gov (United States)

    Fraknoi, Andrew

    We list and briefly describe over a hundred pieces of classical and popular music inspired by reasonable astronomical ideas, and we discuss ways that instructors (and those working in informal settings) can use music to enhance an astronomy class or program. Written and Web-based resources for exploring astronomical influences in music are also provided.

  12. Using Astronomical Photographs to Investigate Misconceptions about Galaxies and Spectra: Question Development for Clicker Use

    Science.gov (United States)

    Lee, Hyunju; Schneider, Stephen E.

    2015-01-01

    Many topics in introductory astronomy at the college or high-school level rely implicitly on using astronomical photographs and visual data in class. However, students bring many preconceptions to their understanding of these materials that ultimately lead to misconceptions, and research about students' interpretation of astronomical images has…

  13. Factors Contributing to Amateur Astronomers' Involvement in Education and Public Outreach

    Science.gov (United States)

    Yocco, Victor; Jones, Eric C.; Storksdieck, Martin

    2012-01-01

    Amateur astronomers play a critical role engaging the general public in astronomy. The role of individual and club-related factors is explored using data from two surveys (Survey 1 N = 1142; Survey 2 N = 1242) of amateur astronomers. Analysis suggests that formal or informal training in astronomy, age, club membership, length of club membership,…

  14. Exploring Seventh-Grade Students' and Pre-Service Science Teachers' Misconceptions in Astronomical Concepts

    Science.gov (United States)

    Korur, Fikret

    2015-01-01

    Pre-service science teachers' conceptual understanding of astronomical concepts and their misconceptions in these concepts is crucial to study since they will teach these subjects in middle schools after becoming teachers. This study aimed to explore both seventh-grade students' and the science teachers' understanding of astronomical concepts and…

  15. Using Astronomical Photographs to Investigate Misconceptions about Galaxies and Spectra: Question Development for Clicker Use

    Science.gov (United States)

    Lee, Hyunju; Schneider, Stephen E.

    2015-01-01

    Many topics in introductory astronomy at the college or high-school level rely implicitly on using astronomical photographs and visual data in class. However, students bring many preconceptions to their understanding of these materials that ultimately lead to misconceptions, and the research about students' interpretation of astronomical images…

  16. The bronze-age astronomical finds in the territory of Serbia

    Directory of Open Access Journals (Sweden)

    Babović Lj.

    2001-01-01

    Full Text Available In the present paper it is shown that among the archeological finds at Vatin some 50 km north-east of Belgrade, there are primeval astronomical instruments: gnomon, metron along with the calendar records, belonging to the proto-astronomic age, which by their ornamental analogies are linked with the contemporaneous Mycenae culture (around 1500-1250. B.C.

  17. The First Jewish Astronomers: Lunar Theory and Reconstruction of a Dead Sea Scroll.

    Science.gov (United States)

    Ratzon, Eshbal

    2017-06-01

    Argument The Astronomical Book of Enoch describes the passage of the moon through the gates of heaven, which stand at the edges of the earth. In doing so, the book describes the position of the rising and setting of the moon on the horizon. Otto Neugebauer, the historian of ancient science, suggested using the detailed tables found in later Ethiopic texts in order to reconstruct the path of the moon through the gates. This paper offers a new examination of earlier versions of the Astronomical Book, using a mathematical analysis of the figures and astronomical theories presented throughout the Aramaic Astronomical Book; the results fit both the data preserved in the scrolls and the mathematical approach and religious ideology of the scroll's authors better than the details found in the late Ethiopic texts. Among other new insights, this alternate theory also teaches about the process of the composition of the Astronomical Book in the first centuries of its composition.

  18. Enhanced thermal photon and dilepton production in strongly coupled = 4 SYM plasma in strong magnetic field

    Science.gov (United States)

    Mamo, Kiminad A.

    2013-08-01

    We calculate the DC conductivity tensor of strongly coupled = 4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field B ≫ T 2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in the presence of the strong external magnetic field B ≫ T 2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled = 4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.

  19. IYL Blog: Astronomers travel in time and space with light

    Science.gov (United States)

    Mather, John C.

    2015-01-01

    As an astronomer, I use light to travel through the universe, and to look back in time to when the universe was young. So do you! All of us see things as they were when the light was emitted, not as they are now. The farthest thing you can easily see without a telescope is the Andromeda Nebula, which is a galaxy like the Milky Way, about 2.5 million light years away. You see it as it was 2.5 million years ago, and we really don't know what it looks like today; the disk will have rotated a bit, new stars will have been born, there could have been all kinds of exploding stars, and the black hole in the middle could be lighting up. People may be skeptical of the Big Bang theory, even though we have a TV show named for it, but we (I should say Penzias and Wilson) measured its heat radiation 51 years ago at Bell Telephone Labs in New Jersey. Their discovery marks the beginning of the era of cosmology as a measurement science rather than speculation. Penzias and Wilson received the Nobel Prize in 1978 for their finding, which had been predicted in 1948 by Alpher and Herman. By the way, heat radiation is just another form of light - we call it radiation because we can't see it, but it's exactly the same phenomenon of electromagnetic waves, and the only difference is the wavelength. In the old days of analog television, if you tuned your TV in between channels, about 1% of the snow that you could see came from the Big Bang. So when we look at the heat radiation of the early universe, we really are gazing right at what seems to us a cosmic fireball, which surrounds us completely. It's a bit of an illusion; if you can imagine what astronomers in other galaxies would see, they would also feel surrounded by the fireball, and they would also think they were in the middle. So from a mathematical version of imagination, we conclude that there is no observable center and no edge of our universe, and that the heat of the fireball fills the entire universe uniformly. Astronomers are

  20. Physics of Strongly Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)

    2007-07-15

    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and

  1. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  2. Astronomers Discover First Negatively-charged Molecule in Space

    Science.gov (United States)

    2006-12-01

    Cambridge, MA - Astronomers have discovered the first negatively charged molecule in space, identifying it from radio signals that were a mystery until now. While about 130 neutral and 14 positively charged molecules are known to exist in interstellar space, this is the first negative molecule, or anion, to be found. "We've spotted a rare and exotic species, like the white tiger of space," said astronomer Michael McCarthy of the Harvard-Smithsonian Center for Astrophysics (CfA). By learning more about the rich broth of chemicals found in interstellar space, astronomers hope to explain how the young Earth converted these basic ingredients into the essential chemicals for life. This new finding helps to advance scientists' understanding of the chemistry of the interstellar medium, and hence the birthplaces of planets. McCarthy worked with CfA colleagues Carl Gottlieb, Harshal Gupta (also from the Univ. of Texas), and Patrick Thaddeus to identify the molecular anion known as C6H-: a linear chain of six carbon atoms with one hydrogen atom at the end and an "extra" electron. Such molecules were thought to be extremely rare because ultraviolet light that suffuses space easily knocks electrons off molecules. The large size of C6H-, larger than most neutral and all positive molecules known in space, may increase its stability in the harsh cosmic environment. "The discovery of C6H- resolves a long-standing enigma in astrochemistry: the apparent lack of negatively charged molecules in space," stated Thaddeus. The team first conducted laboratory experiments to determine exactly what radio frequencies to use in their search. Then, they used the National Science Foundation's Robert C. Byrd Green Bank Telescope to hunt for C6H- in celestial objects. In particular, they targeted locations in which previous searches had spotted unidentified radio signals at the appropriate frequencies. They found C6H- in two very different locations-a shell of gas surrounding the evolved red giant

  3. The Application of Artificial Neural Networks to Astronomical Classification

    Science.gov (United States)

    Naim, A.

    1995-12-01

    Galaxies are fundamental to the understanding of the structure and evolution of the universe. They contain stars, gas and dust, and serve as an astrophysical laboratory in which physical processes can be examined. In the context of the large scale structure of the universe galaxies can be viewed as test particles. They are bright and therefore visible at very large distances, and also numerous and so can be used to provide reliable statistics. In previous decades the major obstacle to studying the large scale structure of the universe was the relatively sparse data samples, because obtaining large quantities of galaxian images and spectra requires a lot of observing time, and the accumulation of significant data bases was therefore a slow process. This obstacle is in the process of being removed today, with the advent of large-scale surveys (e.g., the APM galaxy survey, the Sloan Digital Sky Survey and the 2 degree Field survey). The new challenge with which the astronomical community is faced is the management and analysis of the forthcoming extragalactic data bases. On top of the obvious need for better hardware to give large storage volumes and quick access, one needs to devise automated tools for data analysis. The sheer volume of the data renders manual analysis impractical. It would be best if one could somehow transfer the knowledge and expertise accumulated over years of painstaking manual analysis to a machine. This thesis is part of an effort to achieve this goal. I borrowed techniques that have proved useful in other fields (e.g., engineering) and applied them to astronomical datasets. The major tool I used was Artificial Neural Networks (ANNs), which was originally conceived as a simplified computational model for the brain. The scope of methods and algorithms referred to as ANNs is quite wide. In particular, a distinction is made between Supervised Learning algorithms and Unsupervised methods. The former put the emphasis on ``teaching'' a machine to do

  4. The Meteoroids 2013, Proceedings of the Astronomical Conference

    Science.gov (United States)

    Jopek, T. J.; Rietmeijer, F. J. M.; Watanabe, J.; Williams, I. P.

    2014-07-01

    The idea of holding a conference on meteors and interplanetary dust emerged at the commission 22 meetings during the IAU General Assembly in Baltimore and was firmed up at the next meeting in Buenos Aires, where it was decided to hold a conference in Czechoslovakia in 1992. This was 25 years since a meeting "Physics and Dynamics of Meteors" was held at Tatranska Lomnica, Czechoslovakia. The first Meteoroids Conference was held in Smolenice July 6-10 1992. Interestingly, by the time the proceedings were published (Meteoroids and their Parent Bodies) Czechoslovakia had divided into two independent countries and the book was published by the Slovak Academy of Sciences. Since that beginning, meetings have been held at roughly three year intervals (Bratislava, Slovakia, 1994; Tatranska Lomica, Slovakia, 1997; Kiruna, Sweden, 2001; London, Canada, 2004; Barcelona, Spain, 2007; Breckenridge, USA, 2010) and this volume publishes papers presented at the eighth meeting held at the Adam Mickiewicz University in Poznan, Poland 26 - 30 August 2013. This meeting, as did the first meeting in Smolenice and some of the others, followed the annual meeting of the International Meteor Organization, thus allowing a continuation of the fruitful collaboration between professional and amateur astronomers that is common in meteor astronomy, by allowing participants to easily attend both meetings. A special session on outreach and relation with amateur meteor astronomers was included in the program. There were 103 participants from 27 countries at the conference. A signicant part of the conference was devoted to the results from the spectacular and large fireball that was observed over Chelyabinsk in Russia on 15th February 2013 and to meteorite falls in general as well as meteoroid interactions with the planetary atmospheres. Other areas of science covered were Observation techniques; Sporadic and shower meteoroids; Physical properties of meteoroids; Meteoroid parent bodies; interplanetary

  5. The National Astronomical Observatory of Japan and Post-war Japanese Optical Astronomy

    Science.gov (United States)

    Tajima, Toshiyuki

    This paper depicts some aspects of the formative process of the Japanese optical and infrared astronomical community in the post-war period, featuring the transition of the National Astronomical Observatory of Japan(NAOJ). We take up three cases of telescope construction, examining their background and their contribution to the Japanese astronomical community. Through these cases, the characteristics of traditions and cultures of optical and infrared astronomy in Japan are considered. Although the Tokyo Astronomical Observatory (TAO) of the University of Tokyo, the predecessor of NAOJ, was originally founded as an agency for practical astronomical observation such as time and almanac service, it has become an international centre for all types of astrophysical research. Research and development of telescopes and observational instruments have become an important part of the astronomers' practice. Now, however, a number of Japanese universities are planning to have their own large to middle-sized telescopes, and a new style of astronomical research is emerging involving astrophysical studies utilising data acquired from the Virtual Observatory, so there is a distinct possibility that the status of the NAOJ will change even further in the future.

  6. Filling the Astronomical Void - A Visual Medium for a Visual Subject

    Science.gov (United States)

    Ryan, J.

    1996-12-01

    Astronomy is fundamentally a visual subject. The modern science of astronomy has at its foundation the ancient art of observing the sky visually. The visual elements of astronomy are arguably the most important. Every person in the entire world is affected by visually-observed astronomical phenomena such as the seasonal variations in daylight. However, misconceptions abound and the average person cannot recognize the simple signs in the sky that point to the direction, the hour and the season. Educators and astronomy popularizers widely lament that astronomy is not appreciated in our society. Yet, there is a remarkable dearth of popular literature for teaching the visual elements of astronomy. This is what I refer to as *the astronomical void.* Typical works use illustrations sparsely, relying most heavily on text-based descriptions of the visual astronomical phenomena. Such works leave significant inferential gaps to the inexperienced reader, who is unequipped for making astronomical observations. Thus, the astronomical void remains unfilled by much of the currently available literature. I therefore propose the introduction of a visually-oriented medium for teaching the visual elements of Astronomy. To this end, I have prepared a series of astronomy "comic strips" that are intended to fill the astronomical void. By giving the illustrations the central place, the comic strip medium permits the depiction of motion and other sequential activity, thus effectively representing astronomical phenomena. In addition to the practical advantages, the comic strip is a "user friendly" medium that is inviting and entertaining to a reader. At the present time, I am distributing a monthly comic strip entitled *Starman*, which appears in the newsletters of over 120 local astronomy organizations and on the web at http://www.cyberdrive.net/ starman. I hope to eventually publish a series of full-length books and believe that astronomical comic strips will help expand the perimeter of

  7. TAU: a design for a thousand astronomical unit voyage

    International Nuclear Information System (INIS)

    Eubanks, D.; Alvis, J.; Bechler, E.; Lyon, W. III; McFarlane, D.; Palmrose, D.; Schmitz, P.

    1987-01-01

    The Jet Propulsion Lab. (JPL) has proposed a deep-space probe to travel to a distance of one thousand astronomical units -25 times further from the Sun than Pluto. In order to achieve this goal within the lifetime of the investigators, the mission time is set at a maximum of 50 yr. The JPL proposal postulates a design in which the probe is under powered thrust for the first 10 yr of the mission and coasts for the next 40 yr. A continuous high specific impulse, Isp (the ratio of thrust to propellant mass flow rate), low thrust propulsion system (either magnetoplasmadynamic (MPD) or ion thrusters) is required in order to achieve this goal. This in turn necessitates electrical power in the megawatt range. The only power source that is practical for this situation is a nuclear reactor. It was a this point that the Nuclear Engineering Dept. at Texas A and M Univ. began its ongoing work, looking into several areas of the proposal in which a more detailed description was needed. These areas of interest were power, propulsion, heavy lift launch capabilities, and trajectory analysis. In addition to all of the boundaries previously outlined, the technology level is assumed to be that of 1995, 8 yr from now

  8. Weird Weather Tales of Astronomical and Atmospheric Anomalies

    CERN Document Server

    Seargent, David A J

    2012-01-01

    Have you ever heard the story of the tornado that lifted a man’s wallet right from his pants pocket? What about the myth of the Min-Min light in Australia?  Do you have a story about seeing the “Green Flash” or want an explanation of the mysterious Sun Dogs? Weird Weather: Tales of Astronomical and Atmospheric Anomalies is about the strange, unusual, and inexplicable events that take place in the air and sky. These include meteors that appear inside a darkened house, ghost lights that follow lone travelers, lightning emerging from patches of fog, and much more. Many of these climatic brainteasers occur within Earth’s skies, but there are parallel curiosities on other worlds, including: lightning on Venus, methane spouts on Titan, thunderstorms twice the size of Earth on Saturn, whirlwinds and dust storms on Mars , and auroras on Jupiter! Just as atmosphere and outer space are not separated by a sharp boundary, so the subject of this book is not confined to the skies. Earth is the way it is because of...

  9. Chilean Astronomers and the Birth of Cerro Tololo

    Science.gov (United States)

    Moreno, H.

    1990-11-01

    P# JMEN. Hace treinta afios que se tnict6 en Chile la de n luga adecuado pata establecer observatoro astron6ini- Co, que a en wi ieflector de 1 in de diam'etrr . importante destacar el papel que le corres-pondi6 al Obseiwatorio Nacional de Ia Universidad de `Chile -- re'.-. tarde Departamento de de la inisma Univer- sidad .- en 1 de este proycoto. Los resultados han ido mucho mct5 impoftaftes lo esperado . de tal nodo q. el prc -ama destinado a instalar ui telescopio de tama- f ha I levado al establ ecimiento de iri centro de acti- cientfica de relieve inten-acional. ALb(TRA . Thifty years ago the search for a site adequate for the est 1ishment of an astronomical was fn (Thile. Initially it was planned that the main telescope would be a 1 in i-cf lector. It is importaft to the role played by th O Astm-'n6mioo Nacional de la Unfversidad de Cbf Ic - later 0: Depaftamento de of the same University - in the development of this project. The results have been much more important than was e:-:pected initially: in thiS way the prr gram for a telescope of moderate size was transfo -med in a major project wh i ch 1 cad to the estab 1 ). shinent of an i nt i ona 1 center of scieftific research. AQ/ W : OBSERVATORIES

  10. Historical Examples of Lobbying: The Case of Strasbourg Astronomical Observatories

    Science.gov (United States)

    Heck, Andre

    2012-08-01

    Several astronomical observatories have been established in Strasbourg in very differing contexts. In the late 17th century, an observing post (scientifically sterile) was put on top of a tower, the Hospital Gate, essentially for the prestige of the city and the notoriety of the university. In the 19th century, the observatory built on the Académie hosting the French university was the first attempt to set up in the city a real observatory equipped with genuine instrumentation with the purpose of carrying out serious research, but the succession of political regimes in France and the continual bidding for moving the university to other locations, together with the faltering of later scholars, torpedoed any significant scientific usage of the place. After the 1870-1871 Franco-Prussian war, the German authorities set up a prestigious university campus with a whole range of institutes together with a modern observatory consisting of several buildings and hosting a flotilla of excellent instruments, including the then largest refractor of the country. This paper illustrates various types of lobbying used in the steps above while detailing, from archive documents largely unexploited so far, original research on the two first observatories.

  11. Surveying the skies how astronomers map the universe

    CERN Document Server

    Wynn-Williams, Gareth

    2016-01-01

    Since the time of Galileo, astronomy has been driven by technological innovation. With each major advance has come the opportunity and enthusiasm to survey the sky in a way that was not possible before. It is these surveys of discovery that are the subject of this book. In the first few chapters the author discusses what astronomers learned from visible-light surveys, first with the naked eye, then using telescopes in the seventeenth century, and photography in the nineteenth century. He then moves to the second half of the twentieth century when the skies started to be swept by radio, infrared, ultraviolet, x-ray and gamma ray telescopes, many of which had to be flown in satellites above the Earth’s atmosphere. These surveys led to the discovery of pulsars, quasars, molecular clouds, protostars, bursters, and black holes. He then returns to Earth to describe several currently active large-scale projects that methodically collect images, photometry and spectra that are then stored in vast publicly-accessibl...

  12. Long-period astronomical forcing of mammal turnover.

    Science.gov (United States)

    van Dam, Jan A; Abdul Aziz, Hayfaa; Alvarez Sierra, M Angeles; Hilgen, Frederik J; van den Hoek Ostende, Lars W; Lourens, Lucas J; Mein, Pierre; van der Meulen, Albert J; Pelaez-Campomanes, Pablo

    2006-10-12

    Mammals are among the fastest-radiating groups, being characterized by a mean species lifespan of the order of 2.5 million years (Myr). The basis for this characteristic timescale of origination, extinction and turnover is not well understood. Various studies have invoked climate change to explain mammalian species turnover, but other studies have either challenged or only partly confirmed the climate-turnover hypothesis. Here we use an exceptionally long (24.5-2.5 Myr ago), dense, and well-dated terrestrial record of rodent lineages from central Spain, and show the existence of turnover cycles with periods of 2.4-2.5 and 1.0 Myr. We link these cycles to low-frequency modulations of Milankovitch oscillations, and show that pulses of turnover occur at minima of the 2.37-Myr eccentricity cycle and nodes of the 1.2-Myr obliquity cycle. Because obliquity nodes and eccentricity minima are associated with ice sheet expansion and cooling and affect regional precipitation, we infer that long-period astronomical climate forcing is a major determinant of species turnover in small mammals and probably other groups as well.

  13. Wide-Field Astronomical Surveys in the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Michael A.; /Princeton U.; Tyson, J.Anthony; /UC, Davis; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Axelrod, T.S.; /LSST Corp.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Bickerton, Steven J.; /Princeton U.; Blanton, Michael R.; /New York U.; Burke, David L.; /SLAC; Condon, J.J.; /NRAO, Socorro; Connolly, A.J.

    2009-03-01

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  14. Lewis Swift celebrated comet hunter and the people's astronomer

    CERN Document Server

    Kronk, Gary W

    2017-01-01

    This biography covers the life of Lewis Swift (1820-1913), who discovered 13 comets and nearly 1,200 other deep sky objects. All 13 comets found by Swift now bear his name, including three periodic comets with periods of 6 years (11P/Tempel-Swift-LINEAR), 9 years (64P/Swift-Gehrels), and 133 years (109P/Swift-Tuttle). Swift's enthusiasm and success as an amateur astronomer helped make him famous in the United States. With the help of others, Swift was able to buy a 16-inch refractor, the third largest telescope in the United States at the time. Hulbert Harrington Warner built "Warner Observatory" to house this telescope. As a prolific writer and lecturer, Swift's stories appeared in newspapers and magazines, while his lectures showed that he was able to explain anything in a way that everyone could understand.  When Warner went broke during the "Panic of 1893," Swift was forced to leave his home. Almost two dozen invitations arrived from around the United States asking him to bring his telescope to their ci...

  15. 153rd Colloquium of the International Astronomical Union

    CERN Document Server

    Kosugi, Takeo; Hudson, Hugh

    1996-01-01

    These are the Proceedings of Colloquium No. 153 of the International Astro­ nomical Union, held at Makuhari near Tokyo on May 22 - 26, 1995, and hosted by the National Astronomical Observatory. This meeting was intended to be an interdisciplinary meeting between re­ searchers of solar and stellar activity, in order for them to exchange the newest information in each field. While each of these areas has seen remarkable advances in recent years, and while the researchers in each field have felt that information from the other's domain would be extremely useful in their own work, there have not been very many opportunities for intensive exchanges of information between these closely related fields. We therefore expected much from this meeting in pro­ viding stellar researchers with new results of research on the counterparts of their targets of research, spatially and temporarily resolved, as observed on the Sun. Likewise we hoped to provide solar researchers with new results on gigantic ver­ sions of their ...

  16. International School For Young Astronomers (ISYA) : Their New Horizon

    Science.gov (United States)

    Gerbaldi, M.

    2006-08-01

    This talk outline the main features of this programme developed by the International astronomical Union (IAU) since 1967 and its perpective at the time of the development of virtual observatories. The main goal of this programme is to support astronomy in developing countries in organizing a School during 3 weeks for students with typically a M.Sc. degree. The context in which the ISYA were developed changed drastically those past 10 years. From a time where the access to any large telescope was difficult and mainly organized on a nation-basis, nowadays the archives are developed at the same time that any major telescope, ground-based one or in space, and they are accessible from everywhere the concept of virtual observatory reinforcing this access. The technological development of the telecommunications and of the world wide internet connections do not remove all the difficulties among which the problem of the isolation of the scientist working in a small institution. In this context the role of the ISYA will be addressed.

  17. Nicolas-Louis De La Caille astronomer and geodesist

    CERN Document Server

    Glass, I S

    2013-01-01

    La Caille was one of the observational astronomers and geodesists who followed Newton in developing ideas about celestial mechanics and the shape of the earth. He provided data to the great 18th-century mathematicians involved in understanding the complex gravitational effects that the heavenly bodies have on one another. Observing from the Cape of Good Hope, he made the first ever telescopic sky survey and gave many of the southern constellations their present-day names. He measured the paths of the planets and determined their distances by trigonometry. In addition, he made a controversial measurement of the radius of the earth that seemed to prove it was pear-shaped. On a practical level, La Caille developed the method of `Lunars' for determining longitudes at sea. He mapped the Cape. As an influential teacher he propagated Newton's theory of universal gravitation at a time when it was only beginning to be accepted on the European continent. This book gives the most comprehensive overview so far avail...

  18. Fastest Pulsar Speeding Out of Galaxy, Astronomers Discover

    Science.gov (United States)

    2005-08-01

    A speeding, superdense neutron star somehow got a powerful "kick" that is propelling it completely out of our Milky Way Galaxy into the cold vastness of intergalactic space. Its discovery is puzzling astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to directly measure the fastest speed yet found in a neutron star. Pulsar's Path Across Sky Over about 2.5 million years, Pulsar B1508+55 has moved across about a third of the night sky as seen from Earth. CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version 67 KB) The neutron star is the remnant of a massive star born in the constellation Cygnus that exploded about two and a half million years ago in a titanic explosion known as a supernova. Ultra-precise VLBA measurements of its distance and motion show that it is on course to inevitably leave our Galaxy. "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding," said Shami Chatterjee, of the National Radio Astronomy Observatory (NRAO) and the Harvard-Smithsonian Center for Astrophysics. "This discovery is very difficult for the latest models of supernova core collapse to explain," he added. Chatterjee and his colleagues used the VLBA to study the pulsar B1508+55, about 7700 light-years from Earth. With the ultrasharp radio "vision" of the continent-wide VLBA, they were able to precisely measure both the distance and the speed of the pulsar, a spinning neutron star emitting powerful beams of radio waves. Plotting its motion backward pointed to a birthplace among groups of giant stars in the constellation Cygnus -- stars so massive that they inevitably explode as supernovae. "This is the first direct measurement of a neutron star's speed that exceeds 1,000 kilometers per second," said Walter Brisken, an NRAO astronomer. "Most earlier estimates of neutron-star speeds depended on educated

  19. Recurrent Neural Network Applications for Astronomical Time Series

    Science.gov (United States)

    Protopapas, Pavlos

    2017-06-01

    The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.

  20. STEM and the Evolution of the Astronomical Star Party

    Science.gov (United States)

    Day, B. H.; Munive, P.; Franco, J.; Jones, A. P.; Shaner, A. J.; Buxner, S.; Bleacher, L.

    2015-12-01

    The astronomical star party has long been a powerful and effective way to engage the public and enhance cohesiveness within the amateur astronomy community. Early star parties tended to be strictly small, local events. But with improvements in transportation, larger regional star parties became popular. These advanced the considerable capabilities for citizen science in the amateur community, shared technology and engineering innovations in the field of telescope making, and refined numerous mathematical techniques in areas such instrument design and ephemeris generation, covering the full breadth of STEM. Advancements in astrophotography showcased at these events brought the star party from STEM to STEAM. Now, the advent of social media, web streaming, and virtual presence has facilitated the phenomenon of very large, networked star parties with international scope. These mega star parties take public engagement to a new, far greater levels, giving a vastly larger and more diverse public the opportunity to directly participate in exciting first-hand STEM activities. This presentation will recount the evolution of the star party and will focus on two examples of large, multinational, networked star parties, International Observe the Moon Night and Noche de las Estrellas. We will look at lessons learned and ways to participate.

  1. High-School Student Discovers Strange Astronomical Object

    Science.gov (United States)

    2009-09-01

    A West Virginia high-school student analyzing data from a giant radio telescope has discovered a new astronomical object -- a strange type of neutron star called a rotating radio transient. Lucas Bolyard, a sophomore at South Harrison High School in Clarksburg, WV, made the discovery while participating in a project in which students are trained to scrutinize data from the National Science Foundation's giant Robert C. Byrd Green The project, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU), funded by a grant from the National Science Foundation. Bolyard made the discovery in March, after he already had studied more than 2,000 data plots from the GBT and found nothing. "I was home on a weekend and had nothing to do, so I decided to look at some more plots from the GBT," he said. "I saw a plot with a pulse, but there was a lot of radio interference, too. The pulse almost got dismissed as interference," he added. Nonetheless, he reported it, and it went on a list of candidates for West Virginia University astronomers Maura McLaughlin and Duncan Lorimer to re-examine, scheduling new observations of the region of sky from which the pulse came. Disappointingly, the follow-up observations showed nothing, indicating that the object was not a normal pulsar. However, the astronomers explained to Bolyard that his pulse still might have come from a rotating radio transient. Confirmation didn't come until July. Bolyard was at the NRAO's Green Bank Observatory with fellow PSC students. The night before, the group had been observing with the GBT in the wee hours, and all were very tired. Then Lorimer showed Bolyard a new plot of his pulse, reprocessed from raw data, indicating that it is real, not interference, and that Bolyard is likely the discoverer of one of only about 30 rotating radio transients known. Suddenly, Bolyard said, he wasn't tired anymore. "That news made me full

  2. Astrophysics is easy! an introduction for the amateur astronomer

    CERN Document Server

    Inglis, Michael

    2015-01-01

    Astrophysics is often –with some justification – regarded as incomprehensible without the use of higher mathematics. Consequently, many amateur astronomers miss out on some of the most fascinating aspects of the subject. Astrophysics Is Easy! cuts through the difficult mathematics and explains the basics of astrophysics in accessible terms. Using nothing more than plain arithmetic and simple examples, the workings of the universe are outlined in a straightforward yet detailed and easy-to-grasp manner.   The original edition of the book was written over eight years ago, and in that time, advances in observational astronomy have led to new and significant changes to the theories of astrophysics. The new theories will be reflected in both the new and expanded chapters.   A unique aspect of this book is that, for each topic under discussion, an observing list is included so that observers can actually see for themselves the concepts presented –stars of the spectral sequence, nebulae, galaxies, even black ...

  3. Wide-Field Astronomical Surveys in the Next Decade

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Michael A.; /Princeton U.; Tyson, J.Anthony; /UC, Davis; Anderson, Scott F.; /Washington U., Seattle, Astron. Dept.; Axelrod, T.S.; /LSST Corp.; Becker, Andrew C.; /Washington U., Seattle, Astron. Dept.; Bickerton, Steven J.; /Princeton U.; Blanton, Michael R.; /New York U.; Burke, David L.; /SLAC; Condon, J.J.; /NRAO, Socorro; Connolly, A.J.; /Washington U., Seattle, Astron. Dept.; Cooray, Asantha R.; /UC, Irvine; Covey, Kevin R.; /Harvard U.; Csabai, Istvan; /Eotvos U.; Ferguson, Henry C.; /Baltimore, Space Telescope Sci.; Ivezic, Zeljko; /Washington U., Seattle, Astron. Dept.; Kantor, Jeffrey; /LSST Corp.; Kent, Stephen M.; /Fermilab; Knapp, G.R.; /Princeton U.; Myers, Steven T.; /NRAO, Socorro; Neilsen, Eric H., Jr.; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Harish-Chandra Res. Inst. /Caltech, IPAC /Potsdam, Max Planck Inst. /Harvard U. /Hawaii U. /UC, Berkeley, Astron. Dept. /Baltimore, Space Telescope Sci. /NOAO, Tucson /Carnegie Mellon U. /Chicago U., Astron. Astrophys. Ctr.

    2011-11-14

    Wide-angle surveys have been an engine for new discoveries throughout the modern history of astronomy, and have been among the most highly cited and scientifically productive observing facilities in recent years. This trend is likely to continue over the next decade, as many of the most important questions in astrophysics are best tackled with massive surveys, often in synergy with each other and in tandem with the more traditional observatories. We argue that these surveys are most productive and have the greatest impact when the data from the surveys are made public in a timely manner. The rise of the 'survey astronomer' is a substantial change in the demographics of our field; one of the most important challenges of the next decade is to find ways to recognize the intellectual contributions of those who work on the infrastructure of surveys (hardware, software, survey planning and operations, and databases/data distribution), and to make career paths to allow them to thrive.

  4. Digging up the Earliest Astronomical Observatory in China

    Science.gov (United States)

    Li, Wei-Boa; Chen, Jiu-Jin

    2007-09-01

    At the town of Taosi, county of Xiangfen, Shanxi province the earliest (up to date about 4000 years ago) astronomical observatory and sacrificial altar relic was dug up, which consists of an observing site, some tamped soil columniations and slits between those columniations. This construction was used to observe the variations of the sunrise azimuth and determine the tropical year length in order to constitute the calendar. It is indicated from the simulated observations that the two slits located in the southeast and the northwest could be precisely used to determine the dates of the Winter Solstice and the Summer Solstice. Between those two slits there are 10 columniations which could indicate that the visual Sun moving from one columniation to another is a solar term. It implies that in the Emperor Yao time the calendar was the solar calendar in which one year was divided into 20 solar terms. The Yin-Yang five-element calendar, a 10-month calendar, in the very ancient time was based on this calendar.

  5. First light and beyond making a success of astronomical observing

    CERN Document Server

    Jenkins, D A

    2015-01-01

    Amateur astronomers who have been disappointed by the results of an observing session can still gain useful experience in a seemingly “failed” night at the telescope. In a world with imperfect seeing conditions, incredible observing sessions are often mixed with less inspiring ones, discouraging the amateur observer. This book is designed to help novice observers take something worthwhile away each and every time they go out under the night sky, regardless of what was originally planned. Almost every observer remembers his first sight of Ringed Saturn, hanging majestically in the blackness of space. Practitioners agree that visual observing is special. Real-time observations at the eyepiece can provide fleeting yet intense feelings that connect us with the universe. But when expectations aren’t met at the eyepiece, there are other ways to profit from the practice of astronomy. These rewards, though less showy, are well worth cultivating. This book will help you see what constitutes a “successful” vi...

  6. Archon: A modern controller for high performance astronomical CCDs

    Science.gov (United States)

    Bredthauer, Greg

    2014-08-01

    The rapid evolution of commercial FPGAs and analog ICs has enabled the development of Archon, a new modular high performance astronomical CCD controller. CCD outputs are digitized by 16-bit 100 MHz ADCs with differential AC-coupled preamplifiers. The raw data stream from an ADC can be stored in parallel with standard image data into three onboard 512 MB frame buffers. Pixel values are computed using digital correlated double sampling. At low pixel rates (power up and down in a customizable sequence. Communication between the controller and a host computer occurs over a gigabit Ethernet interface (fiber or copper). A CCD configuration is specified by a simple text file. Together, these features simplify the tuning and debugging of scientific CCDs, and enable CCD-limited imaging. I present details of the controller architecture, examples of CCD tuning, and measured performance data of the controller alone (dynamic range of 108 dB at 100 kHz and 98 dB at 1 MHz) and in combination with an STA1600LN CCD.

  7. Initiating Young Children into Basic Astronomical Concepts and Phenomena

    Science.gov (United States)

    Kallery, M.

    2010-07-01

    In the present study we developed and implemented three units of activities aiming at acquainting very young children with basic astronomical concepts and phenomena such as the sphericity of the earth, the earth’s movements and the day/night cycle. The activities were developed by a group composed of a researcher/facilitator and six early-years teachers. In the activities children were presented with appropriate for their age scientific information along with conceptual tools such as a globe and an instructional video. Action research processes were used to optimize classroom practices and to gather useful information for the final shaping of the activities and the instruction materials. In these activities the adopted approach to learning can be characterized as socially constructed. The results indicated awareness of concepts and phenomena that the activities dealt with in high percentages of children, storage of the new knowledge in the long term memory and easy retrieval of it, and children’s enthusiasm for the subject.

  8. Exoplanets and Other Modern Answers to Old Astronomical Questions

    Science.gov (United States)

    Trimble, Virginia

    2002-04-01

    The Greeks were the first to ask, or at least to write about asking, questions like whether there are other planets like earth and whether the universe is finite or infinite. In all cases, they answered both yes and not (since there were lots of Greeks and not much data). A good deal later (but still in the period called history, unless you are very old), astronomers started asking whether the duration of the universe was finite or infinite, what the stars are made of and what keeps them shining, and whether there are other galaxies like ours. All of these now how answers at some confidence level. Close to 100 planets outside our solar system have been reported, starting in 1995, but selection effects mean that none are like earth. Data from many sources (supernovae, radioactive elements, microwave radiation, and all) combine to say that the universe has a finite past but probably an infinite future and an extent that, if not infinite, is anyhow very much larger than a breadbox. The stars run on nuclear fusion, and there are oodles of galaxies. The talk will explore how we have learned some of these things and try to look forward to current unsolved problems in astrophysics and cosmology.

  9. MEMS Deformable Mirrors for Adaptive Optics in Astronomical Imaging

    Science.gov (United States)

    Cornelissen, S.; Bierden, P. A.; Bifano, T.

    We report on the development of micro-electromechanical (MEMS) deformable mirrors designed for ground and space-based astronomical instruments intended for imaging extra-solar planets. Three different deformable mirror designs, a 1024 element continuous membrane (32x32), a 4096 element continuous membrane (64x64), and a 331 hexagonal segmented tip-tilt-piston are being produced for the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) program, the Gemini Planet Imaging Instrument, and the visible nulling coronograph developed at JPL for NASA's TPF mission, respectively. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that was pioneered at Boston University and has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors will have an active aperture of up to 25.2mm consisting of thin silicon membrane mirror supported by an array of 1024 to 4096 electrostatic actuators exhibiting no hysteresis and sub-nanometer repeatability. The continuous membrane deformable mirrors, coated with a highly reflective metal film, will be capable of up to 4μm of stroke, have a surface finish of travel. New design features and fabrication processes are combined with a proven device architecture to achieve the desired performance and high reliability. Presented in this paper are device characteristic and performance results of these devices.

  10. The Amateur Astronomer's Guide to the Deep-Sky Catalogs

    CERN Document Server

    Cavin, Jerry D

    2012-01-01

    All of us familiar with astronomy know of Charles Messier and his early work on creating a catalog of celestial objects. Did you know that Messier was compiling a list of objects to avoid when searching the skies? He was a comet hunter, and he wanted to not mistake other things for comets. Other lists and catalogs followed this, and many, including Messier's, have become popular with amateur astronomers who see it as a challenge to find everything on the list or as a guide on what to see when they look through their telescopes or binoculars. In this "catalog of catalogs," the author introduces the figures behind the most famous of the star catalogs and includes the catalog listings as well. Thus here, all in one book, is your complete guide to the heavenly bodies - including constellations, galaxies, nebulae, supernova remnants, and much more - that most people seek to see when they observe the night sky. Here are enough challenges for a lifetime of exciting viewing!

  11. ``Campo del Cielo'' Meteorites: Astronomical Heritage and Cultural Colonialism

    Science.gov (United States)

    López, Alejandro Martín; Altman, Agustina

    2012-09-01

    In the province of Chaco, Argentina, there is a very unique dispersion of metallic meteorites called ``Campo del Cielo''. One of the meteoric fragments of this dispersion, the meteorite called ``El Chaco'', consisting of 37 tons, is the second heaviest in the world. These meteorites are of great importance to the worldview of the Moqoit, aboriginal people that inhabit this region. For the local Creole population the meteorites are also relevant, that's why they have being cited in numerous documents and reports since the colonial period. During the first months of 2012, two Argentine artists and the Artistic Director of the German contemporary art exhibition called dOCUMENTA (13) tried to move ``El Chaco'' meteorite to Germany in order to exhibit it as an artistic object. Due to the fact that moving the meteorite could have a negative impact according to the Moqoit cosmology and that they were not able to participate in the decision they begun a manifestation against the movement of El Chaco. The opposition made by aboriginal communities and experts in cultural astronomy was able to stop the transfer. The whole process and its impact on the local community have promoted a deep discussion about art, science and cultural colonialism. In this paper we aim to address this debate and its consequences. This will allow us to think about contemporary forms of colonialism that are hidden in many scientific and artistic projects. Furthermore, we aim to debate about the most effective ways of protecting astronomical heritage in the Third World.

  12. A review of astronomical science with visible light adaptive optics

    Science.gov (United States)

    Close, Laird M.

    2016-07-01

    We review astronomical results in the visible (λsystem (Baranec, et al. 2016) on the robotic Palomar D=1.5 m telescope (currently relocated to the Kitt Peak 1.8m; Salama et al. 2016). Robo-AO uniquely offers the ability to target >15 objects/hr, which has enabled large (>3000 discrete targets) companion star surveys and has resulted in 23 refereed science publications. The most productive large telescope visible AO system is the D=6.5m Magellan telescope AO system (MagAO). MagAO is an advanced Adaptive Secondary Mirror (ASM) AO system at the Magellan 6.5m in Chile (Morzinski et al. 2016). This ASM secondary has 585 actuators with system (Fusco et al. 2016). ZIMPOL's ability to differentiate scattered polarized light from starlight allows the sensitive detection of circumstellar disks, stellar surfaces, and envelopes of evolved AGB stars. Here we review the key steps to having good performance in the visible and review the exciting new AO visible science opportunities and science results in the fields of: exoplanet detection; circumstellar and protoplanetary disks; young stars; AGB stars; emission line jets; and stellar surfaces. The recent rapid increase in the scientific publications and power of visible AO is due to the maturity of the next-generation of AO systems and our new ability probe circumstellar regions with very high (10-30 mas) spatial resolutions that would otherwise require much larger (>10m) diameter telescopes in the infrared.

  13. MSE observatory: a revised and optimized astronomical facility

    Science.gov (United States)

    Bauman, Steven E.; Angers, Mathieu; Benedict, Tom; Crampton, David; Flagey, Nicolas; Gedig, Mike; Green, Greg; Liu, Andy; Lo, David; Loewen, Nathan; McConnachie, Alan; Murowinski, Rick; Racine, René; Salmon, Derrick; Stiemer, Siegfried; Szeto, Kei; Wu, Di

    2016-07-01

    The Canada-France-Hawaii-Telescope Corporation (CFHT) plans to repurpose its observatory on the summit of Maunakea and operate a (60 segment) 11.25m aperture wide field spectroscopic survey telescope, the Maunakea Spectroscopic Explorer (MSE). The prime focus telescope will be equipped with dedicated instrumentation to take advantage of one of the best sites in the northern hemisphere and offer its users the ability to perform large surveys. Central themes of the development plan are reusing and upgrading wherever possible. MSE will reuse the CFHT site and build upon the existing observatory infrastructure, using the same building and telescope pier as CFHT, while minimizing environmental impact on the summit. MSE will require structural support upgrades to the building to meet the latest building seismic code requirements and accommodate a new larger telescope and upgraded enclosure. It will be necessary to replace the current dome since a larger slit opening is needed for a larger telescope. MSE will use a thermal management system to remove heat generated by loads from the building, flush excess heat from lower levels, and maintain the observing environment temperature. This paper describes the design approach for redeveloping the CFHT facility for MSE. Once the project is completed the new facility will be almost indistinguishable on the outside from the current CFHT observatory. Past experience and lessons learned from CFHT staff and the astronomical community will be used to create a modern, optimized, and transformative scientific data collecting machine.

  14. Europlanet 2020: Fostering the collaboration between professional scientists and amateur astronomers

    Science.gov (United States)

    Scherf, M.; Kargl, G.; Tautvaisiene, G.; Al-Ubaidi, T.

    2017-09-01

    The Horizon 2020 advanced research infrastructure project Europlanet 2020 aims to strengthen the collaboration in European planetary sciences. One of the major goals of the project's Work Package NA1 Task 12.5 "Coordination of ground-based observations" is to foster the cooperation between professional planetary scientists and amateur astronomers in Europe. This presentation will give an overview on Europlanet 2020 and will summarize the major activities of NA1-Task 12.5, focusing on how the project supports the activities of amateur astronomers and their collaboration with professional scientists in Europe. This will also include an overview on funding possibilities for amateur astronomers.

  15. Source / component separation with NMF and scarlet

    Science.gov (United States)

    Melchior, Peter; Moolekamp, Fred; LSST Data Management, WFIRST Preparatory Science

    2018-01-01

    Astronomical data are often superpositions of multiple source signals. I will introduce the open-source analysis framework scarlet, based on the Non-negative Matrix Factorization (NMF), that achieves efficient source separation and enables flexible constraints or priors on the shape of the signals and/or the signal amplitude across multiple observations.I will demonstrate scarlet's capabilities of separating multi-component photo-z distributions, AGN jets from host galaxies, and more generally: crowded extragalactic fields in the HSC survey. I will also discuss extensions for joint pixel-level deblending with images from LSST and WFIRST, and for hyperspectral or grism data.

  16. Component Rhinoplasty

    OpenAIRE

    Mohmand, Muhammad Humayun; Ahmad, Muhammad

    2014-01-01

    BACKGROUND According to statistics of American Society of Plastic Surgeons, cosmetic rhinoplasty was the second most frequently performed cosmetic surgery. This study shares the experiences with component rhinoplasty. METHODS From 2004 to 2010, all patients underwent aesthetic nasal surgery were enrolled. The patients requiring only correction of septal deviation and those presenting with cleft lip nasal deformity were excluded. All procedures were performed under general anaesthesia with ope...

  17. Hyperfrequency components

    Science.gov (United States)

    1994-09-01

    The document has a collection of 19 papers (11 on technologies, 8 on applications) by 26 authors and coauthors. Technological topics include: evolution from conventional HEMT's double heterojunction and planar types of pseudomorphic HEMT's; MMIC R&D and production aspects for very-low-noise, low-power, and very-low-noise, high-power applications; hyperfrequency CAD tools; parametric measurements of hyperfrequency components on plug-in cards for design and in-process testing uses; design of Class B power amplifiers and millimetric-wave, bigrid-transistor mixers, exemplifying combined use of three major types of physical simulation in electrical modeling of microwave components; FET's for power amplification at up to 110 GHz; production, characterization, and nonlinear applications of resonant tunnel diodes. Applications topics include: development of active modules for major European programs; tubes versus solid-state components in hyperfrequency applications; status and potentialities of national and international cooperative R&D on MMIC's and CAD of hyperfrequency circuitry; attainable performance levels in multifunction MMIC applications; state of the art relative of MESFET power amplifiers (Bands S, C, X, Ku); creating a hyperfrequency functions library, of parametrizable reference cells or macrocells; and design of a single-stage, low-noise, band-W amplifier toward development of a three-stage amplifier.

  18. Creating and enhancing digital astro images a guide for practical astronomers

    CERN Document Server

    Privett, Grant

    2007-01-01

    This book clearly examines how to create the best astronomical images possible with a digital camera. It reveals the astonishing images that can be obtained with simple equipment, the right software, and knowledge of how to use it.

  19. Astronomical High Tide Line, Geographic NAD83, NWRC (1995) [hightide_line_NWRC_1995

    Data.gov (United States)

    Louisiana Geographic Information Center — The astronomical high tide line was compiled from National Wetlands Inventory (NWI) 1:24,000-scale habitat maps that were photo-interpreted from color-infrared...

  20. The experience of the scientific-teaching astronomical complex foundation at the North Kazakhstan University

    International Nuclear Information System (INIS)

    Solodovnik, A.A.; Sartin, S.A.

    2006-01-01

    Description of the scientific-teaching astronomical complex of North Kazakhstan University after M. Kozybaev (Petropavlovsk) consisting of the astrophysical observatory, planetarium, and teaching systematic center is given. (author)

  1. A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Zeeden, Christian

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the Fish Canyon sanidine (FCs) neutron fluence...... monitor, by multi-collector noble gas mass spectrometry, through cross-calibration with A1 tephra sanidines (A1Ts) of the direct astronomically tuned Faneromeni section (Crete). The astronomically intercalibrated 40Ar/39Ar age of FCs of 28.172±0.028 Ma (2σ, external errors) is within the uncertainty of......, but more precise (±0.10%) than, the previous 40Ar/39Ar age determined by intercalibration with astronomically tuned tephras from the Melilla Basin (Morocco). Using this proposed age for FCs, combined with measurements using the A1Ts as the neutron fluence monitor, a weighted mean Bishop Tuff 40Ar/39Ar...

  2. A refined Astronomically Calibrated 40AR/39Ar age for Fish Canyon Sanidine

    NARCIS (Netherlands)

    Rivera, T.A.; Storey, M.; Zeeden, C.; Hilgen, F.J.; Kuiper, K.F.

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision

  3. Ancient Astronomical Hieroglyphs of the Armenian Highland and their Echo in Architectural Structures

    Science.gov (United States)

    Ter-Gulanyan, Ani

    2014-10-01

    The credo-spiritual structure formed as a result of astronomical knowledge in the Armenian Highland and recognition of the universe, with its symbolistic signs - which, in our opinion, were expressed in particular by astronomic horoscope hieroglyphs - have had their worship and spiritual speculative feedback both in architecture and in different other arts, especially in symbolic jewelry. A visible link is noticed between the shift of constellations and the civilization development phases. Identification of archeological sources gives the ground to conclude that Armenia has been one of the centers of astronomy. The astronomical signs, having a local origin and having formed ancient astronomical-worship, spiritual-credo structure, have found the feedback of its developments also in other biospheres with respective unique manifestations, in both ancient pagan church architecture and the Christian church architecture, both as a volume form and as a spiritual ideology, with its credosymbolistic signs.

  4. A survey of European astronomical tables in the late middle ages

    CERN Document Server

    Chabás, José

    2012-01-01

    This is a survey of the numerous astronomical tables compiled in the late Middle Ages, which represent a major intellectual enterprise. Such tables were often the best way available at the time for transmitting precise information to the reader.

  5. Catherine Cesarsky - President Elect of the International Astronomical Union (IAU)

    Science.gov (United States)

    2003-07-01

    The General Assembly of the International Astronomical Union (IAU), meeting in Sydney (Australia), has appointed the ESO Director General, Dr. Catherine Cesarsky, as President Elect for a three-year period (2003-2006). The IAU is the world's foremost organisation for astronomy, uniting almost 9000 professional scientists on all continents. The IAU General Assembly also elected Prof. Ron Ekers (Australia) as President (2003 - 2006). Dr. Cesarsky will then become President of the IAU in 2006, when the General Assembly next meets in Prague (The Czech Republic). Dr. Cesarsky is the first woman scientist to receive this high distinction. "The election of Catherine Cesarsky as President-Elect of the IAU is an important recognition for a scientist who has made impressive contributions to various areas of modern astrophysics, from cosmic rays to the interstellar medium and cosmology" , commented the outgoing IAU President, Prof. Franco Pacini. "It is also an honour and an important accolade for the European astronomical community in general and ESO in particular." Dr. Cesarsky, who assumed the function as ESO Director General in 1999, was born in France. She received a degree in Physical Sciences at the University of Buenos Aires and graduated with a PhD in Astronomy in 1971 from Harvard University (Cambridge, Mass., USA). Afterwards she worked at the California Institute of Technology (CALTECH). In 1974, she became a staff member of the Service d'Astrophysique (SAp), Direction des Sciences de la Matière (DSM), Commissariat à l'Energie Atomique (CEA) (France). As Director of DSM (1994 - 1999), she was leading about 3000 scientists, engineers and technicians active within a broad spectrum of basic research programmes in physics, chemistry, astrophysics and earth sciences. Dr. Cesarsky is known for her successful research activities in several central areas of modern astrophysics. She first worked on the theory of cosmic ray propagation and acceleration, and galactic gamma

  6. Investigating metals in the MLT using astronomical facilities

    Science.gov (United States)

    Unterguggenberger, Stefanie; Noll, Stefan; Feng, Wuhu; Plane, John M. C.; Kausch, Wolfgang; Kimeswenger, Stefan; Jones, Amy

    2017-04-01

    Metals in the mesopause region, such as Na, Fe or Ni, originate from meteoric ablation in the upper atmosphere. Through reactions with ozone they emit airglow and in the case of Fe and Ni form metal oxides. Unlike Na, their emission does not result in line emission but in a (pseudo-) continuum. However, (pseudo-) continuum emission is difficult to observe since it is a broad but weak spectral feature compared to the line emissions arising from Na. The pseudo-continuum of FeO is located in the wavelength range of 0.55 to 0.72 μm, while NiO covers 0.45 to 0.72 μm. So far FeO has been studied with the Odin satellite and with ground-based astronomical facilities (ESI/Keck and Kitt Peak). The observed spectral data were compared to laboratory spectra. The diurnal behaviour of FeO was studied in comparison to OH, Na, and O(5577) during nine nights. For NiO even fewer observations are available. NiO has been detected via night airglow tangent limb spectroscopy with the GLO-1 instrument onboard a space shuttle. For this study on metals in the mesopause region we use astronomical data taken with the Very Large Telescope (VLT) operated by the European Southern Observatory (ESO) in Chile (24° 37' S, 70° 24') and the Apache Point Observatory (APO) in New Mexico/USA (32° 46' N, 105° 49' W). The ESO spectrograph X-shooter (0.30 - 2.48 μm, resolving power R = 3000 - 18000) as well as the APO MaNGA survey instrument (0.36 - 1.03 μm, R ˜ 2000) were utilized. The X-shooter sample consists of 3662 spectra taken between October 2009 to March 2013. The MaNGA sample consists of ˜1500 spectra taken between February 2014 and June 2015. Using X-shooter data the diurnal and seasonal behaviour of FeO and Na was studied for the southern hemisphere. We found a semi-annual amplitude of 27% and 30% with respect to the annual mean for FeO and Na respectively. This compares to 17% and 25% in the amplitude of the annual oscillation for FeO and Na, respectively. In addition simulations

  7. More flexibility in representing geometric distortion in astronomical images

    Science.gov (United States)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  8. Astronomy for Astronomical Numbers: a Worldwide Massive Open Online Class

    Science.gov (United States)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Astronomy: State of the Art is a massive, open, online class (MOOC) offered through Udemy by an instructional team at the University of Arizona. With over 18,000 enrolled, it is the largest astronomy MOOC available. The astronomical numbers enrolled do not translate into a similar level of engagement. The content consists of 14 hours of video lecture, nearly 1000 PowerPoint slides, 250 pages of background readings, and 20 podcast interviews with leading researchers. Perhaps in part because of the large amount of course content, the overall completion rate is low, about 3%. However, this number was four times higher for an early cohort of learners who were selected to have a prior interest in astronomy and who took the class in synchronous mode, with new content being added every week. Completion correlates with engagement as measured by posts to the online discussion board. For a subset of learners, social media like Facebook and Twitter provide an additional, important mode of engagement. For the asynchronous learners who have continuously enrolled for the past 15 months, those who complete the course do so quickly, with few persisting longer than two months. The availability of a completion certificate had no impact of completion rates. This experiment informs a future offering of this MOOC via Coursera, along with a co-convened 'flipped' introductory astronomy class at the University of Arizona, where the video lectures will be online and class time will be used exclusively for small group labs and hands-on activities. Despite their typically low completion rates, MOOCs have the potential to add significantly to public engagement with science.

  9. Novel gratings for next-generation instruments of astronomical observations

    Science.gov (United States)

    Ebizuka, N.; Okamoto, T.; Takeda, M.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.

    2017-05-01

    We will introduce current status of development of a birefringence volume phase holographic (B-VPH) grating, volume binary (VB) grating and reflector facet transmission (RFT) grating developing as the novel dispersive optical element for astronomical instruments for the 8.2m Subaru Telescope, for next generation 30 m class huge ground-based telescopes and for next generation large space-bone telescopes. We will also introduce a hybrid grism developed for MOIRCS (Multi-Object InfraRed Camera and Spectrograph) of the Subaru Telescope and a quasi-Bragg (QB) immersion grating. Test fabrication of B-VPH gratings with a liquid crystal (LC) of UV curable and normal LCs or a resin of visible light curable are performed. We successfully fabricated VB gratings of silicon as a mold with ridges of a high aspect ratio by means of the cycle etching process, oxidation and removal of silicon oxide. The RFT grating which is a surface-relief (SR) transmission grating with sawtooth shaped ridges of an acute vertex angle. The hybrid grism, as a prototype of the RFT grating, combines a high-index prism and SR transmission grating with sawtooth shape ridges of an acute vertex angle. The mold of the SR grating for the hybrid grism on to a work of Ni-P alloy of non-electrolysic plating successfully fabricated by using our ultra-precision machine and a single-crystal diamond bite. The QB immersion grating was fabricated by a combination of an inclined QB grating, Littrow prism and surface reflection mirror.

  10. Variance Components

    CERN Document Server

    Searle, Shayle R; McCulloch, Charles E

    1992-01-01

    WILEY-INTERSCIENCE PAPERBACK SERIES. The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models.".

  11. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  12. Astronomical journey to the Skåne district in Sweden

    Science.gov (United States)

    Nakamura, Tsuko

    2006-09-01

    In September of 2005, we had a chance to travel to the Skåe district of Sweden. This short paper briefly reports what we saw there, along with historical episodes relating to Lund Observatory, the medieval astronomical clock preserved at the Lund Cathedral, and the Hven island where Tycho Brahe constructed in the late 16th century the first modern astronomical observatory called Uraniborg.

  13. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.

    1983-01-01

    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  14. Atmospheric conditions at Cerro Armazones derived from astronomical data

    Science.gov (United States)

    Lakićević, Maša; Kimeswenger, Stefan; Noll, Stefan; Kausch, Wolfgang; Unterguggenberger, Stefanie; Kerber, Florian

    2016-04-01

    Aims: We studied the precipitable water vapour (PWV) content near Cerro Armazones and discuss the potential use of our technique of modelling the telluric absorbtion lines for the investigation of other molecular layers. The site is designated for the European Extremely Large Telescope (E-ELT) and the nearby planned site for the Čerenkov Telescope Array (CTA). Methods: Spectroscopic data from the Bochum Echelle Spectroscopic Observer (BESO) instrument were investigated by using a line-by-line radiative transfer model (LBLRTM) for the Earth's atmosphere with the telluric absorption correction tool molecfit. All observations from the archive in the period from December 2008 to the end of 2014 were investigated. The dataset completely covers the El Niño event registered in the period 2009-2010. Models of the 3D Global Data Assimilation System (GDAS) were used for further comparison. Moreover, we present a direct comparison for those days for which data from a similar study with VLT/X-Shooter and microwave radiometer LHATPRO at Cerro Paranal are available. Results: This analysis shows that the site has systematically lower PWV values, even after accounting for the decrease in PWV expected from the higher altitude of the site with respect to Cerro Paranal, using the average atmosphere found with radiosondes. We found that GDAS data are not a suitable basis for predicting local atmospheric conditions - they usually systematically overestimate the PWV values. The large sample furthermore enabled us to characterize the site with respect to symmetry across the sky and variation with the years and within the seasons. This technique of studying the atmospheric conditions is shown to be a promising step into a possible monitoring equipment for the CTA. Based on archival observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile and of the Cerro Armazones Observatory facilities of the Ruhr Universität Bochum.Full Table 1

  15. Stray light field dependence for large astronomical space telescopes

    Science.gov (United States)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the

  16. Supervised detection of anomalous light curves in massive astronomical catalogs

    International Nuclear Information System (INIS)

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos; Kim, Dae-Won

    2014-01-01

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known

  17. Supervised Detection of Anomalous Light Curves in Massive Astronomical Catalogs

    Science.gov (United States)

    Nun, Isadora; Pichara, Karim; Protopapas, Pavlos; Kim, Dae-Won

    2014-09-01

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known

  18. How do astronomers share data? Reliability and persistence of datasets linked in AAS publications and a qualitative study of data practices among US astronomers.

    Directory of Open Access Journals (Sweden)

    Alberto Pepe

    Full Text Available We analyze data sharing practices of astronomers over the past fifteen years. An analysis of URL links embedded in papers published by the American Astronomical Society reveals that the total number of links included in the literature rose dramatically from 1997 until 2005, when it leveled off at around 1500 per year. The analysis also shows that the availability of linked material decays with time: in 2011, 44% of links published a decade earlier, in 2001, were broken. A rough analysis of link types reveals that links to data hosted on astronomers' personal websites become unreachable much faster than links to datasets on curated institutional sites. To gauge astronomers' current data sharing practices and preferences further, we performed in-depth interviews with 12 scientists and online surveys with 173 scientists, all at a large astrophysical research institute in the United States: the Harvard-Smithsonian Center for Astrophysics, in Cambridge, MA. Both the in-depth interviews and the online survey indicate that, in principle, there is no philosophical objection to data-sharing among astronomers at this institution. Key reasons that more data are not presently shared more efficiently in astronomy include: the difficulty of sharing large data sets; over reliance on non-robust, non-reproducible mechanisms for sharing data (e.g. emailing it; unfamiliarity with options that make data-sharing easier (faster and/or more robust; and, lastly, a sense that other researchers would not want the data to be shared. We conclude with a short discussion of a new effort to implement an easy-to-use, robust, system for data sharing in astronomy, at theastrodata.org, and we analyze the uptake of that system to-date.

  19. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R

    1998-12-14

    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  20. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.

    1995-01-01

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  1. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.

    1995-03-06

    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  2. Titanium: light, strong, and white

    Science.gov (United States)

    Woodruff, Laurel; Bedinger, George

    2013-01-01

    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  3. Adaptable component frameworks

    DEFF Research Database (Denmark)

    Katajainen, Jyrki; Simonsen, Bo

    2009-01-01

    for vector, which is undoubtedly the most used container of the C++ standard library. In particular, we specify the details of a vector implementation that is safe with respect to referential integrity and strong exception safety. Additionally, we report the experiences and lessons learnt from......The CPH STL is a special edition of the STL, the containers and algorithms part of the C++ standard library. The specification of the generic components of the STL is given in the C++ standard. Any implementation of the STL, e.g. the one that ships with your standard-compliant C++ compiler, should...... the development of component frameworks which we hope to be of benefit to persons engaged in the design and implementation of generic software libraries....

  4. Transient Astronomical Events as Inspiration Sources of Medieval Art. III: the 13th and 14th Centuries, and the case of the French "Ordre de L'Étoile"

    Science.gov (United States)

    Bònoli, F.; Incerti, M.; Polcaro, V. F.

    2015-05-01

    Going ahead in our long-term project of analysis of the role of transient astronomical events as inspirational sources of medieval art, we extend our interest towards the 13th and 14th centuries, epochs of strong changes either in society, art or science. It is our aim to verify if the relationship we found in the 11th century between the number of artworks where a star is represented, and astonishing transient astronomical events was, in this new situation, still valid. Moreover, in order to check the influence of astronomical events on the 14th-century social and cultural environment, we focus on the case of the Ordre de l'Étoile, a chivalrous society founded by John II of France (Jan le Bon, roi de France) at the end of 1351, looking in ancient chronicles for some relevant contemporary astronomical event as an inspiration source for the "star" in the Order's name, in the garb of its knights and in its motto.

  5. Revisiting J.M. Gilliss' astronomical expedition to Chile in 1849‒1852

    Science.gov (United States)

    Hermosilla, Germán Hidalgo

    2017-08-01

    Between 1849 and 1852 the U.S. astronomer J.M. Gilliss led an expedition to Santiago, Chile, aimed at improving the accepted value for the solar parallax. Although this particular research project was not a success, the astronomers did make other useful astronomical contributions, and the expedition was the catalyst that led directly to the founding of the Chilean National Observatory. Meanwhile, Gilliss later went on to achieve further prominence as Superintendent of the U.S. Naval Observatory in Washington, D.C. The results of the Chilean expedition were published by Gilliss in a six-volume work titled The U.S. Naval Astronomical Expedition to the Southern Hemisphere during the Years 1849-50-51-52 that was issued over a 40-year period. In Volume I (published in 1855) Gilliss presented a 'warts-and-all' account of Chile, its politics and its people, which at the time—and subsequently—created considerable controversy. In this paper, after briefly reviewing Gilliss' Southern Hemisphere expedition we focus on the extensive non-astronomical narrative that Gilliss presents in this first volume.

  6. Polishers around the globe: an overview on the market of large astronomical mirrors

    Science.gov (United States)

    Döhring, Thorsten

    2014-07-01

    Astronomical mirrors are key elements in modern optical telescopes, their dimensions are usually large and their specifications are demanding. Only a limited number of skilled companies respectively institutions around the world are able to master the challenge to polish an individual astronomical mirror, especially in dimensions above one meter. This paper presents an overview on the corresponding market including a listing of polishers around the globe. Therefore valuable information is provided to the astronomical community: Polishers may use the information as a global competitor database, astronomers and project managers may get more transparency on potential suppliers, and suppliers of polishing equipment may learn about unknown potential customers in other parts of the world. An evaluation of the historical market demand on large monolithic astronomical mirrors is presented. It concluded that this is still a niche market with a typical mean rate of 1-2 mirrors per year. Polishing of such mirrors is an enabling technology with impact on the development of technical know-how, public relation, visibility and reputation of the supplier. Within a corresponding technical discussion different polishing technologies are described. In addition it is demonstrated that strategic aspects and political considerations are influencing the selection of the optical finisher.

  7. "She is an astronomer" in Spain; the International Year of Astronomy 2009 and beyond

    Science.gov (United States)

    Márquez, I.

    2011-11-01

    The work of the Spanish node for the IYA2009 Cornerstoneproject, "She is an Astronomer" is presented. Our team developedseveral projects with the common goal of promoting gender equality andwomen participation in professional and amateur astronomy, andsupporting the training of young women researchers andtechnologists. The main ones were: 1)Calendar "Women astronomerswho made history". We highlighted exceptional women, fromdifferent epochs and countries, whose contributions to theadvancement of science deserve to transcend anonymity and occupy aplace in history.2) "Women in the stars" was a series of 8 TV programsdevoted to the contribution of Spanish women astronomers, made incollaboration with the UNED.3) "Women in Spanish Astronomy: analysis of a peculiar situation: A universe to discover", was the first sociological study of this type, including quantitative and qualitative (individual and group interviews) analyses. 4) The exhibit "She Astronomer", was aimed at teaching astronomy from a new perspective: the relevant contributions by women astronomers from different times and places.The main aims of the "Commission for Women and Astronomy",recently created within the Spanish Astronomical Society (SEA), are alsodescribed.

  8. Ernesto Vasconcellos' Astronomia Photographica: the earliest popular book on astronomical photography?

    Science.gov (United States)

    Bonifácio, Vitor; Malaquias, Isabel; Fernandes, João

    2008-07-01

    Portugal, albeit with its own cultural distinctiveness, was not immune to the ideologies permeating nineteenth-century European society, in particular those concerning the social advantages of science and science popularisation. The country's high illiteracy rate hampered but did not prevent several popularisation efforts, which were usually led by professors and armed forces officers. In 1886 Astronomia Photographica (Astronomical Photography), a book popularising astrophotography, was published in Lisbon as part of a collection entitled People and Schools Library. The book seems an odd editorial choice given that, at the time, Portugal's major astronomical institutions pursued astrometric research and there was a virtual absence in the country of amateur astronomers. International astronomical developments, the author's interest in the scientific applications of photography and even the editorial timing are likely explanations for the publication of Astronomia Photographica, but we believe a definitive answer is still not available. The style of Astronomia Photographica is historical and informative, without being technical; clearly it is not a ‘hands-on guide’. The contents of the book show that the author, Ernesto Júlio de Carvalho e Vasconcellos, a naval officer, contacted several experts and was aware of the latest developments in astronomical photography. What makes this a unique book is its content, and its inclusion in a popularisation collection with an exceptionally high circulation at such an early time.

  9. Astronomical Theory of Early Human Migration (Milutin Milankovic Medal Lecture)

    Science.gov (United States)

    Timmermann, Axel; Friedrich, Tobias

    2017-04-01

    Our climate system varies on a wide range of timescales, from seasons to several millions of years. A large part of this variability is internally generated as a result of instabilities of the coupled atmosphere-ocean-ice-carbon cycle system. Other modes of variability, such as glacial cycles, are caused by astronomical forcings with periods of 20, 40, 100 thousand years. These so-called Milankovitch Cycles are associated with earth's axis wobble, axis obliquity and shifts in the eccentricity of earth's orbit around the sun, respectively. When these cycles conspire, they can cause the climate system to plunge into an ice-age. This happened last time 110,000 years ago, when Northern Hemisphere summer radiation decreased substantially and ice-sheets started to form as a result. Around 100,000 years ago northern Hemisphere summer moved again closer to the sun and Homo sapiens started to leave Africa across vegetated corridors in Northeastern Africa and the Arabian Peninsula. This first migration wave must have been relatively weak, but it left unequivocal traces in the fossil and archaeological record. Why Homo sapiens embarked on its grand journey across our planet during glacial climate conditions has been subject of an intense debate in various scientific communities. Moreover, the archaeological records of an early exodus around 100 thousand years ago seem to be at odds with paleo-genetic evidences, that place the first dispersal out of Africa around 70-60 thousand years ago. To elucidate what role climate and environmental conditions played in the dispersal of Anatomically Modern Humans out of Africa, we have developed and applied one of the first integrated climate/human migration computer models. The model simulates ice-ages, abrupt climate change, the "peopling" of our planet and captures the arrival time of Homo sapiens in the Levant, Arabian Peninsula, Southern China and Australia in close agreement with paleo climate reconstructions, fossil and

  10. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...... by Refsdal (1964), H0, !m and !! can be measured based on the time delay ("t) between multiply lensed images of QSOs, because "t depends on H0 and on the distances to lens and source, hence!m and !!. Determination of cosmological parameters using gravitational lensing suffers from some degeneracies......, but it is based on well understood physics and unlike distance ladder methods there are no calibration issues. Moreover, it has an advantage over some of the leading methods (such as Type Ia SNe) in that it is a purely cosmological approach. In this thesis, the property of strong gravitational lensing - time...

  11. Strong spin-photon coupling in silicon.

    Science.gov (United States)

    Samkharadze, N; Zheng, G; Kalhor, N; Brousse, D; Sammak, A; Mendes, U C; Blais, A; Scappucci, G; Vandersypen, L M K

    2018-03-09

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot-based spin qubit registers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown......One of the most intriguing recent results in physics is the growing evidence that an unknown energy field and an unknown kind of matter are the major components of the Universe (70% and 30%, respectively; see e.g. Riess et al. 1998, Spergel et al. 2007). Understanding and estimating the precise...... by Refsdal (1964), H0, !m and !! can be measured based on the time delay ("t) between multiply lensed images of QSOs, because "t depends on H0 and on the distances to lens and source, hence!m and !!. Determination of cosmological parameters using gravitational lensing suffers from some degeneracies...

  13. AstroFrauenNetzwerk Survey Results - Career situation of female astronomers in Germany

    Science.gov (United States)

    Fohlmeister, J.; Helling, Ch.

    2012-04-01

    We survey the job situation of women in astronomy in Germany and of German women abroad and review indicators for their career development. Our sample includes women astronomers from all academic levels from doctoral students to professors, as well as female astronomers who have left the field. We find that networking and human support are among the most important factors for success. Experience shows that students should carefully choose their supervisor and collect practical knowledge abroad. We reflect the private situation of female German astronomers and find that prejudices are abundant, and are perceived as discriminating. We identify reasons why women are more likely than men to quit astronomy after they obtain their PhD degree. We give recommendations to young students on what to pay attention to in order to be on the successful path in astronomy.

  14. An astronomical age for the Bishop Tuff and concordance with radioisotopic dates

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Zeeden, Christian; Storey, Michael

    2014-01-01

    and global correlation of records. The Quaternary time scale is anchored by 40Ar/39Ar ages on lava flows and ash layers where available, with stage boundaries and geomagnetic reversals including astronomically tuned records. However, astronomical dating has not yet validated the high-precision 238U/206Pb...... zircon and 40Ar/39Ar sanidine ages of the Bishop Tuff. We have identified the Bishop Tuff within the marine sedimentary record and derived an astronomical age of 0.765 ± 0.008 Ma by correlation to the LR04 δ18O global benthic stack and its age model. This age is consistent with Bishop Tuff radioisotopic...... ages, including new single crystal 40Ar/39Ar sanidine fusion analyses presented here, which demonstrates that concordance through multiple dating techniques is achievable within the Quaternary...

  15. The Beginnings of the Astronomical Observatory of the University of Nagyszombat

    Science.gov (United States)

    Bartha, L.

    The beginnings of astronomical education and research in Nagyszombat can be traced back to the 17th century. In the middle of the 18th century, astronomical research received a new impetus with the founding of a dedicated astronomical observatory. While the university and its main observatory were moved to the capital Buda in 1777, observations continued in the old observing station at Nagyszombat until 1785. The first director of the observatory, Franciscus X. Weiss (1717--1785) and his assistants (J.N. Sajnovics, F. v. P. Triesnecker. F. X. Bruna and F. Taucher) made a great number of astrometric measurements, i.e. observations of eclipses, the determination of positions of the Moon and planets rep. to bright stars, the last contact of the transit ov Venus (1761) and from the events of Jovian satellites.

  16. Sir Robert Stawell Ball (1840-1913): Royal Astronomer in Ireland and astronomy's public voice

    Science.gov (United States)

    Chapman, Allan

    2007-11-01

    Nineteenth-century Ireland, and especially Dublin, had a vibrant scientific tradition. And astronomy in particular was seriously cultivated, being part of an Irish tradition extending back to early medieval times. This paper examines principally the career of Sir Robert Stawell Ball, who, while holding three prestigious posts in Ireland, namely those of Andrews Professor at Trinity College, Dublin, Royal Astronomer of Ireland, and Director of the Dunsink Observatory, became famous for his genius as a popular astronomical interpreter, lecturer, and writer. The paper looks at Ball's wider career, the circumstances that provided a receptive market for astronomical information across the English-speaking world, and his massive outreach as both a lecturer and a writer.

  17. Amateur Astronomers as Outreach Ambassadors: Pro-Am Collaborations for Education and Public Outreach

    Science.gov (United States)

    Chippindale, S.; Bennett, M.

    2004-05-01

    The 115-year old ASP is devoted primarily to increasing public awareness, understanding, and enjoyment of astronomy and space science. In this presentation we intend to give an overview of the current programs and projects in public outreach, informal education, and K-14 formal education, highlighting those that involve partnerships with amateur astronomers. Primary partners and/or funders for these projects include ASP members, NSF, NASA, Navigator EPO and dozens of educational and research organizations. Ongoing programs include: Project ASTRO (astronomer/teacher partnerships), Family ASTRO (family-based activities), Night Sky Network (helping amateur astronomers do more effective public outreach), SOFIA Education/Public Outreach (in partnership with the SETI Institute), Universe in the Classroom (web-based teachers newsletter), Cosmos in the Classroom (conference/workshops supporting community/small college astronomy instruction), and Mercury (the ASP's own members magazine). The ASP continues to search for new partnership opportunities to improve astronomy/space science education and outreach.

  18. Transient Astronomical Events as Inspiration Sources of Medieval and Renaissance Art

    Science.gov (United States)

    Incerti, M.; Bònoli, F.; Polcaro, V. F.

    2011-06-01

    It is known long since that a number of exceptional and highly impressive astronomical events have been represented in Medieval artworks. We just remember the Bayeux Tapestry and Giotto's The Adoration of the Magi in the Scrovegni Chapel in Padua, representing the P/Halley comet transits of 1067 and 1301, respectively, while The Apparition of Star to Magi fresco in the San Pietro in Valle Abbey in Ferentillo (1182) has been suggested to represent the 1181 supernova. However, no systematic survey of figurative Medieval and Renaissance art has been performed to date, in order to analyzing the role of transient astronomical events as inspiration sources of artworks in these epochs. In this work, we analyze a significant number of artworks, dated between the 9th and 16th century and representing figurative elements in some way connected with astronomy, in order to evaluate if they have been influenced by coeval extraordinary astronomical events.

  19. Flamsteed's stars. New perspectives on the life and work of the first Astronomer Royal (1646 - 1719).

    Science.gov (United States)

    Willmoth, F.

    Contents: 1. Introduction: the King's "astronomical observer". 2. Flamsteed's career in astronomy: nobility, morality and public utility (J. Bennett). 3. Astronomy and strife: John Flamsteed and the Royal Society (M. Feingold). 4. Models for the practice of astronomy: Flamsteed, Horrocks and Tycho (F. Willmoth). 5. Flamsteed's optics and the identity of the astronomical observer (A. Johns). 6. Equipping an observatory: Flamsteed and Molyneux discuss an astronomical quadrant (H. Higton). 7. Mathematical characters: Flamsteed and Christ's Hospital Royal Mathematical School (R. Iliffe). 8. "Professor" John Flamsteed (I. G. Stewart). 9. Edmond Halley and John Flamsteed at the Royal Observatory (A. Cook). 10. A unique copy of Flamsteed's Historia coelestis (1712) (O. Gingerich). 11. "Labour harder than thrashing": John Flamsteed, property and intellectual labour in nineteenth-century England (W. J. Ashworth). 12. The Flamsteed papers in the archives of the Royal Greenwich Observatory. (A. Perkins). A summary catalogue of Flamsteed's papers in the Royal Greenwich Observatory archives (compiled by F. Willmoth).

  20. Karl Julius Lohnert - an unknown astronomer, experimental psychologist and teacher (German Title: Karl Julius Lohnert - ein unbekannter Astronom, experimenteller Psychologe und Lehrer)

    Science.gov (United States)

    Schmadel, Lutz D.; Guski-Leinwand, Susanne

    2011-08-01

    Karl Julius Lohnert (1885-1944) with his double biography as astronomer and psychologist is hardly known in both fields. As a student of astronomy in Heidelberg, Lohnert discovered a couple of minor planets and he dedicated one to his PhD supervisor, the famous Leipzig professor for philosophy, Wilhelm Wundt. This connection is discussed for the first time almost one century after the naming of (635) Vundtia. The paper elucidates some biographical stations of Lohnert.

  1. What Lies Behind NSF Astronomer Demographics? Subjectivities of Women, Minorities and Foreign-born Astronomers within Meshworks of Big Science Astronomy

    Science.gov (United States)

    Guillen, Reynal; Gu, D.; Holbrook, J.; Murillo, L. F.; Traweek, S.

    2011-01-01

    Our current research focuses on the trajectory of scientists working with large-scale databases in astronomy, following them as they strategically build their careers, digital infrastructures, and make their epistemological commitments. We look specifically at how gender, ethnicity, nationality intersect in the process of subject formation in astronomy, as well as in the process of enrolling partners for the construction of instruments, design and implementation of large-scale databases. Work once figured as merely technical support, such assembling data catalogs, or as graphic design, generating pleasing images for public support, has been repositioned at the core of the field. Some have argued that such databases enable a new kind of scientific inquiry based on data exploration, such as the "fourth paradigm" or "data-driven" science. Our preliminary findings based on oral history interviews and ethnography provide insights into meshworks of women, African-American, "Hispanic," Asian-American and foreign-born astronomers. Our preliminary data suggest African-American men are more successful in sustaining astronomy careers than Chicano and Asian-American men. A distinctive theme in our data is the glocal character of meshworks available to and created by foreign-born women astronomers working at US facilities. Other data show that the proportion of Asian to Asian American and foreign-born Latina/o to Chicana/o astronomers is approximately equal. Futhermore, Asians and Latinas/os are represented in significantly greater numbers than Asian Americans and Chicanas/os. Among professional astronomers in the US, each ethnic minority group is numbered on the order of tens, not hundreds. Project support is provided by the NSF EAGER program to University of California, Los Angeles under award 0956589.

  2. Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal

    2017-01-01

    The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.

  3. Proceedings of the VI Serbian-Bulgarian Astronomical Conference, May 7 - 11 2008, Belgrade, Serbia

    Science.gov (United States)

    Dimitrijević, M. S.; Tsvetkov, M.; Popović, L. C.; Golev, V.

    2009-07-01

    The Sixth Serbian-Bulgarian Astronomical Conference was organized by Belgrade Astronomical Observatory, and held in Belgrade, in the building of Mathematical Faculty in Jagiceva Street, from 75th to 11th May 2008. Co-organizers were Mathematical Faculty, Astronomical Society "Rudjer Boskovic", Institute of Astronomy of the Bulgarian Academy of Sciences (BAS), Space Research Institute of BAS and Department of Astronomy of the University of Sofia. Co-chairmen of the Scientific Organizing Committee were Milan Dimitrijevic and Milcho Tsvetkov and Co-vice chairmen Luka C. Popovic and Valeri Golev. Chair of the Local Organizing Committee was Andjelka Kovacevic. The conference [was] attended by 58 participants. From Serbia were 36, from Belgrade Astronomical Observatory, Mathematical Faculty, Faculty of Sciences from Nis, Institute of Physics from Zemum, High School for pedagogues of occupational studies from Aleksinac, Faculty of Sciences from Kragujevac, Mathematical Institute of Serbian Academy of Sciences and Arts, Astronomical Society "Rudjer Boskovic" and Astronomical Society "Magellanic Cloud." From Bulgaria were present 17 colleagues: Svetlana Boeva, Ana Borisova, Momchil Dechev, Peter Duchlev, Lostadinka Koleva, Georgi Petrov, Vasil Popov, Konstatin Stavrev, Katya Ysvetkova and Milcho Tsvetkov from Institute of Astronomy of BAS, Rumen Bogdanovski and Krasmimira Ianova from Space Research Institute of BAS, Georgi R. Ivanov, Georgi Petrov and Grigor Nikolov from Department of Astronomy, Sofia University "St Kliment Ohridski,", Yavor Chapanov from Central Laboratory for Geodesy of BAS and Petya Pavlova from Technical University of Sofia, Branch Plovdiv. Besides participants from Serbia and Bulgaria the Conference [was] attended [by] Vlado Milicevic from Canada, Jan Vondrak from Czech Republic, Aytap Sezer from Turkey and Tetyana Sergeeva and Alexandr Sergeev from Ukraine. On the Conference were presented 13 invited lectures, 22 short talks and 35 posters, in total

  4. New discoveries on astronomical orientation of Inca site in Ollantaytambo, Peru

    Directory of Open Access Journals (Sweden)

    Karolína Hanzalová

    2015-12-01

    Full Text Available This paper deals with astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen. (1  He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2 deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (3 documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images were used to estimate the astronomical-solar-solstice orientation, together with terrestrial images from Salazar and Salazar (2. The digital elevation model is useful in the mountains, where we need the actual horizon for a calculation of sunset and sunrise on specific days (solstices, which were for Incas people very important. We tested which astronomical phenomenon is connected with objects in Ollantaytambo. First, we focused on Temple of the Sun, also known the Wall of six monoliths.  We tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn´t connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation point. By Salazar and Salazar (2 we found observation

  5. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    Directory of Open Access Journals (Sweden)

    K. Hanzalová

    2014-06-01

    Full Text Available This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993. He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005 deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007 documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices, which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another

  6. New knowledge in determining the astronomical orientation of Incas object in Ollantaytambo, Peru

    Science.gov (United States)

    Hanzalová, K.; Klokočník, J.; Kostelecký, J.

    2014-06-01

    This paper deals about astronomical orientation of Incas objects in Ollantaytambo, which is located about 35 km southeast from Machu Picchu, about 40 km northwest from Cusco, and lies in the Urubamba valley. Everybody writing about Ollantaytambo, shoud read Protzen (1993). He devoted his monograph to description and interpretation of that locality. Book of Salazar and Salazar (2005) deals, among others, with the orientation of objects in Ollantaytambo with respect to the cardinal direction. Zawaski and Malville (2007) documented astronomical context of major monuments of nine sites in Peru, including Ollantaytambo. We tested astronomical orientation in these places and confirm or disprove hypothesis about purpose of Incas objects. For assessment orientation of objects we used our measurements and also satellite images on Google Earth and digital elevation model from ASTER. The satellite images used to approximate estimation of astronomical orientation. The digital elevation model is useful in the mountains, where we need the really horizon for a calculation of sunset and sunrise on specific days (solstices), which were for Incas people very important. By Incas is very famous that they worshiped the Sun. According to him they determined when to plant and when to harvest the crop. In this paper we focused on Temple of the Sun, also known the Wall of six monoliths. We tested which astronomical phenomenon is connected with this Temple. First, we tested winter solstice sunrise and the rides of the Pleiades for the epochs 2000, 1500 and 1000 A.D. According with our results the Temple isn't connected neither with winter solstice sunrise nor with the Pleiades. Then we tested also winter solstice sunset. We tried to use the line from an observation point near ruins of the Temple of Sun, to west-north, in direction to sunset. The astronomical azimuth from this point was about 5° less then we need. From this results we found, that is possible to find another observation

  7. First use of a HyViSI H4RG for Astronomical Observations

    Energy Technology Data Exchange (ETDEWEB)

    Simms, Lance M.; /SLAC; Figer, Donald F.; Hanold, Brandon J.; Kerr, Daniel J.; /Rochester Imaging Lab.; Gilmore, D.Kirk; Kahn, Steven M.; /SLAC; Tyson, J.Anthony; /UC,

    2007-09-25

    We present the first astronomical results from a 4K2 Hybrid Visible Silicon PIN array detector (HyViSI) read out with the Teledyne Scientific and Imaging SIDECAR ASIC. These results include observations of astronomical standards and photometric measurements using the 2.1m KPNO telescope. We also report results from a test program in the Rochester Imaging Detector Laboratory (RIDL), including: read noise, dark current, linearity, gain, well depth, quantum efficiency, and substrate voltage effects. Lastly, we highlight results from operation of the detector in window read out mode and discuss its potential role for focusing, image correction, and use as a telescope guide camera.

  8. The Role in the Virtual Astronomical Observatory in the Era of Massive Data Sets

    Science.gov (United States)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-01-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  9. Block iterative restoration of astronomical images with the massively parallel processor

    International Nuclear Information System (INIS)

    Heap, S.R.; Lindler, D.J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images

  10. The role in the Virtual Astronomical Observatory in the era of massive data sets

    Science.gov (United States)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.

    2012-09-01

    The Virtual Observatory (VO) is realizing global electronic integration of astronomy data. One of the long-term goals of the U.S. VO project, the Virtual Astronomical Observatory (VAO), is development of services and protocols that respond to the growing size and complexity of astronomy data sets. This paper describes how VAO staff are active in such development efforts, especially in innovative strategies and techniques that recognize the limited operating budgets likely available to astronomers even as demand increases. The project has a program of professional outreach whereby new services and protocols are evaluated.

  11. Banco de recursos virtuales para el aprendizaje experimental en geodesia y astronomía

    OpenAIRE

    Charco, María; Folgueira, M.; García Cañada, Laura; González Montesinos, Fuensanta; Rodríguez Caderot, Gracia; Rodríguez Velasco, Gema; García Alonso, Patricia

    2007-01-01

    El portal Nuestro Almacén Virtual Experimental de Astronomía y Geodesia (NAVEGA) que se presenta en esta comunicación es el resultado final de un proyecto de innovación y mejora de la calidad educativa convocatoria UCM 2004-2005. En él el alumno encuentra una serie de recursos didácticos de ayuda para el aprendizaje y comprensión de las prácticas experimentales impartidas en la Sección Departamental de Astronomía y Geodesia de la Facultad de Matemáticas. Cualquier alumno de est...

  12. Astronomers Anonymous Getting Help with the Puzzles and Pitfalls of Practical Astronomy

    CERN Document Server

    Ringwood, Steve

    2010-01-01

    In this entertaining parody of letters to a typical “lonely hearts” columnist, real-life expert and long-time astronomy columnist Steve Ringwood presents a sweeping overview of common questions and problems practical and amateur astronomers face, compiled from Ringwood's own experiences in the world of astronomy. His screamingly funny comments will keep you laughing out loud throughout, so be careful of reading this book in public! Written especially for troubled astronomers, but also accessible to anyone with an interest in space or astronomy, readers will easily recognize the difficulties they face and enjoy the humor being directed at them and their science.

  13. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.

    2005-01-03

    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  14. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi

    1988-01-01

    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  15. Transport Theory for Plasmas that are Strongly Magnetized and Strongly Coupled

    Science.gov (United States)

    Baalrud, Scott; Daligault, Jerome

    2016-10-01

    Plasmas with components that are magnetized, strongly coupled, or both arise in a variety of frontier plasma physics experiments including magnetized dusty plasmas, nonneutral plasmas, magnetized ICF concepts, as well as from self-generated fields in ICF. Here, a species is considered strongly magnetized if the gyroradius is smaller than the spatial scale over which Coulomb interactions occur. A theory for transport properties is described that treats a wide range of both coupling and magnetization strengths. The approach is based on an extension of the recent effective potential transport theory to include a strong magnetic field. The underlying kinetic theory is based on an extension of the Boltzmann equation to include a strong magnetic field in the dynamics of binary scattering events. Corresponding magnetohydrodynamic equations are derived by solving the kinetic equation using a Chapman-Enskog like spectral method. Results are compared with classical molecular dynamics simulations of self-diffusion of the one component plasmas, and with simulations of parallel to perpendicular temperature equilibration of an initially anisotropic distribution. This material is based upon work supported by AFOSR Award FA9550-16-1-0221 and DOE OFES Award DE-SC0016159.

  16. Application of digital image processing techniques to astronomical imagery, 1979

    Science.gov (United States)

    Lorre, J. J.

    1979-01-01

    Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.

  17. PlotXY: A High Quality Plotting System for the Herschel Interactive Processing Environment (HIPE) and the Astronomical Community

    Science.gov (United States)

    Panuzzo, P.; Li, J.; Caux, E.

    2012-09-01

    The Herschel Interactive Processing Environment (HIPE) was developed by the European Space Agency (ESA) in collaboration with NASA and the Herschel Instrument Control Centres, to provide the astronomical community a complete environment to process and analyze the data gathered by the Herschel Space Observatory. One of the most important components of HIPE is the plotting system (named PlotXY) that we present here. With PlotXY it is possible to produce easily high quality publication-ready 2D plots. It provides a long list of features, with fully configurable components, and interactive zooming. The entire code of HIPE is written in Java and is open source released under the GNU Lesser General Public License version 3. A new version of PlotXY is being developed to be independent from the HIPE code base; it is available to the software development community for the inclusion in other projects at the URL google.com/p/jplot2d/'>http://code.google.com/p/jplot2d/.

  18. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  19. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji

    2004-08-02

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  20. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji

    2004-01-01

    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  1. PREFACE: Strongly correlated electron systems Strongly correlated electron systems

    Science.gov (United States)

    Saxena, Siddharth S.; Littlewood, P. B.

    2012-07-01

    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  2. Gender Differences in Turkish Primary Students' Images of Astronomical Scientists: A Preliminary Study with 21st Century Style

    Science.gov (United States)

    Korkmaz, Hunkar

    2009-01-01

    This study investigated the images of astronomical scientists held by Turkish primary students by gender. The Draw an Astronomical Scientist Test was administered to 472 students from an urban area. A Chi-Square Test of Independence was used to test for statistically significant differences between gender groups. Significant differences were found…

  3. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Lee, Taekoon, E-mail: jykim@kunsan.ac.kr, E-mail: tlee@kunsan.ac.kr [Department of Physics, Kunsan National University, Daihakro 558, Kunsan 573-701 (Korea, Republic of)

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  4. The Astro-WISE approach to quality control for astronomical data

    NARCIS (Netherlands)

    Mc Farland, John; Helmich, Ewout M.; Valentijn, Edwin A.

    We present a novel approach to quality control during the processing of astronomical data. Quality control in the Astro-WISE Information System is integral to all aspects of data handing and provides transparent access to quality estimators for all stages of data reduction from the raw image to the

  5. Sky online: linking amateur and professional astronomers on the world wide web

    Science.gov (United States)

    Fienberg, Richard Tresch

    SKY Online is the World Wide Web site of Sky Publishing Corporation, publisher of Sky & Telescope magazine. Conceived mainly as an electronic extension of the company's marketing and promotion efforts, SKY Online has also proven to be a useful tool for communication between amateur and professional astronomers.

  6. Track extraction of moving targets in astronomical images based on the algorithm of NCST-PCNN

    Science.gov (United States)

    Du, Lin; Sun, Huayan; Zhang, Tinghua; Xu, Taohu

    2015-10-01

    Space targets in astronomical images such as spacecraft and space debris are always in the low level of brightness and hold a small amount of pixels, which are difficult to distinguish from fixed stars. Because of the difficulties of space target information extraction, dynamic object monitoring plays an important role in the military, aerospace and other fields, track extraction of moving targets in short-exposure astronomical images holds great significance. Firstly, capture the interesting stars by region growing method in the sequence of short-exposure images and extract the barycenter of interesting star by gray weighted method. Secondly, use adaptive threshold method to remove the error matching points and register the sequence of astronomical images. Thirdly, fuse the registered images by NCST-PCNN image fusion algorithm to hold the energy of stars in the images. Fourthly, get the difference of fused star image and final star image by subtraction of brightness value in the two images, the interesting possible moving targets will be captured by energy accumulation method. Finally, the track of moving target in astronomical images will be extracted by judging the accuracy of moving targets by track association and excluding the false moving targets. The algorithm proposed in the paper can effectively extract the moving target which is added artificially from three images or four images respectively, which verifies the effectiveness of the algorithm.

  7. Novel Algorithms for Astronomical Plate Analyses Rene Hudec1,2 ...

    Indian Academy of Sciences (India)

    Abstract. Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomi- cal plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness changes.

  8. Using Virtual Reality Computer Models to Support Student Understanding of Astronomical Concepts

    Science.gov (United States)

    Barnett, Michael; Yamagata-Lynch, Lisa; Keating, Tom; Barab, Sasha A.; Hay, Kenneth E.

    2005-01-01

    The purpose of this study was to examine how 3-dimensional (3-D) models of the Solar System supported student development of conceptual understandings of various astronomical phenomena that required a change in frame of reference. In the course described in this study, students worked in teams to design and construct 3-D virtual reality computer…

  9. [Terhi Kiiskinen. Sigfrid Aronus Forsius : Astronomer and Philosopher of Nature] / Liivi Aarma

    Index Scriptorium Estoniae

    Aarma, Liivi, 1948-

    2009-01-01

    Arvustus: Kiiskinen, Terhi. Sigfrid Aronus Forsius : Astronomer and Philosopher of Nature. Europäische Studien zur Ideen- und Wissenschaftsgeschichte / Europaen Studies in the History of Science and Ideas. Hrsg. von / edited by Georg Gimpi und Juha Manninen. Frankfurt am Main, 2007. Sigfrid Aronus Forsius on tuntuim Põhjamaade renesanssi aegne Rootsi kuningriigi teadlane

  10. From electrons to stars : modelling and mitigation of radiation damage effects on astronomical CCDs

    NARCIS (Netherlands)

    Prod'homme, Thibaut

    2011-01-01

    The work presented in this thesis is part of an on-going effort to understand and mitigate the effects of radiation damage in astronomical CCDs. My research was motivated by and took place in the challenging context of the European Space Agency’s (ESA) astrometric mission, Gaia, for which radiation

  11. Strategies for personnel sustainable lifecycle at astronomical observatories and local industry development

    Science.gov (United States)

    Bendek, Eduardo A.; Leatherbee, Michael; Smith, Heather; Strappa, Valentina; Zinnecker, Hans; Perez, Mario

    2014-08-01

    Specialized manpower required to efficiently operate world-class observatories requires large investments in time and resources to train personnel in very specific areas of engineering. Isolation and distances to mayor cities pose a challenge to retain motivated and qualified personnel on the mountain. This paper presents strategies that we believe may be effective for retaining this specific know-how in the astronomy field; while at the same time develop a local support industry for observatory operations and astronomical instrumentation development. For this study we choose Chile as a research setting because it will host more than 60% of the world's ground based astronomical infrastructure by the end of the decade, and because the country has an underdeveloped industry for astronomy services. We identify the astronomical infrastructure that exists in the country as well as the major research groups and industrial players. We further identify the needs of observatories that could be outsourced to the local economy. As a result, we suggest spin-off opportunities that can be started by former observatory employees and therefore retaining the knowhow of experienced people that decide to leave on-site jobs. We also identify tools to facilitate this process such as the creation of a centralized repository of local capabilities and observatory needs, as well as exchange programs within astronomical instrumentation groups. We believe that these strategies will contribute to a positive work environment at the observatories, reduce the operation and development costs, and develop a new industry for the host country.

  12. Improving the Determination of Eastern Elongations of Planetary Satellites in the Astronomical Almanac

    Science.gov (United States)

    Rura, Christopher; Stollberg, Mark

    2018-01-01

    The Astronomical Almanac is an annual publication of the US Naval Observatory (USNO) and contains a wide variety of astronomical data used by astronomers worldwide as a general reference or for planning observations. Included in this almanac are the times of greatest eastern and northern elongations of the natural satellites of the planets, accurate to 0.1 hour UT. The production code currently used to determine elongation times generates X and Y coordinates for each satellite (16 total) in 5 second intervals. This consequentially caused very large data files, and resulted in the program devoted to determining the elongation times to be computationally intensive. To make this program more efficient, we wrote a Python program to fit a cubic spline to data generated with a 6-minute time step. This resulted in elongation times that were found to agree with those determined from the 5 second data currently used in a large number of cases and was tested for 16 satellites between 2017 and 2019. The accuracy of this program is being tested for the years past 2019 and, if no problems are found, the code will be considered for production of this section of The Astronomical Almanac.

  13. The urban astronomer's guide a walking tour of the cosmos for city sky watchers

    CERN Document Server

    Mollise, Rod

    2006-01-01

    This book covers the "why," "how," and "what" of astronomy under light-polluted skies. It is aimed at urban astronomers and showcases the countless objects - galaxies, nebulae, and star clusters - that can be seen in even in heavily light polluted urban skies.

  14. Spatial Thinking and the Astronomical Endeavor: Theoretical Issues and Pedagogical Implementations.

    Science.gov (United States)

    Hill, Lon Clay, Jr.

    A theoretical and practical inquiry into the teaching of spatial thinking in college astronomy classes is reported. After examining some of the historical background of the discipline of astronomy, the author investigates some of the pedagogical implications of the implicit visual grammar so effortlessly utilized by astronomers and yet so apparently difficult for many students to employ. These pedagogical implications were implemented in the design of a study of one astronomy section of an introductory college astronomy course. Tutorial visual exercises using eyes-on models and diagrams seemed to be very useful for student apprehension of certain tagged items, but overall spatial learning seems to be more a product of general class environment than a matter of specific exercises per se. Some promising pedagogical strategies involving direct visual treatments to improve students' visual skills and iconic repertoire are discussed. Certain astronomical "primitives" involving astronomical distance determinations and projective relationships are explored in depth. Visual models are very useful, but students must be continually reminded of the implicit importance of the great distances appropriate to astronomical discourse. Likewise, in discussing photographs and diagrams, many students must be explicitly shown and taught the projective properties of ellipses, spheres and circles. Analogies with other findings which treat student misconceptions in science are pursued, but the focus of this study pertains more to certain visual predispositions than to firmly held beliefs.

  15. Infrared studies of astronomically relevant metallic clusters and their interactions with simple molecules

    NARCIS (Netherlands)

    Kiawi, D.M.

    2016-01-01

    The work presented in this thesis aims at: a) providing fundamental knowledge on the interactions of simple ligands with metal clusters relevant to astronomical and (bio-) catalytical processes, b) providing a benchmark that can be used to test current and future DFT methods developed to study these

  16. A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine

    NARCIS (Netherlands)

    Rivera, T.A.; Storey, M.; Zeeden, C.; Hilgen, F.J.; Kuiper, K.

    2011-01-01

    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the FishCanyon sanidine (FCs) neutron fluence monitor,

  17. The astronomer and the witch Johannes Kepler's fight for his mother

    CERN Document Server

    Rublack, Ulinka

    2015-01-01

    The extraordinary tale of Johannes Kepler, one of the most admired astronomers of all time, and the six long years spent defending his mother from her neighbours' accusations of witchcraft. A story which takes us to the heart of Kepler's changing world.

  18. How Do Astronomers Know That? Educating Teachers, Students & the Public on HOW You Discover Young Stars

    Science.gov (United States)

    Bonadurer, Robert; Piper, M.; French, D.; Barge, J.; Novatne, L. J.; Rebull, L. M.; Ali, B.; Laher, R.; Armstrong, J.

    2013-01-01

    Every day amazing astronomical facts are taught to thousands of curious people. Students learn them in the classroom. Museum visitors hear them in a Planetarium show or lecture. When it’s time for questions, many intuitively ask, “how do you know that?” NITARP helps close this gap in astronomy education. NITARP stands for NASA/IPAC Teacher Archive Research Program. NITARP brings together an astronomer with a small group of teachers and students to do real astronomical research. After the year long program is completed, the education and experiences gained the teachers are brought back to their classrooms and museums across America. Our NITARP group researched apparent infrared (IR) excesses to identify Young Stellar Objects (YSOs). Our science results are presented in a companion paper, Novatne et al, at this AAS conference. We concentrated our search in the Bright Rimmed Cloud (BRC) 27, located in the constellation Canis Major. Our main focus was to use data from the Wide-field Infrared Survey Explorer (WISE), along with other archived infrared data such as Spitzer and 2MASS. Thus, our NITARP group was called C-WAYS—standing for Cool, WISE and Young Stars. In this poster, we present our educational plan to connect real science by astronomers to educators, students, and ultimately our communities.

  19. Joseph M. Nyasani It is not only astronomers who have been ...

    African Journals Online (AJOL)

    THE UBICATION OF THE PHYSICAL UNIVERSE. Joseph M. Nyasani. It is not only astronomers who have been wondering about what lies beyond the planetary system and the extent of that reality in terms of the space it occupies. Philosophers have equally been baffled by this same question even though it may not be fair ...

  20. The DTU15 MSS (Mean Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Piccioni, Gaia

    in the Arctic Ocean for DTU10MSS and DTU13MSS.A new reference surface for off-shore vertical referencing is introduced. This is called the DTU15LAT.The surface is derived from the DTU15MSS and the DTU10 Global ocean tide to give a 19 year Lowest Astronomical Tide referenced to either the Mean sea surface...