Sample records for strong air-sea exchange

  1. Air-sea interactions and exchanges

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    for improved estimates of their air-sea exchange rates. Carbon Dioxide (CO 2 ) At the time of JGOFS planning, the Indian Ocean north of the Hydrochemical Front at ~10°S was believed to serve as a source of CO 2 to the atmosphere. In this respect there were... of the air-sea gas exchange coefficient would result in a large efflux of CO 2 to the atmosphere from the northwestern Indian Ocean. This effect would be aided by the secretion of CaCO 3 by organisms (which raises pCO 2 ), but opposed by the high rate...

  2. Tracers of air-sea gas exchange

    International Nuclear Information System (INIS)

    Liss, P.S.


    The flux of gas across the air-sea interface is determined by the product of the interfacial concentration difference driving the exchange and a rate constant, often termed the transfer velocity. The concentration-difference term is generally obtained by direct measurement, whereas more indirect approaches are required to estimate the transfer velocity and its variation as a function of controlling parameters such as wind and sea state. Radioactive tracers have proved particularly useful in the estimation of air-sea transfer velocities and, recently, stable purposeful tracers have also started to be used. In this paper the use of the following tracers to determine transfer velocities at the sea surface is discussed: natural and bomb-produced 14 C, dissolved oxygen, 222 Rn and sulphur hexafluoride. Other topics covered include the relation between transfer velocity and wind speed as deduced from tracer and wind-tunnel studies, and the discrepancy between transfer velocities determined by using tracers and from eddy correlation measurements in the atmosphere. (author)

  3. Global changes and the air-sea exchange of chemicals

    International Nuclear Information System (INIS)


    Present and potential future changes to the global environment have important implications for marine pollution and for the air-sea exchange of both anthropogenic and natural substances. This report addresses three issues related to the potential impact of global change on the air-sea exchange of chemicals: Global change and the air-sea transfer of the nutrients nitrogen and iron. Global change and the air-sea exchange of gases. Oceanic responses to radiative and oxidative changes in the atmosphere. The deposition of atmospheric anthropogenic nitrogen has probably increased biological productivity in coastal regions along many continental margins. Atmospheric deposition of new nitrogen may also have increased productivity somewhat in mid-ocean regions. The projected future increases of nitrogen oxide emissions from Asia, Africa and South America will provide significant increases in the rate of deposition of oxidized nitrogen to the central North Pacific, the equatorial Atlantic, and the equatorial and central South Indian Oceans. Atmospheric iron may be an important nutrient in certain open regions. Future changes will likely occur if there are changing patterns of aridity and wind speed as a result of climate change. The most important future effects on surface ocean p CO2 will likely be caused by changes in ocean circulation. The pH of the ocean would decrease by ∼0.3 units for a doubling of p CO2 , reducing the capacity of the ocean to take up CO 2 . There is increasing evidence that dimethyl sulfide from the ocean is a source of cloud condensation nuclei and thus a factor controlling cloud albedo. By 2060 in the southern hemisphere reduction in total column stratospheric ozone from recent levels could reach 2 to 5% in the tropics, 10% at mid latitudes, and over 20% at 60 deg C. S. In this same time frame increases in ground-level effective UV-B radiation could reach 5%, 26% and 66%, at low, mid, and high latitudes in the southern hemisphere. Changes in

  4. Spume Drops: Their Potential Role in Air-Sea Gas Exchange (United States)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny


    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.

  5. Air-sea heat exchange, an element of the water cycle (United States)

    Chahine, M. T.


    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  6. Air-sea exchanges of materials in the Indian Ocean: Concerns and strategies

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    Exchanges of materials at the air-sea interface are linked to earth's heat budget and the natural balance is being increasingly affected by human activities. Three major issues of national concern with respect to changes in oceanic and atmospheric...

  7. Fluxes and exchange rates of radon and oxygen across an air-sea interface

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; La Torre, M. de


    The flux of 222 Rn and O 2 from shallow water off the Bay of Malaga has been measured. The mean value of flux of 222 Rn is evaluated to be 74 atoms/m 2 · s. The Bay is a weak source of oxygen to the atmosphere, where the net production of oxygen is found to be 1.82 mol/m 2 · y. Moreover, the gas exchange rates of 222 Rn and O 2 across the air-sea interface has been determined by the radon method. The gas exchange rates and the wind speed have been estimated. (author)

  8. Impacts of ENSO on air-sea oxygen exchange: Observations and mechanisms (United States)

    Eddebbar, Yassir A.; Long, Matthew C.; Resplandy, Laure; Rödenbeck, Christian; Rodgers, Keith B.; Manizza, Manfredi; Keeling, Ralph F.


    Models and observations of atmospheric potential oxygen (APO ≃ O2 + 1.1 * CO2) are used to investigate the influence of El Niño-Southern Oscillation (ENSO) on air-sea O2 exchange. An atmospheric transport inversion of APO data from the Scripps flask network shows significant interannual variability in tropical APO fluxes that is positively correlated with the Niño3.4 index, indicating anomalous ocean outgassing of APO during El Niño. Hindcast simulations of the Community Earth System Model (CESM) and the Institut Pierre-Simon Laplace model show similar APO sensitivity to ENSO, differing from the Geophysical Fluid Dynamics Laboratory model, which shows an opposite APO response. In all models, O2 accounts for most APO flux variations. Detailed analysis in CESM shows that the O2 response is driven primarily by ENSO modulation of the source and rate of equatorial upwelling, which moderates the intensity of O2 uptake due to vertical transport of low-O2 waters. These upwelling changes dominate over counteracting effects of biological productivity and thermally driven O2 exchange. During El Niño, shallower and weaker upwelling leads to anomalous O2 outgassing, whereas deeper and intensified upwelling during La Niña drives enhanced O2 uptake. This response is strongly localized along the central and eastern equatorial Pacific, leading to an equatorial zonal dipole in atmospheric anomalies of APO. This dipole is further intensified by ENSO-related changes in winds, reconciling apparently conflicting APO observations in the tropical Pacific. These findings suggest a substantial and complex response of the oceanic O2 cycle to climate variability that is significantly (>50%) underestimated in magnitude by ocean models.

  9. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange? (United States)

    Huebert, B. J.


    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  10. Gas exchange at the air-sea interface: a technique for radon measurements in seawater

    International Nuclear Information System (INIS)

    Queirazza, G.; Roveri, M.


    The rate of exchange of various gas species, such as O 2 , CO 2 etc. across the air-water interface can be evaluated from the 222 Rn vertical profiles in the water column. Radon profiles were measured in 4 stations in the NW Adriatic Sea, in September 1990, using solvent extraction and liquid scintillation counting techniques, directly on board the ship. The radiochemical procedure is described in detail. The lower limit of detection is approximately 0.4 mBq 1 -1 . The radon deficiency in the profiles gives estimates of the gas transfer rate across the air-sea interface ranging from 0.9 to 7.0 m d -1 . The suitability of the radon deficiency method in shallow water, enclosed seas is briefly discussed. (Author)

  11. Boundary layers at a dynamic interface: air-sea exchange of heat and mass (United States)

    Szeri, Andrew


    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.

  12. Distribution and air-sea exchange of organochlorine pesticides in the North Pacific and the Arctic (United States)

    Cai, Minghong; Ma, Yuxin; Xie, Zhiyong; Zhong, Guangcai; MöLler, Axel; Yang, Haizhen; Sturm, Renate; He, Jianfeng; Ebinghaus, Ralf; Meng, Xiang-Zhou


    Surface seawater and boundary layer air samples were collected on the icebreaker Xuelong (Snow Dragon) during the Fourth Chinese Arctic Research Expedition (CHINARE2010) cruise in the North Pacific and Arctic Oceans during 2010. Samples were analyzed for organochlorine pesticides (OCPs), including three isomers of hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), and two isomers of heptachlor epoxide. The gaseous total HCH (ΣHCHs) concentrations were approximately four times lower (average 12.0 pg m-3) than those measured during CHINARE2008 (average 51.4 pg m-3), but were comparable to those measured during CHINARE2003 (average 13.4 pg m-3) in the same study area. These changes are consistent with the evident retreat of sea ice coverage from 2003 to 2008 and increase of sea ice coverage from 2008 to 2009 and 2010. Gaseous β-HCH concentrations in the atmosphere were typically below the method detection limit, consistent with the expectation that ocean currents provide the main transport pathway for β-HCH into the Arctic. The concentrations of all dissolved HCH isomers in seawater increase with increasing latitude, and levels of dissolved HCB also increase (from 5.7 to 7.1 pg L-1) at high latitudes (above 73°N). These results illustrate the role of cold condensation processes in the transport of OCPs. The observed air-sea gas exchange gradients in the Arctic Ocean mainly favored net deposition of OCPs, with the exception of those for β-HCH, which favored volatilization.

  13. Impacts of Atmospheric Modes of Variability on Air-Sea Heat Exchange in the Red Sea (United States)

    Abualnaja, Yasser O.; Papadopoulos, Vassilis P.; Josey, Simon A.; Hoteit, Ibrahim; Kontoyiannis, Harilaos; Raitsos, Dionissios E.


    The potential impacts on Red Sea surface heat exchange of various major modes of atmospheric variability are investigated using the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis and the Objectively Analyzed Air-Sea Flux dataset (OAFlux) merged satellite+reanalysis dataset. The mode impacts on surface net heat flux are quantified by calculating the heat flux anomaly that corresponds to a unit positive value of each index for each grid point. The seasonal effects of the atmospheric forcing are investigated considering two and four typical seasons of a calendar year. Considering two seasons, the impacts are strongest during the winter-centered part of the year (October to March) mainly over the northern sub-basin. The North Atlantic Oscillation (NAO), the East Atlantic - West Russia Pattern (EAWR), and the Indian Monsoon Index (IMI) have the greatest effects. They generate negative anomalies (by definition additional ocean heat loss) of 7-12 W/m2 in the northern Red Sea basin mean net heat flux for a unit positive value of the mode index. During the summer (April to September), the signal is smaller and the East Atlantic (EA) and Multivariate ENSO Index (MEI) modes have the strongest impact which is now located in the southern Red Sea (sub-basin anomalies of 4 W/m2 for unit positive mode index, negative for EA and positive for MEI). Results obtained by analysis carried out on the traditional four-season basis reveal that indices impact peaks during the typical boreal winter (DJF) with average anomalies of 12-18 W/m2 to be found in the northern part. It is noteworthy that during the winter, the EAWR generates negative anomalies around 30 W/m2 over the most of the central Red Sea. During the spring (MAM), summer (JJA) and autumn (SON) the anomalies are considerably lower, especially during the spring when the mode impacts are negligible. Atmospheric modes have a stronger effect on air-sea heat flux over the northern

  14. Atmospheric deposition and air-sea gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China Sea (United States)

    Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang


    The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and air-sea gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the air-water interface under the influences of river input and atmospheric transport. The air-sea gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the air-sea gas exchange reached equilibrium because of low HCH levels in the air and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the air-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.

  15. Large-scale ocean circulation, dynamics, and air-sea exchanges : Argo observations of the mean and time- varying ocean


    Giglio, Donata


    The large-scale ocean circulation, dynamics, and air-sea exchanges are investigated, based on observational datasets including Argo and satellite altimetry, and viewed in the framework of modern theoretical ideas. Initially, the wind-driven interannual variability of the subtropical North Pacific is described. Using the extensive Argo dataset, it is seen that the North Pacific gyre varies in the strength of its interior circulation and in its spatial orientation, on interannual timescales. Al...

  16. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming (United States)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou


    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  17. Sea ice contribution to the air-sea CO(2) exchange in the Arctic and Southern Oceans

    DEFF Research Database (Denmark)

    Rysgaard...[], Søren; Bendtsen, Jørgen; Delille, B.


    Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO(2) and the subsequent effect on air-sea CO(2) exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air-sea......-ice driven CO(2) uptake has not been considered so far in estimates of global oceanic CO(2) uptake. Net CO(2) uptake in sea-ice-covered oceans can be driven by; (1) rejection during sea-ice formation and sinking of CO(2)-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air-sea...... CO(2) exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO(2) uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO(2) uptake in ice-free polar seas. This sea...

  18. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments (United States)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.


    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  19. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean. (United States)

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf


    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (Arctic.

  20. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka (United States)


    Coastal Current off Sri Lanka H.J.S. Fernando and I. Lozovatsky University of Notre Dame Department of Civil and Environmental Engineering and...from small-scale mixing to the reversal of monsoonal currents, in the Bay of Bengal (BoB) and around Sri Lanka and the role of regional air-sea...conducted CTD and ADCP measurements in the southern BoB onboard R/V Roger Revelle and in Sri Lanka coastal waters using R/V Samuddrika. The data analysis

  1. On the Increasing Importance of Air-Sea Exchanges in a Thawing Arctic: A Review

    Directory of Open Access Journals (Sweden)

    Patrick C. Taylor


    Full Text Available Forty years ago, climate scientists predicted the Arctic to be one of Earth’s most sensitive climate regions and thus extremely vulnerable to increased CO2. The rapid and unprecedented changes observed in the Arctic confirm this prediction. Especially significant, observed sea ice loss is altering the exchange of mass, energy, and momentum between the Arctic Ocean and atmosphere. As an important component of air–sea exchange, surface turbulent fluxes are controlled by vertical gradients of temperature and humidity between the surface and atmosphere, wind speed, and surface roughness, indicating that they respond to other forcing mechanisms such as atmospheric advection, ocean mixing, and radiative flux changes. The exchange of energy between the atmosphere and surface via surface turbulent fluxes in turn feeds back on the Arctic surface energy budget, sea ice, clouds, boundary layer temperature and humidity, and atmospheric and oceanic circulations. Understanding and attributing variability and trends in surface turbulent fluxes is important because they influence the magnitude of Arctic climate change, sea ice cover variability, and the atmospheric circulation response to increased CO2. This paper reviews current knowledge of Arctic Ocean surface turbulent fluxes and their effects on climate. We conclude that Arctic Ocean surface turbulent fluxes are having an increasingly consequential influence on Arctic climate variability in response to strong regional trends in the air-surface temperature contrast related to the changing character of the Arctic sea ice cover. Arctic Ocean surface turbulent energy exchanges are not smooth and steady but rather irregular and episodic, and consideration of the episodic nature of surface turbulent fluxes is essential for improving Arctic climate projections.

  2. Seasonal atmospheric deposition and air-sea gas exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implications for source-sink processes (United States)

    Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong


    In this work, air samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of air-sea gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The air-sea gas exchange of PAHs was the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the air-sea interface in the YRE play a crucial role in regional cycling of PAHs.

  3. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates


    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  4. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer (United States)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis


    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  5. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea (United States)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.


    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds ( 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  6. The exchange of SVOCs across the air-sea interface in Singapore's coastal environment

    Directory of Open Access Journals (Sweden)

    J. He


    Full Text Available Coastal areas are vulnerable to the accumulation of semivolatile organic compounds, such as PAHs, OCPs and PCBs from atmospheric inputs. Dry particulate and wet depositions, and air-water diffusive exchange in the Singapore's south coastal area, where most of chemical and oil refinery industries are situated in, were estimated. Based on a yearly dataset, the mean annual dry particulate deposition fluxes of ∑16-PAHs, ∑7 OCPs and ∑21 PCBs were 1328.8±961.1 μg m−2 y−1, 5421.4±3426.7 ng m−2 y−1 and 811.8±578.3 ng m−2 y−1, and the wet deposition of ∑16-PAHs and ∑7 OCPs were 6667.1±1745.2 and 115.4±98.3 μg m−2 y−1, respectively. Seasonal variation of atmospheric depositions was influenced by meteorological conditions. Air-water gas exchange fluxes were shown to be negative values for PAHs, HCHs and DDXs, indicating Singapore's south coast as a sink for the above-mentioned SVOCs. The relative contribution of each depositional process to the total atmospheric input was assessed by annual fluxes. The profile of dry particulate deposition, wet deposition and gas exchange fluxes seemed to be correlated with individual pollutant's properties such as molecular weight and Henry's law constant, etc. For the water column partitioning, the organic carbon-normalized partition coefficients between particulate and dissolved phases (KOC for both PAHs and OCPs were obtained. The relationships between KOC of PAHs and OCPs and their respective octanol-water partition coefficient (KOW were examined. In addition, both adsorption onto combustion-derived soot carbon and absorption into natural organic matter for PAHs in marine water column were investigated. Enrichment factors in the sea-surface microlayer (SML of the particulate phase were 1.2

  7. Persistent organochlorine pesticides and polychlorinated biphenyls in air of the North Sea region and air-sea exchange. (United States)

    Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard


    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North Sea in spring and summer 2009-2010. In general, the concentrations found in air are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North Sea. Here atmospheric deposition dominates the air-sea exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the air masses of central England. A net depositional flux of p,p'-DDE into the North Sea was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open sea. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North Sea. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.

  8. The Influence of Natural Climate Variabilty on the Relation Between Air-sea Oxygen and Heat Exchange (United States)

    Eddebbar, Y.; Resplandy, L.; Long, M. C.; Rodgers, K. B.; Keeling, R. F.


    Dissolved oxygen (O2) is a powerful tracer of ocean biogeochemical and physical processes and is tightly linked to the oceanic heat content. As anthropogenic warming reduces gas solubility and ventilation of the ocean's interior, the oceanic O2 inventory is expected to decline. Natural variability, however, can mask or modulate this decline, challenging the detection and attribution of ocean deoxygenation and the use of O2 as a tracer for ocean heat uptake. Continuous global measurements of atmospheric O2, corrected for terrestrial and anthropogenic influences, show a decadal trend towards anomalous ocean uptake of O2 since 2000, though uncertainties remain. This observed trend contradicts the expected enhanced outgassing of O2 due to increased ocean heat uptake driven by natural variability, the leading explanation for the hiatus in global mean surface warming. The coupling of heat and O2 fluxes due to natural variability, however, is poorly understood, and reflects complex ocean-atmosphere interactions and internal ocean processes linked to water mass formation. In this study, we investigate how natural variability couples or decouples global and regional heat and O2 fluxes, focusing on dominant modes of variability (namely SAM, NAO, ENSO, PDO, and AMO), using different configurations of the Community Earth System Model. We also investigate the impacts of volcanic eruptions on air-sea heat and O2 fluxes and mechanisms driving their coupling. We find that modes of climate variability and volcanic events have unique and significant influence on the interannual to decadal exchange of heat and O2, driven by region-specific thermal, biological, and dynamic processes. Implications for the hiatus and its imprints on ocean biochemical cycles are discussed.

  9. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.


    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  10. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty (United States)

    Stocchi, Paolo; Davolio, Silvio


    Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense air-sea interactions and it is reasonable to hypothesize that the Adriatic sea surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic Sea have been developed and applied in order to characterize the air mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of air that flows over the Adriatic Sea. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.

  11. Air-sea exchange of CO2 in the Gulf of Kutch, northern Arabian Sea based on bomb-carbon in corals and tree rings

    International Nuclear Information System (INIS)

    Chakraborty, S.; Ramesh, R.; Krishnaswami, S.


    Radiocarbon analyses were carried out in the annual bands of a 40 year old coral collected from the Gulf of Kutch (22.6degN, 70degE) in the northern Arabian Sea and in the annual rings of a teak tree from Thane (19deg14'N, 73deg24'E) near Bombay. These measurements were made in order to obtain the rates of air-sea exchange of CO 2 and the advective mixing of water in the Gulf of Kutch. The Δ 14 C peak in the Thane tree occurs in the year 1964, with a value of ∼630 part per thousand, significantly lower than that of the mean atmospheric Δ 14 C of the northern hemisphere (∼1000 part per thousand). The radiocarbon time series of the coral was modelled considering the supply of carbon and radiocarbon to the gulf through air-sea exchange and advective water transport from the open Arabian Sea. A reasonable fit for the coral data was obtained with an air-sea CO 2 exchange rate of 11-12 mol m -2 yr -1 , and an advective velocity of 28 m yr -1 between the Arabian Sea and the Gulf of Kutch; this was based on a model generated time series for radiocarbon in the Arabian Sea. The deduced velocity (∼ 28 m yr -1 ) of the advective transport of water between the Gulf and the Arabian Sea is much lower than the surface tidal current velocity in this region, but can be understood in terms of net fluxes of carbon and radiocarbon to the gulf to match the observed coral Δ 14 C time series. (author). 30 refs., 7 figs., 2 tabs

  12. Air-Sea Exchange of Legacy POPs in the North Sea Based on Results of Fate and Transport, and Shelf-Sea Hydrodynamic Ocean Models

    Directory of Open Access Journals (Sweden)

    Kieran O'Driscoll


    Full Text Available The air-sea exchange of two legacy persistent organic pollutants (POPs, γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization, wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009. The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.

  13. Air-sea exchange and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow. (United States)

    Wu, Zilan; Lin, Tian; Li, Zhongxia; Jiang, Yuqing; Li, Yuanyuan; Yao, Xiaohong; Gao, Huiwang; Guo, Zhigang


    We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air-sea gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, air-sea exchange fluxes of gaseous PAHs were estimated to be -54.2-107.4 ng m -2 d -1 , and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logK p ) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logP L 0 ), with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling K p for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air-sea exchange. Meanwhile, significant linear regressions between logK p and logK oa (logK sa ) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Field Observations of Coastal Air-Sea Interaction (United States)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.


    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  15. The potential of using remote sensing data to estimate air-sea CO2 exchange in the Baltic Sea (United States)

    Parard, Gaëlle; Rutgersson, Anna; Parampil, Sindu Raj; Alexandre Charantonis, Anastase


    In this article, we present the first climatological map of air-sea CO2 flux over the Baltic Sea based on remote sensing data: estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4 km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude flux estimations. Furthermore, the CO2 fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in fluxes reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic Sea, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m-2 d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m-2 d-1) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m-2 d-1) than does the open sea (-4 mmol m-2 d-1). In its entirety, the Baltic Sea acts as a small source of 1.2 mmol m-2 d-1 on average and this annual uptake has increased from 1998 to 2012.

  16. Air-sea gas exchange of HCHs and PCBs and enantiomers of α-HCH in the Kattegat Sea region

    International Nuclear Information System (INIS)

    Sundqvist, Kristina L.; Wingfors, Haakan; Brorstoem-Lunden, Eva; Wiberg, Karin


    Concentrations and air-water gas exchange of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) were determined in nine paired air and water samples. The samples were collected monthly in the Kattegat Sea between December 1998 and November 1999. Average fugacity and flux values indicated that PCBs were oversaturated in the water, while HCHs were net deposited. Variations were large over the year, especially during spring and summer. Air parcel back trajectories suggested that air concentrations over the Kattegat Sea are largely dependent of air mass origin. Seasonal trends were detected for airborne HCHs and for PCBs in water. The air and water enantiomeric compositions of α-HCH indicated that a larger portion of α-HCH in air originated from the underlying water during summer than during winter. - Air-water exchange of PCBs and HCHs is studied in the Kattegat Sea and shows to vary seasonally

  17. Air Sea Rescue (United States)


    and are then able to nake land and do not ditch the aircraft, make certain that Air/Sea rescue service is notified of this as soon as possible...the 4i r ’’ S * a Rescue Service . d. Khen the pilot considers it unlikely that he will reach the coast, and yet a descent into the sea is not

  18. Polonium radionuclides and sea-salt nuclei as tracers of vertical exchange processes of pollutants at air-sea interface

    International Nuclear Information System (INIS)

    Garbalewski, C.


    The work deals with problems concerning the investigations of: 1) sea polluting processes connected with diffusive airborne particle transport from the atmosphere to the sea, 2) atmosphere polluting processes resulting from pollutants transport by sea sprays and diffusing ions from the sea surface. The sea polluting processes are considered as an air cleaning factor, and vice versa. Such investigations, basing on the Po 214 and Po 218 or Po 214 and Rn 222 ratio as well as on the sea-salt nuclei concentration are conducted. The autoradiographic method for α-activity measurments is applied. The scheme of an impactor used both for airborne radioactive particles and for sea-salt nuclei collection during the cruises in the Baltic Sea is presented. The achieved α-tracks concentrations and the well expressed α-decay frequency for Rn 222 , Po 218 and Po 214 α-radiation energies rather prove the applicability of the proposed methods for quantitative estimating of the pollutants vertical exchange parameters. Analysis of the oscillations of sea-salt nuclei concentration shows, that for the near water air their residence time amounts twenty hours or so. The dependence of salt nuclei concentration from the wind force as found by Woodcock for the ocean, is on the Baltic largely affected by the influence of local factors. An expression describing the capability for the upward transport of pollutants from the sea is proposed, which approximates the dependence of the pollutants transfer intensity on the pollution degree and the hydrodynamic regime of the water region. (author)

  19. A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air-sea exchange and the multi-year MACC composition reanalysis (United States)

    Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.


    Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean

  20. Air-sea gas transfer for gases of varying solubility (United States)

    Rutgersson, Anna; Sahlee, Erik; Andersson, Andreas; Podgrajsek, Eva


    CombiCombination of surface water cooling and a deep ocean mixed layer generates convective eddies scaling with the depth of a mixed layer that enhances the efficiency of the air-sea gas transfer. This enhancement is explained by the convective eddies disturbing the molecular diffusion layer and inducing increased turbulent mixing in the water (Rutgersson et al 2011). The enhancement can be introduced into existing formulations for calculating the air-sea exchange of gases by using an additional resistance, due to large-scale convection acting in parallel with other processes. The additional resistance is expressed by the convective velocity scale of the water and the friction velocity and characterizes the relative role of surface shear and buoyancy forces. We use direct flux measurements by the Eddy-Covariance method (EC), we use gases of varying solubility (carbon dioxide, methane and water vapor). New methodology allows also to introduce EC measurements of oxygen (Andersson et al., 2014). Water-side convection is of particular interest for the low to moderate wind-speed regime, when spray and bubbles have less dominance of the efficiency of the transfer. It is also possible that gases of different solubility shows a different response to various forcing mechanisms. Lake data of methane fluxes exhibits a stronger diurnal cycle than CO2 as a response to the strong diurnal cycle of water-side convection (Podgrajsek et al., 2014). Calculated fluxes from the Baltic Sea basin shows an altered diurnal cycle when introducing the convection. The potential need of taking processes into account generating turbulence of a larger scale, such as water-side convection or Langmuir circulation introduced larger requirements on the remote sensing products used for air-sea gas flux climatologies. Andersson, A. Rutgersson A. and Sahlee, E. Using a high frequency fluorescent oxygen probe in atmospheric eddy covariance applications. Submitted 2014. Podgrajsek, E., E. Sahlée and A

  1. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS) (United States)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.


    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  2. Air-sea energy exchanges measured by eddy covariance during a localised coral bleaching event, Heron Reef, Great Barrier Reef, Australia (United States)

    MacKellar, Mellissa C.; McGowan, Hamish A.


    Despite the widely claimed association between climate change and coral bleaching, a paucity of data exists relating to exchanges of heat, moisture and momentum between the atmosphere and the reef-water surface. We present in situ measurements of reef-water-air energy exchanges made using the eddy covariance method during a summer coral bleaching event at Heron Reef, Australia. Under settled, cloud-free conditions and light winds, daily net radiation exceeded 800 W m-2, with up to 95% of the net radiation during the morning partitioned into heating the water column, substrate and benthic cover including corals. Heating was exacerbated by a mid-afternoon low tide when shallow reef flat water reached 34°C and near-bottom temperatures 33°C, exceeding the thermal tolerance of corals, causing bleaching. Results suggest that local to synoptic scale meteorology, particularly clear skies, solar heating, light winds and the timing of low tide were the primary controls on coral bleaching.

  3. Ion exchange behaviour of citrate and EDTA anions on strong and weak base organic ion exchangers

    International Nuclear Information System (INIS)

    Askarieh, M.M.; White, D.A.


    The exchange of citrate and EDTA ions with two strong base and two weak base exchangers is considered. Citrate and EDTA analysis for this work was performed using a colorimetric method developed here. The ions most selectively exchanged on the resins are H 2 cit - and H 2 EDTA 2- , though EDTA is generally less strongly sorbed on strong base resins. In contact with weak base resins, deprotonation of the resin occurs during ion exchange with a noticeable drop in solution pH. Although EDTA sorption can be reversed by nitric acid, citrate ions are significantly held on the resin at low pH. The exchange of citrate can be made reversible if bicarbonate is added to the initial solutions. Alkaline regeneration of exchangers loaded with EDTA proved to be very effective. (author)

  4. Surface wave observations during CoOP experiments and their relation to air-sea gas transfer (United States)

    Hara, Tetsu; Uz, B. Mete; Wei, Hua; Edson, James B.; Frew, Nelson M.; McGillis, Wade R.; McKenna, Sean P.; Bock, Erik J.; Haußecker, Horst; Schimpf, Uwe

    Gas exchange between the ocean and the atmosphere is strongly influenced by physical processes in the near-surface waters. Surface waves are particularly important for gas fluxes because they enable faster transfer of gases across the diffusive sublayer by causing more frequent renewal of the skin layer. During the CoOP air-sea gas exchange experiments (1995; 1997), we obtained one of the most comprehensive data sets of physical processes at the air-sea interface in both near-shore and off-shore waters. During these experiments simultaneous measurements of short wind waves, surface films, wind stress, and transfer velocity were made from a towed or self-propelled catamaran with a wide range of wind stress and with varying surface film conditions. The results show that the wave spectra at higher wavenumbers are significantly reduced by surfactant at wind friction velocities below 0.2 m s-1. The surfactant effect may be quantified using the surface enrichment (difference between the CDOM fluorescence in microlayers and that in bulk water) with reasonable accuracy. During rain events the wave spectra are raised at higher wavenumbers (above 200 rad m-1) but are not affected at 100 rad m-1. The surfactant effect is also reduced during rain. The air-sea gas transfer velocity is roughly proportional to the wave spectra at higher wavenumbers but appears to be less sensitive to spectra of longer waves.

  5. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide (United States)

    Jones, Daniel C.; Ito, Takamitsu; Takano, Yohei; Hsu, Wei-Ching


    The exchange of carbon dioxide between the ocean and the atmosphere tends to bring waters within the mixed layer toward equilibrium by reducing the partial pressure gradient across the air-water interface. However, the equilibration process is not instantaneous; in general, there is a lag between forcing and response. The timescale of air-sea equilibration depends on several factors involving the depth of the mixed layer, wind speed, and carbonate chemistry. We use a suite of observational data sets to generate climatological and seasonal composite maps of the air-sea equilibration timescale. The relaxation timescale exhibits considerable spatial and seasonal variations that are largely set by changes in mixed layer depth and wind speed. The net effect is dominated by the mixed layer depth; the gas exchange velocity and carbonate chemistry parameters only provide partial compensation. Broadly speaking, the adjustment timescale tends to increase with latitude. We compare the observationally derived air-sea gas exchange timescale with a model-derived surface residence time and a data-derived horizontal transport timescale, which allows us to define two nondimensional metrics of equilibration efficiency. These parameters highlight the tropics, subtropics, and northern North Atlantic as regions of inefficient air-sea equilibration where carbon anomalies are relatively likely to persist. The efficiency parameters presented here can serve as simple tools for understanding the large-scale persistence of air-sea disequilibrium of CO2 in both observations and models.

  6. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger. (United States)

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie


    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. New approaches for air-sea fluxes in the Southern Ocean

    CSIR Research Space (South Africa)

    Gille, S


    Full Text Available Air-sea exchanges in the Southern Ocean of momentum, heat, freshwater, carbon dioxide, and other gases are not well documented because fluxes are sparsely sampled (see Figure 1) and because high winds, high sea state, and lack of calibration...

  8. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    International Nuclear Information System (INIS)

    Omar, Abdirahman M.


    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally, changes

  9. Carbon dioxide in northern high latitude oceans: Anthropogenic increase and air-sea flux variability

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Abdirahman M.


    The aim of this thesis is to further our knowledge of carbon dioxide in the northern high latitude oceans (northern North Atlantic, Barents Sea, and Arctic Ocean) by studying the anthropogenic change in the oceanic CO2, the inter-annual variability of the air-sea CO2 flux, and the relationship between this variability and changes in other oceanic processes. An introductory chapter and four papers are presented. Descriptions of the seawater carbonate system parameters, air-sea exchange of CO2, and related processes are given in the introduction chapter. The anthropogenic increase in partial pressure of CO2 (pCO2) in the surface water of the Barents Sea is evaluated in paper I. The effect of alternations of the Barents Sea climate between cold and warm modes on the annual cycles of seawater fugacity and air-sea flux of CO2 is investigated in paper II. Oceanic uptake of atmospheric CO2 associated with the seasonal formation of sea ice in Storfjorden and the implication for the entire Arctic Ocean is studied in paper III. An assessment of the variations of the air-sea flux of CO2 in the northern North Atlantic for 20 winters (1981-2001) is carried out in paper IV. PCO2 in the surface water of the Barents Sea is shown to have increased parallel with the atmospheric pCO2 between 1967 and 2000-2001 (paper I). This was determined by comparing seawater pCO2 from 1967 with that from 2000-2001. The former was estimated from surface seawater temperature (SST) while the latter was computed from data of total dissolved inorganic carbon and alkalinity. A procedure which accounts for the natural variability was applied and the difference between seawater pC02 of 1967 and that of 2000-2001 is attributed to the uptake of excess CO2. In the Atlantic sector of the Barents Sea, the surface seawater fugacity of CO2 (fCO s''w) is shown to be lower than the atmospheric fCO2 throughout the year, implying that the area is an annual sink of atmospheric CO2 (paper II). Additionally

  10. Contribution of tropical cyclones to the air-sea CO2 flux: A global view

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, M.; Lengaigne, M.; Bopp, L.; Vincent, E.M.; Madec, G.; Ethe, C.; DileepKumar, M.; Sarma, V.V.S.S.

    Previous case studies have illustrated the strong local influence of tropical cyclones (TCs) on CO sub(2) air-sea flux (F sub(CO2)), suggesting that they can significantly contribute to the global F sub(CO2). In this study, we use a state-of-the art...

  11. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts


    Galgani, Luisa; Piontek, Judith; Engel, Anja


    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice ...

  12. Preparation of nuclear grade strongly basic anion exchange resin in hydroxide from

    International Nuclear Information System (INIS)

    Ke Weiqing


    The two-step transformation method was used to prepare 90 kg nuclear grade strongly basic anion exchange resins by using the industrial grade baking soda and caustic soda manufacutred by mercury-cathode electrolysis. The chloride and biscarbonate fraction on resin is 0.8% and 1.25% respectively, when the baking soda and caustic soda consumption is 8.6 and 13.7 times the total exchange capacity of the strongly basic resin

  13. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts (United States)

    Shay, L. K.


    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  14. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts. (United States)

    Galgani, Luisa; Piontek, Judith; Engel, Anja


    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  15. Air-Sea Interactions in the Marginal Ice Zone (United States)


    Journal article postprint 3. DATES COVERED (From - To) 01/01/2012 - 30/09/2016 4. TITLE AND SUBTITLE Waves & Fetch in the Marginal Ice Zone...5a. CONTRACT NUMBER Air-sea interactions in the marginal ice zone 5b. GRANT NUMBER N00014-12-1-0113 5c. PROGRAM Air-sea interactions in the marginal ice zoneAir-Sea interactions in the Marginal Ice Zone Seth Zippel1* • Jim Thomson1 1Applied

  16. Estimating global air-sea fluxes from surface properties and from climatological flux data using an oceanic general circulation model (United States)

    Tziperman, Eli; Bryan, Kirk


    A simple method is presented and demonstrated for estimating air-sea fluxes of heat and fresh water with the aid of a general circulation model (GCM), using both sea surface temperature and salinity data and climatological air-sea flux data. The approach is motivated by a least squares optimization problem in which the various data sets are combined to form an optimal solution for the air-sea fluxes. The method provides estimates of the surface properties and air-sea flux data that are as consistent as possible with the original data sets and with the model physics. The calculation of these estimates involves adding a simple equation for calculating the air-sea fluxes during the model run and then running the model to a steady state. The proposed method was applied to a coarse resolution global primitive equation model and annually averaged data sets. Both the spatial distribution of the global air-sea fluxes and the meridional fluxes carried by the ocean were estimated. The resulting air-sea fluxes seem smoother and significantly closer to the climatological flux estimates than do the air-sea fluxes obtained from the GCM by simply specifying the surface temperature and salinity. The better fit to the climatological fluxes was balanced by a larger deviation from the surface temperature and salinity. These surface fields were still close to the observations within the measurement error in most regions, except western boundary areas. The inconsistency of the model and data in western boundary areas is probably related to the inability of the coarse resolution GCM to appropriately simulate the large transports there. The meridional fluxes calculated by the proposed method differ very little from those obtained by simply specifying the surface temperature and salinity. We suggest therefore that these meridional fluxes are strongly influenced by the interior model dynamics; in particular, the too-weak model meridional circulation cell seems to be the reason for

  17. ISLSCP II Air-Sea Carbon Dioxide Gas Exchange (United States)

    National Aeronautics and Space Administration — This data set contains the calculated net ocean-air carbon dioxide (CO2) flux and sea-air CO2 partial pressure (pCO2) difference. The estimates are based on...

  18. ISLSCP II Air-Sea Carbon Dioxide Gas Exchange (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the calculated net ocean-air carbon dioxide (CO2) flux and sea-air CO2 partial pressure (pCO2) difference. The estimates are based...

  19. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel. (United States)

    Perçin, Işık; Khalaf, Rushd; Brand, Bastian; Morbidelli, Massimo; Gezici, Orhan


    A new strong cation exchanger (SCX) monolithic column was synthesized by at-line surface modification of a cryogel prepared by copolymerization of 2-hydroxyethylmethacrylate (HEMA) and glycidylmethacrylate (GMA). Sodium salt of 3-Mercaptopropane sulfonic acid (3-MPS) was used as the ligand to transform the surface of the monolith into a strong cation exchanger. The obtained material was characterized in terms of elemental analysis, infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) N2 adsorption, and used as a stationary phase for strong-cation exchange chromatography of some proteins, such as α-chymotrypsinogen, cytochrome c and lysozyme. Water permeability of the column was calculated according to Darcy's law (2.66×10(-13)m(2)). The performance of the monolithic cryogel column was evaluated on the basis of Height Equivalent to a Theoretical Plate (HETP). Retention behavior of the studied proteins was modeled on the basis of Yamamoto model to understand the role of the ion-exchange mechanism in retention behaviors. The considered proteins were successfully separated, and the obtained chromatogram was compared with that obtained with a non-functionalized cryogel column. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The MedCORDEX Flagship Pilot Study on air-sea interactions. (United States)

    Jordà, Gabriel; Sannino, Gianmaria; Somot, Samuel


    The mechanisms through which air-sea coupling can modify the regional climate will be investigated in the MedCORDEX Flagship Pilot Study (FPS) on air-sea interactions, with special emphasis on the role of small scale ocean processes and waves. This FPS is a natural continuation of the activities of MedCORDEX, HyMeX and MedCLIVAR. The selected region is the area surrounding the Mediterranean Sea, which is often referred to as an ocean in miniature due to the variety of processes occurring therein. These include strong air-sea interactions, active mesoscale and submesoscale dynamics and a permanent thermohaline overturning circulation. Moreover, this area is one of the best observed regions in the world. Besides the dense observational network of meteorological stations over Europe, the Mediterranean Sea is regularly sampled by different monitoring programs (e.g HyMeX, the regional component of Gewex) providing observations of the ocean-atmosphere coupled system over the last decades. The Mediterranean region is therefore a particularly suitable candidate for this FPS. Ocean mesoscale in the Mediterranean Sea is characterized by a Rossby deformation radius of 5-10 km. In consequence, the SST often shows narrow and sharp fronts (e.g. in upwelling regions) as well as filaments with associated strong temperature gradients that can significantly modify the air-sea interaction (Chelton et al., 2004) and affect the climate evolution (Artale et al., 2009). Ocean mesoscale also plays a crucial role in the main mechanism of heat uptake by the ocean, namely dense water formation, which modelling requires both atmospheric ( 25 km) and oceanic ( 5-10 km) high spatial resolution that present GCMs are not able to achieve. Last, the Mediterranean wind-wave climate is characterized by high temporal and spatial variability due to the channeling of winds acting over the sea by the orography (Lionello et al. 2005). Wave effects on the turbulent heat fluxes are known to be important and

  1. Nucleon exchange as a mechanism for strongly damped heavy ion collisions

    International Nuclear Information System (INIS)

    Jain, A.K.; Sarma, N.


    The strongly damped collisions of two heavy ions are examined in a semi-classical model where nucleons migrating across a boundary between the nuclei are captured by the other nucleus. The density variation of nucleons is taken to be the two-parameter Fermi distribution and the Thomas-Fermi model is invoked to obtain their momentum distribution. The mass exchanged during collisions, the net mass transfer and the energy lost to internal excitation are calculated as a function of the impact parameter. The angle of deep inelastic scattering is computed by correcting the elastic scattering deflection function. (Auth.)

  2. Synergistic desorption of molybdenum from the strong base anion exchange resin by molybdnum fouling

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong


    In this paper the synerglstic desorption of molybdenum from the strong base anion exchange resin is studied using ammonium hydroxide and ammonium sulfate, sodium hydroxide and sodium sulfate or sodium hydroxide and sodium chloride mixed chloride mixed desorbents. The coefficients of synergistlc desorption for various mixed desorbents are obtained. The experimental results show that the desorption efficiency of the mixed desorbent containing ammonium hydroxide and ammonium sulfate is so high that it can substitute for the mixed desorbent used in the plant. The harmful affect of the chloride ion on production can be eliminated if this mixed desorbent is used for the plant

  3. Adsorption Behavior of Charge Isoforms of Monoclonal Antibodies on Strong Cation Exchangers. (United States)

    Steinebach, Fabian; Wälchli, Ruben; Pfister, David; Morbidelli, Massimo


    In this work, the adsorption behavior of the different charge isoforms of the same monoclonal antibody (mAb) on strong cation-exchange resins is analyzed. While charge isoforms of the same antibody mainly differ in their effective charge, the similar structure and size allows developing a simplified model, which describes the adsorption behavior of mAb charge isoforms independently of the number of isoforms with only four parameters. In contrast to classical model-based descriptions of the adsorption isotherm, the proposed work enables retrieving some physical meaning in the definition of the model parameters. These model parameters are determined for several resin-antibody combinations. Thereby it is found that for mAbs on commercial cation exchangers an effective resin charge density of 0.22 ± 0.08 mmol mL -1 of solid phase is used for protein binding, which was found to be independent of the absolute resin charge density measured by titration. The presented results help to understand the adsorption behavior of mAbs on cation-exchangers, which is applicable both for the isolation of the main charge isoform or for preserving a certain charge isoform pattern during the polishing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Diclofenac removal in urine using strong-base anion exchange polymer resins. (United States)

    Landry, Kelly A; Boyer, Treavor H


    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  5. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements (United States)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.


    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to three permanent research stations on the

  6. Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins. (United States)

    Wawrzkiewicz, Monika; Hubicki, Zbigniew


    The removal of tartrazine from aqueous solutions onto the strongly basic polystyrene anion exchangers of type 1 (Amberlite IRA-900) and type 2 (Amberlite IRA-910) was investigated. The experimental data obtained at 100, 200, 300 and 500 mg/dm(3) initial concentrations at 20 degrees C were applied to the pseudo-first order, pseudo-second order and Weber-Morris kinetic models. The calculated sorption capacities (q(e,cal)) and the rate constant of the first order adsorption (k(1)) were determined. The pseudo-second order kinetic constants (k(2)) and capacities were calculated from the plots of t/q(t) vs. t, 1/q(t) vs. 1/t, 1/t vs. 1/q(t) and q(t)/t vs. q(t) for type 1, type 2, type 3 and type 4 of the pseudo-second order expression, respectively. The influence of phase contact time, solution pH and temperature on tartrazine removal was also discussed. The FTIR spectra of pure anion exchangers and those loaded with tartrazine were recorded, too.

  7. Classical Spin Liquid Instability Driven By Off-Diagonal Exchange in Strong Spin-Orbit Magnets (United States)

    Rousochatzakis, Ioannis; Perkins, Natalia B.


    We show that the off-diagonal exchange anisotropy drives Mott insulators with strong spin-orbit coupling to a classical spin liquid regime, characterized by an infinite number of ground states and Ising variables living on closed or open strings. Depending on the sign of the anisotropy, quantum fluctuations either fail to lift the degeneracy down to very low temperatures, or select noncoplanar magnetic states with unconventional spin correlations. The results apply to all 2D and 3D tricoordinated materials with bond-directional anisotropy and provide a consistent interpretation of the suppression of the x-ray magnetic circular dichroism signal reported recently for β -Li2IrO3 under pressure.

  8. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)


    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  9. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives (United States)

    Edelmann, Mariola J.


    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558

  10. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS (United States)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.


    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  11. Air-sea interactions of semi-volatile organic compounds in the tropical environment of Southeast Asia

    Directory of Open Access Journals (Sweden)

    Balasubramanian R.


    Full Text Available Major urban and industrial centers increase loadings of semi-volatile organic compounds (SVOCs to proximate sea waters through riverine transport, atmospheric deposition via dry particle deposition, wet deposition, and air-sea gas exchange. In addition to acting as sinks for SVOCs, oceans can act as sources of SVOCs to coastal atmospheres and play important roles in the global biogeochemistry of SVOCs. Particle-sorbed SVOCs can settle to the ocean surface by dry particle deposition, a uni-directional advective transport process from the atmosphere to the water, the removal rate by which is a function of the physical and chemical properties of the aerosols and bound pollutants, meteorological conditions and surface characteristics. In addition, SVOCs are removed from the atmosphere and transported to the waters by precipitation scavenging of atmospheric vapors and particles, which are incorporated into the rain within or below the clouds. After SVOCs are deposited into the bulk seawater, water-column partitioning can affect the distribution of pollutants between the dissolved aqueous and the solid phases and eventually impact the fate of these compounds in oceans. Other than the abovementioned processes, air-sea exchange can make SVOCs diffuse across the air-sea interface; however, the sea surface microlayer (SML, a unique compartment at the air-sea boundary defined operationally as the upper millimeter (1 ∼ 1000 μm of the sea surface, has large storage capacity to delay the transport of SVOCs across the interface. This article reports the dry particle deposition and wet deposition of selected SVOCs based on an extensive set of yearly data collected in Singapore. Singapore, a representative country of Southeast Asia (SEA, is a small but highly developed island with dense industrial parks in the Southwestern part, where the terrestrial sources affect the surrounding coasts. In this study, Singapore’s Southern coastline was chosen during

  12. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber (United States)

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao


    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  13. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences

    Directory of Open Access Journals (Sweden)

    Yuan J


    Full Text Available Jing Yuan, Yanan Gao, Xinyu Wang, Hongzhuo Liu, Xin Che, Lu Xu, Yang Yang, Qifang Wang, Yan Wang, Sanming LiSchool of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China Abstract: Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. Keywords: ion-exchange fibers, ionic reaction, drug load and release, opposing exchange kinetics, thermodynamics, influences

  14. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.


    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  15. Air-Sea Coupling Over The Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gopika, N.

    .1 Introduction 13 1.2 Equatorial Indian Ocean 13 1.3 Geographic location of the study area 17 1.4 Previous Work 18 1.5 Present Work 27 1.5.1 Motivation 27 1.5.2 Objectives 27 Chapter 2: Data and Methods 29 2... 1.5.1 Motivation Equatorial regions are special areas of the world ocean where intense air- sea interaction takes place and the ocean and atmosphere is tightly coupled. Equatorial Indian Ocean, in spite of its very special characteristics...

  16. Ion exchange removal of chromium (iii) from tannery wastes by using a strong acid cation exchange resin amberlite ir-120 h+ and its hybrids

    International Nuclear Information System (INIS)

    Ahmad, T.


    A strong acid cation exchange resin Amberlite IR-120 H+ and its hybrids with Mn(OH)/sub 2/, Cu(OH)/sub 2/ and Fe(OH)/sub 3/ are used for the removal of chromium (III) from spent tannery bath. The experimental data give good fits with the Langmuir sorption model. The thermodynamic parameters entropy (delta S), enthalpy (delta H) and free energy (delta G) changes are computed, which reveal that the chromium removal from tannery wastes by ion exchangers is an endothermic, physical sorption and entropically driven process. The rate of sorption is found to increase with the increase of resin dosage, stirring speed and temperature. Different kinetic models such as film diffusion, particle diffusion and Lagergren pseudo first order are used to evaluate the mechanism of the process. It is found that the hybrid ion exchange resins have better removal capacity as compared to the parent ion exchanger. The increase in the removal capacity is found to be in the order of the corresponding PZC values of the hybrid ion exchangers. Further, it is suggested that the higher exchange capacity is the result of Donnan effect and specific adsorption of chromium by the oxides / hydroxides present inside the matrix of the organic cation exchanger. (author)

  17. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter (United States)

    Ma, Jian; Lu, Chen; Liu, Hongmei


    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  18. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter. (United States)

    Ma, Jian; Lu, Chen; Liu, Hongmei


    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  19. Importance of air-sea interaction on wind waves, storm surge and hurricane simulations (United States)

    Chen, Yingjian; Yu, Xiping


    It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current

  20. Radiochemical study of Re/W adsorption behavior on a strongly basic anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Gott, Matthew D. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.; Missouri Univ., Columbia, MO (United States). Dept. of Chemistry; Ballard, Beau D.; Redman, Lindsay N. [Los Alamos National Laboratory, Los Alamos, NM (United States). Chemistry Div.; and others


    Rhenium-186g is a radionuclide with a high potential for therapeutic applications. It emits therapeutic β{sup -} particles accompanied by low energy γ-rays, which allows for in-vivo tracking of the radiolabeled compound and dosimetry estimates. The current reactor production pathway {sup 185}Re(n,γ){sup 186g}Re produces low specific activity {sup 186g}Re, thereby limiting its therapeutic application. Work is underway to develop an accelerator-based, charged particle induced production method for high specific activity {sup 186g}Re from targets of enriched {sup 186}W. To optimize the chemical {sup 186g}Re recovery method, batch studies have been performed to characterize the adsorption behavior of Re and W on a strongly basic anion exchange resin. An in-depth physicochemical profile was developed for the interaction of Re with resin material, which showed the reaction to be endothermic and spontaneous. Basic (NaOH) and acidic (HNO{sub 3}) matrices were used to determine the equilibrium distribution coefficients for Re and W. The resin exhibits the best affinity for Re at slightly basic conditions and little affinity above moderately acidic concentrations. Tungsten has low affinity for the resin above moderately basic concentrations. A study was performed to examine the effect of W concentration on Re adsorption, which showed that even a high ionic WO{sub 4}{sup 2-} strength of up to 1.9 mol kg{sup -1} does not significantly compromise ReO{sub 4}{sup -} retention on the resin. (orig.)

  1. Determination of tropane alkaloids by heart cutting reversed phase - Strong cation exchange two dimensional liquid chromatography. (United States)

    Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye


    Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright

  2. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption

    International Nuclear Information System (INIS)

    Kavaklı, Cengiz; Akkaş Kavaklı, Pınar; Turan, Burcu Dila; Hamurcu, Aslı; Güven, Olgun


    N,N-Dimethylaminoethyl methacrylate (DMAEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fibers (DMAEMA-g-PE/PP) was prepared by radiation-induced graft polymerization. DMAEMA graft chains on nonwoven fibers were quaternized with dimethyl sulfate solution for the preparation of strong base anion exchange fibers (QDMAEMA-g-PE/PP). Fiber structures were characterized by FTIR, XPS and SEM techniques. The effect of solution pH, contact time, initial As(V) ion concentration and coexisting ions on the As(V) adsorption capacity of the QDMAEMA-g-PE/PP fibers were investigated by performing batch adsorption experiments. The adsorption of As(V) by QDMAEMA-g-PE/PP fibers was found to be independent on solution pH in the range 4.00–10.00. Kinetic experiments show that the As(V) adsorption rate was rapid and As(V) adsorption follows pseudo second-order kinetic model. As(V) adsorption equilibrium data were analyzed using Langmuir and Freundlich adsorption isotherm model equations. Langmuir and Freundlich adsorption isotherm models fitted the experimental data well. The maximum adsorption capacity (q max ) calculated from Langmuir isotherm was found to be 83.33 mg As(V)/g polymer at pH 7.00. The adsorbent was used for three cycles without significant loss of adsorption capacity. The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution. - Highlights: • QDMAEMA-g-PE/PP fibers have high adsorption capacity for As(V) ions. • Adsorption of As(V) is independent on the solution pH over a wide range (4−10). • As(V) adsorption rate of QDMAEMA-g-PE/PP fibers is considerably fast. • The maximum adsorption capacity (q max ) was found to be 83.33 mg As(V)/g polymer

  3. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model (United States)

    Clayson, Carol Anne; Roberts, J. Brent


    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  4. Ocean Surface Waves and Turbulence: Air-Sea Fluxes and Climate Variability (United States)

    Melville, W. Kendall


    Apart from heating of the atmosphere, two of the most important consequences of current climate variability are changes in sea level, and acidification of the oceans. Over decadal time scales, changes in sea level are caused by changes in heat content and salinity of the ocean, and by changes in mass resulting from exchanges between the ocean, glaciers and other land-based reservoirs. The oceans have absorbed about one third of the anthropogenic CO2 due to fossil fuel burning. This reduces the green house effect in the atmosphere, but the CO2 reacts in the surface waters of the ocean to lower pH. Conservative projections of sea level rise over the next century are O(0.1 - 1) m, while ocean acidification is already having an impact on marine ecosystems. Both these processes depend on air-sea fluxes: heat flux for sea level rise, and gas flux for ocean acidification. These fluxes are among the most poorly constrained in current climate models, but both ultimately depend on fluid dynamics at the ocean surface and in the adjacent boundary layers. Traditional boundary layer models of the marine boundary layer and the marine atmospheric boundary layer were based on classical theories of boundary layers over rigid surfaces, but there is increasing evidence that these models must now include surface wave effects. In this talk the motivating climate data and modeling will be briefly reviewed, and then recent work on surface wave dynamics, air-sea fluxes and the adjacent boundary layers will be presented. The roles of surface wave breaking, Langmuir circulations, wave-turbulence interactions and gravity-capillary waves will be discussed.

  5. Effect of the strong coupling on the exchange bias field in IrMn/Py/Ru/Co spin valves (United States)

    Tarazona, H. S.; Alayo, W.; Landauro, C. V.; Quispe-Marcatoma, J.


    The IrMn/Py/Ru/Co (Py = Ni81Fe19) spin valves have been produced by sputtering deposition and analyzed by magnetization measurements and a theoretical modelling of their exchange interactions, based on the macro-spin model. The Ru thickness was grown between 6 and 22 Å, which is small enough to promote strong indirect coupling between Py and Co. Results of measurements showed a large and gradual change in the shape of hysteresis loops when the Ru thickness was varied. The theoretical analysis, using numerical calculations based on the gradient conjugate method, provides the exchange coupling constants (bilinear and biquadratic), the exchange anisotropy fields and the magnetic anisotropy fields (uniaxial and rotatable). The exchange bias fields of spin valves were compared to that of a IrMn/Py bilayer. We found that the difference between these fields oscillates with Ru thickness in the same manner as the bilinear coupling constants.


    NARCIS (Netherlands)



    The liquid-phase hydration of cyclohexene, a pseudo first order reversible reaction catalyzed by a strong acid ion exchange resin, macroporous Amberlite XE 307, was investigated in solvent mixtures of water and sulfolane. A decrease by a factor of 3 and 6 is observed in the experimentally measured

  7. On thermodynamics of rhenium ion exchange sorption by strong-base anionite from nitrate-sulfate solutions

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Pak, V.I.; Siracheva, M.K.


    The apparent thermodynamic parameters of the process of rhenium absorption by strong-base anionites from nitrate-sulfate media in the range of low degrees of filling the sorbents with perrhenate ions are estimated. On the basis of studying the temperature dependence of ion-exchange rhenium sorption it is shown that this process is accompanied by heat release and entropy reduction

  8. Strong exchange bias with the (110)-oriented BiFeO3 films (United States)

    Bai, Feiming; Yu, Guo; Wang, Yicheng; Jin, Lichuan; Zeng, Huizhong; Tang, Xiaoli; Zhong, Zhiyong; Zhang, Huaiwu


    Epitaxial BiFeO3 films were grown on the (001)-, (110)-, and (111)-oriented SrTiO3 substrates. Using CoFe as ferromagnetic layer, we have shown that both large exchange bias and coercive field enhancement can be observed in the (001)- and (110)-oriented BiFeO3. But no exchange bias was found in the (111)-oriented BiFeO3 films, which can be understood by the lack of either 109° or 71° ferroelectric domain walls and the preservation of the spatial modulated cycloid spin structure. The observation of large exchange bias field with the (110)-oriented BiFeO3 film may lead to an alternative choice towards reversible control exchange bias by electrical field.

  9. The Air-Sea Nitrous Oxide Flux along Cruise Tracks to the Arctic Ocean and Southern Ocean

    Directory of Open Access Journals (Sweden)

    Liyang Zhan


    Full Text Available Nitrous oxide is a trace gas with two global environmental effects: it depletes stratospheric ozone and contributes to the greenhouse effect. Oceans are one of the most significant nitrous oxide sources; however, there are ocean areas whose contributions to the nitrous oxide budget are not yet well studied. The Southern Ocean and the Arctic Ocean feature strong winds and portions that are covered by sea ice. These intense environmental conditions and the remoteness of these regions hamper fieldwork; hence, very limited data are available on the distributions and the source and sink characteristics of nitrous oxide. Using data from the 4th Chinese National Arctic Research Expedition and the 27th Chinese National Antarctic Research Expedition, the first global-scale investigation of the surface water N2O distribution pattern, the factors influencing the N2O distribution and the air-sea N2O flux are discussed in this study. The results show that the tropical and subtropical regions (30° N–30° S exhibit significant source characteristics, with a maximum air-sea flux of approximately 21.0 ± 3.9 μmol·m−2·d−1. The high air-sea flux may result from the coastal influences and high wind speeds in certain areas. The distribution patterns of N2O in the sub-polar regions (30° N–60° N, 30° S–60° S transition from oversaturated to approximate equilibrium with the atmosphere, and the boundaries generally correspond with frontal structures. The distributions of N2O in the high-latitude Southern Ocean and Arctic Ocean (>60° N and 60° S exhibit contrasting patterns. With the exception of the continental shelf hotspot, the Arctic Ocean surface water is undersaturated with N2O; in contrast, the high-latitude Southern Ocean along the cruise track is oversaturated with N2O. The high-latitude Southern Ocean may act as a N2O source, with a maximum air-sea N2O flux of approximately 9.8 ± 0.5 μmol·m−2·d−1 at approximately 60° S, whereas the

  10. Exchange bias and major coercivity enhancement in strongly-coupled CuO/Co films (United States)

    Gamino, M.; de Andrade, A. M. H.; Salazar Cuaila, J. L.; Schmidt, J. E.; Skumryev, V.; Geshev, J.


    The exchange-bias properties of ferromagnetic, either Co or Ni, thin films deposited onto polycrystalline multiferroic CuO are investigated. After field cooling, the CuO/Co magnetization hysteresis loops show exchange bias at temperatures lower than 200 K, while the CuO/Ni system exhibits bias below about 5 K only. It is suggested that the exchange bias of CuO/Co is determined mainly by the magnetization reversal that takes place on the descending branch of the loop. Rather high values of both the interface coupling energy, 0.89 erg/cm2, and coercivity, 2.44 kOe, of the CuO/Co film are obtained at 5 K.

  11. Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction (United States)

    Zhu, Junying; Shi, Jie; Guo, Xinyu; Gao, Huiwang; Yao, Xiaohong


    The Yellow Sea Cold Water Mass (YSCWM), which occurs during summer in the central Yellow Sea, plays an important role in the hydrodynamic field, nutrient cycle and biological species. Based on water temperature observations during the summer from 1978 to 1998 in the western Yellow Sea, five specific YSCWM years were identified, including two strong years (1984 and 1985), two weak years (1989 and 1995) and one normal year (1992). Using a three-dimensional hydrodynamic model, the YSCWM formation processes in these five years were simulated and compared with observations. In general, the YSCWM began forming in spring, matured in summer and gradually disappeared in autumn of every year. The 8 °C isotherm was used to indicate the YSCWM boundary. The modelled YSCWM areas in the two strong years were approximately two times larger than those in the two weak years. Based on the simulations in the weak year of 1995, ten numerical experiments were performed to quantify the key factors influencing the YSCWM intensity by changing the initial water condition in the previous autumn, air-sea heat flux, wind, evaporation, precipitation and sea level pressure to those in the strong year of 1984, respectively. The results showed that the air-sea heat flux was the dominant factor influencing the YSCWM intensity, which contributed about 80% of the differences of the YSCWM average water temperature at a depth of 50 m. In addition, the air-sea heat flux in the previous winter had a determining effect, contributing more than 50% of the differences between the strong and weak YSCWM years. Finally, a simple formula for predicting the YSCWM intensity was established by using the key influencing factors, i.e., the sea surface temperature before the cooling season and the air-sea heat flux during the cooling season from the previous December to the current February. With this formula, instead of a complicated numerical model, we were able to roughly predict the YSCWM intensity for the

  12. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan


    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed....... Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals...

  13. Strong Dollar, Weak Dollar: Foreign Exchange Rates and the U.S. Economy. (United States)

    Schilling, Tim

    Many generalizations sound simple enough--for example, "strong is good, weak is bad"--but they can be confusing when talking about money. This booklet explores how the U.S. dollar and foreign currencies affect each other and how their interaction affects the individual and the economy. The booklet contains the following sections:…

  14. Strong tidal modulation of net ecosystem exchange in a salt marsh in North Inlet, South Carolina (United States)

    O'Halloran, T. L.; Smith, E. M.; Bogoev, I.


    Along the southeastern US, intertidal salt marshes represent a critical habitat at the interface of the terrestrial and marine environments and perform a variety of ecological functions and services that make them of great economic importance for coastal communities They provide essential fish and shellfish habitat, with a majority of all commercially- and recreationally important fish species being dependent on intertidal marsh habitat during some portion of their life cycle. The penaeid shrimp industry, South Carolina's most economically important fishery, would cease to exist without the critical nursery function provided by intertidal salt marshes. Smooth cordgrass (Spartina alterniflora) is a keystone species in the high salinity marshes of the southeastern U.S., and its functioning is essential to the health and survival of salt marshes under rising sea levels. To better quantify and facilitate prediction of future salt marsh productivity, in May of 2017, we established a new integrated eddy covariance tower system to measure the net ecosystem exchange of carbon in a salt marsh in coastal South Carolina. The tower site is co-located with long-term, ongoing measurements as part of the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR). Current sampling conducted within the eddy flux footprint includes: annual measures of the vegetation community at the time of peak biomass; bi-monthly measures of sediment elevation at Sediment Elevation Tables (SETs) located at the upper and lower ends of the flux footprint; monthly sediment porewater salinity and nutrient (ammonium, orthophosphate) and sulfide concentrations; and biannual sediment elevation surveys by RTK-GPS. A suite of water quality measurements are made every 15 minutes in the main creek that floods the marsh platform in the flux footprint. Here we present our first six months of observations investigating the abiotic drivers of productivity on daily (intratidal) to monthly timescales

  15. A Comparison of Bulk Aerodynamic Methods for Calculating Air-Sea Flux

    National Research Council Canada - National Science Library

    Eleuterio, Daniel


    The Louis et al. (1982) bulk aerodynamic method for air-sea flux estimates is currently used in mesoscale models such as COAMPS, while the TOGA-COARE method is a state of the art flux parameterization involving recent...

  16. Air Sea Interaction Over the Indian Ocean During the Contrasting Monsoon Years 2002 and 2003

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar; Sankar; Fennig; Pai, S.; Schulz

    The air sea interaction processes over the Indian Ocean are studied using the satellite data from the Tropical Rainfall Measuring Mission Satellite for two contrasting monsoon years, namely 2002 (deficit) and 2003 (normal). The moisture transport...

  17. Super strong dopamine hydrogels with shape memory and bioinspired actuating behaviours modulated by solvent exchange. (United States)

    Huang, Jiahe; Liao, Jiexin; Wang, Tao; Sun, Weixiang; Tong, Zhen


    Dopamine-containing hydrogels were synthesized by copolymerization of dopamine methacrylamide (DMA), N,N-dimethylacrylamide (DMAA), and an N,N'-methylenebisacrylamide (BIS) crosslinker in a mixed solvent of water and DMSO. The association of DMA was formed by simply immersing in water to facilely reinforce the hydrogel due to the introduction of the second physical crosslinking. The tensile strength of the hydrogels was increased greatly and regulated in a wide range from 200 kPa to over 2 MPa. The association of DMA was destroyed upon immersing in DMSO. This reversible formation and dissociation of the association structure endowed the hydrogel with shape memory and actuating capabilities. Rapid shape fixing in water and complete shape recovery in DMSO was realized within several minutes. Bioinspired functional soft actuators were designed based on the reversible association and metal ion coordination of DMA, including fast responsive hydrogel tentacles, programable multiple shape change, reversible and versatile painting and writing "hydrogel paper". The facile preparation and strength regulation provide a new way to design novel soft actuators through solvent exchange, and will inspire more complex applications upon combining the association with other properties of mussel inspired dopamine derivatives.

  18. The air-sea equilibrium and time trend of hexachlorocyclohexanes in the Atlantic Ocean between the Arctic and Antarctica. (United States)

    Lakaschus, Sonke; Weber, Kurt; Wania, Frank; Bruhn, Regina; Schrems, Otto


    Hexachlorocyclohexanes (HCHs) were determined simultaneously in air and seawater during two cruises across the Atlantic Ocean between the Arctic Ocean (Ny-Alesund/ Svalbard, 79 degrees N; 12 degrees E) and the Antarctic Continent (Neumayer Station/ Ekstroem Ice Shelf, 70 degrees S; 8.2 degrees W) in 1999/ 2000. The concentrations of alpha-HCH and gamma-HCH in air and surface waters of the Arctic exceeded those in Antarctica by 1-2 orders of magnitude. The gaseous concentrations of gamma-HCH were highest above the North Sea and between 20 degrees N and 30 degrees S. Fugacity fractions were used to estimate the direction of the air-sea gas exchange. These showed for alpha-HCH thatthe measured concentrations in both phases were close to equilibrium in the North Atlantic (78 degrees N-40 degrees N), slightly undersaturated between 30 degrees N and 10 degrees S and again close to equilibrium between 20 degrees S and 50 degrees S. Y-HCH has reached phase equilibrium in the North Atlantic as alpha-HCH, but the surface waters of the tropical and southern Atlantic were strongly undersaturated with y-HCH, especially between 30 degrees N and 20 degrees S. These findings are significantly different from two earlier estimates around 1990 as a result of global emission changes within the past decade. Therefore, we investigated the time trend of the HCHs in the surface waters of the Atlantic between 50 degrees N and 60 degrees S on the basis of archived samples taken in 1987-1997 and those from 1999. A decrease of alpha-HCH by a factor of approximately 4 is observed at all sampling locations. No decrease of gamma-HCH occurred between 30 degrees N and 30 degrees S, but there was a decrease in the North Atlantic, North Sea, and in the South Atlantic south of 40 degrees S. The constant level of gamma-HCH in the tropical Atlantic confirms the conclusion that the tropical Atlantic acts as a sink for y-HCH at present time. The measured alpha-HCH seawater concentrations were compared

  19. Air-sea fluxes of CO2 and CH4 from the Penlee Point Atmospheric Observatory on the south-west coast of the UK (United States)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Kitidis, Vassilis; Cazenave, Pierre W.; Nightingale, Philip D.; Yelland, Margaret J.; Pascal, Robin W.; Prytherch, John; Brooks, Ian M.; Smyth, Timothy J.


    We present air-sea fluxes of carbon dioxide (CO2), methane (CH4), momentum, and sensible heat measured by the eddy covariance method from the recently established Penlee Point Atmospheric Observatory (PPAO) on the south-west coast of the United Kingdom. Measurements from the south-westerly direction (open water sector) were made at three different sampling heights (approximately 15, 18, and 27 m above mean sea level, a.m.s.l.), each from a different period during 2014-2015. At sampling heights ≥ 18 m a.m.s.l., measured fluxes of momentum and sensible heat demonstrate reasonable ( ≤ ±20 % in the mean) agreement with transfer rates over the open ocean. This confirms the suitability of PPAO for air-sea exchange measurements in shelf regions. Covariance air-sea CO2 fluxes demonstrate high temporal variability. Air-to-sea transport of CO2 declined from spring to summer in both years, coinciding with the breakdown of the spring phytoplankton bloom. We report, to the best of our knowledge, the first successful eddy covariance measurements of CH4 emissions from a marine environment. Higher sea-to-air CH4 fluxes were observed during rising tides (20 ± 3; 38 ± 3; 29 ± 6 µmole m-2 d-1 at 15, 18, 27 m a.m.s.l.) than during falling tides (14 ± 2; 22 ± 2; 21 ± 5 µmole m-2 d-1), consistent with an elevated CH4 source from an estuarine outflow driven by local tidal circulation. These fluxes are a few times higher than the predicted CH4 emissions over the open ocean and are significantly lower than estimates from other aquatic CH4 hotspots (e.g. polar regions, freshwater). Finally, we found the detection limit of the air-sea CH4 flux by eddy covariance to be 20 µmole m-2 d-1 over hourly timescales (4 µmole m-2 d-1 over 24 h).

  20. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme. (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup


    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The degradation of strong basic anion exchange resins and mixed-bed ion-exchange resins: Effect of degradation products on radionuclide speciation

    International Nuclear Information System (INIS)

    Loon, L.R. van; Hummel, W.


    The most important water-soluble products of the radiolytic degradation of anion exchange resins in a cementitious environment are ammonia and methylamines. These ligands do not form complexes with most radionuclides. Exceptions are Ni, Ag, and Pd, which form strong complexes with amines. Other degradation products of anion and mixed-bed ion-exchange resins are of no importance concerning the complexation of trivalent radionuclides. This is shown indirectly by adsorption experiments: The degradation products do not have a significant effect on the adsorption of Eu(III) on calcite. The effect of ammonia and methylamines on the complexation of Ni, Ag, and Pd is investigated by chemical modeling. For Ni and Ag, rather reliable predictions can be made using available thermodynamic data. In the case of Pd, large uncertainties are encountered due to unreliable data and gaps in the set of important species. The system Pd(II)-ammonia-water is explored in detail. Predominant species are inferred by chemical analogy, and their thermodynamic data are estimated. The uncertainty in these estimated and measured but unreliable data is bound by qualitative and quantitative chemical reasoning

  2. Development of the Sri Lanka Dome and Links to Air-Sea Interaction (United States)

    Cullen, K.; Shroyer, E.


    The Sri Lanka Dome (SLD) is an upwelling recirculation feature found in the Southwest Monsoon Current that may significantly influence both biological productivity and air-sea interactions in the Bay of Bengal. Here, the twenty-year time series of detrended AVISO satellite absolute dynamic topography is used to track and measure the intensity of the SLD, which shows both a strong seasonal cycle and considerable interannual variability. The dome typically forms in May to the east of Sri Lanka, intensifies through July and August, and migrates to the north and then west before dissipating in September off the coast of northeast Sri Lanka. SLD formation and dissipation, migration path, and magnitude display considerable interannual variability. We also quantify the SLD internal structure using the ARGO float record. The SLD is associated with an elevated pycnocline that is often capped with a fresh surface layer, limiting direct communication of upwelled cold water with the surface. The sea surface temperature response is complex as the subsurface temperature structure is not necessarily monotonic with with height. We also address forcing by remote and local winds and the relation between the SLD and surface heat fluxes through its influence on SST.

  3. Guidelines for selecting weak-base versus strong-base anion-exchange resins for the recovery of chromate from cooling tower blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.; Reed, L.W.


    Guidelines for selecting weak-base versus strong-base anion-exchange resins for the recovery of chromate from cooling tower blowdown are given, together with actual operating data on large-scale industrial systems based on strong-base anion-exchange resins, data from a similar pilot system based on weak-base anion resin, and the chemical costs for operating both systems for a cooling tower blowdown containing 2500 ppm total dissolved solids and 20 ppm chromata.

  4. Characteristics of competitive uptake between Microcystin-LR and natural organic matter (NOM) fractions using strongly basic anion exchange resins. (United States)

    Dixit, Fuhar; Barbeau, Benoit; Mohseni, Madjid


    Microcystins are the most commonly occurring cyanotoxins, and have been extensively studied across the globe. In the present study, a strongly basic anion exchange resin was employed to investigate the removal of Microcystin-LR (MCLR), one of the most toxic microcystin variants. Factors influencing the uptake behavior included the MCLR and resin concentrations, resin dosage, and natural organic matter (NOM) characteristics, specifically, the charge density and molecular weight distribution of source water NOM. Equivalent background concentration (EBC) was employed to evaluate the competitive uptake between NOM and MCLR. The experimental data were compared with different mathematical and physical models and pore diffusion was determined as the rate-limiting step. The resin dose/solute concentration ratio played a key role in the MCLR uptake process and MCLR removal was attributed primarily to electrostatic attractions. Charge density and molecular weight distribution of the background NOM fractions played a major role in MCLR removal at lower resin dosages (200 mg/L ∼ 1 mL/L and below), where a competitive uptake was observed due to the limited exchange sites. Further, evidences of pore blockage and site reduction were also observed in the presence of humics and larger molecular weight organic fractions, where a four-fold reduction in the MCLR uptake was observed. Comparable results were obtained for laboratory studies on synthetic laboratory water and surface water under similar conditions. Given their excellent performance and low cost, anion exchange resins are expected to present promising potentials for applications involving the removal of removal of algal toxins and NOM from surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. On the influence of waves on air-sea CO2 gas transfer in the coastal zone (United States)

    Ocampo-Torres, Francisco Javier; Gutiérrez-Loza, Lucía


    As part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we study the influence of wave-associated processes controlling turbulent CO2 fluxes through the air-sea interface in a coastal region, at the Northwest of Baja California, México. The conducted field campaign allowed us with a full year dataset (May 2014-April 2015) of high quality data of CO2 fluxes (FCO2) estimated through Eddy Covariance (EC). Ocean surface waves were also recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) located at 10 m depth about 350 m away from the shore were the EC tower was located. The study area was found to be a sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s [1]. The linear correlation between the wind speed and FCO2 was found rather weak, suggesting that other physical processes besides wind may also be important for the gas exchange modulation at coastal waters at these temporal scales. Recent results on the other hand, through quantile regression analysis computed between FCO2 and a) wind speed, b) significant wave height, c) wave steepness and d) water temperature, allowed us to identify the significant wave height as the best correlated variable. However, the correlation varied with the probability distribution characteristics of FCO2, with the regression slope presenting both positive and negative values. The latter implies that in the coastal areas, the presence of swell is the key factor that promotes the intensification of the fluxes into and from the ocean. In fact, making use of the water temperature as indicator of the CO2 concentration in the water phase, the behavior of the relationship between the FCO2 and the significant wave height might be partially explained. Further analysis showed that the characteristics of wind speed and water temperature determine the direction in which the FCO2 occur. This work is a contribution from RugDiSMar project (CONACYT

  6. The kinetics and mechanism of bromide ion isotope exchange reaction in strongly basic anion-exchange resin duolite A-162 determined by the radioactive tracer technique (United States)

    Lokhande, R. S.; Singare, P. U.; Karthikeyan, P.


    In the present investigation, 82Br radioactive isotope was used as a tracer to study the kinetics and mechanism of exchange reaction between an ion exchange resin and an external bromide ion solution. In an attempt to study the reversible bromide ion isotopic exchange reaction kinetics, it was expected that whether the initial step was the exchange of radioactive bromide ions from the solution into the ion exchange resin (forward reaction) or from the ion exchange resin into the solution (reverse reaction), two ion isotopic exchange reactions should occur simultaneously, which was further confirmed by the experimental specific reaction rates of 0.130 and 0.131 min-1, respectively. The results can be used to standardize process parameters so as to optimize the utilization of ion exchange resins in various industrial applications.

  7. Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea Flux Measurements From Ships (United States)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.


    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air-sea fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.

  8. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    Directory of Open Access Journals (Sweden)

    Carl Drews

    Full Text Available The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST modeling system and the the Regional Ocean Modeling System (ROMS. Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN. Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  9. Numerical investigation of the Arctic ice-ocean boundary layer and implications for air-sea gas fluxes (United States)

    Bigdeli, Arash; Loose, Brice; Nguyen, An T.; Cole, Sylvia T.


    In ice-covered regions it is challenging to determine constituent budgets - for heat and momentum, but also for biologically and climatically active gases like carbon dioxide and methane. The harsh environment and relative data scarcity make it difficult to characterize even the physical properties of the ocean surface. Here, we sought to evaluate if numerical model output helps us to better estimate the physical forcing that drives the air-sea gas exchange rate (k) in sea ice zones. We used the budget of radioactive 222Rn in the mixed layer to illustrate the effect that sea ice forcing has on gas budgets and air-sea gas exchange. Appropriate constraint of the 222Rn budget requires estimates of sea ice velocity, concentration, mixed-layer depth, and water velocities, as well as their evolution in time and space along the Lagrangian drift track of a mixed-layer water parcel. We used 36, 9 and 2 km horizontal resolution of regional Massachusetts Institute of Technology general circulation model (MITgcm) configuration with fine vertical spacing to evaluate the capability of the model to reproduce these parameters. We then compared the model results to existing field data including satellite, moorings and ice-tethered profilers. We found that mode sea ice coverage agrees with satellite-derived observation 88 to 98 % of the time when averaged over the Beaufort Gyre, and model sea ice speeds have 82 % correlation with observations. The model demonstrated the capacity to capture the broad trends in the mixed layer, although with a significant bias. Model water velocities showed only 29 % correlation with point-wise in situ data. This correlation remained low in all three model resolution simulations and we argued that is largely due to the quality of the input atmospheric forcing. Overall, we found that even the coarse-resolution model can make a modest contribution to gas exchange parameterization, by resolving the time variation of parameters that drive the 222Rn budget

  10. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry. (United States)

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng


    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  11. [Preparation of strong cation-exchange monolithic column and its application in polypeptide separation by capillary electrochromatography]. (United States)

    Qi, Nan; Cui, Ruihong; You, Huiyan


    A strong cation-exchange monolithic column was prepared by polymerization inside the fused-silica capillary. The solution consisted of acrylic acid and 2-acrylamido-2-methyl-1-propanesulfonic acid as functional monomers, N,N'-methylenebisacrylamide as a cross-linking agent, dimethyl suiphoxide and dodecanol, 1 , 4-butanediol as organic porogenic solvents and azobisisobutyronitrile as a suitable initiator. The effects of the applied voltage, concentrations of organic modifier and salt solution, pH value on the electroosmotic flow were investigated. The experimental results showed that there existed a good linear relationship between the applied voltage and electroosmotic flow with a correlation coefficient of 0.9981; When the concentration of organic modifier (acetonitrile, ACN) was less than 70%, the swelling degree of stationary phase played a main role and the electroosmotic flow was decreased abnormally with the increase of ACN concentration; The electroosmotic flow was decreased with the increase of the concentration of phosphate. When the pH value was in the range of 3-9, it did not exert a significant change in electroosmotic flow. These results were consistent with the theoretical role. At the same time, five peptides were separated successfully under the optimal experimental conditions on the monolithic column for capillary electrochromatography. The column has obvious advantages in polypeptide separation and will be favorable for the protein investigation.

  12. [Sulfonation modification-assisted enrichment and identification of histidine-containing peptides by strong cation exchange chromatography and mass spectrometry]. (United States)

    Cao, Dong; Zhou, Chunxi; Zhang, Yangjun; Han, Chunguang; Deng, Yulin; Qian, Xiaohong


    By the sulfonation at the N-terminal of peptides, the charge state of histidine-containing peptides is different from that of other peptides in pH sulfonated histidine-containing peptides from tryptic digest of proteins by strong cation exchange (SCX) chromatography and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF MS/MS). Using the standard proteins containing histidines as the model, the methodology was evaluated. The results show that sulfonated histidine-containing peptides were efficiently enriched by SCX, and the N-terminal sulfonation of the peptides simplifies the interpretation of the acquired mass spectra and facilitates the sequencing of histidine-containing peptides by producing consecutive and predominant ions in positive mode MS2 spectra, which is thought to be the result of the charge neutralization of b ions by the N-terminal sulfonic acid group. The discrimination of b ions and y ions can greatly enhance the confidence in peptide and subsequent protein identification. It is feasible to isolate and enrich the histidine-containing peptides by using this method which has the potential applications in proteomics.

  13. A study of ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Indion-830 (Type 1) (United States)

    Lokhande, R. S.; Singare, P. U.; Patil, A. B.


    A study of the thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br- and uni-divalent Cl-/SO{4/2-}, Cl-/C2O{4/2-} reaction systems was carried out using ion exchange resin Indion-830 (Type 1). The equilibrium constant K was calculated by taking into account the activity coefficients of ions both in solution and in the resin phase. For uni-univalent ion exchange reaction systems, the equilibrium constants K' were also calculated from the mole fraction of ions in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems increased as the temperature grew, indicating the endothermic character of the exchange reactions with enthalpies of 38.2, 32.3, 7.6, and 11.4 kJ/mol, respectively.

  14. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea (United States)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.


    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  15. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies (United States)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.


    The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.

  16. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande


    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  17. The impact of changing wind speeds on gas transfer and its effect on global air-sea CO2 fluxes (United States)

    Wanninkhof, R.; Triñanes, J.


    An increase in global wind speeds over time is affecting the global uptake of CO2 by the ocean. We determine the impact of changing winds on gas transfer and CO2 uptake by using the recently updated, global high-resolution, cross-calibrated multiplatform wind product (CCMP-V2) and a fixed monthly pCO2 climatology. In particular, we assess global changes in the context of regional wind speed changes that are attributed to large-scale climate reorganizations. The impact of wind on global CO2 gas fluxes as determined by the bulk formula is dependent on several factors, including the functionality of the gas exchange-wind speed relationship and the regional and seasonal differences in the air-water partial pressure of CO2 gradient (ΔpCO2). The latter also controls the direction of the flux. Fluxes out of the ocean are influenced more by changes in the low-to-intermediate wind speed range, while ingassing is impacted more by changes in higher winds because of the regional correlations between wind and ΔpCO2. Gas exchange-wind speed parameterizations with a quadratic and third-order polynomial dependency on wind, each of which meets global constraints, are compared. The changes in air-sea CO2 fluxes resulting from wind speed trends are greatest in the equatorial Pacific and cause a 0.03-0.04 Pg C decade-1 increase in outgassing over the 27 year time span. This leads to a small overall decrease of 0.00 to 0.02 Pg C decade-1 in global net CO2 uptake, contrary to expectations that increasing winds increase net CO2 uptake.Plain Language SummaryThe effects of changing winds are isolated from the total change in trends in global air-sea CO2 fluxes over the last 27 years. The overall effect of increasing winds over time has a smaller impact than expected as the impact in regions of outgassing is greater than for the regions acting as a CO2 sink.

  18. Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds Observed during CBLAST (United States)


    700 m, but the virtual potential temperature mixed layer depth was 400 m, and the inflow layer extended to 1 km (Zhang et al. 2009). Mixed layer depths...FIG. 20. Wind speed dependence of CK from this study (green squares) compared with previous studies. ASIST laboratory results (blue circles) and CBLAST

  19. Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds (United States)


    state hurricanes. Tellus, 12, 1–20. Marks, F. D. Jr., R. A. Houze , and J. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane...M. Roberts , 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and

  20. Air sea exchange of fluxes and Indian monsoon from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sundaram, S.

    Latent heat flux (LHF) over the tropical Indian Ocean (25 N to 25 S: 35 degrees E to 120 degrees E) for ten years from 1988 were computed using bulk parameterization method by making use of both monthly and weekly values of Sea Surface...


    NARCIS (Netherlands)


    The liquid-phase hydration of cyclohexene, a pseudo-first-order reversible reaction catalyzed by a strong acid ion-exchange resin, was investigated in solvent mixtures of water and sulfolane. Macroporous Amberlite XE 307 was used because of its superior catalytic activity. Chemical equilibrium

  2. Fixed point Open Ocean Observatory network (FixO3): Multidisciplinary observations from the air-sea interface to the deep seafloor (United States)

    Lampitt, Richard; Cristini, Luisa


    The Fixed point Open Ocean Observatory network (FixO3) seeks to integrate the 23 European open ocean fixed point observatories and to improve access to these key installations for the broader community. These will provide multidisciplinary observations in all parts of the oceans from the air-sea interface to the deep seafloor. Coordinated by the National Oceanography Centre, UK, FixO3 builds on the significant advances achieved through the previous Europe-funded FP7 programmes EuroSITES, ESONET and CARBOOCEAN. Started in September 2013 with a budget of 7 Million Euros over 4 years the project has 29 partners drawn from academia, research institutions and SME's. In addition 12 international experts from a wide range of disciplines comprise an Advisory Board. On behalf of the FixO3 Consortium, we present the programme that will be achieved through the activities of 12 Work Packages: 1. Coordination activities to integrate and harmonise the current procedures and processes. Strong links will be fostered with the wider community across academia, industry, policy and the general public through outreach, knowledge exchange and training. 2. Support actions to offer a) free access to observatory infrastructures to those who do not have such access, and b) free and open data services and products. 3. Joint research activities to innovate and enhance the current capability for multidisciplinary in situ ocean observation. Support actions include Transnational Access (TNA) to FixO3 infrastructure, meaning that European organizations can apply to free-of-charge access to the observatories for research and testing in two international calls during the project lifetime. The first call for TNA opens in summer 2014. More information can be found on FixO3 website ( Open ocean observation is currently a high priority for European marine and maritime activities. FixO3 will provide important data on environmental products and services to address the Marine Strategy

  3. Integrated SDS removal and peptide separation by strong-cation exchange liquid chromatography for SDS-assisted shotgun proteome analysis. (United States)

    Sun, Difei; Wang, Nan; Li, Liang


    We report an improved shotgun method for analyzing proteomic samples containing sodium dodecyl sulfate (SDS). This method is based on the use of strong-cation exchange (SCX) liquid chromatography (LC) for SDS removal that can be integrated with peptide separation as the first dimension of the two-dimensional LC tandem mass spectrometry workflow. To optimize the performance of SDS removal, various experimental conditions, including the concentrations of chemical reagents and salts in the sample, the SDS concentration, and the SCX mobile phase composition, were investigated. It was found that a peptide recovery rate of about 90% could be achieved while removing SDS efficiently. One key finding was that, by increasing the SDS concentration to a certain level (0.5%) in the digested peptide sample, the sample recovery rate could be increased. The peptide recovery rate of BSA digests was found to be 90.6 ± 1.0% (n = 3), and SDS in the SCX fractions collected was not detectable by pyrolysis GC-MS, i.e., below the detection limit of 0.00006% for the undesalted SCX fractions. The peptide recovery rates were found to be 90.9% ± 2.7 (n = 3) and 89.5% ± 0.5% (n = 3) for the digests of the membrane-protein-enriched fractions of E. coli cell lysates and the MCF-7 breast cancer cell line, respectively. Compared to the methods that use acid-labile surfactants, such as RapiGest and PPS, for the MCF-7 membrane fraction sample, the SDS method identified, on average (n = 3), more peptides (∼5%) and proteins (∼16%) than the RapiGest method, while the RapiGest method identified more peptides (∼21%) and proteins (∼7%) from the E. coli membrane fraction than the SDS method. In both cases, the two methods identified more peptides and proteins than the PPS method. Since SCX is widely used as the first dimension of 2D-LC MS/MS, integration of SDS removal with peptide separation in SCX does not add any extra steps to the sample handling process. We demonstrated the application of

  4. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness (United States)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.


    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  5. Air-sea interaction in the tropical Pacific Ocean (United States)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.


    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  6. Air-Sea CO2 fluxes on the Scotian Shelf: seasonal to multi-annual variability

    Directory of Open Access Journals (Sweden)

    J. E. Salisbury


    Full Text Available We develop an algorithm to compute pCO2 in the Scotian Shelf region (NW Atlantic from satellite-based estimates of chlorophyll-a concentration, sea-surface temperature, and observed wind speed. This algorithm is based on a high-resolution time-series of pCO2 observations from an autonomous mooring. At the mooring location (44.3° N and 63.3° W, the surface waters act as a source of CO2 to the atmosphere over the annual scale, with an outgassing of −1.1 mol C m−2 yr−1 in 2007/2008. A hindcast of air-sea CO2 fluxes from 1999 to 2008 reveals significant variability both spatially and from year to year. Over the decade, the shelf-wide annual air-sea fluxes range from an outgassing of −1.70 mol C m−2 yr−1 in 2002, to −0.02 mol C m−2 yr−1 in 2006. There is a gradient in the air-sea CO2 flux between the northeastern Cabot Strait region which acts as a net sink of CO2 with an annual uptake of 0.50 to 1.00 mol C m−2 yr−1, and the southwestern Gulf of Maine region which acts as a source ranging from −0.80 to −2.50 mol C m−2 yr−1. There is a decline, or a negative trend, in the air-sea pCO2 gradient of 23 μatm over the decade, which can be explained by a cooling of 1.3 °C over the same period. Regional conditions govern spatial, seasonal, and interannual variability on the Scotian Shelf, while multi-annual trends appear to be influenced by larger scale processes.

  7. Modeling the air-sea feedback system of Madeira Island (United States)

    Pullen, Julie; Caldeira, Rui; Doyle, James D.; May, Paul; Tomé, Ricardo


    A realistic nested data-assimilating two-way coupled ocean/atmosphere modeling study (highest resolution 2 km) of Madeira Island was conducted for June 2011, when conditions were favorable for atmospheric vortex shedding. The simulation's island lee region exhibited relatively cloud-free conditions, promoting warmer ocean temperatures (˜2°C higher than adjacent waters). The model reasonably reproduced measured fields at 14 meteorological stations, and matched the dimensions and magnitude of the warm sea surface temperature (SST) wake imaged by satellite. The warm SSTs in the wake are shown to imprint onto the atmospheric boundary layer (ABL) over several diurnal cycles by modulating the ABL depth up to ˜200-500 m. The erosion and dissipation of the warm ocean wake overnight was aided by atmospheric drainage flow and offshore advection of cold air (ΔT = 2°C) that produced strong upward heat fluxes (˜50 W/m2 sensible and ˜250 W/m2 latent) on an episodic basis. Nevertheless, the warm wake was never entirely eroded at night due to the cumulative effect of the diurnal cycle. The spatial pattern of the diurnal warming varied day-to-day in location and extent. Significant mutual interaction of the oceanic and atmospheric boundary layers was diagnosed via fluxes and temperature cross sections and reinforced by sensitivity runs. The simulation produces for the first time the interactive nature of the ocean and atmosphere boundary layers in the warm wake region of an island with complex terrain.


    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology datasets were created using an automated intelligent algorithm which...


    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology datasets were created using an automated intelligent algorithm which...


    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology datasets were created using an automated intelligent algorithm which...


    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology Gulf of Papagayo, Costa Rica dataset was created using an automated...

  12. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment (United States)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.


    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  13. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data

    Directory of Open Access Journals (Sweden)

    J. D. Shutler


    Full Text Available Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3. These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50% and their calcification can affect the atmosphere-to-ocean (air-sea uptake of carbon dioxide (CO2 through increasing the seawater partial pressure of CO2 (pCO2. Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007, using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS. We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO climate oscillation index (r=0.75, pE. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.

  14. High pH reversed-phase chromatography with fraction concatenation as an alternative to strong-cation exchange chromatography for two-dimensional proteomic analysis


    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.


    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High pH reversed-phase liquid chromatography (RPLC) followed by fraction concatenation affords better peptide analysis than conventional strong-cation exchange (SCX) chromatography applied for the two-dimensional proteomic analysis. For example, concatenated high pH reversed-phase liquid chromatography increased identification for peptides (1.8-fo...

  15. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea (United States)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong


    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  16. Strong Metal Support Interaction of Pt and Ru Nanoparticles Deposited on HOPG Probed by the H-D Exchange Reaction

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta M.; Dahl, Søren; Chorkendorff, Ib


    adsorbed and gas phase at 1 bar is measured before and after annealing. The rate is measured in the temperature range of 40–200 °C at 1 bar, by utilization of the H-D exchange reaction. Experiments are performed on fresh cleaved and sputtered HOPG, which give similar results. We find that annealing...... to a decrease in the hydrogen adsorption on the films, due to the carbon poisoning. We show how to reverse this effect by performing He+ sputtering, which enables to remove the carbon layer and regenerate the Pt catalysts. ISS spectra show that the Pt signal increases to around 95% of its initial value and we...

  17. Air-sea interaction processes over the east-asian marginal seas surrounding the Korean peninsula

    Directory of Open Access Journals (Sweden)

    D. Bala Subrahamanyam


    Full Text Available In this article, we describe the seasonal variation of air-sea interface fluxes of heat, momentum and moisture over the East Asian Marginal Seas (EAMS surrounding the Korean Peninsula. Surface layer meteorological observations for a period of about six years obtained from five oceanic buoys deployed in the Yellow Sea, Korean Strait and East (Japan Sea form the database for this study. With the available database, monthly mean of sensible heat flux, latent heat flux and momentum flux obtained from the present analysis is compared with the existing climatological data over the EAMS.

  18. Computation of local exchange coefficients in strongly interacting one-dimensional few-body systems: local density approximation and exact results

    DEFF Research Database (Denmark)

    Marchukov, O. V.; Eriksen, E. H.; Midtgaard, J. M.


    One-dimensional multi-component Fermi or Bose systems with strong zero-range interactions can be described in terms of local exchange coefficients and mapping the problem into a spin model is thus possible. For arbitrary external confining potentials the local exchanges are given by highly non...... to the computational complexity of the high-dimensional integrals involved. An approach using the local density approximation would therefore be a most welcome approximation due to its simplicity. Here we assess the accuracy of the local density approximation by going beyond the simple harmonic oscillator that has...... been the focus of previous studies and consider some double-wells of current experimental interest. We find that the local density approximation works quite well as long as the potentials resemble harmonic wells but break down for larger barriers. In order to explore the consequences of applying...

  19. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Directory of Open Access Journals (Sweden)

    L. Eymard

    Full Text Available The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period. Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies, and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The

  20. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Directory of Open Access Journals (Sweden)

    L. Eymard


    Full Text Available The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period. Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies, and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical

  1. Gaseous elemental mercury in the marine boundary layer and air-sea flux in the Southern Ocean in austral summer. (United States)

    Wang, Jiancheng; Xie, Zhouqing; Wang, Feiyue; Kang, Hui


    Gaseous elemental mercury (GEM) in the marine boundary layer (MBL), and dissolved gaseous mercury (DGM) in surface seawater of the Southern Ocean were measured in the austral summer from December 13, 2014 to February 1, 2015. GEM concentrations in the MBL ranged from 0.4 to 1.9ngm -3 (mean±standard deviation: 0.9±0.2ngm -3 ), whereas DGM concentrations in surface seawater ranged from 7.0 to 75.9pgL -1 (mean±standard deviation: 23.7±13.2pgL -1 ). The occasionally observed low GEM in the MBL suggested either the occurrence of atmospheric mercury depletion in summer, or the transport of GEM-depleted air from the Antarctic Plateau. Elevated GEM concentrations in the MBL and DGM concentrations in surface seawater were consistently observed in the ice-covered region of the Ross Sea implying the influence of the sea ice environment. Diminishing sea ice could cause more mercury evasion from the ocean to the air. Using the thin film gas exchange model, the air-sea fluxes of gaseous mercury in non-ice-covered area during the study period were estimated to range from 0.0 to 6.5ngm -2 h -1 with a mean value of 1.5±1.8ngm -2 h -1 , revealing GEM (re-)emission from the East Southern Ocean in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Strong sp-d exchange coupling in ZnMnTe/ZnMgTe core/shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wojnar, Piotr; Janik, Elzbieta; Szymura, Malgorzata; Zaleszczyk, Wojciech; Kret, Slawomir; Klopotowski, Lukasz; Wojciechowski, Tomasz; Baczewski, Lech T.; Wiater, Maciej; Karczewski, Grzegorz; Wojtowicz, Tomasz; Kossut, Jacek [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Suffczynski, Jan; Papierska, Joanna [Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00-681 Warsaw (Poland)


    In this work, our recent progress in the growth and optical studies of telluride nanowire heterostructures containing a small molar fraction of magnetic Mn-ions of only a few percent is overviewed. ZnMnTe/ZnMgTe core/shell nanowires (NWs) are grown by molecular beam epitaxy by employing the vapor-liquid-solid growth mechanism assisted with gold catalyst. The structures are studied by means of photoluminescence and microphotoluminescence in an external magnetic field. In the first step, however, an activation of the near band edge emission from ZnTe and ZnMnTe nanowires is described, which is achieved by coating the nanowires with shells made of ZnMgTe. The role of these shells is to passivate Zn(Mn)Te surface states. The incorporation of Mn ions into the crystalline lattice of ZnMnTe nanowires is manifested as a considerable blue shift of near band edge emission with increasing Mn concentration inside the nanowire cores, which reflects directly the increase of their energy gap. In an external magnetic field the near band edge emission exhibits a giant spectral redshift accompanied by an increase of the circular polarization of the emitted light. Both effect are fingerprints of giant Zeeman splitting of the band edges due to sp-d exchange interaction between the band carriers and magnetic Mn-ions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. The Effect of Breaking Waves on CO_2 Air-Sea Fluxes in the Coastal Zone (United States)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor


    The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the air-sea interface is investigated in a coastal region. A full year of high-quality data of direct estimates of air-sea CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.

  4. Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoxiong; Liu, Yimin; Mao, Jiangyu [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, P.O. Box 9804, Beijing (China); Guan, Yue [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, P.O. Box 9804, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Yan, Jinghui [China Meteorological Administration, National Climate Center, Beijing (China)


    In spring over the southern Bay of Bengal (BOB), a vortex commonly develops, followed by the Asian summer monsoon onset. An analysis of relevant data and a case study reveals that the BOB monsoon onset vortex is formed as a consequence of air-sea interaction over BOB, which is modulated by Tibetan Plateau forcing and the land-sea thermal contrast over the South Asian area during the spring season. Tibetan Plateau forcing in spring generates a prevailing cold northwesterly over India in the lower troposphere. Strong surface sensible heating is then released, forming a prominent surface cyclone with a strong southwesterly along the coastal ocean in northwestern BOB. This southwesterly induces a local offshore current and upwelling, resulting in cold sea surface temperatures (SSTs). The southwesterly, together with the near-equatorial westerly, also results in a surface anticyclone with descending air over most of BOB and a cyclone with ascending air over the southern part of BOB. In the eastern part of central BOB, where sky is clear, surface wind is weak, and ocean mixed layer is shallow, intense solar radiation and low energy loss due to weak surface latent and sensible heat fluxes act onto a thin ocean layer, resulting in the development of a unique BOB warm pool in spring. Near the surface, water vapor is transferred from northern BOB and other regions to southeastern BOB, where surface sensible heating is relatively high. The atmospheric available potential energy is generated and converted to kinetic energy, thereby resulting in vortex formation. The vortex then intensifies and moves northward, where SST is higher and surface sensible heating is stronger. Meanwhile, the zonal-mean kinetic energy is converted to eddy kinetic energy in the area east of the vortex, and the vortex turns eastward. Eventually, southwesterly sweeps over eastern BOB and merges with the subtropical westerly, leading to the onset of the Asian summer monsoon. (orig.)

  5. A Unified Air-Sea Interface in Fully Coupled Atmosphere-Wave-Ocean Models for Data Assimilation and Ensemble Prediction (United States)

    Chen, Shuyi; Curcic, Milan; Donelan, Mark; Campbell, Tim; Smith, Travis; Chen, Sue; Allard, Rick; Michalakes, John


    The goals of this study are to 1) better understand the physical processes controlling air-sea interaction and their impact on coastal marine and storm predictions, 2) explore the use of coupled atmosphere-ocean observations in model verification and data assimilation, and 3) develop a physically based and computationally efficient coupling at the air-sea interface that is flexible for use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for future ensemble forecasts using coupled models that can be used for coupled data assimilation and assessment of uncertainties in coupled model predictions. The current component models include two atmospheric models (WRF and COAMPS), two ocean models (HYCOM and NCOM), and two wave models (UMWM and SWAN). The coupled modeling systems have been tested and evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, drifters and floats) collected in recent field campaigns in the Gulf of Mexico and tropical cyclones in the Atlantic and Pacific basins. This talk will provide an overview of the unified air-sea interface model and fully coupled atmosphere-wave-ocean model predictions over various coastal regions and tropical cyclones in the Pacific and Atlantic basins including an example from coupled ensemble prediction of Superstorm Sandy (2012).

  6. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants. (United States)

    Zaggia, Alessandro; Conte, Lino; Falletti, Luigi; Fant, Massimo; Chiorboli, Andrea


    In recent years abnormally high levels of perfluoroalkylated substances (PFAS) have been detected both in surface and underground water sampled in an area covering approximately 150 square kilometers in the Veneto region (Italy) indicating the presence of a pollution point source (fluorochemicals production plant). Adsorption on granular activated carbon is an emergency measure which is poorly effective requiring frequent replacement. This work focuses on the application of three strong anion exchange resins (Purolite® A520E, A600E and A532E) for the removal of traces of PFOA, PFOS, PFBA and PFBS (concentration of hundreds of ng L(-1)) from drinking water. This technology is attractive for the possibility of reusing resins after an in-situ regeneration step. A strong relationship between the hydrophobicity of the exchange functional group of the resin and its capacity in removing PFAS exists. A600E (non hydrophobic) and A520E (fairly hydrophobic) show a reduced sorption capacity compared to A532E (highly hydrophobic). While A600E and A520E can be regenerated with solvent-less dilute solutions of non-toxic NH4Cl and NH4OH, A532E requires concentrated solutions of methanol or ethanol and 1% NH4Cl and for the sake of this work it was regarded as non-regenerable. The volume of regeneration effluents requiring incineration can be efficiently reduced by more than 96.5% by using reverse osmosis coupled with under-vacuum evaporation. Transmission electron analysis on saturated resins showed that large molecular macro-aggregates of PFAS can form in the intraparticle pores of resin indicating that ion exchange is not the only mechanism involved in PFAS removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The impact of diurnal variability in sea surface temperature on the central Atlantic air-sea CO2 flux

    Directory of Open Access Journals (Sweden)

    M. J. Filipiak


    Full Text Available The effect of diurnal variations in sea surface temperature (SST on the air-sea flux of CO2 over the central Atlantic ocean and Mediterranean Sea (60 S–60 N, 60 W–45 E is evaluated for 2005–2006. We use high spatial resolution hourly satellite ocean skin temperature data to determine the diurnal warming (ΔSST. The CO2 flux is then computed using three different temperature fields – a foundation temperature (Tf, measured at a depth where there is no diurnal variation, Tf, plus the hourly ΔSST and Tf, plus the monthly average of the ΔSSTs. This is done in conjunction with a physically-based parameterisation for the gas transfer velocity (NOAA-COARE. The differences between the fluxes evaluated for these three different temperature fields quantify the effects of both diurnal warming and diurnal covariations. We find that including diurnal warming increases the CO2 flux out of this region of the Atlantic for 2005–2006 from 9.6 Tg C a−1 to 30.4 Tg C a−1 (hourly ΔSST and 31.2 Tg C a−1 (monthly average of ΔSST measurements. Diurnal warming in this region, therefore, has a large impact on the annual net CO2 flux but diurnal covariations are negligible. However, in this region of the Atlantic the uptake and outgassing of CO2 is approximately balanced over the annual cycle, so although we find diurnal warming has a very large effect here, the Atlantic as a whole is a very strong carbon sink (e.g. −920 Tg C a−1 Takahashi et al., 2002 making this is a small contribution to the Atlantic carbon budget.

  8. Influence of air-sea fluxes on chlorine isotopic composition of ocean water: Implications for constancy in d37Cl- A statistical inference

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Xiao, Y.K.; Sarkar, A; Dalal, S.G.; Chivas, A

    The behaviors of chlorine isotopes in relation to air-sea flux variables have been investigated through multivariate statistical analyses (MSA). The MSA technique provides an approach to reduce the data set and was applied to a set of 7 air-sea flux...

  9. Air-sea fluxes of momentum and mass in the presence of wind waves (United States)

    Zülicke, Christoph


    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  10. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes (United States)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.


    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  11. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization (United States)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.


    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  12. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific (United States)

    McNeil, C.; Steiner, N.; Vagle, S.


    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  13. A climatic atlas of the air-sea interaction parameters and fluxes of the oceans using satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Schulz, J.; Jost, V.

    . It is intended to provide a climatological data base for scientists in the field of climatology and air-sea interaction. It is hoped that this atlas will serve as a reference to the students as well as the scientists working in the fields of Climatology...

  14. Feasibility of wavelength dispersive X-ray fluorescence spectrometry for a simplified analysis of bromine in water samples with the aid of a strong anion exchange disk

    International Nuclear Information System (INIS)

    An, Jinsung; Jung, Hyeyeon; Bae, Jo-Ri; Yoon, Hye-On; Seo, Jungju


    The feasibility of wavelength dispersive X-ray fluorescence spectrometry (WDXRF) for a simplified analysis of bromine (Br) in water samples with the aid of strong anion exchange (SAX) disk was assessed in this study. Dissolved Br in the water sample was pre-concentrated on the SAX disk and directly analyzed by WDXRF without an elution step. The SAX disk was capable of fully adsorbing both bromide (Br − ) and bromate (BrO 3 − ) on its surface owing to their anionic properties, regardless of the pH level of environmental samples. The SAX–WDXRF system was examined using calibration standards (i.e., SAX disks with specific amounts of Br retained; 1, 10, 50, 100 and 500 μg), and a determination coefficient of R 2 = 0.9999 was yielded. The system had a low detection limit for Br (limit of detection = 0.253 μg for Br on the SAX disk) with good reproducibility (relative standard error (RSE) = 4–7%). Spike and inter-comparison tests were performed to confirm the accuracy of the proposed SAX–WDXRF method. Both tests exhibited reasonable accuracy (RSE = 3–6%). The method is simple and easy, indicating a great possibility of application in various environmental sample types, especially for which a simplified analytical system for the determination of Br is urgently required. - Highlights: • Bromide and bromate were entirely retained on a strong anion exchange (SAX) disk. • The SAX disk was used to pre-concentrate dissolved Br species from water samples. • The SAX disk adsorbing dissolved Br was directly analyzed by WDXRF. • The accuracy of the SAX–WDXRF method was confirmed by spike and inter-comparison tests. • Rapid and sensitive Br analysis can be achieved using the proposed SAX–WDXRF method

  15. Mesoscale modulation of air-sea CO2 flux in Drake Passage (United States)

    Song, Hajoon; Marshall, John; Munro, David R.; Dutkiewicz, Stephanie; Sweeney, Colm; McGillicuddy, D. J.; Hausmann, Ute


    We investigate the role of mesoscale eddies in modulating air-sea CO2 flux and associated biogeochemical fields in Drake Passage using in situ observations and an eddy-resolving numerical model. Both observations and model show a negative correlation between temperature and partial pressure of CO2 (pCO2) anomalies at the sea surface in austral summer, indicating that warm/cold anticyclonic/cyclonic eddies take up more/less CO2. In austral winter, in contrast, relationships are reversed: warm/cold anticyclonic/cyclonic eddies are characterized by a positive/negative pCO2 anomaly and more/less CO2 outgassing. It is argued that DIC-driven effects on pCO2 are greater than temperature effects in austral summer, leading to a negative correlation. In austral winter, however, the reverse is true. An eddy-centric analysis of the model solution reveals that nitrate and iron respond differently to the same vertical mixing: vertical mixing has a greater impact on iron because its normalized vertical gradient at the base of the surface mixed layer is an order of magnitude greater than that of nitrate.

  16. On heat and moisture exchanges between the sea surface and the atmosphere during the medalpex

    International Nuclear Information System (INIS)

    Colacino, M.; Purini, R.


    Data collected by a buoy, moored in the Ligurian Sea about 27 nautical miles off the coast during the period 1 March-31 May, 1982, are analysed. The buoy was equipped by the Institute for Naval Automation (IAN) of the Italian National Research Council (CNR) during the Mediterrenean Alpine Experiment (Medalpex), join program of the Alpine Experiment (Alpex). Exchanges of heat and mass across the air-sea interface are computed from the collected data and comparisons with existing values are made. The resulting agreement confirms the strong interaction between the sea and the atmosphere in some peculiar situation, and lends weight to the oceanographic hypotesis for the statistical occurrence of deeping of orographic cyclones in the Liguro-Provencal basin

  17. Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71. (United States)

    Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu


    Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture. Copyright © 2016 Elsevier B.V. All rights reserved.


    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert [University of Washington; Bretherton, Chris [University of Washington; McFarquhar, Greg [University of Illinois - Urbana; Protat, Alain [Bureau of Meteorology - Melbourne; Quinn, Patricia [NOAA PMEL; Siems, Steven [Monash Univ., Melbourne, VIC (Australia); Jakob, Christian [Monash Univ., Melbourne, VIC (Australia); Alexander, Simon [Australian Antarctic Division; Weller, Bob [Woods Hole Oceanographic Institute


    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at

  19. The application of the radioactive tracer technique to study the kinetics of bromide isotope exchange reaction with the participation of strongly basic anion exchange resin indion FF-IP (United States)

    Lokhande, R. S.; Singare, P. U.; Prabhavalkar, T. S.


    In the present investigation, the 82Br radioactive isotope was used as a tracer to study the kinetics and mechanism of the exchange reaction between an ion exchange resin and an external solution of bromide ions. In an attempt to study the reversible bromide isotope exchange reaction kinetics, it was expected that whether the initial step was the exchange of radioactive bromide ions from the solution to the ion exchange resin (forward reaction) or from the ion exchange resin to the solution (reverse reaction), the two ion-isotope exchange reactions should occur simultaneously, which was further confirmed by the experimental values of specific reaction rates, 0.142 and 0.141 min-1, respectively. The results will be useful to standardize the process parameters so as to achieve optimum use of ion exchange resins in various industrial applications.

  20. Cruise and Data Report of USA-PRC Joint Air-Sea Interaction Studies in the Western Pacific Ocean (NODC Accession 8700374) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The USA-PRC Joint Program on Air-Sea Interaction Studies in the Tropical Western Pacific is a component of the Protocol on Cooperation in the Field of Marine and...

  1. Air-sea interaction over the Indian Ocean during the two contrasting monsoon years 1987 and 1988 studied with satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Schluessel, P.

    The air-sea interaction processes over the tropical Indian Ocean region are studied using sea surface temperature data from the Advanced Very High Resolution Radiometer sensor onboard the NOAA series of satellites. The columnar water-vapour content...

  2. The spatial and interannual dynamics of the surface water carbonate system and air-sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean (United States)

    Pipko, Irina I.; Pugach, Svetlana P.; Semiletov, Igor P.; Anderson, Leif G.; Shakhova, Natalia E.; Gustafsson, Örjan; Repina, Irina A.; Spivak, Eduard A.; Charkin, Alexander N.; Salyuk, Anatoly N.; Shcherbakova, Kseniia P.; Panova, Elena V.; Dudarev, Oleg V.


    . The surface seawater appears in equilibrium or slightly supersaturated by CO2 relative to atmosphere because of the increasing influence of river runoff and its input of terrestrial organic matter that mineralizes, in combination with the high surface water temperature during sea-ice-free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air-sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.

  3. Mechanism of air-sea momentum flux from low to high winds (United States)

    Zhao, Dongliang


    In the condition of wind speed less than 20 m/s, many studies have shown that drag coefficient roughly increases linearly with wind speed, which is usually extrapolated to high winds in practice. Since the pioneer work of Powell et al. (2003), both field and laboratory studies have indicated that the drag coefficient begins to decrease or saturate when wind speed is greater than a critical value such as 30 m/s. All the reduction mechanisms proposed up to now are related to the effect of sea spray induced by wave breaking in high winds. This study tries to propose another mechanism that is directly related to wave breaking. Based on the wind-wave growth relations, it is found that drag coefficient increases simultaneously with wave age and wave steepness. The reduction of drag coefficient with wave age that has been shown by previous studies mainly reflect the wind effect because the phase speeds of waves vary in a very narrow range, and can be roughly regarded as constant. It is indicated that two parameters including wave age and wave steepness together control the momentum transfer through air-sea interface. The wave age and wave steepness represent the abilities of wind input and wave receiving energy, respectively. In general, the two parameters are well correlated and can be replaced one another in the condition of low and moderate winds, in which the wave steepness decreases with the increasing wave age. In the condition of high winds, the wave steepness reaches to its upper threshold due to wave breaking, in which wave steepness cannot increase with the decreasing of wave age. At the same time, wave ages become very small, thus drag coefficients begin to decrease with wind speed. It is further suggested that there are two different upper thresholds of wave steepness for laboratory and field waves, which can be applied to explain the reduction of drag coefficient either in laboratory or in field

  4. Regional air-sea coupled model simulation for two types of extreme heat in North China (United States)

    Li, Donghuan; Zou, Liwei; Zhou, Tianjun


    Extreme heat (EH) over North China (NC) is affected by both large scale circulations and local topography, and could be categorized into foehn favorable and no-foehn types. In this study, the performance of a regional coupled model in simulating EH over NC was examined. The effects of regional air-sea coupling were also investigated by comparing the results with the corresponding atmosphere-alone regional model. On foehn favorable (no-foehn) EH days, a barotropic cyclonic (anticyclonic) anomaly is located to the northeast (northwest) of NC, while anomalous northwesterlies (southeasterlies) prevail over NC in the lower troposphere. In the uncoupled simulation, barotropic anticyclonic bias occurs over China on both foehn favorable and no-foehn EH days, and the northwesterlies in the lower troposphere on foehn favorable EH days are not obvious. These biases are significantly reduced in the regional coupled simulation, especially on foehn favorable EH days with wind anomalies skill scores improving from 0.38 to 0.47, 0.47 to 0.61 and 0.38 to 0.56 for horizontal winds at 250, 500 and 850 hPa, respectively. Compared with the uncoupled simulation, the reproduction of the longitudinal position of Northwest Pacific subtropical high (NPSH) and the spatial pattern of the low-level monsoon flow over East Asia are improved in the coupled simulation. Therefore, the anticyclonic bias over China is obviously reduced, and the proportion of EH days characterized by anticyclonic anomaly is more appropriate. The improvements in the regional coupled model indicate that it is a promising choice for the future projection of EH over NC.

  5. Exchange of fluxes across the air-sea interface during the onset phase of the southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.P.; Rao, M.V.

    in relation to the onset phase of the southwest monsoon which has been triggered by the low pressure system extending from Saurashtra Coast to Lakshadweep Sea. The development of the surface layer has also been discussed in the light of the wind induced near...

  6. Air-Sea exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions (United States)

    Kim, Michelle J.; Novak, Gordon A.; Zoerb, Matthew C.; Yang, Mingxi; Blomquist, Byron W.; Huebert, Barry J.; Cappa, Christopher D.; Bertram, Timothy H.


    We report simultaneous, underway eddy covariance measurements of the vertical flux of isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean during fall. Mean isoprene and monoterpene sea-to-air vertical fluxes were significantly lower than mean DMS fluxes. While rare, intense monoterpene sea-to-air fluxes were observed, coincident with elevated monoterpene mixing ratios. A statistically significant correlation between isoprene vertical flux and short wave radiation was not observed, suggesting that photochemical processes in the surface microlayer did not enhance isoprene emissions in this study region. Calculations of secondary organic aerosol production rates (PSOA) for mean isoprene and monoterpene emission rates sampled here indicate that PSOA is on average <0.1 μg m-3 d-1. Despite modest PSOA, low particle number concentrations permit a sizable role for condensational growth of monoterpene oxidation products in altering particle size distributions and the concentration of cloud condensation nuclei during episodic monoterpene emission events from the ocean.

  7. Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis. (United States)

    Zhao, Yun; Law, Henry C H; Zhang, Zaijun; Lam, Herman C; Quan, Quan; Li, Guohui; Chu, Ivan K


    In this study we developed a fully automated three-dimensional (3D) liquid chromatography methodology-comprising hydrophilic interaction separation as the first dimension, strong cation exchange fractionation as the second dimension, and low-pH reversed-phase (RP) separation as the third dimension-in conjunction downstream with additional complementary porous graphitic carbon separation, to capture non-retained hydrophilic analytes, for both shotgun proteomics and N-glycomics analyses. The performance of the 3D system alone was benchmarked through the analysis of the total lysate of Saccharomyces cerevisiae, leading to improved hydrophilic peptide coverage, from which we identified 19% and 24% more proteins and peptides, respectively, relative to those identified from a two-dimensional hydrophilic interaction liquid chromatography and low-pH RP chromatography (HILIC-RP) system over the same mass spectrometric acquisition time; consequently, the 3D platform also provided enhanced proteome and protein coverage. When we applied the integrated technology to analyses of the total lysate of primary cerebellar granule neurons, we characterized a total of 2201 proteins and 16,937 unique peptides for this primary cell line, providing one of its most comprehensive datasets. Our new integrated technology also exhibited excellent performance in the first N-glycomics analysis of cynomolgus monkey plasma; we successfully identified 122 proposed N-glycans and 135 N-glycosylation sites from 122 N-glycoproteins, and confirmed the presence of 38 N-glycolylneuraminic acid-containing N-glycans, a rare occurrence in human plasma, through tandem mass spectrometry for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Seasonal and spatial variations in surface pCO2 and air-sea CO2 flux in the Chesapeake Bay (United States)

    Cai, W. J.; Chen, B.


    Bay-wide observations of surface water partial pressure of carbon dioxide (pCO2) were conducted in May, June, August, and October 2016 to study the spatial and seasonal variations in surface pCO2 and to estimate air-sea CO2 flux in the Chesapeake Bay. Overall, high surface pCO2 in the upper-bay decreased downstream rapidly below the atmospheric value near the bay bridge in the mid-bay and then increased slightly to the lower-bay where pCO2 approached the atmospheric level. Over the course of a year, pCO2 was higher than 1000 µatm in the upper bay and the highest pCO2 (2500 µatm) was observed in August. Significant biologically-induced pCO2 undersaturation was observed at the upper part of the mid-bay in August with pCO2 as low as 50 µatm and oversaturated DO% of 200%. In addition to biological control, vertical mixing and upwelling controlled by wind direction and tidal stage played an important role in controlling surface pCO2 in the mid-bay as is evidenced by co-occurrence of high pCO2 with low temperature and low oxygen or high salinity from the subsurface. These physical processes occurred regularly and in short time scale of hours, suggesting they must be considered in the assessment of annual air-sea CO2 flux. Seasonally, the upper-bay acted as a source for atmospheric CO2 over the course of a year. The boundary of upper and mid bay transited from a CO2 source to a sink from May to August and was a source again in October due to strong biological production in summer. In contrast, the mid-bay represented as a CO2 source with large temporal variation due to dynamic hydrographic settings. The lower-bay transited from a weak sink in May to equilibrated with the atmosphere from June to August, while became a source again in October. Moreover, the CO2 flux could be reversed very quickly under episodic severe weather events. Thus further research, including the influence of severe weather and subsequent bloom, is needed to get better understanding of the carbon

  9. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500. (United States)

    Guimarães, Damaris; Leão, Versiane A


    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Is the State of the Air-Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones? (United States)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac


    Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air-sea interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the air-sea coupling. The unified parameterization of waveform and two-phase drag based on the physics of the air-sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.

  11. Does air-sea coupling influence model projections of the effects of the Paris Agreement? (United States)

    Klingaman, Nicholas; Suckling, Emma; Sutton, Rowan; Dong, Buwen


    The 2015 Paris Agreement includes the long-term goal to hold global-mean temperature to "well below 2°C above pre-industrial levels", with the further stated aim of limiting the global-mean warming to 1.5°C, in the belief that this would "significantly reduce the risks and impacts of climate change". However, it is not clear which risks and impacts would be avoided, or reduced, by achieving a 1.5°C warming instead of a 2.0°C warming. Initial efforts to quantify changes in risk have focused on analysis of existing CMIP5 simulations at levels of global-mean warming close to 1.5°C or 2.0°C, by taking averages over ≈20 year periods. This framework suffers from several drawbacks, however, including the effect of model internal multi-decadal variability, the influence of coupled-model systematic errors on regional circulation patterns, and the presence of a warming trend across the averaging period (i.e., the model is not in steady state). To address these issues, the "Half a degree Additional warming, Prognosis and Projected Impacts" (HAPPI) project is performing large ensembles of atmosphere-only experiments with prescribed sea-surface temperatures (SSTs) for present-day and 1.5°C and 2.0°C scenarios. While these experiments reduce the complications from a limited dataset and coupled-model systematic errors, the use of atmosphere-only models neglects feedbacks between the atmosphere and ocean, which may have substantial effects on the representation of local and regional extremes, and hence on the response of these extremes to global-mean warming. We introduce a set of atmosphere-ocean coupled simulations that incorporate much of the HAPPI experiment design, yet retain a representation of air-sea feedbacks. We use the Met Office Unified Model Global Ocean Mixed Layer (MetUM-GOML) model, which comprises the MetUM atmospheric model coupled to many columns of the one-dimensional K Profile Parameterization mixed-layer ocean. Critically, the MetUM-GOML ocean mean

  12. Laboratory modeling of air-sea interaction under severe wind conditions (United States)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin


    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  13. Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn

    Directory of Open Access Journals (Sweden)

    A. F. Ríos


    Full Text Available A total of fourteen hydrographic cruises from 2000 to 2008 were conducted during the spring and autumn seasons between Spain and the Southern Ocean under the framework of the Spanish research project FICARAM. The underway measurements were processed and analysed to describe the meridional air-sea CO2 fluxes (FCO2 in the covered sector of the Atlantic Ocean. The data has been grouped into different biogeochemical oceanographic provinces based on thermohaline characteristics. The spatial and temporal distributions of FCO2 followed expected distributions and annual trends reproducing the recent climatological ΔfCO2 estimations with a mean difference of −3 ± 18 μatm (Takahashi et al., 2009. The reduction in the CO2 saturation along the meridional FICARAM cruises represented an increase of 0.02 ± 0.14 mol m−2 yr−1 in the ocean uptake of atmospheric CO2. The subtropical waters in both Hemispheres acted as a sink of atmospheric CO2 during the successive spring seasons and as a source in autumn. The coarse reduction of the ocean uptake of atmospheric CO2 observed in the North Atlantic Ocean was linked to conditions of negative phase of the North Atlantic Oscillation that prevailed during the FICARAM period. Surface waters in the North Equatorial Counter Current revealed a significant long-term decrease of sea surface salinity of −0.16 ± 0.01 yr−1 coinciding with a declination of −3.5 ± 0.9 μatm yr−1 in the air–sea disequilibrium of CO2 fugacity and a rise of oceanic CO2 uptake of −0.09 ± 0.03 mol m−2 yr−1. The largest CO2 source was located in the equatorial upwelling system. These tropical waters that reached emissions of 0.7 ± 0.5 and 1.0 ± 0.7 mol m−2 y−1 in spring and autumn, respectively, showed an interannual warming of 0.11 ± 0.03 °C yr−1 and a wind speed decrease of −0.58 ± 0.14 m s−1 yr−1 in spring cruises which suggest the weakening of upwelling events associated with warm El Niño – Southern

  14. Using Noble Gas Measurements to Derive Air-Sea Process Information and Predict Physical Gas Saturations (United States)

    Hamme, Roberta C.; Emerson, Steven R.; Severinghaus, Jeffrey P.; Long, Matthew C.; Yashayaev, Igor


    Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be ˜6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

  15. Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid–Air Interface

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yaoting; Li, Siming; Gogotsi, Natalie; Zhao, Tianshuo; Fleury, Blaise; Kagan, Cherie R.; Murray, Christopher B.; Baxter, Jason B.


    Two species of monodisperse nanocrystals (NCs) can self-assemble into a variety of complex 2D and 3D periodic structures, or binary NC superlattice (BNSL) films, based on the relative number and size of the NCs. BNSL films offer great promise for both fundamental scientific studies and optoelectronic applications; however, the utility of as-assembled structures has been limited by the insulating ligands that originate from the synthesis of NCs. Here we report the application of an in situ ligand exchange strategy at a liquid–air interface to replace the long synthesis ligands with short ligands while preserving the long-range order of BNSL films. This approach is demonstrated for BNSL structures consisting of PbSe NCs of different size combinations and ligands of interest for photovoltaic devices, infrared detectors, and light-emitting diodes. To confirm enhanced coupling introduced by ligand exchange, we show ultrafast (~1 ps) directional carrier transfer across the type-I heterojunction formed by NCs of different sizes within ligand-exchanged BNSL films. In conclusion, this approach shows the potential promise of functional BNSL films, where the local and long-range energy landscape and electronic coupling can be adjusted by tuning NC composition, size, and interparticle spacing.

  16. Adenovirally delivered shRNA strongly inhibits Na+-Ca2+ exchanger expression but does not prevent contraction of neonatal cardiomyocytes. (United States)

    Hurtado, Cecilia; Ander, Bradley P; Maddaford, Thane G; Lukas, Anton; Hryshko, Larry V; Pierce, Grant N


    The cardiac Na(+)-Ca(2+) exchanger (NCX1) is the main mechanism for Ca(2+) efflux in the heart and is thought to serve an essential role in cardiac excitation-contraction (E-C) coupling. The demonstration that an NCX1 gene knock-out is embryonic lethal provides further support for this essential role. However, a recent report employing the Cre/loxP technique for cardiac specific knock-out of NCX1 has revealed that cardiac function is remarkably preserved in these mice, which survived to adulthood. This controversy highlights the necessity for further investigation of NCX1 function in the heart. In this study, we report on a novel approach for depletion of NCX1 in postnatal rat myocytes that utilizes RNA interference (RNAi), administered with high efficiency via adenoviral transfection. Depletion of NCX1 was confirmed by immunocytochemical detection, Western blots and radioisotopic assays of Na(+)-Ca(2+) exchange activity. Exchanger expression was inhibited by up to approximately 94%. Surprisingly, spontaneous beating of these cardiomyocytes was still maintained, although at a lower frequency. Electrical stimulation could elicit a normal beating rhythm, although NCX depleted cells exhibited a depressed Ca(2+) transient amplitude, a depressed rate of Ca(2+) rise and decline, elevated diastolic [Ca(2+)], and shorter action potentials. We also observed a compensatory increase in sarcolemmal Ca(2+) pump expression. Our data support an important, though non-essential, role for the NCX1 in E-C coupling in these neonatal heart cells. Furthermore, this approach provides a valuable means for assessing the role of NCX1 and could be utilized to examine other cardiac proteins in physiological and pathological studies.

  17. Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-like Phosphorus Following Charge Exchange with Molecular Hydrogen (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Brown, G. V.; Kelley, R. L.; Porter, F. S.


    We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with approx.6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of two for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper experimentally investigates the performance and capacity of Purolite C100E commercial resin recommended for water softening applications in the food industry. The practical ion exchange capacity and the softening process efficiency are studied in batch mode as a function of the sorption specific process factors. Optimum operation conditions were determined as initial pH 7.1, resin dose 8 g dry resin•L-1, temperature 25 oC, contact time of 360 min, and in those conditions the retention capacity for the Ca2+ ions is 17.18 mg•g-1 that corresponds to a removal efficiency equal to 85.7%.

  19. Strong Links Between Teleconnections and Ecosystem Exchange Found at a Pacific Northwest Old-Growth Forest from Flux Tower and MODIS EVI Data

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S; Chasmer, L; Falk, M; Paw U, K T


    Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low-elevation, old-growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Nino-Southern Oscillation (ENSO). We use nine years of eddy covariance CO{sub 2}, H{sub 2}O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and eight years of tower-pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive- (2003 and 2005), negative- (1999 and 2000) and neutral-phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP = + 217 g C m{sup -2} year{sup -1}, 1999) to a source (NEP = - 100 g C m{sup -2} year{sup -1}, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P < 0.01) during positive (NEP = -0.27 g C m{sup -2} day{sup -1}, WUE = 4.1 mg C/g H{sub 2}O, LUE = 0.94 g C MJ{sup -1}) and negative (NEP = +0.37 g C m{sup -2} day{sup -1}, WUE = 3.4 mg C/g H{sub 2}O, LUE = 0.83 g C MJ{sup -1}) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection-driven anomalies in ecosystem CO{sub 2} exchange in old-growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in-phase, low frequency Pacific oscillations (PDO and PNA) will likely increase

  20. Air-sea flux of CO2 in arctic coastal waters influenced by glacial melt water and sea ice

    DEFF Research Database (Denmark)

    Sejr, Mikael Kristian; Krause-Jensen, Dorte; Rysgaard, Søren


    Annual air–sea exchange ofCO2 inYoung Sound,NEGreenlandwas estimated using pCO2 surface-water measurements during summer (2006–2009) and during an ice-covered winter 2008. All surface pCO2 values were below atmospheric levels indicating an uptake of atmospheric CO2. During sea ice formation......, dissolved inorganic carbon (DIC) content is reduced causing sea ice to be under saturated in CO2. Approximately 1% of the DIC forced out of growing sea ice was released into the atmosphere while the remaining 99% was exported to the underlying water column. Sea ice covered the fjord 9 months a year...... and thereby efficiently blocked air–sea CO2 exchange. During sea ice melt, dissolution of CaCO3 combined with primary production and strong stratification of the water column acted to lower surface-water pCO2 levels in the fjord. Also, a large input of glacial melt water containing geochemically reactive...

  1. Catalytic performance of strong acid catalyst: Methyl modified SBA-15 loaded perfluorinated sulfonic acid obtained by the waste perfluorinated sulfonic acid ion exchange membrane (United States)

    Jiang, Tingshun; Huang, Qiuyan; Li, Yingying; Fang, Minglan; Zhao, Qian


    Mesoporous molecular sieve (SBA-15) was modified using the trimethylchlorosilane as functional agent and the silylation SBA-15 mesoporous material was prepared in this work. The alcohol solution of perfluorinated sulfonic acid dissolved from the waste perfluorinated sulfonic acid ion exchange membrane (PFSIEM) was loaded onto the resulting mesoporous material by the impregnation method and their physicochemical properties were characterized by FT-IR, N2-physisorption, XRD, TG-DSC and TEM. The catalytic activities of these synthesized solid acid catalysts were evaluated by alkylation of phenol with tert-butyl alcohol. The influence of reaction temperature, weight hour space velocity (WHSV) and reaction time on the phenol conversion and product selectivity were assessed by means of a series of experiments. The results showed that with the increase of the active component of the catalyst, these catalysts still remained good mesoporous structure, but the mesoporous ordering decreased to some extent. These catalysts exhibited good catalytic performance for the alkylation of phenol with tert-butanol. The maximum phenol conversion of 89.3% with 70.9% selectivity to 4-t-butyl phenol (4-TBP) was achieved at 120 °C and the WHSV is 4 h-1. The methyl group was loaded on the surface of the catalyst by trimethylchlorosilane. This is beneficial to retard the deactivation of the catalyst. In this work, the alkylation of phenol with tert-butyl alcohol were carried out using the methyl modified SBA-15 mesoporous materials loaded perfluorinated sulfonic acid as catalysts. The results show that the resulting catalyst exhibited high catalytic activity.

  2. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.


    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  3. Regional coupled ocean-atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air-sea fluxes, and ocean eddies (United States)

    Putrasahan, Dian A.; Miller, Arthur J.; Seo, Hyodae


    Ocean-atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean-atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000-2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)-flux coupler is invoked in a separate run to isolate the impact of the mesoscale (˜50-200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST-wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST-wind stress and SST-heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean

  4. A Climate Data Record of Near-Surface Over-Ocean Parameters and Air-Sea Fluxes (United States)

    Clayson, C. A.; Brown, J.


    In this climate data record, we have derived surface and near-surface parameters of wind speed, temperature, and humidity from a combination of satellite observations, with a focus on the use of these variables towards determination of the air-sea turbulent heat fluxes. The dataset is a follow-on to the CDR SeaFlux v 1 dataset, which currently covers the time period of 1988 through 2008, and the variables of sea surface temperature and 10-m temperature, wind speed, and specific humidity at a 3-hourly, 0.25º resolution over the global oceans. These products have been developed for the specific focus of accurate determination of the surface turbulent fluxes. The current dataset is brought forward to short latency (roughly three months) by adding in SSMIS data. This talk will discuss the additional issues associated with including the much-noisier SSMIS data, comparisons of uncertainties from the time period of the SSMIS as compared to the SSMI era, and an analysis of interannual variability over the time period from 1988 through 2015, including the recent ENSO variability.

  5. Systematic errors in global air-sea CO2 flux caused by temporal averaging of sea-level pressure

    Directory of Open Access Journals (Sweden)

    H. Kettle


    Full Text Available Long-term temporal averaging of meteorological data, such as wind speed and air pressure, can cause large errors in air-sea carbon flux estimates. Other researchers have already shown that time averaging of wind speed data creates large errors in flux due to the non-linear dependence of the gas transfer velocity on wind speed (Bates and Merlivat, 2001. However, in general, wind speed is negatively correlated with air pressure, and a given fractional change in the pressure of dry air produces an equivalent fractional change in the atmospheric partial pressure of carbon dioxide (pCO2air. Thus low pressure systems cause a drop in pCO2air, which together with the associated high winds, promotes outgassing/reduces uptake of CO2 from the ocean. Here we quantify the errors in global carbon flux estimates caused by using monthly or climatological pressure data to calculate pCO2air (and thus ignoring the covariance of wind and pressure over the period 1990-1999, using two common parameterisations for gas transfer velocity. Results show that on average, compared with estimates made using 6 hourly pressure data, the global oceanic sink is systematically overestimated by 7% (W92 and 10% (WM99 when monthly mean pressure is used, and 9% (W92 and 12% (WM99 when climatological pressure is used.

  6. Effect of gas-transfer velocity parameterization choice on air-sea CO2 fluxes in the North Atlantic Ocean and the European Arctic (United States)

    Wrobel, Iwona; Piskozub, Jacek


    The oceanic sink of carbon dioxide (CO2) is an important part of the global carbon budget. Understanding uncertainties in the calculation of this net flux into the ocean is crucial for climate research. One of the sources of the uncertainty within this calculation is the parameterization chosen for the CO2 gas-transfer velocity. We used a recently developed software toolbox, called the FluxEngine (Shutler et al., 2016), to estimate the monthly air-sea CO2 fluxes for the extratropical North Atlantic Ocean, including the European Arctic, and for the global ocean using several published quadratic and cubic wind speed parameterizations of the gas-transfer velocity. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic Ocean. This region is a large oceanic sink of CO2, and it is also a region characterized by strong winds, especially in winter but with good in situ data coverage. We show that the uncertainty in the parameterization is smaller in the North Atlantic Ocean and the Arctic than in the global ocean. It is as little as 5 % in the North Atlantic and 4 % in the European Arctic, in comparison to 9 % for the global ocean when restricted to parameterizations with quadratic wind dependence. This uncertainty becomes 46, 44, and 65 %, respectively, when all parameterizations are considered. We suggest that this smaller uncertainty (5 and 4 %) is caused by a combination of higher than global average wind speeds in the North Atlantic (> 7 ms-1) and lack of any seasonal changes in the direction of the flux direction within most of the region. We also compare the impact of using two different in situ pCO2 data sets (Takahashi et al. (2009) and Surface Ocean CO2 Atlas (SOCAT) v1.5 and v2.0, for the flux calculation. The annual fluxes using the two data sets differ by 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal fluxes in the Arctic computed from the two data sets disagree with each

  7. Investigating the role of air-sea forcing on the variability of hydrography, circulation, and mixed layer depth in the Arabian Sea and Bay of Bengal

    Directory of Open Access Journals (Sweden)

    Atul Srivastava


    Full Text Available Summary: An effort is made to understand and quantify the influence of near surface zonal and meridional winds, incoming shortwave radiation, and freshwater flux air-sea forcings on the seasonal variability of the hydrography, circulation, and mixed layer depth of the Arabian Sea (AS and Bay of Bengal (BoB. Sensitivity experiments using an ocean general circulation model are carried out for this purpose in the Indian ocean around 65°–95°E, 5°–22°N during 1998–2014 (17 years. In the absence of near surface wind forcing, the sea surface temperature of the region greatly increases in all the seasons, whereas, in the absence of incoming shortwave radiation forcing, exactly opposite is the case. The sea surface salinity of the AS and BoB decreases in the absence of wind and shortwave radiation forcings, whereas, in the northern BoB it increases in the absence of freshwater flux forcing. The sub-surface changes in the stratification of temperature and salinity are also investigated. The influence of the air-sea forcings on the mixed layer depth of the region is found to be highly seasonally dependent. The effect of air-sea forcings on the seasonal variability of the upper ocean vertical stability is studied using the vertical shear of the horizontal velocity, buoyancy frequency, and energy required for mixing as quantifiers. The near surface wind forcing has highest contribution in changing the surface circulation of the region. Keywords: Arabian Sea and Bay of Bengal, Air-sea forcing, Ocean general circulation model, Hydrography and circulation, Vertical stability

  8. Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land-air-sea interaction perspective (United States)

    Duan, Anmin; Sun, Ruizao; He, Jinhai


    The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually followed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an enhanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the atmospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.

  9. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin


    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  10. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes. (United States)

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J


    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  11. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg


    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  12. Dynamics of air-sea CO2 fluxes based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel (United States)

    Marrec, Pierre; Thierry, Cariou; Eric, Mace; Pascal, Morin; Marc, Vernet; Yann, Bozec


    Since April 2012, we installed an autonomous FerryBox system on a Voluntary Observing Ship (VOS), which crosses the Western English Channel (WEC) between Roscoff and Plymouth on a daily basis. High-frequency data of sea surface temperature (SST), salinity (SSS), fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) were recorded for two years across the all-year mixed southern WEC (sWEC) and the seasonally stratified northern WEC (nWEC). These contrasting hydrographical provinces strongly influenced the spatio-temporal distributions of pCO2 and air-sea CO2 fluxes. During the productive period (from May to September), the nWEC acted as a sink for atmospheric CO2 of -5.6 mmolC m-2 d-1 and -4.6 mmolC m-2 d-1, in 2012 and 2013, respectively. During the same period, the sWEC showed significant inter-annual variability degassing CO2 to the atmosphere in 2012 (1.4 mmolC m-2 d-1) and absorbing atmospheric CO2 in 2013 (-1.6 mmolC m-2 d-1). In 2012, high-frequency data revealed that an intense and short (less than 10 days) summer phytoplankton bloom in the nWEC contributed to 31% of the total CO2 drawdown during the productive period, highlighting the necessity of pCO2 high-frequency measurements in coastal ecosystems. Based on this multi-annual dataset, we developed pCO2 algorithms using multiple linear regression (MLR) based on SST, SSS, chlorophyll-a (Chl-a) concentration, time, latitude and mixed layer depth to predict pCO2 in the two hydrographical provinces of the WEC. MLR were performed based on more than 200,000 underway observations spanning the range from 150 to 480 µatm. The root mean square errors (RMSE) of the MLR fit to the data were 17.2 µatm and 21.5 µatm for the s WEC and the nWEC with correlation coefficient (r²) of 0.71 and 0.79, respectively. We applied these algorithms to satellite SST and Chl-a products and to modeled SSS estimates in the entire WEC. Based on these high-frequency and satellite approaches, we will discuss the main

  13. Assessing the role of local air-sea interaction over the South Asia region in simulating the Indian Summer Monsoon (ISM) using the new earth system model RegCM-ES (United States)

    Di Sante, Fabio; Coppola, Erika; Farneti, Riccardo; Giorgi, Filippo


    The South Asia climate is dominated by the monsoon precipitation that divides the climate in two different seasons, the wet and dry seasons, and it influences the lives of billions of peoples. The Indian Summer Monsoon (ISM) has different temporal and spatial scales of variability and it is mainly driven by strong air sea interactions. The monsoon interannual variability (IAV) and the intraseasonal variability (ISV) of daily rainfall are the two most important scale of analysis of this phenomenon. In this work, the Regional Earth System Model (RegCM-ES) (Sitz et al, 2016) is used to simulate the South Asia climate. Several model settings are experimented to assess the sensitivity of the monsoon system like for example two different cumulous convection schemes (Tidtke, 1989 and Emanuel, 1991), two different lateral boundary conditions in the regional ocean model (NOAA/Geophysical 5 Fluid Dynamics Laboratory MOM run, Danabasoglu et al 2014; and ORAP reanalysis, Zuo et Al 2015) and two different hydrological models (Cetemps Hydrological Model, Coppola et al, 2007; Max-Planck's HD model, Hagemann and Dümenil, 1998) for a total of 5 coupled and uncoupled simulations all covering the period from 1979 to 2008. One of the main results of the analysis of the mini RegCM-ES ensemble shows that a better representation of the IAV and of the ENSO-monsoon relationship is present in the coupled simulations. Moreover a source of monsoon predictability has been found in the one-year-lag correlation between JJAS India precipitation and ENSO, this is only evident in the coupled system where the one-year-lagged correlation coefficient between the Niño-3.4 and the ISM rainfall is much higher respect to the uncoupled one and similar to values observed between the observations and the Niño-3.4. For the subseasonal time scale, RegCM-ES shows better performance compared to the standalone version of RegCM4 (Giorgi et al 2012), in reproducing "active" and "break" spells that characterize

  14. Characteristics of Atmosphere-Ocean CO2 Exchange due to Typhoon Activities over the East Asian Region (United States)

    Lee, G.; Cho, C. H.; Lim, D. H.; Sun, M.; Lee, J.; Byun, Y. H.; Lee, J.


    Although the oceans are generally known as a net carbon sink in global sense, it is expected that CO₂release from oceans can occur locally depending on specific weather. This study addresses investigation of change in CO2 exchange between atmosphere and ocean due to typhoon activities, using "Carbon Tracker-Asia (CTA)". The CTA has constructed and managed at National Institute of Meteorological Research(NIMR) based on Carbon Tracker developed by NOAA. In order to examine effect of typhoon on change in air-sea CO2 exchange, we selected several cases which typhoon approached to Korean peninsula in the summertime and their tracks are similar to each other. Also, we analyzed difference between CO2 flux along typhoon tracks and other adjacent region not to be directly affected by typhoon in these cases. There is a difference in ocean fluxes around 15 gC/m²yr over strong typhoon areas compared to other areas. This difference varied with the wind speeds, the correlation coefficient between the ocean and the wind flux was found 0.7. Changes in carbon flux to affect the concentration of CO₂ in the atmosphere near surface instantly.

  15. High-performance liquid chromatography separation of cis-trans anthocyanin isomers from wild Lycium ruthenicum Murr. employing a mixed-mode reversed-phase/strong anion-exchange stationary phase. (United States)

    Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Yang, Fan; Wang, Jixia; Li, Xiaolong; Peng, Xiaojun; Liang, Xinmiao


    The cis-trans isomerism is a common phenomenon for acylated anthocyanins. Nevertheless, few studies reported effective methods for the preparation of isomeric anthocyanins from natural products. In this work, a high-performance liquid chromatography (HPLC) method was developed to efficiently purify anthocyanin isomers from Lycium ruthenicum Murr. based on a mixed-mode reversed-phase/strong anion-exchange column (named XCharge C8SAX). Four commercially available columns were evaluated with a pair of isomeric anthocyanins, and the results demonstrated that the XCharge C8SAX column exhibited improved selectivity and column efficiency for the isomers. The chromatographic parameters, including pH, organic content, and ionic strength, were investigated. Optimal separation quality for the anthocyanin isomers was achieved on the XCharge C8SAX column. Six pure anthocyanins, including two pairs of cis-trans isomeric anthocyanins with one new anthocyanin, were purified from L. ruthenicum and identified. All of the results indicated that this method is an effective way to separate anthocyanins, especially for cis-trans isomers.

  16. Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis. (United States)

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J


    A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.

  17. A Determination of Air-Sea Gas Exchange and Upper Ocean Biological Production From Five Noble Gases and Tritiugenic Helium-3 (United States)


    02. Oxygen signatures in the ocean are a result of physics and biology . Argon mimics the physics and thus the difference between 02 and Ar can be a...Zashu, and H. Sakai. Noble-gases in submarine glasses from mido- ceanic ridges and Loihi seamount : Constraints on the early history of the earth...Massachusetts 02139 and Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543 September 2007 DOCTORAL DISSERTATION Funding was provided by the

  18. GEM in the marine atmosphere and air-sea exchange of Hg during late autumn and winter cruise campaigns over the marginal seas of China (United States)

    Wang, Yan; Liu, Ruhai; Li, Yanping; Cui, Xueqing; Zhou, Jianping; Liu, Shixuan; Zhang, Yuqing


    East Asia is one of the primary sources of atmospheric gaseous elemental mercury (GEM) among the world. In this study, GEM concentrations were measured during two cruises in late autumn and winter of 2012 and 2013 which passed through the marginal seas of China. The results show that the mean GEM concentration was 1.65 ng/m3 from the South China Sea to the Yellow Sea during the 2012 cruise. While the mean GEM concentration was 2.38 ng/m3 in the South Yellow Sea, and 1.75 ng/m3 in the North Yellow and Bohai Seas during the 2013 cruise. High GEM contents were detected when the steering wind was offshore. There is a significant positive relationship between GEM and air temperature for these two cruises. Low GEM content was presented when the cold northerly monsoon prevailed while air masses mainly came from the clean northern oceanic region. Dissolved gaseous mercury (DGM) concentration in the surface water of the south Yellow and Bohai seas were 74.4 ± 28 pg/L. DGM concentrations were correlated with water temperature (r = 0.244, p polluted air and low wind speed. High flux values were caused by the northerly monsoon which carried remote clean air to the sea, with large wind speeds. The northerly monsoon is an important factor affecting the GEM transport offshore to marginal sea and the cycle of mercury in the sea in late autumn and winter.

  19. 1. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka 2. ASIRI: Remote Sensing of Atmospheric Waves and Instabilities (RAWI) (United States)


    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Notre Dame,Department of Civil and Environmental Engineering and Earth Sciences,Notre Dame...IN,46556 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11...ocean response will be monitored using glider deployments as well as a Samuddrika transect between Colombo and Maldives . The capacity building

  20. Diversity of moderate El Niño events evolution: role of air-sea interactions in the eastern tropical Pacific (United States)

    Dewitte, Boris; Takahashi, Ken


    In this paper we investigate the evolution of moderate El Niño events during their developing phase with the objective to understand why some of them did not evolve as extreme events despite favourable conditions for the non-linear amplification of the Bjerknes feedback (i.e. warm SST in Austral winter in the eastern equatorial Pacific). Among the moderate events, two classes are considered consisting in the Eastern Pacific (EP) El Niño events and Central Pacific (CP) events. We first show that the observed SST variability across moderate El Niño events (i.e. inter-event variability) is largest in the far eastern Pacific (east of 130°W) in the Austral winter prior to their peak, which is associated to either significant warm anomaly (moderate EP El Niño) or an anomaly between weak warm and cold (moderate CP El Niño) as reveals by the EOF analysis of the SST anomaly evolution during the development phase of El Niño across the El Niño years. Singular value decomposition (SVD) analysis of SST and wind stress anomalies across the El Niño years further indicates that the inter-event SST variability is associated with an air-sea mode explaining 31% of the covariance between SST and wind stress. The associated SST pattern consists in SST anomalies developing along the coast of Ecuador in Austral fall and expanding westward as far as 130°W in Austral winter. The associated wind stress pattern features westerlies (easterlies) west of 130°W along the equator peaking around June-August for EP (CP) El Niño events. This air-sea mode is interpreted as resulting from a developing seasonal Bjerknes feedback for EP El Niño events since it is shown to be associated to a Kelvin wave response at its peak phase. However equatorial easterlies east of 130°W emerge in September that counters the growing SST anomalies associated to the air-sea mode. These have been particularly active during both the 1972 and the 2015 El Niño events. It is shown that the easterlies are

  1. Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe (United States)

    Ho-Hagemann, Ha Thi Minh; Gröger, Matthias; Rockel, Burkhardt; Zahn, Matthias; Geyer, Beate; Meier, H. E. Markus


    This study introduces a new approach to investigate the potential effects of air-sea coupling on simulated precipitation inland over Central Europe. We present an inter-comparison of two regional climate models (RCMs), namely, the COSMO-CLM (hereafter CCLM) and RCA4 models, which are configured for the EURO-CORDEX domain in the coupled and atmosphere-only modes. Two versions of the CCLM model, namely, 4.8 and 5.0, join the inter-comparison being almost two different models while providing pronouncedly different summer precipitation simulations because of many changes in the dynamics and physics of CCLM in version 5.0. The coupling effect on the prominent summer dry bias over Central Europe is analysed using seasonal (JJA) mean statistics for the 30-year period from 1979 to 2009, with a focus on extreme precipitation under specific weather regimes. The weather regimes are compared between the coupled and uncoupled simulations to better understand the mechanism of the coupling effects. The comparisons of the coupled systems with the atmosphere-only models show that coupling clearly reduces the dry bias over Central Europe for CCLM 4.8, which has a large dry summer bias, but not for CCLM 5.0 and RCA4, which have smaller dry biases. This result implies that if the atmosphere-only model already yields reasonable summer precipitation over Central Europe, not much room for improvement exists that can be caused by the air-sea coupling over the North Sea and the Baltic Sea. However, if the atmosphere-only model shows a pronounced summer dry bias because of a lack of moisture transport from the seas into the region, the considered coupling may create an improved simulation of summer precipitation over Central Europe, such as for CCLM 4.8. For the latter, the benefit of coupling varies over the considered timescales. The precipitation simulations that are generated by the coupled system COSTRICE 4.8 and the atmosphere-only CCLM 4.8 are mostly identical for the summer mean

  2. El Niño And The East Asian Monsoon: Unraveling The Roles Of The Annual Cycle And Air/Sea Interactions (United States)

    Stuecker, M. F.; Jin, F. F.; Timmermann, A.


    The El Niño-Southern Oscillation (ENSO) is the largest source of seasonal climate predictability in the tropics and the subtropical monsoon systems. In previous work we demonstrated that nonlinear interactions between ENSO and the warm pool annual cycle generate rich spatial and temporal diversity and complexity of climate variability in the aforementioned regions, well beyond of what have been known as the canonical ENSO impact patterns. In this talk we present a unifying concept that captures ENSO's nonlinear impacts throughout the march of the seasons, as well as the role of air/sea interactions in this interplay between ENSO and the East Asian monsoon system. Furthermore, we will use the recent extreme 2015/2016 El Niño event to highlight the climate impacts over East Asia associated with our conceptual framework.

  3. Influence of the monsoon trough on air-sea interaction in the head of the Bay of Bengal during the southwest monsoon of 1990 (monsoon trough boundary layer experiment - 90)

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Seetaramayya, P.; Murty, V.S.N.; Rao, D.P.

    (-1) respectively. During the depression period the heat loss across the air-sea interface matched well with the heat loss in the upper (approx equal to 100 m) ocean. With the northward movement of the monsoon trough, the momentum and surface heat...

  4. Exchange transfusion (United States)

    ... count in a newborn (neonatal polycythemia) Rh-induced hemolytic disease of the newborn Severe disturbances in body chemistry Severe newborn jaundice ... exchange transfusion was performed to treat. Alternative Names Hemolytic disease - exchange transfusion Patient ... Exchange transfusion - series References Costa ...

  5. Modelling deep-water formation in the north-west Mediterranean Sea with a new air-sea coupled model: sensitivity to turbulent flux parameterizations (United States)

    Seyfried, Léo; Marsaleix, Patrick; Richard, Evelyne; Estournel, Claude


    In the north-western Mediterranean, the strong, dry, cold winds, the Tramontane and Mistral, produce intense heat and moisture exchange at the interface between the ocean and the atmosphere leading to the formation of deep dense waters, a process that occurs only in certain regions of the world. The purpose of this study is to demonstrate the ability of a new coupled ocean-atmosphere modelling system based on MESONH-SURFEX-SYMPHONIE to simulate a deep-water formation event in real conditions. The study focuses on summer 2012 to spring 2013, a favourable period that is well documented by previous studies and for which many observations are available. Model results are assessed through detailed comparisons with different observation data sets, including measurements from buoys, moorings and floats. The good overall agreement between observations and model results shows that the new coupled system satisfactorily simulates the formation of deep dense water and can be used with confidence to study ocean-atmosphere coupling in the north-western Mediterranean. In addition, to evaluate the uncertainty associated with the representation of turbulent fluxes in strong wind conditions, several simulations were carried out based on different parameterizations of the flux bulk formulas. The results point out that the choice of turbulent flux parameterization strongly influences the simulation of the deep-water convection and can modify the volume of the newly formed deep water by a factor of 2.

  6. Spatiotemporal characteristics of seasonal to multidecadal variability of pCO2 and air-sea CO2 fluxes in the equatorial Pacific Ocean (United States)

    Valsala, Vinu K.; Roxy, Mathew Koll; Ashok, Karumuri; Murtugudde, Raghu


    Seasonal, interannual, and multidecadal variability of seawater pCO2 and air-sea CO2 fluxes in the equatorial Pacific Ocean for the past 45 years (1961-2005) are examined using a suite of experiments performed with an offline biogeochemical model driven by reanalysis ocean products. The processes we focus on are: (a) the evolution of seasonal cycle of pCO2 and air-sea CO2 fluxes during the dominant interannual mode in the equatorial Pacific, i.e., the El Niño-Southern Oscillation (ENSO), (b) its spatiotemporal characteristics, (c) the combined and individual effects of wind and ocean dynamics on pCO2 and CO2 flux variability and their relation to canonical (eastern Pacific) and central Pacific (Modoki) ENSOs and (d) the multidecadal variability of carbon dynamics in the equatorial Pacific and its association with the Pacific Decadal Oscillations (PDO). The simulated mean and seasonal cycle of pCO2 and CO2 fluxes are comparable with the observational estimates and with other model results. A new analysis methodology based on the traditional Empirical Orthogonal Functions (EOF) applied over a time-time domain is employed to elucidate the dominant mode of interannual variability of pCO2 and air-sea CO2 fluxes at each longitude in the equatorial Pacific. The results show that the dominant interannual variability of CO2 fluxes in the equatorial Pacific (averaged over 5°N-10°S) coevolves with that of ENSO. Generally a reduced CO2 source in the central-to-eastern equatorial Pacific evident during June-July of the El Niño year (Year:0) peaks through September of Year:0 to February of Year:+1 and recovers to a normal source thereafter. In the region between 160°W and 110°W, the canonical El Niño controls the dominant variability of CO2 fluxes (mean and RMS of anomaly from 1961 to 2005 is 0.43±0.12 PgC yr-1). However, in the western (160°E-160°W) and far eastern (110°W-90°W) equatorial Pacific, CO2 flux variability is dominantly influenced by the El Ni

  7. Barter exchanges

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    Although barter is often perceived as something that proceeded money, barter is still used. The focus of the paper is on barter exchanges. Barter exchanges are used both in developing countries as well as in developed countries (including the U.S.). They are used by both organizations...... and individuals. They usually allow to exchange good but some include also services. Some exchanges allow only for bi-directional barter, i.e. when only two parties are involved in the exchange. But probably most of the barter exchanges use barter money; this makes it easier to exchange goods and services...

  8. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation (United States)

    Soloviev, A.; Dean, C.


    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  9. High air-sea CO 2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Mortensen, J.; Juul-Pedersen, T.


    be considered as a strong sink (7.2tons C month -1km -2) for atmospheric CO 2. In addition, measurements from Godthåbsfjord during the summer season showed that mixing between glacial meltwater and coastal water could explain a large part of the low pCO 2-values observed in the innermost part of the fjord....... Finally, a larger survey confirmed the existence of very low pCO 2 conditions in nearshore and shelf waters around Southern Greenland. © 2011 Elsevier B.V....

  10. Air-Sea Interaction Processes in Low and High-Resolution Coupled Climate Model Simulations for the Southeast Pacific (United States)

    Porto da Silveira, I.; Zuidema, P.; Kirtman, B. P.


    The rugged topography of the Andes Cordillera along with strong coastal upwelling, strong sea surface temperatures (SST) gradients and extensive but geometrically-thin stratocumulus decks turns the Southeast Pacific (SEP) into a challenge for numerical modeling. In this study, hindcast simulations using the Community Climate System Model (CCSM4) at two resolutions were analyzed to examine the importance of resolution alone, with the parameterizations otherwise left unchanged. The hindcasts were initialized on January 1 with the real-time oceanic and atmospheric reanalysis (CFSR) from 1982 to 2003, forming a 10-member ensemble. The two resolutions are (0.1o oceanic and 0.5o atmospheric) and (1.125o oceanic and 0.9o atmospheric). The SST error growth in the first six days of integration (fast errors) and those resulted from model drift (saturated errors) are assessed and compared towards evaluating the model processes responsible for the SST error growth. For the high-resolution simulation, SST fast errors are positive (+0.3oC) near the continental borders and negative offshore (-0.1oC). Both are associated with a decrease in cloud cover, a weakening of the prevailing southwesterly winds and a reduction of latent heat flux. The saturated errors possess a similar spatial pattern, but are larger and are more spatially concentrated. This suggests that the processes driving the errors already become established within the first week, in contrast to the low-resolution simulations. These, instead, manifest too-warm SSTs related to too-weak upwelling, driven by too-strong winds and Ekman pumping. Nevertheless, the ocean surface tends to be cooler in the low-resolution simulation than the high-resolution due to a higher cloud cover. Throughout the integration, saturated SST errors become positive and could reach values up to +4oC. These are accompanied by upwelling dumping and a decrease in cloud cover. High and low resolution models presented notable differences in how SST

  11. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.


    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  12. Evolution of the Tropical Cyclone Integrated Data Exchange And Analysis System (TC-IDEAS) (United States)

    Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; hide


    The Tropical Cyclone Integrated Data Exchange and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the air-sea interaction processes; and the large-scale environment.

  13. The Influence of Air-Sea Fluxes on Atmospheric Aerosols During the Summer Monsoon Over the Tropical Indian Ocean (United States)

    Zavarsky, Alex; Booge, Dennis; Fiehn, Alina; Krüger, Kirstin; Atlas, Elliot; Marandino, Christa


    During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m-2 d-1). The directly measured fluxes, as well as computed isoprene and sea spray fluxes, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The fluxes show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.

  14. Exchange rate rebounds after foreign exchange market interventions (United States)

    Hoshikawa, Takeshi


    This study examined the rebounds in the exchange rate after foreign exchange intervention. When intervention is strongly effective, the exchange rate rebounds at next day. The effect of intervention is reduced slightly by the rebound after the intervention. The exchange rate might have been 67.12-77.47 yen to a US dollar without yen-selling/dollar-purchasing intervention of 74,691,100 million yen implemented by the Japanese government since 1991, in comparison to the actual exchange rate was 103.19 yen to the US dollar at the end of March 2014.

  15. Integrated Foreign Exchange Risk Management

    DEFF Research Database (Denmark)

    Aabo, Tom; Høg, Esben; Kuhn, Jochen

    Empirical research has focused on export as a proxy for the exchange rate exposure and the use of foreign exchange derivatives as the instrument to deal with this exposure. This empirical study applies an integrated foreign exchange risk management approach with a particular focus on the role...... of import in medium-sized, manufacturing firms in Denmark (a small, open economy). We find a strong, negative relation between import and foreign exchange derivatives usage on the aggregate level. Our findings are consistent with the notion that firms use import to match the foreign exchange exposure...

  16. Integrated foreign exchange risk management

    DEFF Research Database (Denmark)

    Aabo, Tom; Høg, Esben; Kuhn, Jochen


    Empirical research has focused on export as a proxy for exchange rate exposure and the use of foreign exchange derivatives as an instrument to deal with this exposure. This empirical study applies an integrated foreign exchange risk management approach with a particular focus on the role of import...... in medium-sized manufacturing firms in Denmark (a small, open economy). We find a strong, negative relation between import and the use of foreign exchange derivatives on the aggregate level. Our findings are consistent with the notion that firms use import to match the foreign exchange exposure created...

  17. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.


    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  18. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions (United States)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong


    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  19. [Distributions and air-sea fluxes of dissolved nitrous oxide in the Yangtze River estuary and its adjacent marine area in spring and summer]. (United States)

    Wang, Lan; Zhang, Gui-ling; Sun, Ming-shuang; Ren, Jing-ling


    Distributions and air-sea fluxes of nitrous oxide (N2O) in the seawaters of the Yangtze River estuary and its adjacent marine area were investigated during two cruises in March and July 2012. Dissolved N2O concentrations in surface waters ranged from 9.34 to 49.08 nmol x L(-1) with an average of (13.27 ± 6.40) nmol x L(-1) in spring and ranged from 7.27 to 27.81 nmol x L(-1) with an average of (10.62 ± 5.03) nmol x L(-1) in summer. There was no obvious difference between surface and bottom N2O concentrations. N2O concentrations in both surface and bottom waters decreased along the freshwater plume from the river mouth to the open sea. High values of dissolved N2O were found in turbidity maximum zone, which suggests that maximal turbidity enhances nitrification. Temperature had dual effects on dissolved N2O concentrations. N2O saturations in surface waters ranged from 86.9% to 351.3% with an average of (111.5 ± 41.4)% in spring and ranged from 111.7% to 396.0% with an average of (155.9 ± 68.4)% in summer. N2O were over-saturated at most stations. The sea-to-air fluxes of N2O were estimated to be (3.2 ± 10.9), (5.5 ± 19.3) and (12.2 ±52.3) μmol x (m2 x d)(-1) in spring and (7.3 ± 12.4), (12.7 ± 20.4) and (20.4 ± 35.9) μmol x (m2 x d)(-1) in summer using the LM86, W92 and RC01 relationships, respectively. The annual emissions of N2O from the Yangtze River estuary and its adjacent marine area were estimated to be 0.6 x 10(-2) Tg x a(-1) (LM86), 1.1 x 10(-2) Tg x a(-1) (W92) and 2.0 x 10(-2) Tg x a(-1) (RC01). Although the area of the Yangtze River estuary and its adjacent marine area only accounts for 0.02% of the total area of the world's oceans, their emission of N2O accounts for 0.06% of global oceanic N2O emission, indicating that the Yangtze River estuary and its adjacent marine area is an active area to produce and emit N2O.

  20. Sensitivity analysis of an ocean carbon cycle model in the North Atlantic: an investigation of parameters affecting the air-sea CO2 flux, primary production and export of detritus

    Directory of Open Access Journals (Sweden)

    C. J. Merchant


    Full Text Available The sensitivity of the biological parameters in a nutrient-phytoplankton-zooplankton-detritus (NPZD model in the calculation of the air-sea CO2 flux, primary production and detrital export is analysed. We explore the effect on these outputs of variation in the values of the twenty parameters that control ocean ecosystem growth in a 1-D formulation of the UK Met Office HadOCC NPZD model used in GCMs. We use and compare the results from one-at-a-time and all-at-a-time perturbations performed at three sites in the EuroSITES European Ocean Observatory Network: the Central Irminger Sea (60° N 40° W, the Porcupine Abyssal Plain (49° N 16° W and the European Station for Time series in the Ocean Canary Islands (29° N 15° W. Reasonable changes to the values of key parameters are shown to have a large effect on the calculation of the air-sea CO2 flux, primary production, and export of biological detritus to the deep ocean. Changes in the values of key parameters have a greater effect in more productive regions than in less productive areas. The most sensitive parameters are generally found to be those controlling well-established ocean ecosystem parameterisations widely used in many NPZD-type models. The air-sea CO2 flux is most influenced by variation in the parameters that control phytoplankton growth, detrital sinking and carbonate production by phytoplankton (the rain ratio. Primary production is most sensitive to the parameters that define the shape of the photosynthesis-irradiance curve. Export production is most sensitive to the parameters that control the rate of detrital sinking and the remineralisation of detritus.

  1. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.


    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  2. Air-sea gas transfer in a shallow, flowing and coastal environment estimated by dissolved inorganic carbon and dissolved oxygen analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Abe, O.; Watanabe, A.; Sarma, V.V.S.S.; Matsu, Y.; Yamano, H.; Yoshida, N.; Saino, T.

    We estimated gas exchange rates in Kabira Reef at Ishigaki Island, southwest Japan, using a mass balance calculation with dual ‘biological’ tracers: dissolved inorganic carbon (DIC) and dissolved oxygen (DO). The nighttime results allowed us...

  3. HEAT EXCHANGER (United States)

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.


    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  4. Heat exchanger

    International Nuclear Information System (INIS)

    Watabe, Ichiro.


    An inner cylinder is disposed coaxially in a vertical vessel, and a plurality of heat transfer pipes are wound spirally on the outer circumference of the inner cylinder. High temperature sodium descends on the outer side of the inner cylinder while exchanging heat with water in the heat transfer pipes and becomes low temperature sodium. The low temperature sodium turns at the lower portion of the vessel, rises in a sodium exit pipe inserted to the inner cylinder and is discharged from the top of the vessel to the outside of the vessel. A portion of a cover gas (an inert gas such as argon) filled to the upper portion of the vessel intrudes into the space between the outer circumference of the sodium exit pipe and the inner circumference of the inner cylinder to form a heat insulation layer of the inert gas. This prevents heat exchange between the high temperature sodium before heat exchange and low temperature sodium after heat exchange. The heat exchanger is used as a secondary heat exchanger for coolants (sodium) of an FBR type reactor. (I.N.)

  5. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.


    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  6. Impulse exchange at the surface of the ocean and the fractal dimension of drifter trajectories

    Directory of Open Access Journals (Sweden)

    D. M. Summers


    Full Text Available An impulse-based model is developed to represent a coupling between turbulent flow in the atmosphere and turbulent flow in the ocean. In particular, it is argued that the atmosphere flowing horizontally over the ocean surface generates a velocity fluctuation field in the latter's near-surface flow. The mechanism for this can be understood kinematically in terms of an exchange of tangentially-oriented fluid impulse at the air-sea interface. We represent this exchange numerically through the creation of Lagrangian elements of impulse density. An indication of the efficacy of such a model would lie in its ability to predict the observed fractal dimension of lateral trajectories of submerged floats set adrift in the ocean. To this end, we examine the geometry of lateral tracer-paths determined from the present model.

  7. Climate indices strongly influence old-growth forest carbon exchange (United States)

    Sonia Wharton; Matthias Falk


    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running...

  8. The response of terrestrial carbon exchange and atmospheric CO{sub 2} concentrations to El Nino SST forcing

    Energy Technology Data Exchange (ETDEWEB)

    Craig, S. [Stockholm Univ. (Sweden). Dept. of Meteorology


    Version 3 of the National Center for Atmospheric Research Community Climate Model is used to investigate the response of terrestrial carbon exchange and atmospheric CO{sub 2} concentrations to sea surface temperature (SST) anomalies associated with the El Nino phenomenon. Air-sea exchange of CO{sub 2} is not included. During El Nino episodes, atmospheric CO{sub 2} concentrations are observed to rise anomalously even though CO{sub 2} outgassing is reduced in the eastern equatorial Pacific due to the cessation of upwelling. Atmospheric carbon isotope data point to a larger terrestrial carbon release as being responsible. The reasons for such a terrestrial response are examined by comparing a control run with prescribed, seasonally varying, climatological SSTs to an ensemble of integrations employing observed SST fields from the strong El Nino event of 1982-83. The model captures the main features of the El Nino induced meteorological anomalies, including the shifts in tropical rainfall patterns that are of particular importance in driving the carbon cycle changes. Most of the regions that exhibit a clear El Nino signal in the simulation possess well documented links to El Nino in the observational record, Examples include northeastern South America, India, Indonesia, southeastern Africa, Ecuador and northern Peru, and parts of southeastern South America. The combined perturbation of the net carbon flux in these areas involves a release of CO{sub 2} to the atmosphere totalling 7 GtC during the 1982-83 El Nino event. Atmospheric CO{sub 2} rises by about 3 ppmv as a result which is more than sufficient to explain the observed variations. The exaggerated response is indicative of the strong sensitivity of the model carbon routines to climate fluctuations. It is argued that the release of CO{sub 2} from terrestrial systems is fundamentally related to the overall shift of precipitation from land areas to the oceans caused by the El Nino SST forcing. Since the SST forcing

  9. Foreign Exchange Markets in Russia: Understanding the Reforms


    Linda S. Goldberg


    This paper analyzes and interprets the changes that took place in Russia's exchange rate system during 1992. The multiple exchange rate regime that existed in Russia prior to July 3, 1992, created strong incentives for exporters to refrain from repatriating foreign exchange earnings, induced both importers and exporters to participate in unofficial markets for foreign exchange, and encouraged international barter transactions. Efforts to manage the exchange rate through heavy foreign exchange...

  10. Heat exchangers

    International Nuclear Information System (INIS)


    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  11. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.


    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  12. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.


    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  13. The intOA Experiment: A Study of Ocean-Atmosphere Interactions Under Moderate to Strong Offshore Winds and Opposing Swell Conditions in the Gulf of Tehuantepec, Mexico (United States)

    Ocampo-Torres, F. J.; García-Nava, H.; Durazo, R.; Osuna, P.; Díaz Méndez, G. M.; Graber, H. C.


    The Gulf of Tehuantepec air-sea interaction experiment ( intOA) took place from February to April 2005, under the Programme for the Study of the Gulf of Tehuantepec (PEGoT, Spanish acronym for Programa para el Estudio del Golfo de Tehuantepec). PEGoT is underway aiming for better knowledge of the effect of strong and persistent offshore winds on coastal waters and their natural resources, as well as performing advanced numerical modelling of the wave and surface current fields. One of the goals of the intOA experiment is to improve our knowledge on air-sea interaction processes with particular emphasis on the effect of surface waves on the momentum flux for the characteristic and unique conditions that occur when strong Tehuano winds blow offshore against the Pacific Ocean long period swell. For the field campaign, an air-sea interaction spar (ASIS) buoy was deployed in the Gulf of Tehuantepec to measure surface waves and the momentum flux between the ocean and the atmosphere. High frequency radar systems (phase array type) were in operation from two coastal sites and three acoustic Doppler current profilers were deployed near-shore. Synthetic aperture radar images were also acquired as part of the remote sensing component of the experiment. The present paper provides the main results on the wave and wind fields, addressing the direct calculation of the momentum flux and the drag coefficient, and gives an overview of the intOA experiment. Although the effect of swell has been described in recent studies, this is the first time for the very specific conditions encountered, such as swell persistently opposing offshore winds and locally generated waves, to show a clear evidence of the influence on the wind stress of the significant steepness of swell waves.

  14. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y


    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  15. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.


    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  16. Strongly Correlated Topological Insulators (United States)


    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  17. Strong Cosmic Censorship (United States)

    Isenberg, James


    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  18. Exchanging information

    International Nuclear Information System (INIS)


    The Agency has a statutory mandate to foster 'the exchange of scientific and technical information on the peaceful uses of atomic energy'. The prime responsibility for this work within the Agency lies with the Division of Scientific and Technical Information, a part of the Department of Technical Operations. The Division accomplishes its task by holding conferences and symposia (Scientific Conferences Section), through the Agency Library, by publishing scientific journals, and through the International Nuclear Information System (INIS). The Computer Section of the Division, which offers services to the Agency as a whole, provides resources for the automation of data storage and retrieval. (author)

  19. Strong Arcwise Connectedness


    Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana


    A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...

  20. Abortion: Strong's counterexamples fail

    DEFF Research Database (Denmark)

    Di Nucci, Ezio


    This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....

  1. Matchmaker Exchange. (United States)

    Sobreira, Nara L M; Arachchi, Harindra; Buske, Orion J; Chong, Jessica X; Hutton, Ben; Foreman, Julia; Schiettecatte, François; Groza, Tudor; Jacobsen, Julius O B; Haendel, Melissa A; Boycott, Kym M; Hamosh, Ada; Rehm, Heidi L


    In well over half of the individuals with rare disease who undergo clinical or research next-generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME). MME was created to establish a federated network connecting databases of genomic and phenotypic data using a common application programming interface (API). To date, seven databases can exchange data using the API (GeneMatcher, PhenomeCentral, DECIPHER, MyGene2, matchbox, Australian Genomics Health Alliance Patient Archive, and Monarch Initiative; the latter included for model organism matching). This article guides usage of the MME for rare disease gene discovery. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  2. Natural radium and radon tracers to quantify water exchange and movement in reservoirs (United States)

    Smith, Christopher G.; Baskaran, Mark


    Radon and radium isotopes are routinely used to quantify exchange rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as air-sea exchange, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and exchange between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the exchange processes, it is mixing/exchange and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.

  3. A strong comeback

    International Nuclear Information System (INIS)

    Marier, D.


    This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders

  4. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin


    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  5. Segmented heat exchanger (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann


    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  6. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.


    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  7. 3.5 Radiation stability of ion exchangers

    International Nuclear Information System (INIS)

    Marhol, M.


    The main knowledge is summed up of the radiation stability of ion exchangers. No basic changes occur in inorganic ion exchangers with the exception of the exchange capacity at doses of up to 10 9 rad. This also applies to coal-based ion exchangers. Tables are given showing the changes in specific volume, exchange capacity and weight of different types of organic ion exchangers in dependence on the radiation dose. The effects are discussed of the structure of organic cation and anion exchangers, polymeric strong basic anion exchangers, polycondensate anion exchangers and ion exchange membranes on their radiation stability. General experimental procedures are given for laboratory tests of the radiation stability of exchangers. (L.K.)

  8. Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low-to-moderate wind conditions (United States)

    Zou, Zhongshui; Zhao, Dongliang; Liu, Bin; Zhang, Jun A.; Huang, Jian


    This study explores the behavior of the exchange coefficients for wind stress (CD), sensible heat flux (CH), and water vapor flux (CE) as functions of surface wind speed (U10) and atmospheric stability using direct turbulent flux measurements obtained from a platform equipped with fast-response turbulence sensors in a low-to-moderate wind region. Turbulent fluxes are calculated using the eddy-correlation method with extensive observations. The total numbers of quality-controlled 30 min flux runs are 12,240, 5813, and 5637 for estimation of CD, CH, and CE, respectively. When adjusted to neutral stability using the Monin-Obukhov similarity theory (MOST), we found that CDN, CHN, and CEN decrease with neutral-adjusted wind speed when wind speed is less than 5 m/s. CDN is constant over the range 5 m/s 12 m/s. In contrast, CHN and CEN exhibit no clear dependence on wind speed and are generally constant, with mean values of 0.96 × 10-3 and 1.2 × 10-3, respectively. This behavior of neutral exchange coefficients is consistent with the findings of previous studies. We also found that CDN under offshore winds is generally greater than that under onshore wind conditions, which is ascribed to the younger wind waves present due to the shorter fetch in the former case. However, this behavior is not exhibited by CHN or CEN. The original CD, CH, and CE values without MOST adjustment are also investigated to develop a new parameterization based on wind speed and stability. Three stability parameters are tested, including the bulk Richardson number, stability as defined in COARE 3.0, and a simplified Richardson number using the Charnock parameter. This new parameterization is free of MOST and the associated self-correlation. Compared with previous studies and COARE 3.0 results, the new parameterization using the simplified Richardson number performs well, with an increased correlation coefficient and reduction of root-mean-square error and bias.

  9. Strong-coupling approximations

    International Nuclear Information System (INIS)

    Abbott, R.B.


    Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures

  10. Strong interaction and QFD

    International Nuclear Information System (INIS)

    Ebata, T.


    With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)

  11. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia


    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  12. LIGO: The strong belief

    CERN Multimedia

    Antonella Del Rosso


    Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO.   The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...

  13. Deuterium exchange in sesamol

    International Nuclear Information System (INIS)

    Hill, R.K.; Vaidya, N.A.; Morton, G.H.


    Trifluoroacetic acid-catalyzed exchange of sesamol in 2 H 2 O results in rapid exchange of H-6 and slower exchange of H-2. The deuterium atoms introduced are retained during conversion to the methyl and allyl ethers. (author)

  14. Totalization Data Exchange (TDEX) (United States)

    Social Security Administration — The Totalization Data Exchange (TDEX) process is an exchange between SSA and its foreign country partners to identify deaths of beneficiaries residing abroad. The...

  15. John Strong (1941 - 2006)

    CERN Multimedia

    Wickens, F

    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...

  16. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim


    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  17. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.


    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  18. Impact of variable air-sea O2 and CO2 fluxes on atmospheric potential oxygen (APO and land-ocean carbon sink partitioning

    Directory of Open Access Journals (Sweden)

    I. D. Lima


    Full Text Available A three dimensional, time-evolving field of atmospheric potential oxygen (APO ~O2/N2+CO2 was estimated using surface O2, N2 and CO2 fluxes from the WHOI ocean ecosystem model to force the MATCH atmospheric transport model. Land and fossil carbon fluxes were also run in MATCH and translated into O2 tracers using assumed O2:CO2 stoichiometries. The modeled seasonal cycles in APO agree well with the observed cycles at 13 global monitoring stations, with agreement helped by including oceanic CO2 in the APO calculation. The modeled latitudinal gradient in APO is strongly influenced by seasonal rectifier effects in atmospheric transport. An analysis of the APO-vs.-CO2 mass-balance method for partitioning land and ocean carbon sinks was performed in the controlled context of the MATCH simulation, in which the true surface carbon and oxygen fluxes were known exactly. This analysis suggests uncertainty of up to ±0.2 PgC in the inferred sinks due to variability associated with sparse atmospheric sampling. It also shows that interannual variability in oceanic O2 fluxes can cause large errors in the sink partitioning when the method is applied over short timescales. However, when decadal or longer averages are used, the variability in the oceanic O2 flux is relatively small, allowing carbon sinks to be partitioned to within a standard deviation of 0.1 Pg C/yr of the true values, provided one has an accurate estimate of long-term mean O2 outgassing.

  19. Ion exchange fiber by radiation grafting, 1

    International Nuclear Information System (INIS)

    Fujiwara, Kunio


    Radiation grafting is gaining attention as a method for producing high performance materials. This method can be applied to add functions to existing polymer plastics. The author participated in the research program on the production of ion exchange fiber by radiation grafting and its applicability at the Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment. Consequently, it was clarified that it was possible to introduce the cation exchange group, represented by sulfonic and carboxyl groups, and the anion exchange group, represented by the quarternary ammonium group, to polypropylene fiber available on the market. The ion exchange capacity was able to be controlled by the degree of grafting, i.e. approximately up to 3 meq/g in both strong acid and strong base and approximately up to 5 meq/g in weak acid were obtained. The adsorption performance of ammonia, a representative malodorous substance, was also studied using test cation exchange fiber. The adsorption rate of H type strong acid cation exchange fiber was great, due to the H type having neutral reaction, and the adsorption capacity matched the ion exchange capacity. Although the Cu and Ni types features coordinated adsorption and their adsorption rates were from 1/2 to 1/3 of that of the H type, their adsorption capacities showed increase along with the metal adsorbed. (author)

  20. Tokamak rotation and charge exchange

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.


    In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

  1. Exchange market pressure

    NARCIS (Netherlands)

    Jager, H.; Klaassen, F.; Durlauf, S.N.; Blume, L.E.


    Currencies can be under severe pressure in the foreign exchange market, but in a fixed (or managed) exchange rate regime that is not fully visible via the change in the exchange rate. Exchange market pressure (EMP) is a concept developed to nevertheless measure the pressure in such cases. This

  2. Seasonal variation of air-sea CO2 fluxes in the Terra Nova Bay of the Ross Sea, Antarctica, based on year-round pCO2 observations (United States)

    Zappa, C. J.; Rhee, T. S.; Kwon, Y. S.; Choi, T.; Yang, E. J.; Kim, J.


    The polar oceans are rapidly changing in response to climate variability. In particular, augmented inflow of glacial melt water and shrinking sea-ice extent impacts the polar coastal oceans, which may in turn shift the biogeochemistry into an unprecedented paradigm not experienced previously. Nonetheless, most research in the polar oceans is limited to the summer season. Here, we present the first direct observations of ocean and atmospheric pCO2 measured near the coast of Terra Nova Bay in the Ross Sea, Antarctica, ongoing since February, 2015 at Jang Bogo Station. The coastal area is covered by landfast sea-ice from spring to fall while continually exposed to the atmosphere during summer season only. The pCO2 in seawater swung from 120 matm in February to 425 matm in early October. Although sea-ice still covers the coastal area, pCO2 already started decreasing after reaching the peak in October. In November, the pCO2 suddenly dropped as much as 100 matm in a week. This decrease of pCO2 continued until late February when the sea-ice concentration was minimal. With growing sea ice, the pCO2 increased logarithmically reaching the atmospheric concentration in June/July, depending on the year, and continued to increase until October. Daily mean air-sea CO2 flux in the coastal area widely varied from -70 mmol m-2 d-1 to 20 mmol m-2 d-1. Based on these observations of pCO2 in Terra Nova Bay, the annual uptake of CO2 is 8 g C m-2, estimated using the fraction of sea-ice concentration estimated from AMSR2 microwave emission imagery. Extrapolating to all polynyas surrounding Antarctica, we expect the annual uptake of 8 Tg C in the atmosphere. This is comparable to the amount of CO2 degassed into the atmosphere south of the Antarctic Polar Front (62°S).

  3. QCD : the theory of strong interactions Conference MT17

    CERN Multimedia


    The theory of strong interactions,Quantum Chromodynamics (QCD), predicts that the strong interaction is transmitted by the exchange of particles called gluons. Unlike the messengers of electromagnetism photons, which are electrically neutral - gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies. LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  4. QCD : the theory of strong interactions Exhibition LEPFest 2000

    CERN Multimedia


    The theory of strong interactions,Quantum Chromodynamics (QCD),predicts that the strong interac- tion is transmitted by the exchange of particles called glu- ons.Unlike the messengers of electromagnetism -pho- tons,which are electrically neutral -gluons carry a strong charge associated with the interaction they mediate. QCD predicts that the strength of the interaction between quarks and gluons becomes weaker at higher energies.LEP has measured the evolution of the strong coupling constant up to energies of 200 GeV and has confirmed this prediction.

  5. Homogeneous cation exchange membrane by radiation grafting

    International Nuclear Information System (INIS)

    Kolhe, Shailesh M.; G, Agathian; Ashok Kumar


    Preparation of a strong cation exchange membrane by radiation grafting of styrene on to polyethylene (LDPE) film by mutual irradiation technique in the presence of air followed by sulfonation is described. The grafting has been carried out in the presence of air and without any additive. Low dose rate has been seen to facilitate the grafting. Further higher the grafting percentage more is the exchange capacity. The addition of a swelling agent during the sulfonation helped in achieving the high exchange capacity. The TGA-MASS analysis confirmed the grafting and the sulfonation. (author)

  6. Emergence of junction dynamics in a strongly interacting Bose mixture

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Foerster, Angela; Zinner, Nikolaj Thomas

    We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry of the...

  7. Laser Processed Heat Exchangers (United States)

    National Aeronautics and Space Administration — The considerable mass of Heat Exchangers (HXs) and coldplates on spacecraft as well as the problematic coatings of the Condensing Heat Exchanger (CHX) are among the...

  8. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.


    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  9. Developing an exchange mindset. (United States)

    Thackeray, Rosemary


    Exchange is a fundamental concept that underlies all social marketing efforts. In a successful exchange, both parties receive something of value and the benefits that they desire in return for a price. The purpose of this article is to describe how practitioners can develop an "exchange mindset." A practitioner's answer to five basic questions will enable him or her to see the exchange through the eyes of the customer and increase the likelihood of creating a successful exchange that will benefit both parties involved and result in positive behavior change.

  10. Communication network exchange

    International Nuclear Information System (INIS)

    Woo, Seung Sul


    This book has two parts. The first parts is comprised of five chapters, which deals with communication network constitution with design of network and types, telephone network about outline and management of network, telephone network · data network · private network, international data telephone network about service and international data network and technical standards of quality of service, communication and data. The second parts handles exchange, which is about institution of switching, a manual exchange and step-by step exchange, a crossbar exchange, electronic exchange, international switching system, design of equipment of test and measurement.

  11. Quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Greiner, W.


    Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund

  12. The exchange of water between the Faroe Shelf and the surrounding waters and its effect on the primary production (United States)

    Eliasen, Sólvá Karadóttir; Hansen, Bogi; Larsen, Karin Margretha Húsgarð; Hátún, Hjálmar


    The interannual variation of the spring bloom and its effect on the marine ecosystem on the Faroe Shelf has been observed for a couple of decades. However, the mechanism controlling the spring bloom has so far not been known and attempts to explain the mechanism have mostly ruled out possibilities. The Faroe Shelf is to a variable degree isolated from the surrounding waters by a tidal front. It has previously been suggested that variations in the density difference across the front and how water masses are transferred across it affect the spring primary production, which is thought to be a driver of the shelf ecosystem. Using air-sea heat flux data and sea temperature observations on the shelf and off the shelf, we estimate the cross-frontal volume exchange in January-April and find that it increases with the tidal current speed and decreases with the cross-frontal temperature difference. Using the observed exchange rates, we show that the phytoplankton growth rate may be reduced by more than 0.05 day- 1 when the exchange is intense and off-shelf production is still low. Based on frontal dynamics theory, we suggest that the cross-frontal exchange rate in the above mentioned period is determined by the rate of vertical turbulent diffusion through the front. A simple theoretical model is found to support this hypothesis qualitatively as well as quantitatively. This supports that variations in horizontal exchange are an important controlling factor of the initial spring bloom and that the horizontal exchange during the winter can be determined by vertical turbulent diffusion. Our results will be relevant for the primary production in other similar systems of small geographical extent and also for other problems involving cross-shelf exchange, such as oil spill dispersal.

  13. Strong WW Interaction at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, Jose R


    We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.

  14. Strong-back safety latch

    International Nuclear Information System (INIS)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch

  15. Strong-back safety latch

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, G.N.


    The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.

  16. Automated exchange transfusion and exchange rate. (United States)

    Funato, M; Shimada, S; Tamai, H; Taki, H; Yoshioka, Y


    An automated blood exchange transfusion (BET) with a two-site technique has been devised by Goldmann et al and by us, using an infusion pump. With this method, we successfully performed exchange transfusions 189 times in the past four years on 110 infants with birth weights ranging from 530 g to 4,000 g. The exchange rate by the automated method was compared with the rate by Diamond's method. Serum bilirubin (SB) levels before and after BET and the maximal SB rebound within 24 hours after BET were: 21.6 +/- 2.4, 11.5 +/- 2.2, and 15.0 +/- 1.5 mg/dl in the automated method, and 22.0 +/- 2.9, 11.2 +/- 2.5, and 17.7 +/- 3.2 mg/dl in Diamond's method, respectively. The result showed that the maximal rebound of the SB level within 24 hours after BET was significantly lower in the automated method than in Diamond's method (p less than 0.01), though SB levels before and after BET were not significantly different between the two methods. The exchange rate was also measured by means of staining the fetal red cells (F cells) both in the automated method and in Diamond's method, and comparing them. The exchange rate of F cells in Diamond's method went down along the theoretical exchange curve proposed by Diamond, while the rate in the automated method was significantly better than in Diamond's, especially in the early stage of BET (p less than 0.01). We believe that the use of this automated method may give better results than Diamond's method in the rate of exchange, because this method is performed with a two-site technique using a peripheral artery and vein.

  17. Antiferromagnetic exchange mechanism of superconductivity in cuprates

    CERN Document Server

    Plakida, N M


    One examines theory of superconducting coupling resulted from antiferromagnetic exchange in terms of which one explains strong dependence of T sub c superconducting transition temperature on alpha lattice constant. Calculations are based on the Hubbard p-d two-region model within strong correlation limit. DELTA pd excitation high energy at antiferromagnetic exchange of two particles from different Hubbard subregions results in suppression o delay effects and in coupling of all particles in conductivity subregion with Fermi energy E sub F >= DELTA pd : T sub c approx = E sub F exp(-1/lambda), where lambda propor to J. T sub c (alpha) and isotopic effect are explained by J exchange interaction dependence on alpha and on zero oscillations of oxygen ions

  18. Titanium: light, strong, and white (United States)

    Woodruff, Laurel; Bedinger, George


    Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.

  19. Laser Processed Heat Exchangers (United States)

    Hansen, Scott


    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  20. Microsoft Exchange 2013 cookbook

    CERN Document Server

    Van Horenbeeck, Michael


    This book is a practical, hands-on guide that provides the reader with a number of clear, step-by-step exercises.""Microsoft Exchange 2013 Cookbook"" is targeted at network administrators who deal with the Exchange server in their day-to-day jobs. It assumes you have some practical experience with previous versions of Exchange (although this is not a requirement), without being a subject matter expert.

  1. Towards TDDFT for Strongly Correlated Materials

    Directory of Open Access Journals (Sweden)

    Shree Ram Acharya


    Full Text Available We present some details of our recently-proposed Time-Dependent Density-Functional Theory (TDDFT for strongly-correlated materials in which the exchange-correlation (XC kernel is derived from the charge susceptibility obtained using Dynamical Mean-Field Theory (the TDDFT + DMFT approach. We proceed with deriving the expression for the XC kernel for the one-band Hubbard model by solving DMFT equations via two approaches, the Hirsch–Fye Quantum Monte Carlo (HF-QMC and an approximate low-cost perturbation theory approach, and demonstrate that the latter gives results that are comparable to the exact HF-QMC solution. Furthermore, through a variety of applications, we propose a simple analytical formula for the XC kernel. Additionally, we use the exact and approximate kernels to examine the nonhomogeneous ultrafast response of two systems: a one-band Hubbard model and a Mott insulator YTiO3. We show that the frequency dependence of the kernel, i.e., memory effects, is important for dynamics at the femtosecond timescale. We also conclude that strong correlations lead to the presence of beats in the time-dependent electric conductivity in YTiO3, a feature that could be tested experimentally and that could help validate the few approximations used in our formulation. We conclude by proposing an algorithm for the generalization of the theory to non-linear response.

  2. Are international fund flows related to exchange rate dynamics?

    NARCIS (Netherlands)

    Li, Suxiao; de Haan, Jakob; Scholtens, Bert


    Employing monthly data for 53 countries between 1996 and 2015, we investigate the relationship between international fund flows and exchange rate dynamics. We find strong co-movement between funds flows (as measured with the EPFR Global data base) and bilateral real exchange rates vis-à-vis the USD.

  3. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan


    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  4. Higher Education Exchange, 2010 (United States)

    Brown, David W., Ed.; Witte, Deborah, Ed.


    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  5. Higher Education Exchange, 2012 (United States)

    Brown, David W., Ed.; Witte, Deborah, Ed.


    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  6. Higher Education Exchange, 2011 (United States)

    Brown, David W., Ed.; Witte, Deborah, Ed.


    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape…

  7. French chemical exchange process

    International Nuclear Information System (INIS)

    Frejacques, C.; Lerat, J.-M.; Plurien, P.


    A new chemical exchange reaction between two forms of uranium compounds with a high elementary separation coefficient and good kinetics has been discovered at the French Energy Commission ten years ago and developed to the industrial stage. We give here some general characteristics of the process and discuss some parameters of the kinetics exchange

  8. Direct fired heat exchanger (United States)

    Reimann, Robert C.; Root, Richard A.


    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  9. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton


    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  10. Motivation for International Exchange. (United States)

    Brewer, Elizabeth

    An objective analysis of students' initial motivation for studying overseas was attempted by surveying students before they embarked on their exchange programs. Eighty-eight students who were planning to study in France, Great Britain, Germany, and the People's Republic of China were surveyed. The exchange program was sponsored by the University…

  11. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes


    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  12. The exchange of inorganic carbon on the Canadian Beaufort Shelf (United States)

    Mol, Jacoba; Thomas, Helmuth; Hu, Xianmin; Myers, Paul G.


    The Mackenzie Shelf in the southeastern Beaufort Sea is an area that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds and resulting cross-shelf Ekman transport. Downwelling carries inorganic carbon and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world oceans. Upwelling carries water high in dissolved inorganic carbon (DIC) and nutrients from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of inorganic carbon on the Mackenzie Shelf. The along-shore and cross-shelf transport of inorganic carbon is quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) model. A strong upwelling event prior to sampling on the Mackenzie Shelf is analyzed and the resulting influence on the carbonate system, including the saturation state of aragonite and pH levels, is investigated. TA and δ18O are used to examine water mass distributions in the study area and analyze the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of CO2 in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key in order to quantify the importance of Arctic shelf regions to the global carbon cycle and to provide a basis for understanding how its role will respond to the aforementioned changes in the regional marine system.

  13. Standardizing exchange formats

    International Nuclear Information System (INIS)

    Lemmel, H.D.; Schmidt, J.J.


    An international network of co-operating data centres is described who maintain identical data bases which are simultaneously updated by an agreed data exchange procedure. The agreement covers ''data exchange formats'' which are compatible to the centres' internal data storage and retrieval systems which remain different, optimized at each centre to the available computer facilities and to the needs of the data users. Essential condition for the data exchange is an agreement on common procedures for the data exchange is an agreement on common procedures for the data compilation, including critical data analysis and validation. The systems described (''EXFOR'', ''ENDF'', ''CINDA'') are used for ''nuclear reaction data'', but the principles used for data compilation and exchange should be valid also for other data types. (author). 24 refs, 4 figs

  14. Strong economic growth driving increased electricity consumption

    International Nuclear Information System (INIS)

    Tiusanen, P.


    The Finnish economy is growing faster today than anyone dared hope only a few years ago. Growth estimates for 2000 have already had to be raised. This strong level of economic growth has been reflected in electricity consumption, which has continued to increase, despite the exceptionally warm winter. A major part of this increased electricity usage has so far been met through imports. The continued growth in electricity imports has largely been a result of the fact that the good water level situation in Sweden and Norway, together with the mild winter, has kept electricity prices exceptionally low on the Nordic electricity exchange. The short period of low temperatures seen at the end of January showed, however, that this type of temperature fluctuation, combined with the restrictions that exist in regard to transfer capacity, can serve to push Nordic exchange electricity prices to record levels. This increase in price also highlights the fact that we are approaching a situation in which capacity will be insufficient to meet demand. A truly tough winter has not been seen since the Nordic region's electricity markets were deregulated. The lesson that needs to be learnt is that Finland needs sufficient capacity of her own to meet demand even during particularly cold winters. Finland used 77.9 billion kWh of electricity last year, up 1.6% or 1.3 billion kWh on 1998. This growth was relatively evenly distributed among different user groups. This year, electricity consumption is forecast to grow by 2-3%

  15. The SNAP Strong Lens Survey

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, P.


    Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.

  16. Strong coupling phase in QED

    International Nuclear Information System (INIS)

    Aoki, Ken-ichi


    Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)

  17. New results on strong-interaction effects in antiprotonic hydrogen

    CERN Document Server

    Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M


    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).

  18. New results on strong-interaction effects in antiprotonic hydrogen

    International Nuclear Information System (INIS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.


    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction

  19. Strong Decomposition of Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jørgensen, Jørgen; Kagan, Abram M.; Pitt, Loren D.


    A random variable X is stongly decomposable if X=Y+Z where Y=Φ(X) and Z=X-Φ(X) are independent non-degenerated random variables (called the components). It is shown that at least one of the components is singular, and we derive a necessary and sufficient condition for strong decomposability...

  20. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...

  1. Strong-strong beam-beam simulation on parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji


    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

  2. Strong-strong beam-beam simulation on parallel computer

    International Nuclear Information System (INIS)

    Qiang, Ji


    The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders

  3. Wound tube heat exchanger (United States)

    Ecker, Amir L.


    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  4. Heat and mass exchanger (United States)

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas


    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  5. PREFACE: Strongly correlated electron systems Strongly correlated electron systems (United States)

    Saxena, Siddharth S.; Littlewood, P. B.


    This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which

  6. Strongly correlated systems experimental techniques

    CERN Document Server

    Mancini, Ferdinando


    The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognize...

  7. Strongly Correlated Systems Theoretical Methods

    CERN Document Server

    Avella, Adolfo


    The volume presents, for the very first time, an exhaustive collection of those modern theoretical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as po...

  8. Strongly correlated systems numerical methods

    CERN Document Server

    Mancini, Ferdinando


    This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possi...

  9. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija


    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  10. Data Exchange Inventory System (DEXI) (United States)

    Social Security Administration — Enterprise tool used to identify data exchanges occurring between SSA and our trading partners. DEXI contains information on both incoming and outgoing exchanges and...

  11. NASA Earth Exchange (NEX) (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  12. Research peer exchange, 2014. (United States)


    The WSDOT Research Peer Exchange was held in Olympia, Washington on May 13 and 14, 2014 and addressed Research Program and Project Management as described in the following paragraphs: Program Management There are numerous funding programs, standing c...

  13. Cation Exchange Water Softeners (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  14. Active microchannel heat exchanger (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA


    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  15. HUD Exchange Grantee Database (United States)

    Department of Housing and Urban Development — The About Grantees section of the HUD Exchange brings up contact information, reports, award, jurisdiction, and location data for organizations that receive HUD...

  16. Exchange transfusion - slideshow (United States)

    ... page: // Exchange transfusion - series—Procedure To use the sharing features on ... M. Editorial team. Related MedlinePlus Health Topics Blood Transfusion and Donation Common Infant and Newborn Problems Jaundice ...

  17. Exchange Risk Management Policy

    CERN Document Server


    At the Finance Committee of March 2005, following a comment by the CERN Audit Committee, the Chairman invited the Management to prepare a document on exchange risk management policy. The Finance Committee is invited to take note of this document.

  18. Flavour Democracy in Strong Unification

    CERN Document Server

    Abel, S A; Abel, Steven; King, Steven


    We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.

  19. Contact Heat Exchanger (United States)

    Fleming, M. L.; Stalmach, D. D.; Cox, R. L.


    Fluid pressure controls contact between heat pipe and heat exchanger. Heat exchanger system in cross section provides contact interface between fluid system and heat pipe with easy assembly/disassembly of heat-pipe/ pumped-liquid system. Originally developed for use in space, new device applicable on Earth where fluid system is linked with heat pipe, where rapid assembly/disassembly required, or where high pressures or corrosive fluids used.

  20. Hibernation and gas exchange. (United States)

    Milsom, William K; Jackson, Donald C


    Hibernation in endotherms and ectotherms is characterized by an energy-conserving metabolic depression due to low body temperatures and poorly understood temperature-independent mechanisms. Rates of gas exchange are correspondly reduced. In hibernating mammals, ventilation falls even more than metabolic rate leading to a relative respiratory acidosis that may contribute to metabolic depression. Breathing in some mammals becomes episodic and in some small mammals significant apneic gas exchange may occur by passive diffusion via airways or skin. In ectothermic vertebrates, extrapulmonary gas exchange predominates and in reptiles and amphibians hibernating underwater accounts for all gas exchange. In aerated water diffusive exchange permits amphibians and many species of turtles to remain fully aerobic, but hypoxic conditions can challenge many of these animals. Oxygen uptake into blood in both endotherms and ectotherms is enhanced by increased affinity of hemoglobin for O₂ at low temperature. Regulation of gas exchange in hibernating mammals is predominately linked to CO₂/pH, and in episodic breathers, control is principally directed at the duration of the apneic period. Control in submerged hibernating ectotherms is poorly understood, although skin-diffusing capacity may increase under hypoxic conditions. In aerated water blood pH of frogs and turtles either adheres to alphastat regulation (pH ∼8.0) or may even exhibit respiratory alkalosis. Arousal in hibernating mammals leads to restoration of euthermic temperature, metabolic rate, and gas exchange and occurs periodically even as ambient temperatures remain low, whereas body temperature, metabolic rate, and gas exchange of hibernating ectotherms are tightly linked to ambient temperature. © 2011 American Physiological Society.

  1. Real exchange rate misalignments


    Terra, Maria Cristina T.; Valladares, Frederico Estrella Carneiro


    This paper characterizes episodes of real appreciations and depreciations for a sample of 85 countries, approximately from 1960 to 1998. First, the equilibrium real exchange rate series are constructed for each country using Goldfajn and Valdes (1999) methodology (cointegration with fundamentals). Then, departures from equilibrium real exchange rate (misalignments) are obtained, and a Markov Switching Model is used to characterize the misalignments series as stochastic autor...

  2. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.


    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  3. Strong Correlation Physics in Aromatic Hydrocarbon Superconductors (United States)

    Capone, Massimo; Giovannetti, Gianluca


    We show, by means of ab-initio calculations, that electron-electron correlations play an important role in doped aromatic hydrocarbon superconductors, including potassium doped picene with Tc= 18K [1], coronene and phenanthrene [2]. For the case of picene the inclusion of exchange interactions by means of hybrid functionals reproduces the correct gap for the undoped compound and predicts an antiferromagnetic state for x=3, where superconductivity has been observed [3]. The latter finding is compatible with a sizable value of the correlation strength. The differences between the different compounds are analyzed and results of Dynamical Mean-Field Theory including both correlation effects and electron-phonon interactions are presented. Finally we discuss the consequences of strong correlations in an organic superconductor in relation to the properties of Cs3C60, in which electron correlations drive an antiferromagnetic state [4] but also lead to an enhancement of superconductivity [5]. 1. R. Mitsuhashi et al. Nature 464, 76 (2010)2. X.F. Wang et al, Nat. Comm. 2, 507 (2011)3. G. Giovannetti and M. Capone, Phys. Rev. B 83, 134508 (2011)4. Y. Takabayashi et al., Science 323, 1585 (2009)5. M. Capone et al. Rev. Mod. Phys. 81, 943 (2009

  4. Stable states in a strong IR field (United States)

    Zhong, Changchun; Robicheaux, Francis


    It is found that 10% of atoms stay in the quasi-stable states after being exposed to intense laser or microwave (MW) pulses, even though the pulses' intensity is much stronger than that needed for static fields ionization. The reason why atoms survive those strong pulses has attracted growing attentions. A. Arakelyan et al. have observed the optical spectra of the surviving Lithium atoms after interaction with intense 38-GHz MW fields for more than 1000 cycles, and the spectra exhibit a periodic train of peaks 38 GHz apart. It suggests that those weakly bound Rydberg electrons seldom go back to the ionic core, where the cycle average energy exchange happens. In this study, we are interested in the electron behavior in the presence of intense infrared fields with a much shorter wavelength (1000 nm). By solving the full 3D time dependent Schrodinger equation, we calculate the spectra of the surviving atoms under intense IR fields. Our numerical calculations show atoms survive the intense field in quasi-stable states for a long time, and the optical spectra are obviously modulated by the IR frequency. Through tuning the ponderomotive energy, we see how field parameters affect the behavior of electrons. Different atoms, such as Hydrogen, Helium, Lithium, and Sodium, are tested to see how atom's energy structures influence the results.

  5. Radial flow heat exchanger (United States)

    Valenzuela, Javier


    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  6. Bomb radiocarbon in the Red Sea: A medium-scale gas exchange experiment

    International Nuclear Information System (INIS)

    Cember, R.


    The history of bomb-produced radiocarbon in the surface waters of the Red Sea and the western Gulf of Aden was reconstructed from annual growth bands of corals. Gulf of Aden surface water entering the Red Sea and flowing to the north at the surface of the Red Sea becomes progressively enriched in bomb 14 C by air-sea exchange of carbon dioxide. With physical oceanographic observations and analysis as the basis of a simple model, this progressive northward enrichment can be used to calculate a mean invasionn flux for CO 2 across the Red Sea surface. The CO 2 invasion flux so calculated is 8 mol/m 2 /yr with an uncertainty of approximately 2 mol/m 2 /yr. When combined with the extensive historical observations of wind speeds in the Red Sea, the calculated CO 2 invasion flux supports the empirical relationship between CO 2 invasion and wind speed proposed by other workers. Sea surface pCO 2 was measured at seven stations along the length of the Red Sea in January 1985. These pCO 2 data show that in midwinter the net flux of CO 2 across the Red Sea surface (i.e. the difference between the invasion and evasion fluxes) is approximately zero for the Red Sea as a whole. copyright American Geophysical Union 1989

  7. Atmospheric CO2 observations and models suggest strong carbon uptake by forests in New Zealand (United States)

    Steinkamp, Kay; Mikaloff Fletcher, Sara E.; Brailsford, Gordon; Smale, Dan; Moore, Stuart; Keller, Elizabeth D.; Baisden, W. Troy; Mukai, Hitoshi; Stephens, Britton B.


    A regional atmospheric inversion method has been developed to determine the spatial and temporal distribution of CO2 sinks and sources across New Zealand for 2011-2013. This approach infers net air-sea and air-land CO2 fluxes from measurement records, using back-trajectory simulations from the Numerical Atmospheric dispersion Modelling Environment (NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ measurements from two fixed sites, Baring Head on the southern tip of New Zealand's North Island (41.408° S, 174.871° E) and Lauder from the central South Island (45.038° S, 169.684° E), and ship board data from monthly cruises between Japan, New Zealand, and Australia. A range of scenarios is used to assess the sensitivity of the inversion method to underlying assumptions and to ensure robustness of the results. The results indicate a strong seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in western regions covered by indigenous forest, suggesting higher photosynthetic and respiratory activity than is evident in the current a priori land process model. On the annual scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 (±37) Tg CO2 yr-1 from the atmosphere on average during 2011-2013. This sink is much larger than the reported 27 Tg CO2 yr-1 from the national inventory for the same time period. The difference can be partially reconciled when factors related to forest and agricultural management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon change are considered, but some differences are likely to remain. Baseline uncertainty, model transport uncertainty, and limited sensitivity to the northern half of the North Island are the main contributors to flux uncertainty.

  8. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas (United States)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan


    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  9. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.


    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  10. Extraction of Carbon Dioxide From Seawater by Ion Exchange Resin. Part 2. Using Strong Base Anion Exchange Resin (United States)


    efforts to enhance CO2 capture by this approach, commercial hollow fiber membrane contactors are proposed to be studied in a simulated open ocean...sufficient funding the microporous membrane contactor work could be completed in two man years, and the electrical regeneration work would require...additional studies be conducted to determine the viability of other proven technologies for carbon capture. Polypropylene microporous membranes in

  11. Strongly Interacting Light Dark Matter

    Directory of Open Access Journals (Sweden)

    Sebastian Bruggisser, Francesco Riva, Alfredo Urbano


    Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.

  12. Strongly interacting light dark matter

    International Nuclear Information System (INIS)

    Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo


    In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.

  13. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.


    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  14. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao


    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  15. Strong Plate, Weak Slab Dichotomy (United States)

    Petersen, R. I.; Stegman, D. R.; Tackley, P.


    Models of mantle convection on Earth produce styles of convection that are not observed on Earth.Moreover non-Earth-like modes, such as two-sided downwellings, are the de facto mode of convection in such models.To recreate Earth style subduction, i.e. one-sided asymmetric recycling of the lithosphere, proper treatment of the plates and plate interface are required. Previous work has identified several model features that promote subduction. A free surface or pseudo-free surface and a layer of material with a relatively low strength material (weak crust) allow downgoing plates to bend and slide past overriding without creating undue stress at the plate interface. (Crameri, et al. 2012, GRL)A low viscosity mantle wedge, possibly a result of slab dehydration, decouples the plates in the system. (Gerya et al. 2007, Geo)Plates must be composed of material which, in the case of the overriding plate, are is strong enough to resist bending stresses imposed by the subducting plate and yet, as in the case of the subducting plate, be weak enough to bend and subduct when pulled by the already subducted slab. (Petersen et al. 2015, PEPI) Though strong surface plates are required for subduction such plates may present a problem when they encounter the lower mantle.As the subducting slab approaches the higher viscosity, lower mantle stresses are imposed on the tip.Strong slabs transmit this stress to the surface.There the stress field at the plate interface is modified and potentially modifies the style of convection. In addition to modifying the stress at the plate interface, the strength of the slab affects the morphology of the slab at the base of the upper mantle. (Stegman, et al 2010, Tectonophysics)Slabs that maintain a sufficient portion of their strength after being bent require high stresses to unbend or otherwise change their shape.On the other hand slabs that are weakened though the bending process are more amenable to changes in morphology. We present the results of

  16. Tensor exchange amplitudes in K +- N charge exchange reactions

    International Nuclear Information System (INIS)

    Svec, M.


    Tensor (A 2 ) exchange amplitudes in K +- N charge exchange (CEX) are constructed from the K +- N CEX data supplemented by information on the vector (rho) exchange amplitudes from πN sca tering. We observed new features in the t-structure of A 2 exchange amplitudes which contradict the t-de pendence anticipated by most of the Regge models. The results also provide evidence for violation of weak exchange degeneracy

  17. EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems (United States)

    Ronning, Filip; Batista, Cristian


    Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed

  18. Ultrafast control of strong light–matter coupling (United States)

    Lange, Christoph; Cancellieri, Emiliano; Panna, Dmitry; Whittaker, David M.; Steger, Mark; Snoke, David W.; Pfeiffer, Loren N.; West, Kenneth W.; Hayat, Alex


    We dynamically modulate strong light–matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light–matter coupling.

  19. Exchanging Description Logic Knowledge Bases

    NARCIS (Netherlands)

    Arenas, M.; Botoeva, E.; Calvanese, D.; Ryzhikov, V.; Sherkhonov, E.


    In this paper, we study the problem of exchanging knowledge between a source and a target knowledge base (KB), connected through mappings. Differently from the traditional database exchange setting, which considers only the exchange of data, we are interested in exchanging implicit knowledge. As

  20. Safety aspects in a chemical exchange process plant

    International Nuclear Information System (INIS)

    Sharma, B.K.


    Based on a chemical exchange process involving solid liquid exchange, studies have been undertaken to enrich 10 B isotope of boron using ion exchange chromatography in which a strong base anion exchange resin in hydroxyl form is equilibrated with boric acid solution in presence of mannitol (a complexing reagent to boric acid) to enhance the acidity and hence the isotopic exchange separation factor for 10 B = 11 B exchange reaction. Using the electrochemical techniques such as pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron and monitoring of band movements using these electrochemical techniques. The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. This process is an industrially viable process. The various safety aspects followed during operation of this plant are described in this paper. (author)

  1. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.


    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  2. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.


    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein

  3. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.


    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  4. Physics of Strongly Coupled Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)


    Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and

  5. Strongly coupled dust coulomb clusters

    International Nuclear Information System (INIS)

    Juan Wentau; Lai Yingju; Chen Mingheng; I Lin


    The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing

  6. Probability densities in strong turbulence (United States)

    Yakhot, Victor


    In this work we, using Mellin’s transform combined with the Gaussian large-scale boundary condition, calculate probability densities (PDFs) of velocity increments P(δu,r), velocity derivatives P(u,r) and the PDF of the fluctuating dissipation scales Q(η,Re), where Re is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF P(δu,r) often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for the deviation of P(δu,r) from P(δu,r). An expression for the function D(h) of the multifractal theory, free from spurious logarithms recently discussed in [U. Frisch, M. Martins Afonso, A. Mazzino, V. Yakhot, J. Fluid Mech. 542 (2005) 97] is also obtained.

  7. Microgravity condensing heat exchanger (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)


    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  8. Multicomponent ion exchange model

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Byers, C.H.


    The optimization of ion-exchange column design becomes increasingly important in applications where high efficiency is required to remove trace components in wastewater to very low discharge requirements and for treating hazardous wastewaters where the disposal costs for secondary waste is extremely high. A predictive mathematical model is being developed for improved design of ion-exchange columns for treatment of wastewaters which are contaminated with trace quantities of Sr-90 and Cs-137. Equilibria isotherms and mass transfer mechanisms are being experimentally determined for isothermal multicomponent ion exchange of Ca, Mg, Na, Ca, and Sr with Ionsive IE-95 chabazite zeolite. These equations are being included in a mathematical model to determine the cation breakthrough curves for different column configurations and operating conditions

  9. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.


    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  10. Modular heat exchanger (United States)

    Culver, Donald W.


    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  11. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.


    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  12. Heat exchanger panel (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)


    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  13. Classification of exchange currents

    International Nuclear Information System (INIS)

    Friar, J.L.


    After expansion of the vector and axial vector currents in powers of (v/c), a heretofore unremarked regularity results. Meson exchange currents can be classified into types I and II, according to the way they satisfy the constraints of special relativity. The archetypes of these two categories are the impulse approximation to the vector and axial vector currents. After a brief discussion of these constraints, the (rhoπγ) and (ωsigmaγ) exchange currents are constructed and classified, and used to illustrate a number of important points which are often overlooked

  14. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas


    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  15. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  16. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  17. Remnants of strong tidal interactions

    International Nuclear Information System (INIS)

    Mcglynn, T.A.


    This paper examines the properties of stellar systems that have recently undergone a strong tidal shock, i.e., a shock which removes a significant fraction of the particles in the system, and where the shocked system has a much smaller mass than the producer of the tidal field. N-body calculations of King models shocked in a variety of ways are performed, and the consequences of the shocks are investigated. The results confirm the prediction of Jaffe for shocked systems. Several models are also run where the tidal forces on the system are constant, simulating a circular orbit around a primary, and the development of tidal radii under these static conditions appears to be a mild process which does not dramatically affect material that is not stripped. The tidal radii are about twice as large as classical formulas would predict. Remnant density profiles are compared with a sample of elliptical galaxies, and the implications of the results for the development of stellar populations and galaxies are considered. 38 refs

  18. John Strong - 1941-2006

    CERN Document Server


    Our friend and colleague John Strong was cruelly taken from us by a brain tumour on 31 July, a few days before his 65th birthday. John started his career and obtained his PhD in a group from Westfield College, initially working on experiments at Rutherford Appleton Laboratory (RAL). From the early 1970s onwards, however, his research was focused on experiments in CERN, with several particularly notable contributions. The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras (a type of television camera) to record the sparks in the spark chambers. This highly automated system allowed Omega to be used in a similar way to bubble chambers. He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems. In these experiments the Westfield group joined forces with Italian colleagues to measure the form factors of the pion and the kaon, and the lifetime of some of the newly discovered charm particles. Such h...

  19. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.


    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  20. Nature's Heat Exchangers. (United States)

    Barnes, George


    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  1. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene


    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  2. Higher Education Exchange, 2014 (United States)

    Brown, David W., Ed.; Witte, Deborah, Ed.


    Research shows that not only does higher education not see the public; when the public, in turn, looks at higher education, it sees mostly malaise, inefficiencies, expense, and unfulfilled promises. Yet, the contributors to this issue of the "Higher Education Exchange" tell of bright spots in higher education where experiments in working…

  3. Upright heat exchanger

    International Nuclear Information System (INIS)

    Martoch, J.; Kugler, V.; Krizek, V.; Strmiska, F.


    The claimed heat exchanger is characteristic by the condensate level being maintained directly in the exchanger while preserving the so-called ''dry'' tube plate. This makes it unnecessary to build another pressure vessel into the circuit. The design of the heat exchanger allows access to both tube plates, which facilitates any repair. Another advantage is the possibility of accelerating the indication of leakage from the space of the second operating medium which is given by opening the drainage pipes of the lower bundle into the collar space and from there through to the indication pipe. The exchanger is especially suitable for deployment in the circuits of nuclear power plants where the second operating medium will be hot water of considerably lower purity than is that of the condensate. A rapid display of leakage can prevent any long-term penetration of this water into the condensate, which would result in worsening water quality in the entire secondary circuit of the nuclear power plant. (J.B.). 1 fig

  4. Fuel exchanger control device

    International Nuclear Information System (INIS)

    Kurabayashi, Masaharu.


    Purpose: To improve the stability and the operationability of the fuel exchanging work by checking the validity of the data before the initiation of the work. Constitution: A floppy disc stores the initial charging state data showing the arrangement of fuel assemblies in the reactor core pool, data showing the working procedures for the fuel exchange and a final charged state data upon completion of the work. The initial data and the procedure data are read from the disk and stored once into a memory. Then, the initial data are sequentially performed on the memory in accordance with the procedure data and, thereafter, they were compared with the final data read from the disk. After confirming that there are no errors in the working data, the procedure data are orderly instructed to the fuel exchanger for performing fuel replacement. Accordingly, since the data are checked before the initiation of the work, the fuel exchange can be performed automatically thereby improving the operationability thereof. (Yoshino, Y.)

  5. Basic Exchange Rate Theories

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)


    textabstractThis four-chapter overview of basic exchange rate theories discusses (i) the elasticity and absorption approach, (ii) the (long-run) implications of the monetary approach, (iii) the short-run effects of monetary and fiscal policy under various economic conditions, and (iv) the transition

  6. Telephone Exchange Maintenance

    CERN Multimedia


    Urgent maintenance work on CERN telephone exchanges will be performed on 24 March from 6 a.m. to 8 a.m. Telephone services may be disrupted or even interrupted during this time. For more details, please contact us by email at

  7. Counterflow Regolith Heat Exchanger (United States)

    Zubrin, Robert; Jonscher, Peter


    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  8. Strongly interacting photons and atoms

    International Nuclear Information System (INIS)

    Alge, W.


    This thesis contains the main results of the research topics I have pursued during the my PhD studies at the University of Innsbruck and partly in collaboration with the Institut d' Optique in Orsay, France. It is divided into three parts. The first and largest part discusses the possibility of using strong standing waves as a tool to cool and trap neutral atoms in optical cavities. This is very important in the field of nonlinear optics where several successful experiments with cold atoms in cavities have been performed recently. A discussion of the optical parametric oscillator in a regime where the nonlinearity dominates the evolution is the topic of the second part. We investigated mainly the statistical properties of the cavity output of the three interactive cavity modes. Very recently a system has been proposed which promises fantastic properties. It should exhibit a giant Kerr nonlinearity with negligible absorption thus leading to a photonic turnstile device based on cold atoms in cavity. We have shown that this model suffers from overly simplistic assumptions and developed several more comprehensive approaches to study the behavior of this system. Apart from the division into three parts of different contents the thesis is divided into publications, supplements and invisible stuff. The intention of the supplements is to reach researchers which work in related areas and provide them with more detailed information about the concepts and the numerical tools we used. It is written especially for diploma and PhD students to give them a chance to use the third part of our work which is actually the largest one. They consist of a large number of computer programs we wrote to investigate the behavior of the systems in parameter regions where no hope exists to solve the equations analytically. (author)

  9. Topics in strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Skoric, M.M.


    This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)

  10. Promoting Strong Written Communication Skills (United States)

    Narayanan, M.


    The reason that an improvement in the quality of technical writing is still needed in the classroom is due to the fact that universities are facing challenging problems not only on the technological front but also on the socio-economic front. The universities are actively responding to the changes that are taking place in the global consumer marketplace. Obviously, there are numerous benefits of promoting strong written communication skills. They can be summarized into the following six categories. First, and perhaps the most important: The University achieves learner satisfaction. The learner has documented verbally, that the necessary knowledge has been successfully acquired. This results in learner loyalty that in turn will attract more qualified learners.Second, quality communication lowers the cost per pupil, consequently resulting in increased productivity backed by a stronger economic structure and forecast. Third, quality communications help to improve the cash flow and cash reserves of the university. Fourth, having high quality communication enables the university to justify the need for high costs of tuition and fees. Fifth, better quality in written communication skills result in attracting top-quality learners. This will lead to happier and satisfied learners, not to mention greater prosperity for the university as a whole. Sixth, quality written communication skills result in reduced complaints, thus meaning fewer hours spent on answering or correcting the situation. The University faculty and staff are thus able to devote more time on scholarly activities, meaningful research and productive community service. References Boyer, Ernest L. (1990). Scholarship reconsidered: Priorities of the Professorate.Princeton, NJ: Carnegie Foundation for the Advancement of Teaching. Hawkins, P., & Winter, J. (1997). Mastering change: Learning the lessons of the enterprise.London: Department for Education and Employment. Buzzel, Robert D., and Bradley T. Gale. (1987

  11. A corrosive resistant heat exchanger (United States)

    Richlen, S.L.


    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  12. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J


    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  13. Emergence of junction dynamics in a strongly interacting Bose mixture

    DEFF Research Database (Denmark)

    Barfknecht, Rafael Emilio; Foerster, Angela; Zinner, Nikolaj Thomas

    We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry...... of the trap. We observe non-trivial dynamics when the repulsion between the impurity and the background is dominant. In this regime, the system exhibits oscillations that resemble the dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement in the tunneling as compared...

  14. Damping of multispan heat exchanger tubes. Pt. 1: in gases

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Goyder, H.G.D.; Qiao, Z.L.; Axisa, F.


    Flow-induced vibration analyses of heat exchanger tubes require the knowledge of damping. This paper treats the question of damping on multispan heat exchanger tubes in air and gases. The different energy dissipation mechanisms that contribute to tube damping are discussed. The available experimental data are reviewed and analysed. We find that the main damping mechanism in gases is friction between tube and tube-supports. Damping is strongly related to tube-support thickness. Damping values are recommended for design purposes. This study is interesting in the nuclear industry for it often uses heat exchangers

  15. Jump spillover between oil prices and exchange rates (United States)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng


    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  16. The Metaphysics of Economic Exchanges

    Directory of Open Access Journals (Sweden)

    Massin Olivier


    Full Text Available What are economic exchanges? The received view has it that exchanges are mutual transfers of goods motivated by inverse valuations thereof. As a corollary, the standard approach treats exchanges of services as a subspecies of exchanges of goods. We raise two objections against this standard approach. First, it is incomplete, as it fails to take into account, among other things, the offers and acceptances that lie at the core of even the simplest cases of exchanges. Second, it ultimately fails to generalize to exchanges of services, in which neither inverse preferences nor mutual transfers hold true. We propose an alternative definition of exchanges, which treats exchanges of goods as a special case of exchanges of services and which builds in offers and acceptances. According to this theory: (i The valuations motivating exchanges are propositional and convergent rather than objectual and inverse; (ii All exchanges of goods involve exchanges of services/actions, but not the reverse; (iii Offers and acceptances, together with the contractual obligations and claims they bring about, lie at the heart of all cases of exchange.

  17. Data Exchange Inventory (DEXI) System (United States)

    Social Security Administration — DEXI is an intranet application used by SSA users to track all incoming and outgoing data exchanges between SSA and our data exchange partners. Information such as...

  18. Hybrid exchange-correlation energy functionals for strongly correlated electrons. Applications to transition-metal monoxides

    Czech Academy of Sciences Publication Activity Database

    Tran, F.; Blaha, P.; Schwarz, K.; Novák, Pavel


    Roč. 74, č. 15 (2006), 155108/1-155108/10 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA1010214 EU Projects: European Commission(XE) HPRN-CT-2002-00293 - SCOOTMO Grant - others:Austrian Science Fondation(AT) AURORA project SFB011 Institutional research plan: CEZ:AV0Z10100521 Keywords : density functional theory * hybrid functional * transition metal monoxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  19. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds (United States)

    Guan, Zhibin; Lu, Yixuan


    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  20. Removal and Recovery of Chromium from Solutions Simulating Tannery Wastewater by Strong Acid Cation Exchanger

    Directory of Open Access Journals (Sweden)

    Gulten Cetin


    Full Text Available The process in this study was conducted on removal of chromium(III in a solution simulating a typical spent chrome tanning bath by the resin having matrix of styrene-divinylbenzene-based macroporous sulphonate, Amberjet 1200Na. The column experiments were carried out with the bed volumes of the resin as 751 mL and 1016 mL for different installation systems of the laboratory-scale pilot plant. The feeding solutions in the bed volumes of 200 and 190 were used for each installation system. The regeneration behaviour of the resin was determined by using reverse regeneration procedure with the solution of hydrogen peroxide in alkaline. The regeneration kinetics of the exhausted resin was examined with a range of the solutions having different concentration series of the alkaline hydrogen peroxide. The solutions of the basic chromium sulphate were recycled for each installation system following the regeneration cycles. The chromium ions in effluent were quantitatively eluted, and satisfactory removal of chromium(III and recovery of chromium(VI were achieved.

  1. Removal and Recovery of Chromium from Solutions Simulating Tannery Wastewater by Strong Acid Cation Exchanger


    Cetin, Gulten; Kocaoba, Sevgi; Akcin, Goksel


    The process in this study was conducted on removal of chromium(III) in a solution simulating a typical spent chrome tanning bath by the resin having matrix of styrene-divinylbenzene-based macroporous sulphonate, Amberjet 1200Na. The column experiments were carried out with the bed volumes of the resin as 751 mL and 1016 mL for different installation systems of the laboratory-scale pilot plant. The feeding solutions in the bed volumes of 200 and 190 were used for each installation system. The ...

  2. Comparison of regeneration efficiency of strong base anion exchangers fouled by iron and humic acids

    Czech Academy of Sciences Publication Activity Database

    Kus, P.; Kunesova, K.; Šlouf, Miroslav


    Roč. 49, č. 15 (2014), s. 2352-2357 ISSN 0149-6395 Institutional support: RVO:61389013 Keywords : regeneration * iron * fouling Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.171, year: 2014

  3. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Luna, J.; Frederking, T.H.K.


    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  4. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus


    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation......, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  5. Semiclassical theory of strong localization for quantum thermalization (United States)

    Khripkov, Christine; Vardi, Amichay; Cohen, Doron


    We introduce a semiclassical theory for strong localization that may arise in the context of many-body thermalization. As a minimal model for thermalization we consider a few-site Bose-Hubbard model consisting of two weakly interacting subsystems that can exchange particles. The occupation of a subsystem (x ) satisfies in the classical treatment a Fokker-Planck equation with a diffusion coefficient D (x ) . We demonstrate that it is possible to deduce from the classical description a quantum breaktime t* and, hence, the manifestations of a strong localization effect. For this purpose it is essential to take the geometry of the energy shell into account and to make a distinction between different notions of phase-space exploration.

  6. Heat exchanger tube mounts (United States)

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.


    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  7. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane


    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  8. Scraped surface heat exchangers. (United States)

    Rao, Chetan S; Hartel, Richard W


    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  9. Hydrogen isotope exchange reactions

    International Nuclear Information System (INIS)

    Jones, J.R.


    The two most widely used methods for following hydrogen isotope exchange reactions, namely dedeuteriation and detritiation, involve in the first place the synthesis of an appropriately labelled compound. Rates of dedeuteriation are usually followed by measuring changes in the 1 H n.m.r. spectrum of the substrate (examples are given); the method not only gives the rate but also the site(s) of exchange. It is limited to rather slow reactions and is not as accurate as some of the other methods. The development of deuterium n.m.r. spectroscopy means that changes in the 2 H n.m.r. spectrum can also be used to measure rates of dedeuteriation. The development of liquid scintillation counting greatly eased the problem of how to detect weak β emitters; the attractions of tritium as a tracer were thereby much enhanced. Nowadays the study of rates of detritiation constitutes one of the most versatile and accurate methods of following hydrogen isotope exchange. Examples of the technique are given. (U.K.)

  10. Paste heat exchange

    Energy Technology Data Exchange (ETDEWEB)


    The subject of coal paste heat exchangers is discussed in this letter report from Gelsenberg A.G. to I.G. Farbenindustrie A.G. Gelsenberg had given little consideration to the heating of coal paste by means of regeneration (heat exchange) because of the lack of experience in paste regeneration with bituminous coal, especially at 700 atmospheres. At the I.G. Farben plant at Poelitz, paste regeneration was carried out so that low concentration coal paste was heated in the regenerator together with the process gas, and the remaining coal was fed into the cold pass of the preheater in a thicker paste. Later tests proved this process viable. Gelsenberg heated normal coal paste and the gas in heat exchangers with the goal of relieving the preheater. Good results were achieved without change in design. The coal paste was heated with process gas in the regenerator at up to 315 degrees with constant pressure difference, so that after three months no decrease in K-values and no deposition or thickening was observed. Through the omission of paste gas, the pressure difference of the system became more constant and did not rise above the former level. The temperature also was more controllable, the chamber smoother running. Principal thermal data are given in a table. 1 table, 1 graph.

  11. Timing Foreign Exchange Markets

    Directory of Open Access Journals (Sweden)

    Samuel W. Malone


    Full Text Available To improve short-horizon exchange rate forecasts, we employ foreign exchange market risk factors as fundamentals, and Bayesian treed Gaussian process (BTGP models to handle non-linear, time-varying relationships between these fundamentals and exchange rates. Forecasts from the BTGP model conditional on the carry and dollar factors dominate random walk forecasts on accuracy and economic criteria in the Meese-Rogoff setting. Superior market timing ability for large moves, more than directional accuracy, drives the BTGP’s success. We explain how, through a model averaging Monte Carlo scheme, the BTGP is able to simultaneously exploit smoothness and rough breaks in between-variable dynamics. Either feature in isolation is unable to consistently outperform benchmarks throughout the full span of time in our forecasting exercises. Trading strategies based on ex ante BTGP forecasts deliver the highest out-of-sample risk-adjusted returns for the median currency, as well as for both predictable, traded risk factors.

  12. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.


    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  13. Exchange Market Pressure on the Croatian Kuna

    Directory of Open Access Journals (Sweden)

    Srđan Tatomir


    Full Text Available Currency crises exert strong pressure on currencies often causing costly economic adjustment. A measure of exchange market pressure (EMP gauges the severity of such tensions. Measuring EMP is important for monetary authorities that manage exchange rates. It is also relevant in academic research that studies currency crises. A precise EMP measure is therefore important and this paper reexamines the measurement of EMP on the Croatian kuna. It improves it by considering intervention data and thresholds that account for the EMP distribution. It also tests the robustness of weights. A discussion of the results demonstrates a modest improvement over the previous measure and concludes that the new EMP on the Croatian kuna should be used in future research.

  14. Ion exchange and protonation equilibria of an amphoteric ion-exchange resin in the presence of simple salt. (United States)

    Miyazaki, Yoshinobu; Qu, Hui; Konaka, Junko


    The influence of simple salts on the ion exchange and protonation equilibria of an amphoteric ion-exchange resin, which has strong base and weak acid moieties in a single functional group fixed onto the styrene-DVB matrix, has been investigated. Concentrations of ionic species in the amphoteric ion-exchange resin in equilibrium with various sodium salt solutions were estimated by (23)Na NMR spectroscopy. For the NaClO(4) system, the ratio of sodium ion concentration in the resin phase to that in the equilibrium solution was greater than 1 and increased with a decrease in the salt concentration. In contrast to an ordinary cation-exchange resin, the ion exchange behavior of Mg(2+) and Ca(2+) on the amphoteric ion-exchange resin showed a marked dependence on the kinds of salts: the distribution coefficients for the NaCl system were independent of the salt concentration, while the log D vs. log[Na(+)] plots for the NaClO(4) system showed linear relationships with slopes being neither -2 nor 0. Apparent protonation constants of the carboxylate in the functional group of the resin in equilibrium with NaClO(4) solutions were greater than those with NaCl solutions. The ion exchange and protonation properties of the amphoteric ion-exchange resin were elucidated on the basis of the information about the salt concentrations in the resin phase estimated by the NMR method.

  15. Mastering Microsoft Exchange Server 2010

    CERN Document Server

    McBee, Jim


    A top-selling guide to Exchange Server-now fully updated for Exchange Server 2010. Keep your Microsoft messaging system up to date and protected with the very newest version, Exchange Server 2010, and this comprehensive guide. Whether you're upgrading from Exchange Server 2007 SP1 or earlier, installing for the first time, or migrating from another system, this step-by-step guide provides the hands-on instruction, practical application, and real-world advice you need.: Explains Microsoft Exchange Server 2010, the latest release of Microsoft's messaging system that protects against spam and vir

  16. Progress in liquid ion exchangers

    International Nuclear Information System (INIS)

    Nakagawa, Genkichi


    Review is made on the extraction with anion exchangers and the extraction with liquid cation exchangers. On the former, explanation is made on the extraction of acids, the relation between anion exchange and the extraction of metals, the composition of the metallic complexes that are extracted, and the application of the extraction with anion exchangers to analytical chemistry. On the latter, explanation is made on the extraction of metals and its application to analytical chemistry. The extraction with liquid ion exchangers is suitable for the operation in chromatography, because the distribution of extracting agents into aqueous phase is small, and extraction equilibrium is quickly reached, usually within 1 to several minutes. The separation by means of anion exchangers is usually made from hydrochloric acid solution. For example, Brinkman et al. determined Rf values for more than 50 elements by thin layer chromatography. Tables are given for showing the structure of the liquid ion exchangers and the polymerized state of various amines. (Mori, K.)

  17. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A


    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  18. Simple full micromagnetic model of exchange bias behavior in ferro/antiferromagnetic layered structures (abstract) (United States)

    Koon, Norman C.


    It is shown using full micromagnetic relaxation calculations that exchange bias behavior is predicted for single-crystal ferro/antiferromagnetic layers with a fully compensated interface. The particular example most fully studied has a bcc/bct lattice structure with a fully compensated (110) interface plane. Only bilinear Heisenberg exchange was assumed, with anisotropy only in the antiferromagnet. In spite of the intuitive notion that exchange coupling between a ferromagnet and an antiferromagnet across a fully compensated plane of the antiferromagnet should be zero, we find strong coupling, comparable to the bilinear exchange, with a 90° angle between the ferromagnetic and antiferromagnetic axes of layers far from the interface in absence of an applied field. Even though the 90° coupling has characteristics resembling "biquadratic" exchange, it originates entirely from frustrated bilinear exchange. The development of exchange bias is found to originate from the formation of a domain wall in the antiferromagnet via the strong 90° exchange coupling and pinning of the wall by the magnetocrystalline anisotropy in the antiferromagnet. Because the large demagnetizing factor of the ferromagnet tends to confine its magnetization to the plane, the exchange bias is found to depend mainly on the strength and the symmetry of the in-plane component of anisotropy. Although little effort was made to analyze specific systems, the model reproduces many of the qualitative features observed in real exchange bias systems and gives reasonable semiquantitative estimates for the bias field when exchange and anisotropy values consistent with real systems are used.

  19. Heat exchanger-accumulator (United States)

    Ecker, Amir L.


    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  20. Intergenerational Exchanges in Mexico (United States)

    Gomes, Cristina


    This article analyses exchanges of support between the elderly and adult generations and by gender, based on data from the United Nations household survey in Mexico City (SABE, 2000), and the National Study of Ageing and Health (ENASEM, 2001). Results indicate that in Mexico both generations – elderly parents and adult children – provide support, such as money, services, care or gifts for grandchildren, according to gender roles and the generation’s resources. Men provide monetary support and reproduce their role as family providers, but this role depends on having an income from work and, in later years, a pension, a more common situation among men than among women. Women develop their female domestic role as caregivers. They do not have a formal income, but receive informal economic support and offer services and care to their relatives, reproducing their invisible and unpaid work during their life course. Both types of support are widely exchanged between elderly parents and adult children and children-in-law. PMID:29375143

  1. Atoms and clusters in strong laser fields

    NARCIS (Netherlands)

    Marchenko, T.


    This thesis describes experimental and theoretical studies on the interaction of strong infrared laser fields with atoms and atomic clusters. Part I provides an overview of the main strong-field phenomena in atoms, molecules and clusters and describes the state-of-the-art in strong-field science.

  2. Strong Bisimilarity of Simple Process Algebras

    DEFF Research Database (Denmark)

    Srba, Jirí


    We study bisimilarity and regularity problems of simple process algebras. In particular, we show PSPACE-hardness of the following problems: (i) strong bisimilarity of Basic Parallel Processes (BPP), (ii) strong bisimilarity of Basic Process Algebra (BPA), (iii) strong regularity of BPP, and (iv) ...

  3. 78 FR 15710 - Strong Sensitizer Guidance (United States)


    ... definition of ``strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of ``strong sensitizer'' due to advancements in the science of sensitization that have... document is intended to clarify the ``strong sensitizer'' definition, assist manufacturers in understanding...

  4. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.


    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  5. Rate of oxygen isotope exchange between selenate and water. (United States)

    Kaneko, Masanori; Poulson, Simon R


    The rate of oxygen isotope exchange between selenate and water was investigated at conditions of 10 to 80 °C and pH -0.6 to 4.4. Oxygen isotope exchange proceeds as a first-order reaction, and the exchange rate is strongly affected by reaction temperature and pH, with increased rates of isotope exchange at higher temperature and lower pH. Selenate speciation (HSeO(4)(-) vs SeO(4)(2-)) also has a significant effect on the rate of isotope exchange. The half-life for isotope exchange at example natural conditions (25 °C and pH 7) is estimated to be significantly in excess of 10(6) years. The very slow rate of oxygen isotope exchange between selenate and water under most environmental conditions demonstrates that selenate-δ(18)O signatures produced by biogeochemical processes will be preserved and hence that it will be possible to use the value of selenate-δ(18)O to investigate the biogeochemical behavior of selenate, in an analogous fashion to the use of sulfate-δ(18)O to study the biogeochemical behavior of sulfate.

  6. Current Account and Real Exchange Rate Dynamics in Indonesia

    Directory of Open Access Journals (Sweden)

    Firman Mochtar


    Full Text Available We analyze the role of both permanent and temporary factors in affecting the Indonesian current account and real exchange dynamics before and after 2000. Adopting Lee and Chinn (1998; 2006 approach as well as Chinn et al. (2007, two results stand out. First, we confirm that the behavior of the real exchange rate has altered since 2000. Identifications show that permanent shocks are the primary causes for the movement of the real exchange rate after 2000, while in the period before 2000, the Indonesian real exchange rate changes are characterized by greater dominance of temporary shocks. The apparent change in the real exchange rate behavior may be strongly justified by the implementation of free-floating exchange rate system since August 1997. Second, the shift of the real exchange rate behavior after 2000 does not necessarily affect the current account dynamics. Empirical evidence confirms that the variance of current account post 2000 remains largely due to temporary shocks. Albeit having increasing influence, permanent shocks have insignificant effect in explaining fluctuations of the current account. In this sense, the current account surplus after 2000 is attributed largely to nominal variables such as price increase, while the impact of productivity improvement is still limited.

  7. Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces (United States)

    Koon, N. C.


    A microscopic explanation of exchange bias in thin films with compensated ferro/antiferromagnetic interfaces is presented. Full micromagnetic calculations show the interfacial exchange coupling to be relatively strong with a perpendicular orientation between the ferro/antiferromagnetic axis directions, similar to the classic ``spin-flop'' state in bulk antiferromagnets. With reasonable parameters the calculations predict bias fields comparable to those observed and provide a possible explanation for both anomalous high field rotational hysteresis and recently discovered ``positive'' exchange bias.

  8. Fin efficiency in 2D with convection at the tip and dissymmetry of exchange

    International Nuclear Information System (INIS)

    Bouaziz, Najib


    To determine the overall effective surface in the heat exchangers, it is necessary to know the fin efficiency accurately. An analytical formula, taking into account the convective heat at the tip and an unequal exchange in 2D case is derived. Some differences were found between 1D and our expression. The dissymmetry of exchange has a strong effect on the fin efficiency and convection at the tip cannot be ignored.

  9. Fin efficiency in 2D with convection at the tip and dissymmetry of exchange

    Energy Technology Data Exchange (ETDEWEB)

    Bouaziz, Najib [Department of Mechanical Engineering, University of Medea, BP 164, Medea 26000 (Algeria)


    To determine the overall effective surface in the heat exchangers, it is necessary to know the fin efficiency accurately. An analytical formula, taking into account the convective heat at the tip and an unequal exchange in 2D case is derived. Some differences were found between 1D and our expression. The dissymmetry of exchange has a strong effect on the fin efficiency and convection at the tip cannot be ignored. (author)

  10. Effect of ferromagnetic exchange field on band gap and spin ...

    Indian Academy of Sciences (India)

    Partha Goswami


    Feb 19, 2018 ... On account of the strong spin–orbit coupling, the system acts as a. QSH insulator for M = 0. As the exchange field (M) increases, the band-gap narrowing takes place followed by its recovery. The essential features of these curves, apart from the particle–hole symmetry, are (i) opening of an orbital gap due to ...

  11. Sister chromatid exchange in peripheral blood lymphocytes as a ...

    African Journals Online (AJOL)

    Introduction: Sister chromatid exchanges (SCEs) can be induced by various genotoxic treatments, suggesting that SCEs refl ect a DNA repair process and it may be a good index for assessment of genomic instability. However, the occurrence of genetic instability and in particular, of spontaneous SCEs has been strongly ...

  12. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo


    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  13. Developing bulk exchange spring magnets (United States)

    Mccall, Scott K.; Kuntz, Joshua D.


    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  14. Finnish exchange students' culture shock


    Pekkala, Karoliina


    This bachelor’s thesis is written about culture shock experienced by the exchange students from Finland. It is commissioned by an international students exchange organisation located in Finland. The aim of the research was to find out how much the host country affects the culture shock and to identify aspects that affect the adaptation of the students. The goal is to provide the future exchange students with advise on coping with culture shock. Theoretical framework consists of defining w...

  15. Deuterium-hydrogen monothermal exchange

    International Nuclear Information System (INIS)

    Rae, H.K.


    A monothermal exchange process of extracting deuterium from ammonia synthesis gas is described. This process comprises passing the gas through an exchage liquid stream consisting of a liquid amine having up to five carbon atoms per molecule to cause deuterium to be transferred from the synthesis gas to the exchange liquid, and removing a stream of exchange liquid enriched in deuterium therefrom. (Patent Office Record)

  16. Deuterium exchange in carbonyl compounds

    International Nuclear Information System (INIS)

    Lamaty, G.


    After giving a brief outline of the theoretical study of H/D exchange the reaction mechanisms of enolization of ketones and of ketonization of enols are discussed. The orientation of the exchange in aliphatic ketones and the stereochemistry of the exchange in rigid cyclic ketones are dealt with. Some other ketonic systems and carboxylic acids and their derivatives are also considered. (B.R.H.)

  17. Mastering Microsoft Exchange Server 2013

    CERN Document Server

    Elfassy, David


    The bestselling guide to Exchange Server, fully updated for the newest version Microsoft Exchange Server 2013 is touted as a solution for lowering the total cost of ownership, whether deployed on-premises or in the cloud. Like the earlier editions, this comprehensive guide covers every aspect of installing, configuring, and managing this multifaceted collaboration system. It offers Windows systems administrators and consultants a complete tutorial and reference, ideal for anyone installing Exchange Server for the first time or those migrating from an earlier Exchange Server version.Microsoft

  18. Hybrid Heat Exchangers (United States)

    Tu, Jianping Gene; Shih, Wei


    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  19. Catalysed hydrogen isotope exchange

    International Nuclear Information System (INIS)


    A method is described for enhancing the rate of exchange of hydrogen atoms in organic compounds or moieties with deuterium or tritium atoms. It comprises reacting the organic compound or moiety and a compound which is the source of deuterium or tritium in the presence of a catalyst consisting of a non-metallic, metallic or organometallic halide of Lewis acid character and which is reactive towards water, hydrogen halides or similar protonic acids. The catalyst is a halide or organometallic halide of: (i) zinc or another element of Group IIb; (ii) boron, aluminium or another element of Group III; (iii) tin, lead, antimony or another element of Groups IV to VI; or (iv) a transition metal, lanthanide or stable actinide; or a halohalide. (author)

  20. The Radioecology Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Catherine L.; Beresford, Nicholas A.; Patel, Sabera; Wells, Claire; Howard, Brenda J. [NERC Centre for Ecology and Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); Mora, Juan Carlos; Real, Almudena [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida complutense 22, Madrid, 28040 (Spain); Beaugelin-Seiller, Karine; Gilbin, Rodolphe; Hinton, Thomas [IRSN-Institut de Radioprotection et de Surete Nucleaire, 31, Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses (France); Vesterbacka, Pia; Muikku, Maarit; Outola, Iisa [Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 Helsinki (Finland); Skuterud, Lavrans; AlbumYtre-Eide, Martin [Norwegian Radiation Protection Authority, Grini Naeringspark 13, Oesteraas, 1332 (Norway); Bradshaw, Clare; Stark, Karolina; Jaeschke, Ben [Stockholms Universitet, Universitetsvaegen 10, Stockholm, 10691 (Sweden); Oughton, Deborah; Skipperud, Lindis [NMBU Norwegian University of Life Science P.O. Box 5003N-1432 Aas, Oslo (Norway); Vandenhove, Hildegarde; Vanhoudt, Nathalie [SCK.CEN, Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire, Avenue Herrmann-Debroux 40, BE-1160 Brussels (Belgium); Willrodt, Christine; Steiner, Martin [Bundesamt fuer Strahlenschutz, Willy-Brandt-Strasse 5, 38226 Salzgitter (Germany)


    The Radioecology Exchange ( was created in 2011 under the EU FP7 STAR (Strategy for Allied Radioecology) network of excellence. The project aims to integrate the research efforts on radioecology of nine European organisations into a sustainable network. The web site (together with associated Twitter feeds and Facebook page) currently provides the gateway to project outputs and other on-line radiation protection and radioecological resources. In 2013, the EU FP7 COMET (Coordination and implementation of a pan-European instrument for radioecology) project commenced; it aims to strengthen research on the impact of radiation on man and the environment. COMET includes the STAR partners with the addition of one Japanese and two Ukrainian research institutes. As STAR and COMET interact closely together and with the European Radioecology Alliance (, the Radioecology Exchange will be modified to become an international 'hub' for information related to radioecology. Project specific information will be hosted on separate web sites and This paper will present an overview of the resources hosted on the Radioecology Exchange inviting other scientists to contribute. Highlighted aspects of the site include: Social media (News blog, Twitter, Facebook) - Items announcing project outputs, training courses, jobs, studentships etc. Virtual laboratory - Information which encourages integration through joint research and integrated use of data and sample materials. These pages will focus on three categories: (1) Methodological: descriptions and video clips of commonly used analytical methods and protocols and the procedures used in STAR and COMET; (2) Informative: databases made available by STAR/COMET partners together with details of sample archives held. Fact-sheets on radio-ecologically important radionuclides and 'topical descriptions' which show absorbed

  1. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus


    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation, and the com......Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  2. Ion exchange equilibrium for some uni-univalent and uni-divalent

    African Journals Online (AJOL)


    DIVALENT REACTION SYSTEMS USING STRONGLY BASIC. ANION EXCHANGE RESIN DUOLITE A-102 D. R.S. Lokhande, P.U. Singare* and A.R. Kolte. Department of Chemistry, University of Mumbai, Vidyanagri, Santacruz, Mumbai-400 098,.

  3. Symmetry-protected collisions between strongly interacting photons. (United States)

    Thompson, Jeff D; Nicholson, Travis L; Liang, Qi-Yu; Cantu, Sergio H; Venkatramani, Aditya V; Choi, Soonwon; Fedorov, Ilya A; Viscor, Daniel; Pohl, Thomas; Lukin, Mikhail D; Vuletić, Vladan


    Realizing robust quantum phenomena in strongly interacting systems is one of the central challenges in modern physical science. Approaches ranging from topological protection to quantum error correction are currently being explored across many different experimental platforms, including electrons in condensed-matter systems, trapped atoms and photons. Although photon-photon interactions are typically negligible in conventional optical media, strong interactions between individual photons have recently been engineered in several systems. Here, using coherent coupling between light and Rydberg excitations in an ultracold atomic gas, we demonstrate a controlled and coherent exchange collision between two photons that is accompanied by a π/2 phase shift. The effect is robust in that the value of the phase shift is determined by the interaction symmetry rather than the precise experimental parameters, and in that it occurs under conditions where photon absorption is minimal. The measured phase shift of 0.48(3)π is in excellent agreement with a theoretical model. These observations open a route to realizing robust single-photon switches and all-optical quantum logic gates, and to exploring novel quantum many-body phenomena with strongly interacting photons.

  4. Radionuclide Leaching from Organic Ion Exchange Resin

    International Nuclear Information System (INIS)

    Delegard, C.H.; Rinehart, D.E.


    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolitetrademark NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900trademark, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material

  5. Risk and the evolution of human exchange (United States)

    Kaplan, Hillard S.; Schniter, Eric; Smith, Vernon L.; Wilson, Bart J.


    Compared with other species, exchange among non-kin is a hallmark of human sociality in both the breadth of individuals and total resources involved. One hypothesis is that extensive exchange evolved to buffer the risks associated with hominid dietary specialization on calorie dense, large packages, especially from hunting. ‘Lucky’ individuals share food with ‘unlucky’ individuals with the expectation of reciprocity when roles are reversed. Cross-cultural data provide prima facie evidence of pair-wise reciprocity and an almost universal association of high-variance (HV) resources with greater exchange. However, such evidence is not definitive; an alternative hypothesis is that food sharing is really ‘tolerated theft’, in which individuals possessing more food allow others to steal from them, owing to the threat of violence from hungry individuals. Pair-wise correlations may reflect proximity providing greater opportunities for mutual theft of food. We report a laboratory experiment of foraging and food consumption in a virtual world, designed to test the risk-reduction hypothesis by determining whether people form reciprocal relationships in response to variance of resource acquisition, even when there is no external enforcement of any transfer agreements that might emerge. Individuals can forage in a high-mean, HV patch or a low-mean, low-variance (LV) patch. The key feature of the experimental design is that individuals can transfer resources to others. We find that sharing hardly occurs after LV foraging, but among HV foragers sharing increases dramatically over time. The results provide strong support for the hypothesis that people are pre-disposed to evaluate gains from exchange and respond to unsynchronized variance in resource availability through endogenous reciprocal trading relationships. PMID:22513855

  6. Strongly correlating liquids and their isomorphs


    Pedersen, Ulf R.; Gnan, Nicoletta; Bailey, Nicholas P.; Schröder, Thomas B.; Dyre, Jeppe C.


    This paper summarizes the properties of strongly correlating liquids, i.e., liquids with strong correlations between virial and potential energy equilibrium fluctuations at constant volume. We proceed to focus on the experimental predictions for strongly correlating glass-forming liquids. These predictions include i) density scaling, ii) isochronal superposition, iii) that there is a single function from which all frequency-dependent viscoelastic response functions may be calculated, iv) that...

  7. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.


    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  8. New type fuel exchange system

    International Nuclear Information System (INIS)

    Meshii, Toshio; Maita, Yasushi; Hirota, Koichi; Kamishima, Yoshio.


    When the reduction of the construction cost of FBRs is considered from the standpoint of the machinery and equipment, to make the size small and to heighten the efficiency are the assigned mission. In order to make a reactor vessel small, it is indispensable to decrease the size of the equipment for fuel exchange installed on the upper part of a core. Mitsubishi Heavy Industries Ltd. carried out the research on the development of a new type fuel exchange system. As for the fuel exchange system for FBRs, it is necessary to change the mode of fuel exchange from that of LWRs, such as handling in the presence of chemically active sodium and inert argon atmosphere covering it and handling under heavy shielding against high radiation. The fuel exchange system for FBRs is composed of a fuel exchanger which inserts, pulls out and transfers fuel and rotary plugs. The mechanism adopted for the new type fuel exchange system that Mitsubishi is developing is explained. The feasibility of the mechanism on the upper part of a core was investigated by water flow test, vibration test and buckling test. The design of the mechanism on the upper part of the core of a demonstration FBR was examined, and the new type fuel exchange system was sufficiently applicable. (Kako, I.)

  9. Tube in shell heat exchangers

    International Nuclear Information System (INIS)

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.


    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  10. Heat exchanger bypass system for an absorption refrigeration system (United States)

    Reimann, Robert C.


    A heat exchanger bypass system for an absorption refrigeration system is disclosed. The bypass system operates to pass strong solution from the generator around the heat exchanger to the absorber of the absorption refrigeration system when strong solution builds up in the generator above a selected level indicative of solidification of strong solution in the heat exchanger or other such blockage. The bypass system includes a bypass line with a gooseneck located in the generator for controlling flow of strong solution into the bypass line and for preventing refrigerant vapor in the generator from entering the bypass line during normal operation of the refrigeration system. Also, the bypass line includes a trap section filled with liquid for providing a barrier to maintain the normal pressure difference between the generator and the absorber even when the gooseneck of the bypass line is exposed to refrigerant vapor in the generator. Strong solution, which may accumulate in the trap section of the bypass line, is diluted, to prevent solidification, by supplying weak solution to the trap section from a purge system for the absorption refrigeration system.

  11. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin


    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  12. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav


    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  13. Transendothelial lipoprotein exchange and microalbuminuria

    DEFF Research Database (Denmark)

    Jensen, Jan Skov; Feldt-Rasmussen, Bo; Jensen, Kurt Svarre


    . METHODS: Using an in vivo isotope technique, transendothelial exchange of low density lipoprotein (LDL) was measured in 77 non-diabetic individuals. Autologous 131-iodinated LDL was reinjected intravenously, and the 1-h fractional escape rate was calculated as index of transendothelial exchange. RESULTS......OBJECTIVE: Microalbuminuria associates with increased risk of atherosclerosis in individuals without diabetes. We hypothesized that transendothelial lipoprotein exchange is elevated among such individuals, possibly explaining increased intimal lipoprotein accumulation and thus atherosclerosis......: There was no difference in transendothelial LDL exchange between subjects with microalbuminuria versus normoalbuminuria (mean (95% confidence interval) 3.8%/h (3.3-4.3%/h) versus 4.2%/h (3.7-4.7%/h); P=0.33). In contrast, there was a positive correlation between transendothelial LDL exchange and (logarithmically...

  14. Fault-Tolerant Heat Exchanger (United States)

    Izenson, Michael G.; Crowley, Christopher J.


    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  15. Energy-Exchange Project

    Energy Technology Data Exchange (ETDEWEB)


    The purpose of the study was to determine what energy savings can be achieved by coordinating the resources and requirements of two facilities, the 26th Ward Water Pollution Control Plant (WPCP) and a housing development named Starrett City with its own total energy system. It was determined that three energy exchange options were economically and technically feasible. These include: the transfer of digester gas produced at the 26th Ward to the boilers at the Starrett City's total energy plant (TEP); the transfer of hot water heated at the TEP to the 26th Ward for space and process heating; and the transfer of coal effluent waste water from the 26th Ward to the condenser cooling systems at the TEP. Technical information is presented to support the findings. The report addresses those tasks of the statement of work dedicated to data acquisition, analysis, and energy conservation strategies internal to the Starrett City TEP and the community it supplies as well as to the 26th Ward WPCP. (MCW)

  16. Heat exchanger design


    Vítek, Tomáš


    Tato bakalářská práce řeší návrh výměníku tepla pro teplovodní kotel se zplyňovací komorou pro předehřev spalovacího vzduchu odpadním teplem spalin. Hodnoty pro výpočet byly experimentálně naměřeny. Práce obsahuje stručný popis trubkového výměníku tepla, stechiometrický vypočet spalování, návrh geometrických rozměrů výměníku, výpočet tlakových ztrát a výpočet výkonu. Její součástí je také výkresová dokumentace navrženého výměníku. This bachelor thesis solves design of a heat exchanger for ...

  17. Strong ideal convergence in probabilistic metric spaces

    Indian Academy of Sciences (India)

    sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and ... also important applications in nonlinear analysis [2]. The theory was brought to ..... for each t > 0 since each set on the right-hand side of the relation (3.1) belongs to I. Thus, by Definition 2.11 and the ...

  18. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.


    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  19. Optimization of strong and weak coordinates

    NARCIS (Netherlands)

    Swart, M.; Bickelhaupt, F.M.


    We present a new scheme for the geometry optimization of equilibrium and transition state structures that can be used for both strong and weak coordinates. We use a screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates. This differentiation

  20. Strong decays of nucleon and delta resonances

    International Nuclear Information System (INIS)

    Bijker, R.; Leviatan, A.


    We study the strong couplings of the nucleon and delta resonances in a collective model. In the ensuing algebraic treatment we derive closed expressions for decay widths which are used to analyze the experimental data for strong decays into the pion and eta channels. (Author)

  1. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)


    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  2. Seismic switch for strong motion measurement (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.


    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  3. Selective ion exchange recovery of rare earth elements from uranium mining solutions (United States)

    Rychkov, Vladimir N.; Kirillov, Evgeny V.; Kirillov, Sergey V.; Bunkov, Grigory M.; Mashkovtsev, Maxim A.; Botalov, Maxim S.; Semenishchev, Vladimir S.; Volkovich, Vladimir A.


    A comparative study of rare earth, ferric and aluminum ions ion exchange behavior on gel sulfonated p;olystyrene cation exchange resins depending on the degree of the matrix cross-linking and pH of the solution is presented. Selective ion exchange of REEs is possible at the pH range of 1.5-2.0 using strongly acidic cation exchange resins containing more than 8 % of DVB. The preliminary results of testing the efficiency of REEs recovery from the industrial uranium underground leaching solutions are also presented.

  4. Removal of 125I from radioactive experimental waste with an anion exchange paper membrane

    International Nuclear Information System (INIS)

    The behavior of radioactive iodide and chloride ions through an anion exchange paper membrane to remove 125 I from radioactive experimental waste has been studied with nonequilibrium thermodynamic analyses. Anion exchange paper membrane was found to be electroconductively more permeable to iodide ion than to chloride ion. The iodide ion bound more strongly to the anion exchange site within a membrane phase than the chloride ion by more than twice. The results suggested that an anion exchange paper membrane was appropriate for the filtration removal system

  5. Effective transfer entropy approach to information flow between exchange rates and stock markets

    International Nuclear Information System (INIS)

    Sensoy, Ahmet; Sobaci, Cihat; Sensoy, Sadri; Alali, Fatih


    We investigate the strength and direction of information flow between exchange rates and stock prices in several emerging countries by the novel concept of effective transfer entropy (an alternative non-linear causality measure) with symbolic encoding methodology. Analysis shows that before the 2008 crisis, only low level interaction exists between these two variables and exchange rates dominate stock prices in general. During crisis, strong bidirectional interaction arises. In the post-crisis period, the strong interaction continues to exist and in general stock prices dominate exchange rates

  6. Regenerating ion-exchangers used in uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.; Espenscheid, W.F.


    The process claimed restores the ion exchange capacity of a strong base anion exchange resin used for recovering uranium from solutions used to leach uranium from subterranean formations. The resin is eluted with hydrochloric acid to remove uranium in the form of uranyl carbonate anions. It is then washed with a solution containing 0.5 to 100 g/l of sodium carbonate, sodium bicarbonate, or mixtures of both carbonate and bicarbonate until it is free of materials which are either soluble in the solution or react with the solution

  7. Isotopic exchange of nitrogen and ammonia synthesis on uranium nitride

    International Nuclear Information System (INIS)

    Panov, G.I.; Boreskov, G.K.; Kharitonov, A.S.; Moroz, Eh.M.; Sobolev, V.I.


    The catalytic properties of uranium nitride samples of different chemical composition: α - U 2 N 3 and UNsub(1, 70) are compared. The isotopic exchange at 553-623 K in both cases is realized by reversible dissociative nitrogen adsorption. Despite the proximity of structural and thermodynamic phase characteristics, the nitrogen adsorption heat differs by 120 kJ/mol which leads to strong differences in catalytic sample properties. It is shown that the isotopic exchange serves a reliable characteristic of activation of molecular nitrogen and its ability to react with the ammonia synthesis

  8. Multifractal Analysis of Asian Foreign Exchange Markets and Financial Crisis (United States)

    Oh, Gabjin; Kwon, Okyu; Jung, Woo-Sung


    We analyze the multifractal spectra of daily foreign exchange rates for Japan, Hong-Kong, Korea, and Thailand with respect to the United States Dollar from 1991 to 2005. We find that the return time series show multifractal spectrum features for all four cases. To observe the effect of the Asian currency crisis, we also estimate the multifractal spectra of limited series before and after the crisis. We find that the Korean and Thai foreign exchange markets experienced a significant increase in multifractality compared to Hong-Kong and Japan. We also show that the multifractality is stronge related to the presence of high values of returns in the series.

  9. Custom, contract, and kidney exchange. (United States)

    Healy, Kieran; Krawiec, Kimberly D


    In this Essay, we examine a case in which the organizational and logistical demands of a novel form of organ exchange (the nonsimultaneous, extended, altruistic donor (NEAD) chain) do not map cleanly onto standard cultural schemas for either market or gift exchange, resulting in sociological ambiguity and legal uncertainty. In some ways, a NEAD chain resembles a form of generalized exchange, an ancient and widespread instance of the norm of reciprocity that can be thought of simply as the obligation to “pay it forward” rather than the obligation to reciprocate directly with the original giver. At the same time, a NEAD chain resembles a string of promises and commitments to deliver something in exchange for some valuable consideration--that is, a series of contracts. Neither of these salient "social imaginaries" of exchange--gift giving or formal contract--perfectly meets the practical demands of the NEAD system. As a result, neither contract nor generalized exchange drives the practice of NEAD chains. Rather, the majority of actual exchanges still resemble a simpler form of exchange: direct, simultaneous exchange between parties with no time delay or opportunity to back out. If NEAD chains are to reach their full promise for large-scale, nonsimultaneous organ transfer, legal uncertainties and sociological ambiguities must be finessed, both in the practices of the coordinating agencies and in the minds of NEAD-chain participants. This might happen either through the further elaboration of gift-like language and practices, or through a creative use of the cultural form and motivational vocabulary, but not necessarily the legal and institutional machinery, of contract.

  10. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)


    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  11. New perspectives on exchange currents

    International Nuclear Information System (INIS)

    Riska, D.O.


    The recently developed method of constructing the nuclear exchange current operators within the framework of the topological soliton (Skyrme) model is described. This approach is theoretically compact, allows treating nucleon and nuclear structure on the same footing and finally can be viewed as an effective low-energy representation of QCD. The approach also leads to some very natural connections between pionic and nuclear transition rates because the effective pion-nucleon interaction involves the isovector (exchange) current operator. Finally, a discussion of the relation between exchange currents and relativistic corrections is given. (author). 76 refs, 6 figs

  12. Heat exchanger with ceramic elements (United States)

    Corey, John A.


    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  13. Heat exchanger using graphite foam (United States)

    Campagna, Michael Joseph; Callas, James John


    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  14. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I


    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  15. Impurity screening in strongly coupled plasma systems

    CERN Document Server

    Kyrkos, S


    We present an overview of the problem of screening of an impurity in a strongly coupled one-component plasma within the framework of the linear response (LR) theory. We consider 3D, 2D and quasi-2D layered systems. For a strongly coupled plasma the LR can be determined by way of the known S(k) structure functions. In general, an oscillating screening potential with local overscreening and antiscreening regions emerges. In the case of the bilayer, this phenomenon becomes global, as overscreening develops in the layer of the impurity and antiscreening in the adjacent layer. We comment on the limitations of the LR theory in the strong coupling situation.

  16. The lambda sigma calculus and strong normalization

    DEFF Research Database (Denmark)

    Schack-Nielsen, Anders; Schürmann, Carsten

    Explicit substitution calculi can be classified into several dis- tinct categories depending on whether they are confluent, meta-confluent, strong normalization preserving, strongly normalizing, simulating, fully compositional, and/or local. In this paper we present a variant of the λσ-calculus......, which satisfies all seven conditions. In particular, we show how to circumvent Mellies counter-example to strong normalization by a slight restriction of the congruence rules. The calculus is implemented as the core data structure of the Celf logical framework. All meta-theoretic aspects of this work...

  17. Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption. (United States)

    Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao


    We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.

  18. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity. (United States)

    Delêtre, Marc; McKey, Doyle B; Hodkinson, Trevor R


    The conservation of crop genetic resources requires understanding the different variables-cultural, social, and economic-that impinge on crop diversity. In small-scale farming systems, seed exchanges represent a key mechanism in the dynamics of crop genetic diversity, and analyzing the rules that structure social networks of seed exchange between farmer communities can help decipher patterns of crop genetic diversity. Using a combination of ethnobotanical and molecular genetic approaches, we investigated the relationships between regional patterns of manioc genetic diversity in Gabon and local networks of seed exchange. Spatially explicit Bayesian clustering methods showed that geographical discontinuities of manioc genetic diversity mirror major ethnolinguistic boundaries, with a southern matrilineal domain characterized by high levels of varietal diversity and a northern patrilineal domain characterized by low varietal diversity. Borrowing concepts from anthropology--kinship, bridewealth, and filiation--we analyzed the relationships between marriage exchanges and seed exchange networks in patrilineal and matrilineal societies. We demonstrate that, by defining marriage prohibitions, kinship systems structure social networks of exchange between farmer communities and influence the movement of seeds in metapopulations, shaping crop diversity at local and regional levels.

  19. Marriage exchanges, seed exchanges, and the dynamics of manioc diversity (United States)

    Delêtre, Marc; McKey, Doyle B.; Hodkinson, Trevor R.


    The conservation of crop genetic resources requires understanding the different variables—cultural, social, and economic—that impinge on crop diversity. In small-scale farming systems, seed exchanges represent a key mechanism in the dynamics of crop genetic diversity, and analyzing the rules that structure social networks of seed exchange between farmer communities can help decipher patterns of crop genetic diversity. Using a combination of ethnobotanical and molecular genetic approaches, we investigated the relationships between regional patterns of manioc genetic diversity in Gabon and local networks of seed exchange. Spatially explicit Bayesian clustering methods showed that geographical discontinuities of manioc genetic diversity mirror major ethnolinguistic boundaries, with a southern matrilineal domain characterized by high levels of varietal diversity and a northern patrilineal domain characterized by low varietal diversity. Borrowing concepts from anthropology—kinship, bridewealth, and filiation—we analyzed the relationships between marriage exchanges and seed exchange networks in patrilineal and matrilineal societies. We demonstrate that, by defining marriage prohibitions, kinship systems structure social networks of exchange between farmer communities and influence the movement of seeds in metapopulations, shaping crop diversity at local and regional levels. PMID:22042843

  20. Spin excitations in systems with hopping electron transport and strong position disorder in a large magnetic field (United States)

    Shumilin, A. V.


    We discuss the spin excitations in systems with hopping electron conduction and strong position disorder. We focus on the problem in a strong magnetic field when the spin Hamiltonian can be reduced to the effective single-particle Hamiltonian and treated with conventional numerical technics. It is shown that in a 3D system with Heisenberg exchange interaction the spin excitations have a delocalized part of the spectrum even in the limit of strong disorder, thus leading to the possibility of the coherent spin transport. The spin transport provided by the delocalized excitations can be described by a diffusion coefficient. Non-homogenous magnetic fields lead to the Anderson localization of spin excitations while anisotropy of the exchange interaction results in the Lifshitz localization of excitations. We discuss the possible effect of the additional exchange-driven spin diffusion on the organic spin-valve devices.

  1. Strong Coupling Corrections in Quantum Thermodynamics (United States)

    Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.


    Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.

  2. Finding quantum effects in strong classical potentials (United States)

    Hegelich, B. Manuel; Labun, Lance; Labun, Ou Z.


    The long-standing challenge to describing charged particle dynamics in strong classical electromagnetic fields is how to incorporate classical radiation, classical radiation reaction and quantized photon emission into a consistent unified framework. The current, semiclassical methods to describe the dynamics of quantum particles in strong classical fields also provide the theoretical framework for fundamental questions in gravity and hadron-hadron collisions, including Hawking radiation, cosmological particle production and thermalization of particles created in heavy-ion collisions. However, as we show, these methods break down for highly relativistic particles propagating in strong fields. They must therefore be improved and adapted for the description of laser-plasma experiments that typically involve the acceleration of electrons. Theory developed from quantum electrodynamics, together with dedicated experimental efforts, offer the best controllable context to establish a robust, experimentally validated foundation for the fundamental theory of quantum effects in strong classical potentials.

  3. The Charm and Beauty of Strong Interactions (United States)

    El-Bennich, Bruno


    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  4. Atomica ionization by strong coherent radiation

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.


    The relation among the three most frequently used non-perturbative methods proposed to study the ionization of atoms by strong electromagnetic fields is established. Their range of validity is also determined. (Author) [pt

  5. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.


    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  6. Strong-force theorists scoop Noble Prize

    CERN Multimedia

    Durrani, Matin


    Three US theorists have shared the 2004 Nobel Prize in Physics "for the discovery of asymptotic freedom in the theory of the strong interaction". Their theoretical work explains why quarks behave almost as free particles at high energies (½ page)

  7. Calculating hadronic properties in strong QCD

    International Nuclear Information System (INIS)

    Pennington, M.R.


    This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)

  8. Building strong brands – does it matter?


    Aure, Kristin Gaaseide; Nervik, Kristine Dybvik


    Brand equity has proven, through several decades of research, to be a primary source of competitive advantage and future earnings (Yoo & Donthu, 2001). Building strong brands has therefore become a priority for many organizations, with the presumption that building strong brands yields these advantages (Yasin et al., 2007). A quantitative survey was conducted at Sunnmøre in Norway in order to answer the two developed research questions. - Does the brand equity dimensions; brand...

  9. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.


    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  10. Double perovskites with strong spin-orbit coupling (United States)

    Cook, Ashley M.

    We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally

  11. Apparatus and process for deuterium exchange

    International Nuclear Information System (INIS)

    Ergenc, M.S.


    The deuterium exchange plant is combined with an absorption refrigeration plant in order to improve the exchange process and to produce refrigeration. The refrigeration plant has a throttling means for expanding and cooling a portion of the liquid exchange medium separated in the exchange plant as well as an evaporator, in which the said liquid exchange medium is brought into heat exchange with a cold consumer device, absorption means for forming a solution of the used exchange medium and fresh water and a pump for pumping the solution into the exchange plant

  12. VLER Health Exchange by Area (United States)

    Department of Veterans Affairs — “Connect Your Docs” through the Virtual Lifetime Electronic Record (VLER) Health Exchange program. This program gives VA and community health care providers secure...

  13. Ion exchange in analytical chemistry

    National Research Council Canada - National Science Library

    Rieman, William; Walton, Harold F


    .... In order that the users of the book may understand properly the recommended analytical methods, considerable space is devoted to the preparation, structure and properties of ion-exchange materials...

  14. Counterflow Regolith Heat Exchanger Project (United States)

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  15. Estimating Foreign Exchange Reserve Adequacy

    Directory of Open Access Journals (Sweden)

    Abdul Hakim


    Full Text Available Accumulating foreign exchange reserves, despite their cost and their impacts on other macroeconomics variables, provides some benefits. This paper models such foreign exchange reserves. To measure the adequacy of foreign exchange reserves for import, it uses total reserves-to-import ratio (TRM. The chosen independent variables are gross domestic product growth, exchange rates, opportunity cost, and a dummy variable separating the pre and post 1997 Asian financial crisis. To estimate the risky TRM value, this paper uses conditional Value-at-Risk (VaR, with the help of Glosten-Jagannathan-Runkle (GJR model to estimate the conditional volatility. The results suggest that all independent variables significantly influence TRM. They also suggest that the short and long run volatilities are evident, with the additional evidence of asymmetric effects of negative and positive past shocks. The VaR, which are calculated assuming both normal and t distributions, provide similar results, namely violations in 2005 and 2008.

  16. Microplate Heat Exchanger, Phase I (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple cooling...

  17. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya


    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  18. Shared Year Exchange in Nursing

    DEFF Research Database (Denmark)

    Vedsegaard, Helle Wendner; Wederkinck, Elisabeth


    Beskrivelse af Shared Year Exchange in Nursing, et udviklingsporjekt omhandlende udvikling, beskrivelse og implementering af et fælles studieår for sygeplejerskestuderende ved Metropol og La Trobe University Australien.......Beskrivelse af Shared Year Exchange in Nursing, et udviklingsporjekt omhandlende udvikling, beskrivelse og implementering af et fælles studieår for sygeplejerskestuderende ved Metropol og La Trobe University Australien....

  19. Heraclitus, Seaford and Reversible Exchange


    Kassam, C; Duschinsky, Robert Nathan


    In this essay we identify a characteristic pattern of Heraclitus’ thought and language, the “figure of reversible exchange”. We suggest that this figure allows Heraclitus to propose an ontological structure consisting of two intersecting circuits of relations: a pre-temporal reversible exchange between Being and Becoming and between One and Many, and a temporal reversible exchange within the Many as the very process of Becoming. Against Richard Seaford’s interpretation of Heraclitus’ thought ...

  20. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.


    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. Progress is reported on the development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed

  1. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.


    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  2. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.


    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  3. Thermal equilibrium in strongly damped collisions

    International Nuclear Information System (INIS)

    Samaddar, S.K.; De, J.N.; Krishan, K.


    Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data

  4. The American Nuclear Society's international student exchange program

    International Nuclear Information System (INIS)

    Bornstein, I.


    The American Nuclear Society's (ANS's) International Student Exchange Program sponsors bilateral exchanges of students form graduate schools in American universities with students from graduate schools in France, the Federal Republic of Germany (FRG), and Japan. The program, now in its 12th year, was initiated in response to an inquiry to Argonne National Laboratory (ANL) from the director of the Centre d'Etudes Nucleaires de Saclay proposing to send French nuclear engineering students to the United States for summer jobs. The laboratory was asked to accept two students to work on some nuclear technology activity and ANS was invited to send American students to France on an exchange basis. To date, 200 students have taken part in the program. It has been a maturing and enriching experience for them, and many strong and enduring friendships have been fostered among the participants, many of whom will become future leaders in their countries

  5. Exchange of catenins in cadherin-catenin complex

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Troyanovsky, Regina B; Laur, Oscar Y


    beta-Catenin is an intracellular multifunctional protein. In complex with the transmembrane adhesive receptor E-cadherin, it becomes plasma membrane-associated and mediates intercellular adhesion. A cytosolic pool of beta-catenin interacts with DNA-binding proteins and participates in signal...... transduction. To reveal the possible cross-talk between these two pools, we studied whether beta-catenin is exchanged between its free and cadherin-bound states. We found that pulse-labeled beta-catenin replaces the beta-catenin bound to the cell surface prebiotinylated E-cadherin immediately after synthesis...... to the prebiotinylated E-cadherin. beta-Catenin released from E-cadherin may participate in new exchange cycles. This beta-catenin exchange is strongly affected in cells that contain mutations in the tumor suppressor gene APC. This process may contribute significantly to both cell-cell adhesion and beta...

  6. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  7. The extended reciprocity: Strong belief outperforms persistence. (United States)

    Kurokawa, Shun


    The existence of cooperation is a mysterious phenomenon and demands explanation, and direct reciprocity is one key potential explanation for the evolution of cooperation. Direct reciprocity allows cooperation to evolve for cooperators who switch their behavior on the basis of information about the opponent's behavior. Here, relevant to direct reciprocity is information deficiency. When the opponent's last move is unknown, how should players behave? One possibility is to choose cooperation with some default probability without using any further information. In fact, our previous paper (Kurokawa, 2016a) examined this strategy. However, there might be beneficial information other than the opponent's last move. A subsequent study of ours (Kurokawa, 2017) examined the strategy which uses the own last move when the opponent's last move is unknown, and revealed that referring to the own move and trying to imitate it when information is absent is beneficial. Is there any other beneficial information else? How about strong belief (i.e., have infinite memory and believe that the opponent's behavior is unchanged)? Here, we examine the evolution of strategies with strong belief. Analyzing the repeated prisoner's dilemma game and using evolutionarily stable strategy (ESS) analysis against an invasion by unconditional defectors, we find the strategy with strong belief is more likely to evolve than the strategy which does not use information other than the opponent player's last move and more likely to evolve than the strategy which uses not only the opponent player's last move but also the own last move. Strong belief produces the extended reciprocity and facilitates the evolution of cooperation. Additionally, we consider the two strategies game between strategies with strong belief and any strategy, and we consider the four strategies game in which unconditional cooperators, unconditional defectors, pessimistic reciprocators with strong belief, and optimistic reciprocators with

  8. 78 FR 69910 - Joint Industry Plan; BATS Exchange, Inc., BATS-Y Exchange, Inc., BOX Options Exchange LLC, C2... (United States)


    ... International Securities Exchange LLC, NASDAQ OMX BX, Inc., NASDAQ OMX PHLX LLC, The NASDAQ Stock Market LLC... Exchange, Inc., Financial Industry Regulatory Authority, Inc., International Securities Exchange, LLC, Miami International Securities Exchange LLC, NASDAQ OMX BX, Inc., NASDAQ OMX PHLX LLC, The NASDAQ Stock...

  9. Air-Sea Interaction Measurements from the Controlled Towed Vehicle (United States)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.


    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  10. Air sea interaction during summer monsoon period of 1979

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    stream_size 6 stream_content_type text/plain stream_name Satellite_Remote_Sensing_Ocean_Environ_1993_258.pdf.txt stream_source_info Satellite_Remote_Sensing_Ocean_Environ_1993_258.pdf.txt Content-Encoding ISO-8859-1 Content...

  11. Air-Sea Battle Concept: Back to the Future? (United States)


    the interrogation techniques utilized at the Guantanamo detention facility, and concerns over the continuing policy of preemptive strikes against...amphibious doctrine was still in its infancy; the lessons on the tactics, techniques , and procedures required to gain access and conduct sustained...He was, in effect, conducting a symphony from the second violin section...What risks deserved his highest concern: the risk to the expeditionary

  12. The structural role of weak and strong links in a financial market network (United States)

    Garas, A.; Argyrakis, P.; Havlin, S.


    We investigate the properties of correlation based networks originating from economic complex systems, such as the network of stocks traded at the New York Stock Exchange (NYSE). The weaker links (low correlation) of the system are found to contribute to the overall connectivity of the network significantly more than the strong links (high correlation). We find that nodes connected through strong links form well defined communities. These communities are clustered together in more complex ways compared to the widely used classification according to the economic activity. We find that some companies, such as General Electric (GE), Coca Cola (KO), and others, can be involved in different communities. The communities are found to be quite stable over time. Similar results were obtained by investigating markets completely different in size and properties, such as the Athens Stock Exchange (ASE). The present method may be also useful for other networks generated through correlations.

  13. Charge exchange recombination x-ray laser

    International Nuclear Information System (INIS)

    Kawachi, Tetsuya; Namba, Shinichi; Kado, Masataka; Tanaka, Momoko; Hasegawa, Noboru; Nagashima, Keisuke; Kato, Yoshiaki


    A recombining plasma x-ray laser using charge exchange recombination (CXR) is proposed. Fully stripped carbon ions collide with neutral He atoms and become excited hydrogenlike carbon ions, in which the excited levels with n=3 or 4 are mainly populated. We calculate the gain coefficients of the Balmer α and the Lyman β line of the hydrogenlike carbon ions by the use of a collisional-radiative model in which the CXR process is included. The calculated result shows that substantial gain can be generated for the Lyman β and Balmer α lines and that the gain of the Balmer α line can be strongly enhanced by the effect of CXR. We also report a preliminary experiment of this scheme. (author)

  14. Quantum Thermodynamics in Strong Coupling: Heat Transport and Refrigeration

    Directory of Open Access Journals (Sweden)

    Gil Katz


    Full Text Available The performance characteristics of a heat rectifier and a heat pump are studied in a non-Markovian framework. The device is constructed from a molecule connected to a hot and cold reservoir. The heat baths are modelled using the stochastic surrogate Hamiltonian method. The molecule is modelled by an asymmetric double-well potential. Each well is semi-locally connected to a heat bath composed of spins. The dynamics are driven by a combined system–bath Hamiltonian. The temperature of the baths is regulated by a secondary spin bath composed of identical spins in thermal equilibrium. A random swap operation exchange spins between the primary and secondary baths. The combined system is studied in various system–bath coupling strengths. In all cases, the average heat current always flows from the hot towards the cold bath in accordance with the second law of thermodynamics. The asymmetry of the double well generates a rectifying effect, meaning that when the left and right baths are exchanged the heat current follows the hot-to-cold direction. The heat current is larger when the high frequency is coupled to the hot bath. Adding an external driving field can reverse the transport direction. Such a refrigeration effect is modelled by a periodic driving field in resonance with the frequency difference of the two potential wells. A minimal driving amplitude is required to overcome the heat leak effect. In the strong driving regime the cooling power is non-monotonic with the system–bath coupling.

  15. Theory of strong-field attosecond transient absorption

    International Nuclear Information System (INIS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B


    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  16. A strongly coupled quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, Edward [Department of Physics and Astronomy, University at Stony Brook, NY 11794 (United States)


    Successful description of robust collective flow phenomena at RHIC by ideal hydrodynamics, recent observations of bound c-barc,q-barq states on the lattice, and other theoretical developments indicate that QGP produced at RHIC, and probably in a wider temperature region T{sub c} < T < 4T{sub c}, is not a weakly coupled quasiparticle gas as believed previously. We discuss how strong the interaction is and why it seems to generate hundreds of binary channels with bound states, surviving well inside the QGP phase. We in particular discuss their effect on pressure and viscosity. We conclude by reviewing the similar phenomena for other 'strongly coupled systems', such as (i) strongly coupled supersymmetric theories studied via Maldacena duality; (ii) trapped ultra-cold atoms with very large scattering length, tuned to Feschbach resonances.

  17. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa


    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  18. A theory of the strong interactions

    International Nuclear Information System (INIS)

    Gross, D.J.


    The most promising candidate for a fundamental microscopic theory of the strong interactions is a gauge theory of colored quarks-Quantum Chromodynamics (QCD). There are many excellent reasons for believing in this theory. It embodies the broken symmetries, SU(3) and chiral SU(3)xSU(3), of the strong interactions and reflects the success of (albeit crude) quark models in explaining the spectrum of the observed hadrons. The hidden quantum number of color, necessary to account for the quantum numbers of the low lying hadrons, plays a fundamental role in this theory as the SU(3) color gauge vector 'gluons' are the mediators of the strong interactions. The absence of physical quark states can be 'explained' by the hypothesis of color confinement i.e. that hadrons are permanently bound in color singlet bound states. Finally this theory is unique in being asymptotically free, thus accounting for the almost free field theory behvior of quarks observed at short distances. (Auth.)

  19. Electromagnetic processes in strong crystalline fields

    CERN Multimedia


    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  20. Patterns of Strong Coupling for LHC Searches

    CERN Document Server

    Liu, Da; Rattazzi, Riccardo; Riva, Francesco


    Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. Our construction provides the so far unique structurally robust context where to motivate several searches in Higgs physics, d...