WorldWideScience

Sample records for strong acidic ion-exchange

  1. Ion exchange behaviour of citrate and EDTA anions on strong and weak base organic ion exchangers

    International Nuclear Information System (INIS)

    Askarieh, M.M.; White, D.A.

    1988-01-01

    The exchange of citrate and EDTA ions with two strong base and two weak base exchangers is considered. Citrate and EDTA analysis for this work was performed using a colorimetric method developed here. The ions most selectively exchanged on the resins are H 2 cit - and H 2 EDTA 2- , though EDTA is generally less strongly sorbed on strong base resins. In contact with weak base resins, deprotonation of the resin occurs during ion exchange with a noticeable drop in solution pH. Although EDTA sorption can be reversed by nitric acid, citrate ions are significantly held on the resin at low pH. The exchange of citrate can be made reversible if bicarbonate is added to the initial solutions. Alkaline regeneration of exchangers loaded with EDTA proved to be very effective. (author)

  2. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    Science.gov (United States)

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Bacterial growth on ion exchange resin - investigations with a strong cationic exchanger. Pt. 3. Disinfection with peracetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Flemming, H.C.

    1984-12-01

    The suitability of peracetic acid (PAA) for the disinfection of ion exchangers was investigated. 0.02% PAA is suitable for satisfactory disinfection. In this way corrosive effects are strongly reduced. Ca/sup 2+/-ions seem to protect the bacteria, therefore the disinfection should be done with the Na/sup +/-form. The disinfection has no remanent effect and therefore is not suitable for preventing bacterial aftergrowth during off-periods. A combination of silver and disinfectant can accomplish this, until a new, silver-tolerant microflora has evolved. In this case the use of 0.02% PAA is imperative, because higher concentrations will dissolve the silver. As a principle the effectiveness of disinfection procedure should be monitored bacteriologically.

  4. SOLVENT EFFECTS IN THE LIQUID-PHASE HYDRATION OF CYCLOHEXENE CATALYZED BY A MACROPOROUS STRONG ACID ION-EXCHANGE RESIN

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1992-01-01

    The liquid-phase hydration of cyclohexene, a pseudo first order reversible reaction catalyzed by a strong acid ion exchange resin, macroporous Amberlite XE 307, was investigated in solvent mixtures of water and sulfolane. A decrease by a factor of 3 and 6 is observed in the experimentally measured

  5. Ion exchange removal of chromium (iii) from tannery wastes by using a strong acid cation exchange resin amberlite ir-120 h+ and its hybrids

    International Nuclear Information System (INIS)

    Ahmad, T.

    2014-01-01

    A strong acid cation exchange resin Amberlite IR-120 H+ and its hybrids with Mn(OH)/sub 2/, Cu(OH)/sub 2/ and Fe(OH)/sub 3/ are used for the removal of chromium (III) from spent tannery bath. The experimental data give good fits with the Langmuir sorption model. The thermodynamic parameters entropy (delta S), enthalpy (delta H) and free energy (delta G) changes are computed, which reveal that the chromium removal from tannery wastes by ion exchangers is an endothermic, physical sorption and entropically driven process. The rate of sorption is found to increase with the increase of resin dosage, stirring speed and temperature. Different kinetic models such as film diffusion, particle diffusion and Lagergren pseudo first order are used to evaluate the mechanism of the process. It is found that the hybrid ion exchange resins have better removal capacity as compared to the parent ion exchanger. The increase in the removal capacity is found to be in the order of the corresponding PZC values of the hybrid ion exchangers. Further, it is suggested that the higher exchange capacity is the result of Donnan effect and specific adsorption of chromium by the oxides / hydroxides present inside the matrix of the organic cation exchanger. (author)

  6. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    International Nuclear Information System (INIS)

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1998-01-01

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material

  7. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1994-01-01

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. (author)

  8. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .3. EFFECT OF SULFOLANE ON THE EQUILIBRIUM CONVERSION

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The liquid-phase hydration of cyclohexene, a pseudo-first-order reversible reaction catalyzed by a strong acid ion-exchange resin, was investigated in solvent mixtures of water and sulfolane. Macroporous Amberlite XE 307 was used because of its superior catalytic activity. Chemical equilibrium

  9. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .2. EFFECT OF SULFOLANE ON THE REACTION-KINETICS

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The kinetics of the' hydration of cyclohexene, catalyzed by a strong acid ion-exchange resin, have been studied in a packed bed reactor at temperatures between 353 and 413 K and a pressure of 20 bar. The kinetic rate constants were measured as a function of temperature and solvent composition (0-90

  10. Ion exchange fiber by radiation grafting, 1

    International Nuclear Information System (INIS)

    Fujiwara, Kunio

    1990-01-01

    Radiation grafting is gaining attention as a method for producing high performance materials. This method can be applied to add functions to existing polymer plastics. The author participated in the research program on the production of ion exchange fiber by radiation grafting and its applicability at the Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment. Consequently, it was clarified that it was possible to introduce the cation exchange group, represented by sulfonic and carboxyl groups, and the anion exchange group, represented by the quarternary ammonium group, to polypropylene fiber available on the market. The ion exchange capacity was able to be controlled by the degree of grafting, i.e. approximately up to 3 meq/g in both strong acid and strong base and approximately up to 5 meq/g in weak acid were obtained. The adsorption performance of ammonia, a representative malodorous substance, was also studied using test cation exchange fiber. The adsorption rate of H type strong acid cation exchange fiber was great, due to the H type having neutral reaction, and the adsorption capacity matched the ion exchange capacity. Although the Cu and Ni types features coordinated adsorption and their adsorption rates were from 1/2 to 1/3 of that of the H type, their adsorption capacities showed increase along with the metal adsorbed. (author)

  11. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    Science.gov (United States)

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  12. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 6

    International Nuclear Information System (INIS)

    Plicka, J.; Stamberg, K.; Cabicar, J.; Gosman, A.

    1986-01-01

    The description of kinetics of ion exchange in ternary system was based upon three Nernst-Planck equations, each of them describing the particle diffusion flux of a given counterion as an independent process. For experimental verification, the strongly acidic cation exchanger OSTION KS 08 the shallow-bed technique, and 0.2 mol x dm -3 aqueous nitrate solutions were chosen. The kinetics of ion exchange in the system of cations Na + - Mg 2+ - UO 2 2+ was studied. The values of diffusion coefficients obtained by evaluating of kinetics of isotope exchange and binary ion exchange were used for calculation. The comparison of calculated exchange rate curves with the experimental ones was made. It was found that the exchanging counterions were affected by each other. (author)

  13. Study of kinetics, equilibrium and isotope exchange in ion exchange systems Pt. 4

    International Nuclear Information System (INIS)

    Stamberg, K.; Plicka, J.; Calibar, J.; Gosman, A.

    1985-01-01

    The kinetics of ion exchange in the Nasup(+)-Mgsup(2+)-strongly acidic cation exchanger system in a batch stirred reactor was studied. The samples of exchangers OSTION KS (containing DVB in the range of 1.5 - 12%) and AMBERLITE IR 120 for experimental work were used; the concentration of the aqueous nitrate solution was always 0.2M. The Nernst-Planck equation for description of diffusion of ions in a particle was used. The values of diffusion coefficients of magnesium ions in the exchangers and their dependence on the content of DVB were obtained by evaluating the experimental data and using the self-diffusion coefficients of sodium. (author)

  14. Effects of ionizing radiation on modern ion exchange materials

    International Nuclear Information System (INIS)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included

  15. Ion exchange system design for removal of heavy metals from acid mine drainage wastewater

    Directory of Open Access Journals (Sweden)

    R. S. Sapkal

    2010-11-01

    Full Text Available This paper discusses the methodology used to determine the optimal ion-exchange column size to process all separate batchesof feeds from acid mine drainage wastewater.The optimal design ensures the best utilization of resin material and therefore results in a minimum amount of spent resins.Ion exchanger materials have been studied for removing heavy metals from a metal bearing wastes. For the current treatment,a facility has been designed for the removal of heavy metals from the acid mine drainage (AMD waste by the ion-exchange technology.

  16. Ion exchange separation of low boric acid concentrations from water

    International Nuclear Information System (INIS)

    Kysela, J.; Brabec, J.; Peterka, F.

    1975-01-01

    Boric acid poisoning of the moderator of the TR-O experimental heavy water reactor was studied. The possibility is discussed of removing boric acid from heavy water by means of a strong basic anion exchanger, below the residual concentration of 0.01 mg B/l. Measurements of the usable capacities of the strong basic anion exchanger Zerollit FF showed that the penetration of boric acid during the sorption period does not exceed the value of 0.015 mg B/l. The dependence was found of capacity on the boric acid concentration in the solution. Analytical methods used to determine B in water are also described. (author)

  17. SYNTHESIS OF METHYL TERT-BUTYL ETHER CATALYZED BY ACIDIC ION-EXCHANGE RESINS - INFLUENCE OF THE PROTON ACTIVITY

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The catalytic activity of various strong acid ion-exchange resins on the synthesis of methyl tert-butyl ether (MtBE) from methanol and isobutene has been investigated. Relative to Amberlyst 15, Kastel CS 381 and Amberlyst CSP have similar rate constants, whereas Duolite ES 276 and Amberlyst XE 307

  18. Separation of uranium and other metals from commercial phosphoric acid by ion-exchange and voltammetric determination of uranium

    International Nuclear Information System (INIS)

    Ferreira, J.B.C.; Carvalho, F.M.S. de; Abrao, A.

    1985-11-01

    The separation of metals from crude commercial phosphoric acid is achieved by simple dilution and percolation through a strong cationic ion exchanger. Uranium, calcium, magnesium, manganese, iron and aluminum are quantitatively fixed by the exchanger and can be detected or analysed after their complete elution with 6 M HCI. Titanium and zirconium are only partially retained. Specially for its separation and determination uranium is retained selectively by the resin from the phosphoric acid-EDTA solution, the column is washed with water and then eluted with hydrochloric acid. Uranium is analyzed by voltametry with the hanging drop mercury electrode. (Author) [pt

  19. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    Science.gov (United States)

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  20. Chelating ion exchange with macroreticular hydroxamic acid resins

    International Nuclear Information System (INIS)

    Phillips, R.J.

    1980-01-01

    The synthesis, reactions, and analytical applications of hydroxamic acids, including chelating resins with this functional group, are reviewed. A procedure for attaching N-phenyl hydroxamic acid groups to Amberlite XAD-4 is described. The extraction of 20 metal ions from 2 M hydrochloric acid by this resin is discussed. Conditions for the quantitative extraction and back-extraction of 9 ions are reported. Results are compared with work on solvent extraction with N-phenylbenzohydroxamic acid. Procedures for attaching N-methyl and N-unsubstituted hydroxamic acid groups to Amberlite XAD-4 are described. The N-phenyl, N-methyl, and N-unsubstituted hydroxamic acid resins are compared with respect to metal-ion complexation. The scope of applications for hydroxamic acid resins is investigated by studying the extraction of 19 metal ions as a function of pH. The resins are especially suitable for the extraction of zirconium(IV), titanium(IV), and uranium(IV) from strongly acidic solution. Aluminum(III) is separated from calcium and phosphate by extraction at pH 4. The use of the resins for the purification of reagents, concentration of trace constituents, and chromatographic separation is demonstrated

  1. Cation mobility in H+/Na+ ion exchange products of acid tantalum and zirconium phosphates

    International Nuclear Information System (INIS)

    Tarnopol'skij, V.A.; Yaroslavtsev, A.B.

    2000-01-01

    Ionic conductivity of Na + /H + exchange products on acid zirconium phosphate with different substitution degree and on acid tantalum phosphate, where ion exchange occurs via formation of a continuous series of solid solutions, was studied by the method of conductometry. It was ascertained that ionic conductivity decreases monotonously with growth in substitution degree of H + for Na + in acid tantalum phosphate. Anomalous increase in ionic conductivity of ion exchange products on acid zirconium phosphate with a low substitution degree has been detected for the first time. Formation of a double electric layer with a high concentration of cationic defects on the interface surface is the reason for increase in ionic conductivity [ru

  2. Decomposing method for ion exchange resin

    International Nuclear Information System (INIS)

    Sako, Takeshi; Sato, Shinshi; Akai, Yoshie; Moniwa, Shinobu; Yamada, Kazuo

    1998-01-01

    The present invention concerns a method of decomposing ion exchange resins generated in a nuclear power plant to carbon dioxide reliably in a short period of time. (1) The ion exchange resins are mixed with water, and then they are kept for a predetermined period of time in the presence of an inert gas at high temperature and high pressure exceeding the critical point of water to decompose the ion exchange resins. (2) The ion exchange resins is mixed with water, an oxidant is added and they are kept for a predetermined time in the presence of an inert gas at a high temperature and a high pressure exceeding a critical point of water of an inert gas at a high temperature to decompose the ion exchange resins. (3) An alkali or acid is added to ion exchange resins and water to control the hydrogen ion concentration in the solution and the ion exchange resins are decomposed in above-mentioned (1) or (2). Sodium hydroxide is used as the alkali and hydrochloric acid is used as the acid. In addition, oxygen, hydrogen peroxide or ozone is used as an oxidant. (I.S.)

  3. Use of water as displacing agent in ion exchange chromatographic separation of isotope of boron using weak base ion exchange resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Mohanakrishnan, G.; Anand Babu, C.; Krishna Prabhu, R.

    2008-01-01

    Experiments were undertaken to study the feasibility of using weakly basic anion exchange resin for enrichment of isotopes of boron by ion exchange chromatography and water as eluent. The results of experiments carried out to determine total chloride capacity (TCC), strong base capacity (SBC) of the resin at different concentrations of boric acid and enrichment profiles are reported in this paper. (author)

  4. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  5. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    Science.gov (United States)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  6. Kinetic study of ion exchange in phosphoric acid chelating resin

    International Nuclear Information System (INIS)

    Brikci-Nigassa, Mounir; Hamouche, Hafida

    1995-11-01

    Uranium may be recovered as a by product of wet phosphoric acid using a method based on specific ion exchange resins. These resins called chelates contain amino-phosphonic functional groups. The resin studied in this work is a purolite S-940; uranium may be loaded on this resin from 30% P2O5 phosphoric acid in its reduced state. The influence of different parameters on the successive steps of the process have been studied in batch experiments: uranium reduction, loading and oxydation. Uranium may be eluted with ammonium carbonate and the resin regeneration may be done with hydrochloric acid.Ferric ions reduce the effective resin capacity considerably and inert fixation conditions are proposed to enhance uranium loading

  7. Studies on indigenous ion exchange resins: alkali metal ions-hydrogen ion exchange equilibria

    International Nuclear Information System (INIS)

    Shankar, S.; Kumar, Surender; Venkataramani, B.

    2001-01-01

    With a view to select a suitable ion exchange resin for the removal of radionuclides (such as cesium, strontium etc.) from low level radioactive effluents, alkali metal ion -H' exchanges on nine indigenous gel- and macroporous-type and nuclear grade resins have been studied at a total ionic strength of 0.1 mol dm .3 (in the case ofCs' -H' exchange it was 0.05 mol dm .3 ). The expected theoretical capacities were not attained by all the resins for the alkali metal ions. The water content (moles/equiv.) of the fully swollen resins for different alkali metal ionic forms do not follow the usual sequence of greater the tendency of the cation to hydrate the higher the water uptake, but a reverse trend. The ion exchange isotherms (plots of equivalent fractions of the ion in resin phase, N M1 to that in solution, N M ) were not satisfactory and sorption of cations, for most of the resins, was possible only when the acidity of the solution was lowered. The variations of the selectivity coefficient, K, with N M show that the resins are highly cross linked and the selectivity sequence: Cs + >K + >Na + >Li + , obtained for all the resins indicate that hydrated ions were involved in the exchange process. However, the increase in the selectivity was not accompanied by the release of water, but unusual uptake of water, during the exchange process. The characteristics of macroporous resins were not significantly different from those of the gel-type resins. The results are discussed in terms of heterogeneity in the polymer net work, improper sulphonation process resulting in the formation of functional groups at inaccessible sites with weak acidic character and the overall lack of control in the preparation of different resins. (author)

  8. Synthetic inorganic ion-exchange materials

    International Nuclear Information System (INIS)

    Abe, M.

    1979-01-01

    Exchange isotherms for hydrogen ion/alkali metal ions have been measured at 20 and 40 0 C, with a solution ionic strength of 0.1, in crystalline antimonic(V) acid as a cation-exchanger. The isotherms showed S-shaped curves for the systems of H + /Na + , H + /K + , H + /Rb + and H + /Cs + , but not for H + /Li + exchange. The selectivity coefficients (logarithm scale) vs equivalent fraction of alkali metal ions in the exchanger give linear functions for all systems studied. The selectivity sequences are shown. Overall and hypothetical (zero loading) thermodynamic equilibrium constants were evaluated for these ion-exchange reactions. (author)

  9. Loading ion exchange resins with uranium for HTGR fuel kernels

    International Nuclear Information System (INIS)

    Notz, K.J.; Greene, C.W.

    1976-12-01

    Uranium-loaded ion exchange beads provide an excellent starting material in the production of uranium carbide microspheres for nuclear fuel applications. Both strong-acid (sulfonate) and weak-acid (carboxylate) resins can be fully loaded with uranium from a uranyl nitrate solution utilizing either a batch method or a continuous column technique

  10. Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid

    Science.gov (United States)

    Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.

    2017-08-01

    The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.

  11. Comparative study on bromide and iodide ion-isotopic exchange reactions using strongly basic anion exchange resin Duolite A-113

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Dole, M.H.; Singare, P.U.

    2006-01-01

    Kinetics of ion-isotopic exchange reaction was studied using industrial grade ion exchange resin Duolite A-113. The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reaction. The experiments were performed in the temperature range of 26.0degC to 43.0degC and the concentration of external ionic solution varying from 0.005 M to 0.100 M. For bromide ion-isotopic exchange reaction, the calculated values of specific reaction rate, initial rate of bromide ion exchange, and amount of bromide ions exchanged were obtained higher than that for iodide ion-isotopic exchange reaction under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (author)

  12. Oxidative degradation of ion-exchange resins in acid medium. Vol. 3

    International Nuclear Information System (INIS)

    Eskander, S.B.; Ghattas, N.K.

    1996-01-01

    Volume reduction of spent ion-exchange resins used in nuclear facilities receive increasing importance due to the increase in storage cost, unstable physical and chemical properties and their relatively high specific activity (in some cases up to 1 Ci per liter). The present study is part of research program on the treatment and immobilization of radioactive spent ion-exchange resins simulate; hydrogen peroxide was used for the oxidative degradation of spent ion-exchange resins simulate in sulphuric acid medium. Five liters ring digester developed in Karlsruhe nuclear research center-(KFK)- in germany was the chosen option to perform the oxidation process. The work reported focused on the kinetics and mechanism of the oxidation process. Heating the organic resins in sulphuric acid results in its carbonization and partial oxidation of only 1.7% of the carbon added. Results show that the oxidation reaction is a relatively slow process of first order with K value in the order of 10 -4 min -1 , and the main oxidation product was carbon dioxide. The production of carbon oxide in the off gas stream increased sharply by the addition of hydrogen peroxide to the hot sulphuric acid-resin mixture. The results obtained show that more than 97% of the carbon added was oxidized to carbon dioxide and carbon monoxide. The rate constant value (K) of this reaction was calculated to be (1.69±0.13) x 10 -2 min -1 . The results of gas chromatographic analysis indicate that no significant amounts of hazardous organic materials were detected in the off-gas streams. 6 figs., 4 tabs

  13. Effect of fluoride on ion exchange, remineralization and acid resistance of surface enamel

    Energy Technology Data Exchange (ETDEWEB)

    Aponte-Merced, L A; Feagin, F F [Alabama Univ., Birmingham (USA)

    1979-01-01

    In a system of constant ion activities the rates of F/sup -/ exchange in enamel, under conditions of exchange alone and remineralization, depended on the concentration of F/sup -/ in solutions. Acid resistance of surface minerals resulted from exchange of F/sup -/ for OH/sup -/ in the enamel at pH 7.0 and 4.5. The level of 0.5 mM NaF, compared to 0.05 and 5.0 mM, caused maximum rates of isotopic exchange of /sup 45/Ca and maximum acid resistance of enamel. Similarly low levels of F/sup -/ may be feasible for use in caries prevention in the absence and presence of remineralization.

  14. Method of pyrolysis for spent ion-exchange resins

    International Nuclear Information System (INIS)

    Aoyama, Yoshiyuki; Matsuda, Masami; Kawamura, Fumio; Yusa, Hideo.

    1985-01-01

    Purpose: To prevent the generation of noxious sulfur oxide and ammonia on the pyrolysis for spent ion-exchange resins discharged from nuclear power plants. Method: In the case where the pyrolysis is made for the cationic exchange resins having sulfonic acids as the ion-exchange group, alkali metals or alkaline earth metals capable of reacting with sulfonic acid groups to form solid sulfates are previously deposited by way of ion-exchange reactions prior to the pyrolysis. In another case of the anionic exchange resins having quarternary ammonium groups as the ion-exchange groups, halogenic elements capable of reacting with the ammonium groups to form solid ammonium salts are deposited to the ion-exchange resins through ion-exchange reactions prior to the pyrolysis. As a result, the amount of the binders used can be reduced, and this method can be used in a relatively simple processing facility. (Horiuchi, T.)

  15. Regenerating ion-exchangers used in uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.; Espenscheid, W.F.

    1984-01-01

    The process claimed restores the ion exchange capacity of a strong base anion exchange resin used for recovering uranium from solutions used to leach uranium from subterranean formations. The resin is eluted with hydrochloric acid to remove uranium in the form of uranyl carbonate anions. It is then washed with a solution containing 0.5 to 100 g/l of sodium carbonate, sodium bicarbonate, or mixtures of both carbonate and bicarbonate until it is free of materials which are either soluble in the solution or react with the solution

  16. 3.5 Radiation stability of ion exchangers

    International Nuclear Information System (INIS)

    Marhol, M.

    1976-01-01

    The main knowledge is summed up of the radiation stability of ion exchangers. No basic changes occur in inorganic ion exchangers with the exception of the exchange capacity at doses of up to 10 9 rad. This also applies to coal-based ion exchangers. Tables are given showing the changes in specific volume, exchange capacity and weight of different types of organic ion exchangers in dependence on the radiation dose. The effects are discussed of the structure of organic cation and anion exchangers, polymeric strong basic anion exchangers, polycondensate anion exchangers and ion exchange membranes on their radiation stability. General experimental procedures are given for laboratory tests of the radiation stability of exchangers. (L.K.)

  17. Strong ion difference in urine: new perspectives in acid-base assessment.

    OpenAIRE

    Gattinoni, L.; Carlesso, E.; Cadringher, P.; Caironi, P.

    2006-01-01

    The plasmatic strong ion difference (SID) is the difference between positively and negatively charged strong ions. At pH 7.4, temperature 37°C and partial carbon dioxide tension 40 mmHg, the ideal value of SID is 42 mEq/l. The buffer base is the sum of negatively charged weak acids ([HCO3 -], [A-], [H2PO4 -]) and its normal value is 42 mEq/l. According to the law of electroneutrality, the amount of positive and negative charges must be equal, and therefore the SID value is equal to the buffer...

  18. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid

    Science.gov (United States)

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  19. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  20. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  1. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  2. Progress in liquid ion exchangers

    International Nuclear Information System (INIS)

    Nakagawa, Genkichi

    1974-01-01

    Review is made on the extraction with anion exchangers and the extraction with liquid cation exchangers. On the former, explanation is made on the extraction of acids, the relation between anion exchange and the extraction of metals, the composition of the metallic complexes that are extracted, and the application of the extraction with anion exchangers to analytical chemistry. On the latter, explanation is made on the extraction of metals and its application to analytical chemistry. The extraction with liquid ion exchangers is suitable for the operation in chromatography, because the distribution of extracting agents into aqueous phase is small, and extraction equilibrium is quickly reached, usually within 1 to several minutes. The separation by means of anion exchangers is usually made from hydrochloric acid solution. For example, Brinkman et al. determined Rf values for more than 50 elements by thin layer chromatography. Tables are given for showing the structure of the liquid ion exchangers and the polymerized state of various amines. (Mori, K.)

  3. The application of synthetic inorganic ion exchangers to analytical chemistry, 2

    International Nuclear Information System (INIS)

    Abe, Mitsuo

    1974-01-01

    Regarding acidic salts, description is made on the general behaviour of the acidic salts of tetravalent metals and each of zirconium salts, titanium salts, stannic salts, cerium salts, thorium salts, chromium salts, and others. On heteropolyacid salts, ammonium 12-molybdophosphated and phosphorus wolframate are described. On insoluble ferrocyanides, the behaviour of various complex salts is explained. In the discussion on the general behaviour of the acidic salts of tetravalent metals, the ideality of ion exchange, the stability and solubility of the acidic salts, thermal stability and radiation resistance, the ion sieving effect of various acidic salts, and the selectivity of the acidic salts are stated. Zirconium gives a number of acidic salts, such as zirconium phosphate, crystalline zirconium phosphate, zirconium phrophosphate, various polyphosphates of zirconium, zirconium phosphate-silicate, zirconium arsenate, zirconium antimonate, zirconium molybdate, zirconium tungstate, etc. Useful titanium salts for ion exchange are titanium phosphate, titanium aresenate, titanium antimonate, titanium tungstate, titanium molybdate, titanium vanadate, and titanium selenate. The distribution coefficients of metal ions, inorganic-separation of various inorganic ion exchangers, the exchange characteristics of various elements on various ion exchangers, and the selectivity of various inorganic ion-exchangers are tabulated. (Fukutomi, T.)

  4. Ion-exchange preparation of high-purity vanadium acid from industrial liquors

    International Nuclear Information System (INIS)

    Sajdakhmedov, U.A.; Arslanov, Sh.S.; Vulikh, A.I.

    1994-01-01

    The results of investigations on production of special-purity vanadium acid and vanadium oxide directly from process solutions (technical grade liquors) using ionites are presented. Potentiality of thorough purification of vanadium(5) oxide, when producing vanadium acid on the KU-2 cationite with subsequent purification on anionite, is shown. On the basis of the results obtained a principle flowsheet of ion-exchange production of high-purity vanadium(5) oxide from industrial liquors has been developed. 2 refs.; 1 fig.; 4 tabs

  5. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    Science.gov (United States)

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  6. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    Science.gov (United States)

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  7. Ion exchange fiber prepared by radiation grafting, (2)

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki; Fujiwara, Kunio; Fujii, Toshiaki; Takai, Takeshi; Kobayashi, Atsushi

    1991-01-01

    Ion exchange fiber prepared by radiation grafting has the capabilities for wide application as high performance materials. Extensive studies were made to evaluate the ion exchange fiber prepared by radiation grafting for removing some toxic or malodorous gases, continuing from the previous work (presented in Ebara Engng. Review, No. 146), in which the ability of removing ammonia with cation exchange fiber was investigated. The results of this study can be summarized by the following conclusions: (1) Methods of evaluating the ability of removing ammonia, acetaldehyde, and some lower fatty acids in low concentration were established, (2) Besides being effective for the removal of acidic or basic gases, neutral gas such as acetaldehyde can also be removed by adding some functional compounds to the ion exchange fiber, and (3) Ion exchange fiber prepared by radiation grafting is effective as a deodorizing filter. (author)

  8. Use of the ion exchange method for determination of stability constants of uranyl ions with three soil humic acids

    International Nuclear Information System (INIS)

    Tao Zuyi; Du Jinzhou

    1994-01-01

    The ion exchange equilibrium method proposed by Ardakani and Stevenson has not been widely used to determine the stability constants of metal-soil organic matter complexes. In this paper the Ardakani-Stevenson's method has been modified and the stability constants of uranyl ion complexes with three soil humic acids were determined by using the modified Ardakani-Stevenson's method. (orig.)

  9. Mathematical simulation and calculation of the continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Guryanova, L.N.; Baturova, L.L.; Venetsianov, E.V.; Ivanov, V.A.; Nikolaev, N.P.

    1993-01-01

    The program open-quotes Countercurrentclose quotes is developed for the simulation of a continuous ion-exchange extraction of strontium from strongly mineralized NaCl and CaCl 2 solutions using a KB-4 carboxylic cation-exchanger in the countercurrent columns. The program allows one to Calculate the conditions of Ca and Sr separation depending on the mode of operation at the sorption and regeneration stages, the residual Sr content on the overloaded sorbent, and the Sr separation on incompletely regenerated KB-4. It also makes it possible to find the optimal separation conditions. The program open-quotes Countercurrentclose quotes can be also used to simulate other ion-exchange processes

  10. Enrichment of 15N by ion exchange chromatography

    International Nuclear Information System (INIS)

    Ohwaki, Masao; Ohtsuka, Haruhisa; Nomura, Masao; Okamoto, Makoto; Fujii, Yasuhiko

    1996-01-01

    15 N isotope separation was studied using cation exchange resins which consist of functional groups: sulfonic acid, carboxylic acid and phenol at various concentration of the eluent LiOH. The isotope separation coefficients for these ion exchange resins were observed to be nearly equal, in spite of the large difference in ion exchange characteristics. The effect of flow rate on 15 N isotope separation was also studied, and the results indicate that the operation at high flow rate would be preferable for the industrial process of 15 N enrichment. Based on the preliminary investigations, a continuous operation using a series of ion exchange columns has been carried out in order to achieve high enrichment of 15 N. (author)

  11. Studies on rapid ion-exchange separation of the transplutonium elements with mineral acid-methanol mixed media

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1989-03-01

    In order to study properties of short-lived transplutonium nuclides synthesized by heavy-ion bombardment, three methods for rapid separation of tri-valent transplutonium elements by ion-exchange chromatography with mineral acid-methanol mixed media at elevated temperature were investigated. The first separation method was anion-exchange chromatography with nitric acid-methanol mixed media. The second method was anion-exchange choromatography with dilute hydrochloric acid-methanol mixed media. The third method was improved cation-exchange chromatography with single-column operation using the mixed media of hydrochloric acid and methanol. The separation methods developed were found applicable to studies on synthesis of the trans-plutonium nuclides, 250 Fm (T 1/2 :30 min), 244,245,246 Cf (T 1/2 :20 min, 46 min and 35.7 h, respectively) from the 16 O + 238 U and 12 C + 242 Pu reactions, and on the decay property of 245 Cf. Attempts to search for new actinide nuclides, such as 240 U and neutron deficient nuclides of Am, Cm and Bk, were made by a quick purification. The separation system was also applied to the rapid and effective separation of Nd, Am and Cm from spent nuclear fuel samples, for burn-up determination. (J.P.N.) 242 refs

  12. Properties of the Carboxylate ion exchange resins; Karboxylatjonbytarmassans egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Bert; Dario, Maarten [Oerebro Univ. (Sweden); Boren, Hans [Linkoepings Univ. (Sweden); Torstenfelt, Boerje [Swedpower, Stockholm (Sweden); Puigdomenech, Ignasi; Johansson, Claes [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  13. Radionuclide Leaching from Organic Ion Exchange Resin

    International Nuclear Information System (INIS)

    Delegard, C.H.; Rinehart, D.E.

    1998-01-01

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolitetrademark NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900trademark, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material

  14. The removal of uranium from acidic media using ion exchange and/or extraction chromatography

    International Nuclear Information System (INIS)

    FitzPatrick, J.R.; Schake, B.S.; Murphy, J.; Holmes, K.; West, M.H.

    1996-06-01

    The separation and purification of uranium from either nitric acid or hydrochloric acid media can be accomplished by using either solvent extraction or ion-exchange. Over the past two years at Los Alamos, emerging programs are focused on recapturing the expertise required to do limited, small-quantity processing of enriched uranium. During this period of time, we have been investigating ion-addition, waste stream polishing is associated with this effort in order to achieve more complete removal of uranium prior to recycle of the acid. Extraction chromatography has been demonstrated to further polish the uranium from both nitric and hydrochloric acid media thus allowing for a more complete recovery of the actinide material and creation of less waste during the processing steps

  15. Behaviour of Pu-IV with various ion exchangers in solutions containing nitric acid and oxalates

    International Nuclear Information System (INIS)

    Walter, E.; Ali, S.A.

    1982-02-01

    The distribution of Pu-IV on the ion exchangers Dowex 50W-X8, Dowex 1-X8 und Dowex Chelating Resin Al-X8 in the presence of various concentrations of nitric acid and oxalate were investigated. The results indicate that nitric acid and oxalic acid influence each other during complexation of Pu-IV with oxalate ions solutions containing nitric acid it is not possible to neglect the formation of Pu-IV nitrate complexes. The complex Pu(IV) (C 2 O 4 ) 3 2 - only is formed in solutions containing low nitric acid and high oxalic acid concentrations. The separation of Pu-IV in Dowex Chelating Resin from nitric acid solution in the presence of higher oxalate concentrations is possible, provided that the nitric acid concentration is lower than 0.25 molar [fr

  16. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  17. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  18. Poster 29. Modelling of ion exchange processes in ultrapure water

    International Nuclear Information System (INIS)

    Berg, A.; Torstenfelt, B.; Fejes, P.; Foutch, G.L.

    1992-01-01

    The ion exchange process of the Reactor Water Clean-up (RWCU) system has been studied to better use the maximum possible exchange capacity of the ion exchange resin. Laboratory data have been correlated with computer simulations of the ion exchange process. Data were correlated using a mixed-bed ion exchange model for ultralow ionic concentrations developed at Oklahoma State University. Experimental results of the ion exchange column operation in the concentration range of 10 -3 M boric acid is compared with the simulated performance predicted by the computer model. The model is found to agree reasonably well with the data. (author)

  19. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, N K; Eskander, S B [Radioisotope dept., atomic energy authority, (Egypt)

    1995-10-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs.

  20. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.

    1995-01-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs

  1. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    International Nuclear Information System (INIS)

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs

  2. Radiation deterioration of ion-exchange Nafion N117CS membranes

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hiroki, Akihiro; Tamada, Masao; Isobe, Kanetsugu; Yamanishi, Toshihiko

    2010-01-01

    The cation-exchange Nafion N117 membranes swelling in electrolyte solution were irradiated with γ-rays or electron beams at various doses up to 1500 kGy in the temperature range from room temperature to 343 K to obtain detailed information on the effect of ion-exchange on the radiation deterioration in mechanical properties and ion-exchange capacity. Considerable deterioration in mechanical properties was observed when the Nafion membranes swelling in electrolyte solution were irradiated. A reason is the promotion of degradation with oxygen molecules produced by the irradiation of electrolyte solution. The concentration of electrolyte solution influenced strongly the radiation deterioration in mechanical properties. Keeping the concentration of metal ions to be negligible is important when electrolyzed highly radioactive solution in the light of the durability of polyperfluorosulfonic acid (PFSA) membrane. A sort of cation in electrolyte solution negligibly influenced radiation deterioration in mechanical properties. A sort of anion in electrolyte solution had negligible effect on radiation deterioration in mechanical properties and ion-exchange capacity. The discrepancy in the radiation deterioration in mechanical properties of Nafion membranes swelling in NaCl solution was observed between the specimens irradiated with γ-rays and electron beams. This discrepancy can be explained from the low diffusivity of oxygen from bulk into the membrane.

  3. Influence of the Functionalization Degree of Acidic Ion-Exchange Resins on Ethyl Octyl Ether Formation

    Czech Academy of Sciences Publication Activity Database

    Guilera, J.; Hanková, Libuše; Jeřábek, Karel; Ramírez, E.; Tejero, J.

    2014-01-01

    Roč. 78, MAY (2014), s. 14-22 ISSN 1381-5148 Grant - others:SEURDO(ES) CTQ2010-16047 Institutional support: RVO:67985858 Keywords : acidic ion - exchange resin * sulfonation degree * ISEC Subject RIV: CC - Organic Chemistry Impact factor: 2.515, year: 2014

  4. Investigation of ion exchangers with groups of aminoethylphosphonium acids and their derivatives

    International Nuclear Information System (INIS)

    Lejkin, Yu.A.; Ratajchak, V.; Korshak, V.V.

    1977-01-01

    Acid-base equilibrium has been investigated on polymeric chelate compounds with groups of aminoethylphosphonium acids, AEP-3, their monoesters, AEP-2 and diesters, AEP-1. Values of the acid-base equilibrium constants of the chelate compounds have been calculated, and schemes of consecutive protonation of the ion exchangers investigated are suggested. Sorption characteristics for the series of U, Fe, Co, Ca, Th metals have been investigated. Values of the distribution coefficients and capacity from acid-base media of various concentration are given. Assumptions are made, which explain an increase in the selectivity and affinity in the series of the chelate compounds investigated. In the AEP-3 > AEP series-2 > AEP-1 weakening of the affinity to U, Fe, Th is observed

  5. Rapid ion-exchange separations of actinides

    International Nuclear Information System (INIS)

    Usuda, Shigekazu

    1988-01-01

    For the purpose of studying short-lived actinide nuclides, three methods for rapid ion exchange separation of actinide elements with mineral acid-alcohol mixed media were developed: anion exchange with nitric acid-methyl alcohol mixed media to separate the transplutonium and rare earth elements from target material, U or Pu and Al catcher foils; anion exchange with hydrochloric acid-methyl alcohol media to separate Am+Cm, Bk and Cf+Fm from the target, catcher foils and major fission products; and cation exchange with hydrochloric acid-methyl alcohol media and with concentrated hydrochloric acid to separate the transplutonium elements as a group from the rare earths after eliminating the large amounts of U, Al, Cu, Fe etc. The methods enable one to perform rapid and effective separation at elevated temperature (90 deg C) and immediate source preparation for alpha-ray spectrometry. (author) 47 refs.; 10 figs

  6. Highly dispersive ion exchangers in the analytical chemistry of uranium, particularly regarding separation methods

    International Nuclear Information System (INIS)

    Schoening, R.

    1975-01-01

    The reaction of water-insoluble polyvinyl pyrrolidon with uranium VI was investigated and a determination method for uranium was worked out in which the polyvinyl pyrrolidon was used as specific exchanger. Good separations of uranium from numerous transition metal ions were achieved here. The application of this exchanger for a fast and simple elution and determination method was of particular importance. A possible sorption mechanism was suggested based on the capacity curve of uranium with polyvinyl pyrrolidon and nitrogen and chloride content at maximum load. The sorption occurs by coordination of the carbonyl oxygen of single pyrrolidon rings with the protons of the complex acides and uranium. This assumption is supported by IR investigations. The sorbability of other inorganic acids was also investigated and possible structures were formulated for the sorption mechanism. In addition to this, ion exchangers were prepared based on cellulose by converting cellulose powder with aziridine and tris-1-aziridinyl-phosphine oxide. A polyethylene imine cellulose of high capacity was obtained in the conversion of cellulose powder with aziridine. This exchanger absorbs cobalt III very strongly. The exchanger loaded with cobalt III was used to separate the uranium as cyanato complex. The exchanger obtained in converting chlorated cellulose with tris-1-aziridinyl phosphine oxide also absorbs uranium VI very strongly. Thus a separation method of high specifity and selectivity was developed. (orig.) [de

  7. Rapid radiochemical ion-exchange separation of iodine from tellurium: a novel radioiodine-132 generator

    Energy Technology Data Exchange (ETDEWEB)

    Abrao, A

    1975-01-01

    Tellurium ions form a soluble cationic complex with thiourea in acid medium. The cationic tellurium-thiourea species is strongly absorbed on a cationic ion exchanger. The retention of tellurium on the resin enables many interesting separation schemes for tellurium from various ions. With special interest, the separation of iodine from tellurium was studied. An efficient and convenient iodine-132 generator is described, in which the radio-iodine is eluted with water or 9 g/1 NaCl, when desired.

  8. Ion-exchange properties of natural mordenite

    International Nuclear Information System (INIS)

    Chelishchev, N.F.; Volodin, V.F.

    1977-01-01

    Ion exchange properties are studied of natural mordenite Si(Al=4.75) exhibiting adequate mechanical characteristics and sufficient resistance to high temperature acids. Consideration is given to the pattern of exchange ions distribution among mordenite and chloride solutions of K, Cs, Rb, Sr. Mordenite shows sharp selectivity towards large alkali metal cations, particularly Cs + . In these processes the exchange isotherms are characterized by the constant selectivity towards a counterion. For the Sr 2+ -2Na + exchange the isotherm shows a change of selectivity after a definite counterion concentration has been reached in the solution. Correlation between the exchange thermodynamic constants makes it possible to propose the following range of mordenite selectivity towards the cations under study: Cs>Rb>K>Na>Sr

  9. Preparation of inorganic ion exchangers with high selectivity for lithium isotopes

    International Nuclear Information System (INIS)

    Oi, Takao

    2004-01-01

    Development of ion exchangers that show large lithium isotope effects is hoped for to establish highly efficient chromatographic processes of lithium isotope separation. In this paper, preparation, characterization, ion exchange properties, and lithium isotope selectivity of inorganic materials that have been and still are being studied by my research group at Sophia University are reviewed. They include manganese oxides-based ion exchangers, antimonic acids and titanium/zirconium phosphates-based ion exchangers. As a result, the lithium isotope separation effects that were one order of magnitude larger than those of organic ion exchangers were obtained. Some inorganic ion exchangers were found to show ion exchange rates more than comparable to those of organic ones. (author)

  10. Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography

    International Nuclear Information System (INIS)

    Liu Kailu; Yang Wenying

    1996-01-01

    Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed

  11. Modeling and simulation of protein elution in linear pH and salt gradients on weak, strong and mixed cation exchange resins applying an extended Donnan ion exchange model.

    Science.gov (United States)

    Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian

    2018-04-13

    Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Recovery of boric acid from ion exchangers

    International Nuclear Information System (INIS)

    Pollock, C.W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of 10 B which may be found in some nuclear reactor coolant solutions. 10 claims

  13. A rapid radiochemical ion-exchange separation of iodine from tellurium: a novel radioiodine-132 generator

    International Nuclear Information System (INIS)

    Abrao, A.

    1975-01-01

    Tellurium ions form a soluble cationic complex with thiourea in acid medium. The cationic tellurium-thiourea species is strongly absorbed on a cationic ion exchanger. The retention of tellurium on the resin enables many interesting separation schemes for tellurium from various ions. With special interest, the separation of iodine from tellurium was studied. An efficient and convenient iodine-132 generator is described, in which the radio-iodine is eluted with water or 9 g/1 NaCL, when desired

  14. Mathematical simulation and calculation of continuous countercurrent process of ion-exchange extraction of strontium from strongly mineralized solutions

    International Nuclear Information System (INIS)

    Nikashina, V.A.; Venitsianov, E.V.; Ivanov, V.A.; Gur'yanova, L.N.; Nikolaev, N.P.; Baturova, L.L.; Moskovskij Gosudarstvennyj Univ., Moscow

    1993-01-01

    A program 'Countercurrent' is developed for the simulation of a continuous ion-exchange extraction of strontium from the strongly mineralized solutions containing NaCl and CaCl 2 using carboxylic cation exchanger KB-4 in countercurrent columns. The use of the program allows one to calculate the consitions of Ca and Sr separation depending on the modes of operation at the stage of sorption as well as regeneration, to calculate a residual Sr content on an overloaded sorbent and Sr separation on an incompletely regenerated KB-4, and to find the optimal separation conditions

  15. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  16. Ra/Ca separation by ion exchange chromatography

    International Nuclear Information System (INIS)

    Flores Mendoza, J.

    1990-01-01

    Ra/Ca separation by ion exchange. The objective of this work was to acquire knowledge of the chromatographic behaviour of the alkaline earth cations calcium, barium and radium and the obtention of well-defined alpha spectra of 226 Ra. Three cationic ion exchange resins (Dower 50 W-X8, AG 50W-XB and Merck I) and three complexing agents (ethylenediaminetetraacetic acid, citric acid and tartaric acid) at various pH values have been investigated. The three types of ions are fixed on the resins at pH 4.8; calcium is eluted at pH between 5 and 6 depending on the resin; barium and radium are eluted at pH values from 8 to 11. Radium is also eluted with a 2 M nitric acid solution, from which it can be electrodeposited on a stainless steel disk potassium fluoride as electrolyte at pH 14. The electrolysis is conducted for 18 hours with a current of mA. Under these conditions high resolution alpha spectra were obtained for 226 Ra, which was practically free from radioactive contaminants (Author)

  17. Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Shuai; Li, Dan; Wang, Lihua; Yang, Haijun; Han, Xutong; Liu, Biqian

    2017-01-01

    Highlights: • Ethylenediamine functionalized graphene oxide. • Layered structure of functionalized graphene oxide block vanadium ions crossover. • Protonated N-containing groups suppress vanadium ions permeation. • Ion transport channels are narrowed by electrostatic interactions. • Vanadium crossover decreased due to enhanced Donnan effect and special structure. - Abstract: As a promising large-scale energy storage battery, vanadium redox flow battery (VRFB) is urgently needed to develop cost-effective membranes with excellent performance. Novel acid-base ion exchange membranes (IEMs) are fabricated based on sulfonated poly(ether ether ketone) (SPEEK) matrix and modified graphene oxide (GO) by solution blending. N-based functionalized graphene oxide (GO-NH 2 ) is fabricated by grafting ethylenediamine onto the edge of GO via a facile method. On one hand, the impermeable layered structures effectively block ion transport pathway to restrain vanadium ions crossover. On the other hand, acid-base pairs form between −SO 3 − groups and N-based groups on the edge of GO nanosheets, which not only suppress vanadium ions contamination but also provide a narrow pathway for proton migration. The structure is beneficial for achieving an intrinsic balance between conductivity and permeability. By altering amounts of GO-NH 2 , a sequence of acid-base IEMs are characterized in detail. The single cells assembled with acid-base IEMs show self-discharge time for 160 h, capacity retention 92% after 100 cycle, coulombic efficiency 97.2% and energy efficiency 89.5%. All data indicate that acid-base IEMs have promising prospects for VRFB applications.

  18. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Masaki, E-mail: mohno@hiroshima-u.ac.jp [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Ito, Masataka; Ohkura, Ryouichi [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Mino A, Esteban R. [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Nakai, Satoshi [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Kawata, Kuniaki [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Nishijima, Wataru [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan)

    2014-03-01

    Highlights: • Perfluorooctanoic acid (PFOA) was decomposed based on ferric ion performance. • Complete decomposition of PFOA was confirmed in strongly acidic conditions. • Fe{sup 2+} changed to Fe{sup 3+} to restore chemical equilibrium in this condition. • Fe{sup 3+} was only produced from Fe{sup 2+} by hydroxyl radical in weakly acidic conditions. • The Fe{sup 3+} regeneration mechanisms resulted in the performance of Fe{sup 3+} for PFOA. - Abstract: The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe{sup 3+} ion. Although Fe{sup 3+} ion is consumed and is transformed to Fe{sup 2+} ion by photochemical decomposition of PFOA and its intermediates, the produced Fe{sup 2+} ion will change to Fe{sup 3+} ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH){sup 2+}. At pH 3.7 or higher pH, Fe{sup 3+} ion will only be produced from the oxidation of Fe{sup 2+} ion by hydroxyl radical produced by Fe(OH){sup 2+} under UV irradiation. These different mechanisms of Fe{sup 3+} regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  19. Inorganic ion exchangers. Application to liquid effluent processing

    International Nuclear Information System (INIS)

    Dozol, M.

    1983-10-01

    Main inorganic ion exchangers used for radioactive liquid effluents presented in this report are: synthetic and natural zeolites, in titanium oxides, titanates, niobates, tantalates, zirconates, some insoluble salts of zirconium, molybdenum and tin, heteropolyacids and polyantimonic acid. Properties of these ion exchangers are described: structure, adsoption, radiation effects and thermal stability, application to waste processing, radioactive waste storage uranium and cesium 137 recovery are evoked [fr

  20. Samarium ion exchanged montmorillonite for high temperature cumene cracking reaction

    International Nuclear Information System (INIS)

    Binitha, N.N.

    2009-01-01

    Full text: Nano material Montmorillonite clay is cation exchanged with samarium and its catalytic influence in cumene cracking reaction is investigated. Effect of exchange with sodium ions on further exchange with samarium ions is also noted. Acidity measurements are done using TPD of ammonia. The retention of basic structure is proved from FTIR spectra and XRD patterns. Elemental analysis result shows that samarium exchange has occurred, which is responsible for the higher catalytic activity. Surface area and pore volume remains more or less unaffected upon exchange. Thermogravimetric analysis indicates the enhanced thermal stability on exchanging. Cumene cracking reaction is carried out at atmospheric pressure in a fixed bed glass reactor at 673 K. The predominance of Bronsted acidity is confirmed from high selectivity to benzene. (author)

  1. Isotope exchange reaction in uranous-uranyl-sulphuric acid system

    International Nuclear Information System (INIS)

    Ling Daren; Yue Tingsheng; Mu Dehai; Wang Yani

    1990-01-01

    The kinetics of the isotope exchange reaction between U(IV) and U(VI) has been studied in low concentrations of sulphuric acid. A minimum exchange rate appears at 0.25 M H 2 SO 4 . From the rates at different temperatures ranging from 20deg to 35deg C, an apparent activation energy of 86 kcal/mole was calculated. The exchange rate was found to be accelerated by the addition of ferrous ions, and a half-life of less than 1 s, was obtained. Probable mechanisms for the acceleration of the uranium isotope exchange reactions by acidity and ferrous ions are proposed. (orig.)

  2. Ion exchange-based treatment of "6"0Co contaminated well-water for storing γ irradiation source

    International Nuclear Information System (INIS)

    Bi Meng; Miao Shilin; Zhang Xiaolu; Zhang Youjiu

    2014-01-01

    Objective: To select an efficient ion exchange resin to purify the "6"0Co contaminated well-water for storing radioactive source and to ensure the radioactivity of "6"0Co in treated well-water below 10 Bq/L. Methods: The radioactivity of "6"0Co in the water samples was measured by using the potassium cobaltinitrite coprecipitation-β counting method. The treatment efficiencies of two different ion exchange resins for the simulated "6"0Co-bearing waste water were compared to select a better one to dispose of the "6"0Co contaminated well-water. Results: The treatment efficiency of MBD-15-SC mixed ion exchange resin was about 5.8 times higher than ZGCNR50 strong-acid cation exchange resin. The radioactivity of "6"0Co in the contaminated well-water could be reduced from 4.16 × 10"5 Bq/L to 1.16 Bq/L by two-stage sorption of MBD-15-SC mixed ion exchange resin. Conclusions: Using several times of two-stage MBD-15-SC mixed ion exchange resin could effectively purify the "6"0Co contaminated well-water. The quality of the treated well-water could meet the sewage discharge standards. (authors)

  3. Chromate ion-exchange study for cooling water

    International Nuclear Information System (INIS)

    Sengupta, A.K.

    1985-01-01

    In spite of high chromate selectivity, the ion-exchange process for Cr(IV) recovery from cooling tower blowdown is yet to be commercially popular. Possible degradation of the ion-exchange resin by the oxidative action of Cr(IV) during ion exchange has been considered as the prime obstacle. Resins have been manufactured with fairly acceptable properties to withstand both physical attrition and chemical oxidation. Demonstrated during the course of this research is early, gradual Cr(VI) breakthrough during fixed-bed column runs at acidic pH in the presence of competing sulfate and chloride anions. The advantage of high chromate selectivity is essentially lost due to the early Cr(VI) breakthrough because the column runs are always terminated after a pre-determined level of Cr(VI) has appeared in the treated water. Experimental results provide sufficient evidence that this is not due to poor column kinetics or electrolyte penetration. The chromate ion-exchange mechanism has been investigated in order to explain the foregoing anomalies for the chromate-exchange process. The knowledge of chromate ion-exchange mechanism has been used to overcome the shortcoming of gradual Cr(VI) breakthrough. This study shows that: (a) a continuous counter-current ion-exchange system theoretically offers much higher Cr(VI) removal capacity compared to conventional single-unit fixed-bed system for any pre-determined level of Cr(VI) breakthrough; (b) by modifying the resin composition, the gradual Cr(VI) breakthrough can be greatly eliminated

  4. Reduction of trace quantities of chromium(VI by strong acids

    Directory of Open Access Journals (Sweden)

    Pezzin Sérgio H

    2004-01-01

    Full Text Available The chemical behavior of Cr(VI at low concentrations (10-4 to 10-7 mol L-1 in several strong acids was studied using high specific activity 51Cr(VI as a tracer. The speciation of the products from these systems was carried out by ion exchange chromatography with stepwise elution. The results show that trace quantities of Cr(VI, monitored by means of radiochromium (51Cr, are reduced in the presence of mineral acids such as perchloric, hydrochloric, hydrofluoric, sulfuric, nitric and trifluoromethanesulfonic acids, even in the absence of conventional reducing agents, producing different measureable Cr(III species, depending on the acid anion. Detailed studies of the reduction of low concentrations of Cr(VI with nitric acid have shown that the relative rate of reduction increases as the concentration of the acid increases or as the concentration of the Cr(VI decreases.

  5. Microsystems for anion exchange separation of radionuclides in nitric acid media

    Energy Technology Data Exchange (ETDEWEB)

    Losno, M.; Brennetot, R.; Mariet, C. [DEN/Service d' Etudes Analytiques et de Reactivite des Surfaces - SEARS, CEA, Centre de Saclay, Universite Paris-Saclay, F-91191, Gif sur Yvette (France); Ferrante, I.; Descroix, S. [MMBM Group, Institut Curie Research Center, CNRS UMR 168, Paris (France)

    2016-07-01

    An efficient and reproducible photo-polymerized poly(ethylene glycol methacrylate methacrylate-co- allyl methacrylate) monolith was synthesized and a photo-grafting process based on the ene-thiol click-chemistry has been performed to give anion exchange properties to the monolith. Since their introduction in the early 1990's polymethacrylate monoliths have emerged as a powerful alternative for microscale separations or sample treatment. Their relatively simple implementation in columns with small internal diameters makes them particularly attractive for the new chromatographic challenges of complex matrices analysis and on-chip separations. Despite their relatively poor ion-exchange capacity due to their highly porous structure, their use as anion exchangers is of large interest for nuclear analysis as numerous separations are based on this process. This paper presents a systematic study of the synthesis of the polymeric porous monolith and the versatile and robust functionalization method developed for the specific strong acidic media used in radiochemical procedures. The robustness of the stationary phase was tested in concentrated nitric acid. It appears that the C-S bond formed via thiol-ene chemistry is strong enough to be used to graft function of interest for separation in strong nitric acid medium. The photo-grafted anion exchanger, a quaternary ammonium, presents sufficient resistance to be used for radionuclide separation in [HNO{sub 3}]=5 mol.L{sup -1}so the next step is its integration in the cyclo olefin copolymer (COC) micro-system.

  6. A Cadmium Ion-selective Membrane Electrode Based on Strong Acidic Organic-inorganic Composite Cation-exchanger: Polyaniline Ce(IV Molybdate

    Directory of Open Access Journals (Sweden)

    Syed Ashfaq NABI

    2008-05-01

    Full Text Available A cadmium ion-selective composite cation-exchanger polyaniline Ce(IV molybdate was used as electroactive component for the construction of a ion-selective membrane electrode. The membrane electrode showed a Nerstian response for Cd(II ions over a wide concentration range 5 × 10-6 – 1 × 10-1 with a sub-Nerstian slope of 27 mV per decade change in concentration of cadmium ions. The limit of detection was also ascertained to be 5 × 10-6 M. It has a fast response time 15 s and can be very well utilized for more than three months with out any appreciable divergence in potentials. The optimum pH for the smooth functioning of this electrode was found to be in the Ph range of 2.5 – 7.5. The electrode also showed better selectivity for Cd(II ions over many other interfering ions. The practical utility of membrane electrode was demonstrated by using as indicator electrode for the potentiometric titration of Cd(II with EDTA and determination of cadmium content in drain water.

  7. Ion exchange for treatment of industrial effluents

    International Nuclear Information System (INIS)

    Moreno Daudinot, Aurora Maria; Ge Leyva, Midalis

    2016-01-01

    The acid leaching and ammoniacal carbonate technologies of laterite respectively, are responsible for the low quality of life of the local population, the big deforested areas due to the mining tilling, the elevated contents of solids in the air and waters, as well as the chemical contamination by metals presence, the acidity or basicity of the effluents of both industries, that arrive through the river and the bay to aquifer's mantle. The ion exchange resins allow ions separation contained in low concentrations in the solutions, where the separation of these elements for solvents, extraction or another chemical methods would be costly. Technological variants are proposed in order to reduce the impact produced on the flora and the fauna, by the liquid effluents of nickel industry, by means of ion exchange resins introduction as well as the recuperation of metals and their re incorporation to the productive process. (Author)

  8. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  9. System for processing ion exchange resin regeneration waste liquid in atomic power plant

    International Nuclear Information System (INIS)

    Onaka, Noriyuki; Tanno, Kazuo; Shoji, Saburo.

    1976-01-01

    Object: To reduce the quantity of radioactive waste to be solidified by recovering and repeatedly using sulfuric acid and sodium hydroxide which constitute the ion exchange resin regeneration waste liquid. Structure: Cation exchange resin regeneration waste liquid is supplied to an anion exchange film electrolytic dialyzer for recovering sulfuric acid through separation from impurity cations, while at the same time anion exchange resin regeneration waste liquid is supplied to a cation exchange film electrolytic dialyzer for recovering sodium hydroxide through separation from impurity anions. The sulfuric acid and sodium hydroxide thus recovered are condensed by a thermal condenser and then, after density adjustment, repeatedly used for the regeneration of the ion exchange resin. (Aizawa, K.)

  10. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  11. Ion exchange in HCl, NH2OH x HCl and N2H4 x 2HCl solutions

    International Nuclear Information System (INIS)

    Tohyama, Itiro; Otozai, Kiyoteru

    1977-01-01

    Distribution coefficients for 73 elements have been determined by the batch method in HCl, hydroxylamine and hydrazine solutions using strongly acidic and strongly basic exchanger resins. In general, a similar behaviour was observed. In some cases, however, the kind of onium ion was of considerable influence. Hydroxylamine and hydrazine solutions are useful as a substitute for HCl in many separations, as they are easily handled and can rapidly be decomposed by nitric acid. (orig./RB) [de

  12. Separation and immobilization of Sr and Cs contained in acidic media by using inorganic ion-exchangers. Literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    The present study deals with the survey of inorganic ion-exchangers suitable for separation and immobilization of Sr and Cs contained in acidic high-level liquid waste. The stabilities of published waste forms and their preparation processes were evaluated from the standpoint of conversion of exchangers containing Sr and Cs into appropriate waste forms. The essential results are below. (1) For separation and immobilization of Cs, crystalline silicotitanate seems to be the most promising exchanger. Insoluble ferrocyanides and phosphates are not suitable for immobilization without additives. Mordenite is inexpensive and commercially available but it would dissolve in highly acidic media. (2) For selective separation of Sr, there is no promising exchanger up to now. It is necessary either to modify separation condition or to synthesize a novel exchanger. (3) Soluble salts, glasses and ceramics are proposed as a storage or disposal form of separated Sr and Cs. Ceramics sintered by hot-pressing are favorable waste forms of inorganic ion-exchangers but their leachabilities and thermal conductivities are largely influenced by qualities of products. Crystallinity of a sintered exchanger depends on its composition. Exchanges of low Cs contents are often converted into amorphous materials whose chemical stabilities depend on solubilities of components of exchangers. (4) A new exchanger to be synthesized is crystalline and selective toward Sr and Cs. One meq/g is enough for Sr and Cs capacities, which are restricted by thermal and transmutation effects. Composition of the exchanger should be selected from the point of a scenario of separation and disposal. The solubilities of SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} are low in acidic media and those of Al{sub 2}O{sub 3}, TiO{sub 2} and ZrO{sub 2}, in disposal circumstances. (5) Future works are optimization of separation scheme including development of exchangers, simplification of

  13. Inorganic ion exchangers for nuclear waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  14. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  15. Ion exchange removal of technetium from salt solutions

    International Nuclear Information System (INIS)

    Walker, D.D.

    1983-01-01

    Ion exchange methods for removing technetium from waste salt solutions have been investigated by the Savannah River Laboratory (SRL). These experiments have shown: Commercially available anion exchange resins show high selectivity and capacity for technetium. In column runs, 150 column volumes of salt solution were passed through an ion exchange column before 50% 99 Tc breakthrough was reached. The technetium can be eluted from the resin with nitric acid. Reducing resins (containing borohydride) work well in simple hydroxide solutions, but not in simulated salt solutions. A mercarbide resin showed a very high selectivity for Tc, but did not work well in column operation

  16. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  17. Outlook for ion exchange

    International Nuclear Information System (INIS)

    Kunin, R.

    1977-01-01

    This paper presents the history and theory of ion exchange technology and discusses the usefulness of ion exchange resins which found broad applications in chemical operations. It is demonstrated that the theory of ion exchange technology seems to be moving away from the physical chemist back to the polymer chemist where it started originally. This but confronted the polymer chemists with some knotty problems. It is pointed out that one has still to learn how to use ion exchange materials as efficiently as possible in terms of the waste load that is being pumped into the environment. It is interesting to note that, whereas ion exchange is used for abating pollution, it is also a polluter. One must learn how to use ion exchange as an antipollution device, and at the same time minimize its polluting properties

  18. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  19. Separation of hafnium from zirconium in sulfuric acid solutions using pressurized ion exchange

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1981-01-01

    High-resolution pressurized ion exchange has been used successfully to study and separate hafnium and zirconium sulfate complexes by chromatographic elution from Dowex 50W-X8 (15 to 25 μm) resin with sulfuric acid solutions. Techniques were developed to continuously monitor the column effluents for zirconium and hafnium by reaction with fluorometric and colorimetric reagents. Since neither reagent was specific for either metal ion, peak patterns were initially identified by using the stable isotopes 90 Zr and 180 Hf as fingerprints of their elution position. Distribution ratios for both zirconium and hafnium decrease as the inverse fourth power of the sulfuric acid concentration below 2N and as the inverse second power at higher acid concentration. The hafnium-to-zirconium separation factor is approximately constant (approx. 8) over the 0.5 to 3N range. Under certain conditions, an unseparated fraction was observed that was not retained by the resin. The amount of this fraction which is thought to be a polymeric hydrolysis product appears to be a function of metal and sulfuric acid concentrations. Conditions are being sought to give the highest zirconium concentration and the lowest acid concentration that can be used as a feed material for commercial scale-up in the continuous annular chromatographic (CAC) unit without formation of the polymer

  20. Solidification of saturated radioactive organic ion exchangers and of ash from incineration plant

    International Nuclear Information System (INIS)

    Timulak, J.; Krejci, F.; Pekar, A.; Gulis, G.; Breza, M.

    1985-01-01

    The study of bituminization of saturated radioactive organic ion exchangers was centred on finding the effect of the water content of ion exchangers on the process of solidification and on the water content of bituminization products, the optimization of temperature conditions in the process of bituminization, on seeking a suitable bitumen, on testing the radiation and thermal stability of the bituminization product, on finding its properties as well as the effects of nuclear radiation on these properties. Ion exchangers of Czechoslovak and Soviet make were used in all experiments. It was found that solidified ion exchangers must have a maximum moisture of 10%, and the temperature during solidification must not exceed 130 degC. The negative effect of boric acid on cement solidification may be removed by neutralization of esterification of this acid following its release from the ion exchangers by hydrochloric acid. Some other results of the experiments are tabulated. The obtained results describe the behaviour of the product only during a brief period of time as compared with the long time of long-term disposal. It will therefore be necessary to devote attention to finding the characteristics of long-term behaviour of products during disposal. (Z.M.)

  1. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  2. "One-Pot" Ion-Exchange and Mesopore Formation During Desilication

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Hansen, Martin Kalmar; Christensen, Claus Hviid

    2009-01-01

    A desilication protocol using tetramethylammonium hydroxide was applied to zeolite beta. The new route presented here integrates the desilication and ion-exchange post-treatment steps allowing for a subsequent ion-exchange step to be avoided. It is shown that the acidic and highly mesoporous zeol...... zeolite is obtained directly upon calcination. Thus, careful choice of base and post-treatment conditions lead to the fabrication of a hierarchical meso- and microporous structure with completely retained crystallinity. (...

  3. Ion exchange in the 1980's in South Africa

    International Nuclear Information System (INIS)

    Giddey, T.B.S.

    1981-01-01

    In South Africa ion exchange plants have been modified into very sophisticated plants. This article looks at the development of- and application of resins and their manufacturing. At first it looks into how the equipment side has developed and changed in the last twenty years. High purity water production, desalination, waste water treatment and other applications of ion exchange in mineral recovery, like uranium, gold and base metals, and in chemical areas, like sugar processing, catalysis, tartaric acid and soda ash, are also discussed. Klipfontein Organic Products is setting up a plant to manufacture the whole range of ion exchange resins and thus to make SA needs to be independent of overseas suppliers of resin

  4. Ion exchange resin fouling of molybdenum in recovery uranium processess

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong

    1990-09-01

    The relationship between anion exchange resin fouling and molybdic acid polymerization was studied. By using potentiometer titration and laser-Raman spectroscopy the relationship of molybdic acid polymerization and the pH value of solution or the molybdenum concentration was determined. It was shown that as the concentration of initial molybdenum in solution decreases from 0.2 mol/L to 0.5 mmol/L, the pH value of starting polymerization decreased from 6.5 to 4.5. The experimental results show that the fouling of 201 x 7 resin in the acidic solution is mainly caused by the adsorbing of Mo 3 O 26 4- ion and occupying the exchange radical site of the resin. Under the leaching conditions the molybdenum and phosphate existing in the leaching liquor can form 12-molybdo-phosphate ion. It also leads to resin fouling. The molybdenum on the fouled resin can synergically be desorbed by mixed desorbents containing ammonium hydroxide and ammonium sulfate. The desorbed resin can be used for uranium adsorption and the desorbed molybdenum can be recovered by ion exchange method

  5. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    Science.gov (United States)

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  7. Wastewater treatment with ion-exchange chitin membrane

    International Nuclear Information System (INIS)

    Paulenova, A.; Fjeld, R. A.; Visacky, V.

    2001-01-01

    Chitin, poly(N-acetyl-D glucosamine) and chitosan, its deacetylated derivates have recently obtained attention as bio-sorbents, because they shown a great ability to accumulate heavy metals and other pollutants. It was found that recovery of metals is strongly affected by pH. At low acidic pH range 4-5 chitin membrane exhibits better selectivity for lead than for cadmium or zinc. Sorption preference for metals decreases in the order: Pb > Cd > Zn. For uranium, as well for strontium was observed significant increase of recovery at decrease of pH to slightly acidic, close to neutral value. It was shown that chemical behavior of chitin membrane is excellent; ion-exchange nature of chitin was not changed during chitin membrane manufacturing process. Using of chitin membrane instead of chitin flake column brings significant increasing of driving force of the separation process, limited in the case of column experimental design by diffusion coefficient, while in the case of membrane process only by mass transfer coefficient. (authors)

  8. Physico-chemical forms of natural radionuclides in drilled well waters and their removal by ion exchange

    International Nuclear Information System (INIS)

    Vaaramaa, K.

    2003-01-01

    Appreciable concentrations of natural uranium and its daughter radionuclides may occur in drinking water obtained from drilled wells when the bedrock contains these nuclides. Effective methods are needed to remove these radionuclides. A wide range of ion exchange materials, both organic and inorganic, were evaluated for the removal of 234,238 U, 226 Ra, 210 Po and 210 Pb from ground waters. Screenin tests were carried out, in which distribution coefficients (KD) were determined for the ion exchangers. The ion exchangers that gave the highest KD's were tested in column-mode experiments for the removal of the radionuclides from drilled well water. The most efficient exchanger for the removal of U from neutral and slightly alkaline waters was the strong base anion resin. The chelating aminophosphonate resin removed uranium very efficiently from slightly acidic water. As well, it was an efficient exchanger for the removal of toxic and harmful transition metals from drilled well waters. The strong and weak acid cation resins and zeolite A removed radium most efficiently. Large fractions of the total activity of polonium and lead were found to adsorb on equipment in the ion exchange studies. In investigation of this, the well waters were filtered through membranes to determine the soluble and particle-bound forms of 234,238 U, 226 Ra, 210 Po and 210 Pb. Eight of the waters were of Ca type and two were of Na-Cl type. Some of the waters also had high concentrations of Fe, Mn and humic substances. Uranium was present entirely in soluble form, probably as uranyl ion in soluble carbonate complexes. 226 Ra was in soluble form in the waters with low concentrations of Fe and Mn, but 10% of the total radium activity was bound to particles in Fe-Mn-rich waters. The speciation of Po is complex in natural waters; polonium was present in both soluble and particle-bound forms. A correlation was observed between the fractions of particle-bound 210 Po and the concentrations of iron in

  9. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  10. Study on rare earths complexes separation by means of different type of ion exchangers

    International Nuclear Information System (INIS)

    Hubicka, H.

    1990-01-01

    The applicability of different types of ion exchangers for purification and separation of rare earths complexes has been examined. The experimental work has been carried out on 14 chelating ion exchangers. The investigation results proved the great usefulness chelating ion exchangers especially of amino acid and phosphorus-type. Application of that type ion exchangers in column chromatographic process gave the excellent rare earths separation as well as enabled to obtain their preparates of high purity. 218 refs, 21 figs, 27 tabs

  11. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  12. Radiation effects on ion-exchange resins. Part II. Gamma irradiation of Dowex 1

    International Nuclear Information System (INIS)

    Kazanjian, A.R.; Horrell, D.R.

    1975-01-01

    The effects were determined of gamma radiation on the anion exchange resin, Dowex 1. Part I on Dowex 50W was reported May 10, 1974. The exchange capacity (both strong and weak base), moisture content, radiolysis products, and physical deterioration of the resin were analyzed after irradiation with doses up to 6.9 x 10 8 rads. The resin capacity decreased approximately 50 percent after a radiation dose of 4 x 10 8 rads. Resin irradiated, when air dried in the nitrate form, showed more stability than resin irradiated in 7N nitric acid (HNO 3 ), which in turn showed more stability than resin irradiated when air dried in the chloride form. Radiation decreased the strong base capacity to a greater extent than the total capacity. The result indicates that some of the quarternary ammonium groups were transformed to secondary and tertiary amine groups that have weak base ion-exchange capability. (U.S.)

  13. Separation of the lanthanides on high-efficiency bonded phases and conventional ion-exchange resins

    International Nuclear Information System (INIS)

    Elchuk, S.; Cassidy, R.M.

    1979-01-01

    High-performance liquid chromatographic separations (< 20 min) of the lanthanides are illustrated for both 5- and 10-μm bonded-phase strong-acid ion exchangers. The performance of these bonded phase packings is compared with that obtained with a 13-μm styrene-divinylbenzene resin. The eluted metal ions are detected with a variable-wavelength detector after a post-column complexation reaction. The requirements and characteristics of post-column reaction for sensitive metal ion detection after separation on high-performance columns are discussed and the linearity, reproducibility, and sensitivity of the system used in the work are illustrated. The potential of on-column preconcentration for the ultratrace (pg/mL) determination of metal ions is also discussed and illustrated. 7 figures, 2 tables

  14. Isolation of nitrosylruthenium nitrato complexes by ion exchange and extraction chromatography

    International Nuclear Information System (INIS)

    Huang, H.; Liu, L.

    TBP Levextrel and cation exchange resins were used to separate RuNO nitrato complexes of different nitric acid concentrations. 7402 quaternary ammonium salt Levextrel was used instead of an anionic exchange resin to separate anionic and neutral complex ions. The results indicated that D 3 and D 4 , which can easily be extracted by TBP, were anionic and neutral complex ions

  15. Transformation of thorium sulfate in thorium nitrate by ion exchange resin

    International Nuclear Information System (INIS)

    Pereira, W.

    1991-01-01

    A procedure for transforming thorium sulfate into thorium nitrate by means of a strong cationic ion exchanger is presented. The thorium sulfate solution (approximately 15 g/L Th (SO 4 ) 2 ) is percolate through the resin and the column is washed first with water, with a 0,2 M N H 4 OH solution and then with a 0.2 M N H 4 NO 3 solution in order to eliminate sulfate ion. Thorium is eluted with a 2 M solution of (N H 4 ) 2 CO 3 . This eluate is treated with a solution of nitric acid in order to obtain the complete transformation into Th (NO 3 ) 4 . The proposed procedure leads to good quality thorium nitrate with high uranium decontamination. (author)

  16. New sorbents and ion exchangers for nuclear waste solution remediation

    International Nuclear Information System (INIS)

    Clearfield, A.; Peng, G.Z.; Cahill, R.A.; Bellinghausen, P.; Aly, H.I.; Scott, K.; Wang, J.D.

    1993-01-01

    There is now a concerted effort underway to clean up the accumulated nuclear wastes as the major sites around the country. Because of the complexity of the mixtures in the holding tanks highly specific exchangers are required to fulfill a multitude of desired tasks. These include removal of Cs + , Sr 2+ , Tc, Actinides and possible recovery of rare and precious metals. No one exchanger or sequestrant can accomplish these tasks and a variety of exchangers in a multistep process will be required. The behavior of a number of inorganic ion exchangers in a multistep process will be required. The behavior of a number of inorganic ion exchangers and new organo-inorganic exchangers towards Cs + , Sr 2+ and rare-earth ions in acid and basic media will be described. Preliminary data on the effect of high levels of sodium nitrate on the uptake of these ions will also be presented, as well as the changes observed in selectivity in simulated waste solutions. A possible separation scheme based on these data will be described

  17. Ion-exchange chromatographic protein refolding

    NARCIS (Netherlands)

    Freydell, E.; Wielen, van der L.; Eppink, M.H.M.; Ottens, M.

    2010-01-01

    The application of ion-exchange (IEX) chromatography to protein refolding (IExR) has been successfully proven, as supported by various studies using different model proteins, ion-exchange media and flow configurations. Ion-exchange refolding offers a relatively high degree of process

  18. Correlation and prediction of ion exchange equilibria on weak-acid resins by means of the surface complex formation model

    International Nuclear Information System (INIS)

    Horst, J.

    1988-11-01

    The present work summarizes investigations of the equilibrium of the exchange of protons, copper, zinc, calcium, magnesium and sodium ions on two weak-acid exchange resins in hydrochloric and carbonic acid bearing solutions at 25 0 C. The description of the state of equilibrium between resin and solution is based on the individual chemical equilibria which have to be adjusted simultaneously. The equilibrium in the liquid phase is described by the mass action law and the condition of electroneutrality using activity coefficients calculated according to the theory of Debye and Hueckel. The exchange equilibria are described by means of a surface complex formation model, which was developed by Davis, James and Leckie for activated aluminia and which has been applied to weak-acid resins. The model concept assumes the resin as a plane surface in which the functional groups are distributed uniformly. (orig./RB) [de

  19. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  20. Microbial treatment of ion exchange resins

    International Nuclear Information System (INIS)

    Kouznetsov, A.; Kniazev, O.

    2001-01-01

    A bioavailability of ion exchange resins to a microbial destruction as one of the alternative methods of compacting used ionites from the nuclear fuel manufacturing cycle enterprises has been investigated. The bio-destruction was studied after a preliminary chemical treatment or without it. A sensitivity of the ion exchange resins (including highly acidic cationite KU-2-8) to the microbial destruction by heterotrophic and chemo-litho-trophic microorganisms under aerobic conditions was shown in principle. The biodegradation of the original polymer is possible in the presence of the water soluble fraction of the resin obtained after its treatment by Fenton reagent and accelerated in the presence of Mn-ions in optimal concentration 1-2 g of Mn per liter of medium. Thus, the process of bio-destruction of ionite polymer by heterotrophic microorganisms can be compared with the bio-destruction of lignin or humic substances. The optimum parameters of bio-destruction and microorganisms used must be different for resins with different functional groups. (authors)

  1. Synthesis and ion-exchange properties of cerium(IV) molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S K; Singh, Raj Pal; Agrawal, Sushma; Kumar, Satish [Roorkee Univ. (India). Dept. of Chemistry

    1977-01-01

    The synthesis, ion exchange properties, and the separation of a number of cation pairs on the columns of cerium (IV) molybdate is discussed. In order to obtain the product in gel form showing a high exchange capacity and suitable for column operation, preliminary experiments were performed to determine the optimum conditions of precipitation, i.e., the concentration of ceric and molybdate solutions, mixing ratio, pH of precipitation and the order of mixing. Cerium (IV) molybdate, prepared under the optimum conditions of concentration, acidity etc., shows exchange capacity of 0.96 meg per g of exchanger. The sorption of a large number of metal ions has been investigated and the compound shows promising behaviour as cation exchanger. Numerous separations of analytical and radiochemical interest have been performed on the column of this exchanger with great efficiency.

  2. Synthesis and ion-exchange properties of cerium(IV) molybdate

    International Nuclear Information System (INIS)

    Srivastava, S.K.; Raj Pal Singh; Sushma Agrawal; Satish Kumar

    1977-01-01

    The synthesis, ion exchange properties, and the separation of a number of cation pairs on the columns of cerium (IV) molybdate is discussed. In order to obtain the product in gel form showing a high exchange capacity and suitable for column operation, preliminary experiments were performed to determine the optimum conditions of precipitation, i.e., the concentration of ceric and molybdate solutions, mixing ratio, pH of precipitation and the order of mixing. Cerium (IV) molybdate, prepared under the optimum conditions of concentration, acidity etc., shows exchange capacity of 0.96 meg per g of exchanger. The sorption of a large number of metal ions has been investigated and the compound shows promising behaviour as cation exchanger. Numerous separations of analytical and radiochemical interest have been performed on the column of this exchanger with great efficiency. (T.G.)

  3. Ion exchange technology assessment report

    International Nuclear Information System (INIS)

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team

  4. PRTR ion exchange vault column sampling

    International Nuclear Information System (INIS)

    Cornwell, B.C.

    1995-01-01

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal

  5. Ion-pair chromatography of nucleic acid derivatives

    International Nuclear Information System (INIS)

    Perrone, P.A.; Brown, P.R.

    1985-01-01

    Little work has been done on the ion-pair chromatography of nucleic acid constituents, although there is a great potential for the use of this technique in the field. Since the classic work in 1949, nucleotides, as well as nucleosides and bases, have been separated by ion-exchange chromatography. However, ion exchange is a difficult mode and most researchers prefer the use of reversed-phase whenever possible. Although reversed-phase is now the method of choice, ionic compounds like nucleotides and some of the more polar bases are not adequately retained by many systems of this type. In addition, it is difficult to analyze simultaneously members of all three classes of nucleic acid compounds (bases, nucleosides, and nucleotides) using a reversed-phase system, even with gradient elution. Ion pairing can be a useful technique because, theoretically, the separation of nonionic bases and nucleosides along with the ionic nucleotides can be achieved. Additionally, each group of compounds may be separated isocratically. In this chapter, they will discuss ion-pair chromatography as applied to nucleic acid constituents. The current theories, advantages and disadvantages, a limited number of applications, and potential for future work are presented

  6. Removing and recovering of uranium from the acid mine waters by using ion exchange resin

    International Nuclear Information System (INIS)

    Nascimento, Marcos Roberto Lopes do

    1998-01-01

    Ion exchange using resins is one of the few processes capable of reducing ionic contaminants in effluents to very low levels. In this study the process was used to remove and recovery uranium from acid mine waters at Pocos de Caldas-MG Uranium Mining and Milling Plant. The local mineralogical features, allied to the biogeochemical phenomena, owing to presence of pyrite in the rock piles, moreover another factors, resulting acid drainage with several pollutants, including uranium ranging from 6 to 14 mg/l, as sulfate complex, that can be removed by anionic exchanger. The iron interference is eliminated by lime pretreatment of water, increasing pH from 2.6 to 3.3-3.8 to precipitate this cation, without changing the uranium amount. Eight anionic resins were tested, based on the uranium loading, in sorption studies. Retention time, and pH influence was verified for the exchanger chose. With breakthrough of 1 mg U/L and 10 mg U/l in the feed solution, the uranium decontamination level was 94%. Typical values of loading resin were 20-30 g U/l and 70-90 g SO 4 /l. Uranium elution was done with Na Cl solution. Retention time, saline, and acid concentration were the parameters studied. The concentrate, obtained from the eluate by ammonia precipitation, presented uranium (86,8% as U 3 O 8 ) and impurities within commercial specifications. (author)

  7. ION EXCHANGE IN GLASS-CERAMICS

    Directory of Open Access Journals (Sweden)

    George Halsey Beall

    2016-08-01

    Full Text Available In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque and different mechanical properties (especially higher modulus and toughness. There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass. The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change.This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  8. Cation exchange of 53 elements in nitric acid

    International Nuclear Information System (INIS)

    Marsh, S.F.; Alarid, J.E.; Hamond, C.F.; McLeod, M.J.; Roensch, F.R.; Rein, J.E.

    1978-02-01

    Cation-exchange distribution data are presented for 53 elements from 3 to 12M HNO 3 for three strong-acid resins, having cross-linkages of 8%, 4%, and macroporous. Data obtained by 16- to 18-h dynamic batch contacts are compared to cation-exchange distribution data from strong HCl and HClO 4

  9. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  10. Desalination by electrodialysis with ion-exchange membrane prepared by radiation-induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Jeong, Young Han; Ryoo, Jae Jeong; Lee, Kwang-Pill [Department of Chemistry Graduate School, Kyungpook National University, Taegu (Korea)

    2000-07-01

    Ion-exchange membranes modified with triethylamine [-N(CH{sub 2}CH{sub 3}){sub 3}] and phosphoric acid (-PO{sub 3}H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly (GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM and XPS. The ion-exchange capacities of the cation- and anion-exchange membrane were 0.20 and 1.24mmol/g, respectively. The content of cation- and anion exchange group increased with increasing grafting yield (d.g.=100%). Electrical resistance of PNF modified with TEA and -PO{sub 3}H group decreased with increasing ion-exchange group capacities. Application of the graft-type ion-exchange membranes as separators for electrodialysis enabled use to reduce the time required to achieve 85.5% desalination of the 0.5M NaCl solution. (author)

  11. Fundamentals of ion exchange

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1993-01-01

    In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)

  12. Minor Actinide Separations Using Ion Exchangers Or Ionic Liquids

    International Nuclear Information System (INIS)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-01-01

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  13. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  14. Determination of feedstuff amino acids composition by ion-exchange chromatography

    Directory of Open Access Journals (Sweden)

    A. A. Volnin

    2018-01-01

    Full Text Available Determination of animal feeds amino acids composition is the very important part of agricultural sciences and livestock management. This is necessary for normalization and balanced of farm animal’s diets parameters. Advances in husbandry techniques are making in response to the needs for rearing high genetic merit livestock. The nutrition of livestock has a critical role in these developments and is an element which needs to be continually updated as new scientific information becomes available. This article is devoted to the use of ion-exchange chromatography with post-colum derivatization by ninhydrin in the study of the amino acid composition and evaluation of the biological value of livestock feedstuff components. The amino acid composition (except tryptophan of the livestock feed-stuff component is presented for threonine – 3.26 g/100g of protein, leucine – 6.43, isoleucine – 3.24, valine – 4.77, methionine – 2.18, lysine – 2.90, phenylalanine – 3.16, histidine – 2.03, tyrosine – 2.33, sum of asparagine and aspartate – 6.76, serine – 3.97, sum of glutamine and glutamic acid – 12.04, glycine – 6.00, alanine – 6.71, arginine – 6.93, proline – 3.08, sum of cystine and cysteine – 1.38. Biological value of feedstuff component compared with the "ideal" protein (FAO WHO is estimated, limiting amino acids were found. The amino acid score was calculated: for threonine – 81.5%, leucine – 91.9%, isoleucine – 81%, valine – 95.4%, lysine – 52.7%, phenylalanine and tyrosine sum – 91.5%, methionine and cysteine sum – 101.7%. Feedstuff component had a low level of essential amino acids in compare with "ideal" protein (FAO WHO. Feedstuff component can be used for livestock nutrition as a component of essential amino-acid balanced diet.

  15. The ion exchange properties and equilibrium constants of Li+, Na+ and K+ on zirconium phosphate highly dispersed on a cellulose acetate fibers surface

    Directory of Open Access Journals (Sweden)

    Borgo Claudemir Adriano

    2004-01-01

    Full Text Available Highly dispersed zirconium phosphate was prepared by reacting celullose acetate/ZrO2 (ZrO2 = 11 wt%, 1.0 mmol g-1 of zirconium atom per gram of the material with phosphoric acid. High power decoupling magic angle spinning (HPDEC-MAS 31P NMR and X-ray photoelectron spectroscopy data indicated that HPO4(2- is the species present on the membrane surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.60 mmol g-1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g-1: Li+= 0.05, Na+= 0.38 and K+= 0.57. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is of non ideal nature. These ion exchange equilibria were treated with the use of models of fixed tridentate centers, which consider the surface of the sorbent as polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants are discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity for the ions decreases with increasing the cations hydration radii from K+ to Li+. The high values of the separation factors S Na+/Li+ and S K+/Li+ (up to several hundreds support the application of this material for the quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.

  16. Biodegradation of ion-exchange media

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-08-01

    Ion-exchange media, both bead resins and powdered filter media, are used in nuclear power plants to remove radioactivity from process water prior to reuse or environmental discharge. Since the ion- exchange media are made from synthetic hydrocarbon-based polymers, they may be susceptible to damage from biological activity. The purpose of this study was to investigate some of the more basic aspects of biodegradation of ion-exchange media, specifically to evaluate the ability of microorganisms to utilize the ion-exchange media or materials sorbed on them as a food source. The ASTM-G22 test, alone and combined with the Bartha Pramer respirometric method, failed to indicate the biodegradability of the ion-exchange media. The limitation of these methods was that they used a single test organism. In later phases of this study, a mixed microbial culture was grown from resin waste samples obtained from the BNL High Flux Beam Reactor. These microorganisms were used to evaluate the susceptibility of different types of ion-exchange media to biological attack. Qualitative assessments of biodegradability were based on visual observations of culture growths. Greater susceptibility was associated with increased turbidity in solution indicative of bacterial growth, and more luxuriant fungal mycelial growth in solution or directly on the ion-exchange resin beads. 21 refs., 9 figs., 18 tabs

  17. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.

    1997-04-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  18. Interaction of Fe(II) with Polyacrylic Acid as a Simplification of Humic Acid: Comparison of Ion Exchange and Solvent Extraction Methods

    International Nuclear Information System (INIS)

    Budi Setiawan

    2007-01-01

    To estimate the safety assessment around the disposal facility, the interaction behavior of radionuclides/metal ions into organic material (such as humic acids) exist in natural water becomes an important study. To avoid the effect of heterogeneous composition of humic acid, polyacrylic acids (abbrev. APA) was used as are representative of homogeneous polymeric weak acid. The experiments have been carried out by solvent extraction and ion exchange methods to find out the suitable method for the study of complex formation of Fe(II) with humic acid(AH) and APA. The solvent extraction experiment has been done by using diphenylthiocarbazone (dithizone) in CCl 4 and C Fe(II) were 10 -8 M to 10 -5 M, pH around 5 and I=0.1M NaCI. In ionic exchange experiment, C Fe(II) were 10 -8 to 10 -4 M, pH from 4.8 to 5.5 in I=0.1M NaCl. The apparent complex formation constant is defined as β α = [ML]/([M][R]), where [M] and [ML] are concentration of free and bound of Fe(II) and [R] is the concentration of dissociated carboxylic group in macromolecules of PAA. The results shown that, for solvent extraction experiments, variable concentration of Fe(II) had no appreciable influence on the distribution ratio of Fe(II)-polyacrylate at the tracer concentration with the log D to be 1.32 ± 0.03 (pcH 5.25). At macro concentration, the distribution ratio of Fe(II) becomes smaller due to oxidation and obtained log D value to be 1.04 ± 0.07 (pcH 5.34). An interest kind was observed at higher PAA concentration, the distribution ratio curve becomes higher presumably due to the problem on redox sensitive characteristic of Fe(II) and/or coagulation of Fe(II)-polyacrylate at the interface of aqueous-organic phases. In case of ionic exchange method, the plot of I/Kd versus [R] gives a straight line result indicating this method is appropriate and more superior compare than solvent extraction method to determine the complex formation constant. (author)

  19. Recovery of gold with ion exchange resin from leaching solution by acidothioureation. Ion kokan jushiho ni yoru ryusan sansei chio nyoso kinshinshutsueki kara no kin no kaishu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakahiro, Y.; Ninae, M.; Kusaka, E.; Wakamatsu, T. (Kyoto University, Kyoto (Japan). Faculty of Engineering); Horio, Y. (Yamaha Co. Ltd., Tokyo (Japan))

    1991-12-25

    Recovery of gold with ion exchange resin from leaching solution by acidothioureation, and elution of gold from ion exchange resin with gold were studied experimentally. As the result of batch adsorption experiments of Au(TU){sub 2}{sup +} into various kinds of ion exchange resins, strong acidic cation exchange resin was most suitable, and gold was fully adsorbed into such resin in the pH range from 1.2 to 2.0 without any effects of thiourea in the leaching solution on adsorption of gold. As the result of batch elution experiments in various kinds of eluates, copper was eluted in HNO{sub 3}(1 N) + H{sub 2}O{sub 2}(1wt%) elute, both iron and zinc in NH{sub 4}NO{sub 3}(0.5 M) elute, and gold in Na{sub 2}S{sub 2} O{sub 3}(0.05 M) elute resulting in the recovery of gold. As the result of column elution experiments, Amberlite 200C was most effective among some ion exchangers used for recovery of Au(CS(NH{sub 2}){sub 2}){sub 2}{sup +}. 16 refs., 15 figs.

  20. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Howard, C.G.; Jolliffe, C.B.; Lee, D.J.

    1990-02-01

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  1. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  2. A procedure for reducing the concentration of hydrogen ions in acid anionic eluate and equipment therefore

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1989-01-01

    The method is described of reducing the concentration of hydrogen ions in acid anionic eluate produced in the separation of uranium or other metals, in which anion exchanger elution, precipitation, filtration and precipitate and anion exchanger washing are used. The technological line for such elution comprises at least one ion exchange column and at least one container. They together form the first and the second stages of preparation of the acid anion elution solution, the sorption-elution separation of hydrogen ions on an cation exchanger being inserted between them. The preparation of the solution is divide into two stages. In the first stage, the acid and part of the solution for the preparation of the acid anion elution solution are supplied. The resulting enriched acid elution solution is fe onto the cation exchanger where the hydrogen ion concentration i reduced. It is then carried into the second stage where it is mixed with the remaining part of the solution. (B.S.)

  3. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  4. Synthesis of ion exchange membrane by radiation grafting of acrylic acid onto polyethylene

    International Nuclear Information System (INIS)

    Ishigaki, I.; Sugo, T.; Senoo, K.; Takayama, T.; Machi, S.; Okamoto, J.; Okada, T.

    1981-01-01

    Radiation grafting of vinyl monomers onto polymer films has been extensively studied by many workers. In the preirradiation method of grafting a polymer substrate is activated by irradiation (either in the presence or absence of oxygen) and subsequently allowed to react with a monomer. The preirradiation method was utilized in this study to synthesize an ion exchange membrane useful for a battery separator by grafting acrylic acid onto polyethylene film. The battery separator should be chemically and thermally stable, sufficiently durable in electrolyte as well as highly electrically conductive. Membranes made from regenerated cellulose, e.g., cellophane, have long been used as a separator in the batteries with alkaline electrolyte, such as silver oxide primary cell. However, it has poor durability, as short as one year, due to breakdown of the membrane during operation or storing. The acrylic acid-grafted polyethylene film was found to be quite useful for a separator in the alkaline batteries. This membrane has a high electric conductivity and an excellent durability. (author)

  5. High-capacity, selective solid sequestrants for innovative chemical separation: Inorganic ion exchange approach

    International Nuclear Information System (INIS)

    Bray, L.

    1995-01-01

    The approach of this task is to develop high-capacity, selective solid inorganic ion exchangers for the recovery of cesium and strontium from nuclear alkaline and acid wastes. To achieve this goal, Pacific Northwest Laboratories (PNL) is collaborating with industry and university participants to develop high capacity, selective, solid ion exchangers for the removal of specific contaminants from nuclear waste streams

  6. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study

    Directory of Open Access Journals (Sweden)

    Amrit P. Toor

    2011-05-01

    Full Text Available The kinetic behavior of esterification of lactic acid with isopropanol over an acidic cation exchange resin, Amberlyst 15, was studied under isothermal condition. Isopropyl lactate synthesized in this reaction is an important pharmaceutical intermediate. The experiments were carried out in a stirred batch reactor in the temperature range of 323.15 to 353.15 K. The effect of various parameters such as temperature, molar ratio and catalyst loading was studied. Variation in parameters on rate of reaction demonstrated that the reaction was intrinsically controlled. Kinetic modeling was performed using Eley-Rideal model which acceptably fits the experimental data. The activation energy was found to be 22.007 kJ/mol and frequency factor was 0.036809 l2 g-1 mol-1 min-1 for forward reaction. The value of entropy for the forward reaction was found to be 182.317 J K-1 mol-1 . © 2011 BCREC UNDIP. All rights reserved(Received: 19th January 2011, Revised: 16th March 2011; Accepted: 16th March 2011[How to Cite: A.P. Toor, M. Sharma, S. Thakur, and R. K. Wanchoo. (2011. Ion-exchange Resin Catalyzed Esterification of Lactic Acid with Isopropanol: a Kinetic Study. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 39-45. doi:10.9767/bcrec.6.1.791.39-45][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.791.39-45 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/791 ] | View in  

  7. Separation and purification of uranium by ion exchange on stannic phosphate

    International Nuclear Information System (INIS)

    Mayankutty, P.C.; Nadkarni, M.N.; Venkateswarlu, K.S.

    1977-01-01

    Exchange of uranium, plutonium and some fission product elements was investigated on stannic phosphate (SnP) exchanger from nitric acid solutions. Batch equilibration studies exhibited stronger absorption of plutonium (IV) and some of the fission products on the exchanger than uranium. This indicated the possibility of separation and purification of uranium from plutonium and fission products. Breakthrough studies were carried out to determine the effects of flow-rates and uranium, plutonium and free nitric acid concentrations in the feed to establish the optimum conditions for this separation. Several reagents were also tested to find suitable eluting agents to desorb plutonium from the exchanger. The results indicate that traces of plutonium and fission products present as impurities in the uranium product of the purex process stream can be removed by ion exchange method using SnP. 1 M nitric acid solution containing low concentrations of reducing agents such as ferrous sulfamate or ascorbic acid was found to be an effective eluting agent for plutonium. (author)

  8. Ion Exchange Technology Development in Support of the Urine Processor Assembly

    Science.gov (United States)

    Mitchell, Julie; Broyan, James; Pickering, Karen

    2013-01-01

    The urine processor assembly (UPA) on the International Space Station (ISS) recovers water from urine via a vacuum distillation process. The distillation occurs in a rotating distillation assembly (DA) where the urine is heated and subjected to sub-ambient pressure. As water is removed, the original organics, salts, and minerals in the urine become more concentrated and result in urine brine. Eventually, water removal will concentrate the urine brine to super saturation of individual constituents, and precipitation occurs. Under typical UPA DA operating conditions, calcium sulfate or gypsum is the first chemical to precipitate in substantial quantity. During preflight testing with ground urine, the UPA achieved 85% water recovery without precipitation. However, on ISS, it is possible that crewmember urine can be significantly more concentrated relative to urine from ground donors. As a result, gypsum precipitated in the DA when operating at water recovery rates at or near 85%, causing the failure and subsequent re14 NASA Tech Briefs, September 2013 placement of the DA. Later investigations have demonstrated that an excess of calcium and sulfate will cause precipitation at water recovery rates greater than 70%. The source of the excess calcium is likely physiological in nature, via crewmembers' bone loss, while the excess sulfate is primarily due to the sulfuric acid component of the urine pretreatment. To prevent gypsum precipitation in the UPA, the Precipitation Prevention Project (PPP) team has focused on removing the calcium ion from pretreated urine, using ion exchange resins as calcium removal agents. The selectivity and effectiveness of ion exchange resins are determined by such factors as the mobility of the liquid phase through the polymer matrix, the density of functional groups, type of functional groups bound to the matrix, and the chemical characteristics of the liquid phase (pH, oxidation potential, and ionic strength). Previous experience with ion

  9. Study of boric acid sorption and desorption processes

    International Nuclear Information System (INIS)

    Czosnowska, B.; Laren, E.

    1978-01-01

    The results are given of the experimental determination of the effect on the boric acid flow and sorption and desorption efficiency of the flow rate of boric acid at different concentrations through an ion exchange column 10.2 cm 2 in cross section. The strongly alkaline VOFATIT RO ion exchanger was used. (B.S.)

  10. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Nalan Ozbay; Nuray Oktar; N. Alper Tapan [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture, Department of Chemical Engineering

    2008-08-15

    Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50-60{sup o}C and the effect of catalyst amount (1-2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area. 44 refs., 11 figs., 2 tabs.

  11. The study of Cr(III) complexation in the xylem sap using ion exchange and radiotracer

    International Nuclear Information System (INIS)

    Juneja, Shikha; Prakash, Satya

    2003-01-01

    Radiotracer was employed to carry out ion exchange experiments to study the chromium speciation in the in vitro samples of xylem sap of maize stem of 60 days old plants. Cr(III) radiolabelled with its radioactive isotope ( 51 Cr) was mixed with both the ion exchange fraction of the sap which represented the carboxylic acids, as well as the whole sap and was analysed for complexation after 10 and 30 days at 25 degC. Prior to this, the ion exchange elution chromatography of Cr(III), and the Cr(III) complexes with oxalic and citric acid were used to compare the complexes being formed in the in vitro studies. The in vitro Cr(III) complexation results indicated that Cr(III) was vitally present as anionic species. The elution curve trend was similar to that of citric acid complexation. Citric acid was also found to be the major complexing acid in the xylem sap as determined by HPLC. The results indicate the transportation of Cr(III) as a citrate complex in the xylem sap of maize plants. (author)

  12. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    Science.gov (United States)

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers

    International Nuclear Information System (INIS)

    2002-01-01

    This report describes the ion exchange technologies currently used and under development in nuclear industry, in particular for waste management practices, along with the experience gained in their application and with the subsequent handling, treatment and conditioning of spent ion exchange media for long term storage and/or disposal. The increased role of inorganic ion exchangers for treatment of radioactive liquid waste, both in nuclear power plant operations and in the fuel reprocessing sector, is recognised in this report. The intention of this report is to consolidate the previous publications, document recent developments and describe the state of the art in the application of ion exchange processes for the treatment of radioactive liquid waste and the management of spent ion exchange materials

  14. Synthesis, Characterization and Ion Exchange Properties of a New Composite of Inorganic Ion Exchanger: Polyacrylonitrile Cerium(IV) Molybdophosphate%Synthesis, Characterization and Ion Exchange Properties of a New Composite of Inorganic Ion Exchanger: Polyacrylonitrile Cerium(IV) Molybdophosphate

    Institute of Scientific and Technical Information of China (English)

    Ahmadi, Seyed Javad; Yavari, Ramin; Ashtari, Parviz'; Gholipour, Vanik; Kamel, Leila; Rakhshandehru, Farokh

    2012-01-01

    In this work, the synthesis of the composite of cerium(IV) molybdophosphate (CMP) and polyacrylonitrile (PAN) was reported (CMP-PAN). The material has been characterized by elemental and spectral (FT-IR), X-ray and thermal (TGA) analysis. Also the size analysis of the composite was done by scanning electron microscopy (SEM). Its chemical stability in acidic, basic and saline solutions and radiation stability up to 100 kGy total expose dose were assessed. Whereas the synthesized composite has ion exchange properties, its ion exchange capacity and behavior toward several metal ions were also investigated. Further, the distribution coefficients of the metal ions were calculated. Finally, the ability of the synthesized CMP-PAN composite for the decontamination of low level liquid waste (LLLW) was investigated.

  15. Separation of boron isotopes by ion exchange chromatography: studies with Duolite-162, a type-II resin

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Balasubramanian, R.; Mathur, P.K.

    1994-01-01

    The selection of resin plays an important role in the process of separation of boron isotopes by ion exchange chromatography. The determination of (i) ion exchange capacity of Duolite-162 resin for hydroxyl - chloride exchange, (ii) hydroxyl - borate exchange, (iii) isotopic exchange separation factor by batch method and (iv) effect of concentration of boric acid on isotopic exchange separation factor to test the suitability of the above resin for this process are discussed in this report. (author)

  16. Possibility of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Khaynakov, S.A.; Likov, E.P.; Bortun, A.I.; Belyukov, V.N.

    1986-01-01

    Present work is devoted to possibilities of sorption purification of chromium comprising waste waters of galvanic production by inorganic ion exchangers. Thus, the comparative study of sorption of chromium ions on anion exchanger A B-17 and on inorganic ion exchangers on the basis of hydrated titanium and zirconium dioxides in static and dynamic conditions is conducted. The influence of chromium ions concentration, solutions acidity (ph=1÷12) and presence of base electrolyte on sorption is studied. The state of chromium ions sorbed by inorganic ion exchangers is studied by means of infrared spectroscopy and spectroscopy. It is defined that inorganic sorbents could be used for chromium extraction from different solutions.

  17. Safety aspects in a chemical exchange process plant

    International Nuclear Information System (INIS)

    Sharma, B.K.

    2016-01-01

    Based on a chemical exchange process involving solid liquid exchange, studies have been undertaken to enrich 10 B isotope of boron using ion exchange chromatography in which a strong base anion exchange resin in hydroxyl form is equilibrated with boric acid solution in presence of mannitol (a complexing reagent to boric acid) to enhance the acidity and hence the isotopic exchange separation factor for 10 B = 11 B exchange reaction. Using the electrochemical techniques such as pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron and monitoring of band movements using these electrochemical techniques. The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. This process is an industrially viable process. The various safety aspects followed during operation of this plant are described in this paper. (author)

  18. Application of pressurized ion exchange to separations of transplutonium elements

    International Nuclear Information System (INIS)

    Campbell, D.O.

    1980-01-01

    High-pressure ion exchange chromatography, used first for nucleic acid separations, was applied to the production of the heavier actinides, particularly the transcurium elements. Its use at the TRU plant is described. Future developments are considered briefly

  19. Ion exchange process: History, evolution and applications

    International Nuclear Information System (INIS)

    Mazzoldi, P.; Carturan, S.; Sada, C.; Quaranta, A.; Sglavo, V.M.

    2013-01-01

    The aim of this paper is to present a review on some aspects and applications of ion exchange process in glasses, ferroelectric and polymers in the fields of optics, nanotechnology, gas sensors and chemical strengthening. The formation of nanoparticles in ion-exchanged glasses, as effect of ion or laser irradiation, is discussed. A discussion on the potentialities of ion exchange process in comparison to ion implantation in optical devices and nanotechnology is also introduced. Analytical techniques applied to the study of the ion exchange process are illustrated. The studies of ion exchange process in “Natural materials” constitute the content of a specific paragraph, for applications in water cleaning. Some initial considerations on the “old age” of this technique are introduced.

  20. Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins.

    Science.gov (United States)

    Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin

    2017-01-05

    The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemical exchange between UF6 and UF6- ion in anhydrous hydrofluoric acid

    International Nuclear Information System (INIS)

    Chatelet, J.; Luce, M.; Plurien, P.; Rigny, P.

    1975-01-01

    The chemical exchange between UF 6 and the UF 6 - ion is of potential interest for the separation of U isotopes. In this paper, results concerning the value of the separation factor and the kinetics of the homogeneous exchange are given [fr

  2. Selective separation of radionuclides from nuclear waste solutions with inorganic ion exchangers

    International Nuclear Information System (INIS)

    Lehto, J.; Harjula, R.

    1999-01-01

    Nuclear industry produces and stores large volumes of radioactive waste solutions. Removal of radionuclides from the solutions is an important and challenging task for two main reasons: reductions in the volumes of solidified waste, which have to be disposed of, and reductions in the radioactive discharges into the environment. Since the radioactive elements in most waste solutions are in trace concentrations and the waste solutions contain large excesses of inactive metal ions, highly selective separation methods are needed for the removal of radionuclides. A number of inorganic ion exchange materials are very selective to key radionuclides and they can play an important role in solving these problems. The spectrum of nuclear waste solutions is rather wide considering their radionuclide contents, concentrations of interfering salts and acidity/alkalinity. Therefore, several inorganic ions exchangers are needed for the removal of most harmful radionuclides from a variety of solutions. This paper discusses the use and requirements of inorganic ion exchange materials in nuclear waste management. Special attention is paid to the novel ion exchange materials developed in the Laboratory of Radiochemistry, University of Helsinki. (orig.)

  3. Exchange of Th, U and Pu on macroporous ion exchange resins

    International Nuclear Information System (INIS)

    Nadkarni, M.N.; Mayankutty, P.C.; Pillai, N.S.; Shinde, S.S.

    1977-01-01

    Absorption of Th, U and Pu on macroporous ion exchangers, Amberlyst 15 (cationic) and Amberlyst A-26 (anionic) were studied in nitric acid solutions and the results were found comparable with those on their microreticular counter parts, Dowex 50x8 and Dowex IX4. With a view to evalute the efficiency of Amberlyst A-26 for the final purification of plutonium from the purex process stream, detailed studies conducted to determine the breakthrough capacity of Pu(IV) from 7.2 M nitric acid, elution by 0.5 M nitric acid and the decontamination factors for uranium and zirconium-95. Because of its faster kinetics, Amberlyst A-26 exhibited a much more efficient elution of Pu(IV) by 0.5 M nitric acid than Dowex IX4. (author)

  4. Speciation and surface interactions of actinides on aged ion-exchange resins

    International Nuclear Information System (INIS)

    Morris, D.E.; Buscher, C.T.; Donohoe, R.J.

    1997-01-01

    The United States Department of Energy is presently faced with the stabilization and safe disposition of hundreds of metric tons of residue materials resulting from 50+ years of nuclear weapons production activities. These residues encompass a broad range of substrates and radionuclides and include both solid and liquid materials. Combustible residues constitute a significant fraction of the total residue inventory, and an important constituent within the combustible category is spent anion ion-exchange resins. These resins are typically utilized for the separation of plutonium from other radionuclides under strongly acidic nitric or hydrochloric acid solution conditions which favor the formation and partitioning of anionic Pu(IV) nitrato or chloride species. The spent resins are usually rinsed prior to storage as residues to reduce both acid and radionuclide concentrations, but significant radionuclide concentrations remain in these resins, and the long-term effects of concentrated acid and radiolysis on the resin integrity are relatively unexplored. Thus, new research is needed to assess the stability of these resin residues and address the need for further treatment to ensure stability prior to long-term disposal

  5. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of AmIII. Experimental findings indicated that CeIII, NpV, and RuII are oxidized by peroxydisulfate, but there are no indications that the presence of CeIII, NpV, and RuII affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.

  6. Gadolinium-hydrogen ion exchange of zirconium phosphate

    Science.gov (United States)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  7. Radium separation through complexation by aqueous crown ethers and ion exchange or solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chiarizia, R.; Dietz, M.L.; Horwitz, E.P. [Argonne National Lab., IL (United States). Chemistry Div.; Burnett, W.C. [Florida State Univ., Tallahassee, FL (United States). Dept. of Oceanography

    1997-11-01

    The effect of three water-soluble, unsubstituted crown ethers (15-crown-5 (15C5), 18-crown-6 (18C6) and 21-crown-7 (21C7)) on the uptake of Ca, Sr, Ba and Ra cations by a sulfonic acid cation exchange resin, and on the extraction of the same cations by xylene solutions of dinonylnaphthalenesulfonic acid (HDNNS) from aqueous hydrochloric acid solutions has been investigated. The crown ethers enhance the sorption of the larger cations by the ion exchange resin, thereby improving the resin selectivity over calcium, a result of a synergistic interaction between the crown ether and the ionic functional groups of the resin. Similarly, the extraction of the larger alkaline earth cations into xylene by HDNNS is strongly synergized by the presence of the crown ethers in the aqueous phase. Promising results for intra-Group IIa cation separations have been obtained using each of the three crown ethers as the aqueous ligands and the sulfonic acid cation exchange resin. Even greater separation factors for the radium-calcium couple have been measured with the crown-ethers and HDNNS solutions in the solvent extraction mode. The application of the uptake and extraction results to the development of radium separation schemes is discussed and a possible flowchart for the determination of {sup 226}Ra/{sup 228}Ra in natural waters is presented.

  8. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    Science.gov (United States)

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  9. A novel electrochemical ion exchange system and its application in water treatment.

    Science.gov (United States)

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Selective separation of uranium and thorium from lanthanides on sulphonic ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Hubicki, Z; Hubicka, H; Jusiak, S [Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland)

    1977-01-01

    Separation of uranium and thorium from rare earth elements was studied on sulphonic ion exchangers of various types. Ammonium acetate, ammonium salicylate, aliphatic amine acetates, metaphosphoric acid and others were used as eluants. The most effective separation was attained by using metaphosphoric acid as eluant.

  11. Advance in the study of removal of cesium from radioactive wastewater by inorganic ion exchangers

    International Nuclear Information System (INIS)

    Wang Songping; Wang Xiaowei; Du Zhihui

    2014-01-01

    The excellent performance in the removal of cesium from radioactive wastewater by inorganic ion exchangers has received extensive attention due to their characteristic physico-chemical features. The paper summarized research progress of removal of cesium by different inorganic ion exchangers such as silicoaluminate, salts of hetero polyacid, hexacyanoferrate, insoluble salts of acid with multivalent metals, insoluble hydrous oxides of multivalent metals and silicotitanate and reviewed several removal systems of cesium by inorganic ion exchangers which might offer China some reference in treatment and disposal of radioactive wastewater. (authors)

  12. Chemical uranium enrichment with ion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Onitsuka, Hatsuki; Obanawa, Heiichiro

    1991-01-01

    The uranium enrichment by using ion-exchange has been studied and developed since 1972. The ion-exchange rate has been improved approx. 3000 times and the electron exchange reaction, which occurs with ion-exchange reaction, was also accelerated with catalyst. Flow disturbance in a ion-exchange column has been fully studied and the value of turbulence has been reduced to 150μm. These results allowed us to design a very fine separation column, in which about 10000 stages can be obtained even when the column is more than 1 m in diameter. In the course of the development, a self-regenerating reaction between the redox agents was discovered and incorporated into the process, and has resulted in a reduction of 70 % in the separation energy requirement. (author)

  13. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    Science.gov (United States)

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  14. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, K; Abrao, A

    1975-06-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Nd, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH/sub 4/ solution buffered with acetic acid as eluant. The annoying problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu/sub 2/S and disruption of Cu-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity.

  15. Separation of individual lanthanides through the combined techniques of urea fractionated homogeneous precipitation and ion exchange

    International Nuclear Information System (INIS)

    Umeda, K.; Abrao, A.

    1975-01-01

    The separation of individual lanthanides, especially Ce, Nd, Pr, Sm and La, from a rare earth chlorides concentrate by the industrial processing of monazite sand is made. To reach this goal the homogeneous fractional precipitation and ion exchange techniques were combined. Using the rare earths concentrate depleted in Cerium, fractions enriched in Nd, Pr and Sm, and one final filtrate enriched in La were obtained, by the hydrolysis of urea. The separation of individual lanthanides (Ns, Pr, Sm and La) was accomplished using two strong cationic ion exchanger columns, the second with Cu(II) as retaining ion, and EDTA-NH 4 solution buffered with acetic acid as eluant. The annoy problem of precipitation into the column during the RE elution was solved. The difficult EDTA and Cu(II) recovery was the precipitation of Cu 2 S and disruption of CU-EDTA complex by hydrolysis of thiourea. The combination of both techniques allowed the preparation of individual lanthanides as Nd, Pr and La with 99% and Sm with 90% purity

  16. Ion exchange in the nuclear power industry

    International Nuclear Information System (INIS)

    Lehto, J.

    1993-01-01

    Ion exchangers are used in many fields in the nuclear power industry. At nuclear power plants, organic ion exchange resins are mainly used for the removal of ionic and particulate contaminants from the primary circuit, condensate and fuel storage pond waters. Ion exchange resins are used for the solidification of low- and medium-active nuclear waste solutions. The number of applications of zeolites, and other inorganic ion exchangers, in the separation of radionuclides from nuclear waste solutions has been increasing since the 1980s. In nuclear fuel reprocessing plants, ion exchange is used for the solidification of low- and medium-active waste solutions, as well as for the partitioning of radioactive elements for further use. (Author)

  17. Composite inorganic ion-exchangers and their applications

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Motl, A.

    1998-01-01

    Composite inorganic ion exchangers are described containing modified polyacrylonitrile as the binding polymer. An overview of existing composite ion exchangers is presented, and the universality and assets of the developed procedure of treatment of inorganic ion exchanger powders are highlighted. Examples of applicability of the ion exchangers to the separation and concentration of radionuclides include in particular: wastes from the operation of nuclear power plants, contaminated surface waters and ground water, high level radioactive wastes from spent fuel reprocessing, and wastewaters from uranium ore mining and milling. In addition, composite ion exchangers find use in the monitoring of contamination of the hydrosphere and the environment and in the investigation of radionuclide migration in surface waters and ground water

  18. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  19. Calculating the Ionization Constant of Functional Groups of Carboxyl Ion Exchangers

    Science.gov (United States)

    Meychik, N. R.; Stepanov, S. I.; Nikolaeva, Yu. I.

    2018-02-01

    The potentiometric titration of a weakly basic carboxyl cation exchanger, obtained via alkaline hydrolysis of an acrylonitrile copolymer with divinyl benzene (degree of crosslinking, 12%) in a wide range of variation in a solution of pH (2-12) and NaCl (concentration 0.01, 0.1, 0.5, 1 M), is considered. The maximum ion-exchange capacity of the ion exchanger for Na+ is determined (10.10 ± 0.088 mmol/g of the dry mass) and found to be independent of the solution's ionic strength. It is established that in the investigated range of NaCl concentrations and pH, the acid-base balance is adequately described by Gregor's equation. The parameters of this equation are calculated as a function of the NaCl concentration: p K a = 8.13 ± 0.04, n = 1.50 ± 0.02 for 0.01 M; p K a = 6.56 ± 0.04, n = 2.60 ± 0.07 for 0.1 M; and p K a = 5.66 ± 0.6, n = 2.62 ± 0.06 for 0.5 and 1 M. It is shown that to describe the acid-base balance correctly within the proposed model we must estimate the adequacy of the experimental and calculated values of the ion exchanger's capacity at each pH value according to the calculated parameters of Gregor's equation.

  20. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  1. Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin.

    Science.gov (United States)

    Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S

    2012-01-01

    A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.

  2. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    Triolo, R.; Lietzke, M.H.

    1979-01-01

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  3. Development of long-lived radionuclide partitioning technology - Preparation of ion exchanges for selective separation of radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Joong; Jeong, Hae In; Shim, Min Sook [Korea University, Seoul (Korea, Republic of); Kim, Jeong [Seonam University, Namwon (Korea, Republic of)

    1995-07-01

    Ion exchanger contained nitrogen-oxygen donor macrocyclic units was synthesized, and immobilization process was carried out by adsorption of the exchanger to silica gel. The binding constants were measured with acid concentration. From the binding constants, selectivity for Pt(II) ion and acid concentration of eluents were determined. The most optimum conditions for the separation were also determined from investigating the effects of amount of immobile phase and column length. And liarit aza-crown ethers were synthesized and selectively separated Cs/Sr ion from mixed metal solution. 37= refs., 24 tabs., 40 figs. (author)

  4. Purification of dirucotide, a synthetic 17-aminoacid peptide, by ion exchange centrifugal partition chromatography.

    Science.gov (United States)

    Boudesocque, Leslie; Forni, Luciano; Martinez, Agathe; Nuzillard, Jean-Marc; Giraud, Matthieu; Renault, Jean-Hugues

    2017-09-01

    Dirucotide is a synthetic drug candidate for the treatment of multiple sclerosis. This 17-aminoacid peptide was successfully purified by ion exchange centrifugal partition chromatography. The optimized conditions involved the biphasic methyl tert-butyl ether/acetonitrile/n-butanol/water (2:1:2:5, v/v) solvent system in the descending mode, the di(2-ethylhexyl)phosphoric acid cation-exchanger with an exchanger (di(2-ethylhexyl)phosphoric acid)/dirucotide mole ratio of 100 and Ca 2+ ions in aqueous solution as displacer. Critical impurities were efficiently eliminated and dirucotide was recovered in high yield and purity (69% and 98%, respectively) and with a productivity of 2.29g per liter of stationary phase per hour. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  6. Ion exchange kinetics of alkaline earths on Zr(IV) arsenosilicate cation exchanger

    International Nuclear Information System (INIS)

    Varshney, K.G.; Agrawal, S.; Varshney, K.

    1984-01-01

    A new approach based on the Nernst-Planck equations was applied to study the ion exchange kinetics for the exchange reactions of Mg(II), Ca(II), Sr(II) and Ba(II) with H + -ions at various temperatures on the zirconium(IV) arsenosilicate phase. Under the conditions of particle diffusion, the rate of exchange was found to be independent of the metal ion concentration at and above 0.1 M in aqueous medium. Energy and entropy of activation were determined and found to vary linearly with the ionic radii and mobilities of alkaline earths, a unique feature observed for an inorganic ion exchanger. The results are useful for predicting the ion exchange processes occurring on the surface of an inorganic material of the type studied. (author)

  7. Effects of magnesium and fluoride on ion exchange and acid resistance of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Feagin, F; Thiradilok, S [Alabama Univ., Birmingham (USA)

    1979-01-01

    Labial surfaces of bovine incisor enamel, after weak acid demineralization, were exposed for 24 h in solutions that contained trace levels of calcium as /sup 45/Ca, 0.4 mM NaF, and 1.0 mM MgCl/sub 2/ at pH 7.0. The solutions approached saturation with apatites in the absence of NaF, and saturation with fluorapatites in the presence of NaF. NaF greatly increased the exchange of /sup 45/Ca. MgCl/sub 2/ decreased /sup 45/Ca exchange, but had no effect on F/sup -/ exchange in the surface minerals. MgCl/sub 2/ decreased, while NaF increased the acid resistance of the exchanged surface on later exposure to 10 mM acetic acid at pH 4.5. These results indicated that magnesium in oral fluids and tooth minerals may promote caries.

  8. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed

    Directory of Open Access Journals (Sweden)

    T.M. Zewail

    2015-03-01

    Full Text Available Spouted bed contactor is a hybrid of fixed and fluidized bed contactors, which retains the advantages of each with good hydrodynamic conditions. The aim of the present study is to investigate the performance of a batch conical air spouted vessel for heavy metal removal by strong cation exchange resins (AMBERJET 1200 Na. The effect of various parameters such as type of heavy metal ions (Ni+2 and Pb+2, contact time, superficial air velocity and initial heavy metal ion concentration on % heavy metal ion removal has been investigated. It has been found that under optimum conditions 98% and 99% removal of Ni+2 and Pb+2 were achieved respectively. Several kinetic models were used to test the experimental data and to examine the controlling mechanism of the sorption process. The present results of Ni+2 and Pb+2 well fit pseudo second order kinetic model with a high correlation coefficient. Both film diffusion and intra-particle diffusion contribute to the ion exchange process. The present study revealed that spouted bed vessel may provide an effective alternative for conducting ion exchange reactions.

  9. Ontario Hydro Research Division's program for treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.; Dodd, D.J.R.

    1981-09-01

    A brief review of the evolution of work programmes for chemical treatment of spent ion-exchange resins in Ontario Hydro's Research Division is presented. Attention has been focussed on pre-treatment processes for the treatment of the spent resins prior to encapsulation of the products in solid matrices. Spent Resin Regeneration and Acid Stripping processes were considered in some detail. Particular attention was paid to carbon-14 on spent resins, its determination in and removal from the spent resins (with the acid stripping technique). The use of separate cation and anion resin beds instead of mixed bed resins was examined with a view to reducing the volume of resin usage and consequently the volume of waste radioactive ion-exchange resin generated. (author)

  10. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  11. Ion exchange nonwoven fabric chemical filter. 2

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki

    2000-01-01

    This report outlined the characteristics of EPIX filter and its complex with activated carbon to eliminate organic compounds from solvent. Elimination performance of this filter was determined using an ion chromatographic analyzer. EPIX filter showed high performance to eliminate trace amount of ionic compounds. The rate of elimination was both 99% or more for NH 3 and SO 2 in an early phase of filtration. Release of dust as well as impurities was significantly reduced by the use of EPIX filter. Gases once adsorbed on the filter were not released even at an elevated temperature of atmosphere. Combined use of non-woven fabrics was possible. For EPIX filter, there are three kinds; strong acid cation exchange filter and strong/weak basic anion filters. The weak basic anion filter has been applied to the conventional apparatus in wafer makers because the filter was very effective for selective boron trapping. When polyethyleneterephthalate was used as the base polymer, radical groups produced on the polymer were co-polymerized with monomer substances. The lifetime of filter was estimated on a base of gas concentration and wind velocity to determine the time to replace with a new one. Furthermore, the loss of pressure became less than a half when EPIX filter was used. (M.N.)

  12. Irradiation effects in the storage and disposal of radioactive ion-exchange resins

    International Nuclear Information System (INIS)

    Swyler, K.J.; Dodge, C.E.; Dayal, R.; Weiss, A.J.

    1982-01-01

    Research is under way to characterize the effects of self-irradiation on radwastes which may be generated when organic ion-exchange media are used in water demineralization or decontamination operations at nuclear facilities. External factors affecting the relation between laboratory evaluations and field performance are emphasized. Initial experiments do not yet indicate substantial radiation dose-rate effects on radiolytic gas yields or acid product formation, when (fully swollen) sulfonic acid resins are irradiated in a sealed air environment. At the same time, oxygen gas is removed from the environment of irradiated resins. Interaction between mild steel coupons and acidic species produced in the irradiation induced decomposition of sulfonic acid resin results in irradiation enhanced corrosion. Corrosion rates depend on radiation dose rate, moisture content and resin chemical loading. In some cases, corrosion rates decrease with time, suggesting depletion of acidic species within the resin bed, or a synergistic interaction between resin and corrosion coupon. Implications of these and other results on evaluating field behavior of radwaste containing ion-exchange media are discussed. 4 figures, 2 tables

  13. Ion exchange : principles and applications

    International Nuclear Information System (INIS)

    Bank, Nader; Majumdar, A.S.

    1975-01-01

    An attempt is made to provide a brief state-of-the-art review of the basic principles underlying the unit operation of ion exchange and its numerous and diverse commercial applications. A selective bibliography is provided for the benefit of the reader interested in pursuing any specific aspect of ion exchange. (author)

  14. Feasibility of isotachochromatography as a method for the preparative separation of weak acids and weak bases. I. Theoretical considerations

    NARCIS (Netherlands)

    Kooistra, C.; Sluyterman, L.A.A.E.

    1988-01-01

    The fundamental equation of isotachochromatography, i.e., isotachophoresis translated into ion-exchange chromatography, has been derived for weak acids and weak bases. Weak acids are separated on strong cation exchangers and weak bases on strong anion exchangers. According to theory, the elution

  15. Ion Exchange Temperature Testing with SRF Resin - 12088

    Energy Technology Data Exchange (ETDEWEB)

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  16. Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong-Ho; Han Jeong, Young; Jeong Ryoo, Jae; Lee, Kwang-Pill E-mail: kplee@kyungpook.ac.kr

    2001-07-01

    Ion-exchange membranes modified with the triethylamine [-N(CH{sub 2}CH{sub 3}){sub 3}] and phosphoric acid (-PO{sub 3} H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto the polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly(GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM, XPS, TGA, and DSC. Furthermore, electrochemical properties such as specific electric resistance, transport number of K{sup +}, and desalination were examined. The grafting yield increased with increasing reaction time and reaction temperature. The maximum grafting yield was obtained with 40% (vol.%) monomer concentration in dioxane at 60 deg. C. The content of the cation- and anion-exchange group increased with increasing grafting yield. Electrical resistance of the PNF modified with TEA and -PO{sub 3} H group decreased, while the water uptake (%) increased with increasing ion-exchange group capacities. Transport number of the PNF modified with ion-exchange group were the range of ca. 0.82-0.92. The graft-type ion-exchange membranes prepared by radiation-induced graft copolymerization were successfully applied as separators for electrodialysis. (author)

  17. Separation of organic ion exchange resins from sludge - engineering study

    International Nuclear Information System (INIS)

    Duncan, J.B.

    1998-01-01

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation

  18. Separation of organic ion exchange resins from sludge -- engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  19. Ion Exchange Kinetics of some Heavy Metals from Aqueous Solutions onto Poly(Acrylic Acid-Acrylo nitrle) Potassium Titanate

    International Nuclear Information System (INIS)

    El-Shorbagy, M.M.; El-Sadek, A.A.

    2012-01-01

    Composite inorganic-organic absorbers represent a group of inorganic ion exchangers modified using binding organic materials for preparation of larger size particles heaving higher granular strength. Such modification of originally powdered or microcrystalline inorganic ion exchangers makes their application in peaked beds possible-modified polyacrylonitrile (PAN) has been used as a universal binding polymer for a number of inorganic ion exchangers. The kinetic of ion exchange and sorption capacity of such composite absorbers is not influenced by the binding polymer mentioned above. These composites have been tested for separation and concentration of various contaminants from aqueous solutions. Their high selectivity and sorption efficiency are advantageous for treatment of various industrial waste waters. Removal of natural or artificial and the heavy metals, Pb, Cd and Zn ions. the influence of initial metal ion concentration and ph on metal ion removal has been studied. The process was found to follow a first order rate kinetics. The intra-particle diffusion of ions through pores in the adsorbent was to be the main rate limiting step. The selectivity order towards the ions was Pb(II) > Cd(II) > Zn(II)

  20. Adsorption behaviour and kinetics of exchange of Zn2+ and Eu3+ ions on a composite ion exchanger

    International Nuclear Information System (INIS)

    Morcos, T.N.

    2007-01-01

    Equilibria and kinetics of exchange of both Zn2+ and Eu3+ ions on a composite ion-exchanger, cobalt hexacyanocobaltate (III) (CoHCC) incorporated in polyacrylonitrile (PAN), has been studied. The apparent capacity of CoHCC-PAN for Zn2+ and Eu3+ was determined and found to be 0.353 and 0.69 meq/g, respectively. The higher capacity for Eu3+ ions than that for Zn2+ ions is due to the higher electrostatic interaction strength of the higher charge ion with the surface. Freundlich and Langmiur adsorption isotherms were used to investigate solute (Zn2+ or Eu3+) exchange phenomenon at the liquid/solid interface. The results indicated that both Langmuir and Freundlich isotherms fit well for both Zn2+ and Eu3+. Sorption data have been also treated with the Dubinin-Radushkevich equation. The kinetics of Zn2+ or Eu3+ sorption on the composite seems to show that the reaction was proceed via two steps. The first one was fast and probably due to adsorption followed by a slow exchange reaction. In view of the data obtained on the effect of particle size and metal ion concentrations on the rate of exchange reaction, it is concluded that the mechanism for both ions was chemical control. Generally, it seems that there are two exchange sites chemically equivalent but present in pores of different sizes which lead to different degrees of dehydration of the ions sorbed on the two sites

  1. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  2. 225-B ion exchange piping design documentation

    International Nuclear Information System (INIS)

    Prather, M.C.

    1996-02-01

    This document describes the interface between the planned permanent ion exchange piping system and the planned portable ion exchange system. This is part of the Waste Encapsulation and Storage Facility (WESF). In order to decouple this WESF from B-Plant and to improve recovery from a capsule leak, contaminated pool cell water will be recirculated through a portable ion exchange resin system

  3. Strong ion and weak acid analysis in severe preeclampsia: potential clinical significance.

    Science.gov (United States)

    Ortner, C M; Combrinck, B; Allie, S; Story, D; Landau, R; Cain, K; Dyer, R A

    2015-08-01

    The influence of common disturbances seen in preeclampsia, such as changes in strong ions and weak acids (particularly albumin) on acid-base status, has not been fully elucidated. The aims of this study were to provide a comprehensive acid-base analysis in severe preeclampsia and to identify potential new biological predictors of disease severity. Fifty women with severe preeclampsia, 25 healthy non-pregnant- and 46 healthy pregnant controls (26-40 weeks' gestation), were enrolled in this prospective case-control study. Acid-base analysis was performed by applying the physicochemical approach of Stewart and Gilfix. Mean [sd] base excess was similar in preeclamptic- and healthy pregnant women (-3.3 [2.3], and -2.8 [1.5] mEq/L respectively). In preeclampsia, there were greater offsetting contributions to the base excess, in the form of hyperchloraemia (BE(Cl) -2 [2.3] vs -0.4 [2.3] mEq/L, Palkalosis was associated with a non-reassuring/abnormal fetal heart tracing (Prespiratory and hypoalbuminaemic alkalosis that was metabolically offset by acidosis, secondary to unmeasured anions and dilution. While the overall base excess in severe preeclampsia is similar to that in healthy pregnancy, preeclampsia is associated with a greater imbalance offsetting hypoalbuminaemic alkalosis and hyperchloraemic acidosis. Rather than the absolute value of base excess, the magnitude of these opposing contributors may be a better indicator of the severity of this disease. Hypoalbuminaemic alkalosis may also be a predictor of fetal compromise. clinicaltrials.gov: NCT 02164370. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Ligand exchange chromatography for analysis and preparative separation of tritium-labelled amino acids

    International Nuclear Information System (INIS)

    Zolotarev, Yu.A.; Zaitsev, D.A.; Penkina, V.I.; Dostavalov, I.N.; Myasoedov, N.F.

    1988-01-01

    Racemic tritium-labelled amino acids were separated into optical isomers by chromatography on a chiral polyacrylamide sorbent filled with copper ions. The polyacrylamide sorbent is synthesized by Mannich's reaction through the action of formaldehyde and L-phenylalanine upon polyacrylamide Biogel P-4 in an alkali phosphate buffer. Tritium-labelled amino acids are eluted by a weak alkali solution of ammonium carbonate. Data are presented on the ligand exchange chromatography of amino acids depending on the degree to which the sorbent is filled with copper ions and on the eluent concentration. Amino acids are isolated from the eluent on short columns filled with sulfonated cation exchanger in the H + form. HPLC on modified silica gel sorbents is also used for the analysis of tritium-labelled optically active amino acids. Amino acids are eluted by a weakly acidic water-methanol solution containing ammonium acetate. UV and scintillation flow type detectors are used. (author) 7 refs.; 8 figs

  5. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  6. Contact isotopic- and contact ion-exchange between two adsorbents

    International Nuclear Information System (INIS)

    Bunzl, K.; Mohan, R.; Haimerl, M.

    1975-01-01

    The kinetics of contact ion exchange processes between an ion exchange membrane and resin ion exchange beads, stirred in pure water, was investigated. A general criterion was derived, which indicates whether diffusion of the ions between the intermingling electric double layers or the collision frequency between the two adsorbents is the rate dermining step. Since the latter process proved to be rate controlling under our experimental conditions, the corresponding rate equations were derived under various initial and boundary conditions. Experimentally, the kinetics of contact isotopic exchange of Cs + - and Na + -ions as well as of the reverse contact ion exchange process of Cs + -versus Na + -ions were investigated by using Na 22 and Cs 137 radioisotopes. The experiments reveal in quantitative accord with the theory that the rate of collision controlled contact ion exchange processes depends mainly on the 'exchange coefficient', the separation factor and the collision frequency. While the latter two quantities were determined independently by separate experiments, the 'exchange coefficient' was evaluated from a contact isotopic exchange experiment. (orig.) [de

  7. Ion exchange separation of rare earths. I

    International Nuclear Information System (INIS)

    Nghi, Nguyen danh; Matous, K.

    1977-01-01

    The optimal conditions of separating selected rare earths by two ion exchange chromatography using Ostion KS cation exchange resin were studied. The effect of acetic acid concentration in the sorption solution was investigated. The elution process was studied in dependence on the concentration of Na 2 H 2 EDTA, on the total concentration of EDTA 4- ion, on elution agent flow, and on temperature. The optimal conditions were determined by evaluating integral elution curves and changes in acid concentration for systems Y-Pr, La-Pr, Er-Pr, Eu-Pr as follows: The sorption solution requires the presence of Na 2 H 2 EDTA of 0.03M in concentration. The basic elution solution was prepared in the following way: 0.183M Na 2 Mg 2 EDTA, 9.6x10 -3 M Na 2 H 2 EDTA, 3.84x10 -3 M CH 3 COOH, 2.30x10 -2 M CH 3 COONH 4 , 2.30x10 -2 M (NH 4 ) 2 SO 4 . Approximate pH 5.7 to 6.0. The optimal elution solution was prepared by diluting the basic solution so that the total concentration of EDTA 4- equalled 0.075M. The optimal flow was determined to be 0.86 ml.cm -2 .min -1 at a temperature of 55 degC. (author)

  8. Procedure for reducing hydrogen ion concentration in acidic anion eluate

    International Nuclear Information System (INIS)

    Parobek, P.; Baloun, S.; Plevac, S.

    1992-01-01

    A procedure is suggested for reducing the concentration of hydrogen ions in the acidic anionic eluate formed during the separation of uranium. The procedure involves anex elution, precipitation, filtration, precipitate rinsing, and anex rinsing. The procedure is included in the uranium elution process and requires at least one ion exchanger column and at least one tank in the continuous or discontinuous mode. Sparing the neutralizing agent by reducing the hydrogen ion concentration in the acidic anionic eluate is a major asset of this procedure. (Z.S.). 1 fig

  9. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Ghaffar, A.M.; Eid, M.

    2011-01-01

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  10. Use of inorganic ion exchange materials for the treatment of liquid waste

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Zakaria, E.S.; El-Absy, M.A.; Abdel-Hamid, M.M.; Abo-Mesalam, M.M.; Shady, S.A.; Abdelwahab, M.A.; Aly, H.F.

    1997-01-01

    To examine the ion exchange behaviour of the double salts of polybasic acid with tetravalent metals type such as cerium(IV) and tin(IV) antimonates, different samples were prepared, heated at different temperatures and exposed to γ-irradiation. These samples were subject to X-ray, infra-red and thermal analysis. The exchange properties of the studied materials improved on increasing the Sb, Ce or Sn molar ratios and the drying temperature. The rate of the isotopic exchange was controlled by particle diffusion for the metal ions studied and was faster as the heating temperature was increased but slower for materials with a higher exchange capacity. The physical thermodynamic parameters have been evaluated which give some information regarding the mechanism of ion exchange on the surface of inorganic materials. The removal of radioactive isotopes of Na + , Cs + , Sr 2+ , Co 2+ and Eu 3+ was carried out by in-situ precipitation or by using preformed precipitate of tin(IV) and cerium(IV) antimonates. The products of in-situ precipitations act as ion exchange materials with high chemical and radioactive stabilities. The new materials have relatively high capacity compared with CeSb and SnSb. The irradiated cerium(IV) antimonate has been successfully used for the quantitative separation of cesium which suggests its use in the treatment of active liquid waste. (author). 24 refs, 7 figs, 17 tabs

  11. Concentration and purification of plutonium solutions by means of ion-exchange columns

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R W; Aikin, A M

    1953-02-15

    Equilibrium experiments using Dowex 50 ion-exchange resin and nitric acid solutions of Pu{sup 3+}, UO{sub 2}{sup 2+}, Fe{sup 2+} cations have yielded values for the absorption affinities for these ions. Trivalent plutonium was found to be far more strongly absorbed than UO{sub 2}{sup 2+} and Fe{sup 2+}. Column studies have shown that uranium can be completely separated from plutonium even when the initial concentration of uranium is very much greater than that of the plutonium. A plutonium concentration increase of about fifty-fold can be obtained from solutions about 10{sup -3} M in plutonium and 1.0M in nitric acid. The equation K{sub Pu}{sup 3+} = X{sub R} (1-X{sub S}){sup 3} C{sub S}{sup 2}/X{sub S} (1-X{sub R}){sup 3} C{sub R}{sup 2} for estimating the maximum amount of plutonium taken up by a column of resin of unit volume from a solution of total equivalent concentration, C{sub S} , has been shown to hold for values of C{sub S} up to 3 equivalents per litre. X{sub R}, the equivalent fraction of plutonium on the resin, is the number of equivalents of plutonium absorbed by the resin divided by the total capacity of the column. X{sub S}, the equivalent fraction of plutonium in solution, is the equivalent concentration of plutonium divided by the total equivalent concentration of cations in solution. C{sub R} is the total capacity of the resin in milli-equivalents per gram of dry resin. Recommendations have been made for the application and operation of ion-exchange columns in the Plutonium-Extraction Plant. (author)

  12. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    International Nuclear Information System (INIS)

    Ramsey, A.A.; Thorson, M.R.

    2010-01-01

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  13. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.

  14. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions. PMID:28467507

  15. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Directory of Open Access Journals (Sweden)

    Kira Tiedge

    , nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.

  16. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin

    Directory of Open Access Journals (Sweden)

    Amrit Pal Toor

    2011-05-01

    Full Text Available Esters are an important pharmaceutical intermediates and very useful perfumery agents. In this study the esterification of acetic acid with n-butanol and iso-butanol over an acidic cation exchange resin, Amberlyst 15 were carried out. The effects of certain parameters such as temperature, catalyst loading, initial molar ratio between reactants on the rate of reaction were studied. The experiments were conducted in a stirred batch reactor in the temperature range of 351.15 K to 366.15K.Variation of parameters on rate of reaction demonstrated that the reaction was intrinsically controlled.The activation energy for the esterification of acetic acid with n-butanol and iso butanol is found to be 28.45 k J/mol and 23.29 kJ/mol respectively. ©2011 BCREC UNDIP. All rights reserved.(Received: 16th December 2010, Revised: 19th March 2011; Accepted: 7th April 2011[How to Cite: A.P. Toor, M. Sharma, G. Kumar, and R. K. Wanchoo. (2011. Kinetic Study of Esterification of Acetic Acid with n-butanol and isobutanol Catalyzed by Ion Exchange Resin. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 23-30. doi:10.9767/bcrec.6.1.665.23-30][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.665.23-30 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/665 ] | View in 

  17. Crystalline silicotitanates -- novel commercial cesium ion exchangers

    International Nuclear Information System (INIS)

    Braun, R.; Dangieri, T.J.; Fennelly, D.J.

    1996-01-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST), invented by researchers at Sandia National Laboratories and Texas A ampersand M University, has been commercialized in a joint Sandia-UOP effort. The original developmental materials exhibited high selectivity for the ion exchange of cesium, strontium, and several other radionuclides from highly alkaline solutions containing molar concentrations of Na + . The materials also showed excellent chemical and radiation stability. These CST properties made them excellent candidates for treatment of solutions such as the Hanford tank supernates and other DOE radwastes. Sandia and UOP, under a Cooperative Research and Development Agreement (CRADA), developed CSTs in the powdered form and in an engineered form suitable for column ion exchange use. A continuous-flow, column ion exchange process is expected to be used to remove Cs and other radionuclides from the Hanford supernatant. The powder material invented by Sandia and Texas A ampersand M consists of submicron-size particles. It is not designed for column ion exchange but may be used in other applications such as batch waste processing. Data are also presented confirming the excellent stability of the commercial CSTs over a broad pH range and the high radiation stability of the exchangers. In addition, data are provided that demonstrate the high physical strength and attrition resistance of IONSIV reg-sign IE-911, critical properties for column ion exchange applications

  18. Method of burning ion-exchange resin contaminated with radioactivity

    International Nuclear Information System (INIS)

    Suzuki, Shigenori.

    1986-01-01

    Purpose: To process spent ion exchange resins to reduce their volume, without increasing the load on a off-gas system and in a stable state and at the same time not leaving any uncombusted portions. Method: The water slurries of the ion exchange resins contaminated with radioactive materials is dehydrated or dry combusted to reduce the water content. A binder is then added to solidify the ion exchange resin. The solidified ion exchange resins are then combusted in a furnace. This prevents the ion exchange resin from being dispersed by air and combustion gases. Furthermore, the solidified ion exchange resins in the form of small pellets burn from the surface inwards. Moreover the binder is carbonized by the combustion heat and promotes combustion to convert the ion exchange resins into a solid mass, making sure that no uncombusted portion is left. (Takahashi, M.)

  19. Charge-exchange collisions of multiply charged ions with atoms

    International Nuclear Information System (INIS)

    Grozdanov, T.P.; Janev, R.K.

    1978-01-01

    The problem of electron transfer between neutral atoms and multiply charged ions is considered at low and medium energies. It is assumed that a large number of final states are available for the electron transition so that the electron-capture process is treated as a tunnel effect caused by the strong attractive Coulomb field of the multicharged ions. The electron transition probability is obtained in a closed form using the modified-comparison-equation method to solve the Schroedinger equation. An approximately linear dependence of the one-electron transfer cross section on the charge of multicharged ion is found. Cross-section calculations of a number of charge-exchange reactions are performed

  20. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  1. Calculation of the total plasma concentration of nonvolatile weak acids and the effective dissociation constant of nonvolatile buffers in plasma for use in the strong ion approach to acid-base balance in cats.

    Science.gov (United States)

    McCullough, Sheila M; Constable, Peter D

    2003-08-01

    To determine values for the total concentration of nonvolatile weak acids (Atot) and effective dissociation constant of nonvolatile weak acids (Ka) in plasma of cats. Convenience plasma samples of 5 male and 5 female healthy adult cats. Cats were sedated, and 20 mL of blood was obtained from the jugular vein. Plasma was tonometered at 37 degrees C to systematically vary PCO2 from 8 to 156 mm Hg, thereby altering plasma pH from 6.90 to 7.97. Plasma pH, PCO2, and concentrations of quantitatively important strong cations (Na+, K+, and Ca2+), strong anions (Cl-, lactate), and buffer ions (total protein, albumin, and phosphate) were determined. Strong ion difference was estimated from the measured strong ion concentrations and nonlinear regression used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference. Mean (+/- SD) values were as follows: Atot = 24.3 +/- 4.6 mmol/L (equivalent to 0.35 mmol/g of protein or 0.76 mmol/g of albumin); Ka = 0.67 +/- 0.40 x 10(-7); and the negative logarithm (base 10) of Ka (pKa) = 7.17. At 37 degrees C, pH of 7.35, and a partial pressure of CO2 (PCO2) of 30 mm Hg, the calculated venous strong ion difference was 30 mEq/L. These results indicate that at a plasma pH of 7.35, a 1 mEq/L decrease in strong ion difference will decrease pH by 0.020, a 1 mm Hg decrease in PCO2 will increase plasma pH by 0.011, and a 1 g/dL decrease in albumin concentration will increase plasma pH by 0.093.

  2. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    Science.gov (United States)

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  3. Application to ion exchange study of an interferometry method

    International Nuclear Information System (INIS)

    Platzer, R.

    1960-01-01

    The numerous experiments carried out on ion exchange between clay suspensions and solutions have so far been done by studying the equilibrium between the two phases; by this method it is very difficult to obtain the kinetic properties of the exchange reactions. At method consisting of observation with an interferential microscope using polarised white light shows up the variations in concentration which take place during the ion exchange between an ionic solution and a montmorillonite slab as well as between an ionic solution and a grain of organic ion exchanger. By analysing the results it will be possible to compare the exchange constants of organic ion exchangers with those of mineral ion exchangers. (author) [fr

  4. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  5. Organic decontamination by ion exchange

    International Nuclear Information System (INIS)

    Wilson, T.R.

    1994-01-01

    This study has successfully identified ion exchanger media suitable for decontaminating the 5500-gallon organic layer in Tank 241-C-103. Decontamination of radionuclides is necessary to meet shipping, incinerator site storage, and incineration feed requirements. The exchanger media were identified through a literature search and experiments at the Russian Institute for Physical Chemistry. The principal radionuclides addressed are Cs-137 and Sr-90. Recommendations for an experimental program plan conclude the discussion. The experimental program would provide the data necessary for plant design specifications for a column and for ion exchange media to be used in decontaminating the organic layer

  6. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under the...

  7. Effects of intravenous hyperosmotic sodium bicarbonate on arterial and cerebrospinal fluid acid-base status and cardiovascular function in calves with experimentally induced respiratory and strong ion acidosis.

    Science.gov (United States)

    Berchtold, Joachim F; Constable, Peter D; Smith, Geoffrey W; Mathur, Sheerin M; Morin, Dawn E; Tranquilli, William J

    2005-01-01

    The objectives of this study were to determine the effects of hyperosmotic sodium bicarbonate (HSB) administration on arterial and cerebrospinal fluid (CSF) acid-base balance and cardiovascular function in calves with experimentally induced respiratory and strong ion (metabolic) acidosis. Ten healthy male Holstein calves (30-47 kg body weight) were instrumented under halothane anesthesia to permit cardiovascular monitoring and collection of blood samples and CSE Respiratory acidosis was induced by allowing the calves to spontaneously ventilate, and strong ion acidosis was subsequently induced by i.v. administration of L-lactic acid. Calves were then randomly assigned to receive either HSB (8.4% NaHCO3; 5 ml/kg over 5 minutes, i.v.; n=5) or no treatment (controls, n=5) and monitored for 1 hour. Mixed respiratory and strong ion acidosis was accompanied by increased heart rate, cardiac index, mean arterial pressure, cardiac contractility (maximal rate of change of left ventricular pressure), and mean pulmonary artery pressure. Rapid administration of HSB immediately corrected the strong ion acidosis, transiently increased arterial partial pressure of carbon dioxide (P(CO2)), and expanded the plasma volume. The transient increase in arterial P(CO2) did not alter CSF P(CO2) or induce paradoxical CSF acidosis. Compared to untreated control calves, HSB-treated calves had higher cardiac index and contractility and a faster rate of left ventricular relaxation for 1 hour after treatment, indicating that HSB administration improved myocardial systolic function. We conclude that rapid i.v. administration of HSB provided an effective and safe method for treating strong ion acidosis in normovolemic halothane-anesthetized calves with experimentally induced respiratory and strong ion acidosis. Fear of inducing paradoxical CSF acidosis is not a valid reason for withholding HSB administration in calves with mixed respiratory and strong ion acidosis.

  8. Ion exchange in the nuclear industry

    International Nuclear Information System (INIS)

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle

  9. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  10. Process for removing a mixture containing iodine and alkyl iodine compounds from a gas phase or aqueous solution with ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, H; Mizuuchi, A; Yokoyama, F

    1968-10-04

    Iodine and alkyl iodine compounds are removed from a gas phase or aqueous solution containing salts, iodine and iodine compounds, such as the ambient gas in a reactor, if an accident should occur. The process comprises contacting the phase or solution: (a) with a hydrogen type strongly acidic cationic exchange resin, (b) with an anionic exchange resin containing quarternary ammonium and (c) with an anionic exchange resin containing free basic type tertiary amine, in this order or by reversing the order of the two anionic exchange resins. Although no problems arise in the liquid phase reaction, the ion-exchange resins in the gas phase reaction are desired in the moist state in order to stable maintain the migration speed of the materials to be removed regardless of the relative humidity of the amibent gas. In example I, Amberlite IRA-900 of 200 mm thickness as the lowermost bed, Amberlite IRA93 of 200 mm thickness as the middle bed and Amberlite 200 of 200 mm thickness as the uppermost bed were filled respectively, in a methacrylate resin cylinder with an inner diameter of 25 mm. A solution containing 15.9 mg/1 of iodine, 41.2 mg/1 of methyl iodide and 550 mg/1 of sodium carbonate flows at a rate of 15 liter/hr downward through the beds. As a result of testing, no iodine, iodine ions, iodic acid ions and methyl iodine were detected. The amount of water the beds could treat was 60 times the total quantity of the filled resins.

  11. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan

    2014-01-01

    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed...... on a Ni thin film on Cu(100) single-crystalline surfaces. X-ray magnetic circular dichroism (XMCD) measurements performed on Au(111) samples covered with molecular monolayers held at temperatures down to 4 K suggest that the easy axes of the strongly anisotropic molecules are randomly oriented...... pathways toward optical addressing of surface-deposited single-ion magnets....

  12. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Simmons, C.J.; Simmons, J.H.; Macedo, P.B.; Litovitz, T.A.

    1982-01-01

    A process is reported for reacting a porous silicate or borosilicate glass or silica gel with alkali metal cations, Group lb cations and/or ammonium cations bonded to the silicon through divalent oxygen linkages on the internal surfaces of the pores. Ion exchange of the cations with toxic or radioactive cations was possible resulting in a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. The ion exchange reaction may be done successfully with acidic, neutral or alkaline pH solutions. The aim of the immobilization is for permanent storage of hazardous materials such as Hg 2+ , Hg + , Cd 2+ , Tl + , Pb 2+ and radioactive cations

  13. Ion exchange/adsorbent pilot plant

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A decontamination of greater than 99% of the actinides and fission products contained in radioactive waste water can be obtained using ion exchange resins. A system for achieving this result is described in this paper. This ion exchange pilot-plant design is the culmination of five years of study of the decontamination of radioactive waste streams by ion exchange resins and other adsorbents at Mound. In order to maintain maximum flexibility of treatments, this pilot-plant design is a conceptual design with specific flows, resins, and column specifications, but with many optional features and no rigid equipment specifications. This flexibility allows the system to be amenable to almost any radioactive waste stream. Very specific designs can be constructed from this conceptual design for the treatment of any specific waste stream. Operating and capital costs are also discussed. 1 figure, 5 tables

  14. Method of processing spent ion exchange resins

    International Nuclear Information System (INIS)

    Mori, Kazuhide; Tamada, Shin; Kikuchi, Makoto; Matsuda, Masami; Aoyama, Yoshiyuki.

    1985-01-01

    Purpose: To decrease the amount of radioactive spent ion exchange resins generated from nuclear power plants, etc and process them into stable inorganic compounds through heat decomposition. Method: Spent ion exchange resins are heat-decomposed in an inert atmosphere to selectively decompose only ion exchange groups in the preceeding step while high molecular skeltons are completely heat-decomposed in an oxidizing atmosphere in the succeeding step. In this way, gaseous sulfur oxides and nitrogen oxides are generated in the preceeding step, while gaseous carbon dioxide and hydrogen requiring no discharge gas procession are generated in the succeeding step. Accordingly, the amount of discharged gases requiring procession can significantly be reduced, as well as the residues can be converted into stable inorganic compounds. Further, if transition metals are ionically adsorbed as the catalyst to the ion exchange resins, the ion exchange groups are decomposed at 130 - 300 0 C, while the high molecular skeltons are thermally decomposed at 240 - 300 0 C. Thus, the temperature for the heat decomposition can be lowered to prevent the degradation of the reactor materials. (Kawakami, Y.)

  15. Effect of electrolytes concentration on recovery of cesium from AMP-PAN by Electrodialysis-Ion Exchange (EDIX)

    International Nuclear Information System (INIS)

    Mahendra, Ch.; Rajan, K.K.; SatyaSai, P.M.; Anand Babu, C.

    2014-01-01

    Cesium from the simulated acidic waste solution was separated using Ammonium Molybdophosphate (AMP) - Polyacrylonitrile (PAN) ion exchange resin in column operations. Electrodialysis - Ion exchange (EDIX) has been tried for the recovery of cesium from the AMP-PAN which was saturated with cesium. The electrodialysis setup consists of three compartments; cesium loaded AMP-PAN is placed in the middle compartment and is separated from the anode and cathode compartments by cation exchange membranes. Ammonium sulphate was used as anolyte and HNO 3 as catholyte. 0.1N HNO 3 was circulated in the middle compartment containing AMP-PAN to keep the resin in acidic form. On application of potential, the ammonium ions from the anode compartment migrate towards cathode through the middle compartment where they exchange with cesium ions on the resin and the exchanged cesium ions migrate towards cathode to get concentrated. Some part of cesium is recovered in the middle compartment due to convection. Cesium recovery from the AMP-PAN in the electrodialysis setup was studied at different anolyte and catholyte concentrations. All the experiments were carried out at constant current density of 40 mA/cm 2 for 15h. It was found that more than 50% of cesium recovery was observed for all the experiments studied and recovery percentage increased with increasing the anolyte concentration. It was observed that the electrolytes concentration affects the voltage drop across the cell

  16. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    Science.gov (United States)

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  17. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    Science.gov (United States)

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rod-shaped ion exchanger useful for purifying liquids or recovering components from liquids comprises a metal wire core surrounded by an ion-exchange resin

    NARCIS (Netherlands)

    Koopman, C.; Witkamp, G.J.

    2002-01-01

    Rod-shaped ion exchanger comprises a metal wire core surrounded by an ion-exchange resin. Independent claims are also included for: (1) a module comprising a housing with an inlet and outlet and one or more ion exchangers as above; (2) a process for producing an ion exchanger as above, comprising

  19. Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration

    International Nuclear Information System (INIS)

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1985-01-01

    The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)

  20. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    Science.gov (United States)

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.

  1. Production of citric acid using its extraction wastewater treated by anaerobic digestion and ion exchange in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-08-01

    In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1 % in the recycling batches (2nd-7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na(+) and K(+) in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.

  2. Determination of aminopolycarboxylic acids at ultra-trace levels by means of online coupling ion exchange chromatography and inductively coupled plasma-mass spectrometry with indirect detection via their Pd2+-complexes

    International Nuclear Information System (INIS)

    Nette, David; Seubert, Andreas

    2015-01-01

    Highlights: • 8 important APCA’s analyzed in one run instead of 3 in the previous method. • Pd 2+ extents the methods applicability to 3 and more dentate amino carboxylic acids. • Separation system optimized for the isocratic determination of important APCA’s. • Thermodynamic stability of APCA–Pd 2+ complexes is higher than for Fe 3+ and In 3+ . • Pd 2+ is kinetically much slower than Fe 3+ and In 3+ and makes the method more rugged. - Abstract: A new indirect IC-ICP-MS method for the determination of aminopolycarboxylic acids in water samples is described. It is based on the addition of an excess of Pd(II) to water samples. The analytes are forced into very strong and negatively charged palladium complexes, separated by ion exchange chromatography and detected by their palladium content, utilizing an on-line coupled ICP-MS. This method is suitable to determine the concentration of 8 aminopolycarboxylic acids (nitrilotriacetic acid (NTA), (2-carboxyethyl) iminodiacetic acid (β-ADA), methylglycinediacetic acid (MGDA), 2-hydroxyethyl) ethylenediamine triacetic acid (HEDTA), diethylene triamine pentaacetic acid (DTPA), ethylendiamine tetraacetic acid (EDTA), 1,3-diaminopropane tetraacetic acid (1,3-PDTA) and 1,2-diaminopropane tetraacetic acid (1,2-PDTA) at the ng kg −1 level. The method is faster and easier than the established gas chromatography (GC)-method ISO 16588:2002 [1] and up to two orders of magnitude more sensitive than the ion pair chromatography based method of DIN 38413-8. Analytic performance is superior to ISO 16588:2002 and the comparability is good

  3. Small Column Ion Exchange

    International Nuclear Information System (INIS)

    Huff, Thomas

    2010-01-01

    Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.

  4. Study on the behaviour of inorganic ion exchangers in the treatment of medium active effluents

    International Nuclear Information System (INIS)

    Phillips, B.A.; Hooper, E.W.; Monckton, N.P.

    1986-07-01

    This report summarises some of the results from an ongoing experimental programme of work for the Department of the Environment on the potential use of inorganic ion exchangers for the treatment of medium active waste streams. The effect of irradiation up to a total dose of 10 M Gy on the absorption of fission products and actinides over a range of experimental conditions by selected ion exchangers is described. The ion exchangers tested were polyantimonic acid, hydrous titanium oxide, manganese dioxide, potassium copper hexacyanoferrate II, titanium phosphate and zirconium phosphate. Manganese dioxide and potassium copper hexacyanoferrate II were unaffected by irradiation. Polyantimonic acid showed a decreasing performance with increasing total dose. Zirconium phosphate, titanium phosphate and oxide showed a decreasing performance up to a total dose of 2.19 M Gy with an apparent recovery in performance on increasing the total dose to 10 M Gy. The effect of conditioning time on some of the irradiated absorbers could have influenced the uptake data above 1.25 M Gy. (author)

  5. Studies on Some Physical, Chemical and Sorption Properties of Some Inorganic ion Exchangers and Their Application to Radioactive Isotopes Removal

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Shehata, M.K.K.; El-Shazly, E.A.A.

    1999-01-01

    In the present work, amorphous zirconium phosphate, zirconium titanium phosphate and ceric tungstate have been synthesised. Solubility of the prepared ion exchangers in different media has been examined. These media were mineral acids, aqueous solutions of organic acids: oxalic, citric and tartaric as well as ammonium and potassium carbonate solutions of different molarities. I.R. analysis is applied on some samples of the prepared ion exchangers. Sorption behaviour of different metal ion species, of elements of nuclear significance on the prepared ion exchangers has been studied from aqueous media of different compositions and concentration under different experimental conditions. The studied metal ions are, Ce(III) and Eu(III), as representative for the trivalent lanthanides, Co(II), Zr(IV), Nb(V), Hf(IV), Te(IV), Ce(IV), Th(IV) and U(V I). Optimization of the conditions for the isolation and separation of the desired element species highlighted

  6. SPEEDUPtrademark ion exchange column model

    International Nuclear Information System (INIS)

    Hang, T.

    2000-01-01

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUptrademark software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLigtrademark ion exchange resins, once the experimental data are complete

  7. Design and assembling of a moving bed column to operate with ion exchange resin

    International Nuclear Information System (INIS)

    Franca Junior, J.M.; Abrao, A.

    1976-01-01

    A new moving bed column specially designed to operate with ion exchange resins in such peculiar situations where there is gas evolution is reported. The second part reports the use of the column in the preparation of nuclear grade ammonium uranyl tricarbonate (AUTC), from crude uranyl nitrate solution. Uranium-VI is binded into a strong cationic ion exchanger and then eluted with (NH 4 ) 2 CO 3 . The final product is crystallized from the eluate by simply cooling down the temperature to 5 0 or by addition of ethanol. Loading of resin with uranyl ion, its elution with ammonium carbonate and the crystallization of AUTC is described [pt

  8. Oxygen exchange between C18O2 and ''acidic'' oxide and zeolite catalysts

    International Nuclear Information System (INIS)

    Peri, J.B.

    1975-01-01

    The exchange of oxygen between C 18 O 2 and several high-area oxides, including silica, γ-alumina, silica--alumina, and zeolite catalysts, was studied. Infrared spectra of adsorbed CO 2 and of surface ''carbonates'' were used to follow the rate of oxygen exchange and investigate the nature of unusually exchangeable surface oxide ions, present at low concentrations. Interaction of CO 2 with the surface typically produced initial exchange of one oxygen atom, as expected from interaction with a single oxide ion (CO 2 + O 2- reversible CO 3 2- ), and the number of exchangeable ions increased with increasing temperature. The rate of oxygen exchange did not correlate with chemisorption to form stable surface carbonates or with the extent of strong physical adsorption of CO 2 . With dry silica, exchange was insignificant below 600 0 ; with catalytically active zeolites and dry γ-alumina, it was detectable at 200 0 and fairly rapid at 300--400 0 . Silica--alumina required 100--150 0 higher temperature for exchange than did an active zeolite. Activity for cracking and other hydrocarbon reactions may be related to the ease of exchange of some surface oxide ions with CO 2 . Active zeolites have reactive oxide sites resembling those on dry γ-alumina, but such sites on zeolites are probably less-readily eliminated by chemisorption of H 2 O or other compounds. (U.S.)

  9. Treatment of Soil Decontamination Solution by the Cs{sup +} Ion Selective Ion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Kim, Gye Nam; Jung, Chung Hun; Oh, Won Zin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Occasionally, radioactively contaminated soils have been excavated and stored at the temporary storage facility. Cesium as a radionuclide is one of the most toxic elements and it has a long half decay life. During the operation of nuclear facility, soils near the facility would be contaminated with radioactive cesium and it will cause the deleterious effect to human body and environment. In this study, Cs{sup +} ion selective ion exchange resin was prepared by changing the functional group of commercial anion exchange resin for a ferrocyanide ion. Ion exchange capability of using the soil decontamination solution was investigated. We also performed the feasibility test of recycling the spent Cs ion selective ion exchange resin.

  10. Study on actinoid isolation by antimonide ion exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masamichi [Tokyo Inst. of Tech. (Japan). Faculty of Science; Kubota, Masumitsu; Yamagishi, Isao

    1996-01-01

    To establish a containment of long-life nuclides and an effective reduction of waste volume is important to reduce the loadings on the natural environment. Chemical isolation of radioactive nuclides from wastes was attempted by using inorganic ion exchanger with high specificity and thermal stability. In this study, titanium antimonide was used as an ion exchanger to investigate the adsorption of trivalent metallic ions according to Kielland plot curves. When the ionic equivalent fraction (X-bar{sub M}) was around 0.005, Kielland plot curve of either of 3-valent metallic ions was bent, suggesting the exchanger had two different adsorption sites. The slope of the curve became smaller as an elevation of temperature. These results show that the ion radius was decreased resulting from partial elimination of the hydrated water of ion and thus, the steric conditions around the exchange site might be improved. (M.N.)

  11. Alkali metal ion-proton exchange equilibria and water sorption studies on nafon 117 membrane and dowex 50 W exchange resins: effect of long storage or aging

    International Nuclear Information System (INIS)

    Ramkumar, Jayshree; Venkataramani, B.

    2004-09-01

    Alkali metal ion -H + exchanges on Nafion 117 membrane treated differently, Dowex 50 W x 4 and Dowex 50 W x 8 resins have been studied at a total ionic strength of 0.1 mol dm -3 . The water sorption isotherms of these exchangers in different ionic forms generated over the entire range of water activity, have been analysed by the D'Arcy and Watt equation (DWE). Water sorption studies have shown that the physical structure of the exchangers have changed due to long -storage or aging, resulting in poorer water sorption and even formation of pores in the case of Dowex 50 W x 8 resin. As a result, the counter ions in the exchangers are not hydrated and the water is present in a free form, albeit structured, in the resin phase. The selectivity sequence for the alkali metal ions with reference to the H + (Li + + + ) for the exchangers used in the present study is in accordance with that reported in the literature for the ionomers having sulphonic acid as the functional group. In view of the absence of hydration of the cations in the resin phase, the driving force for the selectivity of the cation, namely, the net gain in entropy, is expected to come from the loss of structured water during the exchange process. Pre treating the Nafion 117 membrane with boiling acid solution activates the clustered region of the membrane in the H + form, while pretreatment with boiling water expands the non-ionic domain (the region connecting the clusters). These modifications influence the state of water present in the Nafion 117 membrane and the ion exchange equilibria. As a result of long storage or aging, the ion exchangers lose their elasticity or swelling characteristics. The results obtained in the present study indicate that in aged materials, the ionogenic groups are existing as isolated ion -pairs rather than in a clustered morphology. (author)

  12. Ion exchange and hydrolysis reactions in zeolites

    International Nuclear Information System (INIS)

    Harjula, Risto.

    1993-09-01

    Among other uses, zeolites are efficient cation exchangers for aquatic pollution control. At present they they are mainly used in nuclear waste effluent treatment and in detergency. In the thesis, several ion exchange equilibria, important in these main fields of zeolite applications, were studied, with special emphasis on the formulation and calculation of the equilibria. The main interest was the development of thermodynamic formulations for the calculation of zeolite ion exchange equilibria in solutions of low or very low (trace) ion concentration, which are relevant for the removal of trace pollutants, such as radionuclides, from waste waters. Two groups of zeolite-cation systems were studied. First, binary Ca 2+ /Na + exchange in zeolites X and Y, which are of interest for detergency applications. Second, binary Cs + /Na + and Cs + /K + exchanges, and ternary Cs + /Na + /K + exchange in mordenite, which are important in nuclear waste effluent treatment. The thesis is based on five previous publications by author. (100 refs., 7 figs.)

  13. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  14. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  15. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  16. Strong adsorbability of mercury ions on aniline/sulfoanisidine copolymer nanosorbents.

    Science.gov (United States)

    Li, Xin-Gui; Feng, Hao; Huang, Mei-Rong

    2009-01-01

    The highest Hg-ion adsorbance so far, namely up to 2063 mg g(-1), has been achieved by poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Sorption of Hg ions occurs mainly by redox and chelation mechanisms (see scheme), but also by ion exchange and physisorption.Poly(aniline (AN)-co-5-sulfo-2-anisidine (SA)) nanoparticles were synthesized by chemical oxidative copolymerization of AN and SA monomers, and their extremely strong adsorption of mercury ions in aqueous solution was demonstrated. The reactivity ratios of AN and SA comonomers were found to be 2.05 and 0.02, respectively. While AN monomer tends to homopolymerize, SA monomer tends to copolymerize with AN monomer because of the great steric hindrance and electron-attracting effect of the sulfo groups, despite the effect of conjugation of the methoxyl group with the benzene ring. The effects of initial mercury(II) concentration, sorption time, sorption temperature, ultrasonic treatment, and sorbent dosage on mercury-ion sorption onto AN/SA (50/50) copolymer nanoparticles with a number-average diameter of around 120 nm were significantly optimized. The results show that the maximum Hg-ion sorption capacity on the particulate nanosorbents can even reach 2063 mg of Hg per gram of sorbent, which would be the highest Hg-ion adsorbance so far. The sorption data fit to the Langmuir isotherm, and the process obeys pseudo-second-order kinetics. The IR and UV/Vis spectral data of the Hg-loaded copolymer particles suggest that some mercury(II) was directly reduced by the copolymer to mercury(I) and even mercury(0). A mechanism of sorption between the particles and Hg ions in aqueous solution is proposed, and a physical/ion exchange/chelation/redox sorption ratio of around 2/3/45/50 was found. Copolymer nanoparticles may be one of the most powerful and cost-effective sorbents of mercury ions, with a wide range of potential applications for the efficient removal and even recovery of the mercury ions from aqueous solution.

  17. Ion-Exchange Processes and Mechanisms in Glasses

    International Nuclear Information System (INIS)

    McGrail, B.P.; Icenhower, J.P.; Darab, J.G.; Shuh, D.K.; Baer, D.R.; Shutthanandan, V.; Thevuthasan, S.; Engelhard, M.H.; Steele, J.L.; Rodriguez, E.A.; Liu, P.; Ivanov, K.E.; Booth, C.H.; Nachimuthu, P.

    2001-01-01

    Leaching of alkalis from glass is widely recognized as an important mechanism in the initial stages of glass-water interactions. Pioneering experimental studies [1-3] nearly thirty-five years ago established that alkali (designated as M + ) are lost to solution more rapidly than network-forming cations. The overall chemical reaction describing the process can be written as: (triple b ond)Si-O-M + H + → (triple b ond)Si-OH + M + (1) or (triple b ond)Si-O-M + H 3 O + → (triple b ond)Si-OH + M + + H 2 O. (2) Doremus and coworkers [4-7] fashioned a quantitative model where M + ions in the glass are exchanged for counter-diffusing H 3 O + or H + . Subsequent investigations [8], which have relied heavily on reaction layer analysis, recognized the role of H 2 O molecules in the alkali-exchange process, without minimizing the importance of charged hydrogen species. Beginning in the 1980s, however, interest in M + -H + exchange reactions in silicate glasses diminished considerably because important experimental observations showed that network hydrolysis and dissolution rates were principally controlled by the chemical potential difference between the glass and solution (chemical affinity) [9]. For nuclear waste glasses, formation of alteration products or secondary phases that remove important elements from solution, particularly Si, was found to have very large impacts on glass dissolution rates [10,11]. Consequently, recent work on glass/water interactions has focused on understanding this process and incorporating it into models [12]. The ion-exchange process has been largely ignored because it has been thought to be a short duration, secondary or tertiary process that had little or no bearing on long-term corrosion or radionuclide release rates from glasses [13]. The only significant effect identified in the literature that is attributed to alkali ion exchange is an increase in solution pH in static laboratory tests conducted at high surface area-to-volume ratios

  18. Cation-exchanger fabric prepared by electron beam - induced graft copolymerization of binary monomer mixture

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.; Perelygin, V.P.

    2004-01-01

    Applying the electron-beam preirradiation method in air the sorption-active polypropylene fiber, containing sulfonic acid (R-SO 3 H) groups, was prepared by simultaneous graft copolymerization of sodium styrenesulfonate with acrylic acid in water solution. The effect of reaction conditions on the grafting yield and reaction mechanism was examined. It was found that the received CEF contains groups of strong acid (R-SO 3 H) and weak acid (R-COOH) in almost equal proportion. The ion-exchange properties of the CEF towards Cu(II) and Co(II) ions were investigated depending on the form of the CEF and a pH of the solution. It was shown that the utilization of the CEF in Na- form allows to make the best use of its ion-exchange capacity. (author)

  19. Development of heat resistant ion exchange resin. First Report

    International Nuclear Information System (INIS)

    Onozuka, Teruo; Shindo, Manabu

    1995-01-01

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.)

  20. Development of heat resistant ion exchange resin. First Report

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Teruo; Shindo, Manabu [Tohoku Electric Power Co., Inc., Sendai (Japan)

    1995-01-01

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.).

  1. Ligand exchange chromatography of free amino acids and proteins on porous microparticulate zirconium oxide

    International Nuclear Information System (INIS)

    Blackwell, J.A.; Carr, P.W.

    1992-01-01

    The Lewis acid sites present on the underlying zirconium oxide particles are responsible for the unusual elution sequence for amino acids on copper loaded, phosphated zirconium oxide supports reported in an earlier study. To more thoroughly examine the effect of these strong Lewis acid sites in this paper. The authors have studied ligand exchange chromatography on copper loaded zirconium oxide particles. It is shown here that carboxylate functional groups on amino acid solutes strongly interact with surface Lewis acid sites. Addition of competing hard Lewis bases to the eluent attenuates these specific interactions. The result is a chromatographic system with high selectivity which is also suitable for ligand exchange chromatography of proteins

  2. Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.

    Science.gov (United States)

    Rinehart, Jeffrey D; Fang, Ming; Evans, William J; Long, Jeffrey R

    2011-05-22

    Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N(2)(3-) radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s(-1).

  3. The mechanism of ion exchange on ammonium 12-molybdophosphate (AMP)

    International Nuclear Information System (INIS)

    Boeyens, J.C.A.; McDougall, G.J.; Smit, J. van R.

    1987-01-01

    This paper reviews some published and unpublished data on the ion-exchange properties of AMP. The three NH 4 + ions are only partially exchanged for large monovalent ions. In the case of NH 4 + /K + exchange, the energy lost by the breaking of H bonds between the NH 4 + ions and anionic cage oxygen atoms beyond the point of maximum exchange is no longer compensated for by bond strengthening in the anion due to contraction of the cage. With Rb + , Cs + and T1 + , limited convertibility results from the lattice expansion required to accommodate these larger ions. During exchange, part of the cations pass through the anionic cages, thereby causing considerable lattice disorder. The maximum exchange capacity of AMP for the alkali metal ions is not a simple function of cation radius. (author)

  4. Effects of synthesis conditions on ion exchange properties of α-zirconium phosphate for Eu and Am

    Energy Technology Data Exchange (ETDEWEB)

    Wiikinkoski, Elmo W.; Harjula, Risto O.; Lehto, Jukka K.; Koivula, Risto T. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Kemell, Marianna L. [Helsinki Univ. (Finland). Lab. of Inorganic Chemistry

    2017-07-01

    Three zirconium phosphate products A, B and C, made through different synthesis routes, were investigated for their europium and americium ion exchange properties utilizing radiotracers {sup 152}Eu{sup 3+} and {sup 241}Am{sup 3+}. Aim of this investigation was to see how material properties change based on different synthesis, and how does the changes effect on trivalent Eu and Am uptake and affinities on the materials. Ultimate goal of an ongoing research is to create inorganic exchanger suitable for separation of trivalent actinides and lanthanides. Powder X-ray diffraction showed that all three products had same α-zirconium phosphate crystal structure. The P:Zr ratio determined by microscope X-ray microanalysis was also the same for all products: 2.43±0.05. However, infrared absorbance, material acidity, particle morphology, and Eu and Am distribution coefficients differed significantly between products. The intensities of the strong IR absorption at approximately 960 cm{sup -1}, attributed to vibrations of the orthophosphate group, were in descending order B>C>A. Material acidity showed the same descending order B>C>A. First acidity constants pK{sub a1} were 2.3 for product B, 3.1 for C and 3.5 for A. Unit cell volumes increased in the reverse order: Bacid media, varied remarkably. For any given pH the K{sub D} descended in the order A>C>B for both Eu and Am. Separation factors, defined as K{sub D}(Eu): K{sub D}(Am), were from 4 to 41 for product A, from 5 to 15 for B, and from 3 to 7 for C. Selectivity coefficients (k{sub M/H}, M=Eu, Am) and sorption strength decreased along with increasing ZrP product acidity. Metal binding coefficients (k{sub M}) had high values, up to 10{sup 9}, especially in ZrP C and A, while the selectivity coefficients were low, 10{sup -5} to 10{sup -1}, because they relate to the third power of the low pK{sub a1}. It was observed that for ZrPs there are strong

  5. Ion Exchange Properties of a Terpolymer Resin Derived from 2, 4-Dihydroxybenzaldehyde, Oxamide and Formaldehyde

    Directory of Open Access Journals (Sweden)

    M. V. Tarase

    2009-01-01

    Full Text Available Terpolymer resins (2,4-DHBOF were synthesized by the condensation of 2,4-dihydroxybenzaldehyde and oxamide with formaldehyde in the presence of hydrochloric acid as catalyst, proved to be selective chelation ion exchange terpolymer resins for certain metals. Chelation ion exchange properties of these polymers were studied for Fe+3, Cu+2, Hg+2, Cd+2, Co+2, Zn+2, Ni+2 and Pb+2 ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in a media of various ionic strengths. The polymer showed a higher selectivity for Fe+3, Cd+2 and Co+2 ions than for Cu+2, Hg+2, Zn+2, Ni+2 and Pb+2 ions.

  6. Selective transport of metal ions through cation exchange membrane in the presence of a complexing agent

    Energy Technology Data Exchange (ETDEWEB)

    Tingchia Huang; Jaukai Wang (National Cheng Kung Univ., Tainan (Taiwan, Province of China))

    1993-01-01

    Selective transport of metal ions through a cation exchange membrane was studied in stirred batch dialyzer for the systems Ni[sup 2+]-Cu[sup 2+] and Cu[sup 2+]-Fe[sup 3+]. Oxalic acid, malonic acid, citric acid, glycine, and ethylenediaminetetraacetic acid were employed as the complexing agents added in the feed solution in order to increase the permselectivity of metal ions. The experimental results show that the selective transport behavior of metal ions depends on the valence and the concentration of metal ions, the stoichiometric ratio of complexing agent to metal ions, and the pH value of the feed solution, but is independent of the concentration of counterion in the stripping phase. A theoretical approach was formulated on the basis of the Nernst-Planck equation and interface quasi-equilibrium. Theoretical solutions obtained from numerical calculation were in agreement with the experimental data.

  7. Development of inorganic ion exchangers for nuclear waste remediation. 1997 annual progress report

    International Nuclear Information System (INIS)

    Clearfield, A.; Collins, J.L.; Egan, B.Z.

    1997-01-01

    'In this research program, Oak Ridge National Laboratory (ORNL) is collaborating with Texas A and M University in the development of highly selective inorganic ion exchangers for the removal of cesium and strontium from nuclear tank-waste and from groundwater. Inorganic ion exchangers are developed and characterized at Texas A and M University; ORNL is involved in preparing the powders in engineered forms and testing the performance of the sorbents in actual nuclear waste solutions. The Texas A and M studies are divided into two main categories: (1) exchangers for tank wastes and (2) exchangers for groundwater remediation. These are subdivided into exchangers for use in acid and alkaline solutions for tank wastes and those that can be recycled for use in groundwater remediation. The exchangers will also be considered for in situ immobilization of radionuclides. The approach will involve a combination of exchanger synthesis, structural characterization, and ion exchange behavior. ORNL has developed a technique for preparing inorganic ion exchangers in the form of spherules by a gel-sphere internal gelation process. This technology, which was developed and used for making nuclear fuels, has the potential of greatly enhancing the usability of many other special inorganic materials because of the improved flow dynamics of the spherules. Also, pure inorganic spherules can be made without the use of binders. ORNL also has access to actual nuclear waste in the form of waste tank supernatant solutions for testing the capabilities of the sorbents for removing the cesium and strontium radionuclides from actual waste solutions. The ORNL collaboration will involve the preparation of the powdered ion exchangers, developed and synthesized at Texas A and M, in the form of spherules, and evaluating the performance of the exchangers in real nuclear waste solutions. Selected sorbents will be provided by Texas A and M for potential incorporation into microspheres, and the performance

  8. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  9. Removal of Uranium by Exchanger Resins from Soil Washing Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Han, G. S.; Kim, G. N.; Koo, D. S.; Jeong, J. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Uranyl ions in the acidic waste solution were sorbed on AM-resin resin with a high sorption efficiency, and desorbed from the resin by a batch-type washing with a 60 .deg. C heated 0.5 M Na{sub 2}CO{sub 3} solution. However, the uranium dissolved in the sulfuric acid solution was not sorbed onto the strong anion exchanger resins. Our group has developed a decontamination process with washing and electrokinetic methods for uranium-contaminated (U-contaminated) soil. However, this process generates a large amount of waste solution containing various metal ions. If the uranium selectively removed from the waste solution, a very small amount of the 2nd waste would be generated. Thus, selective sorption of uranium by ion exchange resins was examined in this study.

  10. Electrodeionization 2: the migration of nickel ions adsorbed in a flexible ion-exchange resin

    NARCIS (Netherlands)

    Spoor, P.B.; Veen, ter W.R.; Janssen, L.J.J.

    2001-01-01

    The removal of nickel ions from a low cross-linked ion-exchange resin using an applied electrical potential gradient was studied. The potential gradient across a bed of ion-exchange particles, in which nickel ions were absorbed, was varied by two methods. One involved a change of cell voltage across

  11. Bench scale evaluation and economic assessment of ion exchange resins for the removal of radionuclides from uranium mill tailings effluents

    International Nuclear Information System (INIS)

    Lakshmanan, V.I.; Itzkovitch, I.J.

    1981-07-01

    The removal of <0.45 m radium 226 (soluble) from acid and alkaline mill tailings effluents to meet the Canadian provincial (Ontario and Saskatchewan) objective of <3 pCi/L using ion exchange has been studied. Stirred tank tests were used to screen potential solid ion exchangers for detailed testing in columns. Column tests on selected exchangers were carried out to determine breakthrough curves as a function of column throughput. An economic assessment of the process was carried out. Results obtained indicate that removal of soluble radium 226 to <3 pCi/L by ion exchange is technically feasible. However, if the solid exchangers are to be used on a once through basis the process is prohibitively expensive

  12. Ion exchange resins as high-dose radiation dosimeters

    International Nuclear Information System (INIS)

    Alian, A.; Dessouki, A.; El-Assay, N.B.

    1984-01-01

    This paper reports on the possibility of using various types of ion exchange resins as high-dose radiation dosimeters, by analysis of the decrease in exchange capacity with absorbed dose. The resins studied are Sojuzchim-export-Moscow Cation Exchanger KU-2 and Anion Exchanger AV-17 and Merck Cation Exchanger I, and Merck Anion Exchangers II and III. Over the dose range 1 to 100 kGy, the systems show linearity between log absorbed dose and decrease in resin ion exchange capacity. The slope of this response function differs for the different resins, depending on their ionic form and degree of cross-linking. The radiation sensitivity increases in the order KU-2; Exchanger I; AV-17; Exchanger II; Exchanger III. Merck resins with moisture content of 21% showed considerably higher radiation sensitivity than those with 2 to 3% moisture content. The mechanism of radiation-induced denaturing of the ion exchanger resins involves cleavage and decomposition of functional substituents, with crosslinking playing a stabilizing role, with water and its radiolytic products serving to inhibit radical recombination and interfering with the protection cage effect of crosslinking. (author)

  13. Research of thermal stability of ion exchangers

    International Nuclear Information System (INIS)

    Stuchlik, S.; Srnkova, J.

    1983-01-01

    Prior to the fixation of radioactive ion exchangers into bitumen these exchangers have to be dried. The resulting gaseous products may generate explosive mixtures. An analysis was made of the thermal stability of two types of ion exchangers, the cation exchanger KU-2-8 cS and the anion exchanger AV-17-8 cS which are used in the V-1 nuclear power plant at Jaslovske Bohunice. The thermal stability of the anion exchangers was monitored using gas chromatography at temperatures of 100, 120, 140, 160 and 180 degC and by measuring weight loss by kiln-drying at temperatures of 120, 140, 160 and 180 degC. The ion exchanger was heated for 6 hours and samples were taken continuously at one hour intervals. The thermal stability of the cation exchanger was monitored by measuring the weight loss. Gas chromatography showed the release of trimethylamine from the anion exchanger in direct dependence on temperature. The measurement of weight losses, however, only showed higher losses of released products which are explained by the release of other thermally unstable products. The analysis of the thermal stability of the cation exchanger showed the release of SO 2 and the weight loss (following correction for water content) was found only after the fourth hour of decomposition. The experiment showed that the drying of anion exchanger AV-17-8 cS may cause the formation of explosive mixtures. (J.P.)

  14. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    Science.gov (United States)

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    International Nuclear Information System (INIS)

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs

  16. Behaviour of the pH adjustment, Ion exchange and concentrate precipitation stages in the acid leaching of uranium phosphate ores

    International Nuclear Information System (INIS)

    Estrada Aguilar, J.; Uriarte Hueda, A.

    1962-01-01

    The uranium recovery from acid leach solutions of uranium-phosphate ores has been studied. Relations have been found between the solution characteristics and the results obtained at different stages of the process. The following data can thus be predicted: solids to remove and uranium recovery in the pH adjustment stage, uranium capacity of the resin, more suitable eluating agent, elution velocity and uranium concentration in the eluate in the ion exchange stage, and composition of the concentrate produced by direct precipitation of the eluate in the concentrate precipitation stage. (Author) 8 refs

  17. Studies of the hydrous titanium oxide ion exchanger. 4. Rate of the isotopic exchange of sodium ions between the exchanger in the Na+ form and aqueous solution

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi; Kasuga, Fuminori

    1995-01-01

    The isotopic exchange rate of Na + between hydrous titanium(IV) oxides, precipitated at pH 6 and 13, in the Na + form and aqueous solution of sodium salt was determined radiochemically. The rate in the exchanger precipitated at pH 6 is controlled by the diffusion of Na + in the exchanger particles (particle diffusion). The diffusion coefficient and its activation energy are 1.9 x 10 -11 m 2 s -1 (pH 12, 5.0degC) and 29 kJ mol -1 (pH 12), respectively. The rate in the exchanger precipitated at pH 13 is also controlled by the particle diffusion. The rate is much slower than that in the other; this can be explained by assuming the existence of two kinds of independently diffusing ions (fast and slow species) in the exchanger. The diffusion coefficients are of the order of 10 -12 and 10 -13 m 2 s -1 for the fast and the slow species, respectively. Their activation energies are 48-60 kJ mol -1 at pH 12. The marked difference in kinetics between two exchanges was interpreted in terms of the difference in the acid-base property and in the microstructure of the matrix. (author)

  18. KOP ion exchange plant officially opened

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The KOP ion exchange plant, which was officially opened in February 1982, can be seen as an important milestone in the history of Klipfontein Organic Products. The plant, erected at a cost of R7 million, has enabled South Africa to achieve virtual self-sufficiency as far as resins are concerned. It will produce R5 million worth of resins per annum, and it has been estimated that it will save the country R3 million per annum in foreign exchange. The plant is the only of its kind in Africa, and will be able to meet 98% of the ion exchange resin requirements of the Republic

  19. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column

    Directory of Open Access Journals (Sweden)

    Nampoothiri K. Madhavan

    1999-01-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.

  20. Ion exchange equilibrium for some uni-univalent and uni-divalent

    African Journals Online (AJOL)

    a

    KEY WORDS: Duolite A-102 D ion exchange resin, Equilibrium constant, Endothermic ion exchange reaction,. Enthalpy, Thermodynamic study. INTRODUCTION. For proper selection of ion exchange resin in a particular technical application, it is essential to have adequate knowledge regarding their physical and chemical ...

  1. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  2. Determination of aminopolycarboxylic acids at ultra-trace levels by means of online coupling ion exchange chromatography and inductively coupled plasma-mass spectrometry with indirect detection via their Pd{sup 2+}-complexes

    Energy Technology Data Exchange (ETDEWEB)

    Nette, David; Seubert, Andreas, E-mail: seubert@staff.uni-marburg.de

    2015-07-16

    Highlights: • 8 important APCA’s analyzed in one run instead of 3 in the previous method. • Pd{sup 2+} extents the methods applicability to 3 and more dentate amino carboxylic acids. • Separation system optimized for the isocratic determination of important APCA’s. • Thermodynamic stability of APCA–Pd{sup 2+} complexes is higher than for Fe{sup 3+} and In{sup 3+}. • Pd{sup 2+} is kinetically much slower than Fe{sup 3+} and In{sup 3+} and makes the method more rugged. - Abstract: A new indirect IC-ICP-MS method for the determination of aminopolycarboxylic acids in water samples is described. It is based on the addition of an excess of Pd(II) to water samples. The analytes are forced into very strong and negatively charged palladium complexes, separated by ion exchange chromatography and detected by their palladium content, utilizing an on-line coupled ICP-MS. This method is suitable to determine the concentration of 8 aminopolycarboxylic acids (nitrilotriacetic acid (NTA), (2-carboxyethyl) iminodiacetic acid (β-ADA), methylglycinediacetic acid (MGDA), 2-hydroxyethyl) ethylenediamine triacetic acid (HEDTA), diethylene triamine pentaacetic acid (DTPA), ethylendiamine tetraacetic acid (EDTA), 1,3-diaminopropane tetraacetic acid (1,3-PDTA) and 1,2-diaminopropane tetraacetic acid (1,2-PDTA) at the ng kg{sup −1} level. The method is faster and easier than the established gas chromatography (GC)-method ISO 16588:2002 [1] and up to two orders of magnitude more sensitive than the ion pair chromatography based method of DIN 38413-8. Analytic performance is superior to ISO 16588:2002 and the comparability is good.

  3. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables

  4. Thermodynamics of ion exchange equilibrium for some uni ...

    African Journals Online (AJOL)

    The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Indion FF-IP. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as ...

  5. Radionuclide separations in the nuclear fuel cycle development and application of micro and meso porous inorganic ion-exchangers

    International Nuclear Information System (INIS)

    Griffith, C.S.; Luca, V.

    2006-01-01

    Full text: Full text: From the mining of uranium-containing ores to the reprocessing of spent nuclear fuel, separations technologies play a crucial role in determining the efficiency and viability of the nuclear fuel cycle. With respect to proposed Advanced Nuclear Fuel Cycles (ANFC), the integral role of separations is no different with solvent extraction and pyroelectrometalurgical processing dominating efforts to develop a sustainable and publicly acceptable roadmap for nuclear power in the next 100 years. An often forgotten or overlooked separation technology is ion-exchange, more specifically, inorganic ion-exchangers. This is despite the fact that these materials offer the potential advantages of process simplicity; exceptional selectivity against high background concentrations of competing ions; and the possibility of a simple immobilization route for the separated radionculides. ANSTO's principal interest in inorganic ion-exchange materials in recent years has been the development of an inorganic ion-exchanger for the pretreatment of acidic legacy 9 Mo production waste to simultaneously remove radiogenic cesium and strontium. Radiogenic cesium and strontium comprise the majority of activity in such waste and may offer increased ease in the downstream processing to immobilise this waste in a Synroc wasteform. With the reliance on separations technologies in all current ANFC concepts, and the recent admission of ANSTO to the European Commissions EUROPART project, the development of new inorganic ion-exchangers has also expanded within our group. This presentation will provide a background of the fundamentals of inorganic and composite inorganic-organic ion-exchange materials followed by specific discussion of some selected inorganic and composite ion-exchange materials being developed and studied at ANSTO. The detailed structural and ion-exchange chemistry of these materials will be discussed and note made of how such materials could benefit any of the

  6. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces.

    Science.gov (United States)

    Miros, François N; Zhao, Yingjie; Sargsyan, Gevorg; Pupier, Marion; Besnard, Céline; Beuchat, César; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-02-18

    Of central importance in chemistry and biology, enolate chemistry is an attractive topic to elaborate on possible contributions of anion-π interactions to catalysis. To demonstrate the existence of such contributions, experimental evidence for the stabilization of not only anions but also anionic intermediates and transition states on π-acidic aromatic surfaces is decisive. To tackle this challenge for enolate chemistry with maximal precision and minimal uncertainty, malonate dilactones are covalently positioned on the π-acidic surface of naphthalenediimides (NDIs). Their presence is directly visible in the upfield shifts of the α-protons in the (1) H NMR spectra. The reactivity of these protons on π-acidic surfaces is measured by hydrogen-deuterium (H-D) exchange for 11 different examples, excluding controls. The velocity of H-D exchange increases with π acidity (NDI core substituents: SO2 R>SOR>H>OR>OR/NR2 >SR>NR2 ). The H-D exchange kinetics vary with the structure of the enolate (malonates>methylmalonates, dilactones>dithiolactones). Moreover, they depend on the distance to the π surface (bridge length: 11-13 atoms). Most importantly, H-D exchange depends strongly on the chirality of the π surface (chiral sulfoxides as core substituents; the crystal structure of the enantiopure (R,R,P)-macrocycle is reported). For maximal π acidity, transition-state stabilizations up to -18.8 kJ mol(-1) are obtained for H-D exchange. The Brønsted acidity of the enols increases strongly with π acidity of the aromatic surface, the lowest measured pKa =10.9 calculates to a ΔpKa =-5.5. Corresponding to the deprotonation of arginine residues in neutral water, considered as "impossible" in biology, the found enolate-π interactions are very important. The strong dependence of enolate stabilization on the unprecedented seven-component π-acidity gradient over almost 1 eV demonstrates quantitatively that such important anion-π activities can be expected only from

  7. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    Directory of Open Access Journals (Sweden)

    Sanjiokumar S. Rahangdale

    2009-01-01

    Full Text Available The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA and biuret (B with formaldehyde (F in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.

  8. 309 plutonium recycle test reactor ion exchanger vault deactivitation report

    International Nuclear Information System (INIS)

    Griffin, P.W.

    1996-03-01

    This report documents the deactivation of the ion exchanger vault at the 309 Plutonium Recycle Test Reactor (PRTR) Facility in the 300 Area. The vault deactivation began in May 1995 and was completed in June 1995. The final site restoration and shipment of the low-level waste for disposal was finished in September 1995. The ion exchanger vault deactivation project involved the removal and disposal of twelve ion exchangers and decontaminating and fixing of residual smearable contamination on the ion exchanger vault concrete surfaces

  9. Operation and control of ion-exchange processes for treatment of radioactive wastes

    International Nuclear Information System (INIS)

    Emelity, L.A.

    1967-01-01

    A manual dealing with the application of ion-exchange materials to the treatment of radioactive wastes and reviewing the facilities currently using this method. This book is one of three commissioned by the IAEA on the principal methods of concentrating radioactive wastes. The content of this document is: (i) Historical review related to removal of radioactivity; (ii) Principles of ion exchange (iii) Ion-exchange materials; (iv) Limitations of ion exchangers; (v) Application of ion exchange to waste processing; (vi) Operational procedures and experiences; (vii) Cost-of-treatment by ion-exchange. The document also gives a list of producers of ion-exchange material and defines some relevant terms. 101 refs, 31 figs, 27 tabs

  10. Operation and control of ion-exchange processes for treatment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Emelity, L A [Los Alamos National Lab., NM (United States)

    1967-12-01

    A manual dealing with the application of ion-exchange materials to the treatment of radioactive wastes and reviewing the facilities currently using this method. This book is one of three commissioned by the IAEA on the principal methods of concentrating radioactive wastes. The content of this document is: (i) Historical review related to removal of radioactivity; (ii) Principles of ion exchange (iii) Ion-exchange materials; (iv) Limitations of ion exchangers; (v) Application of ion exchange to waste processing; (vi) Operational procedures and experiences; (vii) Cost-of-treatment by ion-exchange. The document also gives a list of producers of ion-exchange material and defines some relevant terms. 101 refs, 31 figs, 27 tabs.

  11. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  12. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    Science.gov (United States)

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  13. Inorganic ion-exchangers for the treatment and disposal of industrial effluents

    International Nuclear Information System (INIS)

    Hasany, S.M.

    2000-01-01

    Ion-exchangers can be broadly classified into organic and inorganic ion-exchangers. Inorganic ion-exchangers are stable at high temperatures and radiation dosage, resistant towards oxidizing agents and organic solvents. They are cheap and easy to prepare. Inorganic ion-exchangers, due to their superiority over organic ion-exchangers, have been extensively used for a wide variety of applications including treatment and management of industrial effluents. The criteria governing the division into essential and toxic elements for animal life have been described. The occupational sources of toxic elements and their compounds in the environment have been identified and their tolerance limits prescribed in air, water and food are given. The toxicity and adverse effects of harmful elements and their hazardous compounds are mentioned. Factors influencing sorption of trace elements onto inorganic ion-exchangers are highlighted. Examples of inorganic ion-exchangers are cited where they can be utilized for the treatment of industrial effluents before their safe discharge into waterways and biosphere. (author)

  14. Ion-Isotopic Exchange Reaction Kinetics using Anion Exchange Resins Dowex 550A LC and Indion-930A

    Directory of Open Access Journals (Sweden)

    P.U. Singare

    2014-06-01

    Full Text Available The present paper deals with the characterization of ion exchange resins Dowex 550A LC and Indion-930A based on kinetics of ion-isotopic exchange reactions for which the short lived radioactive isotopes 131I and 82Br were used as a tracers. The study was performed for different concentration of ionic solution varying from 0.001 mol/L to 0.004 mol/L and temperature in the range of 30.0 °C to 45.0 °C. The results indicate that as compared to bromide ion-isotopic exchange reaction, iodide exchange reaction take place at the faster rate. For both the ion-isotopic exchange reactions, under identical experimental conditions, the values of specific reaction rate increases with increase in the ionic concentration and decreases with rise in temperature. It was observed that at 35.00C, 1.000 g of ion exchange resins and 0.002 mol/L labeled iodide ion solution for iodide ion-isotopic exchange reaction, the values of specific reaction rate (min-1, amount of ion exchanged (mmol, initial rate of ion exchange (mmol/min and log Kd were 0.270, 0.342, 0.092 and 11.8 respectively for Dowex 550A LC resin, which was higher than the respective values of 0.156, 0.241, 0.038 and 7.4 as that obtained for Indion-930A resins. From the results, it appears that Dowex 550A LC resins show superior performance over Indion-930A resins under identical experimental conditions.

  15. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, B.J. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-15

    Highlights: • Effective near-infrared emission (1380-1525 nm) is observed in Pr{sup 3+}-doped phosphate glasses. • Effective bandwidth of {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm. • Channel waveguides have been fabricated by K{sup +}-Na{sup +} ion-exchange method. • Pr{sup 3+}-doped phosphate glasses are promising in developing integrated broadband waveguide amplifier. - Abstract: Effective near-infrared emission covering the fifth optical telecommunication window (1380-1525 nm) has been observed in Pr{sup 3+}-doped phosphate (NMAP) glasses. Judd-Ofelt parameters Ω{sub 2} (6.38 × 10{sup −20} cm{sup 2}), Ω{sub 4} (20.30 × 10{sup −20} cm{sup 2}) and Ω{sub 6} (0.40 × 10{sup −20} cm{sup 2}) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth (Δλ{sub eff}) of the corresponding {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σ{sub em-max}) at 1468 nm is derived to be 1.14 × 10{sup −20} cm{sup 2}. Channel waveguide was fabricated successfully by K{sup +}-Na{sup +} ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr{sup 3+}-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

  16. Separation of zirconium from hafnium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, Elaine C.B.; Palhares, Hugo G.; Ladeira, Ana Claudia Q., E-mail: elainecfelipe@yahoo.com.br, E-mail: hugopalhares@gmail.com, E-mail: ana.ladeira@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Zirconium and hafnium are two of the most important metals for the nuclear industry. Hafnium occurs in all zirconium ores usually in the range 2 - 3%. However, for the most nuclear industry applications, it is necessary to use a zirconium of extremely pure level. The current work consists in the separation of zirconium and hafnium by the ion exchange method in order to obtain a zirconium concentrate of high purity. The zirconium and hafnium liquors were produced from the leaching of the Zr(OH){sub 4} and Hf(OH){sub 4} with nitric acid for 24 hours. From these two liquors it was prepared one solution containing 7.5 x 10{sup -2} mol L{sup -1} of Zr and 5.8 x 10{sup -3} mol L{sup -1} of Hf with acidity of 1 M. Ion exchange experiments were carried out in batch with the resins Dowex 50WX4, Dowex 50WX8 100, Dowex 50WX8 50, Amberlite IR-120 and Marathon C at constant temperature 28 deg C. Other variables such as, acidity and agitation were kept constant. The data were adjusted to Langmuir equation in order to calculate the maximum loading capacity (q{sub max}) of the resins, the distribution coefficient (K{sub d}) for Zr and Hf and the separation factor (α{sub Hf}{sup Zr} ). The results of maximum loading capacity (q{sub max}) for Zr and Hf, in mmol g{sup -}1, showed that the most suitable resins for columns experiments are: Dowex 50WX4 50 (q{sub max} Z{sub r} = 2.21, Hf = 0.18), Dowex 50WX8 50 (q{sub max} Zr = 1.89, Hf = 0.13) and Amberlite (q{sub max} Zr = 1.64, Hf = 0.12). However, separations factors, α{sub Hf}{sup Zr}, showed that the resins are not selective. (author)

  17. Influence of strong single-ion anisotropy on phase states of 3D and 2D frustrated magnets

    International Nuclear Information System (INIS)

    Fridman, Yu.A.; Kosmachev, O.A.; Matunin, D.A.; Gorelikov, G.A.; Klevets, Ph.N.

    2010-01-01

    We investigated the influence of strong single-ion anisotropy, exceeding exchange interaction, and frustrated exchange interaction on spin-wave excitation spectra and phase states using the Hubbard operators' technique, allowing the exact account of single-ion anisotropy. The results show that both the homogeneous phases (ferromagnetic and quadrupolar) and the spatially inhomogeneous phase (spiral structure) are possible in the 3D magnetic crystal. The region of existence of the spiral structure is considerably smaller than that in the analogues system, but with weak single-ion anisotropy. The situation is more complex in the 2D system; another spatially inhomogeneous state (the domain structure) can be realized in addition to the spiral magnetic structure. The phase diagrams for both the 3D and 2D systems were plotted.

  18. Ion-sound oscillations in strongly non-isotherm weakly ionized nonuniform hydrogen plasma

    International Nuclear Information System (INIS)

    Leleko, Ya.F.; Stepanov, K.N.

    2010-01-01

    A stationary distribution of strongly non-isotherm weakly ionized hydrogen plasma parameters is obtained in the hydrodynamic approximation in a quasi neutrality region in the transient layer between the plasma and dielectric taking the ionization, charge exchange, diffusion, viscosity, and a self-consistent field potential distribution. The ion-sound oscillation frequency and the collisional damping decrement as functions of the wave vector in the plasma with the obtained parameters are found in the local approximation.

  19. Ion-exchange equilibria and diffusion in engineered backfill

    International Nuclear Information System (INIS)

    Soudek, A.; Jahnke, F.M.; Radke, C.J.

    1984-01-01

    Engineered backfill can add confidence to confinement times of high-level nuclear waste stored in geologic media. This paper discusses the design and operation of a unique radial-flow diffusion cell to determine ion migration rates in backfill material under realistic repository conditions. New experimental results were reported for diffusion of CsCl in a background of NaCl into compacted bentonite and bentonite/quartz mixtures. Representation of the measured diffusion rates by the traditional, homogeneous porous-medium model significantly underestimates cesium penetration distances into the backfill. Surface diffusion is suggested as an additional mechanism by which cations transport in swollen montmorillonite; the surface diffusion coefficients for cesium is determined to be approximately 10 -7 cm 2 /s. An electrostatic site-binding model is developed for ion-exchange equilibria on montmorillonite clay. The effect of pH, ionic strength, and specific adsorption are evaluated and compared favorably to new, experimental exchange isotherms measured on disaggregated clay. The electrostatic site-binding model permits a prediction of the influence of backfill compaction on K/sub d/ values. We find that for strongly adsorbing cations, compactions has little effect. However, anions exhibit significant Donnan exclusion with clay compaction. 40 references, 12 figures

  20. Electrodialytic separation of alkali-element ions with the aid of ion-exchange membranes

    International Nuclear Information System (INIS)

    Gurskii, V.S.; Moskvin, L.N.

    1988-01-01

    Electrodialytic separation of ions bearing charges of the same sign with the aid of ion-exchange membranes has been examined in the literature in relation to the so-called ideal membranes, which do not exhibit selectivity with respect to one ion type in ion exchange. It has been shown that separation on such membranes is effective only for counterions differing in size of charge. A matter of greater importance from the practical standpoint is the possibility of using electrodialysis for separating ions bearing like charges and having similar properties, including ionic forms of isotopes of the same element. In this paper they report a comparative study of ion separation, with reference to the Cs-Na pair, by electrodialysis through various types of cation-exchange membranes. Changes of the solution concentration in the cathode compartment were monitored by measurement of 22 Na and 137 Cs activities

  1. Inorganic ion exchange evaluation and design: Silicotitanate ion exchange waste conversion

    International Nuclear Information System (INIS)

    Balmer, M.L.; Bunker, B.C.

    1995-03-01

    Ion exchange materials are being evaluated for removing Cs, SR from tank waste. Thermal conversion of a variety of compositions within the Cs 2 O-TiO 2 -SiO 2 phase diagram yielded both glass and crystalline materials, some of which show low leach rates and negligible Cs losses during heat treatment. A new material, CsTiSi 2 0 6 , with a structure isomorphous to pollucite (CsAlSi 2 0 6 ) has been identified. This material represents a new class of crystalline zeolite materials which contain large amounts of titanium. Direct conversion of Cs loaded silicotitanate ion exchangers to CsTiSi 2 O 6 is an excellent alternative to dissolving the Cs-loaded or Cs-eluted exchangers in borosilicate glass because: CsTiSi 2 O 6 is formed using a simple, one step heat treatment. The unique crystalline pollucite-like structure of CsTiSi 2 O 6 traps Cs, and exhibits extremely low Cs leach rates. CsTiSi 2 O 6 is converted to solid waste at a low processing temperature of 700 to 800 C (nominal melter operating temperatures are 1150 C). CsTiSi 2 0 6 concentrates the waste, thus generating lower volumes of expensive HLW. Cs losses due to volatilization during processing of CsTiSi 2 O 6 are extremely low

  2. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  3. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    Science.gov (United States)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  4. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  5. Comparative study on ion-isotopic exchange reaction kinetics by application of tracer technique

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    2007-01-01

    The radioactive isotopes 131 I and 82 Br were used to trace the ion-isotopic exchange reactions using industrial grade ion exchange resins Amberlite IRA-400. The experiments were performed to understand the effect of temperature and concentration of ionic solution on kinetics of exchange reactions. Both the exchange reactions were greatly influenced by rise in temperature, which result in higher percentage of ions exchanged. For bromide ion-isotopic exchange reactions, the calculated values of specific reaction rate/min -1 , and amount of ions exchanged/mmol were obtained higher than that for iodide ion-isotopic exchange reactions under identical experimental conditions. The observed variation in the results for two ion-isotopic exchange reactions was due to the difference in the ionic size of bromide and iodide ions. (orig.)

  6. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  7. A review of the radiation stability of ion exchange materials

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1986-01-01

    A comprehensive literature survey on the radiation stability of synthetic organic ion exchangers was published in this journal (Vol. 97, No. 1.). This paper is a brief review of the major findings of this survey along with similar information on synthetic inorganic ion exchangers. The primary goal of this literature survey is to review present knowledge on the effects of ionizing radiations on synthetic ion exchange materials used in radiochemical processing. The information available in the literature shows some general trends in observed qualitative effects by different types of organic and inorganic ion exchange materials. (author)

  8. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  9. Calmodulin-lanthanide ion exchange kinetics

    International Nuclear Information System (INIS)

    Buccigross, J.; O'Donnell, C.; Nelson, D.

    1985-01-01

    A flow dialysis apparatus suitable for the study of high affinity metal binding proteins has been utilized to study calmodulin-metal exchange kinetics. Calmodulin labeled with Eu-155 and Gd-153 was dialyzed against buffer containing various competing metal ions. The rate of metal exchange was monitored by a gamma-ray scintillation detector. The kinetics of exchange are first order, and the rates fall into two categories: Ca (II) and CD (II) in one, and the lanthanides Eu (III), Gd (III), and La (III) in the other

  10. Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography.

    Science.gov (United States)

    Raweerith, Rutai; Ratanabanangkoon, Kavi

    2003-11-01

    A combined process of caprylic acid (CA) precipitation and ion-exchange chromatography on SP-Sepharose was studied as a means to fractionate pepsin-digested horse antivenom F(ab')(2) antibody. In the CA precipitation, the optimal concentration for fractionation of F(ab')(2) from pepsin-digested horse plasma was 2%, in which 89.61% of F(ab')(2) antibody activity was recovered in the supernatant with 1.5-fold purification. A significant amount of pepsin was not precipitated and remained active under these conditions. An analytical cation exchanger Protein-Pak SP 8HR HPLC column was tested to establish optimal conditions for the effective separation of IgG, albumin, pepsin and CA from the F(ab')(2) product. From these results, the supernatant from CA precipitation of pepsin-digested plasma was subjected to a SP-Sepharose column chromatography using a linear salt gradient. With stepwise elution, a peak containing F(ab')(2) antibody could be obtained by elution with 0.25 M NaCl. The total recovery of antibody was 65.56% with 2.91-fold purification, which was higher than that achieved by ammonium sulfate precipitation. This process simultaneously and effectively removed residual pepsin, high molecular weight aggregates and CA in the final F(ab')(2) product, and should be suitable for large-scale fractionation of therapeutic equine antivenoms.

  11. Ion-exchange-resin-catalyzed adamantylation of phenol derivatives with adamantanols: Developing a clean process for synthesis of 2-(1-adamantyl-4-bromophenol, a key intermediate of adapalene

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2012-02-01

    Full Text Available A clean process has been developed for the synthesis of 2-adamantylphenol derivatives through adamantylation of substituted phenols with adamantanols catalyzed by commercially available and recyclable ion-exchange sulfonic acid resin in acetic acid. The sole byproduct of the adamantylation reaction, namely water, could be converted into the solvent acetic acid by addition of a slight excess of acetic anhydride during the work-up procedure, making the process waste-free except for regeneration of the ion-exchange resin, and facilitating the recycling of the resin catalyst. The ion-exchange sulfonic acid resin catalyst could be readily recycled by filtration and directly reused at least ten times without a significant loss of activity. The key intermediate of adapalene, 2-(1-adamantyl-4-bromophenol, could be produced by means of this waste-free process.

  12. Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds

    International Nuclear Information System (INIS)

    Sebesta, F.

    1997-01-01

    Methods of preparation of granules of inorganic ion exchangers as well as methods for improvement of granular strength of these materials are reviewed. The resulting ion exchangers are classified in three groups - 'intrinsic', supported and composite ion exchangers. Their properties are compared and possibilities of their technological application are evaluated. A new method of preparation of inorganic-organic composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix is described, advantages and disadvantages of such sorbents are discussed. Proposed fields of application include tratment of liquid radioactive and/or hazardous wastes, decontamination of natural water as well as analytical applications. (author)

  13. Radiocarbon detection by ion charge exchange mass spectrometry

    International Nuclear Information System (INIS)

    Hotchkis, Michael; Wei, Tao

    2007-01-01

    A method for detection of radiocarbon at low levels is described and the results of tests are presented. We refer to this method as ion charge exchange mass spectrometry (ICE-MS). The ICE-MS instrument is a two stage mass spectrometer. In the first stage, molecular interferences which would otherwise affect radiocarbon detection at mass 14 are eliminated by producing high charge state ions directly in the ion source (charge state ≥2). 14 N interference is eliminated in the second stage by converting the beam to negative ions in a charge exchange cell. The beam is mass-analysed at each stage. We have built a test apparatus consisting of an electron cyclotron resonance ion source and a pair of analysing magnets with a charge exchange cell in between, followed by an electrostatic analyser to improve the signal to background ratio. With this apparatus we have measured charge exchange probabilities for (C n+ → C - ) from 4.5 to 40.5 keV (n = 1-3). We have studied the sources of background including assessment of limits for nitrogen interference by searching for negative ions from charge exchange of 14 N ions. Our system has been used to detect 14 C in enriched samples of CO 2 gas with 14 C/ 12 C isotopic ratio down to the 10 -9 level. Combined with a measured sample consumption rate of 4 ng/s, this corresponds to a capability to detect transient signals containing only a few μBq of 14 C activity, such as may be obtained from chromatographic separation. The method will require further development to match the sensitivity of AMS with a gas ion source; however, even in its present state its sensitivity is well suited to tracer studies in biomedical research and drug development

  14. Calcium hydroxide isotope effect in calcium isotope enrichment by ion exchange

    International Nuclear Information System (INIS)

    Jepson, B.E.; Shockey, G.C.

    1984-01-01

    The enrichment of calcium isotopes has been observed in ion-exchange chromatography with an aqueous phase of calcium hydroxide and a solid phase of sulfonic acid resin. The band front was exceedingly sharp as a result of the acid-base reaction occuring at the front of the band. Single-stage separation coefficients were found to be epsilon( 44 Ca/ 40 Ca) = 11 x 10 -4 and epsilon( 48 Ca/ 40 Ca) = 18 x 10 -4 . The maximum column separation factors achieved were 1.05 for calcium-44 and 1.09 for calcium-48 with the heavy isotopes enriching in the fluid phase. The calcium isotope effect between fully hydrated aqueous calcium ions and undissociated aqueous calcium hydroxide was estimated. For the calcium-44/40 isotope pair the separation coefficient was 13 x 10 -4 . 20 references, 2 figures

  15. Potassium iron(III)hexacyanoferrate(II) supported on polymethylmethacrylate ion-exchanger for removal of strontium(II)

    International Nuclear Information System (INIS)

    Taj, S.; Ashraf Chaudhry, M.; Mazhar, M.

    2009-01-01

    Potassium iron(III)hexacyanoferrate(II) supported on poly metylmethacrylate has been synthesized and investigated for the strontium(II) removal from HNO 3 and HCl solutions. The ion exchange material characterized by different techniques and found to be stable in 1.0-4.0 M HNO 3 solutions, has been used to elaborate different parameters related to ion exchange and sorption processes involved. The data collected suggested its use to undertake removal of Sr(II) from more acidic active waste solutions. Thus the material synthesized had been adjudged to present better chances of application for Sr(II) removal as compared to other such materials. (author)

  16. Hydrogen isotope exchange of organic compounds in dilute acid at elevated temperatures

    International Nuclear Information System (INIS)

    Werstiuk, N.H.

    1987-01-01

    Introduction of one or more deuterium (or tritium) atoms into organic molecules can be accomplished in many ways depending on the nature of the substrate and the extent and sterochemistry of deuteriation or tritiation required. Some of the common methods include acid- and base-catalyzed exchange of carbonyl compounds, metal hydride reductions, dissolving metal reductions, catalytic reduction of double bonds, chromatographic exchange, homogeneous and heterogeneous metal-catalyzed exchange, base-catalyzed exchange of carbon acids other than carbonyl compounds and acid-catalyzed exchange via electrophilic substitution. Only the latter three methods have been used for perdeuteriation of organic compounds. A very useful compendium of labeling methods with examples has been available to chemists for some time. Although metal-catalyzed exchange has been used extensively, the method suffers from some deficiencies: irreproducibility of catalyst surfaces, catalyst poisoning, side reactions such as coupling and hydrogenolysis of labile groups and low deuterium incorporation. Usually a number of cycles are required with fresh catalyst and fresh deuterium source to achieve substantial isotope incorporation. Acid-catalyzed exchange of aromatics and alkenes, strongly acidic media such as liquid DBr, concentrated DBr, acetic acid/stannic chloride, concentrated D 3 PO 4 , concentrated DC1, D 3 PO 4 /BF 3 SO 2 , 50-80% D 2 SO 4 and DFSO 4 /SbF 5 at moderate temperatures (<100 degrees) have been used to effect exchange. The methods are not particularly suitable for large scale deuteriations because of the cost and the fact that the recovery and upgrading of the diluted deuterium pool is difficult. This paper describes the hydrogen isotope exchange of a variety of organic compounds in dilute aqueous acid (0.1-0.5 M) at elevated temperatures (150-300 degrees)

  17. Ion exchange currents in vacuum accelerator tubes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Thorn, R.

    1978-01-01

    Ion exchange currents (microdischarges) have been observed in short lengths of accelerator tube. The occurrence of these discharges can be related to the trajectories of ions in the tube. High-resolution mass spectra of the negative and positive ion components have been obtained. (author)

  18. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  19. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    Science.gov (United States)

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  20. Bench scale studies on separation of rare earths by ion exchange

    International Nuclear Information System (INIS)

    Aroonrung-Areeya, A.

    1976-01-01

    The method of ion exchange was applied to the separation of mixtures of rare earth oxides into the pure components. The method consists of eluting a band of mixed rare earths adsorbed on a cation-exchange resin through a second cation-exchange bed in the copper II state. The eluent consists of an ammonia buffered solution of ethylenediamine tetraacetic acid. The mixed rare earth oxide used as testing material was obtained from the digestion of Thai monazite. The amounts varied from 1, 5 to 50 grams. The purity of the rare earth fractions were analyzed either by neutron activation of X-ray fluorescence. The Cu.EDTA was recovered by the addition of lime. It was found that gram quantities of pure rare earths could be obtained by this method

  1. Observations of strong ion-ion correlations in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.; Fletcher, L.; Pak, A.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Galtier, E.; Gericke, D. O.; Gregori, G.; Hastings, J.; Landen, O. L.; Le Pape, S.; Lee, H. J.; Nagler, B.; Neumayer, P.; Turnbull, D.; Vorberger, J.; White, T. G.; Wünsch, K.; Zastrau, U.; Glenzer, S. H.; Döppner, T.

    2014-05-01

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4k=4Å-1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  2. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  3. A study on dry decontamination using ion exchange polymer

    International Nuclear Information System (INIS)

    Jung, Ki Jung; Ahn, Byung Gil

    1997-12-01

    Through the project of A study on dry decontamination using ion exchange polymer , the followings were investigated. 1. Highly probable decontamination technologies for the decontamination were investigated. 2. Development of gel type decontamination agent using ion-exchange resin powder (mixed type) as an ion exchanger. 3. Manufacturing of contaminated specimens (5 kinds) with Cs-137 solution and dust / Cs-137 solution. 4. Decontamination performance evaluation of the manufactured agent. 5. Analysis of composition (XRF) and the structure of surface of specimens (optic micrography). (author). 20 refs., 11 figs

  4. Sr2+ and Cs+ ion exchange properties of KLn(PO3)4: Ln = Ce and Eu

    International Nuclear Information System (INIS)

    Samatha, B.; Achary, S.N.; Tyagi, A.K.; Ramkumar, Jayshree; Chandramouleeswaran, S.

    2014-01-01

    With the aim to study the potential of layered phosphates as ion exchangers two stoichiometric compositions as KLn(PO 3 ) 4 with Ln = Ce and Eu were prepared by solid state reaction and characterized by powder X-ray diffraction method. The Cs + and Sr 2+ exchange properties of both materials were investigated using standard solutions of Sr 2 + or Cs + in low acidic aqueous medium

  5. Application of resin in pulp technique for ion exchange separation of uranium from alkaline leachate

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.; Chakravorty, J.

    2014-01-01

    The hydrometallurgical process for the recovery of uranium from different ores uses ion exchange (IX) technique for the separation of dissolved uranium values. Conventionally, the IX process is carried out on leach solution obtained after the filtration or counter-current decantation of the leach slurries. Amongst the two types of leach pulps generated in uranium ore processing, viz acidic and alkaline, the latter one consists of predominantly fine-size pulps of higher viscosity, thus making the solid-liquid separation an arduous task. Sustained research for improvising the efficiency of various unit operations in the uranium process flowsheet have resulted in advent of new generation resins which are mechanically re-silent, posses higher exchange capacity thereby enabling separation of dissolved uranium ions from the leach pulps directly. Some of the prominent low-grade uranium ore deposits in India are hosted in acid consuming gangue matrix. These ore deposits necessitate fine grinding as well as application of alkaline leaching for the dissolution of uranium values. The leach pulps analyse 500 – 600 mg/l of U3O8 and contain total dissolved solutes (TDS) to the extent of about 50 g/l. Analysis of the characteristics of the leach pulp indicated suitability of resin-in-pulp technique for the separation of uranyl carbonate anions from the leachate. This paper describes the results of the RIP test work on alkaline leach slurry using various commercially available strong base anionic exchange resins. Parametric variation studies were conducted to establish the adsorption isotherm and sorption kinetics followed by elution of loaded uranium. Based on these results semi-continuous experiments on “carousel” mode were carried out. The results indicate superiority of gel type polystyrene based resins grafted with quaternary ammonium ion in comparison to the macro-porous resins. Semi-continuous counter-current extraction and elution tests indicated that about 98% of

  6. Recovery of tretrachloroaurate through ion exchange with Dowex 11 resin

    International Nuclear Information System (INIS)

    Alguacil, F.J.

    1998-01-01

    The recovery of the tretrachloroaurate complex by the anionic ion exchange resin Dowex 11 has been studied. The kinetics of gold adsorption were dependent of both gold and resin concentrations and temperature. The adsorption isotherm can be described by the expression Q=kC''n. The loaded resin could be eluted by an acidic thiourea solution at 20 degree centigree. After several adsorption-elution cycles there is not any apparent loss in the adsorption properties of the resin. (Author) 6 refs

  7. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  8. Composite ion-exchangers and their possible use in treatment of low/intermediate level liquid radioactive wastes

    International Nuclear Information System (INIS)

    Sebesta, F.; Motl, A.; John, J.

    1993-01-01

    A new method of preparation of composite inorganic-organic ion exchangers using modified polyacrylonitrile (PAN) as a binding polymer for the inorganic active component is described. This method enables incorporation of very fine to colloidal particles of active component in the binding polymer which increases the capacity and improves the kinetics of ion exchange of the resulting absorber. The proposed method can be applied on most of the inorganic ion exchangers known. Results of tests of some absorbers for treatment of radioactive wastes produced in the nuclear industry are given. For the removal of radiocesium from Long Term Fuel Storage Pond water at NPP Jaslovske Bohunice (Slovakia) NiFC-PAN composite ion exchanger has been tested. Excellent results have been achieved both at low and high (floating bed) flow rates in the course of treatment of up to 45,000 BV of pond water. The possibility of decreasing the total activity of the Biological Shield water from the same NPP below the 37 Bq/l discharge limit has been proved using NiFC-PAN and NaTiO-PAN composite ion exchangers. NiFC-PAN, NaTiO-PAN, MnO-PAN, M315-PAN and Na-Y-PAN composite ion exchangers were tested for removal of radiocesium, radiocobalt and radiomanganese from standard liquid radioactive wastes and concentrates from NPP Krsko, Croatia. Different combinations of absorbers have been tested for the treatment of Boron Recycle Hold-up, Waste Condensate and Waste Hold-up Tanks. Radium could be quantitatively removed from highly saline acid waste water from uranium underground leaching on Ba(Ca)SO 4 -PAN absorber

  9. Behavior of cationic, anionic and colloidal species of titanium, zirconium and thorium in presence of ion exchange resins

    International Nuclear Information System (INIS)

    Souza Filho, G. de; Abrao, A.

    1976-01-01

    The distribution of titanium, zirconium and thorium is aqueous and resin phases has been studied using strong cationic resin in the R-NH 4 form. Solutions of the above elements in perchloric, nitric, hydrochloric and suphuric media were used. Each set of experiments was made by separately varying one of the five parameters - type of anion present, acidity of solution, temperature of percolation, age of solution and concentration of the element. It was found that, depending on the particular balance of these parameters, the elements investigated may be found in acidic solutions either as cationic, anionic or colloidal species. It is emphasized that the colloidal species of titanium, zirconium or thorium are not retained by the ion exchangers, and from this property a method for the separation and purification of the above elements has been outlined [pt

  10. Determination of americium and curium using ion-exchange in the nitric-acid-methanol medium for environmental analysis

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1976-01-01

    While transplutonic elements are only slightly sorbed to anion exchangers from hydrochloric or nitric acid media, the presence of alcohol enhances the anionic exchange of these elements, especially in nitric and sulfuric solutions. In the present work a method has been developed for determining americium and curium in environmental samples, on the basis of the difference between the sorption characteristics to anion exchangers in the acid-methanol system of these transplutonic elements and those of plutonium, polonium and thorium. The method also permits us to perform sequential determination of plutonium, when necessary

  11. Complex ion kinetics. Reaction rates on ion-exchange resins compared to those in water

    International Nuclear Information System (INIS)

    Liss, I.B.; Murmann, R.K.

    1975-01-01

    A comparison has been made between the rates in water and on an ion-exchange resin for the aquation of [(NH 3 ) 5 CoOReO 3 ] 2+ and [(H 2 O) 5 CrCl] 2+ and for the 18 O isotopic exchange of water with [(NH 3 ) 5 Co(OH 2 )] 3+ and ReO 4 - . The rate of water exchange on [(NH 3 ) 5 Co(OH 2 )] 3+ was not changed by association with Dowex 50W resins. Aquation of [(NH 3 ) 5 CoOReO 3 ] 2+ and water exchange on ReO 4 - had modified pH dependencies when associated with a resin. With the cobalt complex the rates were faster on the resin in the acidic region and slower on the resin in the basic region. A new term in the rate equation was observed when ReO 4 - was on the resin, first order in H + , while the other terms appear to be unchanged. Aquation of [(H 2 O) 5 CrCl] 2+ was much slower when it was absorbed on the resin. This was related to the known ionic strength effect of the reaction. (auth)

  12. Exchange scattering of quasiparticles by positive ion in He3

    International Nuclear Information System (INIS)

    Ehdel'shtejn, V.M.

    1983-01-01

    The difference in the mobility of negative and positive ions in normal 3 He at low temperatures is discussed. The mobility mechanisms for the ions of different sign are qualitatively different since the positive ion can exchange quasiparticles with the helium atoms from the ice-like shell surrounding the ion. A study of the mobility in a magnetic field may yield quantitative information on the magnitude of the exchange interaction. A calculation for the exchange scattering model is carried out and it is shown that a logarithmic contribution to the positive ion mobility μsub(+)(T) appears which is analogous to the Kondo effect

  13. Ion species stratification within strong shocks in two-ion plasmas

    Science.gov (United States)

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; Chacón, Luis

    2018-03-01

    Strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likely contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Additionally, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M4 for M ≫ 1.

  14. Recent developments on ion-exchange membranes and electro-membrane processes.

    Science.gov (United States)

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  15. An investigation of the applicability of the new ion exchange resin, Reillex{trademark}-HPQ, in ATW separations. Milestone 4, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, K.R.; Ball, J.; Grissom, M.; Williamson, M.; Cobb, S.; Young, D.; Wu, Yen-Yuan J.

    1993-09-07

    The investigations with the anion exchange resin Reillex{trademark}-HPQ is continuing along several different paths. The topics of current investigations that are reported here are: The sorption behavior of chromium(VI) on Reillex{trademark}-HPQ from nitric acid solutions and from sodium hydroxide/sodium nitrate solutions; sorption behavior of F{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Cl{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; sorption behavior of Br{sup {minus}} on Reillex{trademark}-HPQ resin in acidic sodium nitrate solution; and the Honors thesis by one of the students is attached as Appendix II (on ion exchange properties of a new macroperous resin using bromide as the model ion in aqueous nitrate solutions).

  16. Isotope exchange of strontium and molybdate ions in strontium polymolybdates

    International Nuclear Information System (INIS)

    Atun, G.

    2002-01-01

    The heterogeneous isotopic exchange reactions in strontium polymolybdates of Sr 2+ and MoO 4 2- ions in the strontium nitrate and sodium molybdate solutions have been studied using 90 Sr and 99 Mo as tracers. Electrometric methods have been used to study the compositions of strontium molybdates obtained by adding strontium chloride to a progressively acidified solution of sodium molybdate. It has been found that the exchange fraction increases with increasing chain length of strontium polymolybdate. The exchange equilibrium constant (K ex ) has been calculated between 298 and 348 K as well as ΔG deg, ΔH deg and ΔS deg. The results indicate that Sr 2+ cations have a much higher affinity for exchangers than MoO 4 2- anions. By fitting the data to the Dubinin-Radushkevich (D-R) isotherm it has been shown that the exchange capacity (X m ) for both ions is affected by the ion adsorption process at low temperatures and by the ion exchange process at high temperatures. At high concentrations, the recrystallization process contributes to on the cation exchange but is ineffective on the anion exchange mechanism. (author)

  17. Application of ion exchangers

    International Nuclear Information System (INIS)

    Markhol, M.

    1985-01-01

    Existing methods of multi-element separation for radiochemical analysis are considered. The majority of existing methods is noted to be based on application of organic and inorganic ion exchangers. Distillation, coprecipitation, extraction as well as combination of the above methods are also used. Concrete flowsheets of multi-element separation are presented

  18. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  19. Advanced ion exchange resins for PWR condensate polishing

    International Nuclear Information System (INIS)

    Hoffman, B.; Tsuzuki, S.

    2002-01-01

    The severe chemical and mechanical requirements of a pressurized water reactor (PWR) condensate polishing plant (CPP) present a major challenge to the design of ion exchange resins. This paper describes the development and initial operating experience of improved cation and anion exchange resins that were specifically designed to meet PWR CPP needs. Although this paper focuses specifically on the ion exchange resins and their role in plant performance, it is also recognized and acknowledged that excellent mechanical design and operation of the CPP system are equally essential to obtaining good results. (authors)

  20. Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Klinger, G.S.; Bredt, P.R.

    1998-01-01

    Approximately 73 m 3 of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on solvent

  1. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs+ ions and their regeneration

    International Nuclear Information System (INIS)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun; Chung, Won Yang

    2008-01-01

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs + ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs + ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs + ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs + ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe 2+ ion in the reduction step could also be reduced by adding the K + ion

  2. Electrodialytic decontamination of spent ion exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.

    1982-01-01

    Development of a novel electrodialytic decontamination process for the selective removal of radioactive Cs from spent ion exchange resins containing large amounts of Li is described. The process involves passage of a dc electric current through a bed of the spent ion exchange resin in a specially designed electrodialytic cell. The radiocesium so removed from a volume of the spent resin is concentrated onto a much smaller volume of a Cs selective sorbent to achieve a significant radioactive waste volume reduction. Technical feasibility of the electrodialytic resin decontamination process has been demonstrated on a bench scale with a batch of simulated spent ion exchange resin and using potassium cobalt ferrocyanide as the Cs selective sorbent. A volume reduction factor between 10 and 17 has been estimated. The process appears to be economically attractive. Improvements in process economics can be expected from optimization of the process. Other possible applications of the EDRD process have been identified

  3. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    International Nuclear Information System (INIS)

    Walker, D.D.

    1999-01-01

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A ampersand 038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports

  4. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  5. Influence of column type and chromatographic conditions on the ion-exchange chromatography of immunoglobulins.

    Science.gov (United States)

    Yang, Y B; Harrison, K

    1996-08-30

    Immunoglobulins are often purified by affinity chromatography. However, this technique is costly, can result in poor resolution for subclasses (or is only group specific), and leads to possible leaching of contaminants into the purified products. Ion-exchange chromatography has shown great potential and has found an increased usage in the purification of immunoglobulins. The aim of this study is to further understand the separation mechanism with emphasis on the influence of column type and chromatographic conditions on the peak shape, selectivity and changes in the elution patterns. Included are strong cation-exchange, strong anion-exchange and weak anion-exchange columns. Five immunoglobulin G antibodies were used as test probes. Some sera and ascites were also used in the study. Among the chromatographic conditions examined were mobile phase pH, buffer type, buffer concentration, gradient rate, and column temperature. Significant differences in the chromatographic behavior (elution pattern, peak shape and selectivity) of the test samples are discussed in regard to the column type and the chromatographic conditions.

  6. Preliminary flowsheet: Ion exchange for separation of cesium from Hanford tank waste using resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    Penwell, D.L.

    1994-01-01

    This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs

  7. An investigation into the efficiency of ion-exchange membranes in simulated PWR coolants

    International Nuclear Information System (INIS)

    Clune, T.

    1980-11-01

    This report describes an investigation of the retention efficiency of cation-exchange membranes for magnesium, calcium and nickel ions in PWR-coolant type solutions containing 2 ppm lithium (as lithium hydroxide) and 1000 ppm boron (as boric acid). By analysis of the membranes themselves or of the effluent, the retention characteristics of the membranes in various experimental conditions have been examined. (author)

  8. Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems.

    Science.gov (United States)

    Harnisch, Falk; Warmbier, Robert; Schneider, Ralf; Schröder, Uwe

    2009-06-01

    An explicit numerical model for the charge balancing ion transfer across monopolar ion exchange membranes under conditions of bioelectrochemical systems is presented. Diffusion and migration equations have been solved according to the Nernst-Planck Equation and the resulting ion concentrations, pH values and the resistance values of the membrane for different conditions were computed. The modeling results underline the principle limitations of the application of ion exchange membranes in biological fuel cells and electrolyzers, caused by the inherent occurrence of a pH-gradient between anode and cathode compartment, and an increased ohmic membrane resistance at decreasing electrolyte concentrations. Finally, the physical and numerical limitations of the model are discussed.

  9. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    King, W

    2007-11-30

    . Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium

  10. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    International Nuclear Information System (INIS)

    King, W.

    2007-01-01

    . Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium

  11. Studies on inorganic ion-exchangers. Part I : application of polyantimonic acid for the polishing of uranium product of reprocessing stream

    International Nuclear Information System (INIS)

    Murthy, T.S.; Ananthakrishnan, M.; Mayan Kutty, P.C.; Mani, V.V.S.; Nadkarni, M.N.

    1977-01-01

    A systematic study has been initiated to investigate the feasibility of applying various inorganic exchangers to specific problems in nuclear fuel reprocessing industry and related spheres of activity. An investigation has been carried out to select a suitable exchanger for the polishing of tail-end uranium product of reprocessing stream free of residual plutonium activity. It includes determination of distribution ratios of uranium and plutonium on the exchangers like zirconium phosphate (ZrP), ammonium phosphomolybdate (AMP), ammonium phosphotungstate (APW), polyantimonic acid (PA), polyphosphoantimonic acid (PPA) and breakthrough capacities of plutonium on some of these exchangers. The inhibition studies of sodium on plutonium uptake on polyantimonic acid and the effective decontamination factors achieved using uranium tanker solution from the plant for recycling work have been described. These results indicated the usefulness of the polyantimonic acid exchanger for this purpose. (author)

  12. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2017-07-01

    Full Text Available Lead hydroxyl compounds are known as rutile flotation of the traditional activated component, but the optimum pH range for flotation is 2–3 using styryl phosphoric acid (SPA as collector, without lead hydroxyl compounds in slurry solution. In this study, Bi3+ ions as a novel activator was investigated. The results revealed that the presence of Bi3+ ions increased the surface potential, due to the specific adsorption of hydroxyl compounds, which greatly increases the adsorption capacity of SPA on the rutile surface. Bi3+ ions increased the activation sites through the form of hydroxyl species adsorbing on the rutile surface and occupying the steric position of the original Ca2+ ions. The proton substitution reaction occurred between the hydroxyl species of Bi3+ ions (Bi(OHn+(3−n and the hydroxylated rutile surface, producing the compounds of Ti-O-Bi2+. The micro-flotation tests results suggested that Bi3+ ions could improve the flotation recovery of rutile from 61% to 90%, and from 61% to 64% for Pb2+ ions.

  13. Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Syed A. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: sanabi@rediffmail.com; Shalla, Aabid H. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na{sup +} ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 deg. C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb{sup 2+} ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb{sup 2+} has been selectively removed from synthetic mixtures containing Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, Zn{sup 2+} and Cu{sup 2+}, Al{sup 3+}, Ni{sup 2+}, Fe{sup 3+}. In order to demonstrate practical utility of the material quantitative separation of the Cu{sup 2+} and Zn{sup 2+} in brass sample has been achieved on its columns.

  14. The use of fibrous ion exchangers in gold hydrometallurgy

    Science.gov (United States)

    Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.

    2002-10-01

    This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

  15. Thermal Analysis for Ion-Exchange Column System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  16. Uranium recovery and uranium remove from acid mine waters by ion exchange resin; Remocao e recuperacao de uranio de aguas acidas de mina com resina de troca ionica

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Marcos R.L. [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Coordenacao do Laborarorio; Fatibello Filho, Orlando [Sao Carlos Univ., SP (Brazil). Dept. de Quimica

    1999-11-01

    Ion exchange using resins is one of few processes capable of reducing contaminants in effluents to very low levels according to environmental legislation. In this study the process was used to remove and recovery uranium from acid mine waters at Pocos de Caldas-MG Uranium Mining and Milling Plant. The presence of pyrite in the waste rock piles, resulting acid drainage with several pollutants. Including uranium ranging from 6 to 14 mg/l, as sulfate complex, that can be removed by an anionic exchanger. Studies of uranium sorption without treatment, and with lime pretreatment of water to precipitate the iron and recovery uranium as commercial product, are presented. Uranium elution was done with NaCl solutions. Saline concentration and retention time were the parameters studied. the uranium decontaminations level in the effluents from acid mine water was 94%. (author) 10 refs., 6 tabs., 3 figs.

  17. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, M.E.; Miller, J.E. [Sandia National Lab., Albuquerque, NM (United States); Anthony, R.G. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  18. Study of the behaviour of inorganic ion exchangers in the treatment of medium active effluents. Part IV

    International Nuclear Information System (INIS)

    Beaven, G.W.; Cross, J.E.; Hooper, E.W.

    1988-01-01

    This report summarises some of the results from an ongoing experimental programme of work for the Department of the Environment on the potential use of inorganic ion exchangers for the treatment of medium active waste streams. Six different absorbers have been examined for their effectiveness in removing Am, Cs, Co, Sb, Ru, Eu, Ag, Zr, Nb, Zn and Mn ions from solutions varying from 4 M HNO 3 to 1 M NaNO 3 at pH 10. The ion exchangers tested were polyantimonic acid, hydrous titanium oxide, manganese dioxide, potassium copper hexacyanoferrate II, titanium phosphate and zirconium phosphate. The experimental results show that by suitable choice of absorber and operating conditions, good decontamination from all the radionuclides examined can be achieved. (author)

  19. Triple-membrane reduces need for ion exchange regeneration

    International Nuclear Information System (INIS)

    Valcour, H.

    1989-01-01

    Triple-membrane water treatment systems are comprised of ultrafiltration units for pretreatment, electrodialysis reversal primary demineralizers, reverse osmosis secondary demineralizers, portable ion exchange unit polishing demineralizers, and ultraviolet sterilizers. The triple-membrane process is designed to provide an unprecedented degree of pretreatment to maximize efficiency, durability and reliability of the reverse osmosis, whilst reducing the required regeneration frequency of the ion exchange demineralizer by one to two orders of magnitude. (author)

  20. Commercial Ion Exchange Resin Vitrification Studies

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A

    2002-01-01

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces

  1. Improvements in and relating to ion-exchange

    International Nuclear Information System (INIS)

    Heal, H.G.

    1975-01-01

    It has been found that the relatively expensive ion exchange materials normally used can be extensively replaced by relatively inexpensive material comprised of long-weathered basalt. This has been found to effect rapid and efficient ion exchange with a capacity comparable with, and in some cases greater than, the usual artificial materials. The basalt should contain at least 50% by weight of particles of size below 3cm mesh. Olivine basalt has proved particularly effective. Examples given include removal of Cu and Co, application to water softening, and to the removal of 137 Cs from milk. Other applications mentioned include removal of Ca, 90 Sr, Pb, Zn, Hg, Ni, and Cr, extraction of metal ions from seawater, purification of industrial effluents, etc. (U.K.)

  2. Development of Electrically Switched Ion Exchange Process for Selective Ion Separations

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Sukamto, Johanes H.; Orth, Rick J.; Lilga, Michael A.; Hallen, Richard T.

    1999-01-01

    The electrically switched ion exchange (ESIX) process, being developed at Pacific Northwest National Laboratory, provides an alternative separation method to selectively remove ions from process and waste streams. In the ESIX process, in which an electroactive ion exchange film is deposited onto a high surface area electrode, uptake and elution are controlled directly by modulating the electrochemical potential of the film. This paper addresses engineering issues necessary to fully develop ESIX for specific industrial alkali cation separation challenges. The cycling and chemical stability and alkali cation selectivity of nickel hexacyanoferrate (NiHCF) electroactive films were investigated. The selectivity of NiHCF was determined using cyclic voltammetry and a quartz crystal microbalance to quantify ion uptake in the film. Separation factors indicated a high selectivity for cesium and a moderate selectivity for potassium in high sodium content solutions. A NiHCF film with improved redox cycling and chemical stability in a simulated pulp mill process stream, a targeted application for ESIX, was also prepared and tested

  3. Plant start-up operation of treatment of liquid radioactive waste containing uranium in sulfuric acid by means of ion exchange

    International Nuclear Information System (INIS)

    Bustamante Escobedo, Mauricio

    2003-01-01

    The hydrometallurgy of uranium developed by CCHEN in the '80s generated different types of liquid radioactive waste: organic and aqueous, which have to be treated to extract the uranium, obtaining uranium concentrate less than 3 [ppm], in order to comply with the current regulations and to be able to be discharged as industrial waste over to specialized companies. The radioactive wastes were treated using strongly basic ion exchange resins to obtain a lower volume of concentrated uranium in solid phase. Batch processes were carried out with different pH values (1.4-1.6-1.7-1-8 and 2.0) and different residence times (5-10-15-240 [min]), to define the optimum processing conditions. Three resins were used: IONAC, AFP-329, IONAC A-641, DOWEX 11. The load capacities for each one were: 2[g/l], 1.85 [g/l] and 2.1 [g/l], respectively. Dowex 11 obtained the best uranium load results. Because of the nature of the treated solutions, the pH variation with sodium hydroxide generated precipitation and then crystallization of the existing pieces. Ninety-five percent of the resin's maximum load was attained after about 20 [min] of residence time. Continuous tests were carried out at the solution's original pH to verify the results obtained in the batch stage. This ion exchange process was compared with the chemical precipitation, with lime and sodium hydroxide as well as evaporation and in both processes the volumes of solid that were generated were significantly greater. The ion exchange plant worked with two serially connected columns, using 10 [l] of Dowex 11 resin in each one, with a residence time of 20 [min] per column. A total of 8 [m 3 ] of solution, obtaining an effluent with a uranium concentrate of less than 3 [ppm], using 140 [l] of resin, which generated an average load of 3 [g/l] of uranium (au)

  4. Ion-exchange properties of microporous tungstates: novel adsorbents for nuclear waste management applications

    International Nuclear Information System (INIS)

    Griffith, C.S.; Luca, V.; Eddowes, R.C.; Keegan, E.A.; Scales, N.

    2003-01-01

    A hydrothermally prepared tungsten oxide-based phase, ATS-1 (ANSTO Tungstate Sorbent), of nominal composition, Na 0.3 Mo 0.1 W 0.9O3 .χH 2 O, has been shown to display promising selectivity for both Cs + and Sr 2+ cations from acidic simulant, indicative of the Intermediate Level Liquid Waste (ILLW) produced from 99 Mo radioisotope production at the ANSTO site. The development of an inorganic ion-exchanger that displays such selectivity for both Cs + and Sr 2+ in acidic solutions has previously eluded researchers in the field of inorganic ion-exchangers. The ATS-1 adsorbent also displays exquisite selectivity for lead (and polonium) in low to high acidity solutions, and as such is being further investigated as a method to reduce the radiological hazard from 210 Pb and 210 Po during the processing of uranium ore bodies. The adsorption of Cs + , Sr 2+ and Pb 2+ cations by ATS-1 has been extensively investigated with respect to the kinetics of adsorption, capacity and the effect of competing cations viz. Na + , K + . The ATS-1 adsorbent has also been successfully granulated with an inert, organic matrix, which has consequently allowed the study of cation adsorption using more application-based, column separations. The results of these investigations suggest that these materials have potential application in several nuclear waste management issues in Australia at the present

  5. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    Science.gov (United States)

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  6. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    Science.gov (United States)

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  7. Treatment of low-activity-level process wastewaters by Continuous Countercurrent Ion Exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    This paper discusses application of the Thomas model for predicting breakthrough curves from ion exchange column tests, methods for scale-up of experimental small-scaled ion exchange columns to industrial scale columns, and methods for predicting effluent compositions in a continuous countercurrent ion exchange system. 20 refs., 6 figs., 2 tabs

  8. A Simple Apparatus for Fast Ion Exchange Separations

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1964-09-15

    An apparatus suitable for very fast ion exchange group separations in radiochemistry has been elaborated. The apparatus which consists of a system of glass tubes with pistons driven by the same force, allows the exact adjustment of influent solutions to a long series of ion-exchange columns. The practical application of the apparatus to the simultaneous separation of six groups of trace elements in the neutron activation analysis of biological material is described.

  9. A Simple Apparatus for Fast Ion Exchange Separations

    International Nuclear Information System (INIS)

    Samsahl, K.

    1964-09-01

    An apparatus suitable for very fast ion exchange group separations in radiochemistry has been elaborated. The apparatus which consists of a system of glass tubes with pistons driven by the same force, allows the exact adjustment of influent solutions to a long series of ion-exchange columns. The practical application of the apparatus to the simultaneous separation of six groups of trace elements in the neutron activation analysis of biological material is described

  10. The influence of retention on the plate height in ion-exchange chromatography

    DEFF Research Database (Denmark)

    Hansen, Ernst; Mollerup, Jørgen

    2004-01-01

    The plate heights for the amino acid tyrosine (anion exchange) and the polypeptide aprotinin (cation exchange) were determined on a porous media (Resource 15) and a get filled media (HyperD 20) at salt concentrations ranging from weak to strong retention. At a constant velocity, measurements showed....... In this article, the rate of mass transfer in the particles is described by three different rate mechanisms, pore diffusion, solid diffusion, and parallel diffusion. The van Deemter equation was used to model the data to determine the mass-transfer properties. The development of the plate height with increasing...... retention revealed a characteristic behavior for each rate mechanism. In the pore diffusion model, the plate height increased toward a constant value at strong retention, while the plate height in the solid diffusion model decreased, approaching a constant value at strong retention. In the parallel...

  11. A comparison of prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill: a cohort study.

    Science.gov (United States)

    Ho, Kwok M; Lan, Norris S H; Williams, Teresa A; Harahsheh, Yusra; Chapman, Andrew R; Dobb, Geoffrey J; Magder, Sheldon

    2016-01-01

    This cohort study compared the prognostic significance of strong ion gap (SIG) with other acid-base markers in the critically ill. The relationships between SIG, lactate, anion gap (AG), anion gap albumin-corrected (AG-corrected), base excess or strong ion difference-effective (SIDe), all obtained within the first hour of intensive care unit (ICU) admission, and the hospital mortality of 6878 patients were analysed. The prognostic significance of each acid-base marker, both alone and in combination with the Admission Mortality Prediction Model (MPM0 III) predicted mortality, were assessed by the area under the receiver operating characteristic curve (AUROC). Of the 6878 patients included in the study, 924 patients (13.4 %) died after ICU admission. Except for plasma chloride concentrations, all acid-base markers were significantly different between the survivors and non-survivors. SIG (with lactate: AUROC 0.631, confidence interval [CI] 0.611-0.652; without lactate: AUROC 0.521, 95 % CI 0.500-0.542) only had a modest ability to predict hospital mortality, and this was no better than using lactate concentration alone (AUROC 0.701, 95 % 0.682-0.721). Adding AG-corrected or SIG to a combination of lactate and MPM0 III predicted risks also did not substantially improve the latter's ability to differentiate between survivors and non-survivors. Arterial lactate concentrations explained about 11 % of the variability in the observed mortality, and it was more important than SIG (0.6 %) and SIDe (0.9 %) in predicting hospital mortality after adjusting for MPM0 III predicted risks. Lactate remained as the strongest predictor for mortality in a sensitivity multivariate analysis, allowing for non-linearity of all acid-base markers. The prognostic significance of SIG was modest and inferior to arterial lactate concentration for the critically ill. Lactate concentration should always be considered regardless whether physiological, base excess or physical-chemical approach

  12. Ion exchange equilibrium for some uni-univalent and uni-divalent ...

    African Journals Online (AJOL)

    The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well ...

  13. Electrodialysis-ion exchange for the separation of dissolved salts

    International Nuclear Information System (INIS)

    Baroch, C.J.; Grant, P.J.

    1995-01-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species

  14. studies on the use of organic and inorganic ion exchangers for separation of indium(III) from cadmium(II) using analytical methods

    International Nuclear Information System (INIS)

    Mohamed, A.A.E.

    2011-01-01

    Organic and inorganic ion exchangers have many applications not only in the industrial, environmental and the nuclear fields but also in the separation of metal ions. This may be returned to its high measured capacity, high selectivity for some metal ions, low solubility, high chemical radiation stability and easy to use.Indium and cadmium are produced from cyclotron target where the solvent extraction represents an ordinary method for separation of indium and cadmium from its target. In the present work, More than chromatographic columns were successfully used for the separation and recovery of indium(III) and cadmium(II) ions from di-component system in aqueous solution using organic and inorganic ion exchangers. The work was carried out in three main parts;1- In the first part, the commercial resin (Dowex50w-x8) was used for the separation of indium from cadmium. The effect of pH, the weight of resin, and equilibrium time on the sorption process of both metal ions were determined. It was found that the adsorption percentage was more than 99% at pH 4 (as optimum pH value) using batch experiment. The results show that indium was first extracted while cadmium is slightly extracted at this pH value. The recovery of indium and cadmium is about 98% using hydrochloric acid as best eluent. The ion exchange/complexing properties of Dowex50w-x8 resin containing various substituted groups towards indium and cadmium cations were investigated.2- In the second part, Zn(II)polymethacrylates, and poly (acrylamide-acrylic acid), as synthetic organic ion exchangers were prepared by gamma irradiation polymerization technique of the corresponding monomer at 30 kGy. The obtained organic resins were mixed with indium ions to determine its capacity in aqueous solutions using batch experiment.

  15. Study of Aging ion exchange membranes used in separation processes

    International Nuclear Information System (INIS)

    Bellakhal, N.; Ghalloussi, R.; Dammak, L.

    2009-01-01

    Presently, the most important application of ion exchange membranes (IEM) is the electrodialysis. This technique consists of a membrane separation using a series of anion exchange membranes alternately and cations, often used for the desalination of brackish water. These membranes are confronted with problems of aging. Indeed, the more they are used more physical and chemical properties will change. A comparative study of the behavior of both EMI and new but the same treatment is carried out by measuring a magnitude transfer characteristic: ion permeability. Ionic permeability is a physical quantity can have an idea about the selectivity of the membrane towards the charged species and the p orosity o f the membrane. It is a transport of ions (cations + anions) through the membrane. Thus, determining the ion permeability is to determine the diffusion flux of a strong electrolyte through a membrane separating two compartments (one containing electrolytes and other water initially ultrapure who will gradually electrolyte through the membrane). The measurement technique used is that by conductimetric detection because of the ease of its implementation and its accuracy. Thus, the variation of the concentration of the electrolyte is continuously monitored by measuring the conductivity of the solution diluted with time. The curves s = f (t) MEA and MEC new and used varying concentration of the electrolyte membranes show that let in less waste of strong electrolyte (NaCl and HCl) than new ones. This can be explained by: - The functional sites are combined with polyvalent ions present even in trace amounts in the solution process and become inactive. The membrane loses its hydrophilic character and turns into a film almost hydrophobic. - The chemical attacks and electrodialysis operations have degraded and eliminated much of the fixed sites leading to the same effects on the hydrophilic membrane. - These two assumptions have been reinforced by the extent of exchange

  16. Development Of An Approach To Modeling Loading And Elution Of Spherical Resorcinol Formaldehyde Ion-Exchange Resin

    International Nuclear Information System (INIS)

    Aleman, S.; Hamm, L.; Smith, F.

    2011-01-01

    ionogenic groups that make up sRF. Recent literature reviews and scoping titration tests strongly indicate that sRF is a polyfunctional cation exchange resin with at least three dominant types of ring groups playing a role in its isotherm behavior over the wide pH range of operations. Also three types of fixed ionogenic acid groups are present: sulfonic (SO 3 H - ) groups; carboxylic (COOH - ) groups, and resorcylic (OH - ) groups. It is this premise that we are working under in the development of a robust isotherm model for sRF over its entire planned pH operating range. The application of prototypic isotherms for modeling ion-exchange column behavior is demonstrated in Section 3 of this report. This preliminary work served to focus the development effort on the use of a mass-action based isotherm. In Section 4 of this report, the foundational material required to develop a robust isotherm model for sRF is provided. The paths taken, and choices made, are given for the reader to better understand our current status with respect to this goal and to highlight our most recent understanding of sRF exchange equilibria. Our ultimate goal is to update the CERMOD code (Aleman and Hamm, 2007) with a robust isotherm model for sRF that spans the entire pH and concentration ranges of planned operations. The isotherm model will then be used in the VERSE-LC code to model an entire ion-exchange cycle.

  17. DEVELOPMENT OF AN APPROACH TO MODELING LOADING AND ELUTION OF SPHERICAL RESORCINOL FORMALDEHYDE ION-EXCHANGE RESIN

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.; Hamm, L.; Smith, F.

    2011-10-03

    fixed ionogenic groups that make up sRF. Recent literature reviews and scoping titration tests strongly indicate that sRF is a polyfunctional cation exchange resin with at least three dominant types of ring groups playing a role in its isotherm behavior over the wide pH range of operations. Also three types of fixed ionogenic acid groups are present: sulfonic (SO{sub 3}H{sup -}) groups; carboxylic (COOH{sup -}) groups, and resorcylic (OH{sup -}) groups. It is this premise that we are working under in the development of a robust isotherm model for sRF over its entire planned pH operating range. The application of prototypic isotherms for modeling ion-exchange column behavior is demonstrated in Section 3 of this report. This preliminary work served to focus the development effort on the use of a mass-action based isotherm. In Section 4 of this report, the foundational material required to develop a robust isotherm model for sRF is provided. The paths taken, and choices made, are given for the reader to better understand our current status with respect to this goal and to highlight our most recent understanding of sRF exchange equilibria. Our ultimate goal is to update the CERMOD code (Aleman and Hamm, 2007) with a robust isotherm model for sRF that spans the entire pH and concentration ranges of planned operations. The isotherm model will then be used in the VERSE-LC code to model an entire ion-exchange cycle.

  18. Effect of complexing reagents on the ionization constant of boric acid and its relation to isotopic exchange separation factor

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1991-01-01

    The effect of change in concentration of complexing reagents having two or more hydroxyl groups, viz., ethylene glycol, propylene glycol, dextrose and mannitol on the ionization constant of boric acid has been studied by pH-metric titration method. The effect of increase in ionization constant of boric acid on isotopic exchange separation factor for the separation of isotopes of boron by ion exchange chromatography has been studied by the batch method. (author). 9 refs

  19. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs{sup +} ions and their regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hui Jun; Mooon, Jei Kwon; Jung, Chong Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chung, Won Yang [Kangwon University, Chuncheon (Korea, Republic of)

    2008-10-15

    Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake Cs{sup +} ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the Cs{sup +} ion of the surrogate soil decontamination solution, and resin- KCoFC showed the best Cs{sup +} ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the Cs{sup +} ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the Fe{sup 2+} ion in the reduction step could also be reduced by adding the K{sup +} ion.

  20. Modified ion exchange resins - synthesis and properties. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Doescher, F.; Klein, J.; Pohl, F.; Widdecke, H.

    1982-01-22

    Sulfomethylated resins are prepared by polymer analogous reactions, starting from macroporous poly(styrene-co-divinylbenzene) matrices. Different reaction paths are discussed and used in the synthesis. Sulfomethylation can be achieved by reaction of a chloromethylated resin with dimethyl sulfide and sodium sulfonate or alternatively by oxidation of polymer-bound thiol groups. Both methods give high conversions as shown by IR spectra and titration of the sulfonic acid groups. Poly(1-(4-hydroxysulfomethylphenyl)ethylene) (3) is obtained by reaction of poly(1-(4-hydroxyphenyl)ethylene) (2) resin with formaldehyde/sodium sulfonate. The thermal stability, catalytic activity, and ion exchange equilibria of the sulfomethylated resin are investigated.

  1. Isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide and aqueous solutions

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamazaki, Hiromichi; Itami, Akira

    1989-01-01

    The isotopic exchange rate of cobalt ions between hydrous tin(IV) oxide ion exchanger and aqueous solutions was radiochemically measured to obtain fundamental data which are useful for elucidating the ion-exchange kinetics of the material for the transition metal elements. The rate can be understood by considering that the cobalt ions were present in the exchanger as three kinds of species: (A 1 ) Free ions which can diffuse in the exchanger particles, (A 2 ) Weakly bound ions to the exchange sites which exchange rapidly with A 1 , and (B) Covalently fixed ions to the exchange sites which exchange very slowly with A 1 . At low fraction of B, the rate is controlled by the diffusion of A 1 with the effective diffusion coefficient, D eff , the values of which depend on the concentration ratios of A 2 to A 1 . When B predominates over the A species, the concentration ratios of B to A 1 affect greatly D eff . The values of D eff and their activation energy(20 kJ/mol) were also estimated

  2. Ion exchange of strontium on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Lazic, S.; Vukovic, Z.

    1991-01-01

    Adsorption of strontium ions on synthetic hydroxyapatite was examined using both batch and column methods. The apatite was prepared from aqueous solutions and characterized by standard analytical methods. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. The experimental data for sorption of strontium can be very well fitted with Langmuir's adsorption isotherm. It was found that sorption occurs by an ion exchange reaction between strontium ions in solution and calcium ions in apatite. (author) 14 refs.; 5 figs.; 1 tab

  3. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    EI-Naggar, I.M.; Abou-Mesalam, M.M.; El-Shorbagy, M.M.; Shady, S.A.

    2006-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium eerie nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic system's, respectively. The chemical composition of both chromium and cerium titanates was determined by X-ray fluorescence technique and based on the data obtained with other different techniques. A molecular formula for chromium and cerium titanates as Cr 2 Ti 12 O 27 . 13H 2 O and Ce 2 Ti 3 O 10 . 7.46H 2 O, respectively, was proposed. Thermal stabilities of both ion exchangers were investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared with the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were also investigated

  4. Thermal and chemical stabilities of some synthesized inorganic ion exchange materials

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Abou-Mesalam, M. M.; El-Shorbagy, M.M.; Shady, S.A.

    2005-01-01

    Chromium and cerium titanate as inorganic ion exchange materials were synthesized by the reaction of potassium chromate or ammonium ceric nitrate with titanium tetrachloride with molar ratio equal unity. The crystal system of both chromium and cerium titanates were determined and set to be monoclinic and orthorhombic systems, respectively. The chemical composition of both chromium and cerium titanates were determined by X-ray fluorescence technique and based on the data obtained with other different techniques. We can proposed molecular formula for chromium and cerium titanates as Cr 2 Ti 1 2O27. 13H 2 O and Ce 2 ThO10. 7.46 H 2 O, respectively. Thermal stability of both ion exchangers was investigated at different heating temperatures. Also the stability of chromium and cerium titanates for chemical attack was studied in different media. The data obtained showed high thermal and chemical stabilities of chromium and cerium titanate ion exchangers compared to the same group of ion exchange materials. The ion exchange capacities of chromium and cerium titanates at different heating temperature were investigated

  5. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    Science.gov (United States)

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Moessbauer study of proton-exchanged LiNbO3:Fe

    International Nuclear Information System (INIS)

    Engelmann, H.; Andler, G.; Dezsi, I.

    1990-01-01

    Topotactic proton exchange (Li against H) can be achieved by treating LiBnO 3 with appropriate acids. In order to investigate the effect of proton exchange on Fe-impurities we studied LiNbO 3 :Fe powder material treated in sulphuric acid and LiNbO 3 :Fe single crystals treated in benzoic acid by Moessbauer spectroscopy. During the topotactic ion exchange only the Li-ions are exchanged for protons, whereas the Fe-impurities are retained in the material. (orig.)

  7. Ion exchange in ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Matthews, D.P.; Rees, L.V.C.

    1986-01-01

    The ion exchange properties of Na-ZSM5 have been studied using a number of univalent and divalent cations at 25degC and 65degC. All the univalent cations studied achieved 100 per cent exchange. The thermodynamic affinity sequence Cs > Rb=NH 4 =H 3 O>K>Na>Li was found at both temperatures for a sample with Si/Al=39. Standard enthalpies of exchange ΔH o were calculated using the van't' Hoff isochore and standard entropies of exchange were then calculated from ΔH o and ΔG o . Multivalent cations were unable to achieve 100 per cent exchange. The maximum exchange was found to increase through the series Ca 2+ cations ( 57 Fe enriched) on dehydration and rehydration following sorption and desorption of ethanol. At least 3 sites for Fe 2+ were observed in the dehydrated zeolite. (author)

  8. Advanced integrated solvent extraction and ion exchange systems

    International Nuclear Information System (INIS)

    Horwitz, P.

    1996-01-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products 90 Sr, 99 Tc, and 137 Cs from acidic high-level liquid waste and that sorb and recover 90 Sr, 99 Tc, and 137 Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste

  9. Ion exchange studies with ferrocyanide molybdate and zirconium phosphate in mixed solvent media. Part 1: Synthesis of the exchangers

    International Nuclear Information System (INIS)

    Ramaswamy, M.; Sunder Rajan, N.S.

    1979-01-01

    The present research forms the first part of the series on the investigation of the ion exchange behaviour of ferrocyanide molybdate(FeMo) and zirconium phosphate(ZrP) in water-alcohol and water-dioxane media. Since the above exchangers are not available indigenously, they were synthesized following published methods. That the reported methods of synthesis yield products with reproducible characteristics, were checked. pH titration of these two preparations in aqueous media showed that FeMo is a stronger acid than ZrP, the former, moreover, in its Cs + and Na + forms commence dissolving at pH values close to 5 and 2 respectively, and are completely dissolved at pH values 7.5 and 2.85 respectively. Titration curves with ZrP further indicated that as the pH increases, there occurs a reversal in the order of arrangement of Na + and Cs + curves, which reversal is attributed to a corresponding reversal of selectivity. Finally, both the chemical analysis and pH titration of FeMo confirm the existence of 4 replaceable H + ions corresponding to H 4 Fe(CN) 6 , a constituent of ferrocyanide molybdate, while those of ZrP are consistent with the empirical formula Zr(HPO 4 ) 2 .4.5 H 2 O, having two replaceable H + ions. (auth.)

  10. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  11. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  12. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    International Nuclear Information System (INIS)

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A ampersand M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV reg-sign IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV reg-sign IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies

  13. Quantitative accuracy of the simplified strong ion equation to predict serum pH in dogs.

    Science.gov (United States)

    Cave, N J; Koo, S T

    2015-01-01

    Electrochemical approach to the assessment of acid-base states should provide a better mechanistic explanation of the metabolic component than methods that consider only pH and carbon dioxide. Simplified strong ion equation (SSIE), using published dog-specific values, would predict the measured serum pH of diseased dogs. Ten dogs, hospitalized for various reasons. Prospective study of a convenience sample of a consecutive series of dogs admitted to the Massey University Veterinary Teaching Hospital (MUVTH), from which serum biochemistry and blood gas analyses were performed at the same time. Serum pH was calculated (Hcal+) using the SSIE, and published values for the concentration and dissociation constant for the nonvolatile weak acids (Atot and Ka ), and subsequently Hcal+ was compared with the dog's actual pH (Hmeasured+). To determine the source of discordance between Hcal+ and Hmeasured+, the calculations were repeated using a series of substituted values for Atot and Ka . The Hcal+ did not approximate the Hmeasured+ for any dog (P = 0.499, r(2) = 0.068), and was consistently more basic. Substituted values Atot and Ka did not significantly improve the accuracy (r(2) = 0.169 to <0.001). Substituting the effective SID (Atot-[HCO3-]) produced a strong association between Hcal+ and Hmeasured+ (r(2) = 0.977). Using the simplified strong ion equation and the published values for Atot and Ka does not appear to provide a quantitative explanation for the acid-base status of dogs. Efficacy of substituting the effective SID in the simplified strong ion equation suggests the error lies in calculating the SID. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.

    1997-09-01

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 10 4 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  15. Scandium sorption by immobilized microdispersed forms of phosporus-containing ion exchangers

    International Nuclear Information System (INIS)

    Sokolova, Yu.V.; Kurdyumov, G.M.; Smirnov, A.V.; Mezhirov, M.S.

    1991-01-01

    The possibility to improve considerably kinetics of scandium sorption by phosphate ion exchangers, immobilized into polyacrylonitrile (PAN) fibers, as compared with granular samples of ion exchangers, was shown. The influence of dispersion degree of immobilized ionite particles on sorption rate was studied. It is ascertained that the ionite grinding to the particle size ≤ 52 μm is sufficient for the rate increase by 1-1.5 orders. A lower swelling of the immobilized ion exchanger is its additional advantage as compared with granular form

  16. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  17. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  18. Method of solidifying radioactive ion exchange resin

    International Nuclear Information System (INIS)

    Minami, Yuji; Tomita, Toshihide

    1989-01-01

    Spent anion exchange resin formed in nuclear power plants, etc. generally catch only a portion of anions in view of the ion exchange resins capacity and most of the anions are sent while possessing activities to radioactive waste processing systems. Then, the anion exchange resins increase the specific gravity by the capture of the anions. Accordingly, anions are caused to be captured on the anion exchange resin wastes such that the specific gravity of the anion exchange resin wastes is greater than that of the thermosetting resins to be mixed. This enables satisfactory mixing with the thermosetting resins and, in addition, enables to form integral solidification products in which anion exchange resins and cation exchange resins are not locallized separately and which are homogenous and free from cracks. (T.M.)

  19. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    International Nuclear Information System (INIS)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-01-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization of the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used

  20. Isotherms of ion exchange on titanates of alkaline metals

    International Nuclear Information System (INIS)

    Fillina, L.P.; Belinskaya, F.A.

    1986-01-01

    Present article is devoted to isotherms of ion exchange on titanates of alkaline metals. Therefore, finely dispersed hydrated titanates of alkaline metals (lithium, sodium, potassium) with ion exchange properties are obtained by means of alkaline hydrolysis of titanium chloride at high ph rates. Sorption of cations from salts solution of Li 2 SO 4 , NaNO 3 , Ca(NO 3 ) 2 , AgNO 3 by titanates is studied.

  1. A structural study of nepheline hydrate I, an inorganic ion exchanger

    International Nuclear Information System (INIS)

    Hansen, S.

    1985-01-01

    The crystal structures of nepheline hydrates I, Na 3 Al 3 Si 3 O 12 x 2H 2 O, and three compounds produced by ion exchange with aqueous KCl, RbCl and CsCl at 80 degrees C, have been studied using X-ray diffraction methods. This synthetic silicate has a tetrahedral framework with a two-dimensional pore system consisting of perpendicular 8-ring and 6-ring channels. The long-range ordering of Si and Al into adjacent tetrahedra is well developed. Some aspects of the topology, geometry and bonding of the tetrahedral frame are discussed. Related framework types are derived by unit cell twinning of the idealized cristobalite structure. A limit in the ion exchange is observed when about 1/3 of the Na + ions have been replaced. This behaviour is explained by the restricted volume of two Na sites situated in the 6-ring channel. The readily exchangeable ions and water molecules in the 8-ring channels an arrangement which gradually changes when the size of the alkali metal-ion increases. Most K + -exchanged crystals have a unit cell which is determined by the translational symmetry of the framework, while the original Na form has a two-fold superstructure and the Rb + -exchanged form has a five-fold superstructure. Caesium-ion-exchanged crystals have incommensurate structures. The occurrence of superstructures is related to long-range ordering of the species in the 8-ring channels. (author)

  2. Solidification of ion-exchange resins by hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Kaneko, M.

    1993-01-01

    The solidification reaction which easily occurs while continuously keeping the mixture of cation and anion exchange resins compressed under hydrothermal conditions has been demonstrated. Dehydration was considered to occur between sulphonic acid (-SO 3 H) from the cation exchange resin and quaternary ammonium [-CH 2 -N(CH 3 ) 3 OH] from anion-exchange resin-on terminal groups. The cation-and anion-exchange resins were mixed in a 1:1 weight ratio, put in a hot-pressing autoclave and compressed between pistons from the top and bottom at 600 kg cm -2 pressure. The material was continuously compressed during hydrothermal treatment at 200 kg cm -2 by a hydraulic jack and heated to a desired temperature with an induction heater. This system could be used for rapid temperature increasing up to 30 o c min -1 . The pressure and temperature were kept constant for 10 min. The autoclave was cooled to room temperature after the hydrothermal treatment. After the specimen was taken out, the ion-exchange radical reactions were estimated and the product structures were examined. The cation- and anion-exchange resin mixture was solidified. The resultant solidified body at a 300 o C reaction condition for 10 min had a 1.0 g cm -3 density and 700 kg cm -2 compressive strength, and the weight loss did not change in distilled water for 2 weeks. On the other hand, a solidification reaction did not occur at below 250 o C when only the cation or anion was solidified, but they were decomposed. These results suggest that a mixture of cation- and anion-exchange resins causes a solidification reaction under hydrothermal hot-pressing conditions at 300 o C. (author)

  3. The selectivity of zirconium phosphate for caesium in electrochemical ion exchange

    International Nuclear Information System (INIS)

    Lain, M.J.

    1988-11-01

    The properties of amorphous zirconium phosphate are investigated as an inorganic ion exchanger for use in liquid waste treatment by electrochemical ion exchange. Experiments to determine and increase the selectivity for caesium exchange over sodium are discussed, including various pulsed waveforms and studies with rotating membranes. Automation of a sampling system with pH and atomic absorption measurements is described. (author)

  4. Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1963-01-15

    As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined.

  5. Electrospun Zeolite/Cellulose Acetate Fibers for Ion Exchange of Pb2+

    Directory of Open Access Journals (Sweden)

    Daniel N. Tran

    2014-12-01

    Full Text Available The ion exchange capability of electrospun cellulose acetate (CA fibers containing zeolite A nanoparticles is reported. Solid and porous CA fibers were used to make a zeolite-embedded filter paper, which was then used to ion exchange Na+ with Cu2+ and Pb2+. The composite Linde Type A (LTA zeolite CA fibers exchanged 0.39 mmol/g more Pb2+ than LTA nanoparticles in the solid CA fibers. These fibers could provide a simple and effective method for heavy metal ion removal in water.

  6. Rupture loop annex ion exchange RLAIX vault deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  7. Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: Pseudo-homogeneous model

    Directory of Open Access Journals (Sweden)

    Janković Milovan

    2017-01-01

    Full Text Available A kinetic model was proposed for the epoxidation of vegetable oils with peracetic acid formed in situ from acetic acid and hydrogen peroxide in the presence of an acidic ion exchange resin as a catalyst. The model is pseudo-homogeneous with respect to the catalyst. Besides the main reactions of peracetic acid and epoxy ring formation, the model takes into account the side reaction of epoxy ring opening with acetic acid. The partitioning of acetic acid and peracetic acid between the aqueous and organic phases and the change in the phases’ volumes during the process were considered. The temperature dependency of the apparent reaction rate coefficients is described by a reparameterized Arrhenius equation. The constants in the proposed model were estimated by fitting the experimental data obtained for the epoxidations of soybean oil conducted under defined reaction conditions. The highest epoxy yield of 87.73% was obtained at 338 K when the mole ratio of oil unsaturation:acetic acid:hydrogen peroxide was 1:0.5:1.35 and when the amount of the catalyst Amberlite IR-120H was 4.04 wt.% of oil. Compared to the other reported pseudo-homogeneous models, the model proposed in this study better correlates the change of double bond and epoxy group contents during the epoxidation process. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45022

  8. Metal extraction by alkyl substituted diphosphonic acids. Part 1. P,P'-Di(2-ethylhexyl) methanediphosphonic acid

    International Nuclear Information System (INIS)

    Chiarizia, R.; Horwitz, E.P.; Rickert, P.G.; Herlinger, A.W.

    1996-01-01

    Two novel extractants, p,p'-di(2-ethylhexyl) methanediphosphonic acid (H 2 DEH[MDP]) and p,p'-dioctyl methanediphosphonic acid (H 2 DO[MDP]) have been synthesized at high purity and yield. H 2 DEH[MDP] was selected for metal extraction studies because of its better physical properties. An investigation of the extraction of alkaline earth cations, Fe(111) and representative tri-, tetra- and hexavalent actinide ions from nitric acid solutions into o-xylene solutions of H 2 DEH[MDP] at different concentrations was performed. With a few exceptions, the acid dependencies of the extraction of the above metal species strongly resembles those measured in the uptake of the same metals by the chelating ion exchange resin Diphonix R , which contains gem-diphosphonic acid groups chemically attached to a polymeric matrix. The almost lack of acid dependency observed with Fe(III) and tetra- and hexavalent actinides indicates that these ions are chelated by H 2 DEH[MDP] mostly through the P=O groups of the extractant. With Fe(111) and the actinides, variable slopes of the extractant dependencies were measured, their values being strongly dependent on the acidity of the aqueous phase. H 2 DEH[MDP] possesses an extraordinary affinity for actinides and Fe(111). 26 refs., 7 figs

  9. Hydrogen/deuterium exchange of multiply-protonated cytochrome c ions

    International Nuclear Information System (INIS)

    Wood, T.D.; Guan, Ziqiang; O'Connor, P.B.

    1995-01-01

    Low resolution measurements show gaseous multiply-protonated cytochrome c ions undergo hydrogen/deuterium (H/D) exchange with pseudo first-order kinetics at three distinct exchange levels, suggesting the co-existence of gaseous protein conformations. Although exchange levels first increase with increasing charge values, they decrease at the highest charge values, consistent with solution-phase behavior of cytochrome c, where the native structure unfolds with decreasing pH until folding into a compact A-state at lowest pH. High resolution measurements indicate the presence of at least six H/D exchange levels. Infrared (IR) laser heating and fast collisions via quadrupolar excitation (QE) increase H/D exchange levels (unfolding) while charge-stripping ions to lower charge values can increase or decrease H/D exchange levels (unfolding or folding). Wolynes has suggested studying proteins in vacuo could play an important role in delineating the contributions various forces play in the protein folding process, provided appropriate comparisons can be made between gas-phase and solution-phase structures

  10. Extraction of Co ions from ion-exchange resin by supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Ju, Min Su; Koh, Moon Sung; Yang, Sung Woo; Park, Kwang Heon; Kim, Hak Won; Kim, Hong Doo

    2005-01-01

    There are a number of liquid treatment processes for eliminating radioactive ionic contaminants in nuclear facilities. One of the most common treatment methods for aqueous streams is the use of ion exchange, which is a well-developed technique that has been employed for many years in the nuclear industry. More specifically speaking, systems that ion exchange method is applied to in nuclear power plants are liquid radioactive waste treatment system, chemical and volume control system, steam generator blowdown treatment system, and service water supply system. During the operation of nuclear power plants, radioactive contaminants such as Co-60, Mn-54, Fe-59 and Cs-137 are contained in liquid radioactive wastes. And the wastes containing small amount of uranium are generated in nuclear fuel cycle facilities. To treat the liquid radioactive waste, we usually install ion exchangers rather than evaporators due to their simplicity and effectiveness, and this trend is increasing. However, the ion exchange process produces large volume of spent organic resin, and has some problems of radiation damage and thermal instability. And the reuse of the resin is limited due to the degradation of ion-exchanging ability. For this reason, were should consider a better method to expand the lifetime of the resin or to reduce the volume of radioactive resin wastes by extracting radioactive contaminants located in the resin. Supercritical fluid CO 2 has many good points as a process solvent that include low viscosity, negligible surface tension, and variable selectivity. And supercritical fluids have physical properties of both liquid and gas such as good penetration with a high dissolution capability. Supercritical fluids have been widely used in extraction, purification, and recovery processes. A number of workers applied supercritical CO 2 solvent for cleaning of precision devices and waste treatments. Since supercritical CO 2 has its mild critical point at 31 and 73.8bar as .deg. C

  11. Ion exchange filter transition plan for BWRs and PWRs

    International Nuclear Information System (INIS)

    Garcia, Susan; McElrath, Joel; Varnam, Jeremie; Giannelli, Joseph F.

    2014-01-01

    Analysis and quantification of reactor water, feedwater, and chemical and volume control system (CVCS) soluble metals and radioisotopes are essential for monitoring species that impact fuel performance, steam generator and heat exchanger performance, mitigation of stress corrosion cracking of reactor piping and internals, radiation fields and ensuring that dose mitigation techniques are effective. Soluble species in the CVCS, feedwater, reactor water and other process sample streams are usually collected on ion exchange membranes after the sample has passed through a 0.45 or 0.1 μm membrane filter. Cationic species are predominantly of interest. Most nuclear plants currently use cation exchange membranes from Toray Industries, Inc. In September 2012, it was reported that Toray Industries, Inc. would discontinue the manufacturing of cation exchange membranes at the end of 2012. Similar reports were received concerning ion exchange membranes manufactured by Pall Corporation. These reports prompted several plants and utilities to begin evaluating other products from various vendors to replace their current ion exchange membranes in preparation for a transition. With this possible change having a potential impact on the water chemistry analyses that are important for monitoring fuel reliability and corrosion and dose control, an initial scoping evaluation of ion exchange membrane availability from various vendor and plant experiences was conducted. Recommended approaches were provided to close identified gaps and reduce burden on nuclear plant chemistry laboratories. Additional work required in 2014, includes an independent laboratory review of membrane performance and in-plant demonstrations. These demonstrations and evaluations will assist the industry by providing the technical input needed to manage a change in membrane use so that preferred processes and media can be identified to minimize any adverse impacts on chemistry analyses that support chemistry control

  12. Respective influence of thermodynamic, hydrodynamic and diffusion factors on ion exchanger operation. Application to the ion exchanger NYMPHEA

    International Nuclear Information System (INIS)

    Nicoud, R.M.

    1987-01-01

    Nymphea is an annular ion exchanger, with a resin bed 30 centimeter-thick, used for purification of the water from the spent fuel storage pool at La Hague reprocessing plant. Very low concentration solutions (10 -12 eq/l for cobalt) are purified by Nymphea, and parameter must be extrapolated from the range 0.01 - 0.0001 eq/l to very low concentrations. A model is developed, describing ion state inside the grains. The limiting step in Nymphea operation is external diffusion. Diffusion time is determined by mean grain size which should be accurately defined for extrapolation of results from monodispersed distribution (often the case in laboratories) to polydispersed (often the case in industry). Operation of an ion exchanger can be simulated for any ion number in solution. In steady state condition of concentration pool purification increases with flow rate. Simulation in transient operation allows the determination of all the concentrations in function of time and hence to calculate the time to reach the maximum permissible concentration for cobalt. This time depends upon calcium pollution (by fuel can dissolution, atmospheric pollution) which is not accurately known [fr

  13. Modality analysis of anchored ion exchange tower using Ansys

    International Nuclear Information System (INIS)

    Li Liang; Lei Zeyong

    2008-01-01

    Ion exchange towers are exposed to serious damage in the event of earthquakes. It is very necessary to study the seismic resistance of ion exchange tower. A finite element model of anchored ion exchange tower was made by Ansys. The first 10 ranks of inherent frequencies were made out, and three-dimensional main vibratory model figures were drawn out. The maximal stress along x-axis and y-axis and the main displacement were found at the bottom part of the wall of tower junction with the pillars. It is concluded that the breakage of tower wall easily occurs at the bottom part of the wall of tower junction with the pillars. Therefore, it is very important to reinforce the junction of the tower body, and the strengthening plate should lie near the bottom of wall. (authors)

  14. Ion exchange separation of nitrate from uranium compounds and its determination by spectrophotometry and ion chromatography

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Atalla, L.T.; Abrao, A.

    1985-11-01

    A procedure for the separation of nitrate from uranium compounds by retaintion of uranyl ion on a cationic ion exchanger and its determination in the effluent is described. Nitrate is analysed by the spectrometric method with 1-phenol-2,4-dissulphonic acid. This determination covers the 1 to 10 μg NO - 3 /mL range and requires an amount of 10 to 100 μg NO - 3 . The main interference is uranium (VI) due its own intense yellow color. This difficulty is overcome by the complete separation of UO 2 ++ with the cationic resin. Alternatively, the ion chromatography technique is used for the determination of nitrate in the effluent of the cationic resin. The determination was easily made by the comparison of the nitrate peak hights of the analyte and the standard solutions. The ion chromatography method is very sensitive (0,3 μg NO - 3 /mL), reproducible and suitable for routine analysis and permits the determination of fraction of part per million of nitrate in uranium. The results of nitrate determination using both spectrophotometric and ion chromatography techniques are compared. The method is being routinely applied for the quality control of uranium compounds in the fuel cycle, specially uranium oxide, ammonium diuranate, uranium peroxide and ammonium uranyl tricarbonate. (Author) [pt

  15. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Clearfield, A.; Frianeza, T.N.

    1978-01-01

    α-titanium phosphate, Ti(HPO 4 ) 2 .H 2 O, was found to form two sodium ion exchanged phases. A half exchanged phase of ideal composition TiNaH(PO 4 ) 2 .4H 2 O formed first. However, before all of the titanium phosphate was converted to this phase a second phase of higher Na + content formed. Thus, a three phase solid existed until sufficient sodium ion uptake (approximately 5.5 meq/g) produced only the two exchanged phases. Finally, the half exchanged phase was converted to the more highly loaded one and this latter phase existed from 6 to 8 meq/g of Na + uptake. Severe disordering of the crystal lattice during exchange is proposed to explain this unusual exchange behavior. A broad range of titanium phosphate-zirconium phosphate solid solutions was found to form. Their behavior towards Na + -H + exchange was determined and interpreted on the basis of the known behavior of the pure phases. Mixed Ti-Zr solid solutions of their pyrophosphates were obtained at elevated temperatures. (author)

  16. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    International Nuclear Information System (INIS)

    Ham, J.E.

    1996-01-01

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building's Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal

  17. On the mechanism of ion exchange in zirconium phosphates

    International Nuclear Information System (INIS)

    Kullberg, L.; Clearfield, A.

    1981-01-01

    An equilibrium study of the Na + -Cs + -H + exchange on crystalline α-zirconium phosphate has been carried out. Isotherms for the ion exchange have been determined and phases formed during the exchange have been identified. The surface groups of the exchanger were found to greatly prefer cesium to sodium. For exchange in the interior, cesium was found to be preferred to sodium for 0 to 50% of exchange, while sodium is slightly preferred to cesium for the second half of exchange. The influence of surface equilibria on the total exchange mechanism is discussed. (author)

  18. Retention of 60Co, 85Sr and 137Cs on inorganic ion exchangers

    International Nuclear Information System (INIS)

    Dozol, J.F.; Eymard, S.

    1983-11-01

    The aim of the study is the treatment of radioactive wastes produced in plutonium fuel fabrication or in spent fuel reprocessing by inorganic ion exchangers for ultimate storage. This rapport, gives the distribution coefficients of 60 Co, 85 Sr, 137 Cs (in sodium nitrate medium at different concentration of sodium: .23g/l, 1 g/l, 10 g/l) obtained with different inorganic exchangers: titanium oxyde, sodium titanate, sodium zirconate, sodium niobate, sodium tantalate, titanium phosphate, zirconium phosphate, ammonium phosphotungstate in zirconium phosphate, polyantimonic acid amorphous aluminosilicate and several zeolites (ZBS 15 from OXYMIN, ZEOLON 400, ZEOLON 500, ZEOLON 900 from Norton, IE 96, A 51, 13 X from Union Carbide) [fr

  19. In-situ methylation of strongly polar organic acids in natural waters supported by ion-pairing agents for headspace GC-MSD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, P.L.; Walther, W. [Dresden University of Technology, Institute for Groundwater Managemant, Dresden (Germany); Nestler, W. [Institute for Technology and Economics, Department of Civil Engineering and Architecture, Dresden (Germany)

    1998-06-01

    Strongly polar organic substances like halogenated acetic acids have been analyzed in surface water and groundwater in the catchment area of the upper Elbe river in Saxony since 1992. Coming directly from anthropogenic sources like industry, agriculture and indirectly by rainfall, their concentrations can increase up to 100 {mu}g/L in the aquatic environment of this catchment area. A new static headspace GC-MSD method without a manual pre-concentration step is presented to analyze the chlorinated acetic acids relevant to the Elbe river as their volatile methyl esters. Using an ion-pairing agent as modifier for the in-situ methylation of the analytes by dimethylsulfate, a minimal detection limit of 1 {mu}g/L can be achieved. Problems like the thermal degradation of chlorinated acetic acids to halogenated hydrocarbons and changing reaction yields during the headspace methylation, could be effectively reduced. The method has been successfully applied to monitoring bank infiltrate, surface water, groundwater and water works pumped raw water according to health provision principles. (orig.) With 3 figs., 2 tabs., 29 refs.

  20. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  1. Hydrogen/deuterium exchange of cross-linkable alpha-amino acid derivatives in deuterated triflic acid

    OpenAIRE

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Masuda, Katsuyoshi; Sakihama, Yasuko; Hashidoko, Yasuyuki; Hatanaka, Yasumaru; Hashimoto, Makoto

    2014-01-01

    In this paper we report here a hydrogen/deuterium exchange (H/D exchange) of cross-linkable alpha-amino acid derivatives with deuterated trifluoromethanesulfonic acid (TfOD). H/D exchange with TfOD was easily applied to o-catechol containing phenylalanine (DOPA) within an hour. A partial H/D exchange was observed for trifluoromethyldiazirinyl (TFMD) phenylalanine derivatives. N-Acetyl-protected natural aromatic alpha-amino acids (Tyr and Trp) were more effective in H/D exchange than unprotect...

  2. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium.

    Science.gov (United States)

    Xue, Mei; Chitrakar, Ramesh; Sakane, Kohji; Hirotsu, Takahiro; Ooi, Kenta; Yoshimura, Yuji; Feng, Qi; Sumida, Naoto

    2005-05-15

    Adsorption of the organic sulfur compounds thiophene (TP) and 1-benzothiophene (1-BTP) in an organic model solution of hydrodesulfurizated gasoline (heptane with 1 wt% toluene and 0.156 mM (5 ppmw as sulfur) TP or 1-BTP) was studied by a batch method at 80 degrees C using metal-ion-exchanged Y-zeolites. Although NaY-zeolite or its acid-treated material rarely adsorbed the organic sulfur compounds, NaY-zeolites exchanged with Ag+, Cu2+, and Ce3+ ions and NH(4)Y-zeolites exchanged with Ce3+ ions showed markedly high adsorptive capacities for TP and 1-BTP. The sulfur uptake increased in the order CuY-zeolite(Na)

  3. Electrodialysis-ion exchange for the separation of dissolved salts

    Energy Technology Data Exchange (ETDEWEB)

    Baroch, C.J. [Wastren, Inc., Westminster, CO (United States); Grant, P.J. [Wastren, Inc., Hummelstown, PA (United States)

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  4. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A. [CEA Marcoule, DEN DTCD SPDE LFSM, F-30207 Bagnols Sur Ceze (France); Guichardon, P. [Ecole Cent Marseille, F-13451 Marseille 20 (France); Boutin, O. [Aix Marseille Univ, UMR CNRS 6181, F-13545 Aix En Provence 4 (France)

    2010-07-01

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  5. Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation.

    Science.gov (United States)

    Perry, S F; Shahsavarani, A; Georgalis, T; Bayaa, M; Furimsky, M; Thomas, S L Y

    2003-11-01

    In freshwater fishes, the gill and kidney are intricately involved in ionic and acid-base regulation owing to the presence of numerous ion channels, pumps, or exchangers. This review summarizes recent developments in branchial and renal ion transport physiology and presents several models that integrate epithelial ion and acid-base movements in freshwater fishes. At the gill, three cell types are potentially involved in ionic uptake: pavement cells, mitochondria-rich (MR) PNA(+) cells, and MR PNA(-) cells. The transfer of acidic or basic equivalents between the fish and its environment is accomplished largely by the gill and is appropriately regulated to correct acid-base imbalances. The kidney, while less important than the gill in overall acid or base excretion, has an essential role in regulating systemic acid-base balance by controlling HCO(3) (-) reabsorption from the filtrate. Copyright 2003 Wiley-Liss, Inc.

  6. Organic and inorganic ion exchangers as catalysts for the heterogeneous alkylation of aromatics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J; Widdecke, H [Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Chemische Technologie

    1979-06-01

    Ion exchangers have advantages over low molecular for use in industrial alkylation reactions. The reactivity and selectivity behaviour of the polymeric catalysts was found to be markedly influenced by the structure of the polymeric matrix as well as the type and number of the functional groups. In this connection many similarities between inorganic ion exchangers (zeolites) and organic ion exchange resins were detected.

  7. Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A

    International Nuclear Information System (INIS)

    Fang, Mei-Juan; Zhang, He; Liao, Chao; Qiu, Ying-Kun; Fang, Hua; Zheng, Zhen-Yu; Gao, Xiang; Zhao, Yu-Fen; Wu, Zhen

    2015-01-01

    Highlights: • ESI-MS n , HRMS and H/D exchange were used. • The fragmentation pathways of NPAAE-BFA in ESI-MS n were described. • Fragment ions involved in phosphorus group’s rearrangement reactions were observed. • Two rearrangement mechanisms about phosphorylation–dephosphorylation were proposed. - Abstract: As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a–2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments’s structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a–2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS 2 spectra of [M + Na] + ions for compounds 2a–2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the “dephosphorylation” rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A’s backbone with losing a molecule of C 3 H 7 PO 3 (122 Da). For the “phosphorylation” rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of C-H covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C 16 H 20 O 2 (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation–dephosphorylation of proteins

  8. Using positive-ion electrospray ionization mass spectrometry and H/D exchange study phosphoryl group transfer reactions involved in amino acid ester isopropyl phosphoramidates of Brefeldin A

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Mei-Juan; Zhang, He; Liao, Chao; Qiu, Ying-Kun [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); Fang, Hua [The Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005 (China); Zheng, Zhen-Yu [College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen 361005 (China); Gao, Xiang [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); Zhao, Yu-Fen [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China); College of Chemistry and Chemical Engineering, Department of Chemistry, Xiamen University, Xiamen 361005 (China); Wu, Zhen, E-mail: wuzhen@xmu.edu.cn [School of Pharmaceutical Sciences and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiang-An South Road, Xiamen 361102 (China)

    2015-01-01

    Highlights: • ESI-MS{sup n}, HRMS and H/D exchange were used. • The fragmentation pathways of NPAAE-BFA in ESI-MS{sup n} were described. • Fragment ions involved in phosphorus group’s rearrangement reactions were observed. • Two rearrangement mechanisms about phosphorylation–dephosphorylation were proposed. - Abstract: As mini-chemical models, amino acid ester isopropyl phosphoramidates of Brefeldin A (compounds 2a–2d) were synthesized and investigated by electrospray ionization tandem mass spectrometry in combination with H/D exchange. To further confirm the fragments’s structures, off-line Fourier transform resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. The fragmentation rules of compounds 2a–2d have been summarized and the plausible schemes for the fragmentation pathways were proposed. In this study, one dephosphorylated ion and two phosphorylated ions were observed in ESI-MS{sup 2} spectra of [M + Na]{sup +} ions for compounds 2a–2d. The possible mechanisms about phosphorylation and dephosphorylation were proposed and confirmed by H/D exchange. For the “dephosphorylation” rearrangement, a nitrogen atom was migrated from the phosphoryl group to the carbon atom of Brefeldin A’s backbone with losing a molecule of C{sub 3}H{sub 7}PO{sub 3} (122 Da). For the “phosphorylation” rearrangement, an oxygen atom of one phosphoryl group attacked the sideward phosphorus atom to form a nine-member ring intermediate, then two steps of C-H covalent bond cleavage with consecutive migration of hydrogen atom to lose a molecule of C{sub 16}H{sub 20}O{sub 2} (244 Da). The two proposed rearrangement mechanisms about phosphoryl group transfer might be valuable for the structure analysis of other analogs and provide insights into elucidating the dynamic process of the phosphorylation–dephosphorylation of proteins.

  9. Application of radioactive tracers in upgradation of industrial grade ion exchange resin (Amberlite IRA-400)

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.

    1998-01-01

    The exchange rates of ion exchange are determined by application of 131 I as a tracer isotope. The exchange study carried out in this investigation deals with understanding the effectiveness of ion exchange resin (in iodide form) Amberlite IRA-400 at different concentrations of potassium iodide solution (electrolyte) with temperature of solution varying from 27-48 degC by keeping amount of ion exchange resin constant (1.0 g). The exchange study is also carried out by varying amount of ion exchange resins, for fixed temperature (27.0 degC) and for fixed concentration of potassium iodide solution (0.005 M). (author)

  10. Development of Highly Nano-Dispersed NiO/GDC Catalysts from Ion Exchange Resin Templates

    Directory of Open Access Journals (Sweden)

    Angel Caravaca

    2017-11-01

    Full Text Available Novel NiO/GDC (Gadolinium-doped Ceria cermet catalysts were developed by the Weak Acid Resin (WAR method using an ion exchange resin template. In addition, the specific surface area of these tunable materials was enhanced by NiO partial dissolution in aqueous acid solution. The whole procedure highly improved the micro-structural properties of these materials compared to previous studies. Catalysts with high metal loadings (≥10%, small Ni nanoparticles (<10 nm, and high specific surface areas (>70 m2/g were achieved. These properties are promising for catalytic applications such as methane steam reforming for H2 production.

  11. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  12. Biocompatibility Research of a Novel pH Sensitive Ion Exchange Resin Microsphere.

    Science.gov (United States)

    Liu, Hongfei; Shi, Shuangshuang; Pan, Weisan; Sun, Changshan; Zou, Xiaomian; Fu, Min; Feng, Yingshu; Ding, Hui

    2014-01-01

    The main objective of this study was to investigate biocompatibility and provide in-vivo pharmacological and toxicological evidence for further investigation of the possibility of pH sensitive ion exchange resin microsphere for clinical utilizations. Acute toxicity study and general pharmacological studies were conducted on the pH sensitive ion exchange resin microsphere we prepared. The general pharmacological studies consist of the effects of the pH sensitive ion exchange resin microsphere on the nervous system of mice, the functional coordination of mice, the hypnosis of mice treated with nembutal at subliminal dose, the autonomic activities of tested mice, and the heart rate, blood pressure, ECG and breathing of the anesthetic cats. The LD50 of pH sensitive ion exchange resin microsphere after oral administration was more than 18.84 g·Kg(-1). Mice were orally administered with 16 mg·Kg(-1), 32 mg·Kg(-1) and 64 mg·Kg(-1) of pH sensitive ion exchange resin microsphere and there was no significant influence on mice nervous system, general behavior, function coordination, hypnotic effect treated with nembutal at subliminal dose and frequency of autonomic activities. Within the 90 min after 5 mg·Kg(-1), 10 mg·Kg(-1), 20 mg·Kg(-1) pH sensitive ion exchange resin microsphere was injected to cat duodenum, the heart rate, blood pressure, breathing and ECG of the cats didn't make significant changes in each experimental group compared with the control group. The desirable pharmacological and toxicological behaviors of the pH sensitive ion exchange resin microsphere exhibited that it has safe biocompatibility and is possible for clinical use.

  13. Complexation and extraction of series 4f, 5f and 4d ions by dialkyldithiophosphoric acids

    International Nuclear Information System (INIS)

    Fitoussi, Richard.

    1982-04-01

    A study was carried out on the complexing and extracting properties of various dialkyldithiophosphoric acids towards ions of the 4f, 5f and 4d series. Sulphurated donors complex and extract ions of the 4f and 5f series less strongly than their oxygenated homologues. However the affinity of trivalent actinide ions for dialkythiophosphate ions is shown to be greater than that of lanthanides. The conditions of ruthenium extraction from nitric acid are defined [fr

  14. The effect of organic ion-exchange resin on properties of heterogeneous ion-exchange membranes

    Czech Academy of Sciences Publication Activity Database

    Křivčík, J.; Vladařová, J.; Hadrava, J.; Černín, A.; Brožová, Libuše

    2010-01-01

    Roč. 14, - (2010), s. 179-184 ISSN 1944-3994. [Membrane Science and Technology Conference of Visegrad Countries /4./ PERMEA 2009, 07.07.2009-11.07.2009] R&D Projects: GA MPO FT-TA4/116 Institutional research plan: CEZ:AV0Z40500505 Keywords : heterogeneous ion-exchange membrane * membrane modification * particle size of distribution Subject RIV: CG - Electrochemistry Impact factor: 0.752, year: 2010

  15. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    Science.gov (United States)

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  16. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    International Nuclear Information System (INIS)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-01-01

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  17. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  18. Magnesium isotope fractionation in cation-exchange chromatography

    International Nuclear Information System (INIS)

    Oi, T.; Yanase, S.; Kakihana, H.

    1987-01-01

    Band displacement chromatography of magnesium has been carried out successfully for the purpose of magnesium isotope separation by using a strongly acidic cation-exchange resin and the strontium ion as the replacement ion. A small but definite accumulation of the heavier isotopes ( 25 Mg, 26 Mg) has been observed at the front parts of the magnesium chromatograms. The heavier isotopes have been fractionated preferentially into the solution phase. The single-stage separation factors have been calculated for the 25 Mg/ 24 Mg and 26 Mg/ 24 isotopic pairs at 25 0 C. The reduced partition function ratios of magnesium species involved in the present study have been estimated

  19. Transition from the constant ion mobility regime to the ion-atom charge-exchange regime for bounded collisional plasmas

    International Nuclear Information System (INIS)

    Poggie, Jonathan; Sternberg, Natalia

    2005-01-01

    A numerical and analytical study of a planar, collisional, direct-current, plasma-wall problem is presented. The fluid model for the problem is first validated by comparing numerical solutions with experimental data for low-pressure (∼0.1 Pa) electrode sheaths with wall potentials on the order of -100 V. For electric potential, ion number density, and ion velocity, good agreement was found between theory and experiment from within the sheath out to the bulk plasma. The frictional drag resulting from ion-neutral collisions is described by a model incorporating both linear and quadratic velocity terms. In order to study the transition from the constant ion mobility regime (linear friction) to the ion-atom charge-exchange collision regime (quadratic friction), the theoretical model was examined numerically for a range of ion temperatures and ion-neutral collision rates. It was found that the solution profiles in the quasineutral plasma depend on the ion temperature. For low ion temperatures they are governed mainly by the ion-atom charge-exchange regime, whereas for high temperatures they are governed by the constant ion mobility regime. Quasineutral plasma models corresponding to these two limiting cases were solved analytically. In particular, an analytical plasma solution is given for the ion-atom charge exchange regime that includes the effects of ion inertia. In contrast to the quasineutral plasma, the sheath is always governed for low to moderate collision rates by the ion-atom charge-exchange regime, independent of the ion temperature. Varying the collision rate, it was shown that when the wall potential is sufficiently high, the sheath cannot be considered collisionless, even if the collision rate is quite small

  20. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water

    Directory of Open Access Journals (Sweden)

    Nithinart Chitpong

    2016-12-01

    Full Text Available An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid (PAA and poly(itaconic acid (PIA to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd, productivity, and recovery of Cd(II from the membranes by regeneration. The dynamic binding capacities of Cd(II on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II, apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.

  1. Preparation of Polyimide/Zinc Oxide Nanocomposite Films via an Ion-Exchange Technique and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Shuxiang Mu

    2011-01-01

    Full Text Available Polyimide (PI composite films with ZnO nanoparticles embedded in the surface layer were prepared by alkali hydrolyzation following ion exchange in Zn(NO32 solution and thermal treatment of the zinc ion-doped PI films in air atmosphere. The effect of alkali treatment, ion exchange, and thermal treatment conditions was investigated in relation to the amount of zinc atomic loading, morphology, photoluminescence (PL, and thermal properties of the PI/ZnO composite films using ICP, XPS, FE-SEM, TEM, Raman microscope, TGA, and DSC. ZnO nanoparticles were formed slowly and dispersed uniformly in the surface-modified layers of PI films with an average diameter of 20 nm. The PL spectra of all the PI/ZnO nanocomposite films obtained at 350°C/7 h possessed a weak ultraviolet emission peak and a broad and strong visible emission band. The PI/ZnO nanocomposite films maintained the excellent thermal property of the host PI films.

  2. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

    Directory of Open Access Journals (Sweden)

    Milchert Eugeniusz

    2016-09-01

    Full Text Available A review paper of the technology basics of vegetable oils epoxidation by means of peracetic or performic acid in the presence of acidic ion exchange resins has been presented. The influence of the following parameters: temperature, molar ratio of acetic acid and hydrogen peroxide to ethylenic unsaturation, catalyst loading, stirring intensity and the reaction time on a conversion of ethylenic unsaturation, the relative percentage conversion to oxirane and the iodine number was discussed. Optimal technological parameters, mechanism of epoxidation by carboxylic peracids and the possibilities of catalyst recycling have been also discussed. This review paper shows the application of epoxidized oils.

  3. Ion-exchange equilibrium of Fe3+-Cl- and UO22+-Cl- systems in a porous anion exchanger

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Kawakami, Fumiaki; Sasaki, Mitsunaga

    1985-01-01

    The ion-exchange equilibrium behavior of complex ions was investigatided in the systems of UO 2 2+ - Cl - and Fe 3+ - Cl - using an anion exchanger. It was performed by examining the dependency of adsorption distribution and selectivity of complexes on the micro structure of ion-exchangers, and temperature-dependency of selectivity. Changes in micropore structure of the ion-exchanger were found to have a significant effect on selectivity; the coefficient of selectivity and the average valence of the adsorbed species increased as the discrete pore ratio used as the index for pore structure decreased. In this study, equilibrium reactions were regarded as a sort of addition reaction for a easier analysis. This analysis based on the concept of addition chemical potential suggested that decreases in the discrete pore ratio were advantageous for the adsorption of complex ion species with higher valence, and average valence of the adsorbed species within the exchanger was shifted to the higher side. For this reason, it is assumed that the coefficient of selectivity became larger with a decrease in the discrete pore ratio. There is also a marked change in the coefficient of selectivity with temperature, and this becomes greater the higher the temperature. The ΔH of the present system accompanying the complex forming reaction is estimated to be 7 to 8 kcal/mol, and this value suggests that the temperature effect of the complex forming reaction contributes greatly to the change in selectivity with temperature. (author)

  4. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    International Nuclear Information System (INIS)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2011-01-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h -1 from a 60 Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  5. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h{sup -1} from a {sup 60}Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  6. Ion exchange purification of scandium

    Science.gov (United States)

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  7. preparation of beryllia n concentrate from beryllium minerals by ion exchange method

    International Nuclear Information System (INIS)

    Shoukry, M.M.; Atrees, M. Sh.; Hashem, M.D.

    2007-01-01

    The present work is concerned with the preparation of pure Beryllia concentrate from Zabara beryl mineralization in the mica schist of Wadi El Gemal area in the eastern desert. This has been possible through application of ion exchange techniques to selectively concentrate. This method is based on the fact that the beryllium complex of ethylene diamine tetra acetic acid (EDTA) at a ph of about 3.5, is much weaker than the corresponding complexes of iron and aluminum. It was, therefore, possible to effect a complete separation of beryllium from the latter on a cation exchange resin, the studied optimum conditions of separation include a contact time of 3 minute and ph of 3.5 for the selective separation of beryllium from its EDTA solution after a prior separation of alum

  8. Preparation and characterization of some antimonates as ion exchangers and their application sorption of molybdenum from nitric acid solutions

    International Nuclear Information System (INIS)

    El-Naggar, I.M.; Mowafy, E.A.; Ibrahim, G.M.

    2000-01-01

    Various antimonate compounds are well known as important inorganic ion exchangers, since they have radiation stabilities and also high selectivities towards different cations. Ceric, silicon and ferric antimonates were prepared in our laboratories. Characterization of these materials has been described using different techniques, including thermal analysis, surface area measurements, X-ray diffraction and Ir-spectroscopy. The selectivities of these exchangers towards molybdenum have measured under different conditions and a comparison between them had been conducted to enable the suitable exchanger that can be used in the separation of molybdenum from fission products

  9. Ion-exchange fibers for uranium recovery. Final report, September 8, 1980-November 6, 1981

    International Nuclear Information System (INIS)

    Babcock, W.C.

    1981-01-01

    Development was initiated of ion-exchange fibers that could be used to extract uranium ions from solutions containing 10 ppM uranium or less, such as acid mine waters, leach solutions, various natural groundwaters, and perhaps even seawater. These fibers would ultimately be used to make large, loosely woven mats that could be placed in dilute solutions or uranium. Periodically, the mats would be removed and stripped of uranium with an appropriate solution. Two major approaches to making these fibers were investigated. One involved incorporating conventional amine solvent-extraction reagents into the pores of microporous, polysulfone fibers. This approach was unsuccessful due to a rapid loss of the reagents from the fibers. The second approach was to incorporate water-swollen gels of polymeric amines into the pores of the fibers. These fibers effectively extracted uranium from solutions containing 10 ppM uranium. An economic analysis based on the projected costs of mats made from these fibers and on the value of the uranium recovered by the fibers shows that the mats could be used to economically recover uranium from dilute solutions and that they offer a substantial cost advantage over conventional ion exchange

  10. Effect of pore structure on the removal of clofibric acid by magnetic anion exchange resin.

    Science.gov (United States)

    Tan, Liang; Shuang, Chendong; Wang, Yunshu; Wang, Jun; Su, Yihong; Li, Aimin

    2018-01-01

    The effect of pore structure of resin on clofibric acid (CA) adsorption behavior was investigated by using magnetic anion exchange resins (ND-1, ND-2, ND-3) with increasing pore diameter by 11.68, 15.37, 24.94 nm. Resin with larger pores showed faster adsorption rates and a higher adsorption capacity because the more opened tunnels provided by larger pores benefit the CA diffusion into the resin matrix. The ion exchange by the electrostatic interactions between Cl-type resin and CA resulted in chloride releasing to the solution, and the ratio of released chloride to CA adsorption amount decreased from 0.90 to 0.65 for ND-1, ND-2 and ND-3, indicating that non-electrostatic interactions obtain a larger proportional part of the adsorption into the pores. Co-existing inorganic anions and organic acids reduced the CA adsorption amounts by the competition effect of electrostatic interaction, whereas resins with more opened pore structures weakened the negative influence on CA adsorption because of the existence of non-electrostatic interactions. 85.2% and 65.1% adsorption amounts decrease are calculated for resin ND-1 and ND-3 by the negative influence of 1 mmol L -1 NaCl. This weaken effect of organic acid is generally depends on its hydrophobicity (Log Kow) for carboxylic acid and its ionization degree (pKb) for sulfonic acid. The resins could be reused with the slightly decreases by 1.9%, 3.2% and 5.4% after 7 cycles of regeneration, respectively for ND-1, ND-2 and ND-3, suggesting the ion exchange resin with larger pores are against its reuse by the brine solution regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory.

    Science.gov (United States)

    Schulthess, Cristian P; Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl- ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl- ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl- ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl- reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH.

  12. Sorption-spectroscopic and test methods for the determination of metal ions on the solid-phase of ion-exchange materials

    International Nuclear Information System (INIS)

    Savvin, Sergey B; Dedkova, Valentina P; Shvoeva, Ol'ga P

    2000-01-01

    Data on sorption-spectroscopic and test methods for the determination of metal ions on the solid-phase of ion-exchange materials published over the past decade are reviewed. The advantages and disadvantages of ion-exchange materials are discussed. The detection limits and selectivity of these techniques are described. The bibliography includes 151 references.

  13. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo

    2011-01-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a 60 Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  14. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a {sup 60}Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  15. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  16. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  17. Sol - gel inorganic ion exchangers for conditioning of medium level radioactive waste

    International Nuclear Information System (INIS)

    Arcangeli, G.; Traverso, D.M.; Gerontopoulos, P.; Fava, R.

    1988-01-01

    Decontamination of high-level liquid wastes and medium activity wastes streams by inorganic ion exchange combined with the conversion of the spent inorganic ion exchange material to waste ceramics presents a considerable potential for utilisation in waste conditioning. Ceramic waste forms are found superior to other candidate waste immobilisation forms but practical implementation is hampered because of the complexity of the related fabrication technology. This report shows the possibility of improving this situation by resorting to sol gel techniques earlier developed for preparation of nuclear fuel ceramics. The principal findings are: - superior quality ion exchange xerogel titanates in the form of mechanically resistant, size controlled microspheres can be prepared using a simple sol-gel technique; - the titanate particles can be also used as precursors in Evaporative Deposition on Xerogel Particles (EDXP) a new waste solidification process based on physical impregnation of the xerogel material with the waste liquid followed by evaporation; - waste loaded ion exchange microspheres can be converted to leach resistant ceramics by firing and/or cold pressing and sintering at 900 0 -1100 0 C; - sol-gel inorganic ion exchange and EDXP may find useful application in conditioning MAW streams. 44 figs., 43 refs

  18. Bituminous solidification, disposal, transport and burial of spent ion-exchange resins. Part of a coordinated programme on treatment of spent ion exchange resins

    International Nuclear Information System (INIS)

    Mozes, G.; Kristof, M.

    1983-07-01

    The project dealing with the incorporation of spent ion-exchange resins into bitumen was performed within the Agency coordinated research programme on treatment of spent ion-exchange resins. Physical and chemical properties of commercial ion-exchange resins, bitumens and bituminized resins were studied. It was shown that bitumen with low oil content and with a softening point of 60-70 deg. C are applicable for the incorporation of resins. The final waste form is allowed to contain maximum 50% resin. The comprehensive study of the biological resistance of B-30 bitumen was performed. That showed that any bacteriological attack can be regarded as generally insignificant. A continuously operating technology was realized on a semi-plant scale. The best operating conditions of this technology were determined. On the basis of the experience gained from the experiments a design of the bituminization plant of 50m 3 dry resin/year treatment capacity was proposed

  19. Modulation of the acidity of niobic acid by ion-doping: Effects of nature and amount of the dopant ions

    Energy Technology Data Exchange (ETDEWEB)

    Carniti, Paolo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Gervasini, Antonella, E-mail: antonella.gervasini@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Marzo, Matteo [Dipartimento di Chimica, Università degli Studi di Milano (UNIMI), Milano (Italy); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, (IRCELYON), Villeurbanne (France)

    2013-09-10

    Highlights: ► Mitigation of the surface acidity of niobic acid was pursued by K-, Ba-, and Nd-doping. ► Thermal techniques of study were effective for the acidity study. ► The nature of the dopant influences the effectiveness of the acidity tuning of niobic acid. ► The acidity of the doped surfaces decreased with increasing the dopant species added to niobic acid. ► The samples showed different acidity when measured in gas–solid phase (intrinsic acidity) and water (effective acidity). - Abstract: The acidity of niobic acid (NBO) has been successfully mitigated and tuned by addition of K{sup +}, Ba{sup 2+} and Nd{sup 3+} dopant species in amounts from 1 to 15 atom nm{sup −2}. The characterization of the intrinsic acid properties of the samples was performed by adsorption of NH{sub 3} in a volumetric–microcalorimetric coupled line and by temperature programmed desorption (TPD) of 2-phenylethylamine in a thermogravimetric apparatus. The K-dopant was more effective in decreasing the acidity of niobic acid than the Ba- and Nd-dopants. Complementary measurements of the effective acidity of the samples in water by base titrations with 2-phenylethylamine completed the study and revealed a different picture of the effect of the three dopants on the NBO acidity in water. All the results indicated that the K-dopant targeted more selectively the Brønsted acid sites, acting as an ion-exchanger, while Ba- and Nd-species predominantly acted on the Lewis acid sites of the NBO surface.

  20. Bench-Scale Studies with Argentine Ion Exchange Material

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A.

    2002-01-01

    The United States Department of Energy (DOE), as well as international atomic energy commission, facilities use ion exchange materials for purification of aqueous streams in the nuclear industry. Unfortunately, the use of the ion exchange materials creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resins often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposable alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces

  1. Analysis of Ion-Exchange Resin Capability of the RSG-GAS Demineralized Water System (GCA01)

    International Nuclear Information System (INIS)

    Diyah Erlina Lestari; Setyo Budi Utomo; Harsono

    2012-01-01

    The Demineralized water system (GCA01) is a system which is function to process raw water to be demineralized water using ion exchange resin unit consisting of a column of cation exchange resins, anion exchange resin column and the column resin mix bed. After certain time the ion exchange resins to be saturated so that is needed regeneration. The RSG-GAS demineralized water system (GCA01) not operated continuously and indication of when does an ion exchange resin regeneration on The RSG-GAS demineralized water system (GCA01) is the water conductivity from anion exchange resin column output indicates ≥ 5μS/cm. Analysis of capability of the ion exchange resin demineralized water system (GCA01) line I has been performed. The analysis was done by comparing the time required in the system operating cycle of regeneration to the next regeneration during the period 2011 and 2012. From the results of the analysis showed the cycle regeneration time is varies. This shows that ion exchange resin capability of the RSG-GAS demineralized water system (GCA01) is varies depending on the raw water quality and success of the regeneration ion exchange resin. (author)

  2. The Quantitative Ion Exchange Separation of Uranium from Impurities

    National Research Council Canada - National Science Library

    Narayanan, Usha

    1995-01-01

    .... This procedure involve adsorption of uranium onto Bio-Rad AG 1X8 or MP-1 ion exchange resins in 8 M HCl, separation of uncomplexed or weakly complexed matrix ions with an 8 M HCl wash, and subsequent...

  3. Mixed matrix microporous hollow fibers with ion-exchange functionality

    NARCIS (Netherlands)

    Kiyono, R.; Kiyono, R.; Koops, G.H.; Wessling, Matthias; Strathmann, H.

    2004-01-01

    Heterogeneous hollow fiber membranes with cation exchange functionality are prepared using a wet spinning technique. The spinning dope solutions are prepared by dispersing finely ground cation ion-exchange resin (CER) particles in an N-methyl pyrrolidone solution of polysulfone (PSF). The polymer

  4. Revised Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  5. Livestock wastewater treatment by zeolite ion exchange and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Lee, Sang Ryul; Kim, Tak Hyun; Lee, Myun Joo

    2008-01-01

    Livestock wastewater containing high concentrations of organic matters and ammonia-nitrogen has been known as one of the recalcitrant wastewater. It is difficult to treat by conventional wastewater treatment techniques. This study was carried out to evaluate the feasibility of zeolite ion exchange and gamma-ray irradiation treatment of livestock wastewater. The removal efficiencies of SCOD Cr and NH3-N were significantly enhanced by gamma-ray irradiation after zeolite ion exchange as a pre-treatment. However, the effects of zeolite particle size on the SCOD Cr and NH 3 -N removal efficiencies were insignificant. These results indicate that the combined process of zeolite ion exchange and gamma-ray irradiation has potential for the treatment of livestock wastewater

  6. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He

    2017-07-26

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  7. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes

    KAUST Repository

    Liu, He; Zhang, Haitao; Fei, Linfeng; Ma, Hongbin; Zhao, Guoying; Mak, CheeLeung; Zhang, Xixiang; Zhang, Suojiang

    2017-01-01

    Fe-doped HTaWO6 (H1-3xFexTaWO6, x = 0.23) nanotubes as highly active solid acid catalysts were prepared via an exfoliation-scrolling-exchange process. The specific surface area and pore volume of undoped nanotubes (20.8 m2 g-1, 0.057 cm3 g-1) were remarkably enhanced through Fe3+ ion-exchange (>100 m2 g-1, 0.547 cm3 g-1). Doping Fe ions into the nanotubes endowed them with improved thermal stability due to the stronger interaction between the intercalated Fe3+ ions and the host layers. This interaction also facilitated the preservation of effective Brønsted acid sites and the generation of new acid sites. The integration of these functional roles resulted in Fe-doped nanotubes with high acidic catalytic activities in the Friedel-Crafts alkylation of anisole and the esterification of acetic acid. Facile accessibility to active sites, generation of effective Brønsted acid sites, high stability of the tubular structure and strong acid sites were found to synergistically contribute to the excellent acidic catalytic efficiency. Additionally, the activity of cycled nanocatalysts can be easily recovered through annealing treatment.

  8. Novel Ion Trap Design for Strong Ion-Cavity Coupling

    Directory of Open Access Journals (Sweden)

    Alejandro Márquez Seco

    2016-04-01

    Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.

  9. Field experiment on multicomponent ion exchange in a sandy aquifer

    International Nuclear Information System (INIS)

    Bjerg, P.L.; Christensen, T.H.

    1990-01-01

    A field experiment is performed in a sandy aquifer in order to study ion exchange processes and multicomponent solute transport modeling. An injection of groundwater spiked with sodium and potassium chloride was performed over a continuous period of 37 days. The plume is monitored by sampling 350 filters in a spatial grid. The sampling aims at establishing compound (calcium, magnesium, potassium, sodium, chloride) breakthrough curves at various filters 15 to 100 m from the point of injection and areal distribution maps at various cross sections from 0 to 200 m from the point of injection. A three-dimensional multicomponent solute transport model will be used to model the field experiments. The chemical model includes cation exchange, precipitation, dissolution, complexation, ionic strength and the carbonate system. Preliminary results from plume monitoring show that the plume migration is relatively well controlled considering the scale and conditions of the experiment. The transverse dispersion is small causing less dilution than expected. The ion exchange processes have an important influence on the plume composition. Retardation of the injected ions is substantial, especially for potassium. Calcium exhibits a substantial peak following chloride due to release from the ion exchange sites on the sediment. (Author) (8 refs., 5 figs., tab.)

  10. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  11. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Petru, Filip [“C.D. Nenitescu” Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, Bucharest 71141 (Romania); Humelnicu, Ionel [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Mateescu, Marina [National R and D Institute for Chemistry and Petrochemistry, Splaiul Independenţei No. 202, Bucharest 060021 (Romania); Militaru, Ecaterina [R and D National Institute for Metals and Radioactive Resources–ICPMRR, B-dul Carol I No.70, Sector 2, Bucharest 020917 (Romania); Humelnicu, Doina, E-mail: doinah@uaic.ro [“Al.I. Cuza” University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania)

    2014-10-15

    Radioactive pollution is a significant threat for the people’s health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives’ utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  12. Ion exchange of natural natrolite in melted salts

    International Nuclear Information System (INIS)

    Faghihian, H.; Nekuei, P.

    2007-01-01

    In this research the ion exchange potential of natrolite towards K + , TI + , Cs +2 , Ca +2 , Ni +2 , Cu 2+ , and Co 2+ in their melted salts was investigated. The effect of temperature, reaction time and zeolite to salt ratio on the exchange relation was studied. The exchange of ca 2+ , Ni 2+ , cu 2+ , and Co 2+ was negligible and was equal to 2.59, 6.29, 3.14 and 5.04 percent respectively whereas the exchange of K + , Tl + , Cs + was relatively high and equal to 82.36,66.67 and 42.98 percent respectively

  13. Spectrophotometric flow injection catalytic determination of molybdenum in plant digest using ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1987-03-01

    A spectrophotometric flow injection analytical method based on the catalytic action of molybdenum on the oxidation of iodide by hydrogen peroxide in acidic medium is proposed for the molybdenum determination in plant digests. A cation exchange resin column is incorporated into a flow injection system for removal of interferents. The following system variables were investigated and optimized: reagent concentrations, sample injection volume, mixing and reaction coil lengths, temperature, sampling time, pumping rate and concentration of eluting agents. The effects of interfering species and of the acidity of samples on the molybdenum retention by the ion exchange resin column were investigated. The proposed method is characterized by good precision (r.s.d. (2.0%), a sampling rate of about 40 samples per hour, and permits the determination of molybdenum in plant digests in the range 1.0 to 40.0 μg/l. The results compare well with those obtained by graphite furnace atomic absorption spectrometry. (author) [pt

  14. Influence of lithium and boron ions on calcium sulfo-aluminate cement hydration: application for the conditioning of boron ion exchange resins

    International Nuclear Information System (INIS)

    Dhoury, Melanie

    2015-01-01

    In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one. In this PhD study, the potential of calcium sulfo-aluminate cements (CSAC) to solidify/stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye-elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study. Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye-elimite is strongly slowed

  15. Studies on the ion-exchange behavior of chromium ferrocyanide

    Energy Technology Data Exchange (ETDEWEB)

    Malik, W U; Srivastava, S K; Singh, Raj Pal; Kumar, Satish [Roorkee Univ. (India). Dept. of Chemistry

    1977-01-01

    The sorption of univalent, bivalent and trivalent ions has been studied on chromium ferrocyanide gel. The distribution of various metal cations were determined by shaking the exchanger (0.1 g) and 20 ml of 0.005M metal ion solution of pH 2-3, until equilibrium was attained. The concentration of Pb/sup 2 +/, Cu/sup 2 +/, Mn/sup 2 +/, Ni/sup 2 +/, Mg/sup 2 +/ and Al/sup 3 +/ were determined by EDTA, ZrO/sup 2 +/, Th/sup 4 +/, UO/sup 2 +/ and Fe/sup 2 +/ were estimated spectrophotometrically and radiometric methods were used for Rb/sup +/, Cs/sup +/, Tl/sup +/, Ag/sup +/, Zn/sup 2 +/, Co/sup 2 +/, Cd/sup 2 +/, Hg/sup 2 +/ and Fe/sup 3 +/ metal ions. The distribution coefficients of various univalent, bivalent and trivalent metal ions (0.002M) were also determined as a function of NH/sub 4/NO/sub 3/ and HNO/sub 3/ concentrations and pH. The studies reveal a high sorption capacity for Cs/sup +/, Tl/sup +/, Ag/sup +/, Cu/sup 2 +/, Zn/sup 2 +/, Cd/sup 2 +/, Fe/sup 3 +/ and Th/sup 4 +/. The sorption of monovalent cations show purely ion exchange mechanism while the uptake of bivalent and trivalent cations is non-equivalent in nature. Single elution of Rb/sup +/, Cs/sup +/ and Tl/sup +/ has been performed from the columns of this exchanger and the recovery is almost complete in all the cases. Cu/sup 2 +/ and Ag/sup +/ get completely adsorbed on the gel column and their elution is not possible probably due to the formation of some new solid phases. Depending on the Ksub(d) values of the metal ions, a large number of separations of radiochemical as well as analytical importance can be performed on the columns of this exchanger material. It is apparent from the Ksub(d) values that a number of separations as Hg/sup 2 +/ from Mg/sup 2 +/, Ca/sup 2 +/ and Pb/sup 2 +/; Mg/sup 2 +/ from Mn/sup 2 +/: Fe/sup 3 +/ from Al/sup 3 +/; and Th/sup 4 +/ from ZrO/sup 2 +/ can be performed on the columns of this exchanger.

  16. Development of complexation ion chromatography for the determination of metal ions

    OpenAIRE

    Bashir, Wasim

    2002-01-01

    A simple ion chromatographic method was developed for the determination of Pb(II) in river and polluted water samples. The method was based upon the use of a colourforming complexing eluent and direct visible detection of the eluting Pb(II) complex. Using the combination of a strong cation exchange column and an eluent consisting of 20 mM sodium acetate-acetic acid buffer and 0.2 mM xylenol orange (XO) (~pH = 4.2), Pb(II) was detected at 572 nm eluting in under 6.5 min. The developed method p...

  17. Removal of Radioactive Nuclides by Multi-Functional Microcapsules Enclosing Inorganic Ion-Exchangers and Organic Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, H.; Akiba, K.; Onodera, Y.

    2002-02-26

    The microcapsules enclosing two kinds of functional materials, inorganic ion-exchangers and organic extractants, were prepared by taking advantage of the high immobilization ability of alginate gel polymer. The fine powders of inorganic ion-exchanger and oil drops of extractant were kneaded with sodium alginate (NaALG) solution and the kneaded sol readily gelled in a salt solution of CaCl2, BaCl2 or HCl to form spherical gel particles. The uptake properties of various nuclides, 137Cs, 85Sr, 60Co, 88Y, 152Eu and 241Am, for thirty-four specimens of microcapsules in the presence of 10-1-10-4 M HNO3 were evaluated by the batch method. The distribution coefficient (Kd) of Cs+ above 103 cm3/g was obtained for the microcapsules enclosing CuFC or AMP. The Kd of Sr2+ around 102 cm3/g was obtained for the microcapsules containing clinoptilolite, antimonic acid, zeolite A, zeolite X or titanic acid. The microcapsules enclosing DEHPA exhibited relatively large Kd values of trivalent metal ions above 103 cm3/g; for example, the Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ for a favorable microcapsule (CuFC/clinoptilolite/DEHPA/CaALG) were 1.1x104, 7.5x10, 1.1x10, 1.0x104, 1.4x104, 3.4x103 cm3/g, respectively. The uptake rates of Cs+, Y3+, Eu3+ and Am3+ for this microcapsule were rather fast; the uptake percentage above 90% was obtained after 19 h-shaking and the uptake equilibrium was attained within 1 d. The AMP/CaALG exhibited high uptake ability for Cs+ even after irradiation of 188 kGy, and DEHPA/CaALG microcapsule had similar Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ ions before and after irradiation. The microcapsules with various shapes such as spherical, columnar, fibrous and filmy forms were easily prepared by changing the way of dipping kneaded sol into gelling salt solution. The microcapsules enclosing inorganic ion-exchangers and extractants have a potential possibility for the simultaneous removal of various radioactive nuclides from waste solutions.

  18. Treatment of spent ion-exchange resins for storage and disposal

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes the experience gained by different countries on storage of spent ion exchange resins, immobilization of them into various matrices and the development of new methods in decomposition and solidification of spent resins. The report contains all the results of the Coordinated Research Programme together with additional data available from countries not participating in this programme. A review of practical industrial experience in treating spent ion exchange resins is given in the annex

  19. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous

  20. Treatment method for stabilization of radioactive exchange resin

    International Nuclear Information System (INIS)

    Hideo, Oni; Takashi, Miyake; Hitoshi, Miyamoto; Toshio, Funakoshi; Yuzo, Inagaki.

    1988-01-01

    This is a method for eluting radioactive nuclides from a radioactive ion exchange resin in which it has been absorbed. First, the Cs in this resin is extracted using a neutral salt solution which contains Na + . The Cs that has been transferred to the neutral salt solution is absorbed and expelled by inorganic ion exchangers. Then the Co, Fe, Mn and Sr in said resin are eluted using an acidic solution; the Co, Fe, Mn and Sr that have been transferred to the acidic solution are separated from that solution by means of a diffusion dialysis vat. This process is a unique characteristic of this ion exchange resin treatment method. 1 fig

  1. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  2. Separation of uranium from sodium carbonate - sodium bicarbonate eluate by ion exchange method

    International Nuclear Information System (INIS)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na 2 CO 3 -0.5 N NaHCO 3 ) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/1 uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluant (5 % NaCl-0.5 % Na 2 CO 3 ). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased. (author)

  3. Separation of uranium from sodium carbonate-sodium bicarbonate eluate by ion exchange method

    International Nuclear Information System (INIS)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na 2 CO 3 -0.5 N NaHCO 3 ) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/l uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluent (5% NaCl-0.5% Na 2 CO 3 ). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased. (author)

  4. Effect of buffer general acid-base catalysis on the stereoselectivity of ester and thioester H/D exchange in D2O.

    Science.gov (United States)

    Mohrig, Jerry R; Reiter, Nicholas J; Kirk, Randy; Zawadski, Michelle R; Lamarre-Vincent, Nathan

    2011-04-06

    As part of a comprehensive investigation on the stereochemistry of base-catalyzed 1,2-elimination and H/D exchange reactions of carbonyl compounds, we have found that the stereoselectivity of H/D exchange of 3-hydroxybutyryl N-acetylcysteamine (3) in D(2)O is strongly influenced by the presence of buffers. This buffer effect is also operative with a simple acyclic ester, ethyl 3-methoxybutanoate (7). Buffers whose general-acid components are cyclic tertiary ammonium ions are particularly effective in changing the stereoselectivity. (2)H NMR analysis showed that without buffer, H/D exchange of 3 produces 81-82% of the 2R*, 3R* diastereomer of 2-deuterio 3 (the anti product). In the presence of 0.33 M 3-quinuclidinone buffer, only 44% of the 2R*, 3R* diastereomer was formed. With ester 7, the stereoselectivity went from 93-94% in DO(-)/D(2)O to 60% in the presence of buffer. Phosphate buffer, as well as others, also showed substantial effects. The results are put into the context of what is known about the mechanism of H/D exchange of esters and thioesters, and the relevance of the buffer effect on the mechanism of the enoyl-CoA hydratase reaction is discussed. It is likely that hydrogen bonding in the enolate-buffer acid encounter complex is an important stereochemical determinant in producing a greater amount of the 2R*, 3S* diastereomer (the syn product). Studies that involve the protonation of enolate anions in D(2)O need to include the buffer general acid in any understanding of the stereoselectivity. © 2011 American Chemical Society

  5. K Basin Sludge Conditioning Process Testing Project. Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    International Nuclear Information System (INIS)

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1998-06-01

    Approximately 73 m 3 of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process

  6. Operating experience with ion exchanger beds in CIRUS

    International Nuclear Information System (INIS)

    Acharya, V.N.; Hajra, P.

    1977-01-01

    Operating experience with the ion exchanger beds in CIRUS reactor is narrated. Ion exchangers are provided for demineralisation of make up water and purification of closed loop water circuits. Exhaustion of resin is assessed on the basis of CO 2 concentration in the helium vent gas of the heavy water system. It is recommended that valves in the resin columns for rod handling bays be located outside the enclosure and each bed to reduce man-rem consumption during maintenance. Repeated backwash of the bed reduces chocking of water space with resin fines. Preventive maintenance avoids leakage past valves. Active resin from the resin beds is removed by hydraulic transfer method. (M.G.B.)

  7. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    Science.gov (United States)

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Calcium isotope fractionation in ion-exchange chromatography

    International Nuclear Information System (INIS)

    Russell, W.A.; Papanastassiou, D.A.

    1978-01-01

    Significant fractionation of the isotopes of calcium has been observed during elution through short ion-exchange columns packed with Dowex 50W-X8 resin. A double isotopic tracer was used to provide correction for instrumental fractionation effects. The absolute 40 Ca/ 44 Ca ratio is determined by this method to 0.05% and provides a measure of the fractionation of all Ca isotopes. It is found that the lighter isotopes are preferentially retained by the resin, with variations in 40 Ca/ 44 Ca between the first and last fractions of up to 1.1%. An estimate of the separation factor between batch solute and resin gives epsilon = 2.1 x 10 -4 . Details of the chemical or physical mechanisms causing isotope fractionation of Li, Na, Ca, and other elements during ion-exchange chromatography are not yet clear

  9. Comparison or organic and inorganic ion exchange materials for removal of cesium and strontium from Hanford waste

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    This work is part of an ESP-CP task to develop and evaluate high-capacity, selective, solid extractants for the uptake of cesium, strontium, and technetium (Cs, Sr, and Tc) from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff, in collaboration with researchers from industry, academia, and national laboratories are investigating these and other novel and commercial ion exchangers for use in nuclear waste remediation of groundwater, HLW, and LLW. Since FY 1995, experimental work at PNNL has focused on small-scale batch distribution (K{sub d}) testing of numerous solid sorbents with actual and simulated Hanford wastes, chemical and radiolytic stability of various organic ion exchanger resins, bench-scale column ion exchange testing in actual and simulated Complexant Concentrate (CC) and Neutralized Current Acid Waste (NCAW), and Tc and Sr removal from groundwater and LLW. In addition, PNNL has continued to support various site demonstrations at the Idaho National Engineering Laboratory, Savannah River Site, West Valley Nuclear Services, Hanford N-Springs, and Hanford N-Basin using technologies developed by their industrial partners. This summary will focus on batch distribution results from the actual waste tests. The data collected in these development and testing tasks provide a rational basis for the selection and direct comparison of various ion exchange materials in simulated and actual HLW, LLW, and groundwater. In addition, prediction of large-scale column loading performance for the materials tested is possible using smaller volumes of actual waste solution. The method maximizes information while minimizing experimental expense, time, and laboratory and process wastes.

  10. Phosphate barrier on pore-filled cation-exchange membrane for blocking complexing ions in presence of non-complexing ions

    Science.gov (United States)

    Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.

    2018-06-01

    In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.

  11. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    International Nuclear Information System (INIS)

    Smith, F.; Hamm, Luther; Aleman, Sebastian; Michael, Johnston

    2008-01-01

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system

  12. Removal of plutonium from nitric acid-oxalic acid solutions using anion exchange method

    International Nuclear Information System (INIS)

    Kasar, U.M.; Pawar, S.M.; Joshi, A.R.

    1999-01-01

    An anion exchange method using Amberlyst A-26 (MP) resin was developed for removal of Pu from nitric acid-oxalic acid solutions without destroying oxalate. The method consists of sorption of Pu(IV) on Amberlyst A-26, a macroporous anion exchange resin, from nitric acid-oxalic acid medium in the presence of Al(NO 3 ) 3 . Pu(IV) breakthrough capacity of Amberlyst A-26 using synthetic feed solution was determined. (author)

  13. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    Science.gov (United States)

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSDchromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High Br- Content CsPb(Cl yBr1- y)3 Perovskite Nanocrystals with Strong Mn2+ Emission through Diverse Cation/Anion Exchange Engineering.

    Science.gov (United States)

    Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z

    2018-04-11

    The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

  15. Charge exchange processes involving iron ions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.

    1985-01-01

    A review and evaluation is given of the experimental data which are available for charge exchange processes involving iron ions and neutral H, H 2 and He. Appropriate scaling laws are presented, and their accuracy estimated for these systems. A bibliography is given of available data sources, as well as of useful data compilations and review articles. A procedure is recommended for providing single approximate formulae to the fusion community to describe total cross sections for electron capture by partially-stripped Fe/sup q+/ ions in collisions with H, H 2 and He, based on the scaling relationships suggested by Janev and Hvelplund

  16. Solidification of ion exchange resin wastes

    International Nuclear Information System (INIS)

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of 137 Cs, 85 Sr, and 60 Co from resins modified in portland type III and high alumina cements. The cumulative 137 Cs fraction release was at least an order of magnitude greater than that of either 85 Sr or 60 Co. Release rates of 137 Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. 137 Cs, 85 Sr, and 60 Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement

  17. Separation of uranium from sodium carbonate - sodium bicarbonate eluate by ion exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, Kohji; Hirotsu, Takahiro; Fujii, Ayako; Katoh, Shunsaku; Sugasaka, Kazuhiko (Government Industrial Research Inst., Shikoku, Takamatsu (Japan))

    1982-09-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na/sub 2/CO/sub 3/-0.5 N NaHCO/sub 3/) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/1 uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluant (5 % NaCl-0.5 % Na/sub 2/CO/sub 3/). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased.

  18. Separation of uranium from sodium carbonate-sodium bicarbonate eluate by ion exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, K.; Hirotsu, T.; Fujii, A.; Katoh, S.; Sugasaka, K. (Government Industrial Research. Inst., Shikoku, Takamatsu (Japan))

    1982-01-01

    The ion exchange method was used for separating uranium from the eluate (0.5 N Na/sub 2/CO/sub 3/-0.5 N NaHCO/sub 3/) that was obtained in the extraction process of uranium from natural sea water by using the titanium-activated carbon composite adsorbent. Uranium in the eluate containing 3 mg/l uranium was adsorbed by ion exchange resin (Amberlite IRA-400), and was eluted with the eluent (5% NaCl-0.5% Na/sub 2/CO/sub 3/). The concentration ratio of uranium in the final concentrated-eluate became more than 20 times. The eluting solution to the adsorbent and the eluant to the resin could be repeatedly used in the desorption-ion exchange process. Sodium carbonate was consumed at the desorption step, and sodium bicarbonate was consumed at the ion exchange step. The concentration ratio of uranium was found to decrease as chloride ion in the eluate increased.

  19. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions

    DEFF Research Database (Denmark)

    Liao, Jianhui; Yang, Jingshuai; Li, Qingfeng

    2013-01-01

    Phosphoric acid doped polybenzimidazole membranes have been explored as proton exchange membranes for high temperature polymer electrolyte membrane fuel cells. Long-term durability of the membrane is of critical concern and has been evaluated by accelerated degradation tests under Fenton conditions...... of the polymer. Fuel cell durability tests with contaminations of ferrous ions did show considerable performance degradation, however, primarily due to the catalyst deterioration rather than the membrane degradation........ In this study effects of phosphoric acid and ferrous ions were investigated by measurements of the weight loss, intrinsic viscosity and size exclusion chromatography (SEC) of the polymer membranes. Ferrous ions resulted in, as expected, catalytic formation of peroxide radicals and hence the accelerated polymer...

  20. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)