WorldWideScience

Sample records for stromal derived factor-1

  1. Stromal cell-derived factor 1α (SDF-1α)

    DEFF Research Database (Denmark)

    Li, Dana; Bjørnager, Louise; Langkilde, Anne

    2016-01-01

    OBJECTIVES: Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated...

  2. Chemotaxis of primitive hematopoietic cells in response to stromal cell–derived factor-1

    Science.gov (United States)

    Jo, Deog-Yeon; Rafii, Shahin; Hamada, Tsuneyoshi; Moore, Malcolm A.S.

    2000-01-01

    Stromal cell–derived factor-1 (SDF-1) provides a potent chemotactic stimulus for CD34+ hematopoietic cells. We cultured mobilized peripheral blood (PB) and umbilical cord blood (CB) for up to 5 weeks and examined the migratory activity of cobblestone area–forming cells (CAFCs) and long-term culture–initiating cells (LTC-ICs) in a transwell assay. In this system, SDF-1 or MS-5 marrow stromal cells placed in the lower chamber induced transmembrane and transendothelial migration by 2- and 5-week-old CAFCs and LTC-ICs in 3 hours. Transmigration was blocked by preincubation of input CD34+ cells with antibody to CXCR4. Transendothelial migration of CB CAFCs and LTC-ICs was higher than that of PB. We expanded CD34+ cells from CB in serum-free medium with thrombopoietin, flk-2 ligand, and c-kit ligand, with or without IL-3 and found that CAFCs cultured in the absence of IL-3 had a chemotactic response equivalent to noncultured cells, even after 5 weeks. However, addition of IL-3 to the culture reduced this response by 20–50%. These data indicate that SDF-1 induces chemotaxis of primitive hematopoietic cells signaling through CXCR4 and that the chemoattraction could be downmodulated by culture ex vivo. PMID:10619866

  3. Hypoxic stress simultaneously stimulates vascular endothelial growth factor via hypoxia-inducible factor-1α and inhibits stromal cell-derived factor-1 in human endometrial stromal cells.

    Science.gov (United States)

    Tsuzuki, Tomoko; Okada, Hidetaka; Cho, Hisayuu; Tsuji, Shoko; Nishigaki, Akemi; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2012-02-01

    Hypoxia of the human endometrium is a physiologic event occurring during the perimenstrual period and the local stimulus for angiogenesis. The aim of this study was to investigate the effects of hypoxic stress on the regulation of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1/CXCL12), and the potential role of hypoxia-inducible factor-1α (HIF-1α) in the endometrium. Human endometrial stromal cells (ESCs, n= 22 samples) were studied in vitro. ESCs were cultured under hypoxic and normoxic conditions and treated with cobalt chloride (CoCl₂; a hypoxia-mimicking agent) and/or echinomycin, a small-molecule inhibitor of HIF-1α activity. The mRNA levels and production of VEGF and SDF-1 were assessed by real-time PCR and ELISA, respectively. The HIF-1α protein levels were measured using western blot analysis. Hypoxia simultaneously induced the expression of mRNA and production of VEGF and attenuated the expression and production of SDF-1 from ESCs in a time-dependent manner. Similar changes were observed in the ESCs after stimulation with CoCl₂ in a dose-dependent manner. CoCl₂ significantly induced the expression of HIF-1α protein, and its highest expression was observed at 6 h. Echinomycin inhibited hypoxia-induced VEGF production without affecting the HIF-1α protein level and cell toxicity and had no effect on SDF-1 secretion (P hypoxic conditions that could influence angiogenesis in the human endometrium.

  4. Stromal cell-derived factor-1 alpha (SDF-1 alpha) improves neural recovery after spinal cord contusion in rats

    NARCIS (Netherlands)

    Zendedel, A.; Nobakht, M.; Bakhtiyari, M.; Beyer, C.; Kipp, M.; Baazm, M.; Joghataie, M.T.

    2012-01-01

    Stromal cell-derived factor-1 alpha (SDF-1α) is an important cytokine, implicated in the control of stem cell trafficking and bone marrow-derived stem cell mobilization. Generally, SDF-1α regulates multiple physiological processes such as embryonic development and organ homeostasis. There is also

  5. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    Full Text Available Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/- mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/- mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/- mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/- mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/- mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/- mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/- mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/- mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  6. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    Science.gov (United States)

    Murata, Koichi; Kitaori, Toshiyuki; Oishi, Shinya; Watanabe, Naoki; Yoshitomi, Hiroyuki; Tanida, Shimei; Ishikawa, Masahiro; Kasahara, Takashi; Shibuya, Hideyuki; Fujii, Nobutaka; Nagasawa, Takashi; Nakamura, Takashi; Ito, Hiromu

    2012-01-01

    Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  7. Stromal Derived Factor-1/CXCR4 Axis Involved in Bone Marrow Mesenchymal Stem Cells Recruitment to Injured Liver

    Directory of Open Access Journals (Sweden)

    Kuai Xiao Ling

    2016-01-01

    Full Text Available The molecular mechanism of bone marrow mesenchymal stromal stem cells (BMSCs mobilization and migration to the liver was poorly understood. Stromal cell-derived factor-1 (SDF-1 participates in BMSCs homing and migration into injury organs. We try to investigate the role of SDF-1 signaling in BMSCs migration towards injured liver. The expression of CXCR4 in BMSCs at mRNA level and protein level was confirmed by RT-PCR, flow cytometry, and immunocytochemistry. The SDF-1 or liver lysates induced BMSCs migration was detected by transwell inserts. CXCR4 antagonist, AMD3100, and anti-CXCR4 antibody were used to inhibit the migration. The Sprague-Dawley rat liver injury model was established by intraperitoneal injection of thioacetamide. The concentration of SDF-1 increased as modeling time extended, which was determined by ELISA method. The Dir-labeled BMSCs were injected into the liver of the rats through portal vein. The cell migration in the liver was tracked by in vivo imaging system and the fluorescent intensity was measured. In vivo, BMSCs migrated into injured liver which was partially blocked by AMD3100 or anti-CXCR4 antibody. Taken together, the results demonstrated that the migration of BMSCs was regulated by SDF-1/CXCR4 signaling which involved in BMSCs recruitment to injured liver.

  8. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  9. Progestins inhibit estradiol-induced vascular endothelial growth factor and stromal cell-derived factor 1 in human endometrial stromal cells.

    Science.gov (United States)

    Okada, Hidetaka; Okamoto, Rika; Tsuzuki, Tomoko; Tsuji, Shoko; Yasuda, Katsuhiko; Kanzaki, Hideharu

    2011-09-01

    To investigate whether 17β-estradiol (E(2)) and progestins exert direct effects on vascular endothelial growth factor (VEGF) and stromal cell-derived factor 1 (SDF-1/CXCL12) in human endometrial stromal cells (ESCs) and thereby to clarify the regulatory function of these local angiogenic factors in the endometrium. In vitro experiment. Research laboratory at Kansai Medical University. Fourteen patients undergoing hysterectomy for benign reasons. ESCs were cultured with E(2) and/or various clinically relevant progestins (medroxyprogesterone acetate [MPA], norethisterone [NET], levonorgestrel [LNG], dienogest [DNG], and progesterone [P]). The mRNA levels and production of VEGF and SDF-1 were assessed by real-time reverse-transcription polymerase chain reaction and ELISA, respectively. E(2) significantly induced the mRNA levels and protein production of VEGF and SDF-1 in ESCs. MPA could antagonize the E(2)-stimulated effects in a time- and dose-dependent manner, and this effect could be reversed by RU-486 (P receptor antagonist). All of the progestins (MPA, NET, LNG, and DNG; 10(-9) to 10(-7) mol/L) attenuated E(2)-induced VEGF and SDF-1 production, whereas P showed these inhibitory effects only when present in a high concentration (10(-7) mol/L). Progestins have inhibitory effects on E(2)-induced VEGF and SDF-1 in ESCs. These results may indicate a potential mechanism for action of the female sex steroids in the human endometrium that can be helpful for various clinical applications. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells.

    Science.gov (United States)

    Cuchiara, Maude L; Horter, Kelsey L; Banda, Omar A; West, Jennifer L

    2013-12-01

    Hematopoietic stem cells (HSCs) are currently utilized in the treatment of blood diseases, but widespread application of HSC therapeutics has been hindered by the limited availability of HSCs. With a better understanding of the HSC microenvironment and the ability to precisely recapitulate its components, we may be able to gain control of HSC behavior. In this work we developed a novel, biomimetic PEG hydrogel material as a substrate for this purpose and tested its potential with an anchorage-independent hematopoietic cell line, 32D clone 3 cells. We immobilized a fibronectin-derived adhesive peptide sequence, RGDS; a cytokine critical in HSC self-renewal, stem cell factor (SCF); and a chemokine important in HSC homing and lodging, stromal derived factor 1α (SDF1α), onto the surfaces of poly(ethylene glycol) (PEG) hydrogels. To evaluate the system's capabilities, we observed the effects of the biomolecules on 32D cell adhesion and morphology. We demonstrated that the incorporation of RGDS onto the surfaces promotes 32D cell adhesion in a dose-dependent fashion. We also observed an additive response in adhesion on surfaces with RGDS in combination with either SCF or SDF1α. In addition, the average cell area increased and circularity decreased on gel surfaces containing immobilized SCF or SDF1α, indicating enhanced cell spreading. By recapitulating aspects of the HSC microenvironment using a PEG hydrogel scaffold, we have shown the ability to control the adhesion and spreading of the 32D cells and demonstrated the potential of the system for the culture of primary hematopoietic cell populations. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy

    Science.gov (United States)

    Askari, Arman T.; Unzek, Samuel; Popovic, Zoran B.; Goldman, Corey K.; Forudi, Farhad; Kiedrowski, Matthew; Rovner, Aleksandr; Ellis, Stephen G.; Thomas, James D.; DiCorleto, Paul E.; hide

    2003-01-01

    BACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, pcell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.

  12. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing.

    Directory of Open Access Journals (Sweden)

    Fang-Yuan Wei

    Full Text Available Low intensity pulsed ultrasound (LIPUS has been proven effective in promoting fracture healing but the underlying mechanisms are not fully depicted. We examined the effect of LIPUS on the recruitment of mesenchymal stem cells (MSCs and the pivotal role of stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4 pathway in response to LIPUS stimulation, which are essential factors in bone fracture healing. For in vitro study, isolated rat MSCs were divided into control or LIPUS group. LIPUS treatment was given 20 minutes/day at 37 °C for 3 days. Control group received sham LIPUS treatment. After treatment, intracellular CXCR4 mRNA, SDF-1 mRNA and secreted SDF-1 protein levels were quantified, and MSCs migration was evaluated with or without blocking SDF-1/CXCR4 pathway by AMD3100. For in vivo study, fractured 8-week-old young rats received intracardiac administration of MSCs were assigned to LIPUS treatment, LIPUS+AMD3100 treatment or vehicle control group. The migration of transplanted MSC to the fracture site was investigated by ex vivo fluorescent imaging. SDF-1 protein levels at fracture site and in serum were examined. Fracture healing parameters, including callus morphology, micro-architecture of the callus and biomechanical properties of the healing bone were investigated. The in vitro results showed that LIPUS upregulated SDF-1 and CXCR4 expressions in MSCs, and elevated SDF-1 protein level in the conditioned medium. MSCs migration was promoted by LIPUS and partially inhibited by AMD3100. In vivo study demonstrated that LIPUS promoted MSCs migration to the fracture site, which was associated with an increase of local and serum SDF-1 level, the changes in callus formation, and the improvement of callus microarchitecture and mechanical properties; whereas the blockade of SDF-1/CXCR4 signaling attenuated the LIPUS effects on the fractured bones. These results suggested SDF-1 mediated MSCs migration might be one of the

  13. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  14. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    International Nuclear Information System (INIS)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F 2 -isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: ► Neuroprotective ability of the chemokines MIP2 and CXCL12 against Aβ toxicity. ► MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. ► Neuroprotection through activation of Akt, ERK

  15. Epigenetic regulation of cardiac progenitor cells marker c-kit by stromal cell derived factor-1α.

    Directory of Open Access Journals (Sweden)

    Zhongpu Chen

    Full Text Available BACKGROUND: Cardiac progenitor cells (CPCs have been proven suitable for stem cell therapy after myocardial infarction, especially c-kit(+CPCs. CPCs marker c-kit and its ligand, the stem cell factor (SCF, are linked as c-kit/SCF axis, which is associated with the functions of proliferation and differentiation. In our previous study, we found that stromal cell-derived factor-1α (SDF-1α could enhance the expression of c-kit. However, the mechanism is unknown. METHODS AND RESULTS: CPCs were isolated from adult mouse hearts, c-kit(+ and c-kit(- CPCs were separated by magnetic beads. The cells were cultured with SDF-1α and CXCR4-selective antagonist AMD3100, and c-kit expression was measured by qPCR and Western blotting. Results showed that SDF-1α could enhance c-kit expression of c-kit(+CPCs, made c-kit(-CPCs expressing c-kit, and AMD3100 could inhibit the function of SDF-1α. After the intervention of SDF-1α and AMD3100, proliferation and migration of CPCs were measured by CCK-8 and transwell assay. Results showed that SDF-1α could enhance the proliferation and migration of both c-kit(+ and c-kit(- CPCs, and AMD3100 could inhibit these functions. DNA methyltransferase (DNMT mRNA were measured by qPCR, DNMT activity was measured using the DNMT activity assay kit, and DNA methylation was analyzed using Sequenom's MassARRAY platform, after the CPCs were cultured with SDF-1α. The results showed that SDF-1α stimulation inhibited the expression of DNMT1 and DNMT3β, which are critical for the maintenance of regional DNA methylation. Global DNMT activity was also inhibited by SDF-1α. Lastly, SDF-1α treatment led to significant demethylation in both c-kit(+ and c-kit(- CPCs. CONCLUSIONS: SDF-1α combined with CXCR4 could up-regulate c-kit expression of c-kit(+CPCs and make c-kit(-CPCs expressing c-kit, which result in the CPCs proliferation and migration ability improvement, through the inhibition of DNMT1 and DNMT3β expression and global DNMT

  16. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure.

    Science.gov (United States)

    Penn, Marc S; Mendelsohn, Farrell O; Schaer, Gary L; Sherman, Warren; Farr, Maryjane; Pastore, Joseph; Rouy, Didier; Clemens, Ruth; Aras, Rahul; Losordo, Douglas W

    2013-03-01

    Preclinical studies indicate that adult stem cells induce tissue repair by activating endogenous stem cells through the stromal cell-derived factor-1:chemokine receptor type 4 axis. JVS-100 is a DNA plasmid encoding human stromal cell-derived factor-1. We tested in a phase 1, open-label, dose-escalation study with 12 months of follow-up in subjects with ischemic cardiomyopathy to see if JVS-100 improves clinical parameters. Seventeen subjects with ischemic cardiomyopathy, New York Heart Association class III heart failure, with an ejection fraction ≤40% on stable medical therapy, were enrolled to receive 5, 15, or 30 mg of JVS-100 via endomyocardial injection. The primary end points for safety and efficacy were at 1 and 4 months, respectively. The primary safety end point was a major adverse cardiac event. Efficacy end points were change in quality of life, New York Heart Association class, 6-minute walk distance, single photon emission computed tomography, N-terminal pro-brain natruretic peptide, and echocardiography at 4 and 12 months. The primary safety end point was met. At 4 months, all of the cohorts demonstrated improvements in 6-minute walk distance, quality of life, and New York Heart Association class. Subjects in the 15- and 30-mg dose groups exhibited improvements in 6-minute walk distance (15 mg: median [range]: 41 minutes [3-61 minutes]; 30 mg: 31 minutes [22-74 minutes]) and quality of life (15 mg: -16 points [+1 to -32 points]; 30 mg: -24 points [+17 to -38 points]) over baseline. At 12 months, improvements in symptoms were maintained. These data highlight the importance of defining the molecular mechanisms of stem cell-based tissue repair and suggest that overexpression of stromal cell-derived factor-1 via gene therapy is a strategy for improving heart failure symptoms in patients with ischemic cardiomyopathy.

  17. Vildagliptin reduces plasma stromal cell-derived factor-1α in patients with type 2 diabetes compared with glimepiride.

    Science.gov (United States)

    Park, Kyeong Seon; Kwak, SooHeon; Cho, Young Min; Park, Kyong Soo; Jang, Hak C; Kim, Seong Yeon; Jung, Hye Seung

    2017-03-01

    Dipeptidyl peptidase-4 inhibitors might have pleiotropic protective effects on cardiovascular disease (CVD), in contrast to sulfonylureas. Therefore, we compared various CVD risk factors between vildagliptin and glimepiride. We carried out a randomized, prospective and crossover trial. A total of 16 patients with type 2 diabetes whose glycated hemoglobin was >7% were randomized to add vildagliptin or glimepiride. After 12-week treatment, each drug was replaced with the other for another 12 weeks. Before and after each treatment, glucose homeostasis and CVD risk factors were assessed, and the continuous glucose monitoring system was applied to calculate glycemic variability. The mean age of the participants was 60 years, 31% were men, body mass index 25.5 kg/m 2 and HbA1c 8.41%. Both vildagliptin and glimepiride significantly decreased glycated hemoglobin and glycemic variability indices. Despite the improved glucose homeostasis, favorable change of CVD markers was not prominent in both the arms, along with significant weight gain. Only plasma stromal cell-derived factor (SDF)-1α decreased by 30% in the vildagliptin arm. According to regression analyses, the reduction of SDF-1α was independently associated with vildagliptin usage and serum interleukin-6 changes, but white blood cells were not related with the SDF-1α changes. Compared with glimepiride, vildagliptin arrestingly decreased plasma SDF-1α, and its clinical implications should be further investigated. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  18. Human Breast Adipose-Derived Stem Cells Transfected with the Stromal Cell-Derived Factor-1 Receptor CXCR4 Exhibit Enhanced Viability in Human Autologous Free Fat Grafts

    Directory of Open Access Journals (Sweden)

    Fang-tian Xu

    2014-11-01

    Full Text Available Background: The main complication of autologous free fat tissue transplantation is fat resorption and calcification due to the ischemic necrosis of fat. The promotion of transplant neovascularization soon after autologous free fat grafts may reduce these outcomes. In adulthood, stromal cell-derived factor-1 (SDF-1 and its membrane receptor C-X-C chemokine receptor type 4 (CXCR4 are involved in the homing and migration of multiple stem cell types, neovascularization, and cell proliferation. We hypothesized that CXCR4 may improve the long-term survival of free fat tissue transplants by recruiting endothelial progenitor cells (EPCs and may therefore improve graft revascularization. In this study, we aimed to determine the effect of human breast adipose-derived stem cells (HBASCs transfected with the CXCR4 gene on the survival rate of human autologous free fat transplants in nude mice. Methods: Human breast adipose-derived stem cells (HBASCs were expanded ex vivo for 3 passages, labeled with green fluorescent protein (GFP and transfected with CXCR4 or left untransfected. Autologous fat tissues were mixed with the GFP-labeled, CXCR4-transfected HBASCs (group A, GFP-labeled HBASCs (group B, the known vascularization-promoting agent VEGF (group C, or medium (group D and then injected subcutaneously into 32 nude mice at 4 spots in a random fashion. Six months later, the transplanted tissue volume and histology were evaluated, and neo-vascularization was quantified by counting the capillaries. CXCR4 and SDF-1α mRNA expression in the transplants was determined using real-time quantitative PCR analysis (qPCR. Results: The data revealed that the control (group D transplant volume survival was 28.3 ± 4.5%. Mixing CXCR4-transfected (group A and untransfected (group B HBASCs significantly increased transplant volume survival (79.5 ± 8.3% and 67.2 ± 5.9%, respectively, whereas VEGF-transfected HBASCs (group C were less effective (41.2 ± 5.1%. Histological

  19. A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle

    Directory of Open Access Journals (Sweden)

    D Kuraitis

    2011-09-01

    Full Text Available Although many regenerative cell therapies are being developed to replace or regenerate ischaemic muscle, the lack of vasculature and poor persistence of the therapeutic cells represent major limiting factors to successful tissue restoration. In response to ischaemia, stromal cell-derived factor-1 (SDF-1 is up-regulated by the affected tissue to stimulate stem cell-mediated regenerative responses. Therefore, we encapsulated SDF-1 into alginate microspheres and further incorporated these into an injectable collagen-based matrix in order to improve local delivery. Microsphere-matrix impregnation reduced the time for matrix thermogelation, and also increased the viscosity reached. This double-incorporation prolonged the release of SDF-1, which maintained adhesive and migratory bioactivity, attributed to chemotaxis in response to SDF-1. In vivo, treatment of ischaemic hindlimb muscle with microsphere-matrix led to increased mobilisation of bone marrow-derived progenitor cells, and also improved recruitment of angiogenic cells expressing the SDF-1 receptor (CXCR4 from bone marrow and local tissues. Both matrix and SDF-1-releasing matrix were successful at restoring perfusion, but SDF-1 treatment appeared to play an earlier role, as evidenced by arterioles that are phenotypically older and by increased angiogenic cytokine production, stimulating the generation of a qualitative microenvironment for a rapid and therefore more efficient regeneration. These results support the release of implanted SDF-1 as a promising method for enhancing progenitor cell responses and restoring perfusion to ischaemic tissues via neovascularisation.

  20. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats

    Directory of Open Access Journals (Sweden)

    Wu S

    2014-12-01

    Full Text Available Shengzheng Wu,1 Lu Li,1 Gong Wang,1 Weiwei Shen,2 Yali Xu,1 Zheng Liu,1 Zhongxiong Zhuo,1 Hongmei Xia,1 Yunhua Gao,1 Kaibin Tan1 1Department of Ultrasound, 2Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Mesenchymal stem cell (MSC therapy has been considered a promising strategy to cure diabetic nephropathy (DN. However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1 plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MBSDF-1 via covalent conjugation. The characterization and bioactivity of MBSDF-1 were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MBSDF-1. The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 µg/mL. MBSDF-1 remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with

  1. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio; Schettini, Gennaro

    2005-01-01

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  2. The Expanding Family of Bone Marrow Homing Factors for Hematopoietic Stem Cells: Stromal Derived Factor 1 Is Not the Only Player in the Game

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak

    2012-01-01

    Full Text Available The α-chemokine stromal derived factor 1 (SDF-1, which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs to bone marrow (BM and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P and ceramide-1-phosphate (C1P, and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP and adenosine triphosphate (ATP. Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 or β2-defensin as well as prostaglandin E2 (PGE2. Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.

  3. Prognostic value of the stromal cell-derived factor 1 3'A mutation in pediatric human immunodeficiency virus type 1 infection.

    Science.gov (United States)

    Tresoldi, Eleonora; Romiti, Maria Luisa; Boniotto, Michele; Crovella, Sergio; Salvatori, Francesca; Palomba, Elvia; Pastore, Angela; Cancrini, Caterina; de Martino, Maurizio; Plebani, Anna; Castelli, Guido; Rossi, Paolo; Tovo, Pier Angelo; Amoroso, Antonio; Scarlatti, Gabriella

    2002-03-01

    A mutation of the stromal cell-derived factor 1 gene (SDF-1 3'A) was shown to protect adults exposed to human immunodeficiency virus type 1 (HIV-1) from infection and to affect HIV disease progression in adults. The presence of this mutation in HIV-1-infected Kenyan children did not predict mother-to-child virus transmission. The SDF-1 3'A polymorphism was studied in 256 HIV-1-infected, 118 HIV-1-exposed but uninfected, and 170 unexposed and uninfected children of Italian origin, and the frequency of SDF-1 3'A heterozygosity and homozygosity in each of the 3 groups was similar. Of the 256 HIV-1-infected children, 194 were regularly followed up and were assigned to groups according to disease progression. The frequency of the SDF-1 3'A allele was substantially lower among children with long-term nonprogression than among children with rapid (P =.0329) or delayed (P =.0375) progression. We show that the presence of the SDF-1 3'A gene correlates with accelerated disease progression in HIV-1-infected children born to seropositive mothers but does not protect against mother-to-child HIV-1 transmission.

  4. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    Science.gov (United States)

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-12-01

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  5. Stromal Cell-Derived Factor-1α Plays a Crucial Role Based on Neuroprotective Role in Neonatal Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Miki Mori

    2015-08-01

    Full Text Available Owing to progress in perinatal medicine, the survival of preterm newborns has markedly increased. However, the incidence of cerebral palsy has risen in association with increased preterm birth. Cerebral palsy is largely caused by cerebral hypoxic ischemia (HI, for which there are no effective medical treatments. We evaluated the effects of stromal cell-derived factor-1α (SDF-1α on neonatal brain damage in rats. Left common carotid (LCC arteries of seven-day-old Wistar rat pups were ligated, and animals were exposed to hypoxic gas to cause cerebral HI. Behavioral tests revealed that the memory and spatial perception abilities were disturbed in HI animals, and that SDF-1α treatment improved these cognitive functions. Motor coordination was also impaired after HI but was unimproved by SDF-1α treatment. SDF-1α reduced intracranial inflammation and induced cerebral remyelination, as indicated by the immunohistochemistry results. These data suggest that SDF-1α specifically influences spatial perception abilities in neonatal HI encephalopathy.

  6. Intra-Articular Injection of Human Meniscus Stem/Progenitor Cells Promotes Meniscus Regeneration and Ameliorates Osteoarthritis Through Stromal Cell-Derived Factor-1/CXCR4-Mediated Homing

    Science.gov (United States)

    Shen, Weiliang; Chen, Jialin; Zhu, Ting; Chen, Longkun; Zhang, Wei; Fang, Zhi; Heng, Boon Chin; Yin, Zi; Chen, Xiao; Ji, Junfeng

    2014-01-01

    Meniscus injury is frequently encountered in clinical practice. Current surgical therapy involving partial or complete meniscectomy relieves pain in the short-term but often leads to osteoarthritis (OA) in the long-term. In this study, we report a new strategy of articular cartilage protection by intra-articular injection of novel human meniscus stem/progenitor cells (hMeSPCs). We found that hMeSPCs displayed both mesenchymal stem cell characteristics and high expression levels of collagen II. In the rat meniscus injury model, hMeSPC transplantation not only led to more neo-tissue formation and better-defined shape but also resulted in more rounded cells and matured extracellular matrix. Stromal cell-derived factor-1 (SDF-1) enhanced the migration of hMeSPCs, whereas AMD3100 abolished the chemotactic effects of SDF-1 on hMeSPCs, both in vitro and in vivo. In an experimental OA model, transplantation of hMeSPCs effectively protected articular cartilage, as evidenced by reduced expression of OA markers such as collagen I, collagen X, and hypoxia-inducible factor 2α but increased expression of collagen II. Our study demonstrated for the first time that intra-articular injection of hMeSPCs enhanced meniscus regeneration through the SDF-1/CXCR4 axis. Our study highlights a new strategy of intra-articular injection of hMeSPCs for meniscus regeneration. PMID:24448516

  7. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films.

    Science.gov (United States)

    Steinhagen, Max; Hoffmeister, Peter-Georg; Nordsieck, Karoline; Hötzel, Rudi; Baumann, Lars; Hacker, Michael C; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2014-04-23

    Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.

  8. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Li, Wei [Department of Gerontology, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qichang [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Qin, Tao [Department of Hepatobiliary Pancreatic Surgery, People' s Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou 450003 (China); Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Liu, Sanguang, E-mail: sanguang1998@sina.com [Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000 (China); Song, Zifang, E-mail: zsong@hust.edu.cn [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China)

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  9. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Yang, Bin; Li, Wei; Zheng, Qichang; Qin, Tao; Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen; Liu, Sanguang; Song, Zifang

    2015-01-01

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation

  10. Plasma stromal cell-derived factor 1α/CXCL12 level predicts long-term adverse cardiovascular outcomes in patients with coronary artery disease.

    Science.gov (United States)

    Ghasemzadeh, Nima; Hritani, Abdul Wahab; De Staercke, Christine; Eapen, Danny J; Veledar, Emir; Al Kassem, Hatem; Khayata, Mohamed; Zafari, A Maziar; Sperling, Laurence; Hooper, Craig; Vaccarino, Viola; Mavromatis, Kreton; Quyyumi, Arshed A

    2015-01-01

    Stromal derived factor-1α/CXCL12 is a chemoattractant responsible for homing of progenitor cells to ischemic tissues. We aimed to investigate the association of plasma CXCL12 with long-term cardiovascular outcomes in patients with coronary artery disease (CAD). 785 patients aged: 63 ± 12 undergoing coronary angiography were independently enrolled into discovery (N = 186) and replication (N = 599) cohorts. Baseline levels of plasma CXCL12 were measured using Quantikine CXCL12 ELISA assay (R&D systems). Patients were followed for cardiovascular death and/or myocardial infarction (MI) for a mean of 2.6 yrs. Cox proportional hazard was used to determine independent predictors of cardiovascular death/MI. The incidence of cardiovascular death/MI was 13% (N = 99). High CXCL12 level based on best discriminatory threshold derived from the ROC analysis predicted risk of cardiovascular death/MI (HR = 4.81, p = 1 × 10(-6)) independent of traditional risk factors in the pooled cohort. Addition of CXCL12 to a baseline model was associated with a significant improvement in c-statistic (AUC: 0.67-0.73, p = 0.03). Addition of CXCL12 was associated with correct risk reclassification of 40% of events and 10.5% of non-events. Similarly for the outcome of cardiovascular death, the addition of the CXCL12 to the baseline model was associated with correct reclassification of 20.7% of events and 9% of non-events. These results were replicated in two independent cohorts. Plasma CXCL12 level is a strong independent predictor of adverse cardiovascular outcomes in patients with CAD and improves risk reclassification. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α

    Directory of Open Access Journals (Sweden)

    Tayra Judith

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are pluripotent stem cells derived from bone marrow with secretory functions of various neurotrophic factors. Stromal cell-derived factor-1α (SDF-1α is also reported as one of chemokines released from MSCs. In this research, the therapeutic effects of MSCs through SDF-1α were explored. 6-hydroxydopamine (6-OHDA, 20 μg was injected into the right striatum of female SD rats with subsequent administration of GFP-labeled MSCs, fibroblasts, (i.v., 1 × 107 cells, respectively or PBS at 2 hours after 6-OHDA injection. All rats were evaluated behaviorally with cylinder test and amphetamine-induced rotation test for 1 month with consequent euthanasia for immunohistochemical evaluations. Additionally, to explore the underlying mechanisms, neuroprotective effects of SDF-1α were explored using 6-OHDA-exposed PC12 cells by using dopamine (DA assay and TdT-mediated dUTP-biotin nick-end labeling (TUNEL staining. Results Rats receiving MSC transplantation significantly ameliorated behaviorally both in cylinder test and amphetamine-induced rotation test compared with the control groups. Correspondingly, rats with MSCs displayed significant preservation in the density of tyrosine hydroxylase (TH-positive fibers in the striatum and the number of TH-positive neurons in the substantia nigra pars compacta (SNc compared to that of control rats. In the in vitro study, SDF-1α treatment increased DA release and suppressed cell death induced by 6-OHDA administration compared with the control groups. Conclusions Consequently, MSC transplantation might exert neuroprotection on 6-OHDA-exposed dopaminergic neurons at least partly through anti-apoptotic effects of SDF-1α. The results demonstrate the potentials of intravenous MSC administration for clinical applications, although further explorations are required.

  12. Genetic predisposition of donors affects the allograft outcome in kidney transplantation; polymorphisms of stromal-derived factor-1 and CXC receptor 4.

    Directory of Open Access Journals (Sweden)

    Jung Pyo Lee

    Full Text Available Genetic interaction between donor and recipient may dictate the impending responses after transplantation. In this study, we evaluated the role of the genetic predispositions of stromal-derived factor-1 (SDF1 [rs1801157 (G>A] and CXC receptor 4 (CXCR4 [rs2228014 (C>T] on renal allograft outcomes. A total of 335 pairs of recipients and donors were enrolled. Biopsy-proven acute rejection (BPAR and long-term graft survival were traced. Despite similar allele frequencies between donors and recipients, minor allele of SDF1 rs1801157 (GA+AA from donor, not from recipients, has a protective effect on the development of BPAR compared to wild type donor (GG (P  = 0.005. Adjustment for multiple covariates did not affect this result (odds ratio 0.39, 95% C.I 0.20-0.76, P = 0.006. CXCR4 rs2228014 polymorphisms from donor or recipient did not affect the incidence of acute rejection. SDF1 was differentially expressed in renal tubular epithelium with acute rejection according to genetic variations of donor rs1801157 showing higher expressions in the grafts from GG donors. Contrary to the development of BPAR, the presence of minor allele rs1801157 A, especially homozygocity, predisposed poor graft survival (P = 0.001. This association was significant after adjusting for several risk factors (hazard ratio 3.01; 95% C.I = 1.19-7.60; P = 0.020. The allelic variation of recipients, however, was not associated with graft loss. A donor-derived genetic polymorphism of SDF1 has influenced the graft outcome. Thus, the genetic predisposition of donor should be carefully considered in transplantation.

  13. Plasma levels of stromal cell-derived factor-1 (CXCL12) and circulating endothelial progenitor cells in women with idiopathic heavy menstrual bleeding.

    Science.gov (United States)

    Elsheikh, E; Andersson, E; Sylvén, C; Ericzon, B-G; Palmblad, J; Mints, M

    2014-01-01

    Do plasma levels of stromal cell-derived factor-1 (CXCL12, sometimes termed SDF-1) and the numbers of circulating endothelial progenitor cells (EPCs), EPC colony-forming units (EPC-CFU) and mature endothelial cells (ECs) differ between women with idiopathic heavy menstrual bleeding of endometrial origin (HMB-E) and controls and are they related to plasma levels of other angiogenic growth factors? Angiogenesis is altered in women with HMB-E, characterized by a reduction in mean plasma levels of CXCL12, a low number of EPCs-CFUs and a high level of circulating ECs. Plasma levels of CXCL12 are significantly higher during the proliferative than the secretory phase of the menstrual cycle in healthy women and exhibit a negative correlation with blood EPC-CFUs. A prospective cohort study in a university hospital setting. Between 2008 and 2009 10 HMB-E patients were recruited from Karolinska University Hospital. Ten healthy women were also included in the analysis. Ten healthy control women and 10 HMB-E patients, all with regular menstrual cycles, provided 4 blood samples during a single menstrual cycle: 2 in the proliferative phase, 1 at ovulation and 1 in the secretory phase. We assessed plasma levels of CXCL12, vascular endothelial growth factor A(165) (VEGFA), basic fibroblast growth factor (bFGF) and granulocyte and granulocyte-macrophage colony-stimulating factors by ELISA. We counted circulating EPC-CFUs by culture, and ECs and EPCs by flow cytometry and immunostaining for cell surface markers. Plasma levels of CXCL12 were significantly lower in HMB-E patients compared with control women (P Market Insurance. The authors have no conflict of interest to declare.

  14. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes.

    Science.gov (United States)

    Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A

    2012-04-10

    Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  15. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    Directory of Open Access Journals (Sweden)

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  16. A Single Nucleotide Polymorphism in the Stromal Cell-Derived Factor 1 Gene Is Associated with Coronary Heart Disease in Chinese Patients

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2014-06-01

    Full Text Available Coronary heart disease (CHD is highly prevalent globally and a major cause of mortality. Genetic predisposition is a non-modifiable risk factor associated with CHD. Eighty-four Chinese patients with CHD and 253 healthy Chinese controls without CHD were recruited. Major clinical data were collected, and a single nucleotide polymorphism (SNP in the stromal cell-derived factor 1 (SDF-1 gene at position 801 (G to A, rs1801157 in the 3'-untranslated region was identified. The correlation between rs1801157 genotypes and CHD was evaluated by a multivariate logistic regression analysis. The allele frequency in the CHD and control groups was in Hardy-Weinberg equilibrium (HWE (p > 0.05. The frequency of the GG genotype in the CHD group (59.5% was significantly higher than that in the control group (49.8% (p = 0.036. A number of variables, including male sex, age, presence of hypertension, and the levels of low-density lipoprotein cholesterol (LDL-C, high-density lipoprotein cholesterol (HDL-C, triglycerides (TG, uric acid, and total bilirubin, were associated with CHD in a primary univariate analysis. In a multivariable logistic regression analysis, the GG genotype (GG:AA, odds ratio (OR = 2.31, 95% confidence interval (CI = 1.21–5.23, male sex, advanced age (≥60 years, presence of hypertension, LDL-C level ≥ 3.33 mg/dL, HDL-C level < 1.03 mg/dL, and TG level ≥ 1.7 mg/dL were independent risk factors for CHD.

  17. Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cell-derived factor-1 and a macrophage recruitment agent enhances wound closure.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2016-04-01

    In this study, the wound closure of mouse skin defects was examined in terms of recruitment of mesenchymal stem cells (MSC) and macrophages. For the cells recruitment, stromal derived factor-1 (SDF-1) of a MSC recruitment agent and sphingosine-1 phosphate agonist (SEW2871) of a macrophages recruitment agent were incorporated into gelatin hydrogels, and then released in a controlled fashion. When applied to a skin wound defect of mice, gelatin hydrogels incorporating mixed 500 ng SDF-1 and 0.4, 0.8, or 1.6 mg SEW2871-micelles recruited a higher number of both MSC and macrophages than those incorporating SDF-1 or phosphate buffered saline. However, the number of M1 phenotype macrophages for the hydrogel incorporating mixed SDF-1 and SEW2871-micelles recruited was remarkably low to a significant extent compared with that for those hydrogel incorporating 0.4, 0.8, or 1.6 mg SEW2871-micelles. On the other hand, the number of M2 macrophages 3 days after the implantation of the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles significantly increased compared with that for other hydrogels. In vivo experiments revealed the hydrogels incorporating SDF-1 and 0.4 mg SEW2871-micelles promoted the wound closure of skin defect to a significant stronger extent than those incorporating SEW2871-micelles, SDF-1, and a mixture of SDF-1 and higher doses of SEW2871-micelles. It is concluded that the in vivo recruitment of MSC and macrophages to the defects may contribute to the tissue regeneration of skin wound. © 2016 Wiley Periodicals, Inc.

  18. Electroacupuncture modulates stromal cell-derived factor-1α expression and mobilization of bone marrow endothelial progenitor cells in focal cerebral ischemia/reperfusion model rats.

    Science.gov (United States)

    Xie, Chenchen; Gao, Xiang; Luo, Yong; Pang, Yueshan; Li, Man

    2016-10-01

    Stromal cell-derived factor-1α(SDF-1α) plays a crucial role in regulating the mobilization, migration and homing of endothelial progenitor cells(EPCs). Electroacupuncture(EA), a modern version of Traditional Chinese Medicine, can improve neurological recovery and angiogenesis in cerebral ischemic area. This study aimed to investigate the effects of electroacupuncture(EA) on the mobilization and migration of bone marrow EPCs and neurological functional recovery in rats model after focal cerebral ischemia/reperfusion and the potentially involved mechanisms. Sprague-Dawley rats received filament occlusion of the right middle cerebral artery for 2h followed by reperfusion for 12h, 1d, 2d, 3d, 7d respectively. Rats were randomly divided into sham group, model group and EA group. After 2h of the reperfusion, EA was given at the "Baihui" (GV 20)/Siguan ("Hegu" (LI 4)/"Taichong" (LR 3)) acupoints in the EA group. Modified neurological severity score (mNSS) was used to assess the neurological functional recovery. EPCs number and SDF-1α level in bone marrow(BM) and peripheral blood(PB) were detected by using fluorescence-activated cell sorting (FACS) analysis and quantitative real time polymerase chain reaction (qRT-PCR) respectively. An mNSS test showed that EA treatment significantly improved the neurological functional outcome. EPCs number in PB and BM were obviously increased in the EA group. After cerebral ischemia, the SDF-1α level was decreased in BM while it was increased in PB, which implied a gradient of SDF-1α among BM and PB after ischemia. It suggested that the forming of SDF-1α concentration gradient can induce the mobilization and homing of EPCs. Eletroacupuncture as a treatment can accelerate and increase the forming of SDF-1α concentration gradient to further induce the mobilization of EPCs and angiogenesis in ischemic brain and improve the neurological function recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A transduced living hyaline cartilage graft releasing transgenic stromal cell-derived factor-1 inducing endogenous stem cell homing in vivo.

    Science.gov (United States)

    Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An

    2013-05-01

    Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.

  20. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1α-mediated signaling

    International Nuclear Information System (INIS)

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-01-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1α (SDF-1α) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1α-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1α-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1α-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research highlights: → A novel carboxylate-PBD hybrid as anti-melanoma drug. → IN4CPBD interrupts melanoma cell cycle progression

  1. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  2. Enhancement of wound closure by modifying dual release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from gelatin hydrogels.

    Science.gov (United States)

    Kim, Yang-Hee; Tabata, Yasuhiko

    2017-11-01

    The objective of the present study is to evaluate the effects of the release patterns of stromal derived factor (SDF)-1 and sphingosine-1 phosphate agonist (SEW2871), used as MSC and macrophage recruitment agents, on the wound closure of diabetic mouse skin defects. To achieve different release patterns, hydrogels were prepared using two types of gelatin with isoelectric points (IEP) of 5 and 9, into which SDF-1 and SEW2871 were then incorporated in various combinations. When the hydrogels incorporating SDF-1 and SEW2871 were applied into wound defects of diabetic mice, the number of MSCs and macrophages recruited to the defects and the levels of pro- and anti- inflammatory cytokines were found to be dependent on the release profiles of SDF-1 and SEW2871. Of particular interest was the case of a rapid release of SDF-1 combined with a controlled release of SEW2871. This resulted in a higher number of M2 macrophages and gene expression levels of anti-inflammatory cytokines 3 days after implantation and faster wound closure than when pairing the controlled release of SDF-1 with a rapid release of SEW2871. Therefore, the present study demonstrates that different release patterns of SDF-1 and SEW2871 can enhance the in vivo recruitment of MSCs and macrophages, and can promote skin wound closure through the modulation of inflammation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer

    International Nuclear Information System (INIS)

    Kang, Hua; Watkins, Gareth; Parr, Christian; Douglas-Jones, Anthony; Mansel, Robert E; Jiang, Wen G

    2005-01-01

    Stromal cell-derived factor (SDF)-1 (CXC chemokine ligand-12) is a member of the CXC subfamily of chemokines, which, through its cognate receptor (CXC chemokine receptor [CXCR]4), plays an important role in chemotaxis of cancer cells and in tumour metastasis. We conducted the present study to evaluate the effect of SDF-1 on the invasiveness and migration of breast cancer cells, and we analyzed the expression of SDF-1 and its relation to clinicopathological features and clinical outcomes in human breast cancer. Expression of SDF-1 mRNA in breast cancer, endothelial (HECV) and fibroblast (MRC5) cell lines and in human breast tissues were studied using RT-PCR. MDA-MB-231 cells were transfected with a SDF-1 expression vector, and their invasiveness and migration was tested in vitro. In addition, the expression of SDF-1 was investigated using immunohistochemistry and quantitative RT-PCR in samples of normal human mammary tissue (n = 32) and mammary tumour (n = 120). SDF-1 expression was identified in MRC5, MDA-MB-435s and MDA-MB-436 cell lines, but CXCR4 expression was detected in all cell lines and breast tissues. An autocrine loop was created following transfection of MDA-MB-231 (which was CXCR4 positive and SDF-1 negative) with a mammalian expression cassette encoding SDF-1 (MDA-MB-231SDF1 +/+ ) or with control plasmid pcDNA4/GFP (MDA-MB-231 +/- ). MDA-MB-231SDF1 +/+ cells exhibited significantly greater invasion and migration potential (in transfected cells versus in wild type and empty MDA-MB-231 +/- ; P < 0.01). In mammary tissues SDF-1 staining was primarily seen in stromal cells and weakly in mammary epithelial cells. Significantly higher levels of SDF-1 were seen in node-positive than in node-negative tumours (P = 0.05), in tumours that metastasized (P = 0.05), and tumours from patients who died (P = 0.03) than in tumours from patients who were disease free. It was most notable that levels of SDF-1 correlated significantly with overall survival (P = 0.001) and

  4. Expression of chemokine receptor-4 in bone marrow mesenchymal stem cells on experimental rat abdominal aortic aneurysms and the migration of bone marrow mesenchymal stem cells with stromal-derived factor-1

    Directory of Open Access Journals (Sweden)

    Miao-Yun Long

    2014-05-01

    Full Text Available This study investigated the expression and role of chemokine receptor-4 (CXCR4 in bone marrow mesenchymal stem cells (BMSCs from experimental rats with abdominal aortic aneurysms (AAA for migration of BMSCs. Sprague–Dawley rats were divided into an experimental group and control group (n = 18 each. AAA was induced with 0.75 M solution infiltrate for 30 minutes, after which the abdomen was rinsed and closed. Saline was used in place of CaCl2 in the control group. CD34 and CD29 were detected by flow cytometry, the gene and protein expression of CXCR4 were detected by real-time polymerase chain reaction and western blot, respectively. The migration of BMSCs with stromal-derived factor-1 was detected by Transwell chamber. CD34 expression was negative and CD29 expression was positive. The gene and protein expression of CXCR4 were significantly higher in experimental group than them in control group (p < 0.05, the migration ability of BMSCs from the experimental group was significantly higher than that from the control group (p < 0.05. Stromal-derived factor -1/CXCR4 can enhance the migration of BMSCs in vitro in a rat AAA model.

  5. Stromal cell derived factor-1α (SDF-1α) directed chemoattraction of transiently CXCR4 overexpressing mesenchymal stem cells into functionalized three-dimensional biomimetic scaffolds

    DEFF Research Database (Denmark)

    Thieme, S; Ryser, Martin; Gentsch, Marcus

    2009-01-01

    Three-dimensional (3D) bone substitute material should not only serve as scaffold in large bone defects but also attract mesenchymal stem cells, a subset of bone marrow stromal cells (BMSCs) that are able to form new bone tissue. An additional crucial step is to attract BMSCs from the surface int...... invaded up to 250 mum into SDF-1alpha-releasing 3D scaffolds, whereas CXCR4-overexpressing BMSC invaded up to 500 mum within 5 days. Thus, the SDF-1alpha/CXCR4 chemoattraction system can be used to efficiently recruit BMSCs into SDF-1alpha-releasing 3D scaffolds in vitro and in vivo....

  6. The non-alcoholic fraction of beer increases stromal cell derived factor 1 and the number of circulating endothelial progenitor cells in high cardiovascular risk subjects: a randomized clinical trial.

    Science.gov (United States)

    Chiva-Blanch, Gemma; Condines, Ximena; Magraner, Emma; Roth, Irene; Valderas-Martínez, Palmira; Arranz, Sara; Casas, Rosa; Martínez-Huélamo, Miriam; Vallverdú-Queralt, Anna; Quifer-Rada, Paola; Lamuela-Raventos, Rosa M; Estruch, Ramon

    2014-04-01

    Moderate alcohol consumption is associated with a decrease in cardiovascular risk, but fermented beverages seem to confer greater cardiovascular protection due to their polyphenolic content. Circulating endothelial progenitor cells (EPC) are bone-marrow-derived stem cells with the ability to repair and maintain endothelial integrity and function and are considered as a surrogate marker of vascular function and cumulative cardiovascular risk. Nevertheless, no study has been carried out on the effects of moderate beer consumption on the number of circulating EPC in high cardiovascular risk patients. To compare the effects of moderate consumption of beer, non-alcoholic beer and gin on the number of circulating EPC and EPC-mobilizing factors. In this crossover trial, 33 men at high cardiovascular risk were randomized to receive beer (30 g alcohol/d), the equivalent amount of polyphenols in the form of non-alcoholic beer, or gin (30 g alcohol/d) for 4 weeks. Diet and physical exercise were carefully monitored. The number of circulating EPC and EPC-mobilizing factors were determined at baseline and after each intervention. After the beer and non-alcoholic beer interventions, the number of circulating EPC significantly increased by 8 and 5 units, respectively, while no significant differences were observed after the gin period. In correlation, stromal cell derived factor 1 increased significantly after the non-alcoholic and the beer interventions. The non-alcoholic fraction of beer increases the number of circulating EPC in peripheral blood from high cardiovascular risk subjects. http://www.controlled-trials.com/ISRCTN95345245 ISRCTN95345245. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. The influence of intraoperative pleural perfusion with matrine-cisplatin or cisplatin on stromal cell-derived factor-1 in non-small cell lung cancer patients with subclinical pleural metastasis.

    Science.gov (United States)

    Yang, Cheng-Liang; Liu, Shun-Shou; Ma, Ye-Gang; Liu, Yong-Yu; Xue, Yi-Xue; Huang, Bo

    2012-06-01

    The early diagnosis and treatment of non-small cell lung cancer (NSCLC) in patients with subclinical pleural metastasis is currently a challenge. In an effort to establish a method for the diagnosis and treatment of these patients, we conducted a single-blind study during which intraoperative pleural lavage cytology (PLC) was performed in 164 patients with NSCLC without obvious pleural effusion. Stromal cell-derived factor-1 (SDF-1) serum concentrations were analyzed using enzyme-linked immunoassay on day 1 prior to tumor resection and on day 7 postoperatively. Western blot analysis was used for the detection of CXCR4 protein expression in resected tumors. Intraoperative pleural perfusion chemotherapy, with either cisplatin or cisplatin plus matrine, was given to patients with positive PLC. A group of 30 patients with NSCLC that did not undergo intraoperative PLC were used as a control group. Of the 164 study patients, 41 (25%) patients had positive PLC. Serum SDF-1 concentrations were higher in PLC-positive patients compared with patients negative for PLC and control patients. Serum SDF-1 concentrations were also lower at postoperative day 7 in patients treated with cisplatin plus matrine compared with control patients and those perfused with cisplatin alone. A lower incidence of chemotherapy-related adverse events was observed in patients treated with cisplatin plus matrine versus those treated with cisplatin alone during the first postoperative month. Patients with positive PLC showed a higher CXCR4 protein expression than patients with negative PLC. Based on the results of this study, PLC combined with serum SDF-1 concentration measurements may be considered as an effective index to determine the risk of subclinical pleural metastasis in patients with lung cancer. In addition, cisplatin plus matrine was confirmed as an initial approach for pleural perfusion and was superior to cisplatin alone.

  8. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits

    Directory of Open Access Journals (Sweden)

    Soghra Bahmanpour

    2016-11-01

    Full Text Available Background: The purpose of this study was to create biomaterial scaffolds like platelet-rich plasma (PRP and platelet-rich fibrin (PRF containing stromal cell-derived factor-1 (SDF1 as a chemokine to induce hyaline cartilage regeneration of rabbit knee in a full thickness defect. Methods: We created a full thickness defect in the trochlear groove of thirty-six bilateral knees of eighteen mature male rabbits. The knees were randomly divided into six groups (group I: untreated control, group II: PRP, group III: PRF, group IV: Gelatin+SDF1, group V: PRP+SDF1, and group VI: PRF+SDF1. After four weeks, the tissue specimens were evaluated by macroscopic examination and histological grading, immunofluorescent staining for collagen type II, and analyzed for cartilage marker genes by real-time PCR. The data were compared using statistical methods (SPSS 20, Kruskal-Wallis test, Bonferroni post hoc test and P<0.05. Results: Macroscopic evaluations revealed that international cartilage repair society (ICRS scores of the PRF+SDF1 group were higher than other groups. Microscopic analysis showed that the ICRS score of the PRP group was significantly lower than other groups. Immunofluorescent staining for collagen II demonstrated a remarkable distribution of type II collagen in the Gel+SDF1, PRP+SDF1 and PRF+SDF1 groups compared with other groups. Real-time PCR analysis revealed that mRNA expression of SOX9 and aggrecan were significantly greater in the PRF+SDF1, PRP+SDF1, Gel+SDF1 and PRF groups than the control group (P<0.05. Conclusion: Our results indicate that implantation of PRF scaffold containing SDF1 led to the greatest evaluation scores of full-thickness lesions in rabbits.

  9. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.

    Science.gov (United States)

    Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna

    2006-05-01

    Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.

  10. Glycosylation analysis and protein structure determination of murine fetal antigen 1 (mFA1)--the circulating gene product of the delta-like protein (dlk), preadipocyte factor 1 (Pref-1) and stromal-cell-derived protein 1 (SCP-1) cDNAs

    DEFF Research Database (Denmark)

    Krogh, T N; Bachmann, E; Teisner, B

    1997-01-01

    By means of sequence analysis, murine fetal antigen 1 (mFA1) isolated from Mus musculus amniotic fluid was shown to be the circulating protein of the delta-like protein, stromal-cell-derived protein 1 (SCP-1) and preadipocyte factor 1 (Pref-1) gene products. The protein contains 36 cysteine...... residues arranged in six epidermal-growth-factor-like domains. The purification of several C-terminal peptides of varying lengths showed mFA1 to be C-terminal heterogeneous. O-linked glycosylations of the NeuNAc alpha2-3Gal beta1-3(NeuNAc alpha2-6)GalNAc type were present on all C-terminal peptides...... at residues Thr235, Thr244 and Thr248, although glycosylation on Thr244 was only partial. Three N-linked glycosylations were localized in mFA1 (Asn77, Asn142 and Asn151), two of which (Asn142 and Asn151) were in the unusual Asn-Xaa-Cys motif. Fucosylated biantennary complex-type and small amounts (less than 5...

  11. Quantitative measurement of connective tissue growth factor and stromal cell-derived factor-1 in vitreous with diabetic retinopathy%糖尿病视网膜病变玻璃体中CTGF,SDF-1的质量浓度测定

    Institute of Scientific and Technical Information of China (English)

    丁纯

    2010-01-01

    目的:定量测定结缔组织生长因子(connective tissue growth factor,CTGF)和基质细胞衍生因子1(stromal cell-derived factor-1,SDF-1)在糖尿病视网膜病变(diabetic retinopathy,DR)患者玻璃体中的质量浓度,探讨其在糖尿病(diabetic retinopathy, DR)发病机制中的作用.方法:采用双抗体夹心酶联免疫吸附测定法(enzyme linked immunosorbent assay,ELISA)定量检测33例增生型糖尿病视网膜病变(proliferative diabetic retinopathy,PDR)、5例单纯型糖尿病性视网膜病变组(background diabetic retinopathy, BDR组)及5例正常对照组玻璃体中CTGF的质量浓度.结果: PDR组玻璃体中CTGF质量浓度大于对照组(P<0.01)、BDR组(P<0.01).PDR组玻璃体中SDF-1质量浓度大于BDR组(P<0.05).结论: SDF-1,CTGF在DR发展过程中起着一定的作用.

  12. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    International Nuclear Information System (INIS)

    Matsukura, Hiroshi; Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun; Muramatsu, Masaaki; Sudo, Katsuko; Sato, Noriko

    2011-01-01

    Highlights: → Genistein (GEN) is a phytoestrogen found in soy products. → GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. → GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. → A high-resolution melting assay was used to screen for epigenetic change. → We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  13. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  14. The Bone Marrow-Derived Stromal Cells

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone...... diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage...

  15. Senescence and quiescence in adipose-derived stromal cells

    DEFF Research Database (Denmark)

    Søndergaard, Rebekka Harary; Follin, Bjarke; Lund, Lisbeth Drozd

    2017-01-01

    Background aims. Adipose-derived stromal cells (ASCs) are attractive sources for cell-based therapies. The hypoxic niche of ASCs in vivo implies that cells will benefit from hypoxia during in vitro expansion. Human platelet lysate (hPL) enhances ASC proliferation rates, compared with fetal bovine...

  16. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun

    2012-01-01

    Adipose tissue represents an abundant, accessible source of multipotent adipose-derived stromal cells (ADSCs). Animal studies have suggested that ADSCs have the potential to differentiate in vivo into endothelial cells and cardiomyocytes. This makes ADSCs a promising new cell source...... for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  17. Gold nanoparticles cellular toxicity and recovery: adipose Derived Stromal cells.

    Science.gov (United States)

    Mironava, Tatsiana; Hadjiargyrou, Michael; Simon, Marcia; Rafailovich, Miriam H

    2014-03-01

    Gold nanoparticles (AuNPs) are currently used in numerous medical applications. Herein, we describe their in vitro impact on human adipose-derived stromal cells (ADSCs) using 13 nm and 45 nm citrate-coated AuNPs. In their non-differentiated state, ADSCs were penetrated by the AuNPs and stored in vacuoles. The presence of the AuNPs in ADSCs resulted in increased population doubling times, decreased cell motility and cell-mediated collagen contraction. The degree to which the cells were impacted was a function of particle concentration, where the smaller particles required a sevenfold higher concentration to have the same effect as the larger ones. Furthermore, AuNPs reduced adipogenesis as measured by lipid droplet accumulation and adiponectin secretion. These effects correlated with transient increases in DLK1 and with relative reductions in fibronectin. Upon removal of exogenous AuNPs, cellular NP levels decreased and normal ADSC functions were restored. As adiponectin helps regulate energy metabolism, local fluctuations triggered by AuNPs can lead to systemic changes. Hence, careful choice of size, concentration and clinical application duration of AuNPs is warranted.

  18. The Pericytic Phenotype of Adipose Tissue-Derived Stromal Cells Is Promoted by NOTCH2

    NARCIS (Netherlands)

    Terlizzi, Vincenzo; Kolibabka, Matthias; Burgess, Janette Kay; Hammes, Hans Peter; Harmsen, Martin Conrad

    Long-term diabetes leads to macrovascular and microvascular complication. In diabetic retinopathy (DR), persistent hyperglycemia causes permanent loss of retinal pericytes and aberrant proliferation of microvascular endothelial cells (ECs). Adipose tissue-derived stromal cells (ASCs) may serve to

  19. Adipose-Derived Stromal Cells for Treatment of Patients with Chronic Ischemic Heart Disease (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Mathiasen, Anders Bruun; Mygind, Naja Dam

    2017-01-01

    We aimed to evaluate the effect of intramyocardial injections of autologous VEGF-A165-stimulated adipose-derived stromal cells (ASCs) in patients with refractory angina. MyStromalCell trial is a randomized double-blind placebo-controlled study including sixty patients with CCS/NYHA class II...... to 54) (P= 0.41), and in METs 0.1 (95%CI -1.7 to 1.9) (P= 0.757). The difference between the groups was not significant (P= 0.680,P= 0.608, andP= 0.720 for time duration, watt, and METs, resp.). Intramyocardial delivered VEGF-A165-stimulated ASC treatment was safe but did not improve exercise capacity...

  20. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Oksana; Butenko, Olena; Anděrová, Miroslava; Forostyak, Serhiy; Syková, Eva; Verkhratsky, A.; Dayanithi, Govindan

    2016-01-01

    Roč. 16, č. 3 (2016), s. 622-634 ISSN 1873-5061 R&D Projects: GA ČR(CZ) GA14-34077S; GA ČR(CZ) GAP304/11/2373; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : adipose derived stromal cells * bone marrow stromal cell * Ca(2+) signaling * Ion channels Subject RIV: FH - Neurology Impact factor: 3.494, year: 2016

  1. Selective labelling of stromal cell-derived factor 1α with carboxyfluorescein to study receptor internalisation.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Baumann, Lars; Beck-Sickinger, Annette G

    2010-10-01

    SDF1α plays an important role in the regeneration of injured tissue after ischemia or stroke by inducing the migration of progenitor cells. In order to study the function of this therapeutically relevant chemokine site-specific protein labelling is of great interest. However, modification of SDF1α is complicated because of its complex tertiary structure. Here, we describe the first site-specific fluorescent modification of SDF1α by EPL. We recombinantly expressed SDF1α (1-49) by intein-mediated protein expression. The C-terminal peptide SDF1α (50-68) was synthesised by SPPS and selectively labelled with carboxyfluorescein at Lys(56). In a cell migration assay, M-[K(56)(CF)]SDF1α showed a clear potency to induce chemotaxis of human T-cell leukaemia cells. Microscopic analysis on HEK293 cells transfected with the CXCR4 revealed specific binding of the fluorescent ligand. Furthermore, receptor-induced internalisation of the ligand could be visualised. These results show that site-specific modification of SDF1α yields in a biologically functional molecule that allows the characterisation of CXCR4 production of cells on a molecular level. © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  2. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Koch, Thomas Gadegaard; Heerkens, T.

    2009-01-01

    Objective: Orthopaedic injury is the most common cause of lost training days or premature retirement in the equine athlete. Cell-based therapies are a potential new treatment option in musculo-skeletal diseases. Mesenthymal stromal cells (MSC) have been derived from multiple sources in the horse...

  3. Molecular characterisation of stromal populations derived from human embryonic stem cells

    DEFF Research Database (Denmark)

    Harkness, L.; Twine, N. A.; Abu Dawud, R.

    2015-01-01

    Human bone marrow-derived stromal (skeletal) stem cells (BM-hMSC) are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC) can provide an un...

  4. Virally and physically transgenized equine adipose-derived stromal cells as a cargo for paracrine secreted factors

    Directory of Open Access Journals (Sweden)

    Cavirani Sandro

    2010-09-01

    Full Text Available Abstract Background Adipose-Derived Stromal Cells have been shown to have multiple lineage differentiation properties and to be suitable for tissues regeneration in many degenerative processes. Their use has been proposed for the therapy of joint diseases and tendon injuries in the horse. In the present report the genetic manipulation of Equine Adipose-Derived Stromal Cells has been investigated. Results Equine Adipose-Derived Stromal Cells were successfully virally transduced as well as transiently and stably transfected with appropriate parameters, without detrimental effect on their differentiation properties. Moreover, green fluorescent protein alone, fused to neo gene, or co-expressed as bi-cistronic reporter constructs, driven by viral and house-keeping gene promoters, were tested. The better expressed cassette was employed to stably transfect Adipose-Derived Stromal Cells for cell therapy purposes. Stably transfected Equine Adipose-Derived Stromal Cells with a heterologous secreted viral antigen were able to immunize horses upon injection into the lateral wall of the neck. Conclusion This study provides the methods to successfully transgenize Adipose-Derived Stromal Cells both by lentiviral vector and by transfection using optimized constructs with suitable promoters and reporter genes. In conclusion these findings provide a working platform for the delivery of potentially therapeutic proteins to the site of cells injection via transgenized Equine Adipose-Derived Stromal Cells.

  5. Bone marrow-derived stromal cells are more beneficial cell sources for tooth regeneration compared with adipose-derived stromal cells.

    Science.gov (United States)

    Ye, Lanfeng; Chen, Lin; Feng, Fan; Cui, Junhui; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-10-01

    Tooth loss is presently a global epidemic and tooth regeneration is thought to be a feasible and ideal treatment approach. Choice of cell source is a primary concern in tooth regeneration. In this study, the odontogenic differentiation potential of two non-dental-derived stem cells, adipose-derived stromal cells (ADSCs) and bone marrow-derived stromal cells (BMSCs), were evaluated both in vitro and in vivo. ADSCs and BMSCs were induced in vitro in the presence of tooth germ cell-conditioned medium (TGC-CM) prior to implantation into the omentum majus of rats, in combination with inactivated dentin matrix (IDM). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of odontogenic-related genes. Immunofluorescence and immunohistochemical assays were used to detect the protein levels of odontogenic-specific genes, such as DSP and DMP-1 both in vitro and in vivo. The results suggest that both ADSCs and BMSCs have odontogenic differentiation potential. However, the odontogenic potential of BMSCs was greater compared with ADSCs, showing that BMSCs are a more appropriate cell source for tooth regeneration. © 2015 International Federation for Cell Biology.

  6. CULTIVATION OF HUMAN LIVER CELLS AND ADIPOSE-DERIVED MESENCHYMAL STROMAL CELLS IN PERFUSION BIOREACTOR

    Directory of Open Access Journals (Sweden)

    Yu. В. Basok

    2018-01-01

    Full Text Available Aim: to show the progress of the experiment of cultivation of human liver cells and adipose-derived mesenchymal stromal cells in perfusion bioreactor.Materials and methods. The cultivation of a cell-engineered construct, consisting of a biopolymer microstructured collagen-containing hydrogel, human liver cells, adipose-derived mesenchymal stromal cells, and William’s E Medium, was performed in a perfusion bioreactor.Results. On the 7th day large cells with hepatocyte morphology – of a polygonal shape and a centrally located round nucleus, – were present in the culture chambers of the bioreactor. The metabolic activity of hepatocytes in cell-engineered constructs was confi rmed by the presence of urea in the culture medium on the seventh day of cultivation in the bioreactor and by the resorption of a biopolymer microstructured collagen-containing hydrogel.

  7. Transplantation of Predifferentiated Adipose-Derived Stromal Cells for the Treatment of Spinal Cord Injury

    Czech Academy of Sciences Publication Activity Database

    Arboleda Toro, David; Forostyak, Serhiy; Jendelová, Pavla; Mareková, Dana; Amemori, Takashi; Pivoňková, Helena; Mašínová, Katarína; Syková, Eva

    2011-01-01

    Roč. 31, č. 7 (2011), s. 1113-1122 ISSN 0272-4340 R&D Projects: GA ČR GA305/09/0717; GA AV ČR IAA500390902 Grant - others:GA MŠk.(CZ) 1M0538; GA ČR(CZ) GD309/08/H079; GA ČR(CZ) GAP304/10/0320 Program:1M Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : Adipose tissue * Differentiation * Mesenchymal stromal cells Subject RIV: FH - Neurology Impact factor: 1.969, year: 2011

  8. Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells.

    Science.gov (United States)

    Duscher, Dominik; Maan, Zeshaan N; Luan, Anna; Aitzetmüller, Matthias M; Brett, Elizabeth A; Atashroo, David; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Houschyar, Khosrow S; Schilling, Arndt F; Machens, Hans-Guenther; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2017-12-01

    Regenerative medicine employs human mesenchymal stromal cells (MSCs) for their multi-lineage plasticity and their pro-regenerative cytokine secretome. Adipose-derived mesenchymal stromal cells (ASCs) are concentrated in fat tissue, and the ease of harvest via liposuction makes them a particularly interesting cell source. However, there are various liposuction methods, and few have been assessed regarding their impact on ASC functionality. Here we study the impact of the two most popular ultrasound-assisted liposuction (UAL) devices currently in clinical use, VASER (Solta Medical) and Lysonix 3000 (Mentor) on ASCs. After lipoaspirate harvest and processing, we sorted for ASCs using fluorescent-assisted cell sorting based on an established surface marker profile (CD34 + CD31 - CD45 - ). ASC yield, viability, osteogenic and adipogenic differentiation capacity and in vivo regenerative performance were assessed. Both UAL samples demonstrated equivalent ASC yield and viability. VASER UAL ASCs showed higher osteogenic and adipogenic marker expression, but a comparable differentiation capacity was observed. Soft tissue healing and neovascularization were significantly enhanced via both UAL-derived ASCs in vivo, and there was no significant difference between the cell therapy groups. Taken together, our data suggest that UAL allows safe and efficient harvesting of the mesenchymal stromal cellular fraction of adipose tissue and that cells harvested via this approach are suitable for cell therapy and tissue engineering applications. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Adipose derived stromal vascular fraction improves early tendon healing: an experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Mehdi Behfar

    2011-11-01

    Full Text Available Tendon never restores the complete biological and mechanical properties after healing. Bone marrow and recently adipose tissue have been used as the sources of mesenchymal stem cells, which have been proven to enhance tendon healing. Stromal vascular fraction (SVF, derived from adipose tissue by an enzymatic digestion, represents an alternative source of multipotent cells, which undergo differentiation into multiple lineages to be used in regenerative medicine. In the present study, we investigated potentials of this source on tendon healing. Twenty rabbits were divided into control and treatment groups. Five rabbits were used as donors of adipose tissue. The injury model was unilateral complete transection through the middle one third of deep digital flexor tendon. Immediately after suture repair, either fresh stromal vascular fraction from enzymatic digestion of adipose tissue or placebo was intratendinously injected into the suture site in treatments and controls, respectively. Cast immobilization was continued for two weeks after surgery. Animals were sacrificed at the third week and tendons underwent histological, immunohistochemical, and mechanical evaluations. By histology, improved fibrillar organization and remodeling of neotendon were observed in treatment group. Immunohistochemistry revealed an insignificant increase in collagen type III and I expression in treatments over controls. Mechanical testing showed significant increase in maximum load and energy absorption in SVF treated tendons. The present study showed that intratendinous injection of uncultured adipose derived stromal vascular fraction improved structural and mechanical properties of repaired tendon and it could be an effective modality for treating tendon laceration.

  10. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  11. Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells

    Directory of Open Access Journals (Sweden)

    Aliaksei S. Vasilevich

    2018-06-01

    Full Text Available Fibroblastic reticular cells (FRCs, the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs. Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.

  12. Autologous transplants of Adipose-Derived Adult Stromal (ADAS) afford dopaminergic neuroprotection in a model of Parkinson’s disease

    OpenAIRE

    McCoy, Melissa K.; Martinez, Terina N.; Ruhn, Kelly A.; Wrage, Philip C.; Keefer, Edward W.; Botterman, Barry R.; Tansey, Keith E.; Tansey, Malú G.

    2007-01-01

    Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned do...

  13. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  14. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre......-culture separation of red and white blood cells was done using either PrepaCyte?-EQ medium or Ficoll-Paque? PREMIUM density medium. Regular FBS and MSC-qualified FBS were compared for their ability to support the establishment of putative primary MSC colonies. RESULTS AND CONCLUSIONS: Our results indicate that Prepa...

  15. Adipose Derived Stromal Cell (ADSC) Injections for Pain Management of Osteoarthritis in the Human Knee Joint.

    Science.gov (United States)

    Fodor, Peter B; Paulseth, Stephen G

    2016-02-01

    This safety and feasibility study used autologous adipose-derived stromal vascular cells (the stromal vascular fraction [SVF] of adipose tissue), to treat 8 osteoarthritic knees in 6 patients of grade I to III (K-L scale) with initial pain of 4 or greater on a 10-point Visual Analog Scale (VAS). The primary objective of the study was evaluation of the safety of intra-articular injection of SVF. The secondary objective was to assess initial feasibility for reduction of pain in osteoarthritic knees. Adipose-derived SVF cells were obtained through enzymatic disaggregation of lipoaspirate, resuspension in 3 mL of Lactated Ringer's Solution, and injection directly into the intra-articular space of the knee, with a mean of 14.1 million viable, nucleated SVF cells per knee. Metrics included monitoring of adverse events and preoperative to postoperative changes in the Western Ontario and McMaster Universities Arthritis Index (WOMAC), the VAS pain scale, range of motion (ROM), timed up-and-go (TUG), and MRI. No infections, acute pain flares, or other adverse events were reported. At 3-months postoperative, there was a statistically significant improvement in WOMAC and VAS scores (P knee pain. Autologous SVF was shown to be safe and to present a new potential therapy for reduction of pain for osteoarthritis of the knee. LEVEL OF EVIDENCE 4: Therapeutic. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  16. Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina

    DEFF Research Database (Denmark)

    Friis, Tina; Haack-Sørensen, Mandana; Mathiasen, Anders B

    2011-01-01

    Abstract Aims. We evaluated the feasibility, safety and efficacy of intra-myocardial injection of autologous mesenchymal stromal cells derived endothelial progenitor cell (MSC) in patients with stable coronary artery disease (CAD) and refractory angina in this first in man trial. Methods and resu......Abstract Aims. We evaluated the feasibility, safety and efficacy of intra-myocardial injection of autologous mesenchymal stromal cells derived endothelial progenitor cell (MSC) in patients with stable coronary artery disease (CAD) and refractory angina in this first in man trial. Methods...... and results. A total of 31 patients with stable CAD, moderate to severe angina and no further revascularization options, were included. Bone marrow MSC were isolated and culture expanded for 6-8 weeks. It was feasible and safe to establish in-hospital culture expansion of autologous MSC and perform intra......-myocardial injection of MSC. After six months follow-up myocardial perfusion was unaltered, but the patients increased exercise capacity (p angina attacks (p Angina Questionnaire (SAQ) evaluations (p

  17. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  18. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    Li Huiwu; Dai Kerong; Tang Tingting; Zhang Xiaoling; Yan Mengning; Lou Jueren

    2007-01-01

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals

  19. Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells

    Czech Academy of Sciences Publication Activity Database

    Cmiel, V.; Skopalík, J.; Poláková, K.; Solař, J.; Havrdová, M.; Milde, D.; Justan, I.; Magro, M.; Starčuk jr., Zenon; Provazník, I.

    2017-01-01

    Roč. 46, JUL (2017), s. 433-444 ISSN 0175-7571 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : intracellular fluorescent labels * stem cell tracking * dual contrast agents * iron oxide nanoparticles * confocal microscopy * mesenchymal stromal cells * rhodamine Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Biophysics Impact factor: 1.472, year: 2016

  20. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Qayyum, Abbas Ali; Jørgensen, Erik

    2015-01-01

    AIMS: Regenerative treatment with mesenchymal stromal cells (MSCs) has been promising in patients with ischaemic heart failure but needs confirmation in larger randomized trials. We aimed to study effects of intra-myocardial autologous bone marrow-derived MSC treatment in patients with severe isc...... identified. CONCLUSION: Intra-myocardial injections of autologous culture expanded MSCs were safe and improved myocardial function in patients with severe ischaemic heart failure. STUDY REGISTRATION NUMBER: NCT00644410 (ClinicalTrials.gov)....... ischaemic heart failure. METHODS AND RESULTS: The MSC-HF trial is a randomized, double-blind, placebo-controlled trial. Patients were randomized 2 : 1 to intra-myocardial injections of MSC or placebo, respectively. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured...

  1. Human adipose-derived stromal/stem cell isolation, culture, and osteogenic differentiation.

    Science.gov (United States)

    Qureshi, Ammar T; Chen, Cong; Shah, Forum; Thomas-Porch, Caasy; Gimble, Jeffrey M; Hayes, Daniel J

    2014-01-01

    Annually, more than 200,000 elective liposuction procedures are performed in the United States and over a million worldwide. The ease of harvest and abundance make human adipose-derived stromal/stem cells (hASCs) isolated from lipoaspirates an attractive, readily available source of adult stem cells that have become increasingly popular for use in many studies. Here, we describe common methods for hASC culture, preservation, and osteogenic differentiation. We introduce methods of ceramic, polymer, and composite scaffold synthesis with a description of morphological, chemical, and mechanical characterization techniques. Techniques for scaffold loading are compared, and methods for determining cell loading efficiency and proliferation are described. Finally, we provide both qualitative and quantitative techniques for in vitro assessment of hASC osteogenic differentiation. © 2014 Elsevier Inc. All rights reserved.

  2. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    EBs using BMP2 (bone morphogenic protein 2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold......Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...

  3. Potential of iPSC-Derived Mesenchymal Stromal Cells for Treating Periodontal Disease

    Directory of Open Access Journals (Sweden)

    K. Hynes

    2018-01-01

    Full Text Available Mesenchymal stromal cell-like populations have been derived from mouse-induced pluripotent stem cells (miPSC-MSC with the capability for tissue regeneration. In this study, murine iPSC underwent differentiation towards an MSC-like immunophenotype. Stable miPSC-MSC cultures expressed the MSC-associated markers, CD73, CD105, and Sca-1, but lacked expression of the pluripotency marker, SSEA1, and hematopoietic markers, CD34 and CD45. Functionally, miPSC-MSC exhibited the potential for trilineage differentiation into osteoblasts, adipocytes, and chondrocytes and the capacity to suppress the proliferation of mitogen-activated splenocytes. The efficacy of miPSC-MSC was assessed in an acute inflammation model following systemic or local delivery into mice with subcutaneous implants containing heat-inactivated P. gingivalis. Histological analysis revealed less inflammatory cellular infiltrate within the sponges in mice treated with miPSC-MSC cells delivered locally rather than systemically. Assessment of proinflammatory cytokines in mouse spleens found that CXCL1 transcripts and protein were reduced in mice treated with miPSC-MSC. In a periodontitis model, mice subjected to oral inoculation with P. gingivalis revealed less bone tissue destruction and inflammation within the jaws when treated with miPSC-MSC compared to PBS alone. Our results demonstrated that miPSC-MSC derived from iPSC have the capacity to control acute and chronic inflammatory responses associated with the destruction of periodontal tissue. Therefore, miPSC-MSC present a promising novel source of stromal cells which could be used in the treatment of periodontal disease and other inflammatory systemic diseases such as rheumatoid arthritis.

  4. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?

    Science.gov (United States)

    Abreu, Soraia C; Weiss, Daniel J; Rocco, Patricia R M

    2016-04-14

    Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice.

  5. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  6. Effect of single intralesional treatment of surgically induced equine superficial digital flexor tendon core lesions with adipose-derived mesenchymal stromal cells : a controlled experimental trial

    NARCIS (Netherlands)

    Geburek, Florian; Roggel, Florian; van Schie, Hans T M; Beineke, Andreas; Estrada, Roberto; Weber, Kathrin; Hellige, Maren; Rohn, Karl; Jagodzinski, Michael; Welke, Bastian; Hurschler, Christof; Conrad, Sabine; Skutella, Thomas; van de Lest, Chris; van Weeren, René; Stadler, Peter M

    2017-01-01

    BACKGROUND: Adipose tissue is a promising source of mesenchymal stromal cells (MSCs) for the treatment of tendon disease. The goal of this study was to assess the effect of a single intralesional implantation of adipose tissue-derived mesenchymal stromal cells (AT-MSCs) on artificial lesions in

  7. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro.

    Science.gov (United States)

    Calkoen, F G J; Vervat, C; van Pel, M; de Haas, V; Vijfhuizen, L S; Eising, E; Kroes, W G M; 't Hoen, P A C; van den Heuvel-Eibrink, M M; Egeler, R M; van Tol, M J D; Ball, L M

    2015-03-01

    Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS. MSCs were expanded from the bone-marrow of 17 MDS patients (RCC: n=10 and advanced MDS: n=7) and pediatric controls (n=10). No differences were observed with respect to phenotype, differentiation capacity, immunomodulatory capacity or hematopoietic support. mRNA expression analysis by Deep-SAGE revealed increased IL-6 expression in RCC- and RAEB(t)-MDS. RCC-MDS MSC expressed increased levels of DKK3, a protein associated with decreased apoptosis. RAEB(t)-MDS revealed increased CRLF1 and decreased DAPK1 expressions. This pattern has been associated with transformation in hematopoietic malignancies. Genes reported to be differentially expressed in adult MDS-MSC did not differ between MSC of pediatric MDS and controls. An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets. Copyright © 2015. Published by Elsevier B.V.

  8. Making the switch: alternatives to foetal bovine serum for adipose-derived stromal cell expansion

    Directory of Open Access Journals (Sweden)

    Carla Dessels

    2016-10-01

    Full Text Available Adipose-derived stromal cells (ASCs are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing procedures (GMPs and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS. While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF, chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT and International Fat Applied Technology Society (IFATS. The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.

  9. Incorporation of stromal cell-derived factor-1 alpha in PCL/gelatin electrospun membranes for guided bone regeneration

    NARCIS (Netherlands)

    Ji, W.; Yang, F.; Ma, J.L.; Bouma, M.J.; Boerman, O.C.; Chen, Z.; Beucken, J.J.J.P van den; Jansen, J.A.

    2013-01-01

    The goal of this work was to evaluate the effect of membrane functionalization with a chemotactic factor on cell recruitment and bone formation in order to develop a bioactive membrane for guided bone regeneration (GBR) applications. To this end. GBR membranes were prepared by electrospinning using

  10. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration.

    Science.gov (United States)

    Kawai, Takamasa; Katagiri, Wataru; Osugi, Masashi; Sugimura, Yukiko; Hibi, Hideharu; Ueda, Minoru

    2015-04-01

    Periodontal tissue regeneration with the use of mesenchymal stromal cells (MSCs) has been regarded as a future cell-based therapy. However, low survival rates and the potential tumorigenicity of implanted MSCs could undermine the efficacy of cell-based therapy. The use of conditioned media from MSCs (MSC-CM) may be a feasible approach to overcome these limitations. The aim of this study was to confirm the effect of MSC-CM on periodontal regeneration. MSC-CM were collected during their cultivation. The concentrations of the growth factors in MSC-CM were measured with the use of enzyme-linked immunoassay. Rat MSCs (rMSCs) and human umbilical vein endothelial cells cultured in MSC-CM were assessed on wound-healing and angiogenesis. The expressions of osteogenetic- and angiogenic-related genes of rMSCs cultured in MSC-CM were quantified by means of real-time reverse transcriptase-polymerase chain reaction analysis. In vivo, periodontal defects were prepared in the rat models and the collagen sponges with MSC-CM were implanted. MSC-CM includes insulin-like growth factor-1, vascular endothelial growth factor, transforming growth factor-β1 and hepatocyte growth factor. In vitro, wound-healing and angiogenesis increased significantly in MSC-CM. The levels of expression of osteogenetic- and angiogenic-related genes were significantly upregulated in rMSCs cultured with MSC-CM. In vivo, in the MSC-CM group, 2 weeks after implantation, immunohistochemical analysis showed several CD31-, CD105-or FLK-1-positive cells occurring frequently. At 4 weeks after implantation, regenerated periodontal tissue was observed in MSC-CM groups. The use of MSC-CM may be an alternative therapy for periodontal tissue regeneration because several cytokines included in MSC-CM will contribute to many processes of complicated periodontal tissue regeneration. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  12. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-01-01

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  13. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  14. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    International Nuclear Information System (INIS)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-01-01

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa

  15. Bone marrow-derived multipotent mesenchymal stromal cells from horses after euthanasia.

    Science.gov (United States)

    Schröck, Carmen; Eydt, Carina; Geburek, Florian; Kaiser, Lena; Päbst, Felicitas; Burk, Janina; Pfarrer, Christiane; Staszyk, Carsten

    2017-11-01

    Allogeneic equine multipotent mesenchymal stromal cells (eMSCs) have been proposed for use in regenerative therapies in veterinary medicine. A source of allogeneic eMSCs might be the bone marrow from euthanized horses. The purpose of this study was to compare in vitro characteristics of equine bone marrow derived eMSC (eBM-MSCs) from euthanized horses (eut-MSCs) and from narcotized horses (nar-MSCs). Eut-MSCs and nar-MSCs showed typical eMSC marker profiles (positive: CD44, CD90; negative: CD11a/CD18 and MHCII) and possessed tri-lineage differentiation characteristics. Although CD105 and MHCI expression varied, no differences were detected between eut-MSCs and nar-MSCs. Proliferation characteristics did not differ between eut-MSCs and nar-MSCs, but age dependent decrease in proliferation and increase in MHCI expression was detected. These results suggest the possible use of eut-MSCs for therapeutic applications and production of commercial available eBM-MSC products.

  16. In vitro effects of direct current electric fields on adipose-derived stromal cells.

    Science.gov (United States)

    Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B

    2010-06-18

    Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Yu, Song-Hee; Jang, Yu-Jin; Lee, Eun-Shil; Hwang, Dong-Youn; Jeon, Chang-Jin

    2010-01-01

    Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell

  18. Characterization of Human Knee and Chin Adipose-Derived Stromal Cells

    Directory of Open Access Journals (Sweden)

    Magali Kouidhi

    2015-01-01

    Full Text Available Animal study findings have revealed that individual fat depots are not functionally equivalent and have different embryonic origins depending on the anatomic location. Mouse bone regeneration studies have also shown that it is essential to match the Hox code of transplanted cells and host tissues to achieve correct repair. However, subcutaneous fat depots from any donor site are often used in autologous fat grafting. Our study was thus carried out to determine the embryonic origins of human facial (chin and limb (knee fat depots and whether they had similar features and molecular matching patterns. Paired chin and knee fat depots were harvested from 11 subjects and gene expression profiles were determined by DNA microarray analyses. Adipose-derived stromal cells (ASCs from both sites were isolated and analyzed for their capacity to proliferate, form clones, and differentiate. Chin and knee fat depots expressed a different HOX code and could have different embryonic origins. ASCs displayed a different phenotype, with chin-ASCs having the potential to differentiate into brown-like adipocytes, whereas knee-ASCs differentiated into white adipocytes. These results highlighted different features for these two fat sites and indicated that donor site selection might be an important factor to be considered when applying adipose tissue in cell-based therapies.

  19. Destiny of autologous bone marrow-derived stromal cells implanted in the vocal fold.

    Science.gov (United States)

    Kanemaru, Shin-ichi; Nakamura, Tatsuo; Yamashita, Masaru; Magrufov, Akhmar; Kita, Tomoko; Tamaki, Hisanobu; Tamura, Yoshihiro; Iguchi, Fuku-ichiro; Kim, Tae Soo; Kishimoto, Masanao; Omori, Koichi; Ito, Juichi

    2005-12-01

    The aim of this study was to investigate the destiny of implanted autologous bone marrow-derived stromal cells (BSCs) containing mesenchymal stem cells. We previously reported the successful regeneration of an injured vocal fold through implantation of BSCs in a canine model. However, the fate of the implanted BSCs was not examined. In this study, implanted BSCs were traced in order to determine the type of tissues resulting at the injected site of the vocal fold. After harvest of bone marrow from the femurs of green fluorescent transgenic mice, adherent cells were cultured and selectively amplified. By means of a fluorescence-activated cell sorter, it was confirmed that some cells were strongly positive for mesenchymal stem cell markers, including CD29, CD44, CD49e, and Sca-1. These cells were then injected into the injured vocal fold of a nude rat. Immunohistologic examination of the resected vocal folds was performed 8 weeks after treatment. The implanted cells were alive in the host tissues and showed positive expression for keratin and desmin, markers for epithelial tissue and muscle, respectively. The implanted BSCs differentiated into more than one tissue type in vivo. Cell-based tissue engineering using BSCs may improve the quality of the healing process in vocal fold injuries.

  20. Osteogenic capability of autologous rabbit adipose-derived stromal cells in repairing calvarial defects.

    Science.gov (United States)

    Cheng, Shao-Wen; Lin, Zhong-Qin; Wang, Wei; Zhang, Wei; Kou, Dong-Quan; Ying, Xiao-Zhou; Chen, Qing-Yu; Shen, Yue; Cheng, Xiao-Jie; Peng, Lei; Lv, Chuan-Zhu

    2011-01-01

    To evaluate the in vitro and in vivo osteogenic capability of adipose-derived stromal cells (ASCs). ASCs were isolated from New Zealand white rabbits and determined by alkaline phosphatase (ALP) staining, von Kossa staining and alizarin red staining. Some specific markers of osteogenic differentiation, including ALP, osteocalcin (OCN), osteopontin (OPN) were examined by reverse transcription-polymerase chain reaction (RT-PCR). In vivo, demineralized bone matrix (DBM)-ASCs composites were implanted into the rabbit calvarial defects created at each side of the longitudinal midline. After 6 weeks, histologic properties of the transplants were analyzed. ASCs were successfully induced into osteogenesis. ALP staining, von Kossa staining and alizarin red staining showed positive results. The expressions of ALP, OCN and OPN were detected in ASCs after cultivation in osteogenic medium. Extensive new bone was observed in the defects transplanted with DBM-ASCs composites. ASCs have the potential to differentiate into osteogenic lineage and DBM-ASCs constructs are a promising method for regeneration in bone defects.

  1. Osteogenic capability of autologous rabbit adipose-derived stromal cells in repairing calvarial defects

    Directory of Open Access Journals (Sweden)

    CHENG Shao-wen

    2012-02-01

    Full Text Available 【Abstract】Objective: To evaluate the in vitro and in vivo osteogenic capability of adipose-derived stromal cells (ASCs. Methods: ASCs were isolated from New Zealand white rabbits and determined by alkaline phosphatase (ALP staining, von Kossa staining and alizarin red staining. Some specific markers of osteogenic differentiation, including ALP, osteocalcin (OCN, osteopontin (OPN were examined by reverse transcription-polymerase chain reaction (RT-PCR. In vivo, demineralized bone matrix (DBM-ASCs composites were implanted into the rabbit calvarial defects created at each side of the longitudinal midline. After 6 weeks, histologic properties of the transplants were analyzed. Results: ASCs were successfully induced into osteogenesis. ALP staining, von Kossa staining and alizarin red staining showed positive results. The expressions of ALP, OCN and OPN were detected in ASCs after cultivation in osteogenic medium. Extensive new bone was observed in the defects transplanted with DBM-ASCs composites. Conclusion: ASCs have the potential to differentiate into osteogenic lineage and DBM-ASCs constructs are a promising method for regeneration in bone defects. Key words: Adipose tissue; Bone regeneration; Osteogenesis

  2. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Armando de M. Carvalho

    2013-09-01

    Full Text Available The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs. Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also cultured in specific media for adipogenic and chondrogenic differentiation. There was no expression of the CD13 marker, but CD44 and CD90 were expressed in all of the passages tested. After 14 days of cell differentiation into adipocytes, lipid droplets were observed upon Oil Red O (ORO staining. Twenty-one days after chondrogenic differentiation, the cells were stained with Alcian Blue. Although the technique for the isolation of these cells requires improvement, the present study demonstrates the partial characterization of PbMSCs, classifying them as a promising type of progenitor cells for use in equine cell therapy.

  3. The effect of adipose derived stromal vascular fraction on stasis zone in an experimental burn model.

    Science.gov (United States)

    Eyuboglu, Atilla Adnan; Uysal, Cagri A; Ozgun, Gonca; Coskun, Erhan; Markal Ertas, Nilgun; Haberal, Mehmet

    2018-03-01

    Stasis zone is the surrounding area of the coagulation zone which is an important part determining the extent of the necrosis in burn patients. In our study we aim to salvage the stasis zone by injecting adipose derived stromal vascular fraction (ADSVF). Thermal injury was applied on dorsum of Sprague-Dawley rats (n=20) by the "comb burn" model as described previously. When the burn injury was established on Sprague-Dawley rats (30min); rat dorsum was separated into 2 equal parts consisting of 4 burn zones (3 stasis zone) on each pair. ADSVF cells harvested from inguinal fat pads of Sprague-Dawley rats (n=5) were injected on the right side while same amount of phosphate buffered saline (PBS) injected on the left side of the same animal. One week later, average vital tissue on the statis zone was determined by macroscopy, angiography and microscopy. Vascular density, inflammatory cell density, gradient of fibrosis and epithelial thickness were determined via immunohistochemical assay. Macroscopic stasis zone tissue viability (32±3.28%, 57±4.28%) (p51, 1.50±0.43) (pzone on acute burn injuries. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  4. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Gang Yang

    2016-09-01

    Full Text Available Gelatin hydrogel crosslinked by microbial transglutaminase (mTG exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery.

  5. Enrichment of Adipose-Derived Stromal Cells for BMPR1A Facilitates Enhanced Adipogenesis.

    Science.gov (United States)

    Zielins, Elizabeth R; Paik, Kevin; Ransom, Ryan C; Brett, Elizabeth A; Blackshear, Charles P; Luan, Anna; Walmsley, Graham G; Atashroo, David A; Senarath-Yapa, Kshemendra; Momeni, Arash; Rennert, Robert; Sorkin, Michael; Seo, Eun Young; Chan, Charles K; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2016-02-01

    Reconstruction of soft tissue defects has traditionally relied on the use of grafts and flaps, which may be associated with variable resorption and/or significant donor site morbidity. Cell-based strategies employing adipose-derived stromal cells (ASCs), found within the stromal vascular fraction (SVF) of adipose tissue, may offer an alternative strategy for soft tissue reconstruction. In this study, we investigated the potential of a bone morphogenetic protein receptor type 1A (BMPR1A)(+) subpopulation of ASCs to enhance de novo adipogenesis. Human lipoaspirate was enzymatically digested to isolate SVF and magnetic-activated cell separation was utilized to obtain BMPR1A(+) and BMPR1A(-) cells. These cells, along with unenriched cells, were expanded in culture and evaluated for adipogenic gene expression and in vitro adipocyte formation. Cells from each group were also labeled with a green fluorescent protein (GFP) lentivirus and transplanted into the inguinal fat pads, an adipogenic niche, of immunocompromised mice to determine their potential for de novo adipogenesis. Confocal microscopy along with staining of lipid droplets and vasculature was performed to evaluate the formation of mature adipocytes by transplanted cells. In comparison to BMPR1A(-) and unenriched ASCs, BMPR1A(+) cells demonstrated significantly enhanced adipogenesis when cultured in an adipogenic differentiation medium, as evidenced by increased staining with Oil Red O and increased expression of peroxisome proliferator-activating receptor gamma (PPAR-γ) and fatty acid-binding protein 4 (FABP4). BMPR1A(+) cells also formed significantly more adipocytes in vivo, as demonstrated by quantification of GFP+ adipocytes. Minimal formation of mature adipocytes was appreciated by BMPR1A(-) cells. BMPR1A(+) ASCs show an enhanced ability for adipogenesis in vitro, as shown by gene expression and histological staining. Furthermore, within an adipogenic niche, BMPR1A(+) cells possessed an increased capacity

  6. Derivation of Insulin Producing Cells From Human Endometrial Stromal Stem Cells and Use in the Treatment of Murine Diabetes

    OpenAIRE

    Santamaria, Xavier; Massasa, Efi E; Feng, Yuzhe; Wolff, Erin; Taylor, Hugh S

    2011-01-01

    Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes, however the shortage of cadaveric donors and limitations due to rejection require alternative solutions. Multipotent cells derived from the uterine endometrium have the ability to differentiate into mesodermal and ectodermal cellular lineages, suggesting the existence of mesenchymal stem cells in this tissue. We differentiated human endometrial stromal stem cells (ESSC) into insulin secreting cells using ...

  7. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  8. Perspectives on testicular sex cord-stromal tumors and those composed of both germ cells and sex cord-stromal derivatives with a comparison to corresponding ovarian neoplasms.

    Science.gov (United States)

    Roth, Lawrence M; Lyu, Bingjian; Cheng, Liang

    2017-07-01

    Sex cord-stromal tumors (SCSTs) are the second most frequent category of testicular neoplasms, accounting for approximately 2% to 5% of cases. Both genetic and epigenetic factors account for the differences in frequency and histologic composition between testicular and ovarian SCSTs. For example, large cell calcifying Sertoli cell tumor and intratubular large cell hyalinizing Sertoli cell neoplasia occur in the testis but have not been described in the ovary. In this article, we discuss recently described diagnostic entities as well as inconsistencies in nomenclature used in the recent World Health Organization classifications of SCSTs in the testis and ovary. We also thoroughly review the topic of neoplasms composed of both germ cells and sex cord derivatives with an emphasis on controversial aspects. These include "dissecting gonadoblastoma" and testicular mixed germ cell-sex cord stromal tumor (MGC-SCST). The former is a recently described variant of gonadoblastoma that sometimes is an immediate precursor of germinoma in the dysgenetic gonads of patients with a disorder of sex development. Although the relationship of dissecting gonadoblastoma to the previously described undifferentiated gonadal tissue is complex and not entirely resolved, we believe that it is preferable to continue to use the term undifferentiated gonadal tissue for those cases that are not neoplastic and are considered to be the precursor of classical gonadoblastoma. Although the existence of testicular MGC-SCST has been challenged, the most recent evidence supports its existence; however, testicular MGC-SCST differs significantly from ovarian examples due to both genetic and epigenetic factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Ingrid R. Cordeiro

    2015-09-01

    Full Text Available Human adipose-derived stromal cells (hADSC are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1 regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

  10. Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.

    Science.gov (United States)

    Falah, Mizied; Rayan, Anwar; Srouji, Samer

    2015-09-01

    In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Adipose-derived mesenchymal stromal cells prevented rat vocal fold scarring.

    Science.gov (United States)

    Morisaki, Tsuyoshi; Kishimoto, Yo; Tateya, Ichiro; Kawai, Yoshitaka; Suzuki, Ryo; Tsuji, Takuya; Hiwatashi, Nao; Nakamura, Tatsuo; Omori, Koichi; Kitano, Hiroya; Takeuchi, Hiromi; Hirano, Shigeru

    2018-01-01

    This study aimed to reveal the effects of adipose-derived mesenchymal stromal cells (ASCs) on prevention of vocal fold scarring by investigating how the immediate ASCs transplantation into the injured rat vocal fold affect the levels of gene transcription and translation. Prospective animal experiments with controls. ASCs harvested from green fluorescent protein transgenic rat (ASCs group) or saline (sham group) were injected into the thyroarytenoid muscle of Sprague-Dawley rats immediately after stripping the vocal fold. For histological examinations, larynges were extirpated at 3, 14, and 56 days after the injection. Quantitative real-time polymerase chain reaction (PCR) analyses were performed at 3 and 14 days after the injection. Transplanted ASCs were detected only in larynges at day 3. At days 14 and 56, histological examination showed significantly higher amounts of hyaluronic acid and lower deposition of collagen in the ASCs group compared to the sham group. Real-time PCR revealed that the ASCs group showed low expression of procollagen (Col)1a1, Col1a3, matrix metalloproteinase (Mmp)1 and Mmp8 in each time points. The ASCs group showed high expression of fibroblast growth factor (Fgf)2 and Hepatocyte growth factor (Hgf) compared to the sham group at day 14. ASCs increased expressions of Fgf2 and Hgf, and suppressed excessive collagen deposition during vocal fold wound healing. Given the fact that ASCs survived no more than 14 days, ASCs were thought to induce upregulations of growth factors' genes in surrounding cells. These results suggested that ASCs have potential to prevent vocal fold scarring. NA. Laryngoscope, 128:E33-E40, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel

    DEFF Research Database (Denmark)

    Larsen, Bjarke Follin; Juhl, Morten; Cohen, Smadar

    2015-01-01

    BACKGROUND AIMS: Clinical trials have documented beneficial effects of mesenchymal stromal cells from bone marrow and adipose tissue (ASCs) as treatment in patients with ischemic heart disease. However, retention of transplanted cells is poor. One potential way to increase cell retention is to in...

  13. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).

    Science.gov (United States)

    Bourin, Philippe; Bunnell, Bruce A; Casteilla, Louis; Dominici, Massimo; Katz, Adam J; March, Keith L; Redl, Heinz; Rubin, J Peter; Yoshimura, Kotaro; Gimble, Jeffrey M

    2013-06-01

    Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. Copyright © 2013 International Society for Cellular Therapy. All rights reserved.

  14. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  15. CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells.

    Science.gov (United States)

    Chung, Michael T; Liu, Chunjun; Hyun, Jeong S; Lo, David D; Montoro, Daniel T; Hasegawa, Masakazu; Li, Shuli; Sorkin, Michael; Rennert, Robert; Keeney, Michael; Yang, Fan; Quarto, Natalina; Longaker, Michael T; Wan, Derrick C

    2013-04-01

    Stem cell-based bone tissue engineering with adipose-derived stromal cells (ASCs) has shown great promise for revolutionizing treatment of large bone deficits. However, there is still a lack of consensus on cell surface markers identifying osteoprogenitors. Fluorescence-activated cell sorting has identified a subpopulation of CD105(low) cells with enhanced osteogenic differentiation. The purpose of the present study was to compare the ability of CD90 (Thy-1) to identify osteoprogenitors relative to CD(105). Unsorted cells, CD90(+), CD90(-), CD105(high), and CD105(low) cells were treated with an osteogenic differentiation medium. For evaluation of in vitro osteogenesis, alkaline phosphatase (ALP) staining and alizarin red staining were performed at 7 days and 14 days, respectively. RNA was harvested after 7 and 14 days of differentiation, and osteogenic gene expression was examined by quantitative real-time polymerase chain reaction. For evaluation of in vivo osteogenesis, critical-sized (4-mm) calvarial defects in nude mice were treated with the hydroxyapatite-poly(lactic-co-glycolic acid) scaffold seeded with the above-mentioned subpopulations. Healing was followed using micro-CT scans for 8 weeks. Calvaria were harvested at 8 weeks postoperatively, and sections were stained with Movat's Pentachrome. Transcriptional analysis revealed that the CD90(+) subpopulation was enriched for a more osteogenic subtype relative to the CD105(low) subpopulation. Staining at day 7 for ALP was greatest in the CD90(+) cells, followed by the CD105(low) cells. Staining at day 14 for alizarin red demonstrated the greatest amount of mineralized extracellular matrix in the CD90(+) cells, again followed by the CD105(low) cells. Quantification of in vivo healing at 2, 4, 6, and 8weeks postoperatively demonstrated increased bone formation in defects treated with CD90(+) ASCs relative to all other groups. On Movat's Pentachrome-stained sections, defects treated with CD90(+) cells showed the

  16. Derivation of Stromal (Skeletal and Mesenchymal) Stem-Like Cells from Human Embryonic Stem Cells

    Science.gov (United States)

    Harkness, Linda; Abdallah, Basem M.; Elsafadi, Mona; Al-Nbaheen, May S.; Aldahmash, Abdullah; Kassem, Moustapha

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESCs) is a prerequisite for their use in clinical applications. However, there is no standard protocol for differentiating hESCs into osteoblastic cells. The aim of this study was to identify the emergence of a human stromal (mesenchymal and skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESCs in a feeder-free environment using serum replacement and as suspension aggregates (embryoid bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106, and CD166 as revealed by immunohistochemical staining and flow cytometry (fluorescence-activated cell sorting) analysis. Ex vivo differentiation of hEBs using bone morphogenic protein 2 (BMP2) combined with standard osteoblast induction medium led to weak osteoblastic induction. Conversely, subcutaneous in vivo implantation of day 20 hEBs in immune deficient mice, mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) as an osteoconductive scaffold, revealed bone and cartilage, and fibrous tissue elements after 8 weeks. These tissues were of human origin and there was no evidence of differentiation to nonmesodermal tissues. hEBs implanted in the absence of HA/TCP formed vacuolated tissue containing glandular, fibrous and muscle-like tissue elements. Conversely, implantation of undifferentiated hESCs resulted in the formation of a teratoma containing a mixture of endodermal, mesodermal, and ectodermal tissues. Our study demonstrates that hMSC-like cells can be obtained from hESCs and they can be induced to form skeletal tissues in vivo when combined with HA/TCP. These findings are relevant for tissue engineering and suggest that differentiated hEBs can provide an unlimited source for

  17. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.

    Science.gov (United States)

    Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A

    2017-10-01

    The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  18. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    OpenAIRE

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation...

  19. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    Science.gov (United States)

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-06-07

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.

  20. The Osteogenic Properties of Multipotent Mesenchymal Stromal Cells in Cultures on TiO2 Sol-Gel-Derived Biomaterial

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2015-01-01

    Full Text Available The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs and bone marrow multipotent stromal cells (BMSCs cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP, osteopontin (OPN, and osteocalcin (OCL. Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX. Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine.

  1. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells

    Directory of Open Access Journals (Sweden)

    Vishnubalaji Radhakrishnan

    2012-01-01

    Full Text Available Abstract Background Multipotent stem cells have been successfully isolated from various tissues and are currently utilized for tissue-engineering and cell-based therapies. Among the many sources, skin has recently emerged as an attractive source for multipotent cells because of its abundance. Recent literature showed that skin stromal cells (SSCs possess mesoderm lineage differentiation potential; however, the endothelial differentiation and angiogenic potential of SSC remains elusive. In our study, SSCs were isolated from human neonatal foreskin (hNFSSCs and adult dermal skin (hADSSCs using explants cultures and were compared with bone marrow (hMSC-TERT and adipose tissue-derived mesenchymal stem cells (hADMSCs for their potential differentiation into osteoblasts, adipocytes, and endothelial cells. Results Concordant with previous studies, both MSCs and SSCs showed similar morphology, surface protein expression, and were able to differentiate into osteoblasts and adipocytes. Using an endothelial induction culture system combined with an in vitro matrigel angiogenesis assay, hNFSSCs and hADSSCs exhibited the highest tube-forming capability, which was similar to those formed by human umbilical vein endothelial cells (HUVEC, with hNFSSCs forming the most tightly packed, longest, and largest diameter tubules among the three cell types. CD146 was highly expressed on hNFSSCs and HUVEC followed by hADSSCs, and hMSC-TERT, while its expression was almost absent on hADMSCs. Similarly, higher vascular density (based on the expression of CD31, CD34, vWF, CD146 and SMA was observed in neonatal skin, followed by adult dermal skin and adipose tissue. Thus, our preliminary data indicated a plausible relationship between vascular densities, and the expression of CD146 on multipotent cells derived from those tissues. Conclusions Our data is the first to demonstrate that human dermal skin stromal cells can be differentiated into endothelial lineage. Hence, SSCs

  2. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Keith A Russell

    Full Text Available Mesenchymal stromal cells (MSC hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies.We hypothesized that canine adipose tissue (AT and bone marrow (BM MSC (derived from the same dogs will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1 proliferation rate, 2 cell surface marker expression, 3 DNA methylation levels, 4 potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5 immunomodulatory potency in vitro.1 AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days for passage (P 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21. 2 Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3 Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4 Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3-based induction medium. 5 Immunomodulatory capacity was equal regardless of cell source when tested in

  3. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Kucerova, Lucia; Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Kozovska, Zuzana

    2013-01-01

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses

  4. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential.

    Science.gov (United States)

    Efimenko, Anastasia; Dzhoyashvili, Nina; Kalinina, Natalia; Kochegura, Tatiana; Akchurin, Renat; Tkachuk, Vsevolod; Parfyonova, Yelena

    2014-01-01

    Tissue regeneration is impaired in aged individuals. Adipose-derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43-77 years old) and without CAD (n = 31, 2-82 years old). ADSC phenotype characterized by flow cytometry was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC-conditioned media (ADSC-CM) stimulated capillary-like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin-1, and angiogenin) in ADSC-CM measured by enzyme-linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin-1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real-time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor-1) and urokinase-type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.

  5. A simple and efficient method for deriving neurospheres from bone marrow stromal cells

    International Nuclear Information System (INIS)

    Yang Qin; Mu Jun; Li Qi; Li Ao; Zeng Zhilei; Yang Jun; Zhang Xiaodong; Tang Jin; Xie Peng

    2008-01-01

    Bone marrow stromal cells (MSCs) can be differentiated into neuronal and glial-like cell types under appropriate experimental conditions. However, previously reported methods are complicated and involve the use of toxic reagents. Here, we present a simplified and nontoxic method for efficient conversion of rat MSCs into neurospheres that express the neuroectodermal marker nestin. These neurospheres can proliferate and differentiate into neuron, astrocyte, and oligodendrocyte phenotypes. We thus propose that MSCs are an emerging model cell for the treatment of a variety of neurological diseases

  6. Macrophage-derived insulin-like growth factor-1 affects influenza vaccine efficacy through the regulation of immune cell homeostasis.

    Science.gov (United States)

    Yoon, Il-Sub; Park, Hyelim; Kwak, Hye-Won; Woo Jung, Yong; Nam, Jae-Hwan

    2017-08-24

    The level of antibody production induced by a vaccine involves a variety of host factors. One of these, insulin-like growth factor-1 (IGF-1), plays an important role in lymphocyte maturation and antibody expression. Here, we investigated the role of macrophage-derived IGF-1 in the induction of influenza vaccine-specific antibodies using macrophage-derived IGF-1 gene knockout (MIKO) mice. The titers of vaccine-specific total immunoglobulin G (IgG) and IgG1 after immunization were about two- to fourfold lower in MIKO mice than in WT mice. Moreover, MIKO mice showed a relatively weak booster effect of repeated immunization. In contrast, antigen-nonspecific total IgG was about threefold higher in MIKO mice than in WT mice. After viral challenge, the viral titer and the pathological damage in lungs of MIKO mice were higher than those in WT mice despite vaccination. Interestingly, the proportions of proinflammatory immune cells including M1 macrophages, Th1 and Th17 cells was higher in unvaccinated MIKO mice than in unvaccinated WT mice. This suggests that nonspecific activation of immune cells may paradoxically impair the response to the vaccine. In addition, although the proportions of T follicular helper (Tfh) cells and GL-7 + germinal center (GC) B cells were higher in MIKO mice than in WT mice, the population of CD138 + B220 + antibody-secreting plasmablasts was lower in MIKO mice, which may be a cause of the low influenza-specific antibody titer in MIKO mice. Taken together, these results suggest that macrophage-derived IGF-1 might play an important role in the vaccine-triggered immune response by regulating immune cell homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  8. Thioredoxin-1 Protects Bone Marrow-Derived Mesenchymal Stromal Cells from Hyperoxia-Induced Injury In Vitro

    Science.gov (United States)

    Zhang, Lei; Wang, Jin; Zeng, Lingkong; Li, Qiong; Liu, Yalan

    2018-01-01

    Background The poor survival rate of mesenchymal stromal cells (MSC) transplanted into recipient lungs greatly limits their therapeutic efficacy for diseases like bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the effect of thioredoxin-1 (Trx-1) overexpression on improving the potential for bone marrow-derived mesenchymal stromal cells (BMSCs) to confer resistance against hyperoxia-induced cell injury. Methods 80% O2 was used to imitate the microenvironment surrounding-transplanted cells in the hyperoxia-induced lung injury in vitro. BMSC proliferation and apoptotic rates and the levels of reactive oxygen species (ROS) were measured. The effects of Trx-1 overexpression on the level of antioxidants and growth factors were investigated. We also investigated the activation of apoptosis-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinases (MAPK). Result Trx-1 overexpression significantly reduced hyperoxia-induced BMSC apoptosis and increased cell proliferation. We demonstrated that Trx-1 overexpression upregulated the levels of superoxide dismutase and glutathione peroxidase as well as downregulated the production of ROS. Furthermore, we illustrated that Trx-1 protected BMSCs against hyperoxic injury via decreasing the ASK1/P38 MAPK activation rate. Conclusion These results demonstrate that Trx-1 overexpression improved the ability of BMSCs to counteract hyperoxia-induced injury, thus increasing their potential to treat hyperoxia-induced lung diseases such as BPD. PMID:29599892

  9. Analysis for apoptosis and necrosis on adipocytes, stromal vascular fraction, and adipose-derived stem cells in human lipoaspirates after liposuction.

    Science.gov (United States)

    Wang, Wei Z; Fang, Xin-Hua; Williams, Shelley J; Stephenson, Linda L; Baynosa, Richard C; Wong, Nancy; Khiabani, Kayvan T; Zamboni, William A

    2013-01-01

    Adipose-derived stem cells have become the most studied adult stem cells. The authors examined the apoptosis and necrosis rates for adipocyte, stromal vascular fraction, and adipose-derived stem cells in fresh human lipoaspirates. Human lipoaspirate (n = 8) was harvested using a standard liposuction technique. Stromal vascular fraction cells were separated from adipocytes and cultured to obtain purified adipose-derived stem cells. A panel of stem cell markers was used to identify the surface phenotypes of cultured adipose-derived stem cells. Three distinct stem cell subpopulations (CD90/CD45, CD105/CD45, and CD34/CD31) were selected from the stromal vascular fraction. Apoptosis and necrosis were determined by annexin V/propidium iodide assay and analyzed by flow cytometry. The cultured adipose-derived stem cells demonstrated long-term proliferation and differentiation evidenced by cell doubling time and positive staining with oil red O and alkaline phosphatase. Isolated from lipoaspirates, adipocytes exhibited 19.7 ± 3.7 percent apoptosis and 1.1 ± 0.3 percent necrosis; stromal vascular fraction cells revealed 22.0 ± 6.3 percent of apoptosis and 11.2 ± 1.9 percent of necrosis; stromal vascular fraction cells had a higher rate of necrosis than adipocytes (p vascular fraction cells, 51.1 ± 3.7 percent expressed CD90/CD45, 7.5 ± 1.0 percent expressed CD105/CD45, and 26.4 ± 3.8 percent expressed CD34/CD31. CD34/CD31 adipose-derived stem cells had lower rates of apoptosis and necrosis compared with CD105/CD45 adipose-derived stem cells (p necrosis than adipocytes. However, the extent of apoptosis and necrosis was significantly different among adipose-derived stem cell subpopulations.

  10. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747. Keywords: Mesenchymal stromal cells, Mesenchymal stem cells, Pericytes, Microarrays

  11. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  12. What Makes Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Superior Immunomodulators When Compared to Bone Marrow Derived Mesenchymal Stromal Cells?

    Directory of Open Access Journals (Sweden)

    R. N. Bárcia

    2015-01-01

    Full Text Available MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs, the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroborated in vivo in a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression of HLA-DRA, HO-1, IGFBP1, 4 and 6, ILR1, IL6R and PTGES and increased expression of CD200, CD273, CD274, IL1B, IL-8, LIF and TGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1β, IL-8, LIF and TGFβ2.

  13. Platelet-Rich Plasma Influences Expansion and Paracrine Function of Adipose-Derived Stromal Cells in a Dose-Dependent Fashion

    NARCIS (Netherlands)

    Willemsen, Joep C. N.; Spiekman, Maroesjka; Stevens, H. P. Jeroen; van der Lei, Berend; Harmsen, Martin C.

    Background: Lipofilling is a treatment modality to restore tissue volume. Both platelet-rich plasma and adipose-derived stromal cells have been reported to augment the efficacy of lipofilling, yet results are not conclusive. The authors hypothesized that the variation reported in literature is

  14. Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications

    NARCIS (Netherlands)

    Naaijkens, B.A.; Niessen, H.W.M.; Prins, H.J.; Krijnen, P.A.J.; Kokhuis, T.J.A.; de Jong, N.; van Hinsbergh, V.W.M.; Kamp, O.; Helder, M.N.; Musters, R.J.P.; van Dijk, A.; Juffermans, L.J.M.

    2012-01-01

    Adipose-derived stromal cells (ASC) are promising candidates for cell therapy, for example to treat myocardial infarction. Commonly, fetal bovine serum (FBS) is used in ASC culturing. However, FBS has several disadvantages. Its effects differ between batches and, when applied clinically,

  15. Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications

    NARCIS (Netherlands)

    B. Naaijkens (Benno); H.W.M. Niessen (Hans ); H.-J. Prins (H.); P.A.J. Krijnen (Paul); T.J.A. Kokhuis (Tom); N. de Jong (Nico); V.W.M. van Hinsbergh (Victor); O. Kamp (Otto); K. Helder MScN (Onno); R.J.P. Musters (René); A. van Dijk (Annemieke); L.J.M. Juffermans (Lynda)

    2012-01-01

    textabstractAdipose-derived stromal cells (ASC) are promising candidates for cell therapy, for example to treat myocardial infarction. Commonly, fetal bovine serum (FBS) is used in ASC culturing. However, FBS has several disadvantages. Its effects differ between batches and, when applied clinically,

  16. Molecular Validation of Chondrogenic Differentiation and Hypoxia Responsiveness of Platelet-Lysate Expanded Adipose Tissue–Derived Human Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Galeano-Garces, Catalina; Camilleri, Emily T.; Riester, Scott M.; Dudakovic, Amel; Larson, Dirk R.; Qu, Wenchun; Smith, Jay; Dietz, Allan B.; Im, Hee-Jeong; Krych, Aaron J.; Larson, A. Noelle; Karperien, Marcel; van Wijnen, Andre J.

    2017-01-01

    Objective: To determine the optimal environmental conditions for chondrogenic differentiation of human adipose tissue–derived mesenchymal stromal/stem cells (AMSCs). In this investigation we specifically investigate the role of oxygen tension and 3-dimensional (3D) culture systems. Design: Both

  17. Rationale and Design of the First Double-Blind, Placebo-Controlled Trial with Allogeneic Adipose Tissue-Derived Stromal Cell Therapy in Patients with Ischemic Heart Failure

    DEFF Research Database (Denmark)

    Kastrup, Jens; Schou, Morten; Gustafsson, Ida

    2017-01-01

    BACKGROUND: Ischemic heart failure (IHF) has a poor prognosis in spite of optimal therapy. We have established a new allogeneic Cardiology Stem Cell Centre adipose-derived stromal cell (CSCC_ASC) product from healthy donors. It is produced without animal products, in closed bioreactor systems...

  18. In vitro differentiation of neural cells from human adipose tissue derived stromal cells.

    Science.gov (United States)

    Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L

    2018-01-01

    Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.

  19. Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro--a pilot study.

    Science.gov (United States)

    You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-11-01

    Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Bone Marrow-Derived Mesenchymal Stromal Cells Enhanced by Platelet-Rich Plasma Maintain Adhesion to Scaffolds in Arthroscopic Simulation.

    Science.gov (United States)

    Hoberman, Alexander R; Cirino, Carl; McCarthy, Mary Beth; Cote, Mark P; Pauzenberger, Leo; Beitzel, Knut; Mazzocca, Augustus D; Dyrna, Felix

    2018-03-01

    To assess the response of bone marrow-derived mesenchymal stromal cells (bMSCs) enhanced by platelet-rich plasma (PRP) in the setting of a normal human tendon (NHT), a demineralized bone matrix (DBM), and a fibrin scaffold (FS) with simulated arthroscopic mechanical washout stress. Bone marrow was aspirated from the humeral head and concentrated. BMSCs were counted, plated, and grown to confluence. Cells were seeded onto 3 different scaffolds: (1) NHT, (2) DBM, and (3) FS. Each scaffold was treated with a combination of (+)/(-) PRP and (+)/(-) arthroscopic washout simulation. A period of 60 minutes was allotted before arthroscopic washout. Adhesion, proliferation, and differentiation assays were performed to assess cellular activity in each condition. Significant differences were seen in mesenchymal stromal cell adhesion, proliferation, and differentiation among the scaffolds. DBM and FS showed superior results to NHT for cell adhesion, proliferation, and differentiation. PRP significantly enhanced cellular adhesion, proliferation, and differentiation. Arthroscopic simulation did not significantly decrease bMSC adhesion. We found that the type of scaffold impacts bMSCs' behavior. Both scaffolds (DBM and FS) were superior to NHT. The use of an arthroscopic simulator did not significantly decrease the adhesion of bMSCs to the scaffolds nor did it decrease their biologic differentiation potential. In addition, PRP enhanced cellular adhesion, proliferation, and differentiation. Improved healing after tendon repair can lead to better clinical outcomes. BMSCs are attractive for enhancing healing given their accessibility and regenerative potential. Application of bMSCs using scaffolds as cell carriers relies on arthroscopic feasibility. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease.

    Science.gov (United States)

    McCoy, Melissa K; Martinez, Terina N; Ruhn, Kelly A; Wrage, Philip C; Keefer, Edward W; Botterman, Barry R; Tansey, Keith E; Tansey, Malú G

    2008-03-01

    Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned dopaminergic pathway. In vitro-expanded naïve or differentiated ADAS cells were autologously transplanted into substantia nigra 1 week after an intrastriatal 6-hydroxydopamine injection. Neurochemical and behavioral measures demonstrated neuroprotective effects of both ADAS grafts against 6-hydroxydopamine-induced dopaminergic neuron death, suggesting that pre-transplantation differentiation of the cells does not determine their ability to survive or neuroprotect in vivo. Therefore, we investigated whether equivalent protection by naïve and neurally-induced ADAS grafts resulted from robust in situ differentiation of both graft types into dopaminergic fates. Immunohistological analyses revealed that ADAS cells did not adopt dopaminergic cell fates in situ, consistent with the limited ability of these cells to undergo terminal differentiation into electrically active neurons in vitro. Moreover, re-exposure of neurally-differentiated ADAS cells to serum-containing medium in vitro confirmed ADAS cell phenotypic instability (plasticity). Lastly, given that gene expression analyses of in vitro-expanded ADAS cells revealed that both naïve and differentiated ADAS cells express potent dopaminergic survival factors, ADAS transplants may have exerted neuroprotective effects by production of trophic factors at the lesion site. ADAS cells may be ideal for ex vivo gene transfer therapies in Parkinson's disease treatment.

  2. Current View on Osteogenic Differentiation Potential of Mesenchymal Stromal Cells Derived from Placental Tissues.

    Science.gov (United States)

    Kmiecik, Gabriela; Spoldi, Valentina; Silini, Antonietta; Parolini, Ornella

    2015-08-01

    Mesenchymal stromal cells (MSC) isolated from human term placental tissues possess unique characteristics, including their peculiar immunomodulatory properties and their multilineage differentiation potential. The osteogenic differentiation capacity of placental MSC has been widely disputed, and continues to be an issue of debate. This review will briefly discuss the different MSC populations which can be obtained from different regions of human term placenta, along with their unique properties, focusing specifically on their osteogenic differentiation potential. We will present the strategies used to enhance osteogenic differentiation potential in vitro, such as through the selection of subpopulations more prone to differentiate, the modification of the components of osteo-inductive medium, and even mechanical stimulation. Accordingly, the applications of three-dimensional environments in vitro and in vivo, such as non-synthetic, polymer-based, and ceramic scaffolds, will also be discussed, along with results obtained from pre-clinical studies of placental MSC for the regeneration of bone defects and treatment of bone-related diseases.

  3. Conditioned Medium of Bone Marrow-Derived Mesenchymal Stromal Cells as a Therapeutic Approach to Neuropathic Pain: A Preclinical Evaluation

    Directory of Open Access Journals (Sweden)

    Kelly Barbosa Gama

    2018-01-01

    Full Text Available Neuropathic pain is a type of chronic pain caused by injury or dysfunction of the nervous system, without effective therapeutic approaches. Mesenchymal stromal cells (MSCs, through their paracrine action, have great potential in the treatment of this syndrome. In the present study, the therapeutic potential of MSC-derived conditioned medium (CM was investigated in a mouse model of neuropathic pain induced by partial sciatic nerve ligation (PSL. PSL mice were treated by endovenous route with bone marrow-derived MSCs (1 × 106, CM, or vehicle. Gabapentin was the reference drug. Twelve hours after administration, neuropathic mice treated with CM exhibited an antinociceptive effect that was maintained throughout the evaluation period. MSCs also induced nonreversed antinociception, while gabapentin induced short-lasting antinociception. The levels of IL-1β, TNF-α, and IL-6 were reduced, while IL-10 was enhanced on sciatic nerve and spinal cord by treatment with CM and MSCs. Preliminary analysis of the CM secretome revealed the presence of growth factors and cytokines likely involved in the antinociception. In conclusion, the CM, similar to injection of live cells, produces a powerful and long-lasting antinociceptive effect on neuropathic pain, which is related with modulatory properties on peripheral and central levels of cytokines involved with the maintenance of this syndrome.

  4. Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism

    Energy Technology Data Exchange (ETDEWEB)

    De Siena, Rocco; Balducci, Luigi; Blasi, Antonella; Montanaro, Manuela Gessica; Saldarelli, Marilisa [Medestea Research and Production Laboratories, Consorzio Carso, 70010 Valenzano, Bari (Italy); Saponaro, Vittorio [Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari (Italy); Martino, Carmela [Medestea Research and Production Laboratories, Consorzio Carso, 70010 Valenzano, Bari (Italy); Logrieco, Gaetano [Department of Surgery, Hospital ' F. Miulli' 70021 AcquaViva delle Fonti, Bari (Italy); Soleti, Antonio; Fiobellot, Simona [Medestea Research and Production Laboratories, Consorzio Carso, 70010 Valenzano, Bari (Italy); Madeddu, Paolo [Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol BS2 8WH (United Kingdom); Rossi, Giacomo [Department of Pathology, University of Camerino, 63100 Ascoli Piceno (Italy); Ribatti, Domenico [Department of Human Anatomy, University of Bari, 70125 Bari (Italy); Crovace, Antonio [Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari (Italy); Cristini, Silvia; Invernici, Gloria; Parati, Eugenio Agostino [Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute ' Carlo Besta' , 20133 Milan (Italy); Alessandri, Giulio, E-mail: cisiamo2@yahoo.com [Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, Fondazione IRCCS Neurological Institute ' Carlo Besta' , 20133 Milan (Italy)

    2010-07-01

    Cell-based therapy could be a valid option to treat myocardial infarct (MI). Adipose-derived stromal cells (ADStCs) have demonstrated tissue regenerative potential including cardiomyogenesis. Omentum is an extremely rich source of visceral fat and its accumulation seems to correlate with cardiovascular diseases. We investigated the capacity of human fat Omentum-derived StCs (FOStCs) to affect heart function upon acute infarct in pigs induced by permanent ligation of the anterior interventricular artery (IVA). We demonstrated for the first time that the local injection of 50 x 10{sup 6} of FOStCs ameliorates the functional parameters of post-infarct heart. Most importantly, histology of FOStCs treated hearts demonstrated a substantial improvement of cardiomyogenesis. In culture, FOStCs produced an impressive number and amount of angiogenic factors and cytokines. Moreover, the conditioned medium of FOStCs (FOStCs-CM) stimulates in vitro cardiac endothelial cells (ECs) proliferation and vascular morphogenesis and inhibits monocytes, EC activation and cardiomyocyte apoptosis. Since FOStCs in vivo did not trans-differentiate into cardiomyocyte-like cells, we conclude that FOStCs efficacy was presumably mediated by a potent paracrine mechanism involving molecules that concomitantly improved angiogenesis, reduced inflammation and prevented cardiomyocytes death. Our results highlight for the first time the important role that human FOStCs may have in cardiac regeneration.

  5. Derivation of Mesenchymal Stromal Cells from Canine Induced Pluripotent Stem Cells by Inhibition of the TGFβ/Activin Signaling Pathway

    Science.gov (United States)

    Frith, Jessica E.; Frith, Thomas J.R.; Ovchinnikov, Dmitry A.; Cooper-White, Justin J.; Wolvetang, Ernst J.

    2014-01-01

    In this study we have generated canine mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, from canine induced pluripotent stem cells (ciPSCs) by small-molecule inhibition of the transforming growth factor beta (TGFβ)/activin signaling pathway. These ciPSC-derived MSCs (ciPSC-MSCs) express the MSC markers CD73, CD90, CD105, STRO1, cPDGFRβ and cKDR, in addition to the pluripotency factors OCT4, NANOG and REX1. ciPSC-MSCs lack immunostaining for H3K27me3, suggesting that they possess two active X chromosomes. ciPSC-MSCs are highly proliferative and undergo robust differentiation along the osteo-, chondro- and adipogenic pathways, but do not form teratoma-like tissues in vitro. Of further significance for the translational potential of ciPSC-MSCs, we show that these cells can be encapsulated and maintained within injectable hydrogel matrices that, when functionalized with bound pentosan polysulfate, dramatically enhance chondrogenesis and inhibit osteogenesis. The ability to efficiently derive large numbers of highly proliferative canine MSCs from ciPSCs that can be incorporated into injectable, functionalized hydrogels that enhance their differentiation along a desired lineage constitutes an important milestone towards developing an effective MSC-based therapy for osteoarthritis in dogs, but equally provides a model system for assessing the efficacy and safety of analogous approaches for treating human degenerative joint diseases. PMID:25055193

  6. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions.

    Science.gov (United States)

    Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro

    2016-04-13

    Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases.

  7. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions

    Directory of Open Access Journals (Sweden)

    María de Lourdes Mora-García

    2016-10-01

    Full Text Available Abstract Background In recent years, immunomodulatory mechanisms of mesenchymal stem/stromal cells (MSCs from bone marrow and other “classic” sources have been described. However, the phenotypic and functional properties of tumor MSCs are poorly understood. The aim of this study was to analyze the immunosuppressive capacity of cervical cancer-derived MSCs (CeCa-MSCs on effector T lymphocytes through the purinergic pathway. Methods We determined the expression and functional activity of the membrane-associated ectonucleotidases CD39 and CD73 on CeCa-MSCs and normal cervical tissue-derived MSCs (NCx-MSCs. We also analyzed their immunosuppressive capacity to decrease proliferation, activation and effector cytotoxic T (CD8+ lymphocyte function through the generation of adenosine (Ado. Results We detected that CeCa-MSCs express higher levels of CD39 and CD73 ectonucleotidases in cell membranes compared to NCx-MSCs, and that this feature was associated with the ability to strongly suppress the proliferation, activation and effector functions of cytotoxic T-cells through the generation of large amounts of Ado from the hydrolysis of ATP, ADP and AMP nucleotides. Conclusions This study suggests that CeCa-MSCs play an important role in the suppression of the anti-tumor immune response in CeCa through the purinergic pathway.

  8. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions.

    Science.gov (United States)

    de Lourdes Mora-García, María; García-Rocha, Rosario; Morales-Ramírez, Omar; Montesinos, Juan José; Weiss-Steider, Benny; Hernández-Montes, Jorge; Ávila-Ibarra, Luis Roberto; Don-López, Christian Azucena; Velasco-Velázquez, Marco Antonio; Gutiérrez-Serrano, Vianey; Monroy-García, Alberto

    2016-10-26

    In recent years, immunomodulatory mechanisms of mesenchymal stem/stromal cells (MSCs) from bone marrow and other "classic" sources have been described. However, the phenotypic and functional properties of tumor MSCs are poorly understood. The aim of this study was to analyze the immunosuppressive capacity of cervical cancer-derived MSCs (CeCa-MSCs) on effector T lymphocytes through the purinergic pathway. We determined the expression and functional activity of the membrane-associated ectonucleotidases CD39 and CD73 on CeCa-MSCs and normal cervical tissue-derived MSCs (NCx-MSCs). We also analyzed their immunosuppressive capacity to decrease proliferation, activation and effector cytotoxic T (CD8+) lymphocyte function through the generation of adenosine (Ado). We detected that CeCa-MSCs express higher levels of CD39 and CD73 ectonucleotidases in cell membranes compared to NCx-MSCs, and that this feature was associated with the ability to strongly suppress the proliferation, activation and effector functions of cytotoxic T-cells through the generation of large amounts of Ado from the hydrolysis of ATP, ADP and AMP nucleotides. This study suggests that CeCa-MSCs play an important role in the suppression of the anti-tumor immune response in CeCa through the purinergic pathway.

  9. Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Juan S. Henao Agudelo

    2017-07-01

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent cells with abilities to exert immunosuppressive response promoting tissue repair. Studies have shown that MSCs can secrete extracellular vesicles (MVs-MSCs with similar regulatory functions to the parental cells. Furthermore, strong evidence suggesting that MVs-MSCs can modulate several immune cells (i.e., Th1, Th17, and Foxp3+ T cells. However, their precise effect on macrophages (Mϕs remains unexplored. We investigated the immunoregulatory effect of MVs-MSCs on activated M1-Mϕs in vitro and in vivo using differentiated bone marrow Mϕs and an acute experimental model of thioglycollate-induced peritonitis, respectively. We observed that MVs-MSCs shared surface molecules with MSCs (CD44, CD105, CD90, CD73 and expressed classical microvesicle markers (Annexin V and CD9. The in vitro treatment with MVs-MSCs exerted a regulatory-like phenotype in M1-Mϕs, which showed higher CD206 level and reduced CCR7 expression. This was associated with decreased levels of inflammatory molecules (IL-1β, IL-6, nitric oxide and increased immunoregulatory markers (IL-10 and Arginase in M1-Mϕs. In addition, we detected that MVs-MSCs promoted the downregulation of inflammatory miRNAs (miR-155 and miR-21, as well as, upregulated its predicted target gene SOCS3 in activated M1-Mϕs. In vivo MVs-MSCs treatment reduced the Mϕs infiltrate in the peritoneal cavity inducing a M2-like regulatory phenotype in peritoneal Mϕs (higher arginase activity and reduced expression of CD86, iNOS, IFN-γ, IL-1β, TNF-α, IL-1α, and IL-6 molecules. This in vivo immunomodulatory effect of MVs-MSCs on M1-Mϕs was partially associated with the upregulation of CX3CR1 in F4/80+/Ly6C+/CCR2+ Mϕs subsets. In summary, our findings indicate that MVs-MSCs can modulate an internal program in activated Mϕs establishing an alternative regulatory-like phenotype.

  10. Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo.

    Science.gov (United States)

    Pezzanite, Lynn M; Fortier, Lisa A; Antczak, Douglas F; Cassano, Jennifer M; Brosnahan, Margaret M; Miller, Donald; Schnabel, Lauren V

    2015-04-12

    This study tested the hypothesis that Major Histocompatibility Complex (MHC) incompatible equine mesenchymal stromal cells (MSCs) would induce cytotoxic antibodies to donor MHC antigens in recipient horses after intradermal injection. No studies to date have explored recipient antibody responses to allogeneic donor MSC transplantation in the horse. This information is critical because the horse is a valuable species for assessing the safety and efficacy of MSC treatment prior to human clinical application. Six MHC heterozygote horses were identified as non-ELA-A2 haplotype by microsatellite typing and used as allogeneic MHC-mismatched MSC recipients. MHC homozygote horses of known ELA-A2 haplotype were used as MSC and peripheral blood leukocyte (PBL) donors. One MHC homozygote horse of the ELA-A2 haplotype was the recipient of ELA-A2 donor MSCs as an MHC-matched control. Donor MSCs, which were previously isolated and immunophenotyped, were thawed and culture expanded to achieve between 30x10(6) and 50x10(6) cells for intradermal injection into the recipient's neck. Recipient serum was collected and tested for the presence of anti-donor antibodies prior to MSC injection and every 7 days after MSC injection for the duration of the 8-week study using the standard two-stage lymphocyte microcytotoxicity dye-exclusion test. In addition to anti-ELA-A2 antibodies, recipient serum was examined for the presence of cross-reactive antibodies including anti-ELA-A3 and anti-RBC antibodies. All MHC-mismatched recipient horses produced anti-ELA-A2 antibodies following injection of ELA-A2 MSCs and developed a wheal at the injection site that persisted for the duration of the experiment. Anti-ELA-A2 antibody responses were varied both in terms of strength and timing. Four recipient horses had high-titered anti-ELA-A2 antibody responses resulting in greater than 80% donor PBL death in the microcytotoxicity assays and one of these horses also developed antibodies that cross

  11. Proliferation of Peripheral Blood Lymphocytes and Mesenchymal Stromal Cells Derived from Wharton's Jelly in Mixed and Membrane-Separated Cultures.

    Science.gov (United States)

    Poltavtsev, A M; Poltavtseva, R A; Yushina, M N; Pavlovich, S V; Svirshchevskaya, E V

    2017-08-01

    We studied the effect of mesenchymal stromal cells on proliferation of CFSE-stained T cells in mixed and membrane-separated (Transwell) cultures and in 3D culture of mesenchymal stromal cells from Wharton's jelly. The interaction of mesenchymal stromal cells with mitogen-activated peripheral blood lymphocytes from an allogeneic donor was followed by suppression of T-cell proliferation in a wide range of cell proportions. Culturing in the Transwell system showed the absence of suppression assessed by the fraction of proliferating cells and by the cell cycle analysis. In 3D cultures, contact interaction of mesenchymal stromal cells and lymphocytes was demonstrated that led to accumulation of G2/M phase lymphocytes and G0/G1 phase mesenchymal stromal cells. The suppressive effect of mesenchymal stromal cells from Wharton's jelly is mediated by two mechanisms. The effects are realized within 6 days, which suggests that the therapeutic effects of mesenchymal stromal cells persist until their complete elimination from the body.

  12. Andrographolide Promotes Neural Differentiation of Rat Adipose Tissue-Derived Stromal Cells through Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2017-01-01

    Full Text Available Adipose tissue-derived stromal cells (ADSCs are a high-yield source of pluripotent stem cells for use in cell-based therapies. We explored the effect of andrographolide (ANDRO, one of the ingredients of the medicinal herb extract on the neural differentiation of rat ADSCs and associated molecular mechanisms. We observed that rat ADSCs were small and spindle-shaped and expressed multiple stem cell markers including nestin. They were multipotent as evidenced by adipogenic, osteogenic, chondrogenic, and neural differentiation under appropriate conditions. The proportion of cells exhibiting neural-like morphology was higher, and neurites developed faster in the ANDRO group than in the control group in the same neural differentiation medium. Expression levels of the neural lineage markers MAP2, tau, GFAP, and β-tubulin III were higher in the ANDRO group. ANDRO induced a concentration-dependent increase in Wnt/β-catenin signaling as evidenced by the enhanced expression of nuclear β-catenin and the inhibited form of GSK-3β (pSer9. Thus, this study shows for the first time how by enhancing the neural differentiation of ADSCs we expect that ANDRO pretreatment may increase the efficacy of adult stem cell transplantation in nervous system diseases, but more exploration is needed.

  13. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhongcheng; Lin Zhaoquan [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054 (China); Xiong Hui; Long Xing; Wei Lili; Li Jian; Wu Yang, E-mail: xinglong1957@yahoo.com.c [State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079 (China)

    2010-10-01

    The objective was to investigate synovium-derived stromal cells (SDSCs) coupled with chitosan/collagen type I (CS/COL-I) scaffolds for cartilage engineering. CS/COL-I scaffolds were fabricated through freeze-drying and cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. SDSCs were isolated from synovium and cultured onto CS/COL-I scaffolds, constructs of which were incubated in serum-free chondrogenic medium with sequential application of TGF-{beta}1 and bFGF for up to 21 days and then implanted into nude mice. The physical characteristics of the scaffolds were examined. The quality of the in vitro constructs was assessed in terms of DNA content by PicoGreen assay and cartilaginous matrix by histological examination. The implants of the constructs were evaluated by histological and immunohistochemical examinations and reverse transcription PCR. Results indicated that the CS/COL-I scaffold showed porous structures, and the DNA content of SDSCs in CS/COL-I scaffolds increased at 1 week culture time. Both of the constructs in vitro and the implants were examined with positive stained GAGs histologically and the implants with positive collagen type II immunohistochemically. RT-PCR of the implants indicated that aggrecan and collagen type II expressed. It suggested that SDSCs coupled with CS/COL-I scaffolds treated sequentially with TGF-{beta}1 and bFGF in vitro were highly competent for engineered cartilage formation in vitro and in vivo.

  14. Expression profile analysis of aorta-gonad-mesonephros region-derived stromal cells reveals genes that regulate hematopoiesis

    International Nuclear Information System (INIS)

    Nagao, Kenji; Ohta, Takayuki; Hinohara, Atsushi; Tahara, Tomoyuki; Hagiwara, Tetsuya; Maeda, Yoshitake; Yoneya, Takashi; Sohma, Yoshiaki; Heike, Toshio; Nakahata, Tatsutoshi; Inagaki, Yoshimasa; Nishikawa, Mitsuo

    2008-01-01

    The aorta-gonad-mesonephros (AGM) region is involved in the generation and maintenance of the first definitive hematopoietic stem cells (HSCs). A mouse AGM-derived cell line, AGM-S3, was shown to support the development of HSCs. To elucidate the molecular mechanisms regulating early hematopoiesis, we obtained subclones from AGM-S3, one of which was hematopoiesis supportive (S3-A9) and the other one of which was non-supportive (S3-A7), and we analyzed their gene expression profiles by gene chip analysis. In the present study, we found that Glypican-1 (GPC1) was highly expressed in the supportive subclone AGM-S3-A9. Over-expression of GPC1 in non-supportive cells led to the proliferation of progenitor cells in human cord blood when cocultured with the transfected-stromal cells. Thus, GPC1 may have an important role in the establishment of a microenvironment that supports early events in hematopoiesis

  15. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    Science.gov (United States)

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Bone Marrow Derived Mesenchymal Stromal Cells Harness Purinergenic Signaling to Tolerize Human Th1 Cells In Vivo

    Science.gov (United States)

    Amarnath, Shoba; Foley, Jason E.; Farthing, Don E.; Gress, Ronald E.; Laurence, Arian; Eckhaus, Michael A.; Métais, Jean-Yves; Rose, Jeremy J.; Hakim, Frances T.; Felizardo, Tania C.; Cheng, Austin V.; Robey, Pamela G.; Stroncek, David E.; Sabatino, Marianna; Battiwalla, Minoo; Ito, Sawa; Fowler, Daniel H.; Barrett, Austin J.

    2014-01-01

    The use of bone marrow derived mesenchymal stromal cells (BMSC) in the treatment of alloimmune and autoimmune conditions has generated much interest, yet an understanding of the therapeutic mechanism remains elusive. We therefore explored immune modulation by a clinical-grade BMSC product in a model of human-into-mouse xenogeneic GVHD (x-GVHD) mediated by human CD4+ Th1 cells. BMSC reversed established, lethal x-GVHD through marked inhibition of Th1 cell effector function. Gene marking studies indicated BMSC engraftment was limited to the lung; further, there was no increase in regulatory T cells, thereby suggesting a paracrine mechanism of BMSC action. BMSC recipients had increased serum CD73 expressing exosomes that promoted adenosine accumulation ex vivo. Importantly, immune modulation mediated by BMSC was fully abrogated by pharmacologic therapy with an adenosine A2A receptor antagonist. To investigate the potential clinical relevance of these mechanistic findings, patient serum samples collected pre- and post-BMSC treatment were studied for exosome content: CD73 expressing exosomes promoting adenosine accumulation were detected in post-BMSC samples. In conclusion, BMSC effectively modulate experimental GVHD through a paracrine mechanism that promotes adenosine-based immune suppression. PMID:25532725

  17. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Wang FJ

    2015-12-01

    Full Text Available Mesenchymal stromal cells (MSCs have shown promise as treatment for graft-versus-host disease (GvHD following allogeneic bone marrow transplantation (alloBMT. Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs were injected via carotid artery (IA or tail vein (TV into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments.

  18. Fanconi Anemia Mesenchymal Stromal Cells-Derived Glycerophospholipids Skew Hematopoietic Stem Cell Differentiation Through Toll-Like Receptor Signaling.

    Science.gov (United States)

    Amarachintha, Surya; Sertorio, Mathieu; Wilson, Andrew; Li, Xiaoli; Pang, Qishen

    2015-11-01

    Fanconi anemia (FA) patients develop bone marrow (BM) failure or leukemia. One standard care for these devastating complications is hematopoietic stem cell transplantation. We identified a group of mesenchymal stromal cells (MSCs)-derived metabolites, glycerophospholipids, and their endogenous inhibitor, 5-(tetradecyloxy)-2-furoic acid (TOFA), as regulators of donor hematopoietic stem and progenitor cells. We provided two pieces of evidence that TOFA could improve hematopoiesis-supporting function of FA MSCs: (a) limiting-dilution cobblestone area-forming cell assay revealed that TOFA significantly increased cobblestone colonies in Fanca-/- or Fancd2-/- cocultures compared to untreated cocultures. (b) Competitive repopulating assay using output cells collected from cocultures showed that TOFA greatly alleviated the abnormal expansion of the donor myeloid (CD45.2+Gr1+Mac1+) compartment in both peripheral blood and BM of recipient mice transplanted with cells from Fanca-/- or Fancd2-/- cocultures. Furthermore, mechanistic studies identified Tlr4 signaling as the responsible pathway mediating the effect of glycerophospholipids. Thus, targeting glycerophospholipid biosynthesis in FA MSCs could be a therapeutic strategy to improve hematopoiesis and stem cell transplantation. © 2015 AlphaMed Press.

  19. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells

    International Nuclear Information System (INIS)

    Chen, P.-Y.; Huang, Lynn L.H.; Hsieh, H.-J.

    2007-01-01

    For long-term culture, murine adipose-derived stromal cells (mADSCs) at latter passages demonstrated a marked decline in proliferative activity, exhibited senescent morphology and reduced differentiation potentials, particularly osteogenesis. To extend the lifespan of mADSCs, two culture conditions containing hyaluronan (HA) was compared in our study, one as a culture medium supplement (SHA), and the other where HA was pre-coated on culture surface (CHA). mADSCs cultivated with SHA exhibited a prolonged lifespan, reduced cellular senescence, and enhanced osteogenic potential compared to regular culture condition (control). Upon CHA treatment, mADSCs tended to form cell aggregates with gradual growth profiles, while their differentiation activities remained similar to SHA groups. After transferring mADSCs from CHA to control surface, they were shown to have an extended lifespan and an increase of osteogenic potential. Our results suggested that HA can be useful for preserving the proliferation and differentiation potentials of long-term cultured mADSCs

  20. Murine adipose tissue-derived stromal cell apoptosis and susceptibility to oxidative stress in vitro are regulated by genetic background.

    Directory of Open Access Journals (Sweden)

    Robert Pazdro

    Full Text Available Adipose tissue-derived stromal cells (ADSCs are of interest for regenerative medicine as they are isolated easily and can differentiate into multiple cell lineages. Studies of their in vitro proliferation, survival, and differentiation are common; however, genetic effects on these phenotypes remain unknown. To test if these phenotypes are genetically regulated, ADSCs were isolated from three genetically diverse inbred mouse strains--C57BL/6J (B6, BALB/cByJ (BALB, and DBA/2J (D2--in which genetic regulation of hematopoietic stem function is well known. ADSCs from all three strains differentiated into osteogenic and chondrogenic lineages in vitro. ADSCs from BALB grew least well in vitro, probably due to apoptotic cell death after several days in culture. BALB ADSCs were also the most susceptible to the free radical inducers menadione and H2O2. ADSCs from the three possible F1 hybrids were employed to further define genetic regulation of ADSC phenotypes. D2, but not B6, alleles stimulated ADSC expansion in BALB cells. In contrast, B6, but not D2, alleles rescued BALB H2O2 resistance. We conclude that low oxidative stress resistance does not limit BALB ADSC growth in vitro, as these phenotypes are genetically regulated independently. In addition, ADSCs from these strains are an appropriate model system to investigate genetic regulation of ADSC apoptosis and stress resistance in future studies. Such investigations are essential to optimize cell expansion and differentiation and thus, potential for regenerative medicine.

  1. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Kimura M

    2012-01-01

    Full Text Available Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.

  2. The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis

    International Nuclear Information System (INIS)

    Francis, W.R.; Owens, S.E.; Wilde, C.; Pallister, I.; Kanamarlapudi, V.; Zou, W.; Xia, Z.

    2014-01-01

    Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments

  3. The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells.

    Science.gov (United States)

    Wajid, Nadia; Naseem, Rashida; Anwar, Sanam Saiqa; Awan, Sana Javaid; Ali, Muhammad; Javed, Sara; Ali, Fatima

    2015-09-01

    Stomal cells derived from Wharton's jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton's jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.

  4. An In Vitro Potency Assay for Monitoring the Immunomodulatory Potential of Stromal Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Karin Pachler

    2017-07-01

    Full Text Available The regenerative and immunomodulatory activity of mesenchymal stromal cells (MSCs is partially mediated by secreted vesicular factors. Extracellular vesicles (EVs exocytosed by MSCs are gaining increased attention as prospective non-cellular therapeutics for a variety of diseases. However, the lack of suitable in vitro assays to monitor the therapeutic potential of EVs currently restricts their application in clinical studies. We have evaluated a dual in vitro immunomodulation potency assay that reproducibly reports the inhibitory effect of MSCs on induced T-cell proliferation and the alloantigen-driven mixed leukocyte reaction of pooled peripheral blood mononuclear cells in a dose-dependent manner. Phytohemagglutinin-stimulated T-cell proliferation was inhibited by MSC-derived EVs in a dose-dependent manner comparable to MSCs. In contrast, inhibition of alloantigen-driven mixed leukocyte reaction was only observed for MSCs, but not for EVs. Our results support the application of a cell-based in vitro potency assay for reproducibly determining the immunomodulatory potential of EVs. Validation of this assay can help establish reliable release criteria for EVs for future clinical studies.

  5. Human Adipose-Derived Mesenchymal Stem/Stromal Cells Handling Protocols. Lipid Droplets and Proteins Double-Staining

    Directory of Open Access Journals (Sweden)

    Aldana D. Gojanovich

    2018-04-01

    Full Text Available Human Adipose-derived mesenchymal stem/stromal cells (hASCs are of great interest because of their potential for therapeutic approaches. The method described here covers every single step necessary for hASCs isolation from subcutaneous abdominal adipose tissue, multicolor phenotyping by flow cytometry, and quantitative determination of adipogenic differentiation status by means of lipid droplets (LDs accumulation, and Western blot analysis. Moreover, to simultaneously analyze both LDs accumulation and cellular proteins localization by fluorescence microscopy, we combined Oil Red O (ORO staining with immunofluorescence detection. For LDs quantification we wrote a program for automatic ORO-stained digital image processing implemented in Octave, a freely available software package. Our method is based on the use of the traditional low cost neutral lipids dye ORO, which can be imaged both by bright-field and fluorescence microscopy. The utilization of ORO instead of other more expensive lipid-specific dyes, together with the fact that the whole method has been designed employing cost-effective culture reagents (standard culture medium and serum, makes it affordable for tight-budget research laboratories. These may be replaced, if necessary or desired, by defined xeno-free reagents for clinical research and applications.

  6. Tissue-Related Hypoxia Attenuates Proinflammatory Effects of Allogeneic PBMCs on Adipose-Derived Stromal Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Polina I. Bobyleva

    2016-01-01

    Full Text Available Human adipose tissue-stromal derived cells (ASCs are considered a perspective tool for regenerative medicine. Depending on the application mode ASC/allogeneic immune cell interaction can occur in the systemic circulation under plenty high concentrations of O2 and in target tissues at lower O2 levels. Here we examined the effects of allogeneic PHA-stimulated peripheral blood mononuclear cells (PBMCs on ASCs under ambient (20% oxygen and “physiological” hypoxia (5% O2. As revealed with microarray analysis ASCs under 20% O2 were more affected by activated PBMCs, which was manifested in differential expression of more than 300 genes, whereas under 5% O2 only 140 genes were changed. Altered gene pattern was only partly overlapped at different O2 conditions. Under O2 ASCs retained their proliferative and differentiative capacities, mesenchymal phenotype, and intracellular organelle’ state. ASCs were proinflammatory activated on transcription level that was confirmed by their ability to suppress activation and proliferation of mitogen-stimulated PBMCs. ASC/PBMCs interaction resulted in anti-inflammatory shift of paracrine mediators in conditioning medium with significant increase of immunosuppressive LIF level. Our data indicated that under both ambient and tissue-related O2 ASCs possessed immunosuppressive potential and maintained functional activity. Under “physiological” hypoxia ASCs were less susceptible to “priming” by allogeneic mitogen-activated PBMCs.

  7. Downregulation of MMP1 in MDS-derived mesenchymal stromal cells reduces the capacity to restrict MDS cell proliferation.

    Science.gov (United States)

    Zhao, Sida; Zhao, Youshan; Guo, Juan; Fei, Chengming; Zheng, Qingqing; Li, Xiao; Chang, Chunkang

    2017-03-06

    The role of mesenchymal stromal cells (MSCs) in the pathogenesis of myelodysplastic syndromes (MDS) has been increasingly addressed, but has yet to be clearly elucidated. In this investigation, we found that MDS cells proliferated to a greater extent on MDS-derived MSCs compared to normal MSCs. Matrix metalloproteinase 1(MMP1), which was downregulated in MDS-MSCs, was identified as an inhibitory factor of MDS cell proliferation, given that treatment with an MMP1 inhibitor or knock-down of MMP1 in normal MSCs resulted in increased MDS cell proliferation. Further investigations indicated that MMP1 induced apoptosis of MDS cells by interacting with PAR1 and further activating the p38 MAPK pathway. Inhibition of either PAR1 or p38 MAPK can reverse the apoptosis-inducing effect of MMP1. Taken together, these data indicate that downregulation of MMP1 in MSCs of MDS patients may contribute to the reduced capacity of MSCs to restrict MDS cell proliferation, which may account for the malignant proliferation of MDS cells.

  8. Comparison of Adipose-Derived and Bone Marrow Mesenchymal Stromal Cells in a Murine Model of Crohn's Disease.

    Science.gov (United States)

    Xie, Minghao; Qin, Huabo; Luo, Qianxin; He, Xiaosheng; He, Xiaowen; Lan, Ping; Lian, Lei

    2017-01-01

    Mesenchymal stromal cells (MSCs) have been used in the treatment of Crohn's disease (CD) because of the immunomodulatory ability. The aim of this study was to investigate the therapeutic effect of adipose-derived MSCs (AD-MSCs) and to compare the therapeutic effect of AD-MSCs with that of bone marrow MSCs (BM-MSCs) in a murine model of CD. Murine colitis model of CD was created by trinitrobenzene sulfonic acid (TNBS). Twelve hours after treatment with TNBS, the mouse model was injected with MSCs intraperitoneally. Real-time polymerase chain reaction and immunohistochemistry staining were used to measure the expression levels of inflammatory cytokines in colonic tissues to investigate the therapeutic effect of AD-MSCs. The ten-day survival was recorded after infusion of MSCs. Intraperitoneal injection of MSCs alleviated the clinical and histopathologic severity of intestinal inflammation, and improved the survival of the TNBS-induced mouse model of CD. AD-MSCs could effectively increase the expression of interleukin-10 and reduce the secretion of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-12, and vascular endothelial growth factor. The mucosal injury was repaired by AD-MSCs. These effects were comparable between AD-MSCs and BM-MSCs. The therapeutic effect appears similar between AD-MSCs and BM-MSCs in treating CD. AD-MSCs may be a potential alternative of cell-based therapy for CD.

  9. Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds.

    Science.gov (United States)

    Hajj-Hassan, Mohamad; Khayyat-Kholghi, Maedeh; Wang, Huifen; Chodavarapu, Vamsy; Henderson, Janet E

    2011-11-01

    Porous silicon shows great promise as a bio-interface material due to its large surface to volume ratio, its stability in aqueous solutions and to the ability to precisely regulate its pore characteristics. In the current study, porous silicon scaffolds were fabricated from single crystalline silicon wafers by a novel xenon difluoride dry etching technique. This simplified dry etch fabrication process allows selective formation of porous silicon using a standard photoresist as mask material and eliminates the post-formation drying step typically required for the wet etching techniques, thereby reducing the risk of damaging the newly formed porous silicon. The porous silicon scaffolds supported the growth of primary cultures of bone marrow derived mesenchymal stromal cells (MSC) plated at high density for up to 21 days in culture with no significant loss of viability, assessed using Alamar Blue. Scanning electron micrographs confirmed a dense lawn of cells at 9 days of culture and the presence of MSC within the pores of the porous silicon scaffolds. Copyright © 2011 Wiley Periodicals, Inc.

  10. Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles.

    Science.gov (United States)

    Xu, Yan; Hadjiargyrou, M; Rafailovich, Miriam; Mironava, Tatsiana

    2017-07-11

    Increasing production of nanomaterials requires fast and proper assessment of its potential toxicity. Therefore, there is a need to develop new assays that can be performed in vitro, be cost effective, and allow faster screening of engineered nanomaterials (ENMs). Herein, we report that titanium dioxide (TiO 2 ) nanoparticles (NPs) can induce damage to adipose derived stromal cells (ADSCs) at concentrations which are rated as safe by standard assays such as measuring proliferation, reactive oxygen species (ROS), and lactate dehydrogenase (LDH) levels. Specifically, we demonstrated that low concentrations of TiO 2 NPs, at which cellular LDH, ROS, or proliferation profiles were not affected, induced changes in the ADSCs secretory function and differentiation capability. These two functions are essential for ADSCs in wound healing, energy expenditure, and metabolism with serious health implications in vivo. We demonstrated that cytotoxicity assays based on specialized cell functions exhibit greater sensitivity and reveal damage induced by ENMs that was not otherwise detected by traditional ROS, LDH, and proliferation assays. For proper toxicological assessment of ENMs standard ROS, LDH, and proliferation assays should be combined with assays that investigate cellular functions relevant to the specific cell type.

  11. OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xiaoli Chen

    2015-09-01

    Full Text Available Generating engraftable hematopoietic stem cells (HSCs from pluripotent stem cells (PSCs is an ideal approach for obtaining induced HSCs for cell therapy. However, the path from PSCs to robustly induced HSCs (iHSCs in vitro remains elusive. We hypothesize that the modification of hematopoietic niche cells by transcription factors facilitates the derivation of induced HSCs from PSCs. The Lhx2 transcription factor is expressed in fetal liver stromal cells but not in fetal blood cells. Knocking out Lhx2 leads to a fetal hematopoietic defect in a cell non-autonomous role. In this study, we demonstrate that the ectopic expression of Lhx2 in OP9 cells (OP9-Lhx2 accelerates the hematopoietic differentiation of PSCs. OP9-Lhx2 significantly increased the yields of hematopoietic progenitor cells via co-culture with PSCs in vitro. Interestingly, the co-injection of OP9-Lhx2 and PSCs into immune deficient mice also increased the proportion of hematopoietic progenitors via the formation of teratomas. The transplantation of phenotypic HSCs from OP9-Lhx2 teratomas but not from the OP9 control supported a transient repopulating capability. The upregulation of Apln gene by Lhx2 is correlated to the hematopoietic commitment property of OP9-Lhx2. Furthermore, the enforced expression of Apln in OP9 cells significantly increased the hematopoietic differentiation of PSCs. These results indicate that OP9-Lhx2 is a good cell line for regeneration of hematopoietic progenitors both in vitro and in vivo.

  12. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    OpenAIRE

    Clémence Roux; Clémence Roux; Clémence Roux; Gaëlle Saviane; Gaëlle Saviane; Jonathan Pini; Jonathan Pini; Nourhène Belaïd; Nourhène Belaïd; Gihen Dhib; Gihen Dhib; Christine Voha; Christine Voha; Christine Voha; Lidia Ibáñez

    2018-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for th...

  13. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro

    Directory of Open Access Journals (Sweden)

    F.G.J. Calkoen

    2015-03-01

    An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets.

  14. Multipotent stromal cells outperform chondrocytes on cartilage-derived matrix scaffolds

    NARCIS (Netherlands)

    Benders, K.E.M.; Boot, W.; van Weeren, René; Gawlitta, D.; Bergman, E.; Saris, D.B.F.; Dhert, Wouter; Malda, Jos

    2014-01-01

    Objective. Although extracellular matrix (ECM)–derived scaffolds have been extensively studied and applied in a number of clinical applications, the use of ECM as a biomaterial for (osteo)chondral regeneration is less extensively explored. This study aimed at evaluating the chondrogenic potential of

  15. Preventive effects of CTLA4Ig-overexpressing adipose tissue--derived mesenchymal stromal cells in rheumatoid arthritis.

    Science.gov (United States)

    Choi, Eun Wha; Yun, Tae Won; Song, Ji Woo; Lee, Minjae; Yang, Jehoon; Choi, Kyu-Sil

    2015-03-01

    Rheumatoid arthritis is a systemic autoimmune disorder. In this study, we first compared the therapeutic effects of syngeneic and xenogeneic adipose tissue-derived stem cells on a collagen-induced arthritis mouse model. Second, we investigated the synergistic preventive effects of CTLA4Ig and adipose tissue-derived mesenchymal stromal cells (ASCs) as a therapeutic substance. Arthritis was induced in all groups except for the normal, saline (N) group, using chicken type II collagen (CII). Animals were divided into C (control, saline), H (hASCs), M (mASCs) and N groups (experiment I) and C, H, CT (CTLA4Ig-overexpressing human ASC [CTLA4Ig-hASCs]) and N groups (experiment II), according to transplanted material. Approximately 2 × 10(6) ASCs or 150 μL of saline was intravenously administered on days 24, 27, 30 and 34, and all animals were killed on days 42 to 44 after CII immunization. Anti-mouse CII autoantibodies were significantly lower in the H, M and CT groups than in the C group. Cartilage damage severity score and C-telopeptide of type II collagen were significantly lower in the CT group than in the C group. The serum levels of IL-6 were significantly lower in the H, M and CT groups than in the C group. The serum levels of keratinocyte chemoattractant were significantly lower in the CT group than the C group. There were similar effects of ASCs on the decrease of anti-mouse CII autoantibody levels between syngeneic and xenogeneic transplantations, and CTLA4Ig-hASCs showed synergistic preventive effects compared with non-transduced hASCs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  17. Cryopreserved Off-the-Shelf Allogeneic Adipose-Derived Stromal Cells for Therapy in Patients with Ischemic Heart Disease and Heart Failure-A Safety Study

    DEFF Research Database (Denmark)

    Kastrup, Jens; Haack-Sørensen, Mandana; Juhl, Morten

    2017-01-01

    and ischemic heart failure (IHF). Batches of CSCC_ASC were isolated from three healthy donors by liposuction from abdominal adipose tissue. Adipose mesenchymal stromal cells were culture expanded in bioreactors without the use of animal constituents, cryopreserved, and stored in vials in nitrogen dry......The present first-in-human clinical trial evaluated the safety and feasibility of a newly developed and cryopreserved Cardiology Stem Cell Centre adipose-derived stromal cell (CSCC_ASC) product from healthy donors for intramyocardial injection in ten patients with ischemic heart disease......-storage containers until use. Direct injection of CSCC_ASC into the myocardium did not cause any complications or serious adverse events related to either treatment or cell administration in a 6-month follow-up period. Four out of ten heart failure patients developed donor-specific de novo human leukocyte antigen...

  18. Cryopreserved Off-the-Shelf Allogeneic Adipose-Derived Stromal Cells for Therapy in Patients with Ischemic Heart Disease and Heart Failure-A Safety Study

    DEFF Research Database (Denmark)

    Kastrup, Jens; Haack-Sørensen, Mandana; Juhl, Morten

    2017-01-01

    The present first-in-human clinical trial evaluated the safety and feasibility of a newly developed and cryopreserved Cardiology Stem Cell Centre adipose-derived stromal cell (CSCC_ASC) product from healthy donors for intramyocardial injection in ten patients with ischemic heart disease...... and ischemic heart failure (IHF). Batches of CSCC_ASC were isolated from three healthy donors by liposuction from abdominal adipose tissue. Adipose mesenchymal stromal cells were culture expanded in bioreactors without the use of animal constituents, cryopreserved, and stored in vials in nitrogen dry...... developed cryopreserved product CSCC_ASC from healthy donors was a safe and feasible treatment. We observed a tendency toward efficacy in patients with IHF. These findings have to be confirmed in larger placebo controlled clinical trials. Stem Cells Translational Medicine 2017;6:1963-1971....

  19. A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells.

    Science.gov (United States)

    Liang, Haixiang; Li, Xudong; Shimer, Adam L; Balian, Gary; Shen, Francis H

    2014-03-01

    Although the use of mesenchymal stem cells (MSC) with scaffolds for bone repair has been considered an effective method, the interactions between implanted materials and bone tissues have not been fully elucidated. At some specific sites, such as the vertebral body (VB) of the spine, the process of bone repair with implanted biomaterials is rarely reported. Recently, adipose tissue was found to be an alternative source of MSC besides bone marrow. However, the strategy of using adipose-derived stromal (ADS) cells with bioactive scaffold for the repair of spinal bone defects has seldom been studied. To use a sintered poly(lactide-co-glycolide) acid (PLGA) microspheres scaffold seeded with induced rat ADS cells to repair a bone defect of the VB in a rat model. Basic science and laboratory study. A sintered porous microspheres scaffold was manufactured by PLGA. ADS cells were isolated from Fischer 344 rats and then induced by osteogenic medium with growth and differentiation factor 5 (GDF5) in vitro. Before implantation, cells were cultured with inductive media for 2 weeks as a monolayer situation and 1 more week on a PLGA scaffold as a three-dimensional structure. These assembled bioactive scaffolds then were implanted in lumbar VB bone defects in Fischer 344 rats. The ex vivo differentiation of the cells was confirmed by von Kossa staining and real-time polymerase chain reaction. The performance of cells on the scaffold was detected by scanning electron microscopy and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. In vivo bone formation was quantitatively measured by computed tomography study. And the effect of tissue repair was also evaluated by histological studies. Proliferation and differentiation of cells were confirmed before in vivo implantation. Quantification of bone formation in vivo through serial three-dimensional computed tomography images revealed that the VB implanted with GDF5-induced cells

  20. Effects of human umbilical cord blood-derived mesenchymal stromal cells and dermal fibroblasts on diabetic wound healing.

    Science.gov (United States)

    Moon, Kyung-Chul; Lee, Jong-Seok; Han, Seung-Kyu; Lee, Hyup-Woo; Dhong, Eun-Sang

    2017-07-01

    A previous study demonstrated that human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have superior wound-healing activity compared with fibroblasts in vitro. However, wound healing in vivo is a complex process that involves multiple factors. The purpose of this study was to compare the effects of hUCB-MSCs and fibroblasts on diabetic wound healing in vivo. This study especially focused on collagen synthesis and angiogenesis, which are considered to be the important factors affecting diabetic wound healing. Porous polyethylene discs were loaded with either fibroblasts or hUCB-MSCs, and a third group, which served as a control, was not loaded with cells. The discs were then implanted in the back of diabetic mice. During the first and the second week after implantation, the discs were harvested, and collagen level and microvascular density were compared. In terms of collagen synthesis, the hUCB-MSC group showed the highest collagen level (117.7 ± 8.9 ng/mL), followed by the fibroblast group (83.2 ± 5.2 ng/mL) and the no-cell group (60.0 ± 4.7 ng/mL) in the second week after implantation. In terms of angiogenesis, the microvascular density in the hUCB-MSC group was 56.8 ± 16.4, which was much higher than that in the fibroblast group (14.3 ± 4.0) and the no-cell group (5.7 ± 2.1) in the second week after implantation. These results demonstrate that hUCB-MSCs are superior to fibroblasts in terms of their effect on diabetic wound healing in vivo. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation

    Energy Technology Data Exchange (ETDEWEB)

    Herzmann, Nicole; Salamon, Achim [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany); Fiedler, Tomas [Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Schillingallee 70, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, University Medicine Rostock, Schillingallee 69, D-18057 Rostock (Germany)

    2017-01-01

    Multipotent mesenchymal stromal cells (MSC) are capable of multi-lineage differentiation and support regenerative processes. In bacterial infections, resident MSC can come intocontact with and need to react to bacterial components. Lipopolysaccharide (LPS), a typical structure of Gram-negative bacteria, increases the proliferation and osteogenic differentiation of MSC. LPS is usually recognized by the toll-like receptor (TLR) 4 and induces pro-inflammatory reactions in numerous cell types. In this study, we quantified the protein expression of TLR4 and CD14 on adipose-derived MSC (adMSC) in osteogenic differentiation and investigated the effect of TLR4 activation by LPS on NF-κB activation, proliferation and osteogenic differentiation of adMSC. We found that TLR4 is expressed on adMSC whereas CD14 is not, and that osteogenic differentiation induced an increase of the amount of TLR4 protein whereas LPS stimulation did not. Moreover, we could show that NF-κB activation via TLR4 occurs upon LPS treatment. Furthermore, we were able to show that competitive inhibition of TLR4 completely abolished the stimulatory effect of LPS on the proliferation and osteogenic differentiation of adMSC. In addition, the inhibition of TLR4 leads to the complete absence of osteogenic differentiation of adMSC, even when osteogenically stimulated. Thus, we conclude that LPS induces proliferation and osteogenic differentiation of adMSC in vitro through the activation of TLR4 and that the TLR4 receptor seems to play a role during osteogenic differentiation of adMSC.

  2. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts

    International Nuclear Information System (INIS)

    Id Boufker, Hichame; Lagneaux, Laurence; Najar, Mehdi; Piccart, Martine; Ghanem, Ghanem; Body, Jean-Jacques; Journé, Fabrice

    2010-01-01

    The proto-oncogene Src is an important non-receptor protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and differentiation. It negatively regulates osteoblast activity, and, as such, its inhibition is a potential means to prevent bone loss. Dasatinib is a new dual Src/Bcr-Abl tyrosine kinase inhibitor initially developed for the treatment of chronic myeloid leukemia. It has also shown promising results in preclinical studies in various solid tumors. However, its effects on the differentiation of human osteoblasts have never been examined. We evaluated the effects of dasatinib on bone marrow-derived mesenchymal stromal cells (MSC) differentiation into osteoblasts, in the presence or absence of a mixture of dexamethasone, ascorbic acid and β-glycerophosphate (DAG) for up to 21 days. The differentiation kinetics was assessed by evaluating mineralization of the extracellular matrix, alkaline phosphatase (ALP) activity, and expression of osteoblastic markers (receptor activator of nuclear factor kappa B ligand [RANKL], bone sialoprotein [BSP], osteopontin [OPN]). Dasatinib significantly increased the activity of ALP and the level of calcium deposition in MSC cultured with DAG after, respectively, 7 and 14 days; it upregulated the expression of BSP and OPN genes independently of DAG; and it markedly downregulated the expression of RANKL gene and protein (decrease in RANKL/OPG ratio), the key factor that stimulates osteoclast differentiation and activity. Our results suggest a dual role for dasatinib in both (i) stimulating osteoblast differentiation leading to a direct increase in bone formation, and (ii) downregulating RANKL synthesis by osteoblasts leading to an indirect inhibition of osteoclastogenesis. Thus, dasatinib is a potentially interesting candidate drug for the treatment of osteolysis through its dual effect on bone metabolism

  3. Senescence and quiescence in adipose-derived stromal cells: Effects of human platelet lysate, fetal bovine serum and hypoxia.

    Science.gov (United States)

    Søndergaard, Rebekka Harary; Follin, Bjarke; Lund, Lisbeth Drozd; Juhl, Morten; Ekblond, Annette; Kastrup, Jens; Haack-Sørensen, Mandana

    2017-01-01

    Adipose-derived stromal cells (ASCs) are attractive sources for cell-based therapies. The hypoxic niche of ASCs in vivo implies that cells will benefit from hypoxia during in vitro expansion. Human platelet lysate (hPL) enhances ASC proliferation rates, compared with fetal bovine serum (FBS) at normoxia. However, the low proliferation rates of FBS-expanded ASCs could be signs of senescence or quiescence. We aimed to determine the effects of hypoxia and hPL on the expansion of ASCs and whether FBS-expanded ASCs are senescent or quiescent. ASCs expanded in FBS or hPL at normoxia or hypoxia until passage 7 (P7), or in FBS until P5 followed by culture in hPL until P7, were evaluated by proliferation rates, cell cycle analyses, gene expression and β-galactosidase activity. hPL at normoxia and hypoxia enhanced proliferation rates and expression of cyclins, and decreased G0/G1 fractions and expression of p21 and p27, compared with FBS. The shift from FBS to hPL enhanced cyclin levels, decreased p21 and p27 levels and tended to decrease G0/G1 fractions. Hypoxia does not add to the effect of hPL during ASC expansion with regard to proliferation, cell cycle regulation and expression of cyclins, p21 and p27. hPL rejuvenates FBS-expanded ASCs with regard to cell cycle regulation and expression of cyclins, p21 and p27. This indicates a reversible arrest. Therefore, we conclude that ASCs expanded until P7 are not senescent regardless of culture conditions. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Comparison of human platelet lysate alternatives using expired and freshly isolated platelet concentrates for adipose-derived stromal cell expansion.

    Science.gov (United States)

    Dessels, Carla; Durandt, Chrisna; Pepper, Michael S

    2018-03-19

    Pooled human platelet lysate (pHPL) has been used to expand adipose-derived stromal cells (ASCs) and can be formulated using fresh or expired buffy coats (BCs) which are then resuspended in either plasma or an additive solution. Not much is known about the effects that expired products and additive solutions have on ASC expansion, and the need for quality control and release criteria has been expressed. This pilot study compared proliferation, cell size, morphology and immunophenotype of ASCs expanded in the different pHPL alternatives versus foetal bovine serum (FBS). Quality control criteria were assessed prior to and during the manufacture of the pHPL alternatives. ASCs were then expanded in 1%, 2.5%, 5% or 10% of the different pHPL alternatives or in 10% FBS. Cell size, morphology, cell number and immunophenotype were measured using microscopy and flow cytometry. The majority of the pHPL alternatives were within the recommended ranges for the quality control criteria. ASCs expanded in the pHPL alternatives were smaller in size, displayed a tighter spindle-shaped morphology, increased cell growth and had a similar immunophenotype (with the exception of CD34 and CD36) when compared to ASCs expanded in FBS. Here we report on the effects that expired BC products and additive solutions have on ASC expansion. When taken together, our findings indicate that all of the pHPL alternatives can be considered to be suitable replacements for FBS for ASC expansion, and that expired BC products can be used as an alternative to fresh BC products.

  5. Periodontal Ligament Mesenchymal Stromal Cells Increase Proliferation and Glycosaminoglycans Formation of Temporomandibular Joint Derived Fibrochondrocytes

    Directory of Open Access Journals (Sweden)

    Jianli Zhang

    2014-01-01

    Full Text Available Objectives. Temporomandibular joint (TMJ disorders are common disease in maxillofacial surgery. The aim of this study is to regenerate fibrocartilage with a mixture of TMJ fibrochondrocytes and periodontal ligament derived mesenchymal stem cells (PD-MSCs. Materials and Methods. Fibrochondrocytes and PD-MSC were cocultured (ratio 1 : 1 for 3 weeks. Histology and glycosaminoglycans (GAGs assay were performed to examine the deposition of GAG. Green florescent protein (GFP was used to track PD-MSC. Conditioned medium of PD-MSCs was collected to study the soluble factors. Gene expression of fibrochondrocytes cultured in conditioned medium was tested by quantitative PCR (qPCR. Results. Increased proliferation of TMJ-CH was observed in coculture pellets when compared to monoculture. Enhanced GAG production in cocultures was shown by histology and GAG quantification. Tracing of GFP revealed the fact that PD-MSC disappears after coculture with TMJ-CH for 3 weeks. In addition, conditioned medium of PD-MSC was also shown to increase the proliferation and GAG deposition of TMJ-CH. Meanwhile, results of qPCR demonstrated that conditioned medium enhanced the expression levels of matrix-related genes in TMJ-CH. Conclusions. Results from this study support the mechanism of MSC-chondrocyte interaction, in which MSCs act as secretor of soluble factors that stimulate proliferation and extracellular matrix deposition of chondrocytes.

  6. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  7. Human adipose-derived mesenchymal stromal cell pigment epithelium-derived factor cytotherapy modifies genetic and epigenetic profiles of prostate cancer cells.

    Science.gov (United States)

    Zolochevska, Olga; Shearer, Joseph; Ellis, Jayne; Fokina, Valentina; Shah, Forum; Gimble, Jeffrey M; Figueiredo, Marxa L

    2014-03-01

    Adipose-derived mesenchymal stromal cells (ASCs) are promising tools for delivery of cytotherapy against cancer. However, ASCs can exert profound effects on biological behavior of tumor cells. Our study aimed to examine the influence of ASCs on gene expression and epigenetic methylation profiles of prostate cancer cells as well as the impact of expressing a therapeutic gene on modifying the interaction between ASCs and prostate cancer cells. ASCs were modified by lentiviral transduction to express either green fluorescent protein as a control or pigment epithelium-derived factor (PEDF) as a therapeutic molecule. PC3 prostate cancer cells were cultured in the presence of ASC culture-conditioned media (CCM), and effects on PC3 or DU145. Ras cells were examined by means of real-time quantitative polymerase chain reaction, EpiTect methyl prostate cancer-focused real-time quantitative polymerase chain reaction arrays, and luciferase reporter assays. ASCs transduced with lentiviral vectors were able to mediate expression of several tumor-inhibitory genes, some of which correlated with epigenetic methylation changes on cocultured PC3 prostate cancer cells. When PC3 cells were cultured with ASC-PEDF CCM, we observed a shift in the balance of gene expression toward tumor inhibition, which suggests that PEDF reduces the potential tumor-promoting activity of unmodified ASCs. These results suggest that ASC-PEDF CCM can promote reprogramming of tumor cells in a paracrine manner. An improved understanding of genetic and epigenetic events in prostate cancer growth in response to PEDF paracrine therapy would enable a more effective use of ASC-PEDF, with the goal of achieving safer yet more potent anti-tumor effects. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Science.gov (United States)

    Wrage, Philip C; Tran, Thi; To, Khai; Keefer, Edward W; Ruhn, Kelly A; Hong, John; Hattangadi, Supriya; Treviño, Isaac; Tansey, Malú G

    2008-01-16

    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key

  9. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  10. Calcium homeostasis in myogenic differentiation factor 1 (MyoD-transformed, virally-transduced, skin-derived equine myotubes.

    Directory of Open Access Journals (Sweden)

    Marta Fernandez-Fuente

    Full Text Available Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1 mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1 transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.

  11. Enhanced mitogenesis in stromal vascular cells derived from subcutaneous adipose tissue of Wagyu compared with those of Angus cattle.

    Science.gov (United States)

    Wei, S; Fu, X; Liang, X; Zhu, M J; Jiang, Z; Parish, S M; Dodson, M V; Zan, L; Du, M

    2015-03-01

    Japanese Wagyu cattle are well known for their extremely high marbling and lower subcutaneous adipose tissue compared with Angus cattle. However, mechanisms for differences in adipose deposition are unknown. The objective of this paper was to evaluate breed differences in the structure of subcutaneous adipose tissue, adipogenesis, and mitogenesis of stromal vascular (SV) cells between Wagyu and Angus cattle. Subcutaneous biopsy samples were obtained from 5 Wagyu (BW = 302 ± 9 kg) and 5 Angus (BW = 398 ± 12 kg) heifers at 12 mo of age, and samples were divided into 3 pieces for histological examination, biochemical analysis, and harvest of SV cells. Adipogenesis of SV cells was assessed by the expression of adipogenic markers and Oil Red-O staining, while mitogenesis was evaluated by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium dromide) test, phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB; AKT). Based on histological analysis, Wagyu had larger adipocytes compared with Angus. At the tissue level, protein expression of peroxisome proliferator-activated receptor γ (PPARG) in Wagyu was much lower compared with that of Angus. Similarly, a lower mRNA expression of PPARG was found in Wagyu SV cells. No significant difference was observed for the zinc finger protein 423 (ZNF423) expression between Wagyu and Angus. As assessed by Oil Red-O staining, Wagyu SV cells possessed a notable trend of lower adipogenic capability. Interestingly, higher mitogenic ability was discovered in Wagyu SV cells, which was associated with an elevated phosphorylation of ERK1/2. There was no difference in AKT phosphorylation of SV cells between Wagyu and Angus. Moreover, exogenous fibroblast growth factor 2 (FGF2) enhanced mitogenesis and ERK1/2 phosphorylation of SV cells to a greater degree in Angus compared with that in Wagyu. Expression of transforming growth factor β 3 (TGFB3) and bone morphogenetic protein 2 (BMP2) in Wagyu SV

  12. Recipient bone marrow-derived stromal cells prolong graft survival in a rat hind limb allotransplantation model.

    Science.gov (United States)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Ohta, Souichi; Oda, Hiroki; Yurie, Hirofumi; Kaizawa, Yukitoshi; Mitsui, Hiroto; Aoyama, Tomoki; Toguchida, Junya; Matsuda, Shuichi

    2017-09-01

    Recent studies have indicated that bone marrow-derived stromal cells (BMSCs) have immunomodulatory properties that suppress the T cell responses that cause graft rejection. The purpose of this study is to evaluate the effect of recipient BMSCs intravenous infusion for immunomodulation in a rat vascularized composite allotransplantation model. A total of nine Wistar (WIS) rats and thirty Lewis (LEW) rats were used. BMSCs were harvested from three LEW rats. Twenty-four LEW rats were used as recipients and divided randomly into four groups: BMSC group, FK group, UT group, and Iso group. In the BMSC group, orthotopic rat hind limb transplantation was performed between WIS donor and LEW recipient rats. Recipient rats were injected intravenously with 2 × 10 6 recipient BMSCs on day 6, and with 0.2 mg/kg/day tacrolimus administered over 7 days (n = 6). In the FK group, recipient rats were treated with tacrolimus alone (n = 6). Rats in the UT group received no immunosuppressive treatment (n = 6). In the Iso group, transplantation was performed from three LEW donor rats to six LEW recipient rats without any immunosuppressive treatment (n = 6). Graft survival was assessed by daily inspection and histology. The immunological reactions of recipients were also evaluated. The graft survival of recipient rats in the BMSC group (24.5 days) was significantly prolonged in comparison with that of the FK group (18 days) (P Recipient rats in the BMSC group had significantly reduced serum IFN-γ cytokine levels (1.571 ± 0.779 pg/ml) in comparison with that of the FK group (7.059 ± 1.522 pg/ml) (P = .001). In in vitro study, BMSCs induce T cell hyporesponsiveness in a mixed lymphocyte reaction. BMSCs induce T cell hyporesponsiveness and prolong graft survival in the rat vascularized composite allotransplantation model. BMSCs exhibit immunomodulatory properties against acute rejection that can be realized without the need for significant recipient

  13. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    Science.gov (United States)

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  14. Human and Autologous Adipose-derived Stromal Cells Increase Flap Survival in Rats Independently of Host Immune Response

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Jensen, Charlotte Harken; Andersen, Ditte Caroline

    2018-01-01

    evaluated after 7 days. RESULTS: The mean survival rates for SVF treatment regardless of human or autologous origin were significantly increased as compared with the control group. Adipose stem/stromal cell and SVF lysate injection did not increase flap survival. Vessel density was increased for human...... injections lead to increased vessel density, but it did not necessarily lead to increased flap survival. Further research should elaborate which molecular events make SVF treatment more efficacious than ASC....

  15. Fibroblast Growth Factor-2 Enhances Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells without Diminishing Their Immunosuppressive Potential

    OpenAIRE

    Auletta, Jeffery J.; Zale, Elizabeth A.; Welter, Jean F.; Solchaga, Luis A.

    2011-01-01

    Allogeneic hematopoietic stem cell transplantation is the main curative therapy for many hematologic malignancies. Its potential relies on graft-versus-tumor effects which associate with graft-versus-host disease. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties that make them attractive therapeutic alternatives. We evaluated the in vitro immunosuppressive activity of medium conditioned by human MSCs from 5 donors expanded 13 passages with or without FGF-2. FGF-2 supplemen...

  16. Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells

    OpenAIRE

    Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus

    2014-01-01

    Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of t...

  17. Pigment epithelium derived factor inhibits the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yanmei Sun

    Full Text Available Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis.

  18. Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias

    2013-07-30

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.

  19. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Science.gov (United States)

    Yu, Yue; Lee, Jennifer Suehyun; Xie, Ning; Li, Estelle; Hurtado-Coll, Antonio; Fazli, Ladan; Cox, Michael; Plymate, Stephen; Gleave, Martin; Dong, Xuesen

    2014-01-01

    Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR) was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood. Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels. Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1) and interlukin-6 (IL-6) by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion. Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  20. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions : A pilot study

    NARCIS (Netherlands)

    Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M; van Weeren, René; Skutella, Thomas; Stadler, Peter M

    2016-01-01

    BACKGROUND: Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of

  1. Human Umbilical Cord-Derived Mesenchymal Stromal Cells Improve Left Ventricular Function, Perfusion, and Remodeling in a Porcine Model of Chronic Myocardial Ischemia

    Science.gov (United States)

    Liu, Chuan-Bin; Huang, He; Sun, Ping; Ma, Shi-Ze; Liu, An-Heng; Xue, Jian; Fu, Jin-Hui; Liang, Yu-Qian; Liu, Bing; Wu, Dong-Ying

    2016-01-01

    Stem cell therapy has emerged as a new strategy for treatment of ischemic heart disease. Although umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have been used preferentially in the acute ischemia model, data for the chronic ischemia model are lacking. In this study, we investigated the effect of UC-MSCs originated from Wharton’s jelly in the treatment of chronic myocardial ischemia in a porcine model induced by ameroid constrictor. Four weeks after ameroid constrictor placement, the surviving animals were divided randomly into two groups to undergo saline injection (n = 6) or UC-MSC transplantation (n = 6) through the left main coronary artery. Two additional intravenous administrations of UC-MSCs were performed in the following 2 weeks to enhance therapeutic effect. Cardiac function and perfusion were examined just before and at 4 weeks after intracoronary transplantation. The results showed that pigs with UC-MSC transplantation exhibited significantly greater left ventricular ejection fraction compared with control animals (61.3% ± 1.3% vs. 50.3% ± 2.0%, p UC-MSC treatment improves left ventricular function, perfusion, and remodeling in a porcine model with chronic myocardial ischemia. Significance Ischemic heart disease is the leading cause of death worldwide. Many patients with chronic myocardial ischemia are not suitable for surgery and have no effective drug treatment; they are called “no-option” patients. This study finds that umbilical cord-derived mesenchymal stromal cells transplanted by intracoronary delivery combined with two intravenous administrations was safe and could significantly improve left ventricular function, perfusion, and remodeling in a large-animal model of chronic myocardial ischemia, which provides a new choice for the no-option patients. In addition, this study used clinical-grade mesenchymal stem cells with delivery and assessment methods commonly used clinically to facilitate further clinical transformation. PMID

  2. Therapeutic Potential of Human Adipose-Derived Stem/Stromal Cell Microspheroids Prepared by Three-Dimensional Culture in Non-Cross-Linked Hyaluronic Acid Gel.

    Science.gov (United States)

    Mineda, Kazuhide; Feng, Jingwei; Ishimine, Hisako; Takada, Hitomi; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Kanayama, Koji; Kato, Harunosuke; Mashiko, Takanobu; Hashimoto, Ichiro; Nakanishi, Hideki; Kurisaki, Akira; Yoshimura, Kotaro

    2015-12-01

    Three-dimensional culture of mesenchymal stem/stromal cells for spheroid formation is known to enhance their therapeutic potential for regenerative medicine. Spheroids were prepared by culturing human adipose-derived stem/stromal cells (hASCs) in a non-cross-linked hyaluronic acid (HA) gel and compared with dissociated hASCs and hASC spheroids prepared using a nonadherent dish. Preliminary experiments indicated that a 4% HA gel was the most appropriate for forming hASC spheroids with a relatively consistent size (20-50 µm) within 48 hours. Prepared spheroids were positive for pluripotency markers (NANOG, OCT3/4, and SOX-2), and 40% of the cells were SSEA-3-positive, a marker of the multilineage differentiating stress enduring or Muse cell. In contrast with dissociated ASCs, increased secretion of cytokines such as hepatocyte growth factor was detected in ASC spheroids cultured under hypoxia. On microarray ASC spheroids showed upregulation of some pluripotency markers and downregulation of genes related to the mitotic cell cycle. After ischemia-reperfusion injury to the fat pad in SCID mice, local injection of hASC spheroids promoted tissue repair and reduced the final atrophy (1.6%) compared with that of dissociated hASCs (14.3%) or phosphate-buffered saline (20.3%). Part of the administered hASCs differentiated into vascular endothelial cells. ASC spheroids prepared in a HA gel contain undifferentiated cells with therapeutic potential to promote angiogenesis and tissue regeneration after damage. This study shows the therapeutic value of human adipose-derived stem cell spheroids prepared in hyarulonic acid gel. The spheroids have various benefits as an injectable cellular product and show therapeutic potential to the stem cell-depleted conditions such as diabetic chronic skin ulcer. ©AlphaMed Press.

  3. Proinflammatory interleukins' production by adipose tissue-derived mesenchymal stromal cells: the impact of cell culture conditions and cell-to-cell interaction.

    Science.gov (United States)

    Andreeva, Elena; Andrianova, Irina; Rylova, Julia; Gornostaeva, Aleksandra; Bobyleva, Polina; Buravkova, Ludmila

    2015-08-01

    The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL-6 and IL-8 production by adipose-derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up-regulated at hypoxia. IL-6 and IL-8 production was inversely dependent on cell culture density. In early (first-third) passages, IL-6 and IL-8 concentration was higher at 20% O2 and in late (8th-12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL-6 and did not result in the elevation of IL-8 concentration. Thereby, the production of proinflammatory interleukins (IL-6 and IL-8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood-borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. SIGNIFICANCE PARAGRAPH: Ex vivo expansion is widely used for increasing the number of adipose-derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    Science.gov (United States)

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Comparison of Brain-Derived Neurotrophic Factor (BDNF and Insulin-like Growth Factor 1 (IGF-1 Responses to Different Endurance Training Intensities in Runner Men

    Directory of Open Access Journals (Sweden)

    M. Habibian

    2017-04-01

    Full Text Available Aims: Blood neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF and Insulin-like Growth Factor 1 (IGF-1, mediate exercise- induced health benefits in humans. The purpose of this study was to compare the response of BDNF and IGF-1 to different endurance training intensities in runner men. Materials & Methods: In this semi-experimental study with pre-test-posttest design in 2015, 10 people of male runners from Gorgan were selected through purposeful and accessible sampling. The endurance training protocol was 6 km running with moderate (70-75% of heart rate reserve or severe (80-85% of heart rate reserve intensity, which was performed within a week's interval. Fasting blood samples were collected before and immediately after both acute training sessions and serum levels of BDNF and IGF-1 were measured by ELISA and radioimmunoassay enzyme. Data were analyzed by SPSS 20 software using independent t-test and paired t-test. Findings: Both acute endurance training significantly increased serum levels of BDNF and IGF-1 in runners, but high intensity endurance exercises increased BDNF levels in comparison with moderate intensity (p0.05. Conclusion: Serum BDNF response in endurance athletes is affected by the intensity of exercise, so that the effect of high intensity endurance training on BDNF levels is greater than moderate intensity exercise, but the response of IGF-1 to acute endurance training is independent of the intensity of exercise.

  6. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture

    Directory of Open Access Journals (Sweden)

    Mandana Haack-Sørensen

    2016-11-01

    Full Text Available Abstract Background Adipose derived stromal cells (ASCs are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system is compared with traditional manual cultivation. Methods Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. Results The viability of ASCs passage 0 (P0 and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 107 SVF cells loaded into a Quantum system yielded 8.96 × 107 ASCs P0, while 4.5 × 106 SVF cells seeded per T75 flask yielded an average of 2.37 × 106 ASCs—less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Conclusion: Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to

  7. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture.

    Science.gov (United States)

    Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten; Brorsen, Sonja K; Søndergaard, Rebekka H; Kastrup, Jens; Ekblond, Annette

    2016-11-16

    Adipose derived stromal cells (ASCs) are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. The viability of ASCs passage 0 (P0) and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 10 7 SVF cells loaded into a Quantum system yielded 8.96 × 10 7 ASCs P0, while 4.5 × 10 6 SVF cells seeded per T75 flask yielded an average of 2.37 × 10 6 ASCs-less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD) around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to safe and robust cell production. Notably, the use of the Quantum

  8. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    International Nuclear Information System (INIS)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho

    2015-01-01

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy

  9. Transdifferentiation of mouse adipose-derived stromal cells into acinar cells of the submandibular gland using a co-culture system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingu; Park, Sangkyu; Roh, Sangho, E-mail: sangho@snu.ac.kr

    2015-05-15

    A loss of salivary gland function often occurs after radiation therapy in head and neck tumors, though secretion of saliva by the salivary glands is essential for the health and maintenance of the oral environment. Transplantation of salivary acinar cells (ACs), in part, may overcome the side effects of therapy. Here we directly differentiated mouse adipose-derived stromal cells (ADSCs) into ACs using a co-culture system. Multipotent ADSCs can be easily collected from stromal vascular fractions of adipose tissues. The isolated ADSCs showed positive expression of markers such as integrin beta-1 (CD29), cell surface glycoprotein (CD44), endoglin (CD105), and Nanog. The cells were able to differentiate into adipocytes, osteoblasts, and neural-like cells after 14 days in culture. ADSCs at passage 2 were co-cultured with mouse ACs in AC culture medium using the double-chamber (co-culture system) to avoid mixing the cell types. The ADSCs in this co-culture system expressed markers of ACs, such as α-amylases and aquaporin5, in both mRNA and protein. ADSCs cultured in AC-conditioned medium also expressed AC markers. Cellular proliferation and senescence analyses demonstrated that cells in the co-culture group showed lower senescence and a higher proliferation rate than the AC-conditioned medium group at Days 14 and 21. The results above imply direct conversion of ADSCs into ACs under the co-culture system; therefore, ADSCs may be a stem cell source for the therapy for salivary gland damage. - Highlights: • ADSCs could transdifferentiate into acinar cells (ACs) using ACs co-culture (CCA). • Transdifferentiated ADSCs expressed ACs markers such as α-amylase and aquaporin5. • High proliferation and low senescence were presented in CCA at Day 14. • Transdifferentiation of ADSCs into ACs using CCA may be an appropriate method for cell-based therapy.

  10. Effect of adipose-derived mesenchymal stromal cells on tendon healing in aging and estrogen deficiency: an in vitro co-culture model.

    Science.gov (United States)

    Veronesi, Francesca; Della Bella, Elena; Torricelli, Paola; Pagani, Stefania; Fini, Milena

    2015-11-01

    Aging and estrogen deficiency play a pivotal role in reducing tenocyte proliferation, collagen turnover and extracellular matrix remodeling. Mesenchymal stromal cells are being studied as an alternative for tendon regeneration, but little is known about the molecular events of adipose-derived mesenchymal stromal cells (ADSCs) on tenocytes in tendons compromised by aging and estrogen deficiency. The present in vitro study aims to compare the potential therapeutic effects of ADSCs, harvested from healthy young (sham) and aged estrogen-deficient (OVX) subjects, for tendon healing. An indirect co-culture system was set up with ADSCs, isolated from OVX or sham rats, and tenocytes from OVX rats. Cell proliferation, healing rate and gene expression were evaluated in both a standard culture condition and a microwound-healing model. It was observed that tenocyte proliferation, healing rate and collagen expression improved after the addition of sham ADSCs in both culture situations. OVX ADSCs also increased tenocyte proliferation and healing rate but less compared with sham ADSCs. Decorin and Tenascin C expression increased in the presence of OVX ADSCs. Findings suggest that ADSCs might be a promising treatment for tendon regeneration in advanced age and estrogen deficiency. However, some differences between allogenic and autologous cells were found and should be investigated in further in vivo studies. It appears that allogenic ADSCs improve tenocyte proliferation, collagen expression and the healing rate more than autologous cells. Autologous cells increase collagen expression only in the absence of an injury and increase Decorin and Tenascin C more than allogenic cells. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO{sub 2} coating with magnesium impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Francesca, E-mail: francesca.cecchinato@mah.se [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Karlsson, Johan [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Ferroni, Letizia; Gardin, Chiara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Galli, Silvia; Wennerberg, Ann [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Zavan, Barbara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Andersson, Martin [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Jimbo, Ryo [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki (Japan)

    2015-07-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO{sub 2}) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S{sub dr}) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO{sub 2} surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of

  12. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO2 coating with magnesium impregnation

    International Nuclear Information System (INIS)

    Cecchinato, Francesca; Karlsson, Johan; Ferroni, Letizia; Gardin, Chiara; Galli, Silvia; Wennerberg, Ann; Zavan, Barbara; Andersson, Martin; Jimbo, Ryo

    2015-01-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO 2 ) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S dr ) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO 2 surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of osteopontin

  13. Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate.

    Science.gov (United States)

    Haack-Sørensen, Mandana; Juhl, Morten; Follin, Bjarke; Harary Søndergaard, Rebekka; Kirchhoff, Maria; Kastrup, Jens; Ekblond, Annette

    2018-04-17

    In vitro expanded adipose-derived stromal cells (ASCs) are a useful resource for tissue regeneration. Translation of small-scale autologous cell production into a large-scale, allogeneic production process for clinical applications necessitates well-chosen raw materials and cell culture platform. We compare the use of clinical-grade human platelet lysate (hPL) and fetal bovine serum (FBS) as growth supplements for ASC expansion in the automated, closed hollow fibre quantum cell expansion system (bioreactor). Stromal vascular fractions were isolated from human subcutaneous abdominal fat. In average, 95 × 10 6 cells were suspended in 10% FBS or 5% hPL medium, and loaded into a bioreactor coated with cryoprecipitate. ASCs (P0) were harvested, and 30 × 10 6 ASCs were reloaded for continued expansion (P1). Feeding rate and time of harvest was guided by metabolic monitoring. Viability, sterility, purity, differentiation capacity, and genomic stability of ASCs P1 were determined. Cultivation of SVF in hPL medium for in average nine days, yielded 546 × 10 6 ASCs compared to 111 × 10 6 ASCs, after 17 days in FBS medium. ASCs P1 yields were in average 605 × 10 6 ASCs (PD [population doublings]: 4.65) after six days in hPL medium, compared to 119 × 10 6 ASCs (PD: 2.45) in FBS medium, after 21 days. ASCs fulfilled ISCT criteria and demonstrated genomic stability and sterility. The use of hPL as a growth supplement for ASCs expansion in the quantum cell expansion system provides an efficient expansion process compared to the use of FBS, while maintaining cell quality appropriate for clinical use. The described process is an obvious choice for manufacturing of large-scale allogeneic ASC products.

  14. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Moen, Siv H; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J; Sponaas, Anne-Marit; Standal, Therese

    2016-09-01

    Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1β, IL-6, CXCL10, and in the inhibition of HGF and TGFβ. Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

  15. Caspase‐8 regulates the expression of pro‐ and anti‐inflammatory cytokines in human bone marrow‐derived mesenchymal stromal cells

    Science.gov (United States)

    Moen, Siv H.; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N.; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J.; Sponaas, Anne‐Marit

    2016-01-01

    Abstract Introduction Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll‐like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase‐8 is involved in activation of NF‐kB downstream of TLRs in immune cells. Here we investigated the role of caspase‐8 in regulating TLR‐induced cytokine production from human bone marrow‐derived mesenchymal stromal cells (hBMSCs). Methods Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase‐8 were silenced using siRNA. Caspase‐8 was also inhibited using a caspase‐8 inhibitor, z‐IEDT. Results We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro‐inflammatory cytokines in a TLR‐dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti‐inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase‐8 was involved in the induction of IL‐ IL‐1β, IL‐6, CXCL10, and in the inhibition of HGF and TGFβ. Conclusion Caspase‐8 appears to modulate hBMSCs into gaining a pro‐inflammatory phenotype. Therefore, inhibiting caspase‐8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders. PMID:27621815

  16. DMSO-free cryopreservation of adipose-derived mesenchymal stromal cells: expansion medium affects post-thaw survival

    Czech Academy of Sciences Publication Activity Database

    Rogulska, O.; Petrenko, Yuriy; Petrenko, A.

    2017-01-01

    Roč. 69, č. 2 (2017), s. 265-276 ISSN 0920-9069 Institutional support: RVO:68378041 Keywords : human adiposederived mesenchymalstromal cells * DMSO-free cryopreservation * plateletlysate Subject RIV: FP - Other Medical Disciplines OBOR OECD: Cell biology Impact factor: 1.857, year: 2016

  17. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Verena Börger

    2017-07-01

    Full Text Available Extracellular vesicles (EVs, such as exosomes and microvesicles, have been identified as mediators of a newly-discovered intercellular communication system. They are essential signaling mediators in various physiological and pathophysiological processes. Depending on their origin, they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs have been found to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models, it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel, very promising therapeutic agent, which has already been successfully applied to humans. However, the MSC-EV production process has not been standardized, yet. Indeed, a collection of different protocols has been used for the MSC-EV production, characterization and application. By focusing on kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV in vivo studies.

  18. Standardization of Good Manufacturing Practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications.

    Science.gov (United States)

    Wuchter, Patrick; Bieback, Karen; Schrezenmeier, Hubert; Bornhäuser, Martin; Müller, Lutz P; Bönig, Halvard; Wagner, Wolfgang; Meisel, Roland; Pavel, Petra; Tonn, Torsten; Lang, Peter; Müller, Ingo; Renner, Matthias; Malcherek, Georg; Saffrich, Rainer; Buss, Eike C; Horn, Patrick; Rojewski, Markus; Schmitt, Anita; Ho, Anthony D; Sanzenbacher, Ralf; Schmitt, Michael

    2015-02-01

    Human mesenchymal stem or stromal cells (MSCs) represent a potential resource not only for regenerative medicine but also for immunomodulatory cell therapies. The application of different MSC culture protocols has significantly hampered the comparability of experimental and clinical data from different laboratories and has posed a major obstacle for multicenter clinical trials. Manufacturing of cell products for clinical application in the European Community must be conducted in compliance with Good Manufacturing Practice and requires a manufacturing license. In Germany, the Paul-Ehrlich-Institut as the Federal Authority for Vaccines and Biomedicines is critically involved in the approval process. This report summarizes a consensus meeting between researchers, clinicians and regulatory experts on standard quality requirements for MSC production. The strategy for quality control testing depends on the product's cell composition, the manufacturing process and the indication and target patient population. Important quality criteria in this sense are, among others, the immunophenotype of the cells, composition of the culture medium and the risk for malignant transformation, as well as aging and the immunosuppressive potential of the manufactured MSCs. This position paper intends to provide relevant information to interested parties regarding these criteria to foster the development of scientifically valid and harmonized quality standards and to support approval of MSC-based investigational medicinal products. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Effect of Different Preconditioning Regimens on the Expression Profile of Murine Adipose-Derived Stromal/Stem Cells

    Directory of Open Access Journals (Sweden)

    Patrick C. Baer

    2018-06-01

    Full Text Available Stem cell-based therapies require cells with a maximum regenerative capacity in order to support regeneration after tissue injury and organ failure. Optimization of this regenerative potential of mesenchymal stromal/stem cells (MSC or their conditioned medium by in vitro preconditioning regimens are considered to be a promising strategy to improve the release of regenerative factors. In the present study, MSC were isolated from inguinal adipose tissue (mASC from C57BL/6 mice, cultured, and characterized. Then, mASC were either preconditioned by incubation in a hypoxic environment (0.5% O2, or in normoxia in the presence of murine epidermal growth factor (EGF or tumor necrosis factor α (TNFα for 48 h. Protein expression was measured by a commercially available array. Selected factors were verified by PCR analysis. The expression of 83 out of 308 proteins (26.9% assayed was found to be increased after preconditioning with TNFα, whereas the expression of 61 (19.8% and 70 (22.7% proteins was increased after incubation with EGF or in hypoxia, respectively. Furthermore, we showed the proliferation-promoting effects of the preconditioned culture supernatants on injured epithelial cells in vitro. Our findings indicate that each preconditioning regimen tested induced an individual expression profile with a wide variety of factors, including several growth factors and cytokines, and therefore may enhance the regenerative potential of mASC for cell-based therapies.

  20. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    International Nuclear Information System (INIS)

    Hirata, Eri; Takita, Hiroko; Watari, Fumio; Yokoyama, Atsuro; Ménard-Moyon, Cécilia; Venturelli, Enrica; Bianco, Alberto

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF–CNT) showed the same effect as FGF alone. In addition, FGF–CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF–CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF–CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications. (paper)

  1. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation

    Science.gov (United States)

    Hirata, Eri; Ménard-Moyon, Cécilia; Venturelli, Enrica; Takita, Hiroko; Watari, Fumio; Bianco, Alberto; Yokoyama, Atsuro

    2013-11-01

    Multi-walled carbon nanotubes (MWCNTs) were functionalized with fibroblast growth factor (FGF) and the advantages of their use as scaffolds for bone augmentation were evaluated in vitro and in vivo. The activity of FGF was assessed by measuring the effect on the proliferation of rat bone marrow stromal cells (RBMSCs). The presence of FGF enhanced the proliferation of RBMSCs and the FGF covalently conjugated to the nanotubes (FGF-CNT) showed the same effect as FGF alone. In addition, FGF-CNT coated sponges were implanted between the parietal bone and the periosteum of rats and the formation of new bone was investigated. At day 14 after implantation, a larger amount of newly formed bone was clearly observed in most pores of FGF-CNT coated sponges. These findings indicated that MWCNTs accelerated new bone formation in response to FGF, as well as the integration of particles into new bone during its formation. Scaffolds coated with FGF-CNT could be considered as promising novel substituting materials for bone regeneration in future tissue engineering applications.

  2. Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors

    Science.gov (United States)

    Avanzini, Maria Antonietta; Bernardo, Maria Ester; Cometa, Angela Maria; Perotti, Cesare; Zaffaroni, Nadia; Novara, Francesca; Visai, Livia; Moretta, Antonia; Del Fante, Claudia; Villa, Raffaella; Ball, Lynne M.; Fibbe, Willem E.; Maccario, Rita; Locatelli, Franco

    2009-01-01

    Background Mesenchymal stromal cells are employed in various different clinical settings in order to modulate immune response. However, relatively little is known about the mechanisms responsible for their immunomodulatory effects, which could be influenced by both the cell source and culture conditions. Design and Methods We tested the ability of a 5% platelet lysate-supplemented medium to support isolation and ex vivo expansion of mesenchymal stromal cells from full-term umbilical-cord blood. We also investigated the biological/functional properties of umbilical cord blood mesenchymal stromal cells, in comparison with platelet lysate-expanded bone marrow mesenchymal stromal cells. Results The success rate of isolation of mesenchymal stromal cells from umbilical cord blood was in the order of 20%. These cells exhibited typical morphology, immunophenotype and differentiation capacity. Although they have a low clonogenic efficiency, umbilical cord blood mesenchymal stromal cells may possess high proliferative potential. The genetic stability of these cells from umbilical cord blood was demonstrated by a normal molecular karyotype; in addition, these cells do not express hTERT and telomerase activity, do express p16ink4a protein and do not show anchorage-independent cell growth. Concerning alloantigen-specific immune responses, umbilical cord blood mesenchymal stromal cells were able to: (i) suppress T- and NK-lymphocyte proliferation, (ii) decrease cytotoxic activity and (iii) only slightly increase interleukin-10, while decreasing interferon-γ secretion, in mixed lymphocyte culture supernatants. While an indoleamine 2,3-dioxygenase-specific inhibitor did not reverse mesenchymal stromal cell-induced suppressive effects, a prostaglandin E2-specific inhibitor hampered the suppressive effect of both umbilical cord blood- and bone marrow-mesenchymal stromal cells on alloantigen-induced cytotoxic activity. Mesenchymal stromal cells from both sources expressed HLA

  3. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing.

    Science.gov (United States)

    Santos, Jorge M; Camões, Sérgio P; Filipe, Elysse; Cipriano, Madalena; Barcia, Rita N; Filipe, Mariana; Teixeira, Mariana; Simões, Sandra; Gaspar, Manuela; Mosqueira, Diogo; Nascimento, Diana S; Pinto-do-Ó, Perpétua; Cruz, Pedro; Cruz, Helder; Castro, Matilde; Miranda, Joana P

    2015-05-09

    The secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds. A UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively. UCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM

  4. Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells.

    Science.gov (United States)

    Cmiel, Vratislav; Skopalik, Josef; Polakova, Katerina; Solar, Jan; Havrdova, Marketa; Milde, David; Justan, Ivan; Magro, Massimiliano; Starcuk, Zenon; Provaznik, Ivo

    2017-07-01

    In the last few years, magnetically labeled cells have been intensively explored, and non-invasive cell tracking and magnetic manipulation methods have been tested in preclinical studies focused on cell transplantation. For clinical applications, it is desirable to know the intracellular pathway of nanoparticles, which can predict their biocompatibility with cells and the long-term imaging properties of labeled cells. Here, we quantified labeling efficiency, localization, and fluorescence properties of Rhodamine derivatized superparamagnetic maghemite nanoparticles (SAMN-R) in mesenchymal stromal cells (MSC). We investigated the stability of SAMN-R in the intracellular space during a long culture (20 days). Analyses were based on advanced confocal microscopy accompanied by atomic absorption spectroscopy (AAS) and magnetic resonance imaging. SAMN-R displayed excellent cellular uptake (24 h of labeling), and no toxicity of SAMN-R labeling was found. 83% of SAMN-R nanoparticles were localized in lysosomes, only 4.8% were found in mitochondria, and no particles were localized in the nucleus. On the basis of the MSC fluorescence measurement every 6 days, we also quantified the continual decrease of SAMN-R fluorescence in the average single MSC during 18 days. An additional set of analyses showed that the intracellular SAMN-R signal decrease was minimally caused by fluorophore degradation or nanoparticles extraction from the cells, main reason is a cell division. The fluorescence of SAMN-R nanoparticles within the cells was detectable minimally for 20 days. These observations indicate that SAMN-R nanoparticles have a potential for application in transplantation medicine.

  5. Does Adipose-derived Stromal Cell Adjuvant Therapy for Fragmented Medial Coronoid Process in Dogs Influence Outcome? A Pilot Project

    Directory of Open Access Journals (Sweden)

    Kristina M Kiefer

    2016-11-01

    Full Text Available Objective: The primary objective of this study was to identify adverse events associated with multiple intra-articular injections of adipose stromal cell (ASC therapy and secondarily to objectively assess the therapeutic effect of ASC therapy for treatment of fragmented medial coronoid process (FMCP in dogs when used as an adjuvant to standard of care (SOC treatment. Background: Preliminary trials assessing autologous ASC therapy to treat osteoarthritis indicate a positive impact on clinical signs, but assessment of donated, allogeneic ASC therapy is lacking.Evidentiary value: This prospective, randomised, controlled trial in dogs (n=30 provides objective evidence for clinical practitioners regarding ASC therapy in a naturally occurring osteoarthritic disease model.Methods: Dogs diagnosed with FMCP and osteoarthritis were enrolled. All dogs had arthroscopic fragment removal and proximal ulnar osteotomy (PUO and were assigned into three groups (n=10/group: 1 control group with no further treatment beyond the PUO and fragment removal (SOC, 2 PUO + autologous ASCs and 3 PUO+ allogeneic ASCs. Each dog had force platform gait analysis, Canine Brief Pain Inventory (CBPI questionnaires, and delayed gadolinium enhanced magnetic resonance imaging scores prior to and six months after therapeutic intervention.Results: No serious adverse events were reported in any participant. 3/10 dogs in the control group, 3/10 autologous ASC group and 7/10 allogeneic ASC group participants were assessed as successful outcomes.Conclusion: This study provides preliminary safety data for the use of intra-articular allogeneic ASC therapy to treat osteoarthritis, and justification for larger clinical studies.Application: Clinical practitioners considering ASC therapy within their practice are provided with additional evidence of autologous ASC therapy for osteoarthritis. Researchers committed to developing and generating effective ASC therapies are provided with safety

  6. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Chiang Wen-Sheng

    2010-03-01

    Full Text Available Abstract Background Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs of young (8-10 weeks, adult (5 months, and old (21 months mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. Results We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. Conclusions We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.

  7. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Susan Louise Lindsay

    2016-05-01

    Full Text Available Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs derived from the olfactory mucosa (OM enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs. miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo.

  8. Wharton’s Jelly-Derived Mesenchymal Stromal Cells as a Promising Cellular Therapeutic Strategy for the Management of Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Joseph P. McGuirk

    2015-04-01

    Full Text Available Allogeneic hematopoietic cell transplantation (allo-HCT, a treatment option in hematologic malignancies and bone marrow failure syndromes, is frequently complicated by Graft-versus-host disease (GVHD. The primary treatment for GVHD involves immune suppression by glucocorticoids. However, patients are often refractory to the steroid therapy, and this results in a poor prognosis. Therefore alternative therapies are needed to treat GVHD. Here, we review data supporting the clinical investigation of a novel cellular therapy using Wharton’s jelly (WJ-derived mesenchymal stromal cells (MSCs as a potentially safe and effective therapeutic strategy in the management of GVHD. Adult-derived sources of MSCs have demonstrated signals of efficacy in the management of GVHD. However, there are limitations, including: limited proliferation capacity; heterogeneity of cell sources; lengthy expansion time to clinical dose; expansion failure in vitro; and a painful, invasive, isolation procedure for the donor. Therefore, alternative MSC sources for cellular therapy are sought. The reviewed data suggests MSCs derived from WJ may be a safe and effective cellular therapy for GVHD. Laboratories investigated and defined the immune properties of WJ-MSCs for potential use in cellular therapy. These cells represent a more uniform cell population than bone marrow-derived MSCs, displaying robust immunosuppressive properties and lacking significant immunogenicity. They can be collected safely and painlessly from individuals at birth, rapidly expanded and stored cryogenically for later clinical use. Additionally, data we reviewed suggested licensing MSCs (activating MSCs by exposure to cytokines to enhance effectiveness in treating GVHD. Therefore, WJCs should be tested as a second generation, relatively homogeneous allogeneic cell therapy for the treatment of GVHD.

  9. The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX® in the treatment of inflammatory arthritis

    Directory of Open Access Journals (Sweden)

    Santos Jorge M

    2013-01-01

    Full Text Available Abstract Background ECBio has developed proprietary technology to consistently isolate, expand and cryopreserve a well-characterized population of stromal cells from human umbilical cord tissue (UCX® cells. The technology has recently been optimized in order to become compliant with Advanced Medicine Therapeutic Products. In this work we report the immunosuppressive capacity of UCX® cells for treating induced autoimmune inflammatory arthritis. Methods UCX® cells were isolated using a proprietary method (PCT/IB2008/054067 that yields a well-defined number of cells using a precise proportion between tissue digestion enzyme activity units, tissue mass, digestion solution volume and void volume. The procedure includes three recovery steps to avoid non-conformities related to cell recovery. UCX® surface markers were characterized by flow cytometry and UCX® capacity to expand in vitro and to differentiate into adipocyte, chondrocyte and osteoblast-like cells was evaluated. Mixed Lymphocyte Reaction (MLR assays were performed to evaluate the effect of UCX® cells on T-cell activation and Treg conversion assays were also performed in vitro. Furthermore, UCX® cells were administered in vivo in both a rat acute carrageenan-induced arthritis model and rat chronic adjuvant induced arthritis model for arthritic inflammation. UCX® anti-inflammatory activity was then monitored over time. Results UCX® cells stained positive for CD44, CD73, CD90 and CD105; and negative for CD14, CD19 CD31, CD34, CD45 and HLA-DR; and were capable to differentiate into adipocyte, chondrocyte and osteoblast-like cells. UCX® cells were shown to repress T-cell activation and promote the expansion of Tregs better than bone marrow mesenchymal stem cells (BM-MSCs. Accordingly, xenogeneic UCX® administration in an acute carrageenan-induced arthritis model showed that human UCX® cells can reduce paw edema in vivo more efficiently than BM-MSCs. Finally, in a chronic adjuvant

  10. Prostacyclin Suppresses Twist Expression in the Presence of Indomethacin in Bone Marrow-Derived Mesenchymal Stromal Cells

    Science.gov (United States)

    Kemper, Oliver; Herten, Monika; Fischer, Johannes; Haversath, Marcel; Beck, Sascha; Classen, Tim; Warwas, Sebastian; Tassemeier, Tjark; Landgraeber, Stefan; Lensing-Höhn, Sabine; Krauspe, Rüdiger; Jäger, Marcus

    2014-01-01

    Background Iloprost, a stable prostacyclin I2 analogue, seems to have an osteoblast-protective potential, whereas indomethacin suppresses new bone formation. The aim of this study was to investigate human bone marrow stromal cell (BMSC) proliferation and differentiation towards the osteoblastic lineage by administration of indomethacin and/or iloprost. Material/Methods Human bone marrow cells were obtained from 3 different donors (A=26 yrs/m; B=25 yrs/f, C=35 yrs/m) via vacuum aspiration of the iliac crest followed by density gradient centrifugation and flow cytometry with defined antigens (CD105+/73+/45−/14−). The cells were seeded and incubated as follows: without additives (Group 0; donor A/B/C), with 10−7 M iloprost only (Group 0+ilo; A/B), with indomethacin only in concentrations of 10−6 M (Group 1, A), 10−5 M (Group 2, B), 10−4 M (Group 3, A/B), and together with 10−7 M iloprost (Groups 4–6, A/B/C). On Day 10 and 28, UV/Vis spectrometric and immunocytochemical assays (4 samples per group and donor) were performed to investigate cell proliferation (cell count measurement) and differentiation towards the osteoblastic lineage (CD34−, CD45−, CD105+, type 1 collagen (Col1), osteocalcin (OC), alkaline phosphatase (ALP), Runx2, Twist, specific ALP-activity). Results Indomethacin alone suppressed BMSC differentiation towards the osteoblastic lineage by downregulation of Runx2, Col1, and ALP. In combination with indomethacin, iloprost increased cell proliferation and differentiation and it completely suppressed Twist expression at Day 10 and 28. Iloprost alone did not promote cell proliferation, but moderately enhanced Runx2 and Twist expression. However, the proliferative effects and the specific ALP-activity varied donor-dependently. Conclusions Iloprost partially antagonized the suppressing effects of indomethacin on BMSC differentiation towards the osteoblast lineage. It enhanced the expression of Runx2 and, only in the presence of indomethacin

  11. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo.

    Science.gov (United States)

    Roux, Clémence; Saviane, Gaëlle; Pini, Jonathan; Belaïd, Nourhène; Dhib, Gihen; Voha, Christine; Ibáñez, Lidia; Boutin, Antoine; Mazure, Nathalie M; Wakkach, Abdelilah; Blin-Wakkach, Claudine; Rouleau, Matthieu

    2017-01-01

    Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4 + FoxP3 + regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3 + -Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo . They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  12. Immunosuppressive Mesenchymal Stromal Cells Derived from Human-Induced Pluripotent Stem Cells Induce Human Regulatory T Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Clémence Roux

    2018-01-01

    Full Text Available Despite mesenchymal stromal cells (MSCs are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate. Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs, and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

  13. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

    Directory of Open Access Journals (Sweden)

    Miguel Espina

    2016-03-01

    Full Text Available Background. Mesenchymal stromal cells (MSCs are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal, (II seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C, four time frames (24 h vs. 48 h; 48 h vs. 72 h, and (III three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml. Cell viability (Trypan Blue exclusion; percent and total number viable cell, proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6 and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability. In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%; this was not significant. Contrary, viability was unacceptably

  14. Improvement of Mouth Functional Disability in Systemic Sclerosis Patients over One Year in a Trial of Fat Transplantation versus Adipose-Derived Stromal Cells

    Directory of Open Access Journals (Sweden)

    Maria Giuseppina Onesti

    2016-01-01

    Full Text Available Background. Systemic sclerosis (SSc is a multisystem disease characterized by cutaneous and visceral fibrosis. Face and mouth changes include telangiectasia, sicca syndrome, and thinning and reduction of mouth width (microcheilia and opening (microstomia. We applied autologous fat transplantation compared with autologous adipose-derived stromal cells (ADSCs injection to evaluate the clinical improvement of mouth opening. Methods. From February to May 2013 ten consecutive SSc patients were enrolled from the outpatient clinic of Plastic Surgery Department of Sapienza University of Rome. Patients were divided into two groups as follows: 5 patients were treated with fat transplantation and 5 patients received infiltration of ADSCs produced by cell factory of our institution. To value mouth opening, we use the Italian version of Mouth Handicap in Systemic Sclerosis Scale (IvMHISS. Mouth opening was assessed in centimetres (Maximal Mouth Opening, MMO. In order to evaluate compliance and physician and patient satisfaction, we employed a Questionnaire of Satisfaction and the Visual Analogic Scale (VAS performed before starting study and 1 year after the last treatment. Results and Conclusion. We noticed that both procedures obtained significant results but neither one emerged as a first-choice technique. The present clinical experimentation should be regarded as a starting point for further experimental research and clinical trials.

  15. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-08-01

    Full Text Available Current regenerative strategies used for cartilage repair rely on biomaterial functionality as a scaffold for cells that may have potential in chondrogenic differentiation. The purpose of the research was to investigate the biocompatibility of enzymatically treated alginate/chitosan hydrosol sponges and their suitability to support chondrogenic differentiation of human adipose derived multipotent stromal cells (hASCs. The alginate/chitosan and enzyme/alginate/chitosan sponges were formed from hydrosols with various proportions and were used as a biomaterial in this study. Sponges were tested for porosity and wettability. The porosity of each sponge was higher than 80%. An equal dose of alginate and chitosan in the composition of sponges improved their swelling ability. It was found that equal concentrations of alginate and chitosan in hydrosols sponges assure high biocompatibility properties that may be further improved by enzymatic treatment. Importantly, the high biocompatibility of these biomaterials turned out to be crucial in the context of hydrosols’ pro-chondrogenic function. After exposure to the chondrogenic conditions, the hASCs in N/A/C and L/A/C sponges formed well developed nodules and revealed increased expression of collagen type II, aggrecan and decreased expression of collagen type I. Moreover, in these cultures, the reactive oxygen species level was lowered while superoxide dismutase activity increased. Based on the obtained results, we conclude that N/A/C and L/A/C sponges may have prospective application as hASCs carriers for cartilage repair.

  16. Retention and Functional Effect of Adipose-Derived Stromal Cells Administered in Alginate Hydrogel in a Rat Model of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Bjarke Follin

    2018-01-01

    Full Text Available Background. Cell therapy for heart disease has been proven safe and efficacious, despite poor cell retention in the injected area. Improving cell retention is hypothesized to increase the treatment effect. In the present study, human adipose-derived stromal cells (ASCs were delivered in an in situ forming alginate hydrogel following acute myocardial infarction (AMI in rats. Methods. ASCs were transduced with luciferase and tested for ASC phenotype. AMI was inducted in nude rats, with subsequent injection of saline (controls, 1 × 106 ASCs in saline or 1 × 106 ASCs in 1% (w/v alginate hydrogel. ASCs were tracked by bioluminescence and functional measurements were assessed by magnetic resonance imaging (MRI and 82rubidium positron emission tomography (PET. Results. ASCs in both saline and alginate hydrogel significantly increased the ejection fraction (7.2% and 7.8% at 14 days and 7.2% and 8.0% at 28 days, resp.. After 28 days, there was a tendency for decreased infarct area and increased perfusion, compared to controls. No significant differences were observed between ASCs in saline or alginate hydrogel, in terms of retention and functional salvage. Conclusion. ASCs improved the myocardial function after AMI, but administration in the alginate hydrogel did not further improve retention of the cells or myocardial function.

  17. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  18. Degenerative Suspensory Ligament Desmitis (DSLD in Peruvian Paso Horses Is Characterized by Altered Expression of TGFβ Signaling Components in Adipose-Derived Stromal Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available Equine degenerative suspensory ligament desmitis (DSLD in Peruvian Paso horses typically presents at 7-15 years and is characterized by lameness, focal disorganization of collagen fibrils, and chondroid deposition in the body of the ligament. With the aim of developing a test for disease risk (that can be used to screen horses before breeding we have quantified the expression of 76 TGFβ-signaling target genes in adipose-derived stromal fibroblasts (ADSCs from six DSLD-affected and five unaffected Paso horses. Remarkably, 35 of the genes showed lower expression (p<0.05 in cells from DSLD-affected animals and this differential was largely eliminated by addition of exogenous TGFβ1. Moreover, TGFβ1-mediated effects on expression were prevented by the TGFβR1/2 inhibitor LY2109761, showing that the signaling was via a TGFβR1/2 complex. The genes affected by the pathology indicate that it is associated with a generalized metabolic disturbance, since some of those most markedly altered in DSLD cells (ATF3, MAPK14, ACVRL1 (ALK1, SMAD6, FOS, CREBBP, NFKBIA, and TGFBR2 represent master-regulators in a wide range of cellular metabolic responses.

  19. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells has a neutral effect on obesity-induced diabetic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Sebastián D Calligaris

    2013-01-01

    Full Text Available Obesity is a major global health issue. Obese patients develop metabolic syndrome, which is a cluster of clinical features characterized by insulin resistance and dyslipidemia. Its cardiac manifestation, diabetic cardiomyopathy, leads to heart failure. Bone marrow-derived multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSC are envisioned as a therapeutic tool not only for cardiovascular diseases but also for other degenerative conditions. Our aim was to evaluate whether the intravenous administration of MSC modifies cardiac dysfunction in obese mice. To this end, C57BL/6 mice were fed a regular (normal or high-fat diet (obese. Obese animals received the vehicle (obese, a single dose (obese + 1x MSC or three doses (obese + 3x MSC of 0.5x10(6 syngeneic MSC. Two to three months following MSC administration, cardiac function was assessed by cardiac catheterization, at basal condition and after a pharmacological stress. Compared to normal mice, obese mice presented hyperglycemia, hyperinsulinemia, hypercholesterolemia and cardiac dysfunction after stress condition. Exogenous MSC neither improved nor impaired this cardiac dysfunction. Thus, intravenous administration of MSC has neutral effect on obesity-induced diabetic cardiomyopathy

  20. Anti-angiogenesis therapy based on the bone marrow-derived stromal cells genetically engineered to express sFlt-1 in mouse tumor model

    Directory of Open Access Journals (Sweden)

    Chen X-C

    2008-10-01

    Full Text Available Abstract Background Bone marrow-derived stromal cells (BMSCs are important for development, tissue cell replenishment, and wound healing in physiological and pathological conditions. BMSCs were found to preferably reach sites undergoing the process of cell proliferation, such as wound and tumor, suggesting that BMSCs may be used as a vehicle for gene therapy of tumor. Methods Mouse BMSCs were loaded with recombinant adenoviruses which express soluble Vascular Endothelial Growth Factor Receptor-1 (sFlt-1. The anti-angiogenesis of sFlt-1 in BMSCs was determined using endothelial cells proliferation inhibition assay and alginate encapsulation assay. The anti-tumor effects of BMSCs expressing sFlt-1 through tail-vein infusion were evaluated in two mouse tumor metastases models. Results BMSCs genetically modified with Adv-GFP-sFlt-1 could effectively express and secret sFlt-1. BMSCs loaded with sFlt-1 gene could preferentially home to tumor loci and decrease lung metastases and prolong lifespan in mouse tumor model through inducing anti-angiogenesis and apoptosis in tumors. Conclusion We demonstrated that BMSCs might be employed as a promising vehicle for tumor gene therapy which can effectively not only improve the concentration of anticancer therapeutics in tumors, but also modify the tumor microenvironment.

  1. Promotion of Survival and Engraftment of Transplanted Adipose Tissue-Derived Stromal and Vascular Cells by Overexpression of Manganese Superoxide Dismutase

    Directory of Open Access Journals (Sweden)

    Silvia Baldari

    2016-07-01

    Full Text Available Short-term persistence of transplanted cells during early post-implant period limits clinical efficacy of cell therapy. Poor cell survival is mainly due to the harsh hypoxic microenvironment transplanted cells face at the site of implantation and to anoikis, driven by cell adhesion loss. We evaluated the hypothesis that viral-mediated expression of a gene conferring hypoxia resistance to cells before transplant could enhance survival of grafted cells in early stages after implant. We used adipose tissue as cell source because it consistently provides high yields of adipose-tissue-derived stromal and vascular cells (ASCs, suitable for regenerative purposes. Luciferase positive cells were transduced with lentiviral vectors expressing either green fluorescent protein as control or human manganese superoxide dismutase (SOD2. Cells were then exposed in vitro to hypoxic conditions, mimicking cell transplantation into an ischemic site. Cells overexpressing SOD2 displayed survival rates significantly greater compared to mock transduced cells. Similar results were also obtained in vivo after implantation into syngeneic mice and assessment of cell engraftment by in vivo bioluminescent imaging. Taken together, these findings suggest that ex vivo gene transfer of SOD2 into ASCs before implantation confers a cytoprotective effect leading to improved survival and engraftment rates, therefore enhancing cell therapy regenerative potential.

  2. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells.

    Science.gov (United States)

    Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro

    2013-10-01

    To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.

  3. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Per Anderson

    2017-01-01

    Full Text Available Multipotent mesenchymal stromal cells (MSCs have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS. Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS and cyclooxygenase- (COX- 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS- induced maturation of dendritic cells (DCs in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG E2 in this process. In vivo, early administration of murine and human ASCs (hASCs ameliorated myelin oligodendrocyte protein- (MOG35-55- induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+ DCs in draining lymph nodes (DLNs. In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

  4. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.

    Science.gov (United States)

    Yang, Gang; Long, Haiyan; Ren, Xiaomei; Ma, Kunlong; Xiao, Zhenghua; Wang, Ying; Guo, Yingqiang

    2017-02-01

    Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors. © 2017 Japanese Society of Developmental Biologists.

  5. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    Energy Technology Data Exchange (ETDEWEB)

    Tatrai, Peter, E-mail: peter.tatrai@biomembrane.hu [Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Karolina ut 29, H-1113 Budapest (Hungary); Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Szepesi, Aron, E-mail: aron.szepesi@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Matula, Zsolt, E-mail: matula.zsolt@gmail.com [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Szigeti, Anna, E-mail: anna.szigeti@biomembrane.hu [Creative Cell Ltd., Puskas Tivadar utca 13, H-1119 Budapest (Hungary); Buchan, Gyoengyi, E-mail: buchan@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Madi, Andras, E-mail: madi@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Stem Cell, Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Egyetem ter 1, H-4032 Debrecen (Hungary); Uher, Ferenc, E-mail: uher@biomembrane.hu [Stem Cell Laboratory, Hungarian National Blood Transfusion Service, Dioszegi ut 64, H-1113 Budapest (Hungary); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. Black-Right-Pointing-Pointer hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. Black-Right-Pointing-Pointer SV40T introduced along with hTERT abrogates proliferation control and multipotency. Black-Right-Pointing-Pointer hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC{sup hTERT}, ASC{sup Bmi-1}, ASC{sup Bmi-1+hTERT} and ASC{sup SV40T+hTERT} were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC{sup Bmi-1} had limited replicative potential, while the rapidly proliferating ASC{sup SV40T+hTERT} acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC{sup hTERT} and ASC{sup hTERT+Bmi-1}, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC{sup hTERT} also acquired aberrant karyotype and showed signs of transformation after long-term culture

  6. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    International Nuclear Information System (INIS)

    Tátrai, Péter; Szepesi, Áron; Matula, Zsolt; Szigeti, Anna; Buchan, Gyöngyi; Mádi, András; Uher, Ferenc

    2012-01-01

    Highlights: ► We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. ► hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. ► SV40T introduced along with hTERT abrogates proliferation control and multipotency. ► hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC hTERT , ASC Bmi-1 , ASC Bmi-1+hTERT and ASC SV40T+hTERT were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC Bmi-1 had limited replicative potential, while the rapidly proliferating ASC SV40T+hTERT acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC hTERT and ASC hTERT+Bmi-1 , on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC hTERT also acquired aberrant karyotype and showed signs of transformation after long-term culture. In conclusion, hTERT alone was sufficient to extend the life span of human ASC, but ASC hTERT are prone to transformation during extensive

  7. Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Bernardi, Martina; Albiero, Elena; Alghisi, Alberta; Chieregato, Katia; Lievore, Chiara; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2013-08-01

    A medium supplemented with fetal bovine serum (FBS) is of common use for the expansion of human mesenchymal stromal cells (MSCs). However, its use is discouraged by regulatory authorities because of the risk of zoonoses and immune reactions. Human platelet lysate (PL) obtained by freezing/thawing disruption of platelets has been proposed as a possible substitute of FBS. The process is time-consuming and not well standardized. A new method for obtaining PL that is based on the use of ultrasound is proposed. Platelet sonication was performed by submerging platelet-containing plastic bags in an ultrasonic bath. To evaluate platelet lysis we measured platelet-derived growth factor-AB release. PL efficiency was tested by expanding bone marrow (BM)-MSCs, measuring population doubling time, differentiation capacity and immunogenic properties. Safety was evaluated by karyotyping expanded cells. After 30 minutes of sonication, 74% of platelet derived growth factor-AB was released. PL enhanced BM-MSC proliferation rate compared with FBS. The mean cumulative population doubling (cPD) of cells growth in PL at 10%, 7.5% and 5% was better compared with cPD obtained with 10% FBS. PD time (hours) of MSCs with PL obtained by sonication was shorter than for cPD with PL obtained by freezing/thawing (18.9 versus 17.4, P < 0.01). BM mononucleated cells expressed MSC markers and were able to differentiate into adipogenic, osteogenic and chondrogenic lineages. When BM-MSCs and T cells were co-cultured in close contact, immunosuppressive activity of BM-MSCs was maintained. Cell karyotype showed no genetic alterations. The proposed method for the production of PL by sonication could be a safe, efficient and fast substitute of FBS, without the potential risks of FBS. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression.

    Science.gov (United States)

    Darabi, Shahram; Tiraihi, Taki; Delshad, AliReza; Sadeghizadeh, Majid; Taheri, Taher; Hassoun, Hayder K

    2017-04-01

    Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.

  9. Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats.

    Science.gov (United States)

    Melo, Fernanda Rosene; Bressan, Raul Bardini; Forner, Stefânia; Martini, Alessandra Cadete; Rode, Michele; Delben, Priscilla Barros; Rae, Giles Alexander; Figueiredo, Claudia Pinto; Trentin, Andrea Gonçalves

    2017-07-01

    Spinal cord injury (SCI) is a devastating neurologic disorder with significant impacts on quality of life, life expectancy, and economic burden. Although there are no fully restorative treatments yet available, several animal and small-scale clinical studies have highlighted the therapeutic potential of cellular interventions for SCI. Mesenchymal stem cells (MSCs)-which are conventionally isolated from the bone marrow-recently emerged as promising candidates for treating SCI and have been shown to provide trophic support, ameliorate inflammatory responses, and reduce cell death following the mechanical trauma. Here we evaluated the human skin as an alternative source of adult MSCs suitable for autologous cell transplantation strategies for SCI. We showed that human skin-derived MSCs (hSD-MSCs) express a range of neural markers under standard culture conditions and are able to survive and respond to neurogenic stimulation in vitro. In addition, using histological analysis and behavioral assessment, we demonstrated as a proof-of-principle that hSD-MSC transplantation reduces the severity of tissue loss and facilitates locomotor recovery in a rat model of SCI. Altogether, the study provides further characterization of skin-derived MSC cultures and indicates that the human skin may represent an attractive source for cell-based therapies for SCI and other neurological disorders. Further investigation is needed to elucidate the mechanisms by which hSD-MSCs elicit tissue repair and/or locomotor recovery.

  10. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells.

    Science.gov (United States)

    Murphy, Meghan K; Huey, Daniel J; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-03-01

    Replacement of degenerated cartilage with cell-based cartilage products may offer a long-term solution to halt arthritis' degenerative progression. Chondrocytes are frequently used in cell-based FDA-approved cartilage products; yet human marrow-derived stromal cells (hMSCs) show significant translational potential, reducing donor site morbidity and maintaining their undifferentiated phenotype with expansion. This study sought to investigate the effects of transforming growth factor β1 (TGF-β1), growth/differentiation factor 5 (GDF-5), and bone morphogenetic protein 2 (BMP-2) during postexpansion chondrogenesis in human articular chondrocytes (hACs) and to compare chondrogenesis in passaged hACs with that of passaged hMSCs. Through serial expansion, chondrocytes dedifferentiated, decreasing expression of chondrogenic genes while increasing expression of fibroblastic genes. However, following expansion, 10 ng/mL TGF-β1, 100 ng/mL GDF-5, or 100 ng/mL BMP-2 supplementation during three-dimensional aggregate culture each upregulated one or more markers of chondrogenic gene expression in both hACs and hMSCs. Additionally, in both cell types, the combination of TGF-β1, GDF-5, and BMP-2 induced the greatest upregulation of chondrogenic genes, that is, Col2A1, Col2A1/Col1A1 ratio, SOX9, and ACAN, and synthesis of cartilage-specific matrix, that is, glycosaminoglycans (GAGs) and ratio of collagen II/I. Finally, TGF-β1, GDF-5, and BMP-2 stimulation yielded mechanically robust cartilage rich in collagen II and GAGs in both cell types, following 4 weeks maturation. This study illustrates notable success in using the self-assembling method to generate robust, scaffold-free neocartilage constructs using expanded hACs and hMSCs. © 2014 AlphaMed Press.

  11. Human Tubal-Derived Mesenchymal Stromal Cells Associated with Low Level Laser Therapy Significantly Reduces Cigarette Smoke-Induced COPD in C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Jean Pierre Schatzmann Peron

    Full Text Available Cigarette smoke-induced chronic obstructive pulmonary disease is a very debilitating disease, with a very high prevalence worldwide, which results in a expressive economic and social burden. Therefore, new therapeutic approaches to treat these patients are of unquestionable relevance. The use of mesenchymal stromal cells (MSCs is an innovative and yet accessible approach for pulmonary acute and chronic diseases, mainly due to its important immunoregulatory, anti-fibrogenic, anti-apoptotic and pro-angiogenic. Besides, the use of adjuvant therapies, whose aim is to boost or synergize with their function should be tested. Low level laser (LLL therapy is a relatively new and promising approach, with very low cost, no invasiveness and no side effects. Here, we aimed to study the effectiveness of human tube derived MSCs (htMSCs cell therapy associated with a 30mW/3J-660 nm LLL irradiation in experimental cigarette smoke-induced chronic obstructive pulmonary disease. Thus, C57BL/6 mice were exposed to cigarette smoke for 75 days (twice a day and all experiments were performed on day 76. Experimental groups receive htMSCS either intraperitoneally or intranasally and/or LLL irradiation either alone or in association. We show that co-therapy greatly reduces lung inflammation, lowering the cellular infiltrate and pro-inflammatory cytokine secretion (IL-1β, IL-6, TNF-α and KC, which were followed by decreased mucus production, collagen accumulation and tissue damage. These findings seemed to be secondary to the reduction of both NF-κB and NF-AT activation in lung tissues with a concomitant increase in IL-10. In summary, our data suggests that the concomitant use of MSCs + LLLT may be a promising therapeutic approach for lung inflammatory diseases as COPD.

  12. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints.

    Science.gov (United States)

    Upchurch, David A; Renberg, Walter C; Roush, James K; Milliken, George A; Weiss, Mark L

    2016-09-01

    OBJECTIVE To evaluate effects of simultaneous intra-articular and IV injection of autologous adipose-derived stromal vascular fraction (SVF) and platelet-rich plasma (PRP) to dogs with osteoarthritis of the hip joints. ANIMALS 22 client-owned dogs (12 placebo-treated [control] dogs and 10 treated dogs). PROCEDURES Dogs with osteoarthritis of the hip joints that caused signs of lameness or discomfort were characterized on the basis of results of orthopedic examination, goniometry, lameness score, the Canine Brief Pain Inventory (CBPI), a visual analogue scale, and results obtained by use of a pressure-sensing walkway at week 0 (baseline). Dogs received a simultaneous intraarticular and IV injection of SVF and PRP or a placebo. Dogs were examined again 4, 8, 12, and 24 weeks after injection. RESULTS CBPI scores were significantly lower for the treatment group at week 24, compared with scores for the control group. Mean visual analogue scale score for the treatment group was significantly higher at week 0 than at weeks 4, 8, or 24. Dogs with baseline peak vertical force (PVF) in the lowest 25th percentile were compared, and the treatment group had a significantly higher PVF than did the control group. After the SVF-PRP injection, fewer dogs in the treated group than in the control group had lameness confirmed during examination. CONCLUSIONS AND CLINICAL RELEVANCE For dogs with osteoarthritis of the hip joints treated with SVF and PRP, improvements in CBPI and PVF were evident at some time points, compared with results for the control group.

  13. Generation of human β-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA.

    Science.gov (United States)

    Varela, Ioanna; Karagiannidou, Angeliki; Oikonomakis, Vasilis; Tzetis, Maria; Tzanoudaki, Marianna; Siapati, Elena-Konstantina; Vassilopoulos, George; Graphakos, Stelios; Kanavakis, Emmanuel; Goussetis, Evgenios

    2014-12-01

    Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with β-thalassemia (β-thal) with the aim to generate trangene-free β-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4, Klf4, Sox2, cMyc, and Lin28 resulted in formation of five iPSC colonies, from which three were picked up and expanded in β-thal-iPSC lines. After 10 serial passages in vitro, β-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs, whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%, but with a decreased hematopoietic colony-forming capability. In conclusion, we report herein the generation of transgene-free β-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover, it was demonstrated that the mRNA-based reprogramming method, used mainly in fibroblasts, is also suitable for reprogramming of human BM-MSCs.

  14. Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs.

    Science.gov (United States)

    Munoz, Jessian L; Greco, Steven J; Patel, Shyam A; Sherman, Lauren S; Bhatt, Suresh; Bhatt, Rekha S; Shrensel, Jeffrey A; Guan, Yan-Zhong; Xie, Guiqin; Ye, Jiang-Hong; Rameshwar, Pranela; Siegel, Allan

    2012-09-01

    Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin βIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke. Copyright © 2012 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  15. Bone Marrow–Derived Stromal Cell Therapy in Cirrhosis: Clinical Evidence, Cellular Mechanisms, and Implications for the Treatment of Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Vainshtein, Jeffrey M. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Kabarriti, Rafi; Mehta, Keyur J. [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States); Roy-Chowdhury, Jayanta [Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States); Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States); Guha, Chandan, E-mail: cguhamd@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States); Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States)

    2014-07-15

    Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow–derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Child's B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the

  16. Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells

    Science.gov (United States)

    Russell, Keith A.; Gibson, Thomas W. G.; Chong, Andrew; Co, Carmon; Koch, Thomas G.

    2015-01-01

    Background Mesenchymal stromal cells (MSC) are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS) is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL) has proven to be a suitable alternative to FBS for expansion of human MSC. Hypothesis and Objectives We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1) isolation, 2) proliferation, 3) spontaneous differentiation, and 4) directed differentiation. Results 1) Medium with 10% PL was unable to isolate MSC. 2) MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT) or 30% (BM) enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3) Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4) MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis. Conclusions/Significance Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects. PMID:26353112

  17. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells.

    Science.gov (United States)

    de Soure, António M; Fernandes-Platzgummer, Ana; Moreira, Francisco; Lilaia, Carla; Liu, Shi-Hwei; Ku, Chen-Peng; Huang, Yi-Feng; Milligan, William; Cabral, Joaquim M S; da Silva, Cláudia L

    2017-05-01

    Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGRO TM , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGRO TM -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGRO TM -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Keith A Russell

    Full Text Available Mesenchymal stromal cells (MSC are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL has proven to be a suitable alternative to FBS for expansion of human MSC.We hypothesized that canine adipose tissue (AT and bone marrow (BM MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1 isolation, 2 proliferation, 3 spontaneous differentiation, and 4 directed differentiation.1 Medium with 10% PL was unable to isolate MSC. 2 MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT or 30% (BM enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3 Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4 MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis.Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects.

  19. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model.

    Science.gov (United States)

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that

  20. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Science.gov (United States)

    Mello, Debora B; Ramos, Isalira P; Mesquita, Fernanda C P; Brasil, Guilherme V; Rocha, Nazareth N; Takiya, Christina M; Lima, Ana Paula C A; Campos de Carvalho, Antonio C; Goldenberg, Regina S; Carvalho, Adriana B

    2015-01-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  1. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Directory of Open Access Journals (Sweden)

    Debora B Mello

    Full Text Available Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi, is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy.ASC were injected intraperitoneally at 3 days post-infection (dpi. Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV dilation was prevented in ASC-treated mice.In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  2. Bone marrow-derived mesenchymal stromal cells regress aortic aneurysm via the NF-kB, Smad3 and Akt signaling pathways.

    Science.gov (United States)

    Yamawaki-Ogata, Aika; Oshima, Hideki; Usui, Akihiko; Narita, Yuji

    2017-10-01

    We have confirmed that aortic aneurysm (AA) can be regressed by the administration of bone marrow-derived mesenchymal stromal cells (BM-MSCs). We investigated the kinetics of signaling pathways in AA following treatment with BM-MSCs. Angiotensin II-infused apolipoprotein E-deficient mice were treated by intravenous injection of 1 × 10 6 BM-MSCs in 0.2 mL saline (BM-MSCs group, n = 5) or 0.2 mL saline (saline group, n = 5). Mice were sacrificed 2 weeks after injection and subjected to measurements of the incidence of AA and levels of phosphorylated proteins. Levels of proteins in conditioned media of BM-MSCs were also measured. The incidence of AA in the BM-MSCs group was reduced (BM-MSC 40% versus saline 100%, P kB and pSTAT1 were reduced (pNF-kB: 0.28 versus 0.45 unit/mL, P kB, pAkt, and pSmad3 were correlated with aortic diameters. Trophic factors including IGFPB-3, NRF, Activin A and PDGF-AA were secreted from BM-MSCs (IGFBP-3: 35.2 pg/mL, NRF: 3.1 pg/mL, Activin A: 3.1 pg/mL, PDGF-AA: 0.45 pg/mL). Our findings suggested that the therapeutic mechanism of BM-MSC-mediated AA regression could contribute to regulation of the NF-kB, Smad3 and Akt signaling pathways. In addition, paracrine actions by factors including NRF, IGFBP-3, Activin A and PDGF-AA might have affected these signaling pathways. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo.

    Science.gov (United States)

    Rosu-Myles, Michael; McCully, Jennifer; Fair, Joel; Mehic, Jelica; Menendez, Pablo; Rodriguez, Rene; Westwood, Carole

    2013-05-01

    The therapeutic potential of multipotent stromal cells (MSC) may be enhanced by the identification of markers that allow their discrimination and enumeration both in vivo and in vitro. Here, we investigated the ability of embryonic stem cell-associated glycosphingolipids to isolate human MSC from both whole-bone-marrow (BM) and stromal cell cultures. Only SSEA-4 was consistently expressed on cells within the CD45loCD105hi marrow fraction and could be used to isolate cells with the capacity to give rise to stromal cultures containing MSC. Human stromal cultures, generated in either the presence or absence of serum, contained heterogeneous cell populations discriminated by the quantity of SSEA-4 epitopes detected on their surface. A low level of surface SSEA-4 (SSEA-4lo) correlated with undetectable levels of the α2,3-sialyltransferase-II enzyme required to synthesize SSEA-4; a reduced proliferative potential; and the loss of fat-, bone-, and cartilage-forming cells during long-term culture. In vitro, single cells with the capacity to generate multipotent stromal cultures were detected exclusively in the SSEA-4hi fraction. Our data demonstrate that a high level of surface epitopes for SSEA-4 provides a definitive marker of MSC from human BM.

  4. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death.

    Science.gov (United States)

    Stone, Matthew L; Zhao, Yunge; Robert Smith, J; Weiss, Mark L; Kron, Irving L; Laubach, Victor E; Sharma, Ashish K

    2017-12-21

    Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of

  5. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    Science.gov (United States)

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for

  6. miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells.

    Science.gov (United States)

    Shaer, Anahita; Azarpira, Negar; Vahdati, Akbar; Karimi, Mohammad Hosein; Shariati, Mehrdad

    2014-09-01

    This paper focuses on the development of renewable sources of isletreplacement tissue for the treatment of type I diabetes mellitus. Placental tissue-derived mesenchymal stem cells (MSCs) are a promising source for regenerative medicine due to their plasticity and easy availability. They have the potential to differentiate into insulin-producing cells. miR-375 is a micro RNA that is expressed in the pancreas and involved in islet development. Human placental decidua basalis MSCs (PDB-MSCs) were cultured from full-term human placenta. The immunophenotype of the isolated cells was checked for CD90, CD105, CD44, CD133 and CD34 markers. The MSCs (P3) were chemically transfected with hsa-miR-375. Total RNA was extracted 4 and 6 days after transfection. The expressions of insulin, NGN3, GLUT2, PAX4, PAX6, KIR6.2, NKX6.1, PDX1, and glucagon genes were evaluated using real-time qPCR. On day 6, we tested the potency of the clusters in response to the high glucose challenge and assessed the presence of insulin and NGN3 proteins via immunocytochemistry. Flow cytometry analysis confirmed that more than 90% of the cells were positive for CD90, CD105 and CD44 and negative for CD133 and CD34. Morphological changes were followed from day 2. Cell clusters formed during day 6. Insulin-producing clusters showed a deep red color with DTZ. The expression of pancreatic-specific transcription factors increased remarkably during the four days after transfection and significantly increased on day 7. The clusters were positive for insulin and NGN3 proteins, and C-peptide and insulin secretion increased in response to changes in the glucose concentration (2.8 mM and 16.7 mM). In conclusion, the MSCs could be programmed into functional insulin-producing cells by transfection of miR-375.

  7. Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    C Lalande

    2011-04-01

    Full Text Available For bone tissue engineering, human Adipose Derived Stem Cells (hADSCs are proposed to be associated with a scaffold for promoting bone regeneration. After implantation, cellularised scaffolds require a non-invasive method for monitoring their fate in vivo. The purpose of this study was to use Magnetic Resonance Imaging (MRI-based tracking of these cells, labelled with magnetic agents for in vivo longitudinal assessment. hADSCs were isolated from adipose tissue and labelled with USPIO-rhodamine (Ultrasmall SuperParamagnetic Iron Oxide. USPIO internalisation, absence of toxicity towards hADSCs, and osteogenic differentiation of the labelled cells were evaluated in standard culture conditions. Labelled cells were then seeded within a 3D porous polysaccharide-based scaffold and imaged in vitro using fluorescence microscopy and MRI. Cellularised scaffolds were implanted subcutaneously in nude mice and MRI analyses were performed from 1 to 28 d after implantation. In vitro, no effect of USPIO labelling on cell viability and osteogenic differentiation was found. USPIO were efficiently internalised by hADSCs and generated a high T2* contrast. In vivo MRI revealed that hADSCs remain detectable until 28 d after implantation and could migrate from the scaffold and colonise the area around it. These data suggested that this scaffold might behave as a cell carrier capable of both holding a cell fraction and delivering cells to the site of implantation. In addition, the present findings evidenced that MRI is a reliable technique to validate cell-seeding procedures in 3D porous scaffolds, and to assess the fate of hADSCs transplanted in vivo.

  8. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Codinach, Margarita; Blanco, Margarita; Ortega, Isabel; Lloret, Mireia; Reales, Laura; Coca, Maria Isabel; Torrents, Sílvia; Doral, Manel; Oliver-Vila, Irene; Requena-Montero, Miriam; Vives, Joaquim; Garcia-López, Joan

    2016-09-01

    Multipotent mesenchymal stromal cells (MSC) have achieved a notable prominence in the field of regenerative medicine, despite the lack of common standards in the production processes and suitable quality controls compatible with Good Manufacturing Practice (GMP). Herein we describe the design of a bioprocess for bone marrow (BM)-derived MSC isolation and expansion, its validation and production of 48 consecutive batches for clinical use. BM samples were collected from the iliac crest of patients for autologous therapy. Manufacturing procedures included: (i) isolation of nucleated cells (NC) by automated density-gradient centrifugation and plating; (ii) trypsinization and expansion of secondary cultures; and (iii) harvest and formulation of a suspension containing 40 ± 10 × 10(6) viable cells. Quality controls were defined as: (i) cell count and viability assessment; (ii) immunophenotype; and (iii) sterility tests, Mycoplasma detection, endotoxin test and Gram staining. A 3-week manufacturing bioprocess was first designed and then validated in 3 consecutive mock productions, prior to producing 48 batches of BM-MSC for clinical use. Validation included the assessment of MSC identity and genetic stability. Regarding production, 139.0 ± 17.8 mL of BM containing 2.53 ± 0.92 × 10(9) viable NC were used as starting material, yielding 38.8 ± 5.3 × 10(6) viable cells in the final product. Surface antigen expression was consistent with the expected phenotype for MSC, displaying high levels of CD73, CD90 and CD105, lack of expression of CD31 and CD45 and low levels of HLA-DR. Tests for sterility, Mycoplasma, Gram staining and endotoxin had negative results in all cases. Herein we demonstrated the establishment of a feasible, consistent and reproducible bioprocess for the production of safe BM-derived MSC for clinical use. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Prostate stromal cells express the progesterone receptor to control cancer cell mobility.

    Directory of Open Access Journals (Sweden)

    Yue Yu

    Full Text Available Reciprocal interactions between epithelium and stroma play vital roles for prostate cancer development and progression. Enhanced secretions of cytokines and growth factors by cancer associated fibroblasts in prostate tumors create a favorable microenvironment for cancer cells to grow and metastasize. Our previous work showed that the progesterone receptor (PR was expressed specifically in prostate stromal fibroblasts and smooth muscle cells. However, the expression levels of PR and its impact to tumor microenvironment in prostate tumors are poorly understood.Immunohistochemistry assays are applied to human prostate tissue biopsies. Cell migration, invasion and proliferation assays are performed using human prostate cells. Real-time PCR and ELISA are applied to measure gene expression at molecular levels.Immunohistochemistry assays showed that PR protein levels were decreased in cancer associated stroma when compared with paired normal prostate stroma. Using in vitro prostate stromal cell models, we showed that conditioned media collected from PR positive stromal cells inhibited prostate cancer cell migration and invasion, but had minor suppressive impacts on cancer cell proliferation. PR suppressed the secretion of stromal derived factor-1 (SDF-1 and interlukin-6 (IL-6 by stromal cells independent to PR ligands. Blocking PR expression by siRNA or supplementation of exogenous SDF-1 or IL-6 to conditioned media from PR positive stromal cells counteracted the inhibitory effects of PR to cancer cell migration and invasion.Decreased expression of the PR in cancer associated stroma may contribute to the elevated SDF-1 and IL-6 levels in prostate tumors and enhance prostate tumor progression.

  10. Insulin-like growth factor -1 (IGF-1) derived neuropeptides, a novel strategy for the development of pharmaceuticals for managing ischemic brain injury.

    Science.gov (United States)

    Guan, Jian

    2011-08-01

    Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake, and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and is also neuroprotective after ischemic injury, thus providing a potential novel strategy of drug discovery for management of neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. The neuroprotective action of GPE is not age selective, is not dependent on cerebral reperfusion, plasma glucose concentrations, and core body temperature. G-2mPE, a GPE analogue designed to be more resistant to enzymatic activity, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may be involved in modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis, and in vascular remodeling. Small neuropeptides have advantages over growth factors in the treatment of brain injury, and modified neuropeptides, designed to overcome the limitations of their endogenous counterparts, represent a novel strategy of pharmaceutical discovery for neurological disorders. © 2010 Blackwell Publishing Ltd.

  11. Response to intravenous allogeneic equine cord-blood-derived mesenchymal stromal cells administered from chilled or frozen state in serum and protein free media

    Directory of Open Access Journals (Sweden)

    Lynn Brandon Williams

    2016-07-01

    Full Text Available Equine Mesenchymal stromal cells (MSC are commonly transported, chilled or frozen, to veterinary clinics. These MSC must remain viable and minimally affected by culture, transport, or injection processes. The safety of two carrier solutions developed for optimal viability and excipient use were evaluated in ponies, with and without allogeneic cord blood-derived (CB MSC. We hypothesized that neither the carrier solutions nor CB-MSC would elicit measurable changes in clinical, hematological, or biochemical parameters. In 9 ponies (study 1 a bolus of HypoThermosol® FRS (HTS-FRS, CryoStor® CS10 (CS10 or saline was injected IV (n=3/treatment. Study 2, following a one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in HTS-FRS following 24h simulated chilled transport. Study 3, following another one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in CS10 immediately after thawing. Nine ponies received CB-MSCs in study 2 and 3 and three ponies received the cell carrier media without cells. CB-MSCs were pooled in equal numbers from five unrelated donors. In all studies ponies were monitored with physical examination, and blood collection for 7 days following injection. CD4 and CD8 lymphocyte populations were also evaluated in each blood sample.In all three studies, physical exam, complete blood cell count, serum biochemistry, and coagulation panel did not deviate from established normal ranges. Proportions of CD4+ and CD8+ lymphocytes increased at 168h post injection in CB-MSC treatment groups regardless of the carrier solution. Decreases in CD4+/CD8+ double positive populations were observed at 24 h and 72 h in CB-MSC treated animals. There was no difference in viability between CB-MSC suspended in HTS-FRS or CS10.HTS-FRS and CS10 used for low volume excipient injection of MSC suspensions was not associated with short-term adverse reactions. HTS-FRS and CS10 both adequately maintain CB-MSC viability

  12. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord.

    Science.gov (United States)

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo Fi; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-12-14

    Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. In this study, we demonstrate that genetically modified hMSC lines can survive

  13. Intrapancreatic injection of human bone marrow-derived mesenchymal stem/stromal cells alleviates hyperglycemia and modulates the macrophage state in streptozotocin-induced type 1 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Norimitsu Murai

    Full Text Available Type 1 diabetes mellitus is a progressive disease caused by the destruction of pancreatic β-cells, resulting in insulin dependency and hyperglycemia. While transplanted bone marrow-derived mesenchymal stem/stromal cells (BMMSCs have been explored as an alternative therapeutic approach for diseases, the choice of delivery route may be a critical factor determining their sustainability. This study evaluated the effects of intrapancreatic and intravenous injection of human BMMSCs (hBMMSCs in streptozotocin (STZ-induced type 1 diabetic mouse model. C57/BL6 mice were intraperitoneally injected with 115 mg/kg STZ on day 0. hBMMSCs (1 × 106 cells or vehicle were injected into the pancreas or jugular vein on day 7. Intrapancreatic, but not intravenous, hBMMSC injection significantly reduced blood glucose levels on day 28 compared with vehicle injection by the same route. This glucose-lowering effect was not induced by intrapancreatic injection of human fibroblasts as the xenograft control. Intrapancreatically injected fluorescence-labeled hBMMSCs were observed in the intra- and extra-lobular spaces of the pancreas, and intravenously injected cells were in the lung region, although the number of cells mostly decreased within 2 weeks of injection. For hBMMSCs injected twice into the pancreatic region on days 7 and 28, the injected mice had further reduced blood glucose to borderline diabetic levels on day 56. Animals injected with hBMMSCs twice exhibited increases in the plasma insulin level, number and size of islets, insulin-positive proportion of the total pancreas area, and intensity of insulin staining compared with vehicle-injected animals. We found a decrease of Iba1-positive cells in islets and an increase of CD206-positive cells in both the endocrine and exocrine pancreas. The hBMMSC injection also reduced the number of CD40-positive cells merged with glucagon immunoreactions in the islets. These results suggest that intrapancreatic injection

  14. Restored in vivo-like membrane lipidomics positively influence in vitro features of cultured mesenchymal stromal/stem cells derived from human placenta.

    Science.gov (United States)

    Chatgilialoglu, Alexandros; Rossi, Martina; Alviano, Francesco; Poggi, Paola; Zannini, Chiara; Marchionni, Cosetta; Ricci, Francesca; Tazzari, Pier Luigi; Taglioli, Valentina; Calder, Philip C; Bonsi, Laura

    2017-02-07

    The study of lipid metabolism in stem cell physiology has recently raised great interest. The role of lipids goes beyond the mere structural involvement in assembling extra- and intra-cellular compartments. Nevertheless, we are still far from understanding the impact of membrane lipidomics in stemness maintenance and differentiation patterns. In the last years, it has been reported how in vitro cell culturing can modify membrane lipidomics. The aim of the present work was to study the membrane fatty acid profile of mesenchymal stromal cells (MSCs) derived from human fetal membranes (hFM-MSCs) and to correlate this to specific biological properties by using chemically defined tailored lipid supplements (Refeed®). Freshly isolated hFM-MSCs were characterized for their membrane fatty acid composition. hFM-MSCs were cultivated in vitro following a classical protocol and their membrane fatty acid profile at different passages was compared to the profile in vivo. A tailored Refeed® lipid supplement was developed with the aim of reducing the differences created by the in vitro cultivation and was tested on cultured hFM-MSCs. Cell morphology, viability, proliferation, angiogenic differentiation, and immunomodulatory properties after in vitro exposure to the tailored Refeed® lipid supplement were investigated. A significant modification of hFM-MSC membrane fatty acid composition occurred during in vitro culture. Using a tailored lipid supplement, the fatty acid composition of cultured cells remained more similar to their in vivo counterparts, being characterized by a higher polyunsaturated and omega-6 fatty acid content. These changes in membrane composition had no effect on cell morphology and viability, but were linked with increased cell proliferation rate, angiogenic differentiation, and immunomodulatory properties. In particular, Refeed®-supplemented hFM-MSCs showed greater ability to express fully functional cell membrane molecules. Culturing hFM-MSCs alters their

  15. Furan- and Thiophene-2-Carbonyl Amino Acid Derivatives Activate Hypoxia-Inducible Factor via Inhibition of Factor Inhibiting Hypoxia-Inducible Factor-1

    Directory of Open Access Journals (Sweden)

    Shin-ichi Kawaguchi

    2018-04-01

    Full Text Available Induction of a series of anti-hypoxic proteins protects cells during exposure to hypoxic conditions. Hypoxia-inducible factor-α (HIF-α is a major transcription factor that orchestrates this protective effect. To activate HIF exogenously, without exposing cells to hypoxic conditions, many small-molecule inhibitors targeting prolyl hydroxylase domain-containing protein have been developed. In addition, suppression of factor inhibiting HIF-1 (FIH-1 has also been shown to have the potential to activate HIF-α. However, few small-molecule inhibitors of FIH-1 have been developed. In this study, we synthesized a series of furan- and thiophene-2-carbonyl amino acid derivatives having the potential to inhibit FIH-1. The inhibitory activities of these compounds were evaluated in SK-N-BE(2c cells by measuring HIF response element (HRE promoter activity. Several furan- and thiophene-2-carbonyl amino acid derivatives inhibited FIH-1 based on correlations among the docking score of the FIH-1 active site, the chemical structure of the compounds, and biological HIF-α/HRE transcriptional activity.

  16. Hypoxia-controlled EphA3 marks a human endometrium-derived multipotent mesenchymal stromal cell that supports vascular growth.

    Directory of Open Access Journals (Sweden)

    Catherine To

    Full Text Available Eph and ephrin proteins are essential cell guidance cues that orchestrate cell navigation and control cell-cell interactions during developmental tissue patterning, organogenesis and vasculogenesis. They have been extensively studied in animal models of embryogenesis and adult tissue regeneration, but less is known about their expression and function during human tissue and organ regeneration. We discovered the hypoxia inducible factor (HIF-1α-controlled expression of EphA3, an Eph family member with critical functions during human tumour progression, in the vascularised tissue of regenerating human endometrium and on isolated human endometrial multipotent mesenchymal stromal cells (eMSCs, but not in other highly vascularised human organs. EphA3 affinity-isolation from human biopsy tissue yielded multipotent CD29+/CD73+/CD90+/CD146+ eMSCs that can be clonally propagated and respond to EphA3 agonists with EphA3 phosphorylation, cell contraction, cell-cell segregation and directed cell migration. EphA3 silencing significantly inhibited the ability of transplanted eMSCs to support neovascularisation in immunocompromised mice. In accord with established roles of Eph receptors in mediating interactions between endothelial and perivascular stromal cells during mouse development, our findings suggest that HIF-1α-controlled expression of EphA3 on human MSCs functions during the hypoxia-initiated early stages of adult blood vessel formation.

  17. CXC chemokine receptor 4 expression and stromal cell-derived factor-1alpha-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    -10. IL-4 and IL-10 up- or down-regulated CXCR4 mRNA expression in CD4+ T lymphocytes, respectively, as detected by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Scatchard analysis revealed a type of CXCR4 with affinity (Kd approximately 6.3 nM), and approximately 70....... The regulation of CXCR4 expression in CD4+ T lymphocytes by IL-4 and IL-10 could be blocked by a selective inhibitor of protein kinase (staurosporine) or by a selective inhibitor of cAMP- and cGMP-dependent protein kinase (H-8), indicating that these cytokines regulate CXCR4 on CD4+ T lymphocytes via both c......AMP and cGMP signalling pathways. The fact that cyclosporin A or ionomycin were able to independently change the CXCR4 expression and block the effects of IL-4 and IL-10 on CXCR4 expression implied that the capacity of IL-4 and IL-10 to regulate CXCR4 on CD4+ T lymphocytes is not linked to calcium...

  18. Study of stem cell homing & self-renewal marker gene profile of ex vivo expanded human CD34+ cells manipulated with a mixture of cytokines & stromal cell-derived factor 1

    Directory of Open Access Journals (Sweden)

    Jyoti Kode

    2017-01-01

    Interpretation & conclusions: Cocktail of cytokines and SDF1 showed good potential to successfully expand HSPC which exhibited enhanced ability to generate multilineage cells in short-term and long-term repopulation assay. This cocktail-mediated stem cell expansion has potential to obviate the need for longer and large volume apheresis procedure making it convenient for donors.

  19. Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn's disease patients in a mouse model of colitis.

    Science.gov (United States)

    Forte, Dorian; Ciciarello, Marilena; Valerii, Maria Chiara; De Fazio, Luigia; Cavazza, Elena; Giordano, Rosaria; Parazzi, Valentina; Lazzari, Lorenza; Laureti, Silvio; Rizzello, Fernando; Cavo, Michele; Curti, Antonio; Lemoli, Roberto M; Spisni, Enzo; Catani, Lucia

    2015-09-09

    Due to their immunomodulatory properties, mesenchymal stromal cells (MSCs) have been used for auto-immune disease treatment. Crohn disease (CD) and ulcerative colitis are two major inflammatory bowel diseases (IBDs), resulting from pathological immune responses to environmental or microbial antigens. Preclinical and clinical studies have suggested that MSC-based cellular therapy hold promising potential for IBD treatment. However, open issues include the selection of the proper cell dose, the source and the optimal route of administration of MSCs for more effective results. Platelet lysate has gained clinical interest due to its efficacy in accelerating wound healing. Thus, we propose to combine the administration of MSCs with a human umbilical cord blood-derived platelet lysate (hCBPL) as a novel strategy to improve MSC-based therapy for IBD resolution. Colitis was induced in 8-week-old C57BL/6J mice by daily oral administration of dextran sulphate sodium (DSS) (1.5 % w/v in tap water) for 9 days. MSCs were isolated from adipose tissue of CD patients (adCD-MSCs), expanded in proliferation medium, resuspended in hCBPL or PBS and administrated via enema for three times (1 × 10(6) cells/mouse/time) every other day starting on day +7 from DSS induction. The colitis evolution was evaluated by daily monitoring of body weight, stool consistency and bleeding. Histopathological analysis was performed. Inflammatory cytokine plasma levels were determined. adCD-MSCs stained with lipophilic membrane dye Nile Red, were injected in DSS mice as described above. Colon section of mice sacrificed 24 hours after last cell administration, were analyzed by confocal microscopy. We found that adCD-MSCs could be easily isolated and expanded from CD patients. Upon injection, adCD-MSCs exerted a therapeutic effect on DSS-induced colitis. Moreover, hCBPL increased adCD-MSCs efficacy by significantly reducing colitis scores, extension of the colon inflamed area and plasma levels of

  20. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten

    2016-01-01

    ) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. Methods: Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded...... into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas......, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. Results: The viability of ASCs passage 0 (P0) and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential...

  1. Comparison of immunological properties of bone marrow stromal cells and adipose tissue-derived stem cells before and after osteogenic differentiation in vitro

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Kornacker, Martin; Mehlhorn, Alexander

    2007-01-01

    , the influence of osteogenic differentiation in vitro on the immunological characteristics of BMSCs and ASCs is the subject of this article. Before and after osteogenic induction, the influence of BMSCs and ASCs on the proliferative behavior of resting and activated allogenic peripheral blood mononuclear cells......Mesenchymal stem cells (MSCs) can be isolated from various tissues and represent an attractive cell population for tissue-engineering purposes. MSCs from bone marrow (bone marrow stromal cells [BMSCs]) are negative for immunologically relevant surface markers and inhibit proliferation of allogenic...... T cells in vitro. Therefore, BMSCs are said to be available for allogenic cell therapy. Although the immunological characteristics of BMSCs have been the subject of various investigations, those of stem cells isolated from adipose tissue (ASCs) have not been adequately described. In addition...

  2. In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

    Science.gov (United States)

    Xie, Lin; Zhang, Nan; Marsano, Anna; Vunjak-Novakovic, Gordana; Zhang, Yanru; Lopez, Mandi J

    2013-12-01

    Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.

  3. Hemangioblastomas: histogenesis of the stromal cell studied by immunocytochemistry.

    Science.gov (United States)

    Jurco, S; Nadji, M; Harvey, D G; Parker, J C; Font, R L; Morales, A R

    1982-01-01

    Twenty-one cases of hemangioblastoma from the cerebellum, spinal cord and retina were studied using the unlabeled antibody peroxidase-antiperoxidase technique with antibodies directed against glial fibrillary acidic protein (GFAP) and factor VIII related antigen (VIIIR:Ag). In 19 of 21 cases studied with anti-GFAP, astrocytes were identified peripherally, and in 13 cases they were found centrally within the tumor. In no instance did stromal cells react positively for GFAP. Sixteen cases with anti-VIIIR:Ag antibody were examined, and in all cases many stromal cells showed positive staining. It is concluded that the stromal cells were of endothelial origin. The occasional stromal cells that other investigators have identified as reacting positively for GFAP may represent stromal cells capable of ingesting extracellular GFAP derived from reactive astrocytes within the tumor, or they may be lipidized astrocytes.

  4. Expanded cryopreserved mesenchymal stromal cells as an optimal source for graft-versus-host disease treatment

    Czech Academy of Sciences Publication Activity Database

    Holubová, M.; Lysák, D.; Vlas, T.; Vannucci, Luca; Jindra, P.

    2014-01-01

    Roč. 42, č. 3 (2014), s. 139-144 ISSN 1045-1056 Institutional support: RVO:61388971 Keywords : Mesenchymal stromal cells * Cryopreservation * Immunomodulation Subject RIV: EC - Immunology Impact factor: 1.209, year: 2014

  5. Comparisons of phenotype and immunomodulatory capacity among rhesus bone-marrow-derived mesenchymal stem/stromal cells, multipotent adult progenitor cells, and dermal fibroblasts

    Science.gov (United States)

    Wang, Qi; Clarkson, Christina; Graham, Melanie; Donahue, Robert; Hering, Bernhard J.; Verfaillie, Catherine M.; Bansal-Pakala, Pratima; O'Brien, Timothy D.

    2015-01-01

    Background Potent immunomodulatory effects have been reported for mesenchymal stem/stromal cells (MSCs), multipotent adult progenitor cells (MAPCs), and fibroblasts. However, side-by-side comparisons of these cells specifically regarding immunophenotype, gene expression, and suppression of proliferation of CD4+ and CD8+ lymphocyte populations have not been reported. Methods We developed MAPC and MSC lines from rhesus macaque bone marrow and fibroblast cell lines from rhesus dermis and assessed phenotypes based upon differentiation potential, flow cytometric analysis of immunophenotype, and quantitative RT-PCR analysis of gene expression. Using allogeneic lymphocyte proliferation assays, we compared the in vitro immunomodulatory potency of each cell type. Results and Conclusions Extensive phenotypic similarities exist among each cell type, although immunosuppressive potencies are distinct. MAPCs are most potent, and fibroblasts are the least potent cell type. All three cell types demonstrated immunomodulatory capacity such that each may have potential therapeutic applications such as in organ transplantation, where reduced local immune response is desirable. PMID:24825538

  6. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face.

    Science.gov (United States)

    Gentile, Pietro; De Angelis, Barbara; Pasin, Methap; Cervelli, Giulio; Curcio, Cristiano B; Floris, Micol; Di Pasquali, Camilla; Bocchini, Ilaria; Balzani, Alberto; Nicoli, Fabio; Insalaco, Chiara; Tati, Eleonora; Lucarini, Lucilla; Palla, Ludovico; Pascali, Michele; De Logu, Pamela; Di Segni, Chiara; Bottini, Davide J; Cervelli, Valerio

    2014-01-01

    Actually, autologous fat grafts have many clinical applications in breast surgery, facial rejuvenation, buttock augmentation, and Romberg syndrome as well as a treatment of liposuction sequelae. The aim of this article was to describe the preparation and isolation procedures for stromal vascular fraction (SVF), the preparation of platelet-rich plasma (PRP), and the clinical application in the treatment of the scar on the face. Ten patients with burns sequelae (n = 6) and post-traumatic scars (n = 4) were treated with SVF-enhanced autologous fat grafts obtained by the Celution System. Another 10 patients with burns sequelae (n = 5) and post-traumatic scars (n = 5) were treated with fat grafting based on the Coleman technique mixed with 0.5 mL of PRP.To assess the effects of their treatment, the authors compared their results with those of a control group consisting of 10 patients treated with centrifuged fat. In the patients treated with SVF-enhanced autologous fat grafts, we observed a 63% maintenance of contour restoring after 1 year compared with only 39% of the control group (n = 10) treated with centrifuged fat graft (P < 0.0001). In the patients treated with fat grafting and PRP, we observed a 69% maintenance of contour restoring after 1 year compared with that of the control group (n = 10). Autologous fat grafting is a good method for the correction of scars on the face instead of the traditional scar surgical excision.

  7. Hepatocyte growth factor enhances the inflammation-alleviating effect of umbilical cord-derived mesenchymal stromal cells in a bronchiolitis obliterans model.

    Science.gov (United States)

    Cao, Xiao-Pei; Han, Dong-Mei; Zhao, Li; Guo, Zi-Kuan; Xiao, Feng-Jun; Zhang, Yi-Kun; Zhang, Xiao-Yan; Wang, Li-Sheng; Wang, Heng-Xiang; Wang, Hua

    2016-03-01

    Specific and effective therapy for prevention or reversal of bronchiolitis obliterans (BO) is lacking. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF) gene modified mesenchymal stromal cells (MSCs) on BO. A mouse model of experimental BO was established by subcutaneously transplanting the tracheas from C57BL/6 mice into Balb/C recipients, which were then administered saline, Ad-HGF-modified human umbilical cord-MSCs (MSCs-HGF) or Ad-Null-modified MSCs (MSCs-Null). The therapeutic effects of MSCs-Null and MSCs-HGF were evaluated by using fluorescence-activated cell sorting (FACS) for lymphocyte immunophenotype of spleen, enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (rt-PCR) for cytokine expression, and histopathological analysis for the transplanted trachea. The histopathologic recovery of allograft tracheas was improved significantly after MSCs-Null and MSCs-HGF treatment and the beneficial effects were particularly observed in MSCs-HGF-treated mice. Furthermore, the allo-transplantation-induced immunophenotype disorders of the spleen, including regulatory T (Treg), T helper (Th)1, Th2 and Th17, were attenuated in both cell-treated groups. MSCs-HGF treatment reduced expression and secretion of inflammation cytokines interferon-gamma (IFN-γ), and increased expression of anti-inflammatory cytokine interleukin (IL)-4 and IL-10. It also decreased the expression level of the profibrosis factor transforming growth factor (TGF)-β. Treatment of BO with HGF gene modified MSCs results in reduction of local inflammation and promotion in recovery of allograft trachea histopathology. These findings might provide an effective therapeutic strategy for BO. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

    Directory of Open Access Journals (Sweden)

    Makoto Fukuta

    Full Text Available Neural crest cells (NCCs are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs from human pluripotent stem cells (hPSCs, such as embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin very efficiently induced hNCCs (70-80% from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.

  9. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Antonella Conforti

    Full Text Available Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs isolated from bone marrow (BM of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs at diagnosis (day+0 and during chemotherapy treatment (days: +15; +33; +78, the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs. ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001 and ability to support in vitro hematopoiesis (p = 0.04 as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.. ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present, nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment.

  10. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12.

    Science.gov (United States)

    Wobus, Manja; List, Catrin; Dittrich, Tobias; Dhawan, Abhishek; Duryagina, Regina; Arabanian, Laleh S; Kast, Karin; Wimberger, Pauline; Stiehler, Maik; Hofbauer, Lorenz C; Jakob, Franz; Ehninger, Gerhard; Anastassiadis, Konstantinos; Bornhäuser, Martin

    2015-01-01

    We investigated whether breast tumor cells can modulate the function of mesenchymal stromal cells (MSCs) with a special emphasis on their chemoattractive activity towards hematopoietic stem and progenitor cells (HSPCs). Primary MSCs as well as a MSC line (SCP-1) were cocultured with primary breast cancer cells, MCF-7, MDA-MB231 breast carcinoma or MCF-10A non-malignant breast epithelial cells or their conditioned medium. In addition, the frequency of circulating clonogenic hematopoietic progenitors was determined in 78 patients with breast cancer and compared with healthy controls. Gene expression analysis of SCP-1 cells cultured with MCF-7 medium revealed CXCL12 (SDF-1) as one of the most significantly downregulated genes. Supernatant from both MCF-7 and MDA-MB231 reduced the CXCL12 promoter activity in SCP-1 cells to 77% and 47%, respectively. Moreover, the CXCL12 mRNA and protein levels were significantly reduced. As functional consequence of lower CXCL12 levels, we detected a decreased trans-well migration of HSPCs towards MSC/tumor cell cocultures or conditioned medium. The specificity of this effect was confirmed by blocking studies with the CXCR4 antagonist AMD3100. Downregulation of SP1 and increased miR-23a levels in MSCs after contact with tumor cell medium as well as enhanced TGFβ1 expression were identified as potential molecular regulators of CXCL12 activity in MSCs. Moreover, we observed a significantly higher frequency of circulating colony-forming hematopoietic progenitors in patients with breast cancer compared with healthy controls. Our in vitro results propose a potential new mechanism by which disseminated tumor cells in the bone marrow may interfere with hematopoiesis by modulating CXCL12 in protected niches. © 2014 UICC.

  11. Effects of in vivo applications of peripheral blood-derived mesenchymal stromal cells (PB-MSCs) and platlet-rich plasma (PRP) on experimentally injured deep digital flexor tendons of sheep.

    Science.gov (United States)

    Martinello, Tiziana; Bronzini, Ilaria; Perazzi, Anna; Testoni, Stefania; De Benedictis, Gulia Maria; Negro, Alessandro; Caporale, Giovanni; Mascarello, Francesco; Iacopetti, Ilaria; Patruno, Marco

    2013-02-01

    Tendon injuries, degenerative tendinopathies, and overuse tendinitis are common in races horses. Novel therapies aim to restore tendon functionality by means of cell-based therapy, growth factor delivery, and tissue engineering approaches. This study examined the use of autologous mesenchymal stromal cells derived from peripheral blood (PB-MSCs), platelet-rich plasma (PRP) and a combination of both for ameliorating experimental lesions on deep digital flexor tendons (DDFT) of Bergamasca sheep. In particular, testing the combination of blood-derived MSCs and PRP in an experimental animal model represents one of the few studies exploring a putative synergistic action of these treatments. Effectiveness of treatments was evaluated at 30 and 120 days comparing clinical, ultrasonographic, and histological features together with immunohistochemical expression of collagen types 1 and 3, and cartilage oligomeric matrix protein (COMP). Significant differences were found between treated groups and their corresponding controls (placebo) regarding tendon morphology and extracellular matrix (ECM) composition. However, our results indicate that the combined use of PRP and MSCs did not produce an additive or synergistic regenerative response and highlighted the predominant effect of MSCs on tendon healing, enhanced tissue remodeling and improved structural organization. Copyright © 2012 Orthopaedic Research Society.

  12. Equine corneal stromal abscesses

    DEFF Research Database (Denmark)

    Henriksen, M. D. L.; Andersen, P. H.; Plummer, C. E.

    2013-01-01

    The last 30 years have seen many changes in the understanding of the pathogenesis and treatment of equine corneal stromal abscesses (SAs). Stromal abscesses were previously considered an eye problem related to corneal bacterial infection, equine recurrent uveitis, corneal microtrauma and corneal....... Medical and surgical treatments are now directed towards elimination of fungal and bacterial infections, reduction and replacement of diseased corneal stroma, and suppression of iridocyclitis. If the abscess and anterior uveitis do not respond satisfactorily to medical therapy, full thickness or split...

  13. Modulation of hemopoiesis by novel stromal cell factors

    International Nuclear Information System (INIS)

    Zipori, D.

    1988-01-01

    The microenvironment of the bone marrow in mammals is a crucial site for the maintenance of a pluripotent hemopoietic stem cell pool. Our previous studies and present findings support the notion that both this function and the fine architecture of hemopoietic organs, i.e., the spatial arrangement of blood cells within the tissue, may be directed by stromal cells. Despite the ability of cloned stromal cells to support prolonged hempoiesis and maintenance in vitro of stem cells with high radioprotective ability, they are a poor source of colony stimulating factor-1 (CSF-1) and do not secrete the other species of CSF. Furthermore, cultured stromal cells antagonize the activity of CSF. It is proposed that stromal cell factors distinct from known CSFs, regulate stem cell renewal. An additional phenomenon that is mediated by stromal cells and can not be attributed to CSF, is their ability to specifically inhibit the accumulation of cells of particular lineage and stage of differentiation. A glycoprotein that inhibits the growth of plasmacytomas but not a variety of other cell types was isolated from one type of cloned stromal cells. Such specific inhibitors may account for the control of cell localization in the hemopoietic system

  14. The Cladophora glomerata Enriched by Biosorption Process in Cr(III Improves Viability, and Reduces Oxidative Stress and Apoptosis in Equine Metabolic Syndrome Derived Adipose Mesenchymal Stromal Stem Cells (ASCs and Their Extracellular Vesicles (MV’s

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2017-12-01

    Full Text Available This study investigated in vitro effects of freshwater alga Cladophora glomerata water extract enriched during a biosorption process in Cr(III trivalent chromium and chromium picolinate on adipose-derived mesenchymal stromal stem cells (ASCs and extracellular microvesicles (MVs in equine metabolic syndrome-affected horses. Chemical characterisation of natural Cladophora glomerata was performed with special emphasis on: vitamin C, vitamin E, total phenols, fatty acids, free and protein-bound amino acids as well as measured Cr in algal biomass. To examine the influence of Cladophora glomerata water extracts, in vitro viability, oxidative stress factor accumulation, apoptosis, inflammatory response, biogenesis of mitochondria, autophagy in ASCs of EMS and secretory activity manifested by MV release were investigated. For this purpose, various methods of molecular biology and microscopic observations (i.e., immunofluorescence staining, SEM, TEM, FIB observations, mRNA and microRNA expression by RT-qPCR were applied. The extract of Cladophora glomerata enriched with Cr(III ions reduced apoptosis and inflammation in ASCs of EMS horses through improvement of mitochondrial dynamics, decreasing of PDK4 expression and reduction of endoplastic reticulum stress. Moreover, it was found, that Cladophora glomerata and Cr(III induce antioxidative protection coming from enhanced SOD activity Therefore, Cladophora glomerata enriched with Cr(III ions might become an interesting future therapeutic agent in the pharmacological treatment of EMS horses.

  15. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses.

    Science.gov (United States)

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka; Marycz, Krzysztof

    2017-08-03

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.

  16. The Cladophora glomerata Enriched by Biosorption Process in Cr(III) Improves Viability, and Reduces Oxidative Stress and Apoptosis in Equine Metabolic Syndrome Derived Adipose Mesenchymal Stromal Stem Cells (ASCs) and Their Extracellular Vesicles (MV's).

    Science.gov (United States)

    Marycz, Krzysztof; Michalak, Izabela; Kocherova, Ievgeniia; Marędziak, Monika; Weiss, Christine

    2017-12-08

    This study investigated in vitro effects of freshwater alga Cladophora glomerata water extract enriched during a biosorption process in Cr(III) trivalent chromium and chromium picolinate on adipose-derived mesenchymal stromal stem cells (ASCs) and extracellular microvesicles (MVs) in equine metabolic syndrome-affected horses. Chemical characterisation of natural Cladophora glomerata was performed with special emphasis on: vitamin C, vitamin E, total phenols, fatty acids, free and protein-bound amino acids as well as measured Cr in algal biomass. To examine the influence of Cladophora glomerata water extracts, in vitro viability, oxidative stress factor accumulation, apoptosis, inflammatory response, biogenesis of mitochondria, autophagy in ASCs of EMS and secretory activity manifested by MV release were investigated. For this purpose, various methods of molecular biology and microscopic observations (i.e., immunofluorescence staining, SEM, TEM, FIB observations, mRNA and microRNA expression by RT-qPCR) were applied. The extract of Cladophora glomerata enriched with Cr(III) ions reduced apoptosis and inflammation in ASCs of EMS horses through improvement of mitochondrial dynamics, decreasing of PDK4 expression and reduction of endoplastic reticulum stress. Moreover, it was found, that Cladophora glomerata and Cr(III) induce antioxidative protection coming from enhanced SOD activity Therefore, Cladophora glomerata enriched with Cr(III) ions might become an interesting future therapeutic agent in the pharmacological treatment of EMS horses.

  17. The Cladophora glomerata Enriched by Biosorption Process in Cr(III) Improves Viability, and Reduces Oxidative Stress and Apoptosis in Equine Metabolic Syndrome Derived Adipose Mesenchymal Stromal Stem Cells (ASCs) and Their Extracellular Vesicles (MV’s)

    Science.gov (United States)

    Marycz, Krzysztof; Marędziak, Monika; Weiss, Christine

    2017-01-01

    This study investigated in vitro effects of freshwater alga Cladophora glomerata water extract enriched during a biosorption process in Cr(III) trivalent chromium and chromium picolinate on adipose-derived mesenchymal stromal stem cells (ASCs) and extracellular microvesicles (MVs) in equine metabolic syndrome-affected horses. Chemical characterisation of natural Cladophora glomerata was performed with special emphasis on: vitamin C, vitamin E, total phenols, fatty acids, free and protein-bound amino acids as well as measured Cr in algal biomass. To examine the influence of Cladophora glomerata water extracts, in vitro viability, oxidative stress factor accumulation, apoptosis, inflammatory response, biogenesis of mitochondria, autophagy in ASCs of EMS and secretory activity manifested by MV release were investigated. For this purpose, various methods of molecular biology and microscopic observations (i.e., immunofluorescence staining, SEM, TEM, FIB observations, mRNA and microRNA expression by RT-qPCR) were applied. The extract of Cladophora glomerata enriched with Cr(III) ions reduced apoptosis and inflammation in ASCs of EMS horses through improvement of mitochondrial dynamics, decreasing of PDK4 expression and reduction of endoplastic reticulum stress. Moreover, it was found, that Cladophora glomerata and Cr(III) induce antioxidative protection coming from enhanced SOD activity Therefore, Cladophora glomerata enriched with Cr(III) ions might become an interesting future therapeutic agent in the pharmacological treatment of EMS horses. PMID:29292726

  18. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis

    International Nuclear Information System (INIS)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M.

    2003-01-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein /tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs

  19. First-in-man intraglandular implantation of stromal vascular fraction and adipose-derived stem cells plus platelet-rich plasma in irradiation-induced gland damage: a case study

    Directory of Open Access Journals (Sweden)

    Comella K

    2017-08-01

    Full Text Available Kristin Comella,1 Walter Bell2 1US Stem Cell, Inc, Sunrise, FL, USA; 2South African Stem Cell Institute, Parys, South Africa Background: Stromal vascular fraction (SVF is a mixture of cells which can be isolated from a mini-lipoaspirate of fat tissue. Platelet-rich plasma (PRP is a mixture of growth factors and other nutrients which can be obtained from peripheral blood. Adipose-derived stem/stromal cells (ADSCs can be isolated from fat tissue and expanded in culture. The SVF includes a variety of different cells such as ADSCs, pericytes, endothelial/progenitor cells, and a mix of different growth factors. The adipocytes (fat cells can be removed via centrifugation. Here, we describe the rationale and, to our knowledge, the first clinical implementation of SVF and PRP followed by repeat dosing of culture-expanded ADSCs into a patient with severe xerostomia postirradiation. Methods: Approximately 120 mLs of adipose tissue was removed via mini-lipoaspirate procedure under local anesthetic. The SVF was prepared from half of the fat and resuspended in PRP. The mixture was delivered via ultrasound directly into the submandibular and parotid glands on both the right and left sides. The remaining 60 mLs of fat was processed to culture-expand ADSCs. The patient received seven follow-up injections of the ADSCs plus PRP at 5, 8, 16, 18, 23, 28, and 31 months postliposuction. The subject was monitored over a period of 31 months for safety (adverse events, glandular size via ultrasound and saliva production. Results: Throughout the 31-month monitoring period, no safety events such as infection or severe adverse events were reported. The patient demonstrated an increase in gland size as measured by ultrasound which corresponded to increased saliva production. Conclusion: Overall, the patient reported improved quality of life and willingness to continue treatments. The strong safety profile and preliminary efficacy results warrant larger studies to determine

  20. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Li, Yangxin; Yu, XiYong; Lin, ShuGuang; Li, XiaoHong; Zhang, Saidan; Song, Yao-Hua

    2007-01-01

    Mesenchymal stem cells (MSCs) are attractive candidates for cell based therapies. However, the mechanisms responsible for stem cell migration and homing after transplantation remain unknown. It has been shown that insulin-like growth factor-1 (IGF-1) induces proliferation and migration of some cell types, but its effects on stem cells have not been investigated. We isolated and cultured MSC from rat bone marrow, and found that IGF-1 increased the expression levels of the chemokine receptor CXCR4 (receptor for stromal cell-derived factor-1, SDF-1). Moreover, IGF-1 markedly increased the migratory response of MSC to SDF-1. The IGF-1-induced increase in MSC migration in response to SDF-1 was attenuated by PI3 kinase inhibitor (LY294002 and wortmannin) but not by mitogen-activated protein/ERK kinase inhibitor PD98059. Our data indicate that IGF-1 increases MSC migratory responses via CXCR4 chemokine receptor signaling which is PI3/Akt dependent. These findings provide a new paradigm for biological effects of IGF-1 on MSC and have implications for the development of novel stem cell therapeutic strategies

  1. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  2. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    International Nuclear Information System (INIS)

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34 + cells, CD34 + blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34 + acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO + leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO + leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells

  3. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial.

    Science.gov (United States)

    Granel, Brigitte; Daumas, Aurélie; Jouve, Elisabeth; Harlé, Jean-Robert; Nguyen, Pierre-Sébastien; Chabannon, Christian; Colavolpe, Nathalie; Reynier, Jean-Charles; Truillet, Romain; Mallet, Stéphanie; Baiada, Antoine; Casanova, Dominique; Giraudo, Laurent; Arnaud, Laurent; Veran, Julie; Sabatier, Florence; Magalon, Guy

    2015-12-01

    In patients with systemic sclerosis (scleroderma, SSc), impaired hand function greatly contributes to disability and reduced quality of life, and is insufficiently relieved by currently available therapies. Adipose tissue-derived stromal vascular fraction (SVF) is increasingly recognised as an easily accessible source of regenerative cells with therapeutic potential in ischaemic or autoimmune diseases. We aimed to measure for the first time the safety, tolerability and potential efficacy of autologous SVF cells local injections in patients with SSc with hand disability. We did an open-label, single arm, at one study site with 6-month follow-up among 12 female SSc patients with Cochin Hand Function Scale score >20/90. Autologous SVF was obtained from lipoaspirates, using an automated processing system, and subsequently injected into the subcutaneous tissue of each finger in contact with neurovascular pedicles. Primary outcome was the number and the severity of adverse events related to SVF-based therapy. Secondary endpoints were changes in hand disability and fibrosis, vascular manifestations, pain and quality of life from baseline to 2 and 6 months after cell therapy. All enrolled patients had surgery, and there were no dropouts or patients lost to follow-up. No severe adverse events occurred during the procedure and follow-up. Four minor adverse events were reported and resolved spontaneously. A significant improvement in hand disability and pain, Raynaud's phenomenon, finger oedema and quality of life was observed. This study outlines the safety of the autologous SVF cells injection in the hands of patients with SSc. Preliminary assessments at 6 months suggest potential efficacy needing confirmation in a randomised placebo-controlled trial on a larger population. GFRS (Groupe Francophone de Recherche sur la Sclérodermie). NCT01813279. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  4. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy.

    Science.gov (United States)

    Lai, De-Wei; Lin, Keng-Hung; Sheu, Wayne Huey-Herng; Lee, Maw-Rong; Chen, Chung-Yu; Lee, Wen-Jane; Hung, Yi-Wen; Shen, Chin-Chang; Chung, Tsung-Ju; Liu, Shing-Hwa; Sheu, Meei-Ling

    2017-09-01

    Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of N ε -(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. Serum N ε -(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between N ε -(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). This study demonstrates that inhibiting the N ε -(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema. © 2017

  5. Gastrointestinal stromal tumors

    International Nuclear Information System (INIS)

    Sufliarsky, J.

    2011-01-01

    Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours of the digestive tract. Better understanding of the molecular characteristics of GISTs led to the clinical development of imatinib for treating patients with this disease. New immuno markers and mechanisms of primary and secondary resistance were discovered. Adjuvant imatinib in intermediate or high risk GIST has improved the recurrence-free survival. Sunitinib in patients with intolerance or progression on imatinib demonstrated significant improvements in progression-free and overall survival versus placebo. Second-generation tyrosine kinase inhibitors, such as sorafenib, dasatinib, and nilotinib, have shown activity in patients with imatinib- and sunitinib-resistant GIST. (author)

  6. Precise Intradermal Injection of Nanofat-Derived Stromal Cells Combined with Platelet-Rich Fibrin Improves the Efficacy of Facial Skin Rejuvenation

    Directory of Open Access Journals (Sweden)

    Zhi-Jie Liang

    2018-05-01

    Full Text Available Background/Aims: The rejuvenation properties of nanofat grafting have been described in recent years. However, it is not clear whether the clinical efficacy of the procedure is attributable to stem cells or linked to other components of adipose tissue. In this study we isolated nanofat-derived stem cells (NFSCs to observe their biological characteristics and evaluate the efficacy of precise intradermal injection of nanofat combined with platelet-rich fibrin (PRF in patients undergoing facial rejuvenation treatment. Methods: Third-passage NFSCs were isolated and cultured using a mechanical emulsification method and their surface CD markers were analyzed by flow cytometry. The adipogenic and osteogenic nature and chondrogenic differentiation capacity of NFSCs were determined using Oil Red O staining, alizarin red staining, and Alcian blue staining, respectively. Paracrine function of NFSCs was evaluated by enzyme-linked immunosorbent assay (ELISA at 1, 3, 7, 14, and 28 days after establishing the culture. Then, the effects of PRF on NFSC proliferation were assessed in vitro. Finally, we compared the outcome in 103 patients with facial skin aging who underwent both nanofat and intradermal PRF injection (treatment group and 128 patients who underwent hyaluronic acid (HA injection treatment (control group. Outcomes in the two groups were compared by assessing pictures taken at the same angle before and after treatment, postoperative recovery, incidence of local absorption and cysts, and skin quality before treatment, and at 1, 12, 24 months after treatment using the VISIA Skin Image Analyzer and a SOFT5.5 skin test instrument. Results: NFSCs expressed CD29, CD44, CD49d, CD73, CD90, and CD105, but did not express CD34, CD45, and CD106. NFSCs also differentiated into adipocytes, osteoblasts, and chondrocytes under appropriate induction conditions. NFSCs released large amounts of growth factors such as VEGF, bFGF, EGF, and others, and growth factor

  7. Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system

    Directory of Open Access Journals (Sweden)

    Cardoso Tereza C

    2012-05-01

    bovine-derived UC-WJ cells was included in the culture which demonstrated the immunossupression profile typically observed among isolated mesenchymal cells from other species. After classified the UC-WJ cells as mesenchymal stromal phenotype the in vitro 3D cultures was performed using the AlgiMatrix® protocol. Based on the size of spheroids (283,07 μm ± 43,10 μm we found that three weeks of culture was the best period to growth the UC-WJ cells on 3D dimension. The initial cell density was measured and the best value was 1.5 × 106 cells/well. Conclusions We described for the first time the isolation and characterization of UC-WJ cells in a serum-free condition and maintenance of primitive mesenchymal phenotype. The culture was stable under 60 consecutive passages with no genetic abnormalities and proliferating ratios. Taken together all results, it was possible to demonstrate an easy way to isolate and culture of bovine-derived UC-WJ cells under 2D and 3D serum-free condition, from fetal adnexa with a great potential in cell therapy and biotechnology.

  8. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway.

    Science.gov (United States)

    Du, Yingdong; Li, Dawei; Han, Conghui; Wu, Haoyu; Xu, Longmei; Zhang, Ming; Zhang, Jianjun; Chen, Xiaosong

    2017-01-01

    This study aimed to evaluate the effects of exosomes produced by human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs-Exo) on hepatic ischemia-reperfusion (I/R) injury, as well as the underlying mechanisms. Exosomes derived from hiPSC-MSCs were isolated and characterized both biochemically and biophysically. hiPSC-MSCs-Exo were injected systemically into a murine ischemia/reperfusion injury model via the inferior vena cava, and then the therapeutic effects were evaluated. The serum levels of transaminases (aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as histological changes were examined. Primary hepatocytes and human hepatocyte cell line HL7702 were used to test whether exosomes could induce hepatocytes proliferation in vitro. In addition, the expression levels of proliferation markers (proliferation cell nuclear antigen, PCNA; Phosphohistone-H3, PHH3) were measured by immunohistochemistry and Western blot. Moreover, SK inhibitor (SKI-II) and S1P1 receptor antagonist (VPC23019) were used to investigate the role of sphingosine kinase and sphingosine-1-phosphate-dependent pathway in the effects of hiPSC-MSCs-Exo on hepatocytes. hiPSCs were efficiently induced into hiPSC-MSCs that had typical MSC characteristics. hiPSC-MSCs-Exo had diameters ranging from 100 to 200 nm and expressed exosome markers (Alix, CD63 and CD81). After hiPSC-MSCs-Exo administration, hepatocyte necrosis and sinusoidal congestion were markedly suppressed in the ischemia/reperfusion injury model, with lower histopathological scores. The levels of hepatocyte injury markers AST and ALT were significantly lower in the treatment group compared to control, and the expression levels of proliferation markers (PCNA and PHH3) were greatly induced after hiPSC-MSCs-Exo administration. Moreover, hiPSC-MSCs-Exo also induced primary hepatocytes and HL7702 cells proliferation in vitro in a dose-dependent manner. We found that hiPSC-MSCs-Exo could

  9. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production.

    Science.gov (United States)

    Camilleri, Emily T; Gustafson, Michael P; Dudakovic, Amel; Riester, Scott M; Garces, Catalina Galeano; Paradise, Christopher R; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee-Jeong Im; Larson, A Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B; van Wijnen, Andre J

    2016-08-11

    Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria. Use of Autologous Bone Marrow Aspirate Concentrate in Painful Knee Osteoarthritis (BMAC): Clinicaltrials.gov NCT01931007 . Registered August 26, 2013. MSC for Occlusive Disease of the Kidney: Clinicaltrials.gov NCT01840540 . Registered April 23, 2013. Mesenchymal Stem Cell Therapy in Multiple

  10. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  11. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

    Science.gov (United States)

    Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin

    2016-01-01

    Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619

  12. Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Fink, Lisbeth Nielsen; Frøkiær, Hanne

    2007-01-01

    in DC priming of naive T cells with elevated levels of transforming growth factor-beta (TGF-beta) and markedly reduced levels of bacteria-induced interferon-gamma production. Caco2 cell production of IL-8, thymic stromal lymphopoietin (TSLP) and TGF-beta increases upon microbial stimulation in a strain...

  13. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production

    NARCIS (Netherlands)

    Camilleri, Emily T.; Gustafson, Michael P.; Dudakovic, Amel; Riester, Scott M.; Garces, Catalina Galeano; Paradise, Christopher R.; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee Jeong Im; Larson, A. Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B.; van Wijnen, Andre J.

    2016-01-01

    Background: Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105,

  14. Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic-co-glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells

    DEFF Research Database (Denmark)

    Mohan, Saktiswaren; Raghavendran, Hanumantharao Balaji; Karunanithi, Puvanan

    2017-01-01

    Tissue engineering aims to generate or facilitate regrowth or healing of damaged tissues by applying a combination of biomaterials, cells, and bioactive signaling molecules. In this regard, growth factors clearly play important roles in regulating cellular fate. However, uncontrolled release...... was noted to support rapid cell expansion and differentiation of stromal cells into osteogenic cells in vitro for bone tissue engineering applications....

  15. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions--a pilot study.

    Science.gov (United States)

    Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M; van Weeren, René; Skutella, Thomas; Stadler, Peter M

    2016-02-01

    Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of this study was to monitor the presence of intralesionally injected autologous AT-MSCs labelled with superparamagnetic iron oxide (SPIO) nanoparticles and green fluorescent protein (GFP) over a staggered period of 3 to 9 weeks with standing magnetic resonance imaging (MRI) and histology. Four adult warmblood horses received a unilateral injection of 10 × 10(6) autologous AT-MSCs into surgically created front-limb SDFT lesions. Administered AT-MSCs expressed lentivirally transduced reporter genes for GFP and were co-labelled with SPIO particles in three horses. The presence of AT-MSCs in SDFTs was evaluated by repeated examinations with standing low-field MRI in two horses and post-mortem in all horses with Prussian blue staining, fluorescence microscopy and with immunofluorescence and immunohistochemistry using anti-GFP antibodies at 3, 5, 7 and 9 weeks after treatment. AT-MSCs labelled with SPIO particles were detectable in treated SDFTs during each MRI in T2*- and T1-weighted sequences until the end of the observation period. Post-mortem examinations revealed that all treated tendons contained high numbers of SPIO- and GFP-labelled cells. Standing low-field MRI has the potential to track SPIO-labelled AT-MSCs successfully. Histology, fluorescence microscopy, immunofluorescence and immunohistochemistry are efficient tools to detect labelled AT-MSCs after intralesional injection into surgically created equine SDFT lesions. Intralesional injection of 10 × 10(6) AT-MSCs leads to the presence of high numbers of AT-MSCs in and around surgically created tendon lesions for up to 9 weeks. Integration of injected AT-MSCs into healing tendon tissue is an essential pathway after intralesional

  16. GASTROINTESTINAL STROMAL TUMOR (GIST

    Directory of Open Access Journals (Sweden)

    Luigi eTornillo

    2014-11-01

    Full Text Available Gastrointestinal stromal tumors are the most frequent mesenchymal tumors of the gastrointestinal tract. The discovery that these tumors, formerly thought of smooth muscle origin, are indeed better characterized by specific activating mutation in genes coding for the receptor tyrosine kinases CKIT and PDGFRA and that these mutations are strongly predictive for the response to targeted therapy with receptor tyrosine kinase inhibitors has made GISTs the typical example of the integration of basic molecular knowledge in the daily clinical activity. The information on the mutational status of these tumors is essential to predict (and subsequently to plan the therapy. As resistant cases are frequently wild-type, other possible oncogenic events, defining other entities, have been discovered (e.g. succinil dehydrogenase mutation/dysregulation, insuline growth factor expression, mutations in the RAS-RAF-MAPK pathway. The classification of disease must nowadays rely on the integration of the clinico-morphological characteristics with the molecular data.

  17. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic

  18. Radiosensitivity of marrow stromal cells and the effect of some radioprotective agents

    International Nuclear Information System (INIS)

    Liu Shuhua

    1992-01-01

    The results showed that marrow stromal cells include fibroblasts, reticular cells, macrophages and adipocytes. The capability of the adherent layer derived from marrow cells of 2 mouse femurs to support hematopoietic stem cells was stronger than those of layers derived from 0.5 or 1 mouse femurs. The radiosensitivity of bone marrow stromal cells was lower than that of hematopoietic stem cells. The radioprotective effect of AET and PLP (polysaccharide of Lobaria Pulmonaria Hoffm) on the bone marrow stromal cells and their capability to support hematopoietic stem cells was clearly demonstrated

  19. Extragastrointestinal Stromal Tumor during Pregnacy

    Directory of Open Access Journals (Sweden)

    Ilay Gözükara

    2012-01-01

    Full Text Available Extragastrointestinal stromal tumors (EGISTs are mesenchymal neoplasms without connection to the gastrointestinal tract. Gastrointestinal stromal tumors (GISTs and EGIST are similar according to their clinicopathologic and histomorphologic features. Both of them most often express immunoreactivity for CD-117, a c-kit proto-oncogene protein. The coexistence of GIST and pregnancy is very rare, with only two cases reported in the literature. In this paper, we presented the first EGIST case during pregnancy in the literature.

  20. Potential Effect of CD271 on Human Mesenchymal Stromal Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Giovanna Calabrese

    2015-07-01

    Full Text Available The Low-Affinity Nerve Growth Factor Receptor (LNGFR, also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271− mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271− mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271− mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate.

  1. Potential Effect of CD271 on Human Mesenchymal Stromal Cell Proliferation and Differentiation.

    Science.gov (United States)

    Calabrese, Giovanna; Giuffrida, Raffaella; Lo Furno, Debora; Parrinello, Nunziatina Laura; Forte, Stefano; Gulino, Rosario; Colarossi, Cristina; Schinocca, Luciana Rita; Giuffrida, Rosario; Cardile, Venera; Memeo, Lorenzo

    2015-07-09

    The Low-Affinity Nerve Growth Factor Receptor (LNGFR), also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271- mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate.

  2. Perfusion bioreactor-based cryopreservation of 3D human mesenchymal stromal cell tissue grafts

    Czech Academy of Sciences Publication Activity Database

    Petrenko, Yuriy; Petrenko, A.; Martin, I.; Wendt, D.

    2017-01-01

    Roč. 76, jun. (2017), s. 150-153 ISSN 0011-2240 Institutional support: RVO:68378041 Keywords : cryopreservation * tissue engineering * mesenchymal stromal cells Subject RIV: FP - Other Medical Disciplines OBOR OECD: Cell biology Impact factor: 1.996, year: 2016

  3. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.

    Science.gov (United States)

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2012-05-01

    The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.

  4. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    Science.gov (United States)

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues. Copyright © 2012 Wiley Periodicals, Inc.

  5. Cigarette Smoking Impairs Adipose Stromal Cell Vasculogenic Activity and Abrogates Potency to Ameliorate Ischemia.

    Science.gov (United States)

    Barwinska, Daria; Traktuev, Dmitry O; Merfeld-Clauss, Stephanie; Cook, Todd G; Lu, Hongyan; Petrache, Irina; March, Keith L

    2018-06-01

    Cigarette smoking (CS) adversely affects the physiologic function of endothelial progenitor, hematopoietic stem and progenitor cells. However, the effect of CS on the ability of adipose stem/stromal cells (ASC) to promote vasculogenesis and rescue perfusion in the context of ischemia is unknown. To evaluate this, ASC from nonsmokers (nCS-ASC) and smokers (CS-ASC), and their activity to promote perfusion in hindlimb ischemia models, as well as endothelial cell (EC) survival and vascular morphogenesis in vitro were assessed. While nCS-ASC improved perfusion in ischemic limbs, CS-ASC completely lost this therapeutic effect. In vitro vasculogenesis assays revealed that human CS-ASC and ASC from CS-exposed mice showed compromised support of EC morphogenesis into vascular tubes, and the CS-ASC secretome was less potent in supporting EC survival/proliferation. Comparative secretome analysis revealed that CS-ASC produced lower amounts of hepatocyte growth factor (HGF) and stromal cell-derived growth factor 1 (SDF-1). Conversely, CS-ASC secreted the angiostatic/pro-inflammatory factor Activin A, which was not detected in nCS-ASC conditioned media (CM). Furthermore, higher Activin A levels were measured in EC/CS-ASC cocultures than in EC/nCS-ASC cocultures. CS-ASC also responded to inflammatory cytokines with 5.2-fold increase in Activin A secretion, whereas nCS-ASC showed minimal Activin A induction. Supplementation of EC/CS-ASC cocultures with nCS-ASC CM or with recombinant vascular endothelial growth factor, HGF, or SDF-1 did not rescue vasculogenesis, whereas inhibition of Activin A expression or activity improved network formation up to the level found in EC/nCS-ASC cocultures. In conclusion, ASC of CS individuals manifest compromised in vitro vasculogenic activity as well as in vivo therapeutic activity. Stem Cells 2018;36:856-867. © 2018 AlphaMed Press.

  6. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells.

    Science.gov (United States)

    Geyh, S; Oz, S; Cadeddu, R-P; Fröbel, J; Brückner, B; Kündgen, A; Fenk, R; Bruns, I; Zilkens, C; Hermsen, D; Gattermann, N; Kobbe, G; Germing, U; Lyko, F; Haas, R; Schroeder, T

    2013-09-01

    Ineffective hematopoiesis is a major characteristic of myelodysplastic syndromes (MDS) causing relevant morbidity and mortality. Mesenchymal stromal cells (MSC) have been shown to physiologically support hematopoiesis, but their contribution to the pathogenesis of MDS remains elusive. We show that MSC from patients across all MDS subtypes (n=106) exhibit significantly reduced growth and proliferative capacities accompanied by premature replicative senescence. Osteogenic differentiation was significantly reduced in MDS-derived MSC, indicated by cytochemical stainings and reduced expressions of Osterix and Osteocalcin. This was associated with specific methylation patterns that clearly separated MDS-MSC from healthy controls and showed a strong enrichment for biological processes associated with cellular phenotypes and transcriptional regulation. Furthermore, in MDS-MSC, we detected altered expression of key molecules involved in the interaction with hematopoietic stem and progenitor cells (HSPC), in particular Osteopontin, Jagged1, Kit-ligand and Angiopoietin as well as several chemokines. Functionally, this translated into a significantly diminished ability of MDS-derived MSC to support CD34+ HSPC in long-term culture-initiating cell assays associated with a reduced cell cycle activity. Taken together, our comprehensive analysis shows that MSC from all MDS subtypes are structurally, epigenetically and functionally altered, which leads to impaired stromal support and seems to contribute to deficient hematopoiesis in MDS.

  7. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    International Nuclear Information System (INIS)

    Perkins, S.; Fleischman, R.A.

    1988-01-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells

  8. Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial.

    Science.gov (United States)

    Gómez-Barrena, Enrique; Rosset, Philippe; Gebhard, Florian; Hernigou, Philippe; Baldini, Nicola; Rouard, Helène; Sensebé, Luc; Gonzalo-Daganzo, Rosa M; Giordano, Rosaria; Padilla-Eguiluz, Norma; García-Rey, Eduardo; Cordero-Ampuero, José; Rubio-Suárez, Juan Carlos; Stanovici, Julien; Ehrnthaller, Christian; Huber-Lang, Markus; Flouzat-Lachaniette, Charles Henri; Chevallier, Nathalie; Donati, Davide Maria; Ciapetti, Gabriela; Fleury, Sandrine; Fernandez, Manuel-Nicolás; Cabrera, José-Rafael; Avendaño-Solá, Cristina; Montemurro, Tiziana; Panaitescu, Carmen; Veronesi, Elena; Rojewski, Markus Thomas; Lotfi, Ramin; Dominici, Massimo; Schrezenmeier, Hubert; Layrolle, Pierre

    2018-03-19

    ORTHO-1 is a European, multicentric, first in human clinical trial to prove safety and feasibility after surgical implantation of commercially available biphasic calcium phosphate bioceramic granules associated during surgery with autologous mesenchymal stromal cells expanded from bone marrow (BM-hMSC) under good manufacturing practices, in patients with long bone pseudarthrosis. Twenty-eight patients with femur, tibia or humerus diaphyseal or metaphyso-diaphyseal non-unions were recruited and surgically treated in France, Germany, Italy and Spain with 100 or 200 million BM-hMSC/mL associated with 5-10 cc of bioceramic granules. Patients were followed up during one year. The investigational advanced therapy medicinal product (ATMP) was expanded under the same protocol in all four countries, and approved by each National Competent Authority. With safety as primary end-point, no severe adverse event was reported as related to the BM-hMSC. With feasibility as secondary end-point, the participating production centres manufactured the BM-hMSC as planned. The ATMP combined to the bioceramic was surgically delivered to the non-unions, and 26/28 treated patients were found radiologically healed at one year (3 out of 4 cortices with bone bridging). Safety and feasibility were clinically proven for surgical implantation of expanded autologous BM-hMSC with bioceramic. EU-FP7-HEALTH-2009, REBORNE Project (GA: 241876). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Polyurethane/Polylactide-Blend Films Doped with Zinc Ions for the Growth and Expansion of Human Olfactory Ensheathing Cells (OECs and Adipose-Derived Mesenchymal Stromal Stem Cells (ASCs for Regenerative Medicine Applications

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-04-01

    Full Text Available Polymeric biomaterials based on polyurethane and polylactide blends are promising candidates for regenerative medicine applications as biocompatible, bioresorbable carriers. In current research we showed that 80/20 polyurethane/polylactide blends (PU/PLDL with confirmed biological properties in vitro may be further improved by the addition of ZnO nanoparticles for the delivery of bioactive zinc oxide for cells. The PU/PLDL blends were doped with different concentrations of ZnO (0.001%, 0.01%, 0.05% and undertaken for in vitro biological evaluation using human adipose stromal stem cells (ASCs and olfactory ensheathing cells (OECs. The addition of 0.001% of ZnO to the biomaterials positively influenced the morphology, proliferation, and phenotype of cells cultured on the scaffolds. Moreover, the analysis of oxidative stress markers revealed that 0.001% of ZnO added to the material decreased the stress level in both cell lines. In addition, the levels of neural-specific genes were upregulated in OECs when cultured on sample 0.001 ZnO, while the apoptosis-related genes were downregulated in OECs and ASCs in the same group. Therefore, we showed that PU/PLDL blends doped with 0.001% of ZnO exert beneficial influence on ASCs and OECs in vitro and they may be considered for future applications in the field of regenerative medicine.

  10. Splenectomy enhances the therapeutic effect of adipose tissue-derived mesenchymal stem cell infusion on cirrhosis rats.

    Science.gov (United States)

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2016-08-01

    Clinical studies suggest that splenectomy improves liver function in cirrhotic patients, but the influence of splenectomy on stem cell transplantation is poorly understood. This study investigated the effect of splenectomy on stem cell infusion and elucidated its mechanism. Rat adipose tissue-derived mesenchymal stem cells were infused into cirrhosis rats with or without splenectomy, followed by the assessment of the in vivo distribution of stem cells and pathological changes. Stromal cell-derived factor-1 and hepatocyte growth factor expression were also investigated in splenectomized cirrhosis patients and rats. Splenectomy, prior to cell infusion, improved liver function and suppressed fibrosis progression more efficiently than cell infusion alone in the experimental cirrhosis model. Stromal cell-derived factor-1 and hepatocyte growth factor levels after splenectomy were increased in patients and rats. These upregulated cytokines significantly facilitated stem cell motility, migration and proliferation in vitro. C-X-C chemokine receptor type 4 neutralization weakened the promotion of cell migration by these cytokines. The infused cells integrated into liver fibrosis septa and participated in regeneration more efficiently in splenectomized rats. Direct coculture with stem cells led to inhibition of hepatic stellate cell proliferation. In addition, hepatocyte growth factor induced hepatic stellate cell apoptosis via the c-jun N-terminal kinase-p53 pathway. Splenectomy prior to cell infusion enhanced the therapeutic effect of stem cells on cirrhosis, which involved upregulation of stromal cell-derived factor-1 and hepatocyte growth factor after splenectomy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Extrauterine Low-Grade Endometrial Stromal Sarcoma

    Directory of Open Access Journals (Sweden)

    Yu-Ju Chen

    2005-12-01

    Conclusions: Low-grade endometrial stromal sarcoma typically has an indolent clinical course and favorable prognosis. Surgical resection is the primary therapeutic approach, and adjuvant therapy with radiotherapy, chemotherapy, or progesterone therapy should be considered for the management of residual or recurrent low-grade endometrial stromal sarcomas.

  12. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.

    Science.gov (United States)

    Sassoli, Chiara; Vallone, Larissa; Tani, Alessia; Chellini, Flaminia; Nosi, Daniele; Zecchi-Orlandini, Sandra

    2018-02-05

    Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.

  13. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  14. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-02-01

    Full Text Available The two marine inorganic polymers, biosilica (BS, enzymatically synthesized from ortho-silicate, and polyphosphate (polyP, a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC, mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation. Both biosilica and polyP, applied as Ca2+ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2 and alkaline phosphatase (ALP in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that

  15. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E G

    2014-02-21

    The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts) or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation). Both biosilica and polyP, applied as Ca²⁺ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP) in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that alginate

  16. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b{sup +} myeloid cells to the lungs and facilitates B16-F10 melanoma colonization

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Lucas E.B., E-mail: lucasebsouza@usp.br [Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Almeida, Danilo C., E-mail: gudaalmeida@gmail.com [Department of Medicine – Nephrology, Laboratory of Clinical and Experimental Immunology, Federal University of São Paulo, São Paulo, SP (Brazil); Yaochite, Juliana N.U., E-mail: ueda.juliana@gmail.com [Department of Biochemistry and Immunology, Basic and Applied Immunology Program, School of Medicine of Ribeirão Preto, University of São Paulo (Brazil); Covas, Dimas T., E-mail: dimas@fmrp.usp.br [Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Fontes, Aparecida M., E-mail: aparecidamfontes@usp.br [Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2016-07-15

    The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells. In in vitro experiments, direct co-culture assays demonstrated that BM-MSCs stimulated the proliferation of B16-F10 cells in a dose-dependent manner. For in vivo experiments, luciferase-expressing B16-F10 cells were injected through tail vein and mice were subsequently treated with four systemic injections of BM-MSCs. In vivo bioluminescent imaging during 16 days demonstrated that BM-MSCs enhanced the colonization of lungs by B16-F10 cells, which correlated with a 2-fold increase in the number of metastatic foci. Flow cytometry analysis of lungs demonstrated that although mice harboring B16-F10 metastases displayed more endothelial cells, CD4 T and CD8 T lymphocytes in the lungs in comparison to metastases-free mice, BM-MSCs did not alter the number of these cells. Interestingly, BM-MSCs inoculation resulted in a 2-fold increase in the number of CD11b{sup +} myeloid cells in the lungs of melanoma-bearing animals, a cell population previously described to organize “premetastatic niches” in experimental models. These findings indicate that BM-MSCs provide support to B16-F10 cells to overcome the constraints that limit metastatic outgrowth and that these effects might involve the interplay between BM-MSCs, CD11b{sup +} myeloid cells and tumor cells. - Highlights: • BM-MSCs enhanced B16-F10 proliferation in a dose-dependent manner in vitro. • BM-MSCs facilitated lung colonization by B16-F10 melanoma cells. • BM-MSCs administration did not alter the number of endothelial cells and T lymphocytes in the lungs. • BM-MSCs enhanced

  17. Gastrointestinal Stromal Tumors: A Case Report

    Directory of Open Access Journals (Sweden)

    Palankezhe Sashidharan

    2014-03-01

    Full Text Available Advances in the identification of gastrointestinal stromal tumors, its molecular and immunohiostochemical basis, and its management have been a watershed in the treatment of gastrointestinal tumors. This paradigm shift occurred over the last two decades and gastrointestinal stromal tumors have now come to be understood as rare gastrointestinal tract tumors with predictable behavior and outcome, replacing the older terminologies like leiomyoma, schwannoma or leiomyosarcoma. This report presents a case of gastric gastrointestinal stromal tumor operated recently in a 47-year-old female patient and the outcome, as well as literature review of the pathological identification, sites of origin, and factors predicting its behavior, prognosis and treatment.

  18. Alfa-fetoprotein secreting ovarian sex cord-stromal tumor

    Directory of Open Access Journals (Sweden)

    Kusum D Jashnani

    2013-01-01

    Full Text Available Ovarian sex cord-stromal tumors are relatively infrequent neoplasms that account for approximately 8% of all primary ovarian tumors. They are a heterogeneous group of neoplasms composed of cells derived from gonadal sex cords (granulosa and Sertoli cells, specialized gonadal stroma (theca and Leydig cells, and fibroblasts. They may show androgenic or estrogenic manifestations. We report such a tumor associated with markedly raised serum alpha-fetoprotein (AFP levels in a young female presenting with a mass and defeminising symptoms. Serum AFP levels returned to normal on removal of tumor.

  19. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and pro...

  20. Stromal Indian hedgehog signaling is required for intestinal adenoma formation in mice

    NARCIS (Netherlands)

    Büller, Nikè V J A; Rosekrans, Sanne L.; Metcalfe, Ciara; Heijmans, Jarom; Van Dop, Willemijn A.; Fessler, Evelyn; Jansen, Marnix; Ahn, Christina; Vermeulen, Jacqueline L M; Westendorp, B. Florien; Robanus-Maandag, Els C.; Offerhaus, G. Johan; Medema, Jan Paul; D'Haens, Geert R A M; Wildenberg, Manon E.; De Sauvage, Frederic J.; Muncan, Vanesa; Van Den Brink, Gijs R.

    2015-01-01

    BACKGROUND & AIMS: Indian hedgehog (IHH) is an epithelial-derived signal in the intestinal stroma, inducing factors that restrict epithelial proliferation and suppress activation of the immune system. In addition to these rapid effects of IHH signaling, IHH is required to maintain a stromal

  1. Stromal Indian hedgehog signaling is required for intestinal adenoma formation in mice

    NARCIS (Netherlands)

    Büller, Nikè V. J. A.; Rosekrans, Sanne L.; Metcalfe, Ciara; Heijmans, Jarom; van Dop, Willemijn A.; Fessler, Evelyn; Jansen, Marnix; Ahn, Christina; Vermeulen, Jacqueline L. M.; Westendorp, B. Florien; Robanus-Maandag, Els C.; Offerhaus, G. Johan; Medema, Jan Paul; D'Haens, Geert R. A. M.; Wildenberg, Manon E.; de Sauvage, Frederic J.; Muncan, Vanesa; van den Brink, Gijs R.

    2015-01-01

    Indian hedgehog (IHH) is an epithelial-derived signal in the intestinal stroma, inducing factors that restrict epithelial proliferation and suppress activation of the immune system. In addition to these rapid effects of IHH signaling, IHH is required to maintain a stromal phenotype in which

  2. Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy

    NARCIS (Netherlands)

    de Wolf, Charlotte; van de Bovenkamp, Marja; Hoefnagel, Marcel C

    Mesenchymal stromal cells (MSCs) are multipotent cells derived from various tissues that can differentiate into several cell types. MSCs are able to modulate the response of immune cells of the innate and adaptive immune system. Because of these multimodal properties, the potential use of MSCs for

  3. The Stromal Microenvironment Modulates Mitochondrial Oxidative Phosphorylation in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hima V. Vangapandu

    2017-10-01

    Full Text Available Peripheral blood chronic lymphocytic leukemia (CLL cells are replicationally quiescent mature B-cells. In short-term cultures, supporting stromal cells provide a survival advantage to CLL cells by inducing transcription and translation without promoting proliferation. We hypothesized that the stromal microenvironment augments malignant B cells' metabolism to enable the cells to cope with their energy demands for transcription and translation. We used extracellular flux analysis to assess the two major energy-generating pathways, mitochondrial oxidative phosphorylation (OxPhos and glycolysis, in primary CLL cells in the presence of three different stromal cell lines. OxPhos, measured as the basal oxygen consumption rate (OCR and maximum respiration capacity, was significantly higher in 28 patients' CLL cells cocultured with bone marrow–derived NK.Tert stromal cells than in CLL cells cultured alone (P = .004 and <.0001, respectively. Similar OCR induction was observed in CLL cells cocultured with M2-10B4 and HS-5 stromal lines. In contrast, heterogeneous changes in the extracellular acidification rate (a measure of glycolysis were observed in CLL cells cocultured with stromal cells. Ingenuity Pathway Analysis of CLL cells' metabolomics profile indicated stroma-mediated stimulation of nucleotide synthesis. Quantitation of ribonucleotide pools showed a significant two-fold increase in CLL cells cocultured with stromal cells, indicating that the stroma may induce CLL cellular bioenergy and the RNA building blocks necessary for the transcriptional requirement of a prosurvival phenotype. The stroma did not impact the proliferation index (Ki-67 staining of CLL cells. Collectively, these data suggest that short-term interaction (≤24 hours with stroma increases OxPhos and bioenergy in replicationally quiescent CLL cells.

  4. Multiple gastrointestinal stromal tumors in type I neurofibromatosis: a pathologic and molecular study.

    Science.gov (United States)

    Yantiss, Rhonda K; Rosenberg, Andrew E; Sarran, Lisa; Besmer, Peter; Antonescu, Cristina R

    2005-04-01

    Multiple gastrointestinal stromal tumors typically occur in familial form associated with KIT receptor tyrosine kinase or platelet-derived growth factor receptor-alpha (PDGFRA) germline mutations, but may also develop in the setting of type 1 neurofibromatosis. The molecular abnormalities of gastrointestinal stromal tumors arising in neurofibromatosis have not been extensively studied. We identified three patients with type 1 neuro-fibromatosis and multiple small intestinal stromal tumors. Immunostains for CD117, CD34, desmin, actins, S-100 protein, and keratins were performed on all of the tumors. DNA was extracted from representative paraffin blocks from separate tumor nodules in each case and subjected to a nested polymerase chain reaction, using primers for KIT exons 9, 11, 13, and 17 and PDGFRA exons 12 and 18, followed by direct sequencing. The mean patient age was 56 years (range: 37-86 years, male/female ratio: 2/1). One patient had three tumors, one had five, and one had greater than 10 tumor nodules, all of which demonstrated histologic features characteristic of gastrointestinal stromal tumors and stained strongly for CD117 and CD34. One patient died of disease at 35 months, one was disease free at 12 months and one was lost to follow-up. DNA extracts from 10 gastrointestinal stromal tumors (three from each of two patients and four from one patient) were subjected to polymerase chain reactions and assessed for mutations. All of the tumors were wild type for KIT exons 9, 13, and 17 and PDGFRA exons 12 and 18. Three tumors from one patient had identical point mutations in KIT exon 11, whereas the other tumors were wild type at this locus. We conclude that, although most patients with type 1 neurofibromatosis and gastrointestinal stromal tumors do not have KIT or PDGFRA mutations, KIT germline mutations might be implicated in the pathogenesis of gastrointestinal stromal tumors in some patients.

  5. Drugs Approved for Gastrointestinal Stromal Tumors

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for gastrointestinal stromal tumors (GIST). The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  6. Polymeric film of 6-arm-poly(ethylene glycol) amine graphene oxide with poly (ε-caprolactone): Adherence and growth of adipose derived mesenchymal stromal cells culture on rat bladder

    Science.gov (United States)

    Durán, Marcela; Durán, Nelson; Luzo, Angela C. M.; Duarte, Adriana S. S.; Volpe, Bruno B.; Ceragioli, Helder J.; Andrade, Patricia F.; De Souza, Joel G.; Fávaro, Wagner J.

    2017-06-01

    Nanotechnology has been more present in different fields related to health. The need to find a durable material, of easy use, and which does not interfere significantly in the growth and differentiation of stem cells for the construction of a scaffold for use in urologic surgery, with the purpose of reducing infections, regeneration times and even graft rejection during reconstitution in patients with urethral stricture was conducted a broad survey of information about this and came to the consensus of this project: using graphene oxide, a widely studied nanomaterials which has been presenting numerous beneficial results when in contact with the adipose-derived stem cells. Advanced techniques for the growth, differentiation and proliferation of adipose-derived stem cells were used, as well as the characterization of graphene oxide sheets. For this study, it was prepared the graphene oxide/6 ARM-Poly (ethylene glycol) amine films with poly (ε-caprolactone). The graphene suspension in organic solvent was prepared by using an ultrasonicator bath and subsequently, the film was formed by solvent evaporation. Total characterization of graphene oxide/6 ARM-PEG-amine/ poly (ε-caprolactone) film was carried out. It was tested growth and adhesion of adipose-derived stem cells on the film, as well as, were verified the histopathological effects of this scaffold when implanted in the urinary bladder to repair the lesion. Our results demonstrated that this scaffold with adipose-derived stem cells enhanced the repair in rat urinary bladder defect model, resulting in a regular bladder. Improved organized muscle bundles and urothelial layer were observed in animals treated with this scaffold with adipose-derived stem cells compared with those treated only suture thread or scaffold. Thus, our biomaterial could be suitable for tissue engineered urinary tract reconstruction.

  7. Polymeric film of 6-arm-poly(ethylene glycol) amine graphene oxide with poly (ε-caprolactone): Adherence and growth of adipose derived mesenchymal stromal cells culture on rat bladder

    International Nuclear Information System (INIS)

    Durán, Marcela; Durán, Nelson; Fávaro, Wagner J.; Luzo, Angela C.M.; Duarte, Adriana S. S.; Volpe, Bruno B.; Ceragioli, Helder J.; Andrade, Patricia F.; De Souza, Joel G.

    2017-01-01

    Nanotechnology has been more present in different fields related to health. The need to find a durable material, of easy use, and which does not interfere significantly in the growth and differentiation of stem cells for the construction of a scaffold for use in urologic surgery, with the purpose of reducing infections, regeneration times and even graft rejection during reconstitution in patients with urethral stricture was conducted a broad survey of information about this and came to the consensus of this project: using graphene oxide, a widely studied nanomaterials which has been presenting numerous beneficial results when in contact with the adipose-derived stem cells. Advanced techniques for the growth, differentiation and proliferation of adipose-derived stem cells were used, as well as the characterization of graphene oxide sheets. For this study, it was prepared the graphene oxide/6 ARM-Poly (ethylene glycol) amine films with poly (ε-caprolactone). The graphene suspension in organic solvent was prepared by using an ultrasonicator bath and subsequently, the film was formed by solvent evaporation. Total characterization of graphene oxide/6 ARM-PEG-amine/ poly (ε-caprolactone) film was carried out. It was tested growth and adhesion of adipose-derived stem cells on the film, as well as, were verified the histopathological effects of this scaffold when implanted in the urinary bladder to repair the lesion. Our results demonstrated that this scaffold with adipose-derived stem cells enhanced the repair in rat urinary bladder defect model, resulting in a regular bladder. Improved organized muscle bundles and urothelial layer were observed in animals treated with this scaffold with adipose-derived stem cells compared with those treated only suture thread or scaffold. Thus, our biomaterial could be suitable for tissue engineered urinary tract reconstruction. (paper)

  8. Stromal haze, myofibroblasts, and surface irregularity after PRK.

    Science.gov (United States)

    Netto, Marcelo V; Mohan, Rajiv R; Sinha, Sunilima; Sharma, Ajay; Dupps, William; Wilson, Steven E

    2006-05-01

    The aim of this study was to investigate the relationship between the level of stromal surface irregularity after photorefractive keratectomy (PRK) and myofibroblast generation along with the development of corneal haze. Variable levels of stromal surface irregularity were generated in rabbit corneas by positioning a fine mesh screen in the path of excimer laser during ablation for a variable percentage of the terminal pulses of the treatment for myopia that does not otherwise generate significant opacity. Ninety-six rabbits were divided into eight groups: [see table in text]. Slit lamp analysis and haze grading were performed in all groups. Rabbits were sacrificed at 4 hr or 4 weeks after surgery and histochemical analysis was performed on corneas for apoptosis (TUNEL assay), myofibroblast marker alpha-smooth muscle actin (SMA), and integrin alpha4 to delineate the epithelial basement membrane. Slit-lamp grading revealed severe haze formation in corneas in groups IV and VI, with significantly less haze in groups II, III, and VII and insignificant haze compared with the unwounded control in groups I and V. Analysis of SMA staining at 4 weeks after surgery, the approximate peak of haze formation in rabbits, revealed low myofibroblast formation in group I (1.2+/-0.2 cells/400x field) and group V (1.8+/-0.4), with significantly more in groups II (3.5+/-1.8), III (6.8+/-1.6), VII (7.9+/-3.8), IV (12.4+/-4.2) and VI (14.6+/-5.1). The screened groups were significantly different from each other (p PRK groups. The -9.0 diopter PRK group VI had significantly more myofibroblast generation than the -9.0 diopter PRK with PTK-smoothing group VII (p PRK and the level of stromal surface irregularity. PTK-smoothing with methylcellulose was an effective method to reduce stromal surface irregularity and decreased both haze and associated myofibroblast density. We hypothesize that stromal surface irregularity after PRK for high myopia results in defective basement membrane

  9. Gastrointestinal Stromal Tumors: A Case Report

    OpenAIRE

    Sashidharan, Palankezhe; Matele, Apoorva; Matele, Usha; Al Felahi, Nowfel; Kassem, Khalid F.

    2014-01-01

    Advances in the identification of gastrointestinal stromal tumors, its molecular and immunohiostochemical basis, and its management have been a watershed in the treatment of gastrointestinal tumors. This paradigm shift occurred over the last two decades and gastrointestinal stromal tumors have now come to be understood as rare gastrointestinal tract tumors with predictable behavior and outcome, replacing the older terminologies like leiomyoma, schwannoma or leiomyosarcoma. This report present...

  10. Targeting Stromal Recruitment by Prostate Cancer Cells

    Science.gov (United States)

    2006-03-01

    Ensinger, C., Tumer , Z., Tommerup, N. et al.: Hedgehog signaling in small-cell lung cancer : frequent in vivo but a rare event in vitro. Lung Cancer , 52...W81XWH-04-1-0157 TITLE: Targeting Stromal Recruitment by Prostate Cancer Cells PRINCIPAL INVESTIGATOR: Jingxian Zhang, Ph.D...DATES COVERED (From - To) 15 Feb 2004 – 14 Feb 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Stromal Recruitment by Prostate Cancer

  11. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Science.gov (United States)

    Rosu-Myles, Michael; She, Yi-Min; Fair, Joel; Muradia, Gauri; Mehic, Jelica; Menendez, Pablo; Prasad, Shiv S; Cyr, Terry D

    2012-01-01

    Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC) (CD105+) and non-multipotent (CD105-) stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  12. Identification of a candidate proteomic signature to discriminate multipotent and non-multipotent stromal cells.

    Directory of Open Access Journals (Sweden)

    Michael Rosu-Myles

    Full Text Available Bone marrow stromal cell cultures contain multipotent cells that may have therapeutic utility for tissue restoration; however, the identity of the cell that maintains this function remains poorly characterized. We have utilized a unique model of murine bone marrow stroma in combination with liquid chromatography mass spectrometry to compare the nuclear, cytoplasmic and membrane associated proteomes of multipotent (MSC (CD105+ and non-multipotent (CD105- stromal cells. Among the 25 most reliably identified proteins, 10 were verified by both real-time PCR and Western Blot to be highly enriched, in CD105+ cells and were members of distinct biological pathways and functional networks. Five of these proteins were also identified as potentially expressed in human MSC derived from both standard and serum free human stromal cultures. The quantitative amount of each protein identified in human stromal cells was only minimally affected by media conditions but varied highly between bone marrow donors. This study provides further evidence of heterogeneity among cultured bone marrow stromal cells and identifies potential candidate proteins that may prove useful for identifying and quantifying both murine and human MSC in vitro.

  13. Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate

    Directory of Open Access Journals (Sweden)

    Kenichiro Ishii

    2018-04-01

    Full Text Available Androgens are essential for the development, differentiation, growth, and function of the prostate through epithelial–stromal interactions. However, androgen concentrations in the hypertrophic human prostate decrease significantly with age, suggesting an inverse correlation between androgen levels and proliferative diseases of the aging prostate. In elderly males, age- and/or androgen-related stromal remodeling is spontaneously induced, i.e., increased fibroblast and myofibroblast numbers, but decreased smooth muscle cell numbers in the prostatic stroma. These fibroblasts produce not only growth factors, cytokines, and extracellular matrix proteins, but also microRNAs as stromal paracrine signals that stimulate prostate epithelial cell proliferation. Surgical or chemical castration is the standard systemic therapy for patients with advanced prostate cancer. Androgen deprivation therapy induces temporary remission, but the majority of patients eventually progress to castration-resistant prostate cancer, which is associated with a high mortality rate. Androgen deprivation therapy-induced stromal remodeling may be involved in the development and progression of castration-resistant prostate cancer. In the tumor microenvironment, activated fibroblasts stimulating prostate cancer cell proliferation are called carcinoma-associated fibroblasts. In this review, we summarize the role of stromal paracrine signals in proliferative diseases of the aging human prostate and discuss the potential clinical applications of carcinoma-associated fibroblast-derived exosomal microRNAs as promising biomarkers.

  14. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    OpenAIRE

    Selleri, Silvia; Bifsha, Panojot; Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Ren?e; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-...

  15. Ghrelin and gastrointestinal stromal tumors.

    Science.gov (United States)

    Zhu, Chang-Zhen; Liu, Dong; Kang, Wei-Ming; Yu, Jian-Chun; Ma, Zhi-Qiang; Ye, Xin; Li, Kang

    2017-03-14

    Ghrelin, as a kind of multifunctional protein polypeptide, is mainly produced in the fundus of the stomach and can promote occurrence and development of many tumors, including gastrointestinal tumors, which has been proved by the relevant researches. Most gastrointestinal stromal tumors (GISTs, about 80%), as the most common mesenchymal tumor, also develop in the fundus. Scientific research has confirmed that ghrelin, its receptors and mRNA respectively can be found in GISTs, which demonstrated the existence of a ghrelin autocrine/paracrine loop in GIST tissues. However, no reports to date have specified the mechanism whether ghrelin can promote the occurrence and development of GISTs. Studies of pulmonary artery endothelial cells in a low-oxygen environment and cardiac muscle cells in an ischemic environment have shown that ghrelin can activate the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway. Moreover, some studies of GISTs have confirmed that activation of the PI3K/AKT/mTOR pathway can indeed promote the growth and progression of GISTs. Whether ghrelin is involved in the development or progression of GISTs through certain pathways remains unknown. Can we find a new target for the treatment of GISTs? This review explores and summaries the relationship among ghrelin, the PI3K/AKT/mTOR pathway and the development of GISTs.

  16. Multicentric malignant gastrointestinal stromal tumor

    International Nuclear Information System (INIS)

    Shukla, Shailaja; Singh, Sanjeet K; Pujani, Mukta

    2009-01-01

    Malignant gastrointestinal stromal tumor (GIST) is a rare type of sarcoma that is found in the digestive system, most often in the wall of the stomach. Multiple GISTs are extremely rare and usually associated with type 1 neurofibromatosis and familial GIST. We report here a case of a 70-year-old woman who reported pain in the abdomen, loss of appetite, and weight loss for six months. Ultrasound examination showed a small bowel mass along with multiple peritoneal deposits and a mass within the liver. Barium studies were suggestive of a neoplastic pathology of the distal ileum. A differential diagnosis of adenocarcinoma/lymphoma with metastases was entertained. Perioperative findings showed two large growths arising from the jejunum and the distal ileum, along with multiple smaller nodules on the serosal surface and adjoining mesentery of the involved bowel segments. Segmental resection of the involved portions of the intestine was performed. Histopathological features were consistent with those of multicentric malignant GIST-not otherwise specified (GIST-NOS). Follow-up examination three months after surgery showed no evidence of recurrence. (author)

  17. Inhibition of Stromal PlGF Suppresses the Growth of Prostate Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Dietmar Abraham

    2013-09-01

    Full Text Available The growth and vascularization of prostate cancer is dependent on interactions between cancer cells and supporting stromal cells. The primary stromal cell type found in prostate tumors is the carcinoma-associated fibroblast, which produces placental growth factor (PlGF. PlGF is a member of the vascular endothelial growth factor (VEGF family of angiogenic molecules and PlGF mRNA levels increase after androgen deprivation therapy in prostate cancer. In this study, we show that PlGF has a direct dose-dependent proliferative effect on human PC-3 prostate cancer cells in vitro and fibroblast-derived PlGF increases PC-3 proliferation in co-culture. In xenograft tumor models, intratumoral administration of murine PlGF siRNA reduced stromal-derived PlGF expression, reduced tumor burden and decreased the number of Ki-67 positive proliferating cells associated with reduced vascular density. These data show that targeting stromal PlGF expression may represent a therapeutic target for the treatment of prostate cancer.

  18. Gastrointestinal Stromal Tumor of the Esophagus: Report of a Case

    OpenAIRE

    Mehmet Erol

    2014-01-01

    Gastrointestinal stromal tumors are rare neoplasms to be thought to arise from mesenchymal cells of the gastrointestinal tract. Gastrointestinal stromal tumors (GIST) of the esophagus are well documented but are very much rarer than gastrointestinal stromal tumors of the stomach and small bowel. We describe a case of GIST of the esophagus that was resected with wide surgical resection.

  19. Bone Marrow Regeneration Promoted by Biophysically Sorted Osteoprogenitors From Mesenchymal Stromal Cells

    Science.gov (United States)

    Poon, Zhiyong; Lee, Wong Cheng; Guan, Guofeng; Nyan, Lin Myint; Lim, Chwee Teck; Han, Jongyoon

    2015-01-01

    Human tissue repair deficiencies can be supplemented through strategies to isolate, expand in vitro, and reimplant regenerative cells that supplant damaged cells or stimulate endogenous repair mechanisms. Bone marrow-derived mesenchymal stromal cells (MSCs), a subset of which is described as mesenchymal stem cells, are leading candidates for cell-mediated bone repair and wound healing, with hundreds of ongoing clinical trials worldwide. An outstanding key challenge for successful clinical translation of MSCs is the capacity to produce large quantities of cells in vitro with uniform and relevant therapeutic properties. By leveraging biophysical traits of MSC subpopulations and label-free microfluidic cell sorting, we hypothesized and experimentally verified that MSCs of large diameter within expanded MSC cultures were osteoprogenitors that exhibited significantly greater efficacy over other MSC subpopulations in bone marrow repair. Systemic administration of osteoprogenitor MSCs significantly improved survival rates (>80%) as compared with other MSC subpopulations (0%) for preclinical murine bone marrow injury models. Osteoprogenitor MSCs also exerted potent therapeutic effects as “cell factories” that secreted high levels of regenerative factors such as interleukin-6 (IL-6), interleukin-8 (IL-8), vascular endothelial growth factor A, bone morphogenetic protein 2, epidermal growth factor, fibroblast growth factor 1, and angiopoietin-1; this resulted in increased cell proliferation, vessel formation, and reduced apoptosis in bone marrow. This MSC subpopulation mediated rescue of damaged marrow tissue via restoration of the hematopoiesis-supporting stroma, as well as subsequent hematopoiesis. Together, the capabilities described herein for label-freeisolation of regenerative osteoprogenitor MSCs can markedly improve the efficacy of MSC-based therapies. PMID:25411477

  20. Regenerative Potential of Mesenchymal Stromal Cells: Age-Related Changes

    Directory of Open Access Journals (Sweden)

    Flavia Bruna

    2016-01-01

    Full Text Available Preclinical and clinical studies have shown that a therapeutic effect results from mesenchymal stromal cells (MSCs transplant. No systematic information is currently available regarding whether donor age modifies MSC regenerative potential on cutaneous wound healing. Here, we evaluate whether donor age influences this potential. Two different doses of bone marrow MSCs (BM-MSCs from young, adult, or old mouse donors or two doses of their acellular derivatives mesenchymal stromal cells (acd-MSCs were intradermally injected around wounds in the midline of C57BL/6 mice. Every two days, wound healing was macroscopically assessed (wound closure and microscopically assessed (reepithelialization, dermal-epidermal junction, skin appendage regeneration, granulation tissue, leukocyte infiltration, and density dermal collagen fibers after 12 days from MSC transplant. Significant differences in the wound closure kinetic, quality, and healing of skin regenerated were observed in lesions which received BM-MSCs from different ages or their acd-MSCs compared to lesions which received vehicle. Nevertheless, our data shows that adult’s BM-MSCs or their acd-MSCs were the most efficient for recovery of most parameters analyzed. Our data suggest that MSC efficacy was negatively affected by donor age, where the treatment with adult’s BM-MSCs or their acd-MSCs in cutaneous wound promotes a better tissue repair/regeneration. This is due to their paracrine factors secretion.

  1. Amniotic Mesenchymal Stromal Cells Exhibit Preferential Osteogenic and Chondrogenic Differentiation and Enhanced Matrix Production Compared With Adipose Mesenchymal Stromal Cells.

    Science.gov (United States)

    Topoluk, Natasha; Hawkins, Richard; Tokish, John; Mercuri, Jeremy

    2017-09-01

    Therapeutic efficacy of various mesenchymal stromal cell (MSC) types for orthopaedic applications is currently being investigated. While the concept of MSC therapy is well grounded in the basic science of healing and regeneration, little is known about individual MSC populations in terms of their propensity to promote the repair and/or regeneration of specific musculoskeletal tissues. Two promising MSC sources, adipose and amnion, have each demonstrated differentiation and extracellular matrix (ECM) production in the setting of musculoskeletal tissue regeneration. However, no study to date has directly compared the differentiation potential of these 2 MSC populations. To compare the ability of human adipose- and amnion-derived MSCs to undergo osteogenic and chondrogenic differentiation. Controlled laboratory study. MSC populations from the human term amnion were quantified and characterized via cell counting, histologic assessment, and flow cytometry. Differentiation of these cells in comparison to commercially purchased human adipose-derived mesenchymal stromal cells (hADSCs) in the presence and absence of differentiation media was evaluated via reverse transcription polymerase chain reaction (PCR) for bone and cartilage gene transcript markers and histology/immunohistochemistry to examine ECM production. Analysis of variance and paired t tests were performed to compare results across all cell groups investigated. The authors confirmed that the human term amnion contains 2 primary cell types demonstrating MSC characteristics-(1) human amniotic epithelial cells (hAECs) and (2) human amniotic mesenchymal stromal cells (hAMSCs)-and each exhibited more than 90% staining for MSC surface markers (CD90, CD105, CD73). Average viable hAEC and hAMSC yields at harvest were 2.3 × 10 6 ± 3.7 × 10 5 and 1.6 × 10 6 ± 4.7 × 10 5 per milliliter of amnion, respectively. As well, hAECs and hAMSCs demonstrated significantly greater osteocalcin ( P = .025), aggrecan ( P

  2. Origin of hemopoietic stromal progenitor cells in chimeras

    International Nuclear Information System (INIS)

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.; Samoylova, R.S.

    1985-01-01

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice

  3. Gastrointestinal stromal tumour presenting as gastroduodenal intussusception.

    LENUS (Irish Health Repository)

    Wilson, Mark H

    2012-08-01

    Gastroduodenal intussusception secondary to gastrointestinal stromal tumour is a very rare cause for intestinal obstruction. The diagnosis of this condition can be challenging, as symptoms are often non-specific and intermittent. This article reports a case where the diagnosis was made preoperatively with abdominal imaging and was treated by a combination of endoscopic reduction and laparoscopic resection.

  4. Gastrointestinal Stromal Tumor: Diagnosis and Prognosis; Tumor estromal gastrointestinal: diagnostico y pronostico

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M. T.; Olmedilla, P.; Gonzalez, S.; Oliver, J. M. [Fundacion Hospital de Alcorcon. Madrid (Spain)

    2003-07-01

    Gastrointestinal stromal tumors (GIST) are mesenquimal tumors derived from cell precursors. They have the capacity for myogenic and neurogenic differentiation and are characterized by expression of KIT protein (tyrosine kinase growth factor). Clinically, they exhibit various biological behaviors. We present 8 cases of GIST, describing both their radiological manifestation through computerized tomography (CT) and most accepted criteria for benignity and malignancy. We also describe the response of one meta statically diagnosed tumor to tyrosine kinase inhibitor. (Author) 9 refs.

  5. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...

  6. Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

    NARCIS (Netherlands)

    van Gool, S.A.; Emons, J.A.M.; Leijten, Jeroen Christianus Hermanus; Decker, E.; Sticht, C.; van Houwelingen, J.C.; Goeman, J.J.; Kleijburg, C.; Scherjon, S.; Gretz, N.; Wit, J.M.; Rappold, G.; Post, Janine Nicole; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Abstract We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether

  7. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    Science.gov (United States)

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  8. Influence of patient related factors on number of mesenchymal stromal cells reached after in vitro culture expansion for clinical treatment

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Kaur, Kamal Preet; Mathiasen, Anders Bruun

    2017-01-01

    of autologous stromal cells reached after in vitro culture expansion for clinical therapy. METHODS: Culture expansion data from 111 patients with IHD treated with autologous stromal cells in three clinical trials were used. We correlated the final cell count after two passages of cultivation with different...... correlation between left ventricular ejection fraction and number of MSCs was found (r = -0.287, p = .017). CONCLUSIONS: Patient related factors such as BMI, hypertension and gender may influence the number of MSCs reached after in vitro culture expansion....... patient factors. RESULTS: There was a significant relation between body mass index (BMI) and the number of adipose derived stromal cells (ASCs) reached after culture expansion and for all patients included into the three studies (r = 0.375, p = .019 and r = 0.200, p = .036, respectively). Moreover...

  9. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology.

    Science.gov (United States)

    Zhan, Han-Xiang; Zhou, Bin; Cheng, Yu-Gang; Xu, Jian-Wei; Wang, Lei; Zhang, Guang-Yong; Hu, San-Yuan

    2017-04-28

    Pancreatic cancer (PC) remains one of the most lethal malignancies worldwide. Increasing evidence has confirmed the pivotal role of stromal components in the regulation of carcinogenesis, invasion, metastasis, and therapeutic resistance in PC. Interaction between neoplastic cells and stromal cells builds a specific microenvironment, which further modulates the malignant properties of cancer cells. Instead of being a "passive bystander", stroma may play a role as a "partner in crime" in PC. However, the role of stromal components in PC is complex and requires further investigation. In this article, we review recent advances regarding the regulatory roles and mechanisms of stroma biology, especially the cellular components such as pancreatic stellate cells, macrophages, neutrophils, adipocytes, epithelial cells, pericytes, mast cells, and lymphocytes, in PC. Crosstalk between stromal cells and cancer cells is thoroughly investigated. We also review the prognostic value and molecular therapeutic targets of stroma in PC. This review may help us further understand the molecular mechanisms of stromal biology and its role in PC development and therapeutic resistance. Moreover, targeting stroma components may provide new therapeutic strategies for this stubborn disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Computed tomography in gastrointestinal stromal tumors

    International Nuclear Information System (INIS)

    Ghanem, Nadir; Altehoefer, Carsten; Winterer, Jan; Schaefer, Oliver; Springer, Oliver; Kotter, Elmar; Langer, Mathias; Furtwaengler, Alex

    2003-01-01

    The aim of this study was to define the imaging characteristics of primary and recurrent gastrointestinal stromal tumors (GIST) in computed tomography with respect to the tumor size. Computed tomography was performed in 35 patients with histologically confirmed gastrointestinal stromal tumors and analyzed retrospectively by two experienced and independent radiologist. The following morphologic tumor characteristics of primary (n=20) and (n=16) recurrent tumors were evaluated according to tumor size, shape, homogeneity, density compared with liver, contrast enhancement, presence of calcifications, ulcerations, fistula or distant metastases and the anatomical relationship to the intestinal wall, and the infiltration of adjacent visceral organs. Small GIST ( 5-10 cm) demonstrated an irregular shape, inhomogeneous density on unenhanced and contrast-enhanced images, a combined intra- and extraluminal tumor growth with aggressive findings, and infiltration of adjacent organs in 9 primary diagnosed and 2 recurrent tumors. Large GIST (>10 cm), which were observed in 8 primary tumors and 11 recurrent tumors, showed an irregular margin with inhomogeneous density and aggressive findings, and were characterized by signs of malignancy such as distant and peritoneal metastases. Small recurrent tumors had a similar appearance as compared with large primary tumors. Computed tomography gives additional information with respect to the relationship of gastrointestinal stromal tumor to the gastrointestinal wall and surrounding organs, and it detects distant metastasis. Primary and recurrent GIST demonstrate characteristic CT imaging features which are related to tumor size. Aggressive findings and signs of malignancy are found in larger tumors and in recurrent disease. Computed tomography is useful in detection and characterization of primary and recurrent tumors with regard to tumor growth pattern, tumor size, and varied appearances of gastrointestinal stromal tumors, and indirectly

  11. Innate lymphoid cells and their stromal microenvironments.

    Science.gov (United States)

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  12. Metanephric stromal tumor: A novel pediatric renal neoplasm

    Directory of Open Access Journals (Sweden)

    Rajalakshmi V

    2009-07-01

    Full Text Available Metanephric stromal tumor of kidney is a novel pediatric benign stromal specific renal neoplasm. A few cases have been reported in adults also. This tumor is usually centered in the renal medulla with a characteristic microscopic appearance which differentiates this lesion from congenital mesoblastic nephroma and clear cell sarcoma of the kidney. In most cases complete excision alone is curative. The differentiation of metanephric stromal tumor from clear cell sarcoma of the kidney will spare the child from the ill effects of adjuvant chemotherapy. In this communication we describe the gross and microscopic features of metanephric stromal tumor in a one-month-old child with good prognosis.

  13. The application of PET-CT in gastrointestinal stromal tumor

    International Nuclear Information System (INIS)

    Xian Weijun; Feng Yanlin

    2009-01-01

    Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm of uncertain malignant potential that arises predominantly in the gastrointestinal tract. Due to lack of specific physical signs, imagin g-x examination is an important auxiliary means in diagnosing gastrointestinal stromal tumor. Compared to other conventional imaging examinations, PET-CT has demonstrated unique superiority in staging, response evaluation and follow-up of gastrointestinal stromal tumor. And now it presents an overview of the application valuation of PET-CT and related imaging technology in gastrointestinal stromal tumor as follow. (authors)

  14. Sclerosing stromal tumor of the ovary: A case report

    Directory of Open Access Journals (Sweden)

    Navjot Kaur

    2014-01-01

    Full Text Available Sclerosing stromal tumors are benign ovarian neoplasms of the sex cord-stromal category, occurring predominantly in the second and third decades of life. Herein, we report a 23-year-old female who presented with pelvic pain, irregular menses but normal hormonal status and was diagnosed as having a right ovarian tumor. A right oophorectomy was performed, and microscopic examination revealed a sclerosing stromal tumor of the right ovary. We stress the importance of being familiar with sclerosing stromal tumors when evaluating ovarian neoplasms in young women, in order to contribute to the appropriate clinical management, preventing extensive and unnecessary surgery, and preserving fertility.

  15. Sclerosing stromal tumor of the ovary in a premenarchal female

    International Nuclear Information System (INIS)

    Fefferman, Nancy R.; Pinkney, Lynne P.; Rivera, Rafael; Popiolek, Dorota; Hummel-Levine, Pascale; Cosme, Jaqueline

    2003-01-01

    Sclerosing stromal tumor (SST) is a rare benign ovarian neoplasm of stromal origin with less than 100 cases reported in the literature. Unlike the other stromal tumors, thecomas and fibromas, which tend to occur in the fifth and sixth decades, sclerosing stromal tumors predominantly affect females in the second and third decades. Computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound findings have been described, but have not been reported previously in the pediatric literature. We present a case of SST of the ovary in a 10-year-old premenarchal female, the youngest patient to our knowledge reported in the literature, and describe the ultrasound and CT findings with pathologic correlation. (orig.)

  16. Sclerosing Stromal Tumor of Ovary: A Case Report

    Directory of Open Access Journals (Sweden)

    Menka Khanna

    2012-01-01

    Full Text Available Sclerosing stromal tumor (SST is an extremely rare and distinctive sex cord stromal tumor which occurs predominantly in the second and third decades of life. We report a case of a 32-year-old woman who developed a sclerosing stromal tumor of ovary and presented with irregular menstruation and pelvic pain. Her hormonal status was normal but CA-125 was raised. She was suspected to have a malignant tumor on computed tomography and underwent bilateral salpingo-oopherectomy. It is therefore necessary to keep in mind the possibility of sclerosing stromal tumor in a young woman.

  17. Fetal liver stromal cells promote hematopoietic cell expansion

    International Nuclear Information System (INIS)

    Zhou, Kun; Hu, Caihong; Zhou, Zhigang; Huang, Lifang; Liu, Wenli; Sun, Hanying

    2009-01-01

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  18. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  19. Laparoscopic Management of Sclerosing Stromal Tumors of the Ovary Combined with Ectopic Pregnancy.

    Science.gov (United States)

    Liu, Hua-Qian; Liu, Qiang; Sun, Xue-Bing; Chang, Wen-Min

    2015-01-01

    Like other stromal-derived gynecological tumors, a sclerosing stromal tumor of the ovary (SSTO) is a rare benign tumor that is difficult to distinguish from a malignant ovarian tumor in clinical practice. An SSTO is routinely treated with laparotomy. Here, we present two extremely rare cases of SSTO with contralateral and ipsilateral tubal pregnancies, in which laparoscopic surgery was performed to remove the tumors. After surgery, one patient (case 1) became pregnant twice within 29 months, and the other patient (case 2) did not become pregnant within 6 months postoperatively. These two cases suggest that laparoscopic management is not only useful in treating SSTO and complicating diseases, but it may also help to reduce unnecessary surgical injury to the ovary. © 2015 S. Karger AG, Basel.

  20. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC...... population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high...... and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone...

  1. Non-multipotent stroma inhibit the proliferation and differentiation of mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Rosu-Myles, Michael; Fair, Joel; Pearce, Nelson; Mehic, Jelica

    2010-10-01

    The ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood. C57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU. At a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10-20% increase in the frequency of proliferating CD105(-) cells. Removal of CD105(-) stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105(-) cells. This work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.

  2. Color-Coded Imaging of Syngeneic Orthotopic Malignant Lymphoma Interacting with Host Stromal Cells During Metastasis.

    Science.gov (United States)

    Matsumoto, Takuro; Suetsugu, Atsushi; Hasegawa, Kosuke; Nakamura, Miki; Aoki, Hitomi; Kunisada, Takahiro; Tsurumi, Hisashi; Shimizu, Masahito; Hoffman, Robert M

    2016-04-01

    The EL4 cell line was previously derived from a lymphoma induced in a C57/BL6 mouse by 9,10-dimethyl-1,2-benzanthracene. In a previous study, EL4 lymphoma cells expressing red fluorescent protein (EL4-RFP) were established and injected into the tail vein of C57/BL6 green fluorescent protein (GFP) transgenic mice. Metastasis was observed at multiple sites which were also enriched with host GFP-expressing stromal cells. In the present study, our aim was to establish an orthotopic model of EL4-RFP. In the present study, EL4-RFP lymphoma cells were injected in the spleen of C57/BL6 GFP transgenic mice as an orthotopic model of lymphoma. Resultant primary tumor and metastases were imaged with the Olympus FV1000 scanning laser confocal microscope. EL4-RFP metastasis was observed 21 days later. EL4-RFP tumors in the spleen (primary injection site), liver, supra-mediastinum lymph nodes, abdominal lymph nodes, bone marrow, and lung were visualized by color-coded imaging. EL4-RFP metastases in the liver, lymph nodes, and bone marrow in C57/BL6 GFP mice were rich in GFP stromal cells such as macrophages, fibroblasts, dendritic cells, and normal lymphocytes derived from the host animal. Small tumors were observed in the spleen, which were rich in host stromal cells. In the lung, no mass formation of lymphoma cells occurred, but lymphoma cells circulated in lung peripheral blood vessels. Phagocytosis of EL4-RFP lymphoma cells by macrophages, as well as dendritic cells and fibroblasts, were observed in culture. Color-coded imaging of the lymphoma microenvironment suggests an important role of stromal cells in lymphoma progression and metastasis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts

    Science.gov (United States)

    Paggetti, Jerome; Haderk, Franziska; Seiffert, Martina; Janji, Bassam; Distler, Ute; Ammerlaan, Wim; Kim, Yeoun Jin; Adam, Julien; Lichter, Peter; Solary, Eric; Berchem, Guy

    2015-01-01

    Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin–positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts. PMID:26100252

  4. Isolation of Mesenchymal Stromal Cells (MSCs from Human Adenoid Tissue

    Directory of Open Access Journals (Sweden)

    Yoon Se Lee

    2013-04-01

    Full Text Available Background: Mesenchymal stromal cells (MSCs are multipotent progenitor cells that originally derived from bone marrow. Clinical use of bone marrow-derived MSC is difficult due to morbidity and low MSC abundance and isolation efficiency. Recently, MSCs have been isolated from various adult tissues. Here we report the isolation of adenoid tissue-derived MSCs (A-MSCs and their characteristics. Methods: We compared the surface markers, morphologies, and differentiation and proliferation capacities of previously established tonsil-derived MSCs (T-MSCs and bone marrow-derived MSCs (BM-MSCs with cells isolated from adenoid tissue. The immunophenotype of A-MSCs was investigated upon interferon (IFN-γ stimulation. Results: A-MSCs, T-MSCs, and BM-MSCs showed negative CD45, CD31 HLA-DR, CD34, CD14, CD19 and positive CD 90, CD44, CD73, CD105 expression. A-MSCs were fibroblast-like, spindle-shaped non-adherent cells, similar to T-MSCs and BM-MSCs. Adipogenesis was observed in A-MSCs by the formation of lipid droplets after Oil Red O staining. Osteogenesis was observed by the formation of the matrix mineralization in Alizarin Red staining. Chondrogenesis was observed by the accumulation of sulfated glycosaminoglycan-rich matrix in collagen type II staining. These data were similar to those of T-MSCs and BM-MSCs. Expression of marker genes (i.e., adipogenesis; lipoprotein lipase, proliferator-activator receptor-gamma, osteogenesis; osteocalcin, alkaline phasphatase, chondrogenesis; aggrecan, collagen type II α1 in A-MSCs were not different from those in T-MSCs and BM-MSCs. Conclusions: A-MSCs possess the characteristics of MSCs in terms of morphology, multipotent differentiation capacity, cell surface markers, and immunogeneity. Therefore, A-MSCs fulfill the definition of MSCs and represent an alternate source of MSCs.

  5. Uterine endometrial stromal sarcoma located in uterine myometrium: MRI appearance

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M.; Otsuka, M.; Hatakenaka, M. [Dept. of Radiology, Medical Institute of Bioregulation, Kyushu University, Beppu (Japan); Torii, Y. [Dept. of Radiology, Saga Prefectural Hospital (Japan)

    2000-05-01

    Two cases of uterine endometrial stromal sarcoma whose main mass was located in uterine myometrium are reported. They mimicked uterine leiomyoma with cystic degeneration or uterine leiomyosarcoma. Endometrial stromal sarcoma should be suggested in the differential diagnosis of mass lesion in uterine myometrium. (orig.)

  6. An exceptional collision tumor: gastric calcified stromal tumor and ...

    African Journals Online (AJOL)

    The authors report an exceptional case of collision tumor comprised of a gastric calcified stromal tumor and a pancreatic adenocarcinoma. The pancreatic tumor was detected fortuitously on the histological exam of resection specimen. Key words: Collision tumor, stromal tumor, adenocarcinoma ...

  7. Mammary fibroadenoma with pleomorphic stromal cells.

    Science.gov (United States)

    Abid, Najla; Kallel, Rim; Ellouze, Sameh; Mellouli, Manel; Gouiaa, Naourez; Mnif, Héla; Boudawara, Tahia

    2015-01-01

    The presence of enlarged and pleomorphic nuclei is usually regarded as a feature of malignancy, but it may on occasion be seen in benign lesions such as mammary fibroadenomas. We present such a case of fibroadenoma occurring in a 37-year-old woman presenting with a self-palpable right breast mass. Histological examination of the tumor revealed the presence of multi and mononucleated giant cells with pleomorphic nuclei. The recognition of the benign nature of these cells is necessary for differential diagnosis from malignant lesions of the breast. fibroadenoma - pleomorphic stromal cells - atypia - breast.

  8. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  9. Combined Use of Mesenchymal Stromal Cell Sheet Transplantation and Local Injection of SDF-1 for Bone Repair in a Rat Nonunion Model.

    Science.gov (United States)

    Chen, Guangnan; Fang, Tingting; Qi, Yiying; Yin, Xiaofan; Di, Tuoyu; Feng, Gang; Lei, Zhong; Zhang, Yuxiang; Huang, Zhongming

    2016-10-01

    Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.

  10. Targeting Stromal-Cancer Cell Crosstalk Networks in Ovarian Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tsz-Lun Yeung

    2016-01-01

    Full Text Available Ovarian cancer is a histologically, clinically, and molecularly diverse disease with a five-year survival rate of less than 30%. It has been estimated that approximately 21,980 new cases of epithelial ovarian cancer will be diagnosed and 14,270 deaths will occur in the United States in 2015, making it the most lethal gynecologic malignancy. Ovarian tumor tissue is composed of cancer cells and a collection of different stromal cells. There is increasing evidence that demonstrates that stromal involvement is important in ovarian cancer pathogenesis. Therefore, stroma-specific signaling pathways, stroma-derived factors, and genetic changes in the tumor stroma present unique opportunities for improving the diagnosis and treatment of ovarian cancer. Cancer-associated fibroblasts (CAFs are one of the major components of the tumor stroma that have demonstrated supportive roles in tumor progression. In this review, we highlight various types of signaling crosstalk between ovarian cancer cells and stromal cells, particularly with CAFs. In addition to evaluating the importance of signaling crosstalk in ovarian cancer progression, we discuss approaches that can be used to target tumor-promoting signaling crosstalk and how these approaches can be translated into potential ovarian cancer treatment.

  11. Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2003-07-01

    Full Text Available The underlying basement membrane is degraded during progression of breast and colon carcinoma. Thus, we imaged degradation of a quenched fluorescent derivative of basement membrane type IV collagen (DQ-collagen IV by living human breast and colon tumor spheroids. Proteolysis of DQ-collagen IV by HCT 116 and HKh-2 human colon tumor spheroids was both intracellular and pericellular. In contrast, proteolysis of DQ-collagen IV by BT20 human breast tumor spheroids was pericellular. As stromal elements can contribute to proteolytic activities associated with tumors, we also examined degradation of DQ-collagen IV by human monocytes/macrophages and colon and breast fibroblasts. Fibroblasts themselves exhibited a modest amount of pericellular degradation. Degradation was increased 4–17-fold in cocultures of fibroblasts and tumor cells as compared to either cell type alone. Inhibitors of matrix metalloproteinases, plasmin, and the cysteine protease, cathepsin B, all reduced degradation in the cocultures. Monocytes did not degrade DQ-collagen IV; however, macrophages degraded DQ-collagen IV intracellularly. In coculture of tumor cells, fibroblasts, and macrophages, degradation of DQ-collagen IV was further increased. Imaging of living tumor and stromal cells has, thus, allowed us to establish that tumor proteolysis occurs pericellularly and intracellularly and that tumor, stromal, and inflammatory cells all contribute to degradative processes.

  12. Inorganic Arsenic–Related Changes in the Stromal Tumor Microenvironment in a Prostate Cancer Cell–Conditioned Media Model

    Science.gov (United States)

    Shearer, Joseph J.; Wold, Eric A.; Umbaugh, Charles S.; Lichti, Cheryl F.; Nilsson, Carol L.; Figueiredo, Marxa L.

    2015-01-01

    Background: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal–epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer. Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored. Our objective was to elucidate molecular mechanisms of iAs-induced changes to stromal signaling by an enriched prostate tumor microenvironment cell population, adipose-derived mesenchymal stem/stromal cells (ASCs). Results: ASC-conditioned media (CM) collected after 1 week of iAs exposure increased prostate cancer cell viability, whereas CM from ASCs that received no iAs exposure decreased cell viability. Cytokine array analysis suggested changes to cytokine signaling associated with iAs exposure. Subsequent proteomic analysis suggested a concentration-dependent alteration to the HMOX1/THBS1/TGFβ signaling pathway by iAs. These results were validated by quantitative reverse transcriptase–polymerase chain reaction (RT-PCR) and Western blotting, confirming a concentration-dependent increase in HMOX1 and a decrease in THBS1 expression in ASC following iAs exposure. Subsequently, we used a TGFβ pathway reporter construct to confirm a decrease in stromal TGFβ signaling in ASC following iAs exposure. Conclusions: Our results suggest a concentration-dependent alteration of stromal signaling: specifically, attenuation of stromal-mediated TGFβ signaling following exposure to iAs. Our results indicate iAs may enhance prostate cancer cell viability through a previously unreported stromal-based mechanism. These findings indicate that the stroma may mediate the effects of iAs in tumor progression, which may have future therapeutic implications. Citation: Shearer JJ, Wold EA, Umbaugh CS, Lichti CF, Nilsson CL

  13. In Vivo Functional Selection Identifies Cardiotrophin-1 as a Cardiac Engraftment Factor for Mesenchymal Stromal Cells.

    Science.gov (United States)

    Bortolotti, Francesca; Ruozi, Giulia; Falcione, Antonella; Doimo, Sara; Dal Ferro, Matteo; Lesizza, Pierluigi; Zentilin, Lorena; Banks, Lawrence; Zacchigna, Serena; Giacca, Mauro

    2017-10-17

    Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium. © 2017 American Heart Association, Inc.

  14. Reciprocal upregulation of Notch signaling molecules in hematopoietic progenitor and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Kikuchi Y

    2011-01-01

    Full Text Available Although mesenchymal stem cells (MSCs play pivotal supportive roles in hematopoiesis, how they interact with hematopoietic stem cells (HSCs is not well understood. We investigated the interaction between HSCs and surrogate MSCs (C3H10T1/2 stromal cells, focusing on the molecular events induced by cell contact of these bipartite populations. C3H10T1/2 is a mesenchymal stromal cell line that can be induced to differentiate into preadipocytes (A54 and myoblasts (M1601. The stromal cell derivatives were cocultured with murine HSCs (Lineage-Sca1+, and gene expression profiles in stromal cells and HSCs were compared before and after the coculture. HSCs gave rise to cobblestone areas only on A54 cells, with ninefold more progenitors than on M1601 or undifferentiated C3H10T1/2 cells. Microarray-based screening and a quantitative reverse transcriptase directed-polymerase chain reaction showed that the levels of Notch ligands (Jagged1 and Delta-like 3 were increased in A54 cells upon interaction with HSCs. On the other hand, the expression of Notch1 and Hes1 was upregulated in the HSCs cocultured with A54 cells. A transwell assay revealed that the reciprocal upregulation was dependent on cell-to-cell contact. The result suggested that in the hematopoietic niche, HSCs help MSCs to produce Notch ligands, and in turn, MSCs help HSCs to express Notch receptor. Such a reciprocal upregulation would reinforce the downstream signaling to determine the fate of hematopoietic cell lineage. Clarification of the initiating events on cell contact should lead to the identification of specific molecular targets to facilitate HSC engraftment in transplantation therapy.

  15. An In Vivo Characterization of Trophic Factor Production Following Neural Precursor Cell or Bone Marrow Stromal Cell Transplantation for Spinal Cord Injury

    Science.gov (United States)

    Hawryluk, Gregory W.J.; Mothe, Andrea; Wang, Jian; Wang, Shelly; Tator, Charles

    2012-01-01

    Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion

  16. PHD-2 Suppression in Mesenchymal Stromal Cells Enhances Wound Healing.

    Science.gov (United States)

    Ko, Sae Hee; Nauta, Allison C; Morrison, Shane D; Hu, Michael S; Zimmermann, Andrew S; Chung, Michael T; Glotzbach, Jason P; Wong, Victor W; Walmsley, Graham G; Peter Lorenz, H; Chan, Denise A; Gurtner, Geoffrey C; Giaccia, Amato J; Longaker, Michael T

    2018-01-01

    Cell therapy with mesenchymal stromal cells is a promising strategy for tissue repair. Restoration of blood flow to ischemic tissues is a key step in wound repair, and mesenchymal stromal cells have been shown to be proangiogenic. Angiogenesis is critically regulated by the hypoxia-inducible factor (HIF) superfamily, consisting of transcription factors targeted for degradation by prolyl hydroxylase domain (PHD)-2. The aim of this study was to enhance the proangiogenic capability of mesenchymal stromal cells and to use these modified cells to promote wound healing. Mesenchymal stromal cells harvested from mouse bone marrow were transduced with short hairpin RNA (shRNA) against PHD-2; control cells were transduced with scrambled shRNA (shScramble) construct. Gene expression quantification, human umbilical vein endothelial cell tube formation assays, and wound healing assays were used to assess the effect of PHD knockdown mesenchymal stromal cells on wound healing dynamics. PHD-2 knockdown mesenchymal stromal cells overexpressed HIF-1α and multiple angiogenic factors compared to control (p cells treated with conditioned medium from PHD-2 knockdown mesenchymal stromal cells exhibited increased formation of capillary-like structures and enhanced migration compared with human umbilical vein endothelial cells treated with conditioned medium from shScramble-transduced mesenchymal stromal cells (p cells healed at a significantly accelerated rate compared with wounds treated with shScramble mesenchymal stromal cells (p cells (p cells augments their proangiogenic potential in wound healing therapy. This effect appears to be mediated by overexpression of HIF family transcription factors and up-regulation of multiple downstream angiogenic factors.

  17. Retrovirus-mediated gene transfer of a human c-fos cDNA into mouse bone marrow stromal cells.

    Science.gov (United States)

    Roux, P; Verrier, B; Klein, B; Niccolino, M; Marty, L; Alexandre, C; Piechaczyk, M

    1991-11-01

    A cDNA encoding a complete human c-fos protein was isolated and inserted into two different murine MoMuLV-derived recombinant retroviruses allowing expression of c-fos protein in different cell types. One c-fos-expressing retrovirus, chosen for its ability to express high levels of proteins in fibroblast-like cells, was shown to potentiate long-term cultures of mouse bone marrow stromal cells in vitro and therefore constitutes a potential tool for immortalizing such cells. Moreover, when tested in an in vitro differentiation assay, stromal cells constitutively expressing c-fos favor the granulocyte differentiation of hematopoietic precursors. Interestingly, retroviruses expressing v-src and v-abl oncogenes, included as controls in our experiments, do not produce any detectable effects, whereas those expressing polyoma virus middle T antigen facilitate long-term growth in vitro of stromal cells that favor the macrophage differentiation pathway of bone marrow stem cells. Our observation supports the idea that constitutive expression of some oncogenes, including c-fos and polyoma virus middle T antigen, may influence cytokine production by bone marrow stromal cells.

  18. Sex cord-gonadal stromal tumor of the rete testis.

    Science.gov (United States)

    Sajadi, Kamran P; Dalton, Rory R; Brown, James A

    2009-01-01

    A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm.

  19. Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Karen Bieback

    2010-01-01

    Full Text Available It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs, and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed.

  20. Signal transduction around thymic stromal lymphopoietin (TSLP in atopic asthma

    Directory of Open Access Journals (Sweden)

    Kuepper Michael

    2008-08-01

    Full Text Available Abstract Thymic stromal lymphopoietin (TSLP, a novel interleukin-7-like cytokine, triggers dendritic cell-mediated inflammatory responses ultimately executed by T helper cells of the Th2 subtype. TSLP emerged as a central player in the development of allergic symptoms, especially in the airways, and is a prime regulatory cytokine at the interface of virus- or antigen-exposed epithelial cells and dendritic cells (DCs. DCs activated by epithelium-derived TSLP can promote naïve CD4+ T cells to adopt a Th2 phenotype, which in turn recruite eosinophilic and basophilic granulocytes as well as mast cells into the airway mucosa. These different cells secrete inflammatory cytokines and chemokines operative in inducing an allergic inflammation and atopic asthma. TSLP is, thus, involved in the control of both an innate and an adaptive immune response. Since TSLP links contact of allergen with the airway epithelium to the onset and maintainance of the asthmatic syndrome, defining the signal transduction underlying TSLP expression and function is of profound interest for a better understandimg of the disease and for the development of new therapeutics.

  1. Gastrointestinal Stromal Tumour with Synchronous Bone Metastases: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Philippe Rochigneux

    2017-01-01

    Full Text Available Gastrointestinal stromal tumours (GISTs are mesenchymal tumours of the digestive tract, derived from Cajal interstitial cells. Bone metastases are very rare, and there is no consensus regarding their treatment. Here, we present the unusual case of a 66-year-old man with a gastric GIST with synchronous bone and liver metastases, fully documented at the pathological and molecular levels with a KIT exon 11 mutation. After 9 months of imatinib, the scanner showed a 33% partial response of target lesions. We also review the literature and describe the characteristics, treatment, and outcome of all cases previously reported.

  2. Gastrointestinal Stromal Tumour with Synchronous Bone Metastases: A Case Report and Literature Review.

    Science.gov (United States)

    Rochigneux, Philippe; Mescam-Mancini, Lénaig; Perrot, Delphine; Bories, Erwan; Moureau-Zabotto, Laurence; Sarran, Anthony; Guiramand, Jérôme; Bertucci, François

    2017-01-01

    Gastrointestinal stromal tumours (GISTs) are mesenchymal tumours of the digestive tract, derived from Cajal interstitial cells. Bone metastases are very rare, and there is no consensus regarding their treatment. Here, we present the unusual case of a 66-year-old man with a gastric GIST with synchronous bone and liver metastases, fully documented at the pathological and molecular levels with a KIT exon 11 mutation. After 9 months of imatinib, the scanner showed a 33% partial response of target lesions. We also review the literature and describe the characteristics, treatment, and outcome of all cases previously reported.

  3. Cryopreservation and revival of mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Kastrup, Jens

    2011-01-01

    initiated. As there has been a precedent for the use of bone marrow stem cells in the treatment of hematological malignancies and ischemic heart diseases through randomized clinical safety and efficacy trials, the development of new therapies based on culture-expanded human mesenchymal stromal cells (MSCs......Over the past few years, the pace of preclinical stem cell research is astonishing and adult stem cells have become the subject of intense research. Due to the presence of promising supporting preclinical data, human clinical trials for stem cell regenerative treatment of various diseases have been......) opens up new possibilities for cell therapy. To facilitate these applications, cryopreservation and long-term storage of MSCs becomes an absolute necessity. As a result, optimization of this cryopreservation protocol is absolutely critical. The major challenge during cellular cryopreservation...

  4. Characteristics of Emergency Gastrointestinal Stromal Tumor (GIST).

    Science.gov (United States)

    Uçar, Ahmet Deniz; Oymaci, Erkan; Carti, Erdem Bariş; Yakan, Savaş; Vardar, Enver; Erkan, Nazif; Mehmet, Yildirim

    2015-05-01

    Gastrointestinal Stromal Tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract (GIT). Importance of GISTs is increasing while surgeons are facing with more frequent either in emergency setting of elective cases. Delineating the presentation and management of emergency GIST is important. From 2005 to 2014, emergency cases with final diagnosis of GIST were examined retrospectively. Total of 13 operated cases were evaluated by patients characteristics, clinical presentation, operational findings and postoperative prognosis. There were 9 male and 4 female with the mean age of 48.15 years. The most frequent presentations are ileus and GIT hemorrhage both covering the 84% of patients. Small bowel was the dominating site with ileus. Stomach was the second frequent site of the disease with the finding of hemorrhage. Emergency patients are more likely to come with small bowel GIST and obstruction symptoms. Hemorrhage is the most frequent symptom for emergency GIST of stomach and duodenum.

  5. Update on gastrointestinal stromal tumors for radiologists

    Energy Technology Data Exchange (ETDEWEB)

    Tirumani, Sree Harsha; O' Neill, Alibhe; Jagannathan, Jyothi P. [Dept. of Imaging, Dana-Farber Cancer Institute, Boston (United States); Baheti, Akahay D. [Dept. of Radiology, Tata Memorial Centre, Mumbai (India); Tirumani, Harika [Dept. of Radiology, University of Arkansas for Medical Sciences, Little Rock (United States)

    2017-01-15

    The management of gastrointestinal stromal tumors (GISTs) has evolved significantly in the last two decades due to better understanding of their biologic behavior as well as development of molecular targeted therapies. GISTs with exon 11 mutation respond to imatinib whereas GISTs with exon 9 or succinate dehydrogenase subunit mutations do not. Risk stratification models have enabled stratifying GISTs according to risk of recurrence and choosing patients who may benefit from adjuvant therapy. Assessing response to targeted therapies in GIST using conventional response criteria has several potential pitfalls leading to search for alternate response criteria based on changes in tumor attenuation, volume, metabolic and functional parameters. Surveillance of patients with GIST in the adjuvant setting is important for timely detection of recurrences.

  6. Imaging of gastrointestinal stromal tumour (GIST)

    International Nuclear Information System (INIS)

    Lau, S.; Tam, K.F.; Kam, C.K.; Lui, C.Y.; Siu, C.W.; Lam, H.S.; Mak, K.L.

    2004-01-01

    Gastrointestinal stromal tumour (GIST) represents the most common kind of mesenchymal tumour that arises from the alimentary tract. GIST is currently defined as a gastrointestinal tract mesenchymal tumour containing spindle cells (or less commonly epithelioid cells or rarely both) and showing CD117 (c-kit protein) positivity. Targeted molecular therapy of non-resectable GIST using imatinib, a specific tyrosine kinase receptor inhibitor, represents a real milestone in the management of solid malignancy. Imaging studies, both anatomical and functional, are playing an increasingly important role in management of patients with GIST. This review illustrates the radiological appearance of GISTs and the site-specific roles of each imaging tool. Clinical features and radiological differential diagnosis of GIST are also discussed

  7. Mesenchymal stromal cell therapy in COPD: from bench to bedside

    Directory of Open Access Journals (Sweden)

    Antunes MA

    2017-10-01

    Full Text Available Mariana A Antunes,1,2 José Roberto Lapa e Silva,3 Patricia RM Rocco1,2 1Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro (UFRJ, RJ, Brazil; 2National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil; 3Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ, Rio de Janeiro, RJ, Brazil Abstract: COPD is the most frequent chronic respiratory disease and a leading cause of morbidity and mortality. The major risk factor for COPD development is cigarette smoke, and the most efficient treatment for COPD is smoking cessation. However, even after smoking cessation, inflammation, apoptosis, and oxidative stress may persist and continue contributing to disease progression. Although current therapies for COPD (primarily based on anti-inflammatory agents contribute to the reduction of airway obstruction and minimize COPD exacerbations, none can avoid disease progression or reduce mortality. Within this context, recent advances in mesenchymal stromal cell (MSC therapy have made this approach a strong candidate for clinical use in the treatment of several pulmonary diseases. MSCs can be readily harvested from diverse tissues and expanded with high efficiency, and have strong immunosuppressive properties. Preclinical studies have demonstrated encouraging outcomes of MSCs therapy for lung disorders, including emphysema. These findings instigated research groups to assess the impact of MSCs in human COPD/emphysema, but clinical results have fallen short of expectations. However, MSCs have demonstrated a good adjuvant role in the clinical scenario. Trials that used MSCs combined with another, primary treatment (eg, endobronchial valves found that patients derived greater benefit in pulmonary function tests and/or quality of life reports, as well as reductions in systemic

  8. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    Science.gov (United States)

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  9. Deletion of hepatocyte nuclear factor-1-beta in an infant with prune belly syndrome.

    Science.gov (United States)

    Haeri, Sina; Devers, Patricia L; Kaiser-Rogers, Kathleen A; Moylan, Vincent J; Torchia, Beth S; Horton, Amanda L; Wolfe, Honor M; Aylsworth, Arthur S

    2010-08-01

    Prune belly syndrome is a rare congenital disorder characterized by deficiency of abdominal wall muscles, cryptorchidism, and urinary tract anomalies. We have had the opportunity to study a baby with prune belly syndrome associated with an apparently de novo 1.3-megabase interstitial 17q12 microdeletion that includes the hepatocyte nuclear factor-1-beta gene at 17q12. One previous patient, an adult, has been reported with prune belly syndrome and a hepatocyte nuclear factor-1-beta microdeletion. Hepatocyte nuclear factor-1-beta is a widely expressed transcription factor that regulates tissue-specific gene expression and is expressed in numerous tissues including mesonephric duct derivatives, the renal tubule of the metanephros, and the developing prostate of the mouse. Mutations in hepatocyte nuclear factor-1-beta cause the "renal cysts and diabetes syndrome," isolated renal cystic dysplasia, and a variety of other malformations. Based on its expression pattern and the observation of two affected cases, we propose that haploinsufficiency of hepatocyte nuclear factor-1-beta may be causally related to the production of the prune belly syndrome phenotype through a mechanism of prostatic and ureteral hypoplasia that results in severe obstructive uropathy with urinary tract and abdominal distension. Copyright Thieme Medical Publishers.

  10. Stromal infrastructure of the lymph node and coordination of immunity.

    Science.gov (United States)

    Chang, Jonathan E; Turley, Shannon J

    2015-01-01

    The initiation of adaptive immune responses depends upon the careful maneuvering of lymphocytes and antigen into and within strategically placed lymph nodes (LNs). Non-hematopoietic stromal cells form the cellular infrastructure that directs this process. Once regarded as merely structural features of lymphoid tissues, these cells are now appreciated as essential regulators of immune cell trafficking, fluid flow, and LN homeostasis. Recent advances in the identification and in vivo targeting of specific stromal populations have resulted in striking new insights to the function of stromal cells and reveal a level of complexity previously unrealized. We discuss here recent discoveries that highlight the pivotal role that stromal cells play in orchestrating immune cell homeostasis and adaptive immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Intestinal stromal cells in mucosal immunity and homeostasis.

    Science.gov (United States)

    Owens, B M J; Simmons, A

    2013-03-01

    A growing body of evidence suggests that non-hematopoietic stromal cells of the intestine have multiple roles in immune responses and inflammation at this mucosal site. Despite this, many still consider gut stromal cells as passive structural entities, with past research focused heavily on their roles in fibrosis, tumor progression, and wound healing, rather than their contributions to immune function. In this review, we discuss our current knowledge of stromal cells in intestinal immunity, highlighting the many immunological axes in which stromal cells have a functional role. We also consider emerging data that broaden the potential scope of their contribution to immunity in the gut and argue that these so-called "non-immune" cells are reclassified in light of their diverse contributions to intestinal innate immunity and the maintenance of mucosal homeostasis.

  12. Management of hemorrhage in gastrointestinal stromal tumors: a review.

    Science.gov (United States)

    Liu, Qi; Kong, Fanmin; Zhou, Jianping; Dong, Ming; Dong, Qi

    2018-01-01

    Gastrointestinal stromal tumors (GISTs) are relatively common mesenchymal tumors. They originate from the wall of hollow viscera and may be found in any part of the digestive tract. The prognosis of patients with stromal tumors depends on various risk factors, including size, location, presence of mitotic figures, and tumor rupture. Emergency surgery is often required for stromal tumors with hemorrhage. The current literature suggests that stromal tumor hemorrhage indicates poor prognosis. Although the optimal treatment options for hemorrhagic GISTs are based on surgical experience, there remains controversy with regard to optimum postoperative management as well as the classification of malignant potential. This article reviews the biological characteristics, diagnostic features, prognostic factors, treatment, and postoperative management of GISTs with hemorrhage.

  13. Engineering epithelial-stromal interactions in vitro for toxicology assessment

    Science.gov (United States)

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo t...

  14. Cryopreservation and revival of human mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Ekblond, Annette; Kastrup, Jens

    2016-01-01

    Cell-based therapy is a promising and innovative new treatment for different degenerative and autoimmune diseases, and mesenchymal stromal cells (MSCs) from the bone marrow have demonstrated great therapeutic potential due to their immunosuppressive and regenerative capacities. The establishment ...

  15. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation.

    Science.gov (United States)

    Abdallah, Basem M; Jafari, Abbas; Zaher, Walid; Qiu, Weimin; Kassem, Moustapha

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The effect of vascular endothelial growth factor-1 expression on ...

    African Journals Online (AJOL)

    Riyad Bendardaf

    2017-02-28

    Feb 28, 2017 ... The effect of vascular endothelial growth factor-1 expression on survival of ... Sharjah, Sharjah, United Arab Emirates; cFaculty of Medicine, Suez Canal University, ..... interleukin-6, and C-reactive protein level in colorectal.

  17. Hypoxia impedes hypertrophic chondrogenesis of human multipotent stromal cells.

    Science.gov (United States)

    Gawlitta, Debby; van Rijen, Mattie H P; Schrijver, Edmée J M; Alblas, Jacqueline; Dhert, Wouter J A

    2012-10-01

    Within the field of bone tissue engineering, the endochondral approach to forming bone substitutes represents a novel concept, where cartilage will undergo hypertrophic differentiation before its conversion into bone. For this purpose, clinically relevant multipotent stromal cells (MSCs), MSCs, can be differentiated into the chondrogenic lineage before stimulating hypertrophy. Controversy exists in literature on the oxygen tensions naturally present during this transition in, for example, the growth plate. Therefore, the present study focused on the effects of different oxygen tensions on the progression of the hypertrophic differentiation of MSCs. Bone marrow-derived MSCs of four human donors were expanded, and differentiation was induced in aggregate cultures. Normoxic (20% oxygen) and hypoxic (5%) conditions were imposed on the cultures in chondrogenic or hypertrophic differentiation media. After 4 weeks, the cultures were histologically examined and by real-time polymerase chain reaction. Morphological assessment showed the chondrogenic differentiation of cultures from all donors under normoxic chondrogenic conditions. In addition, hypertrophic differentiation was observed in cultures derived from all but one donor. The deposition of collagen type X was evidenced in both chondrogenically and hypertrophically stimulated cultures. However, mineralization was exclusively observed in hypertrophically stimulated, normoxic cultures. Overall, the progression of hypertrophy was delayed in hypoxic compared with normoxic groups. The observed delay was supported by the gene expression patterns, especially showing the up-regulation of the late hypertrophic markers osteopontin and osteocalcin under normoxic hypertrophic conditions. Concluding, normoxic conditions are more beneficial for hypertrophic differentiation of MSCs than are hypoxic conditions, as long as the MSCs possess hypertrophic potential. This finding has implications for cartilage tissue engineering as well

  18. Effect of cotransplantation of hematopoietic stem cells and embryonic AGM stromal cells on hematopoietic reconstitution in mice after bone marrow transplantation

    International Nuclear Information System (INIS)

    Tao Si; Sun Hanying; Liu Wenli

    2007-01-01

    Objective: To explore the effects of cotransplantation of hematopoietic stem cells and stromal cells derived from aorta-gonad-mesonephros (AGM) region on hematopoietic reconstitution in mice after bone marrow transplantation (BMT). Methods: The typical mice model of syngeneic BMT was established and the mice were randomly divided into 4 groups: the control group, the BMT group, the group of cotransplantation of HSC with AGM stromal cells (the cotransplantation group) and the ligustrazine group (the LT group). On days 3, 7, 10, 14, 21 and 28 after BMT, the peripheral blood cells and bone marrow mononuclear cells (BMMNC) were counted, and histology changes of bone marrow were detected. Results: The levels of peripheral WBC, RBC, platelet, and BMMNC in the contransplantation group were significantly higher than those in the single BMT group and the LT group (P<0.05). Conclusions: Cotransplantation with AGM stromal cells could significantly promote hematopoietic reconstruction in mice after BMT. (authors)

  19. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    Full Text Available Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated

  20. A Color-coded Imageable Syngeneic Mouse Model of Stromal-cell Recruitment by Metastatic Lymphoma.

    Science.gov (United States)

    Matsumoto, Takuro; Suetsugu, Atsushi; Shibata, Yuhei; Nakamura, Nobuhiko; Aoki, Hitomi; Kunisada, Takahiro; Tsurumi, Hisashi; Shimizu, Masahito; Hoffman, Robert M

    2015-09-01

    A syngeneic color-coded imageable lymphoma model has been developed to visualize recruitment of host stromal cells by malignant lymphoma during metastasis. The EL4 cell line was previously derived from a lymphoma induced in a C57/BL6 mouse by 9,10-dimethyl-1,2-benzanthracene. EL4 lymphoma cells expressing red fluorescent protein (EL4-RFP) were initially established. EL4-RFP cells were subsequently injected into the tail vein of C57/BL6-GFP transgenic mice. EL4-RFP metastasis was observed in the lymph nodes of the upper mediastinum and in the liver 28 days after cell injection. Large EL4-RFP liver metastases in C57/BL6-GFP mice contained GFP-expressing stromal cells derived from the host. In addition, EL4-RFP lymphoma metastasis was formed in peri-gastric lymph nodes, which were also enriched in host GFP-expressing cells. Furthermore, EL4-RFP lymphoma cells were also observed in the peripheral blood and bone marrow of C57/BL6-GFP transgenic mice, where they were associated with GFP-expressing host cells. Lymph node, liver and bone marrow metastases were found approximately 4 weeks after transplantation and all RFP-expressing metastases were highly enriched in GFP-expressing host stromal cells. This model of malignant lymphoma can be used to study early tumor development, metastasis, and the role of the stroma, as well as for discovery and evaluation of novel therapeutics for this treatment-resistant disease. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Viabilidade celular da fração mononuclear da medula óssea e fração vascular estromal do tecido adiposo de equinos após o processo de congelamento e descongelamento Viability of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction after freezing and thawing process

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2012-12-01

    Full Text Available Cinco cavalos adultos foram submetidos à coleta de medula óssea do esterno e de tecido adiposo da região glútea. As amostras foram processadas para obtenção da fração mononuclear da medula óssea e fração vascular estromal do tecido adiposo, o número de células obtidas e a viabilidade celular foram determinados. Em seguida, realizou-se o congelamento das amostras em solução contendo 20% de soro fetal bovino e 10% de dimetilsulfóxido. Depois de um mês, realizou-se o descongelamento das amostras e a viabilidade celular foi novamente mensurada. Os resultados revelaram que as técnicas utilizadas tanto para coleta de medula óssea quanto de tecido adiposo em equinos são simples, rápidas e seguras. As metodologias adotadas para o processamento das amostras foram eficientes, obtendo-se aproximadamente 95% de viabilidade celular. Após o descongelamento, a viabilidade média das amostras de células mononucleares da medula óssea foi de 86% e da fração vascular estromal do tecido adiposo de 64%. Frente à importância da terapia celular na clínica médica de equinos, concluiu-se que é necessária a realização de mais estudos, visando padronizar uma técnica de criopreservação que mantenha a integridade das células da fração mononuclear da medula óssea e da fração vascular estromal do tecido adiposo de equinos.In five adult horses, bone marrow was aspirated from the sternum and adipose tissue extracted from the gluteal region. The samples were processed to obtain the mononuclear fraction of bone marrow and stromal vascular fraction of adipose tissue, and the number of cells obtained and cell viability were determined. Next, the cell samples were frozen in medium containing 20% fetal bovine serum and 10% dimethylsulfoxide. After one month, the cells were thawed and cell viability was again determined. The results revealed that the techniques for collecting both bone marrow and adipose tissue in horses are simple, rapid and

  2. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus.

    Directory of Open Access Journals (Sweden)

    Masuma Khatun

    Full Text Available Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs and endometrial fibroblasts (eSFs.The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS-induced state.Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF-A, stromal cell-derived factor-1 alpha (SDF-1α, interleukin-1 receptor antagonist (IL-1RA, IL-6, interferon-gamma inducible protein (IP-10, monocyte chemoattractant protein (MCP-1, macrophage inflammatory protein (MIP1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs.Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed

  3. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells

    Science.gov (United States)

    Chen, Weiwei; Tang, Tracy; Eastham-Anderson, Jeff; Dunlap, Debra; Alicke, Bruno; Nannini, Michelle; Gould, Stephen; Yauch, Robert; Modrusan, Zora; DuPree, Kelly J.; Darbonne, Walter C.; Plowman, Greg; de Sauvage, Frederic J.; Callahan, Christopher A.

    2011-01-01

    Hedgehog (Hh) signaling is critical to the patterning and development of a variety of organ systems, and both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligands, activation occurs within the stromal microenvironment. Testing whether ligand-driven Hh signaling promotes tumor angiogenesis, we found that Hh antagonism reduced the vascular density of Hh-producing LS180 and SW480 xenografts. In addition, ectopic expression of sonic hedgehog in low-Hh–expressing DLD-1 xenografts increased tumor vascular density, augmented angiogenesis, and was associated with canonical Hh signaling within perivascular tumor stromal cells. To better understand the molecular mechanisms underlying Hh-mediated tumor angiogenesis, we established an Hh-sensitive angiogenesis coculture assay and found that fibroblast cell lines derived from a variety of human tissues were Hh responsive and promoted angiogenesis in vitro through a secreted paracrine signal(s). Affymetrix array analyses of cultured fibroblasts identified VEGF-A, hepatocyte growth factor, and PDGF-C as candidate secreted proangiogenic factors induced by Hh stimulation. Expression studies of xenografts and angiogenesis assays using combinations of Hh and VEGF-A inhibitors showed that it is primarily Hh-induced VEGF-A that promotes angiogenesis in vitro and augments tumor-derived VEGF to promote angiogenesis in vivo. PMID:21597001

  4. [Risk factors for malignant evolution of gastrointestinal stromal tumors].

    Science.gov (United States)

    Andrei, S; Andrei, Adriana; Tonea, A; Andronesi, D; Becheanu, G; Dumbravă, Mona; Pechianu, C; Herlea, V; Popescu, I

    2007-01-01

    Gastrointestinal stromal tumors are the most frequent non-epithelial digestive tumors, being classified in the group of primitive mesenchymal tumors of the digestive tract. These tumors have a non predictable evolution and where stratified regarding the risk for malignant behavior in 4 categories: very low risk, low risk, intermediate risk and high risk. We performed a retrospective non randomised study including the patients with gastrointestinal stromal tumors treated in the Department of General Surgery and Liver Transplantation of Fundeni Clinical Institute in the period January 2002 - June 2007, to define the epidemiological, clinico-paraclinical, histological and especially evolutive features of the gastrointestinal stromal tumors from this group, with a special regard to the risk factors for their malignant behavior. The most important risk factors in gastrointestinal stromal tumors are the tumor size and the mitotic index, based on them being realised the classification of Fletcher in the 4 risk categories mentioned above. In our group all the local advanced or metastatic gastrointestinal stromal tumors, regardless of their location, were classified in the group of high risk for the malignant behavior. The gastric location and the epithelioid type were positive prognostic factors, and the complete resection of the tumor, an other important positive prognostic feature, was possible in about 80% of the cases, probably because the gastrointestinal stromal tumors in our study were diagnosed in less advanced evolutive situations, only about one third being metastatic and about 14% being locally advanced at the time of diagnose. The association with other neoplasias was in our cases insignificant, only 5% of the patients presenting concomitant malignant digestive tumors and 7.6% intraabdominal benign tumors. Gastrointestinal stromal tumors remain a challenge for the medical staff, regarding their diagnose and therapeutical management, the stratification of the

  5. Malignant gastroduodenal stromal tumor imaging diagnosis

    International Nuclear Information System (INIS)

    Guo Qiang; Wen Feng; Zhao Zhenguo

    2010-01-01

    Objective: To assess the imaging features of malignant gastroduodenal stromal tumor (mGDST)as an aid to its diagnosis. Methods: The unenhanced and multi-phasic contrast-enhanced CT scans of 24 patients with pathologically proven mGDST and air-contrast upper gastrointestinal studies(15 patients) were reviewed by two radiologists. The tumor location, size, contour, margin, growth type, contrast enhancement pattern and presence of ulcer were recorded. Results: The mGDST was located in the gastric fundus (15), gastric body(3), pylorus(2) and duodenum(4). The pathological types were submucosal(9), intramuscular(9) and subserosal(6). CT findings of mGDST included lobular shape(17), tumor size>5cm(14), central necrosis(15), large and deep ulcer(6), heterogeneous contrast enhancement(1), metastasis(1). The diagnostic accuracy of air-contrast upper gastrointestinal studies and CT for location of mGDST was 93.3% and 100% respectively, for malignant features was both 75.0%. Conclusion: Most mGDST have some characteristic appearances including large tumor size greater than 5 cm, lobular shape, central necrosis, large and deep ulcer, heterogeneous contrast enhancement and metastasis. Lymph node enlargement was uncommon. The diagnostic accuracy can be improved by CT scan combined with upper gastrointestinal barium examination. (authors)

  6. Pancreatic cancer stromal biology and therapy

    Science.gov (United States)

    Xie, Dacheng; Xie, Keping

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis. PMID:26114155

  7. Gut Mesenchymal Stromal Cells in Immunity

    Directory of Open Access Journals (Sweden)

    Valeria Messina

    2017-01-01

    Full Text Available Mesenchymal stromal cells (MSCs, first found in bone marrow (BM, are the structural architects of all organs, participating in most biological functions. MSCs possess tissue-specific signatures that allow their discrimination according to their origin and location. Among their multiple functions, MSCs closely interact with immune cells, orchestrating their activity to maintain overall homeostasis. The phenotype of tissue MSCs residing in the bowel overlaps with myofibroblasts, lining the bottom walls of intestinal crypts (pericryptal or interspersed within intestinal submucosa (intercryptal. In Crohn’s disease, intestinal MSCs are tightly stacked in a chronic inflammatory milieu, which causes their enforced expression of Class II major histocompatibility complex (MHC. The absence of Class II MHC is a hallmark for immune-modulator and tolerogenic properties of normal MSCs and, vice versa, the expression of HLA-DR is peculiar to antigen presenting cells, that is, immune-activator cells. Interferon gamma (IFNγ is responsible for induction of Class II MHC expression on intestinal MSCs. The reversal of myofibroblasts/MSCs from an immune-modulator to an activator phenotype in Crohn’s disease results in the formation of a fibrotic tube subverting the intestinal structure. Epithelial metaplastic areas in this context can progress to dysplasia and cancer.

  8. Comparison of clinical grade human platelet lysates for cultivation of mesenchymal stromal cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Juhl, Morten; Tratwal, Josefine; Follin, Bjarke

    2016-01-01

    be devoid of any animal derived components. We have evaluated whether human Platelet Lysate (hPL) could be an attractive alternative to animal supplements. METHODS: MSCs from bone marrow (BMSCs) and adipose tissue-derived stromal cells (ASCs) obtained from three donors were culture expanded in three...... culture conditions with 10% fetal bovine serum (FBS). Cell morphology, proliferation, phenotype, genomic stability, and differentiation potential were analyzed. RESULTS: Regardless of manufacturer, BMSCs and ASCs cultured in hPL media showed a significant increase in proliferation capacity compared to FBS...

  9. Equine Mesenchymal Stromal Cells Retain a Pericyte-Like Phenotype.

    Science.gov (United States)

    Esteves, Cristina L; Sheldrake, Tara A; Dawson, Lucy; Menghini, Timothy; Rink, Burgunde Elisabeth; Amilon, Karin; Khan, Nusrat; Péault, Bruno; Donadeu, Francesc Xavier

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs.

  10. Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.

    Science.gov (United States)

    Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo

    2017-11-23

    Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.

  11. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec......During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations....... Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... to undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components....

  12. Epimorphin Regulates the Intestinal Stem Cell Niche via Effects on the Stromal Microenvironment.

    Science.gov (United States)

    Vishy, Courtney E; Swietlicki, Elzbieta A; Gazit, Vered; Amara, Suneetha; Heslop, Gabriela; Lu, Jianyun; Levin, Marc S; Rubin, Deborah C

    2018-04-06

    Stem cell therapy is a potential therapeutic approach for disorders characterized by intestinal injury or loss of functional surface area. Stem cell function and proliferation are mediated by the stem cell niche. Stromal cells such as intestinal subepithelial myofibroblasts (ISEMFs) are important but poorly studied components of the stem cell niche. To examine the role of ISEMFs, we have previously generated mice with deletion of epimorphin (Epim), an ISEMF protein and member of the syntaxin family of intracellular vesicle docking proteins that regulate cell secretion. Herein we explore the mechanisms for previous observations that Epim deletion increases gut crypt cell proliferation, crypt fission and small bowel length in vivo. Stem cell derived crypt culture techniques were used to explore the interaction between enteroids and myofibroblasts from Epim -/- and WT mice. Enteroids co-cultured with ISEMFS had increased growth and crypt-like budding compared to enteroids cultured without stromal support. Epim deletion in ISEMFs resulted in increased enteroid budding and surface area compared to co-cultures with WT ISEMFs. In primary crypt cultures, Epim -/- enteroids had significantly increased surface area and budding compared WTs. However stem cell assays comparing the number of Epim -/- vs WT colony forming units after first passage showed no differences in the absence of ISEMF support. Epim -/- vs. WT ISEMFs had increased Wnt4 expression and addition of Wnt4 to WT co-cultures enhanced budding. We conclude that ISEMFs play an important role in the stem cell niche. Epim regulates stem cell proliferation and differentiation via stromal contributions to the niche microenvironment.

  13. Association between Insulin Like Growth Factor-1 (IGF-1) gene ...

    African Journals Online (AJOL)

    The insulin-like growth factor-1 (IGF1) is a key regulator of muscle development and metabolism in birds and other vertebrate. Our objective was to determine the association between IGF1 gene polymorphism and carcass traits in FUNAAB Alpha chicken. Genomic DNA was extracted from the blood of 50 normal feathered ...

  14. 49 CFR 325.73 - Microphone distance correction factors. 1

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Microphone distance correction factors. 1 325.73 Section 325.73 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.73 Microphone distance correction...

  15. Endometrial stromal tumors with sex cord-like elements: a case report

    African Journals Online (AJOL)

    Endometrial stromal nodules are rare. They represent less than a quarter of endometrial stromal tumors. Clement and Scully described as variants of endometrial stromal nodules two types of tumor ressembling ovarian sex cord tumors. Type I is tumor that resembles focally an ovarian sex cord tumor which can be ...

  16. File list: DNS.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.10.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  17. File list: His.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.50.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524966,SRX524979,SRX524974,SRX524968,SRX524964,SRX524973 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  18. File list: Pol.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.05.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial s...tromal cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  19. File list: Unc.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.05.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial str...omal cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  20. File list: Unc.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.10.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial str...omal cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  1. File list: DNS.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.50.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  2. File list: Unc.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.50.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial str...omal cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  3. File list: His.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.20.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524966,SRX524964,SRX524963,SRX524979,SRX524962,SRX524974 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  4. File list: Pol.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.50.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial s...tromal cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  5. File list: His.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.10.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524966,SRX524963,SRX524979,SRX524969,SRX524974,SRX524967 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  6. File list: Oth.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.20.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial s...tromal cells SRX1048945,SRX372174,SRX1048948,SRX1048946,SRX735140,SRX735139 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  7. File list: DNS.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.20.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  8. File list: Oth.Utr.50.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.50.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial s...tromal cells SRX372174,SRX1048948,SRX735140,SRX735139,SRX1048946,SRX1048945 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.50.AllAg.Endometrial_stromal_cells.bed ...

  9. File list: Pol.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.10.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial s...tromal cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  10. File list: Unc.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Utr.20.AllAg.Endometrial_stromal_cells hg19 Unclassified Uterus Endometrial str...omal cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  11. File list: DNS.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Utr.05.AllAg.Endometrial_stromal_cells hg19 DNase-seq Uterus Endometrial stroma...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  12. File list: His.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Utr.05.AllAg.Endometrial_stromal_cells hg19 Histone Uterus Endometrial stromal ...X524964,SRX524979,SRX524974,SRX524967,SRX524969,SRX524963 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  13. File list: Oth.Utr.05.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.05.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial s...tromal cells SRX1048945,SRX1048948,SRX1048946,SRX372174,SRX735140,SRX735139 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.05.AllAg.Endometrial_stromal_cells.bed ...

  14. File list: Oth.Utr.10.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Utr.10.AllAg.Endometrial_stromal_cells hg19 TFs and others Uterus Endometrial s...tromal cells SRX1048945,SRX1048948,SRX1048946,SRX372174,SRX735140,SRX735139 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Utr.10.AllAg.Endometrial_stromal_cells.bed ...

  15. File list: Pol.Utr.20.AllAg.Endometrial_stromal_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.20.AllAg.Endometrial_stromal_cells hg19 RNA polymerase Uterus Endometrial s...tromal cells SRX1048949 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.20.AllAg.Endometrial_stromal_cells.bed ...

  16. A gastrointestinal stromal tumor (GIST masquerading as an ovarian mass

    Directory of Open Access Journals (Sweden)

    Beneduce Pasquale

    2004-05-01

    Full Text Available Abstract Background Malignant gastrointestinal stromal tumors (GIST are rare mesenchymal tumors originating in the wall of the gastrointestinal tract. Myogenic gastrointestinal stromal tumor, a distinctive morphologic variant is characterized by an unusually prominent myxoid stromal background. Case presentation We report a case of myxoid variant of GIST in a 42 years old woman presenting as an epigastric mass associated to an ovarian cyst and elevated CA-125. Histologically, the lesions was composed of a proliferation of spindle cells in an abundant myxoid stroma, without evidence of atypia or anaplasia. Immunohistochemical stains showed strong positive staining with muscle actin, positive staining with CD34 and weak positive staining with CD117, while showed negative for S-100. Conclusion At surgery every effort should be made to identify the origin of the tumor. A complete surgical removal of the tumor should be obtained, as this is the only established treatment that offers long term survival.

  17. Sex Cord-Gonadal Stromal Tumor of the Rete Testis

    Directory of Open Access Journals (Sweden)

    Kamran P. Sajadi

    2009-01-01

    Full Text Available A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm.

  18. Sclerosing stromal tumor of the ovary: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Koo; Koh, Byung Hee; Rhim, Hyun Chul; Cho, On Koo; Kim, Yong Soo; Hahm, Chang Kok [School of Medicine, Hanyang Univ., Seoul (Korea, Republic of)

    2002-07-01

    Sclerosing stromal tumor of the ovary is a rare benign neoplasm, with distinctive clinical and pathologic features. It occurs predominantly in females during the second and third decades of life. Histologically, it is composed of cellular and acellular collagenized areas, and edematous stromal areas, and at ultrasonography and computed tomography is seen as a distinctive mixed solid and cystic mass lesion. We report a case of sclerosing stromal tumor of the ovary in a 15-year-old girl with a history of menorrhagia since menarche. Ultrasonography revealed the tumor as a well-defined, lobulated, heterogenous echogenic pelvic mass, while at CT, a huge pelvic mass 9 x 9 x 10 cm in size, was seen. This comprised a well-enhanced internal solid portion, a capsule, septa, and a non-enhanced cystic portion.

  19. Stromal cell regulation of homeostatic and inflammatory lymphoid organogenesis

    Science.gov (United States)

    Kain, Matthew J W; Owens, Benjamin M J

    2013-01-01

    Summary Secondary lymphoid organs function to increase the efficiency of interactions between rare, antigen-specific lymphocytes and antigen presenting cells, concentrating antigen and lymphocytes in a supportive environment that facilitates the initiation of an adaptive immune response. Homeostatic lymphoid tissue organogenesis proceeds via exquisitely controlled spatiotemporal interactions between haematopoietic lymphoid tissue inducer populations and multiple subsets of non-haematopoietic stromal cells. However, it is becoming clear that in a range of inflammatory contexts, ectopic or tertiary lymphoid tissues can develop inappropriately under pathological stress. Here we summarize the role of stromal cells in the development of homeostatic lymphoid tissue, and assess emerging evidence that suggests a critical role for stromal involvement in the tertiary lymphoid tissue development associated with chronic infections and inflammation. PMID:23621403

  20. Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury.

    Science.gov (United States)

    Badner, Anna; Vawda, Reaz; Laliberte, Alex; Hong, James; Mikhail, Mirriam; Jose, Alejandro; Dragas, Rachel; Fehlings, Michael

    2016-08-01

    : Spinal cord injury (SCI) is a life-threatening condition with multifaceted complications and limited treatment options. In SCI, the initial physical trauma is closely followed by a series of secondary events, including inflammation and blood spinal cord barrier (BSCB) disruption, which further exacerbate injury. This secondary pathology is partially mediated by the systemic immune response to trauma, in which cytokine production leads to the recruitment/activation of inflammatory cells. Because early intravenous delivery of mesenchymal stromal cells (MSCs) has been shown to mitigate inflammation in various models of neurologic disease, this study aimed to assess these effects in a rat model of SCI (C7-T1, 35-gram clip compression) using human brain-derived stromal cells. Quantitative polymerase chain reaction for a human-specific DNA sequence was used to assess cell biodistribution/clearance and confirmed that only a small proportion (approximately 0.001%-0.002%) of cells are delivered to the spinal cord, with the majority residing in the lung, liver, and spleen. Intriguingly, although cell populations drastically declined in all aforementioned organs, there remained a persistent population in the spleen at 7 days. Furthermore, the cell infusion significantly increased splenic and circulating levels of interleukin-10-a potent anti-inflammatory cytokine. Through this suppression of the systemic inflammatory response, the cells also reduced acute spinal cord BSCB permeability, hemorrhage, and lesion volume. These early effects further translated into enhanced functional recovery and tissue sparing 10 weeks after SCI. This work demonstrates an exciting therapeutic approach whereby a minimally invasive cell-transplantation procedure can effectively reduce secondary damage after SCI through systemic immunomodulation. Central nervous system pericytes (perivascular stromal cells) have recently gained significant attention within the scientific community. In addition to

  1. Nonviral transfection of adipose tissue stromal cells: an experimental study.

    Science.gov (United States)

    Lopatina, T V; Kalinina, N I; Parfyonova, E V

    2009-04-01

    Delivery of plasmid DNA and interfering RNA into adipose tissue stromal cells was carried out by the methods of lipofection, calcium phosphate method, and by electroporation. The percent of transfected cells after delivery of plasmid DNA by the calcium phosphate method and lipofection was 0 and 15%, respectively, vs. more than 50% after electroporation. Similar results were obtained for delivery of short-strand RNA into cells. These data indicate that electroporation is the most effective method of nonviral transfection of adipose tissue stromal cells.

  2. Esophageal Gastrointestinal Stromal Tumor: Diagnostic Complexity and Management Pitfalls

    Directory of Open Access Journals (Sweden)

    Charalampos G. Markakis

    2013-01-01

    Full Text Available Introduction. Gastrointestinal stromal tumors of the esophagus are rare. Case Presentation. This is a case of a 50-year-old male patient who was referred to our department complaining of atypical chest pain. A chest computed tomographic scan and endoscopi