WorldWideScience

Sample records for stroke traumatic brain

  1. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  2. Risk and mortality of traumatic brain injury in stroke patients: two nationwide cohort studies.

    Science.gov (United States)

    Chou, Yi-Chun; Yeh, Chun-Chieh; Hu, Chaur-Jong; Meng, Nai-Hsin; Chiu, Wen-Ta; Chou, Wan-Hsin; Chen, Ta-Liang; Liao, Chien-Chang

    2014-01-01

    Patients with stroke had higher incidence of falls and hip fractures. However, the risk of traumatic brain injury (TBI) and post-TBI mortality in patients with stroke was not well defined. Our study is to investigate the risk of TBI and post-TBI mortality in patients with stroke. Using reimbursement claims from Taiwan's National Health Insurance Research Database, we conducted a retrospective cohort study of 7622 patients with stroke and 30 488 participants without stroke aged 20 years and older as reference group. Data were collected on newly developed TBI after stroke with 5 to 8 years' follow-up during 2000 to 2008. Another nested cohort study including 7034 hospitalized patients with TBI was also conducted to analyze the contribution of stroke to post-TBI in-hospital mortality. Compared with the nonstroke cohort, the adjusted hazard ratio of TBI risk among patients with stroke was 2.80 (95% confidence interval = 2.58-3.04) during the follow-up period. Patients with stroke had higher mortality after TBI than those without stroke (10.2% vs 3.2%, P stroke (RR = 1.60), hemorrhagic stroke (RR = 1.68), high medical expenditure for stroke (RR = 1.80), epilepsy (RR = 1.79), neurosurgery (RR = 1.94), and hip fracture (RR = 2.11) were all associated with significantly higher post-TBI mortality among patients with stroke. Patients with stroke have an increased risk of TBI and in-hospital mortality after TBI. Various characteristics of stroke severity were all associated with higher post-TBI mortality. Special attention is needed to prevent TBI among these populations.

  3. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  4. Therapeutic Hypothermia in Stroke and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Alireza eFaridar

    2011-12-01

    Full Text Available Therapeutic hypothermia (TH is considered to improve survival with favorable neurological outcome in the case of global cerebral ischemia after cardiac arrest and perinatal asphyxia. The efficacy of hypothermia in acute ischemic stroke (AIS and traumatic brain injury (TBI, however, is not well studied. Induction of TH typically requires a multimodal approach, including the use of both pharmacological agents and physical techniques. To date, clinical outcomes for patients with either AIS or TBI who received TH have yielded conflicting results; thus, no adequate therapeutic consensus has been reached. Nevertheless, it seems that by determining optimal TH parameters and also appropriate applications, cooling therapy still has the potential to become a valuable neuroprotective intervention.Among the various methods for hypothermia induction, intravascular cooling (IVC may have the most promise in the awake patient in terms of clinical outcomes. Currently, the IVC method has the capability of more rapid target temperature attainment and more precise control of temperature. However, this technique requires expertise in endovascular surgery that can preclude its application in the field and/or in most emergency settings. It is very likely that combining neuroprotective strategies will yield better outcomes than utilizing a single approach.

  5. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury☆

    Science.gov (United States)

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-01-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  6. Association of antidepressant medication therapy with inpatient rehabilitation outcomes for stroke, traumatic brain injury, or traumatic spinal cord injury.

    Science.gov (United States)

    Weeks, Douglas L; Greer, Christopher L; Bray, Brenda S; Schwartz, Catrina R; White, John R

    2011-05-01

    To study whether outcomes in patients who have undergone inpatient rehabilitation for stroke, traumatic brain injury (TBI), or traumatic spinal cord injury (TSCI) differ based on antidepressant medication (ADM) use. Retrospective cohort study of 867 electronic medical records of patients receiving inpatient rehabilitation for stroke, TBI, or TSCI. Four cohorts were formed within each rehabilitation condition: patients with no history of ADM use and no indication of history of depression; patients with no history of ADM use but with a secondary diagnostic code for a depressive illness; patients with a history of ADM use prior to and during inpatient rehabilitation; and patients who began ADM therapy in inpatient rehabilitation. Freestanding inpatient rehabilitation facility (IRF). Patients diagnosed with stroke (n=625), TBI (n=175), and TSCI (n=67). Not applicable. FIM, rehabilitation length of stay (LOS), deviation between actual LOS and expected LOS, and functional gain per day. In each impairment condition, patients initiating ADM therapy in inpatient rehabilitation had longer LOS than patients in the same impairment condition on ADM at IRF admission, and had significantly longer LOS than patients with no history of ADM use and no diagnosis of depression (Pstroke and TBI groups initiating ADM in IRF than their counterparts with no history of ADM use, illustrating that the group initiating ADM therapy in rehabilitation significantly exceeded expected LOS. Increased LOS did not translate into functional gains, and in fact, functional gain per day was lower in the group initiating ADM therapy in IRF. Explanations for unexpectedly long LOS in patients initiating ADM in inpatient rehabilitation focus on the potential for ADM to inhibit therapy-driven remodeling of the nervous system when initiated close in time to nervous system injury, or the possibility that untreated sequelae (eg, depressive symptoms or fatigue) were limiting progress in therapy, which triggered

  7. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic

  8. Chronic issues related to traumatic brain injury : traumatic brain injury is not an incident

    NARCIS (Netherlands)

    Grauwmeijer, Erik; van der Naalt, Joukje; ribbers, gerard

    2016-01-01

    Despite an increased awareness of the long-term consequences of traumatic brain injury, health care professionals often consider traumatic brain injury as an incident. However, patients with traumatic brain injury may experience long-term neurological, cognitive and behavioural problems. Due to the

  9. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    Science.gov (United States)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  10. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    Science.gov (United States)

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  11. Effect of AVP on brain edema following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    XU Miao; SU Wei; HUANG Wei-dong; LU Yuan-qiang; XU Qiu-ping; CHEN Zhao-jun

    2007-01-01

    Objective: To evaluate plasma arginine vasopressin (AVP) level in patients with traumatic brain injury and investigate the role of AVP in the process of brain edema. Methods: A total of 30 patients with traumatic brain injury were involved in our study. They were divided into two groups by Glasgow Coma Scale: severe traumatic brain injury group (STBI, GCS≤ 8) and moderate traumatic brain injury group (MTBI, GCS>8).Samples of venous blood were collected in the morning at rest from 15 healthy volunteers (control group)and within 24 h after traumatic brain injury from these patients for AVP determinations by radioimmunoassay. The severity and duration of the brain edema were estimated by head CT scan.Results: plasma AVP levels (ng/L) were (mean±SD): control, 3.06±1.49; MTBI, 38.12±7.25; and STBI, 66.61±17.10.The plasma level of AVP was significantly increased within 24 h after traumatic brain injury and followed by the reduction of GCS, suggesting the deterioration of cerebral injury (P<0.01). And the AVP level was correlated with the severity (STBI r=0.919, P<0.01; MTBI r=0.724, P<0.01) and the duration of brain edema (STBI r=0.790, P<0.01; MTBI r=0.712, P<0.01). Conclusions: The plasma AVP level is closely associated with the severity of traumatic brain injury. AVP may play an important role in pathogenesis of brain edema after traumatic brain injury.

  12. Clinimetrics and functional outcome one year after traumatic brain injury

    OpenAIRE

    Baalen, Bianca

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic lateral sclerosis (ALS), and TBI. Frequently used measurement instruments were tested at different moments on their reliability and sensitivity to change. At the moment of discharge from hospital a r...

  13. Attention Functions in Traumatic Brain Injury and Stroke: An Exploration of the Predictors of Daily Living Difficulties and the Correlates of the CogniPlus Vigilance Training Programme

    OpenAIRE

    Shehab, Al Amira Safa

    2012-01-01

    Attention deficits are common in traumatic brain injury and stroke. These difficulties can impact the individual’s everyday life, affecting activities of daily living such as running errands, increasing cognitive errors such as failing to notice signs, and minimising community integration. They also call for specific training to improve these functions. We investigated the relationship between attention functions and these daily living aspects, as well as the correlates of the CogniPlus VIG t...

  14. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  15. Do brain lesions in stroke affect basic emotions and attachment?

    Science.gov (United States)

    Farinelli, Marina; Panksepp, Jaak; Gestieri, Laura; Maffei, Monica; Agati, Raffaele; Cevolani, Daniela; Pedone, Vincenzo; Northoff, Georg

    2015-01-01

    The aim of the current study was to investigate basic emotions and attachment in a sample of 86 stroke patients. We included a control group of 115 orthopedic patients (matched for age and cognitive status) without brain lesions to control for unspecific general illness effects of a traumatic recent event on basic emotions and attachment. In order to measure basic emotions and attachment style we applied the Affective Neuroscience Personality Scale (ANPS) and the Attachment Style Questionnaire (ASQ). The stroke patients showed significantly different scores in the SEEKING, SADNESS, and ANGER subscales of the ANPS as well as in the Relationship as Secondary Attachment dimension of the ASQ when compared to the control group. These differences show a pattern influenced by lesion location mainly as concerns basic emotions. Anterior, medial, left, and subcortical patients provide scores significantly lower in ANPS-SEEKING than the control group; ANPS-SADNESS scores in anterior, right, medial, and subcortical patients were significantly higher than those of the control group. ANPS-ANGER scores in posterior, right, and lateral patients were significantly higher than those in the control group; finally, the ANPS-FEAR showed slightly lower scores in posterior patients than in the control group. Minor effects on brain lesions were also individuated in the attachment style. Anterior lesion patients showed a significantly higher average score in the ASQ-Need for Approval subscale than the control group. ASQ-Confidence subscale scores differed significantly in stroke patients with lesions in medial brain regions when compared to control subjects. Scores at ANPS and ASQ subscales appear significantly more correlated in stroke patients than in the control group. Such finding of abnormalities, especially concerning basic emotions in stroke brain-lesioned patients, indicates that the effect of brain lesions may enhance the interrelation between basic emotions and attachment with

  16. Therapeutic Sleep for Traumatic Brain Injury

    Science.gov (United States)

    2017-06-01

    AWARD NUMBER: W81XWH-16-1-0166 TITLE: Therapeutic Sleep for Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Ravi Allada CONTRACTING...1. REPORT DATE June 2017 2. REPORT TYPE Annual 3. DATES COVERED 1June2016 - 31May2017 4. TITLE AND SUBTITLE Therapeutic Sleep for Traumatic Brain ...proposal will test the hypothesis that correcting sleep disorders can have a therapeutic effect onTraumatic Brain Injury (TBI) The majority of TBI

  17. Traumatic Brain Injury

    Science.gov (United States)

    ... brain injury Some traumatic brain injuries have lasting effects, and some do not. You may be left with disabilities. These can be physical, behavioral, communicative, and/or mental. Customized treatment helps you to have as full ...

  18. Comparison of the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke.

    Science.gov (United States)

    Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena

    2008-01-01

    In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the tested functions was observed in both groups. However, in patients with post-traumatic language processing deficits the degree of recovery of most language functions and some cognitive functions was higher. A significantly greater correlation was revealed within language and cognitive functions, as well as between language functions and other aspects of cognition in patients with post-traumatic language processing deficits than in patients with aphasia following a stroke. Our results show that patients with post-traumatic language processing deficits have a different recovery pattern and a different pattern of correlation between language and cognitive functions compared to patients with aphasia following a stroke. (1) Better understanding of the differences in recovery of language and cognitive functions in patients who have suffered strokes and those who have experienced traumatic brain injury. (2) Better understanding of the relationship between language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. (3) Better understanding of the factors influencing recovery.

  19. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  20. Traumatic primary brain stem haemorrhage

    International Nuclear Information System (INIS)

    Andrioli, G.C.; Zuccarello, M.; Trincia, G.; Fiore, D.L.; De Caro, R.

    1983-01-01

    We report 36 cases of post-traumatic 'primary brain stem haemorrhage' visualized by the CT scan and confirmed at autopsy. Clinical experience shows that many technical factors influence the inability to visualize brain stem haemorrhages. Experimental injection of fresh blood into the pons and midbrain of cadavers shows that lesions as small as 0.25 ml in volume may be visualized. The volume and the anatomical configuration of traumatic lesions of the brain stem extended over a rostro-caudal direction, and their proximity to bony structures at the base of the skull are obstacles to the visualization of brain stem haemorrhages. (Author)

  1. Stroke Rehabilitation

    Science.gov (United States)

    ... of the effects of a stroke Trouble swallowing (dysphagia) Problems with bowel or bladder control Fatigue Difficulty ... NINDS Focus on Disorders Alzheimer's & Related Dementias Epilepsy Parkinson's Disease Spinal Cord Injury Traumatic Brain Injury Focus ...

  2. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  3. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  4. TRAUMATIC BRAIN INJURY CHILDREN: A LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Denismar Borges de Miranda

    2013-09-01

    Full Text Available Objective: to know the scientific literature on head injury in children. Method: this study is an integrative review of published articles in the database SciELO the period 2000-2010. Results: 10 articles were analyzed, from which emerged four categories: causes of traumatic brain child infant prognosis of traumatic brain child, treating children victims of child head injury and complications of therapy used for child victims of traumatic brain injury in children. Conclusions: there is consensus among the authors investigated the factors associated with better prognosis of traumatic brain child, remain vague and uncertain. They add that the success of this customer service related to the control of complications arising from cerebral trauma and mostly are treatable and / or preventable.

  5. Traumatic brain lesions in newborns

    Directory of Open Access Journals (Sweden)

    Nícollas Nunes Rabelo

    Full Text Available ABSTRACT The neonatal period is a highly vulnerable time for an infant. The high neonatal morbidity and mortality rates attest to the fragility of life during this period. The incidence of birth trauma is 0.8%, varying from 0.2-2 per 1,000 births. The aim of this study is to describe brain traumas, and their mechanism, anatomy considerations, and physiopathology of the newborn traumatic brain injury. Methods A literature review using the PubMed data base, MEDLINE, EMBASE, Science Direct, The Cochrane Database, Google Scholar, and clinical trials. Selected papers from 1922 to 2016 were studied. We selected 109 papers, through key-words, with inclusion and exclusion criteria. Discussion This paper discusses the risk factors for birth trauma, the anatomy of the occipito-anterior and vertex presentation, and traumatic brain lesions. Conclusion Birth-related traumatic brain injury may cause serious complications in newborn infants. Its successful management includes special training, teamwork, and an individual approach.

  6. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Comparison of Community Reintegration and Selected Stroke ...

    African Journals Online (AJOL)

    Windows User

    Stroke Specific Characteristics in Nigerian Male and Female ... This study investigated the difference between community reintegration of male and female stroke survivors and the ..... of self identified goals by adults with traumatic brain injury:.

  8. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis - a systematic review and meta-analysis.

    Science.gov (United States)

    Beez, Thomas; Steiger, Hans-Jakob; Etminan, Nima

    2017-12-07

    The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities. Randomized, controlled, double-blinded trials on aforementioned entities with 'death' as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients. In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85-1.02)], ICH [RR 0.92 (95% CI:0.82-1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68-1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00-1.11)] and TBI [RR 1.03 (95% CI:0.93-1.15)]. Additional analysis of "poor outcome" as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category "oxidative metabolism/stress" for aSAH with a risk ratio of 0.86 [95% CI: 0.73-1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis. Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms

  9. Brain Basics: Preventing Stroke

    Science.gov (United States)

    ... NINDS) are committed to reducing that burden through biomedical research. What is a Stroke? A stroke, or "brain ... Testimony Legislative Updates Impact NINDS Contributions to Approved Therapies ... Director, Division of Intramural Research

  10. Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress.

    Science.gov (United States)

    Dretsch, Michael N; Williams, Kathy; Emmerich, Tanja; Crynen, Gogce; Ait-Ghezala, Ghania; Chaytow, Helena; Mathura, Venkat; Crawford, Fiona C; Iverson, Grant L

    2016-01-01

    In addition to experiencing traumatic events while deployed in a combat environment, there are other factors that contribute to the development of posttraumatic stress disorder (PTSD) in military service members. This study explored the contribution of genetics, childhood environment, prior trauma, psychological, cognitive, and deployment factors to the development of traumatic stress following deployment. Both pre- and postdeployment data on 231 of 458 soldiers were analyzed. Postdeployment assessments occurred within 30 days from returning stateside and included a battery of psychological health, medical history, and demographic questionnaires; neurocognitive tests; and blood serum for the D2 dopamine receptor (DRD2), apolipoprotein E (APOE), and brain-derived neurotropic factor (BDNF) genes. Soldiers who screened positive for traumatic stress at postdeployment had significantly higher scores in depression (d = 1.91), anxiety (d = 1.61), poor sleep quality (d = 0.92), postconcussion symptoms (d = 2.21), alcohol use (d = 0.63), traumatic life events (d = 0.42), and combat exposure (d = 0.91). BDNF Val66 Met genotype was significantly associated with risk for sustaining a mild traumatic brain injury (mTBI) and screening positive for traumatic stress. Predeployment traumatic stress, greater combat exposure and sustaining an mTBI while deployed, and the BDNF Met/Met genotype accounted for 22% of the variance of postdeployment PTSD scores (R (2)  = 0.22, P PTSD scores. These findings suggest predeployment traumatic stress, genetic, and environmental factors have unique contributions to the development of combat-related traumatic stress in military service members.

  11. Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.

    Science.gov (United States)

    Nelson, David V; Esty, Mary Lee

    2015-10-01

    Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  12. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    OpenAIRE

    Gonzalez-Brito Manuel; Solano Juan; Sanchez Pablo; Georgiou Michael F; Capille Michael; McGoron Anthony J; Kuluz John W

    2008-01-01

    Abstract Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Me...

  13. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dong Sun

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent de-velopment in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.

  14. Lateral automobile impacts and the risk of traumatic brain injury.

    Science.gov (United States)

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year

  15. Systematic review of clinical practice guidelines to identify recommendations for rehabilitation after stroke and other acquired brain injuries

    Science.gov (United States)

    Lannin, Natasha A; Hoffmann, Tammy

    2018-01-01

    Objectives Rehabilitation clinical practice guidelines (CPGs) contain recommendation statements aimed at optimising care for adults with stroke and other brain injury. The aim of this study was to determine the quality, scope and consistency of CPG recommendations for rehabilitation covering the acquired brain injury populations. Design Systematic review. Interventions Included CPGs contained recommendations for inpatient rehabilitation or community rehabilitation for adults with an acquired brain injury diagnosis (stroke, traumatic or other non-progressive acquired brain impairments). Electronic databases (n=2), guideline organisations (n=4) and websites of professional societies (n=17) were searched up to November 2017. Two independent reviewers used the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, and textual syntheses were used to appraise and compare recommendations. Results From 427 papers screened, 20 guidelines met the inclusion criteria. Only three guidelines were rated high (>75%) across all domains of AGREE-II; highest rated domains were ‘scope and purpose’ (85.1, SD 18.3) and ‘clarity’ (76.2%, SD 20.5). Recommendations for assessment and for motor therapies were most commonly reported, however, varied in the level of detail across guidelines. Conclusion Rehabilitation CPGs were consistent in scope, suggesting little difference in rehabilitation approaches between vascular and traumatic brain injury. There was, however, variability in included studies and methodological quality. PROSPERO registration number CRD42016026936. PMID:29490958

  16. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  17. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  18. Mild Traumatic Brain Injury

    Science.gov (United States)

    ... mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco Life Stress Spirituality Anger Physical Injury Stigma Health & Wellness Work Adjustment Community Peer-2-Peer Forum ...

  19. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  20. Blunt Traumatic Extracranial Cerebrovascular Injury and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Paul M. Foreman

    2017-04-01

    Full Text Available Background: Ischemic stroke occurs in a significant subset of patients with blunt traumatic cerebrovascular injury (TCVI. The patients are victims of motor vehicle crashes, assaults or other high-energy collisions, and suffer ischemic stroke due to injury to the extracranial carotid or vertebral arteries. Summary: An increasing number of patients with TCVI are being identified, largely because of the expanding use of computed tomography angiography for screening patients with blunt trauma. Patients with TCVI are particularly challenging to manage because they often suffer polytrauma, that is, numerous additional injuries including orthopedic, chest, abdominal, and head injuries. Presently, there is no consensus about optimal management. Key Messages: Most literature about TCVI and stroke has been published in trauma, general surgery, and neurosurgery journals; because of this, and because these patients are managed primarily by trauma surgeons, patients with stroke due to TCVI have been essentially hidden from view of neurologists. This review is intended to bring this clinical entity to the attention of clinicians and investigators with specific expertise in neurology and stroke.

  1. The value of the identification of predisposing factors for post-traumatic amnesia in management of mild traumatic brain injury.

    Science.gov (United States)

    Fotakopoulos, George; Makris, Demosthenes; Tsianaka, Eleni; Kotlia, Polikceni; Karakitsios, Paulos; Gatos, Charalabos; Tzannis, Alkiviadis; Fountas, Kostas

    2018-01-01

    To identify the risk factors for post-traumatic amnesia (PTA) and to document the incidence of PTA after mild traumatic brain injuries. This was a prospective study, affecting mild TBI (mTBI) (Glasgow Coma Scale 14-15) cases attending to the Emergency Department between January 2009 and April 2012 (40 months duration). Patients were divided into two groups (Group A: without PTA, and Group B: with PTA, and they were assessed according to the risk factors. A total of 1762 patients (males: 1002, 56.8%) were meeting study inclusion criteria [Group A: n = 1678 (83.8%), Group B: n = 84 (4.2%)]. Age, CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs, and skull base fractures), anticoagulation therapy and seizures were independent factors of PTA. There was no statistically significant correlation between PTA and sex, convexity fractures, stroke event, mechanism of mTBI (fall +/or beating), hypertension, coronary heart disease, chronic smokers and diabetes (p > 0.005). CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs and skull base fractures), age, seizures and anticoagulation/antiplatelet therapy, were independent factors of PTA and could be used as predictive factors after mTBI.

  2. Intracranial Monitoring after Severe Traumatic Brain Injury

    OpenAIRE

    Donnelly, Joseph

    2018-01-01

    Intracranial monitoring after severe traumatic brain injury offers the possibility for early detection and amelioration of physiological insults. In this thesis, I explore cerebral insults due raised intracranial pressure, decreased cerebral perfusion pressure and impaired cerebral pressure reactivity after traumatic brain injury. In chapter 2, the importance of intracranial pressure, cerebral perfusion pressure and pressure reactivity in regulating the cerebral circulation is elucidated ...

  3. Acute and long-term pituitary insufficiency in traumatic brain injury

    DEFF Research Database (Denmark)

    Klose, M; Juul, A; Struck, J

    2007-01-01

    To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations.......To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations....

  4. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  5. Preliminary questions before studying mild traumatic brain injury outcome.

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Dumond, J-J

    2009-07-01

    To point out from the literature the issues in mild traumatic brain injury outcome. METHODOLOGY-RESULTS: The literature review allows to point out several different factors involved in the difficulty to study mild traumatic brain injury: mild traumatic brain injury definition, postconcussional syndrome definition, diagnosis threshold, severity and functional symptoms outcome, neuropsychological tests, unspecific syndrome feature, individual factors, confounding factors and treatment interventions. The mild traumatic brain injury outcome study is complicated by the definitions issues and especially their practical use and by the multiplicity and the intricate interrelationships among involved factors. The individual outcome and social cost weight is widely emphasized for an event still considered as medically trivial. The well-ordered preventive interventions necessity and the targeted treatment programs need for the persisting postconcussive symptoms complete our critical review.

  6. Defense Health Care: Research on Hyperbaric Oxygen Therapy to Treat Traumatic Brain Injury and Post-Traumatic Stress Disorder

    Science.gov (United States)

    2015-12-01

    Traumatic Brain Injury and Post - Traumatic Stress Disorder Why GAO Did This Study TBI and PTSD are signature...injury (TBI) and post - traumatic stress disorder ( PTSD ), most of which were focused solely on TBI (29 articles). The 32 articles consisted of 7 case...Case Report Articles on Hyperbaric Oxygen Therapy to Treat Traumatic Brain Injury (TBI) or Post - Traumatic Stress Disorder ( PTSD ),

  7. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  8. In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Bach, Anders; Rytter, Hana Malá

    2017-01-01

    weeks post-trauma, spatial learning and memory were assessed in a water maze, and at 3 months, brains were removed for estimation of lesion volumes. Overall, neither treatment with UCCB01-147 nor MK-801 resulted in significant improvements of cognition and histopathology after CCI. Although MK-801......PSD-95 inhibitors have been shown to be neuroprotective in stroke, but have only to a very limited extent been evaluated in the treatment of traumatic brain injury (TBI) that has pathophysiological mechanisms in common with stroke. The aims of the current study were to assess the effects of a novel...

  9. Traumatic Brain Injury Inpatient Rehabilitation

    Science.gov (United States)

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  10. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    Science.gov (United States)

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  11. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.

    Science.gov (United States)

    Cole, James H; Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-04

    Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow

  12. Screening for Post-Traumatic Stress Disorder in a Civilian Emergency Department Population with Traumatic Brain Injury.

    Science.gov (United States)

    Haarbauer-Krupa, Juliet; Taylor, Christopher A; Yue, John K; Winkler, Ethan A; Pirracchio, Romain; Cooper, Shelly R; Burke, John F; Stein, Murray B; Manley, Geoffrey T

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a condition associated with traumatic brain injury (TBI). While the importance of PTSD and TBI among military personnel is widely recognized, there is less awareness of PTSD associated with civilian TBI. We examined the incidence and factors associated with PTSD 6 months post-injury in a civilian emergency department population using measures from the National Institute of Neurological Disorders and Stroke TBI Common Data Elements Outcome Battery. Participants with mild TBI (mTBI) from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with complete 6-month outcome batteries (n = 280) were analyzed. Screening for PTSD symptoms was conducted using the PTSD Checklist-Civilian Version. Descriptive measures are summarized and predictors for PTSD were examined using logistic regression. Incidence of screening positive for PTSD was 26.8% at 6 months following mTBI. Screening positive for PTSD was significantly associated with concurrent functional disability, post-concussive and psychiatric symptomatology, decreased satisfaction with life, and decreased performance in visual processing and mental flexibility. Multi-variable regression showed injury mechanism of assault (odds ratio [OR] 3.59; 95% confidence interval [CI] 1.69-7.63; p = 0.001) and prior psychiatric history (OR 2.56; 95% CI 1.42-4.61; p = 0.002) remained significant predictors of screening positive for PTSD, while education (per year OR 0.88; 95% CI 0.79-0.98; p = 0.021) was associated with decreased odds of PTSD. Standardized data collection and review of pre-injury education, psychiatric history, and injury mechanism during initial hospital presentation can aid in identifying patients with mTBI at risk for developing PTSD symptoms who may benefit from closer follow-up after initial injury care.

  13. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  14. Neurodegeneration after mild and repetitive traumatic brain injury: Chronic traumatic encepalopathy

    Directory of Open Access Journals (Sweden)

    Stanescu Ioana

    2015-09-01

    Full Text Available Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently under research. CTE can be diagnosed only by post mortem neuropathological examination of the brain. Great efforts are being made to better understand the clinical signs and symptoms of CTE, obtained in most cases retrospectively from families of affected persons.Patients with CTE are described as having behavioral, mood, cognitive and motor impairments, occurring after a long latency from the traumatic events. Recent pathogenetic studies have provided new insights to CTE mechanisms, offering important clues in understanding neurodegenerative process and relations between physical factors and pathologic protein deposition. Further research is needed to better identify the genetic and environmental risk factors for CTE, as well as rehabilitation and treatment strategies.

  15. Proton MR spectroscopy in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Kubas, Bożena; Łebkowski, Wojciech; Łebkowska, Urszula; Kułak, Wojciech; Tarasow, Eugeniusz; Walecki, Jerzy

    2010-01-01

    To assess the role of 1H MRS in the detection of changes in cerebral metabolite levels in pyramidal tracts after mild traumatic brain injury (MTBI) and to compare metabolite alterations to the clinical status (Glasgow Coma Scale). Study group consisted of 25 patients after mild traumatic brain injury, with a score of 11 to 15 in GCS. The MR studies were performed with a 1.5 T scanner. The results of spectra approximation (presented as metabolite ratios: NAA/Cr, NAA/Cho, Cho/Cr, lac/Cr, lip/Cr, Glx/Cr) were subjected to statistical analysis. MR spectra were recorded from a normal-appearing brain region: internal capsules and cerebral peduncles. Spectra from traumatic patients were compared with a control group including 34 healthy volunteers recorded with the same techniques. The statistical analysis revealed significant differences between the data obtained from various brain regions of the same patients after an MTBI and between the study and the control group. Proton MR spectroscopy detects changes in cerebral metabolite levels in apparently normal regions. In pyramidal tracts (internal capsules, cerebral peduncles), we noticed a significant reduction of NAA /Cho, lip/Cr, lac/Cr and Glx/Cr. In patients with mild brain injury, we can detect some metabolite abnormalities in normal-appearing brain structures. Proton MRS is a very useful tool for evaluation of major changes in metabolite levels in pyramidal tracts after mild traumatic brain injury

  16. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  17. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury

    OpenAIRE

    Munakomi, Sunil; Bhattarai, Binod; Mohan Kumar, Bijoy

    2017-01-01

    Purpose: Despite the prevalence and cost of traumatic brain injury related disabilities, there is paucity in the literature on modern approaches to pharmacotherapy. Medications may promote recovery by enhancing some neurological functions without impacting others. Herein we discussed the role of bromocriptine in neurorehabilitation for patients with traumatic brain injury. Methods: A cohort comprising of 36 selective nonsurgical cases of traumatic brain injury in minimally conscious state ...

  18. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  19. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    The spectrum and outcome of paediatric traumatic brain injury in ... to develop a comprehensive overview of traumatic brain injury (TBI) in children ... We reviewed the age, gender, outcomes, radiological findings and treatment of the patients.

  20. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury

    International Nuclear Information System (INIS)

    Makoroff, Kathi L.; Cecil, Kim M.; Ball, William S.; Care, Marguerite

    2005-01-01

    Patients with inflicted traumatic brain injury and evidence of hypoxic-ischemic injury as indicated by elevated lactate on MRS tend to have worse early neurological status and early outcome scores. Lactate levels as sampled by MRS might predict early clinical outcome in inflicted traumatic brain injury. (orig.)

  1. [Traumatic brain injuries--forensic and expertise aspects].

    Science.gov (United States)

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  2. Post-traumatic amnesia predicts intelligence impairment following traumatic brain injury: a meta-analysis

    NARCIS (Netherlands)

    Konigs, M.; de Kieviet, J.F.; Oosterlaan, J.

    2012-01-01

    Context: Worldwide, millions of patients with traumatic brain injury (TBI) suffer from persistent and disabling intelligence impairment. Post-traumatic amnesia (PTA) duration is a promising predictor of intelligence following TBI. Objectives: To determine (1) the impact of TBI on intelligence

  3. Caring for Patients with traumatic brain injury: a survey of nurses' perceptions.

    Science.gov (United States)

    Oyesanya, Tolu O; Brown, Roger L; Turkstra, Lyn S

    2017-06-01

    The purpose of this study was to determine nurses' perceptions about caring for patients with traumatic brain injury. Annually, it is estimated that over 10 million people sustain a traumatic brain injury around the world. Patients with traumatic brain injury and their families are often concerned with expectations about recovery and seek information from nurses. Nurses' perceptions of care might influence information provided to patients and families, particularly if inaccurate knowledge and perceptions are held. Thus, nurses must be knowledgeable about care of these patients. A cross-sectional survey, the Perceptions of Brain Injury Survey (PBIS), was completed electronically by 513 nurses between October and December 2014. Data were analysed with structural equation modelling, factor analysis, and pairwise comparisons. Using latent class analysis, authors were able to divide nurses into three homogeneous sub-groups based on perceived knowledge: low, moderate and high. Findings showed that nurses who care for patients with traumatic brain injury the most have the highest perceived confidence but the lowest perceived knowledge. Nurses also had significant variations in training. As there is limited literature on nurses' perceptions of caring for patients with traumatic brain injury, these findings have implications for training and educating nurses, including direction for development of nursing educational interventions. As the incidence of traumatic brain injury is growing, it is imperative that nurses be knowledgeable about care of patients with these injuries. The traumatic brain injury PBIS can be used to determine inaccurate perceptions about caring for patients with traumatic brain injury before educating and training nurses. © 2016 John Wiley & Sons Ltd.

  4. Invisible Bleeding: The Command Team’s Role in the Identification, Understanding, and Treatment of Traumatic Brain Injury and Post Traumatic Stress Disorder

    Science.gov (United States)

    2013-04-11

    Traumatic Brain Injury, Post Traumatic Stress Disorder , TBI, PTSD , Wounded...Brain Injury (TBI) and Post Traumatic Stress Disorder ( PTSD ). Command teams must leverage the existing programs and infrastructure while demonstrating a...subsequent struggle with Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder ( PTSD ) have given me the unique insight to tackle

  5. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  6. Magnetic resonance spectroscopy of traumatic brain in SD rats model

    International Nuclear Information System (INIS)

    Li Ke; Li Yangbin; Li Zhiming; Huang Yong; Li Bin; Lu Guangming

    2009-01-01

    Objective: To assess the value and prospect of magnetic resonance spectroscopy (MRS) in early diagnosis of traumatic brain with traumatic brain model in SD rats. Methods: Traumatic brain modal was established in 40 male SD rats utilizing a weigh-drop device, and MRS was performed before trauma and 4,8,24 and 48 hours after trauma. The ratio of N-acetylaspartate/creatine (NAA/Ct) and choline/creatine (Cho/Cr) were calculated and compared with pathological findings respectively. Results: Axonal changes were confirmed in microscopic study 4 hours after injury. The ratio of NAA/Ct decreased distinctly at 4 hours after trauma, followed by a steadily recover at 8 hours, and no significant change from 24h to 48h. There was no significant change in the ratio of Cho/Cr before and after trauma. Conclusion: MRS can be used to monitor the metabolic changes of brain non-invasively. MRS could play a positive role in early diagnosis, prognosis and follow-up of traumatic brain. (authors)

  7. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  8. Melatonin and Ischemic Stroke: Mechanistic Roles and Action.

    Science.gov (United States)

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2015-01-01

    Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.

  9. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  10. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  11. Structural MRI markers of brain aging early after ischemic stroke.

    Science.gov (United States)

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  12. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  13. Multi-scale mechanics of traumatic brain injury

    NARCIS (Netherlands)

    Cloots, R.J.H.

    2011-01-01

    Traumatic brain injury (TBI) can be caused by road traffic, sports-related or other types of accidents and often leads to permanent health issues or even death. For a good prevention or diagnosis of TBI, brain injury criteria are used to assess the probability of brain injury as a result of a

  14. Cystatin C Has a Dual Role in Post-Traumatic Brain Injury Recovery

    Directory of Open Access Journals (Sweden)

    Marina Martinez-Vargas

    2014-04-01

    Full Text Available Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we describe the effect of cystatin C intracerebroventricular administration in rats prior to inducing a traumatic brain injury. We observed that cystatin C injection caused a dual response in post-traumatic brain injury recovery: higher doses (350 fmoles increased bleeding and mortality, whereas lower doses (3.5 to 35 fmoles decreased bleeding, neuronal damage and mortality. We also analyzed the expression of cathepsin B and cystatin C in the brains of control rats and of rats after a traumatic brain injury. Cathepsin B was detected in the brain stem, cerebellum, hippocampus and cerebral cortex of control rats. Cystatin C was localized to the choroid plexus, brain stem and cerebellum of control rats. Twenty-four hours after traumatic brain injury, we observed changes in both the expression and localization of both proteins in the cerebral cortex, hippocampus and brain stem. An early increase and intralysosomal expression of cystatin C after brain injury was associated with reduced neuronal damage.

  15. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  16. Traumatic brain injury: Comparison between autopsy and ante-mortem CT.

    Science.gov (United States)

    Panzer, Stephanie; Covaliov, Lidia; Augat, Peter; Peschel, Oliver

    2017-11-01

    The aim of this study was to compare pathological findings after traumatic brain injury between autopsy and ante-mortem computed tomography (CT). A second aim was to identify changes in these findings between the primary posttraumatic CT and the last follow-up CT before death. Through the collaboration between clinical radiology and forensic medicine, 45 patients with traumatic brain injury were investigated. These patients had undergone ante-mortem CT as well as autopsy. During autopsy, the brain was cut in fronto-parallel slices directly after removal without additional fixation or subsequent histology. Typical findings of traumatic brain injury were compared between autopsy and radiology. Additionally, these findings were compared between the primary CT and the last follow-up CT before death. The comparison between autopsy and radiology revealed a high specificity (≥80%) in most of the findings. Sensitivity and positive predictive value were high (≥80%) in almost half of the findings. Sixteen patients had undergone craniotomy with subsequent follow-up CT. Thirteen conservatively treated patients had undergone a follow-up CT. Comparison between the primary CT and the last ante-mortem CT revealed marked changes in the presence and absence of findings, especially in patients with severe traumatic brain injury requiring decompression craniotomy. The main pathological findings of traumatic brain injury were comparable between clinical ante-mortem CT examinations and autopsy. Comparison between the primary CT after trauma and the last ante-mortem CT revealed marked changes in the findings, especially in patients with severe traumatic brain injury. Hence, clinically routine ante-mortem CT should be included in the process of autopsy interpretation. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  17. Assessment of Students with Traumatic Brain Injury

    Science.gov (United States)

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  18. Experiences of giving and receiving care in traumatic brain injury: An integrative review.

    Science.gov (United States)

    Kivunja, Stephen; River, Jo; Gullick, Janice

    2018-04-01

    To synthesise the literature on the experiences of giving or receiving care for traumatic brain injury for people with traumatic brain injury, their family members and nurses in hospital and rehabilitation settings. Traumatic brain injury represents a major source of physical, social and economic burden. In the hospital setting, people with traumatic brain injury feel excluded from decision-making processes and perceive impatient care. Families describe inadequate information and support for psychological distress. Nurses find the care of people with traumatic brain injury challenging particularly when experiencing heavy workloads. To date, a contemporary synthesis of the literature on people with traumatic brain injury, family and nurse experiences of traumatic brain injury care has not been conducted. Integrative literature review. A systematic search strategy guided by the PRISMA statement was conducted in CINAHL, PubMed, Proquest, EMBASE and Google Scholar. Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) integrative review framework guided data reduction, data display, data comparison and conclusion verification. Across the three participant categories (people with traumatic brain injury/family members/nurses) and sixteen subcategories, six cross-cutting themes emerged: seeking personhood, navigating challenging behaviour, valuing skills and competence, struggling with changed family responsibilities, maintaining productive partnerships and reflecting on workplace culture. Traumatic brain injury creates changes in physical, cognitive and emotional function that challenge known ways of being in the world for people. This alters relationship dynamics within families and requires a specific skill set among nurses. Recommendations include the following: (i) formal inclusion of people with traumatic brain injury and families in care planning, (ii) routine risk screening for falls and challenging behaviour to ensure that controls are based on

  19. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    Science.gov (United States)

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2017. Published by Elsevier Inc.

  20. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    Science.gov (United States)

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  1. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    Science.gov (United States)

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  2. Neuropsychiatric Disturbances and Hypopituitarism After Traumatic Brain Injury in an Elderly Man

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chang

    2006-01-01

    Full Text Available Neuropsychiatric or cognitive disturbances are common complications after traumatic brain injury. They are commonly regarded as irreversible sequelae of organic brain injuries. We report a case of hypopituitarism in a 77-year-old man who presented with long-term neuropsychiatric disturbances, including cognitive impairment, disturbed sleep patterns, personality change, loss of affect, and visual and auditory hallucinations after a traumatic subdural hemorrhage. The treatment response to hormone replacement therapy was nearly complete. Hypopituitarism is rarely considered in patients who sustain traumatic brain injury and the neuropsychiatric manifestations of posttraumatic hypopituitarism have rarely been reported. This case highlights the importance of hypopituitarism as a potential reversible cause of neuropsychiatric disturbances after traumatic brain injury.

  3. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    Science.gov (United States)

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic

  4. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies.

    Directory of Open Access Journals (Sweden)

    Yannick Béjot

    Full Text Available BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees of stroke severity observed in stroke patients. Blood was serially collected from the jugular vein before and after (4 h, 24 h and 8 d embolization and the whole brains were collected at 4, 24 h and 8 d post-embolization. Rats were then selected from their degree of embolization, so that the distribution of stroke severity in the rats at the different time points was large but similar. Using ELISA tests, BDNF levels were measured in plasma, serum and brain of selected rats. Whereas plasma and serum BDNF levels were not changed by stroke, stroke induced an increase in brain BDNF levels at 4 h and 24 h post-embolization, which was not correlated with stroke severity. Individual plasma BDNF levels did not correlate with brain levels at any time point after stroke but a positive correlation (r = 0.67 was observed between individual plasma BDNF levels and stroke severity at 4 h post-embolization. CONCLUSION: Circulating BDNF levels do not mirror brain BDNF levels after stroke, and severe stroke is associated with high plasma BDNF in the very acute stage.

  5. Melatonin and Ischemic Stroke: Mechanistic Roles and Action

    Directory of Open Access Journals (Sweden)

    Syed Suhail Andrabi

    2015-01-01

    Full Text Available Stroke is one of the most devastating neurological disabilities and brain’s vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca2+ level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.

  6. Post-traumatic stress disorder in Polish stroke patients who survived Nazi concentration camps.

    Science.gov (United States)

    Pachalska, Maria; Grochmal-Bach, Bozena; MacQueen, Bruce Duncan; Frańczuk, Bogusław

    2006-04-01

    Many persons who survived Nazi concentration camps are now in advanced age, so that rehabilitation centers in Poland are seeing increasing numbers of such patients, especially after strokes. In many cases, the process of rehabilitation is severely hampered by Post-Traumatic Stress Disorder (PTSD), while the neuropsychological consequences of the stroke itself often evoke traumatic memories and simultaneously disorganize or destroy the patient's previous coping mechanisms. The present study describes the program developed by the authors for concentration camp survivors in post-stroke rehabilitation, including the use of art therapy and specially prepared films to help the patients cope with PTSD. The experimental group (KL) consisted of 8 such patients (4 men, 4 women, average age 79.1+/-4.28) with mild post-stroke aphasia who went through the PTSD program, while the comparison group (C) included 8 post-stroke patients, matched for age and gender, who were not concentration camp survivors and showed no premorbid symptoms of PTSD. All subjects were tested at baseline and again 3 months later, using structured interview and observation, self-rating scales for three basic negative emotions (anger, anxiety and sadness) and the Frustration and Aggression Test for the Disabled. The results showed significant differences between the groups at baseline, while at follow-up the differences between groups had changed in both extent and distribution. Qualitative analysis of the results allows for some important observations about the etiology and course of PTSD in these persons.

  7. Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.

    Science.gov (United States)

    Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan

    2014-08-01

    We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo

  8. Reverse phase protein microarray technology in traumatic brain injury.

    Science.gov (United States)

    Gyorgy, Andrea B; Walker, John; Wingo, Dan; Eidelman, Ofer; Pollard, Harvey B; Molnar, Andras; Agoston, Denes V

    2010-09-30

    Antibody based, high throughput proteomics technology represents an exciting new approach in understanding the pathobiologies of complex disorders such as cancer, stroke and traumatic brain injury. Reverse phase protein microarray (RPPA) can complement the classical methods based on mass spectrometry as a high throughput validation and quantification method. RPPA technology can address problematic issues, such as sample complexity, sensitivity, quantification, reproducibility and throughput, which are currently associated with mass spectrometry-based approaches. However, there are technical challenges, predominantly associated with the selection and use of antibodies, preparation and representation of samples and with analyzing and quantifying primary RPPA data. Here we present ways to identify and overcome some of the current issues associated with RPPA. We believe that using stringent quality controls, improved bioinformatics analysis and interpretation of primary RPPA data, this method will significantly contribute in generating new level of understanding about complex disorders at the level of systems biology. Published by Elsevier B.V.

  9. Performance Monitoring in Children Following Traumatic Brain Injury Compared to Typically Developing Children

    Directory of Open Access Journals (Sweden)

    Amy A. Wilkinson PhD

    2017-10-01

    Full Text Available Children with traumatic brain injury are reported to have deficits in performance monitoring, but the mechanisms underlying these deficits are not well understood. Four performance monitoring hypotheses were explored by comparing how 28 children with traumatic brain injury and 28 typically developing controls (matched by age and sex performed on the stop-signal task. Control children slowed significantly more following incorrect than correct stop-signal trials, fitting the error monitoring hypothesis. In contrast, the traumatic brain injury group showed no performance monitoring difference with trial types, but significant group differences did not emerge, suggesting that children with traumatic brain injury may not perform the same way as controls.

  10. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    Science.gov (United States)

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  11. A Systematic Review of the Prevalence of Oropharyngeal Dysphagia in Stroke, Parkinson's Disease, Alzheimer's Disease, Head Injury, and Pneumonia.

    Science.gov (United States)

    Takizawa, Claire; Gemmell, Elizabeth; Kenworthy, James; Speyer, Renée

    2016-06-01

    Oropharyngeal dysphagia is a common condition after stroke, Parkinson's disease (PD), and Alzheimer's disease (AD), and can cause serious complications including malnutrition, aspiration pneumonia, and premature mortality. Despite its high prevalence among the elderly and associated serious complications, dysphagia is often overlooked and under-diagnosed in vulnerable patient populations. This systematic review aimed to improve understanding and awareness of the prevalence of dysphagia in susceptible patient populations. MEDLINE, EMBASE, the Cochrane library, PROSPERO, and disease-specific websites were systematically searched for studies reporting oropharyngeal dysphagia prevalence or incidence in people with stroke, PD, AD, traumatic brain injury, and community-acquired pneumonia, from the USA, Canada, France, Germany, Italy, Spain, UK, Japan, China, and regional studies. The quality of study descriptions were assessed based on STROBE guidelines. A total of 1207 publications were identified and 33 met inclusion criteria: 24 in stroke, six in PD, two in traumatic brain injury, and one in patients with traumatic brain injury. Dysphagia was reported in 8.1-80 % of stroke patients, 11-81 % of PD, 27-30 % of traumatic brain injury patients, and 91.7 % of patients with community-acquired pneumonia. No relevant studies of dysphagia in AD were identified. This review demonstrates that dysphagia is highly prevalent in these populations, and highlights discrepancies between studies, gaps in dysphagia research, and the need for better dysphagia management starting with a reliable, standardized, and validated method for oropharyngeal dysphagia identification.

  12. Vision rehabilitation interventions following mild traumatic brain injury: a scoping review.

    Science.gov (United States)

    Simpson-Jones, Mary E; Hunt, Anne W

    2018-04-10

    To broadly examine the literature to identify vision interventions following mild traumatic brain injury. Objectives are to identify: (1) evidence-informed interventions for individuals with visual dysfunction after mild traumatic brain injury; (2) professions providing these interventions; (3) gaps in the literature and areas for further research. A scoping review was conducted of four electronic databases of peer-reviewed literature from the databases earliest records to June 2017. Articles were included if the study population was mild traumatic brain injury/concussion and a vision rehabilitation intervention was tested. Two independent reviewers screened articles for inclusion, extracted data, and identified themes. The initial search identified 3111 records. Following exclusions, 22 articles were included in the final review. Nine studies evaluated optical devices, such as corrective spectacles, contact lenses, prisms, or binasal occlusion. Two studies assessed vision therapy. Ten studies examined vision therapy using optical devices. One study investigated hyperbaric oxygen therapy. Optometrists performed these interventions in most of the studies. Future research should address quality appraisal of this literature, interventions that include older adult and pediatric populations, and interdisciplinary interventions. There are promising interventions for vision deficits following mild traumatic brain injury. However, there are multiple gaps in the literature that should be addressed by future research. Implications for Rehabilitation Mild traumatic brain injury may result in visual deficits that can contribute to poor concentration, headaches, fatigue, problems reading, difficulties engaging in meaningful daily activities, and overall reduced quality of life. Promising interventions for vision rehabilitation following mild traumatic brain injury include the use of optical devices (e.g., prism glasses), vision or oculomotor therapy (e.g., targeted exercises to

  13. Placebo-controlled trial of amantadine for severe traumatic brain injury

    DEFF Research Database (Denmark)

    Giacino, Joseph T; Whyte, John; Bagiella, Emilia

    2012-01-01

    Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery.......Amantadine hydrochloride is one of the most commonly prescribed medications for patients with prolonged disorders of consciousness after traumatic brain injury. Preliminary studies have suggested that amantadine may promote functional recovery....

  14. Delayed traumatic hematomas of the brain: the early manifestations of CT

    International Nuclear Information System (INIS)

    Liu Shuyan; Tang Guangjian; Fu Jiazhen; Xu Bing; Yin Yanyu

    2002-01-01

    Objective: To study the CT manifestations of delayed traumatic hematomas of the brain and evaluate their diagnostic significance in predicting the delayed traumatic brain hematoma. Methods: The manifestations of initial CT studies and follow-up CT examinations of 31 delayed traumatic brain hematomas were analyzed. Another 50 CT studies of head trauma without delayed brain hematomas were included randomly as control. Results: The abnormal findings of CT studies of the 31 delayed traumatic brain hematomas included: (1) Decreased density of the local brain parenchyma and disappeared difference between gray and white matter of the same area in 18 cases; (2) Local subarachnoid space hemorrhage in 24 cases; (3) Slight mass effect of local brain parenchyma in 16 cases. (4) Subdural hematoma in 9 cases. The locations of the abnormalities were roughly the same with the delayed hematoma except one local subarachnoid space hemorrhage, which was in the opposite of the delayed hematoma. The appearing rate of those abnormal findings in the control group was low and the difference was statistically significant. Conclusion: The decrease of density of local brain parenchyma, the disappeared difference between the gray and white matter, local subarachnoid space hemorrhage, and local swollen of brain presented in the initial CT study of the patient with heat trauma should be taken as indicators of delayed hemorrhage of the same area of brain, and it is necessary to do follow-up CT studies to exclude it

  15. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HuaHu; Wei-PingZhang; LeiZhang; ZhongChen; Er-QingWei

    2004-01-01

    Aquaporin-4 (AQP4) is one of the aquaporins (AQPs), a water channel family. In the brain, AQP4 is expressed in astroeyte foot processes, and plays an important role in water homeostasis and in the formation of brain edema. In our study, AQP4 expression in human brain specimens from patients with traumatic brain injury or different brain tumors was detected

  16. Evaluation of role of brain SPECT in diagnosis of post stroke dementia

    International Nuclear Information System (INIS)

    Yousepour, G.; Alavi, M.

    2003-01-01

    Post stroke dementia is one of the most common complications of stroke that is preventable and relatively treatable too. The purpose of the study is comparison between the positive findings in the brain CT scan and brain perfusion SPECT. 15 patients who were complicated by dementia after cerebrovascular accident and also 5 patients as a control group enrolled in this study. Brain CT scan and brain SPECT were performed during at most one week after stroke. Abnormal findings in both brain CT scan and SPECT were seen in 46% of patients. Brain CT scan disclosed more abnormal findings compared to brain SPECT (33.3%). While brain SPECT findings were more information than brain CT scan (20%) this study is indicating that brain CT scan and the brain SPECT concomitantly for each other in better diagnosis of post stroke dementia. We did not find any specific diagnostic pattern in brain SPECT of patients suffering from post stroke dementia. The low quality of brain SPECT in spite of uniformity of gamma camera may be suggestive of low quality of Iran produced ECD kit that needs further evaluation

  17. Determinants of Glasgow outcome scale in patients with severe traumatic brain injury for better quality of life

    Science.gov (United States)

    Dharmajaya, R.; Sari, D. K.; Ganie, R. A.

    2018-03-01

    Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (p<0.05) for determining the quality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.

  18. Beam diagnostics for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Nikol`skiy Yu.E.

    2012-06-01

    Full Text Available

    The paper presents aliterature review of domestic and foreign sources of modern methods of diagnostics imaging for traumatic brain injury. Information of the magnetic resonance imaging and computed tomography in the of this disease

  19. SPECT brain perfusion findings in mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Abu-Judeh, H.H.; Parker, R.; Aleksic, S.

    2000-01-01

    Background: The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. PATIENTS AND METHODS: This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). RESULTS: Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). CONCLUSIONS: Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than

  20. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  1. Medical Management of the Severe Traumatic Brain Injury Patient.

    Science.gov (United States)

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  2. Traumatic Brain Injuries during Development: Implications for Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Zachary M. Weil

    2017-07-01

    Full Text Available Traumatic brain injuries are strongly related to alcohol intoxication as by some estimates half or more of all brain injuries involve at least one intoxicated individual. Additionally, there is mounting evidence that traumatic brain injuries can themselves serve as independent risk factors for the development of alcohol use disorders, particularly when injury occurs during juvenile or adolescent development. Here, we will review the epidemiological and experimental evidence for this phenomenon and discuss potential psychosocial mediators including attenuation of negative affect and impaired decision making as well as neurochemical mediators including disruption in the glutamatergic, GABAergic, and dopaminergic signaling pathways and increases in inflammation.

  3. Risk of stroke among patients with post-traumatic stress disorder: nationwide longitudinal study.

    Science.gov (United States)

    Chen, Mu-Hong; Pan, Tai-Long; Li, Cheng-Ta; Lin, Wei-Chen; Chen, Ying-Sheue; Lee, Ying-Chiao; Tsai, Shih-Jen; Hsu, Ju-Wei; Huang, Kai-Lin; Tsai, Chia-Fen; Chang, Wen-Han; Chen, Tzeng-Ji; Su, Tung-Ping; Bai, Ya-Mei

    2015-04-01

    Previous evidence has shown positive associations between post-traumatic stress disorder (PTSD) and hypertension, dyslipidaemia and diabetes mellitus, which are all risk factors for stroke, but the role of PTSD in the subsequent development of stroke is still unknown. To investigate the temporal association between PTSD and the development of stroke. Identified from the Taiwan National Health Insurance Research Database, 5217 individuals aged ≥18 years, with PTSD but with no history of stroke, and 20 868 age- and gender-matched controls were enrolled between 2002 and 2009, and followed up until the end of 2011 to identify the development of stroke. Individuals with PTSD had an increased risk of developing any stroke (hazard ratio (HR) 3.37, 95% CI 2.44-4.67) and ischaemic stroke (HR = 3.47, 95% CI 2.23-5.39) after adjusting for demographic data and medical comorbidities. Sensitivity tests showed consistent findings (any stroke HR = 3.02, 95% CI 2.13-4.28; ischaemic stroke HR = 2.89, 95% CI 1.79-4.66) after excluding the first year of observation. Individuals with PTSD have an increased risk of developing any stroke and ischaemic stroke. Further studies are required to investigate the underlying mechanisms. Royal College of Psychiatrists.

  4. Evaluation after Traumatic Brain Injury

    Science.gov (United States)

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  5. Traumatic brachiocephalic pseudoaneurysm presenting with delayed stroke: case report

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, A.; Gueckel, F. [Department of Radiology, University Hospital Mannheim, Medical Faculty of University Heidelberg (Germany); Meairs, S.; Cornelius, A.; Schwartz, A. [Department of Neurology, University Hospital Mannheim, Medical Faculty of University Heidelberg (Germany)

    2000-10-01

    We report a traumatic pseudoaneurysm of the internal carotid artery bifurcation and subclavian artery with recurrent strokes events in a 19-year-old man. He was admitted with an acute left hemiparesis. His history revealed a similar episode 1 year and a major car accident 3 years previously. Contrast enhanced MR angiography confirmed colour Doppler sonographic findings of a carotid and subclavian artery pseudoaneurysm presumably resulting from seat-belt trauma. The pseudoaneurysm, containing thrombus, was thought to be the source of artery-to-artery embolism. (orig.)

  6. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    Science.gov (United States)

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can

  7. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  8. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    Science.gov (United States)

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  9. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    neuronal loss following traumatic brain injury and presents experimental and clinical evidence of the role of exogenous antioxidants as neuroprotectants. Method: We reviewed published literature on reactive oxygen species and their role in experimental and clinical brain injuries in journals and the Internet using Yahoo ...

  10. CONSEQUENCES OF SEVERE TRAUMATIC BRAIN INJURY IN CHILDREN AND THEIR TREATMENT

    Directory of Open Access Journals (Sweden)

    N.N. Zavadenko

    2006-01-01

    Full Text Available Traumatic brain injury is one of the major causes for invalidization in children. The research purpose is an integrated study of consequences of severe and moderate closed traumatic brain injury in children and evaluation of their dynamics during therapy by means of a no tropic medication — cerebrolysin (Ebewe Pharma, Austria. The total of 283 children aged from 4 to 14 years were examined in the longaterm period of severe and moderate closed traumatic brain injury, from 6 months to 4 years after injury. Their neurological status was characterized by nona specific focal symptoms along with evident motor coordination disturbances, elements of dynamic and staticoloa comotory ataxia, reduction in execution speed of serial movements. Statistically significant differences with ageamatched controls were confirmed for measures of acousticaverbal memory and sustained attention. Posttraumatic epilepsy developed in 16 (5,7% patients with the onset of secondarily generalized seizures in 4–12 months following the injury. Effectiveness of the no tropic medication was evaluated in 60 patients aged from 7 to 12 years, who were distributed into 2 equal groups. The research has confirmed a positive effect of no tropic medication in the treatment of traumatic brain injury consequences manifested in the regression of headaches, fatigue, motor coordination disturbances along with improvements of memory, attention, intellectual performance rates, as well as EEG characteristics.Key words: traumatic brain injury, consequences, children, therapy, nootropic medications.

  11. Narrative literature review: Health, activity and participation issues for women following traumatic brain injury.

    Science.gov (United States)

    O'Reilly, Kate; Wilson, Nathan; Peters, Kath

    2017-06-06

    This narrative review will draw attention to the current limitations within the literature related to women following traumatic brain injury in order to stimulate discussion and inform future directions for research. There is a wide-ranging body of research about traumatic brain injury with the higher incidence of brain injury among males reflected in this body of work. As a result, the specific gendered issues facing women with traumatic brain injury are not as well understood. A search of electronic databases was conducted using the terms "traumatic brain injury", "brain injury", "women", "participation", "concussion" and "outcomes". The 36 papers revealed the following five themes (1) Relationships and life satisfaction; (2) Perception of self and body image; (3) Meaningful occupation; (4) Sexuality and sexual health; and (5) Physical function. Without research, which focuses specifically on the experience of women and girls with traumatic brain injury there is a risk that clinical care, policy development and advocacy services will not effectively accommodate them. Implications for rehabilitation Exploring the gendered issues women may experience following traumatic brain injury will enhance clinicians understanding of the unique challenges they face. Such information has the potential to guide future directions for research, policy, and practice. Screening women for hormonal imbalances such as hypopituitarism following traumatic brain injury is recommended as this may assist clinicians in addressing the far reaching implications in regard to disability, quality of life and mood. The growing literature regarding the cumulative effect of repeat concussions following domestic violence and women's increased risk of sport-related concussion may assist clinicians in advocating for appropriate rehabilitation and community support services.

  12. Outcomes Associated With Resuming Warfarin Treatment After Hemorrhagic Stroke or Traumatic Intracranial Hemorrhage in Patients With Atrial Fibrillation.

    Science.gov (United States)

    Nielsen, Peter Brønnum; Larsen, Torben Bjerregaard; Skjøth, Flemming; Lip, Gregory Y H

    2017-04-01

    The increase in the risk for bleeding associated with antithrombotic therapy causes a dilemma in patients with atrial fibrillation (AF) who sustain an intracranial hemorrhage (ICH). A thrombotic risk is present; however, a risk for serious harm associated with resumption of anticoagulation therapy also exists. To investigate the prognosis associated with resuming warfarin treatment stratified by the type of ICH (hemorrhagic stroke or traumatic ICH). This nationwide observational cohort study included patients with AF who sustained an incident ICH event during warfarin treatment from January 1, 1998, through February 28, 2016. Follow-up was completed April 30, 2016. Resumption of warfarin treatment was evaluated after hospital discharge. No oral anticoagulant treatment or resumption of warfarin treatment, included as a time-dependent exposure. One-year observed event rates per 100 person-years were calculated, and treatment strategies were compared using time-dependent Cox proportional hazards regression models with adjustment for age, sex, length of hospital stay, comorbidities, and concomitant medication use. A total of 2415 patients with AF in this cohort (1481 men [61.3%] and 934 women [38.7%]; mean [SD] age, 77.1 years [9.1 years]) sustained an ICH event. Of these events, 1325 were attributable to hemorrhagic stroke and 1090 were secondary to trauma. During the first year, 305 patients with a hemorrhagic stroke (23.0%) died, whereas 210 in the traumatic ICH group (19.3%) died. Among patients with hemorrhagic stroke, resuming warfarin therapy was associated with a lower rate of ischemic stroke or systemic embolism (SE) (adjusted hazard ratio [AHR], 0.49; 95% CI, 0.24-1.02) and an increased rate of recurrent ICH (AHR, 1.31; 95% CI, 0.68-2.50) compared with not resuming warfarin therapy, but these differences did not reach statistical significance. For patients with traumatic ICH, resuming warfarin therapy also was associated with a lower rate of ischemic stroke

  13. Investigating nystagmus in patients with traumatic brain injury: A ...

    African Journals Online (AJOL)

    Background. Traumatic brain injury (TBI) is a health and socioeconomic concern worldwide. In patients with TBI, post-traumatic balance problems are often the result of damage to the vestibular system. Nystagmus is common in these patients, and can provide insight into the damage that has resulted from the trauma.

  14. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  15. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  16. Outcomes in nursing home patients with traumatic brain injury.

    Science.gov (United States)

    Lueckel, Stephanie N; Kosar, Cyrus M; Teno, Joan M; Monaghan, Sean F; Heffernan, Daithi S; Cioffi, William G; Thomas, Kali S

    2018-05-09

    Traumatic brain injury is a leading cause of death and disability in the United States. In survivors, traumatic brain injury remains a leading contributor to long-term disability and results in many patients being admitted to skilled nursing facilities for postacute care. Despite this very large population of traumatic brain injury patients, very little is known about the long-term outcomes of traumatic brain injury survivors, including rates of discharge to home or risk of death in long-term nursing facilities. We hypothesized that patient demographics and functional status influence outcomes of patients with traumatic brain injury admitted to skilled nursing facilities. We conducted a retrospective cohort study of Medicare fee-for-service beneficiaries aged 65 and older discharged alive and directly from hospital to a skilled nursing facility between 2011 and 2014 using the prospectively maintained Federal Minimum Data Set combined with Medicare claims data and the Centers for Medicare and Medicaid Services Vital Status files. Records were reviewed for demographic and clinical characteristics at admission to the skilled nursing facility, including age, sex, cognitive function, ability to communicate, and motor function. Activities of daily living were reassessed at discharge to calculate functional improvement. We used robust Poisson regression with skilled nursing facility fixed effects to calculate relative risks and 99% confidence intervals for mortality and functional improvement associated with the demographic and clinical characteristics present at admission. Linear regression was used to calculate adjusted mean duration of stay. Overall, 87,292 Medicare fee-for-service beneficiaries with traumatic brain injury were admitted to skilled nursing facilities. The mean age was 84 years, with 74% of patients older than age 80. Generally, older age, male sex, and poor cognitive or functional status at admission to a skilled nursing facility were associated with

  17. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    Science.gov (United States)

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P sleep symptoms (P Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Mild traumatic brain injury does not produce post-traumatic stress disorder.

    Science.gov (United States)

    Sbordone, R J; Liter, J C

    1995-01-01

    It has been widely assumed that patients who sustain mild traumatic brain injury (MTBI) or post-concussive syndrome develop post-traumatic stress disorder (PTSD) in response to their cognitive difficulties, diminished coping skills, or other losses. This study examined 70 patients who had previously been diagnosed as having either PTSD or MTBI. Each patient was asked to provide a highly detailed chronological history of the events which preceded, followed, and occurred during the traumatic event, to indicate whether they were rendered unconscious or had amnesia for the event, and to describe the various symptoms they developed. All (100.0%) of the PTSD patients were able to provide a highly detailed and emotionally charged recollection of the events which occurred within 15 minutes of the traumatic event in comparison to none (0.0%) of the MTBI patients. None of the MTBI patients reported symptoms such as intrusive recollections of the traumatic event, nightmares, hypervigilance, phobic or startle reactions, or became upset when they were asked to describe the traumatic event or were exposed to stimuli associated with it. These data suggest that PTSD and MTBI are two mutually exclusive disorders, and that it is highly unlikely that MTBI patients develop PTSD symptoms. Furthermore, these findings suggest that clinicians should exercise considerable caution in ruling out PTSD prior to making the diagnosis of MTBI.

  19. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  20. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    Science.gov (United States)

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  1. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Shamloo, Mehrdad; Rickhag, Karl Mattias

    2011-01-01

    Stroke leads to brain damage with subsequent slow and incomplete recovery of lost brain functions. Enriched housing of stroke-injured rats provides multi-modal sensorimotor stimulation, which improves recovery, although the specific mechanisms involved have not been identified. In rats housed in ...... of biomolecules required for brain repair, thereby stimulating brain plasticity. Pharmacological targeting of the sigma-1 receptor provides new opportunities for stroke treatment beyond the therapeutic window of neuroprotection....

  2. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    Science.gov (United States)

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Principles of Motor Recovery in Post-Stroke Patients using Hand Exoskeleton Controlled by the Brain-Computer Interface Based on Motor Imagery

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Biryukova, E. V.; Bobrov, P.; Mokienko, O.; Alexandrov, A.V.

    2017-01-01

    Roč. 27, č. 1 (2017), s. 107-137 ISSN 1210-0552 Grant - others:Russian Ministry of Education and Science(RU) RFMEFI60715X0128 Institutional support: RVO:67985807 Keywords : brain computer interface * motor imagery * post-stroke and post-traumatic patients * arm and hand exoskeleton * proportional derivative controller * motor synergy * clinical application Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.394, year: 2016

  4. Clinical and diagnostic approach to patients with hypopituitarism due to traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), and ischemic stroke (IS).

    Science.gov (United States)

    Karamouzis, Ioannis; Pagano, Loredana; Prodam, Flavia; Mele, Chiara; Zavattaro, Marco; Busti, Arianna; Marzullo, Paolo; Aimaretti, Gianluca

    2016-06-01

    The hypothalamic-pituitary dysfunction attributable to traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (SAH), and ischemic stroke (IS) has been lately highlighted. The diagnosis of TBI-induced-hypopituitarism, defined as a deficient secretion of one or more pituitary hormones, is made similarly to the diagnosis of classical hypopituitarism because of hypothalamic/pituitary diseases. Hypopituitarism is believed to contribute to TBI-associated morbidity and to functional and cognitive final outcome, and quality-of-life impairment. Each pituitary hormone must be tested separately, since there is a variable pattern of hormone deficiency among patients with TBI-induced-hypopituitarism. Similarly, the SAH and IS may lead to pituitary dysfunction although the literature in this field is limited. The drive to diagnose hypopituitarism is the suspect that the secretion of one/more pituitary hormone may be subnormal. This suspicion can be based upon the knowledge that the patient has an appropriate clinical context in which hypopituitarism can be present, or a symptom known as caused by hypopituitarism. Hypopituitarism should be diagnosed as a combination of low peripheral and inappropriately normal/low pituitary hormones although their basal evaluation may be not distinctive due to pulsatile, circadian, or situational secretion of some hormones. Evaluation of the somatotroph and corticotroph axes require dynamic stimulation test (ITT for both axes, GHRH + arginine test for somatotroph axis) in order to clearly separate normal from deficient responses.

  5. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.

  6. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults fr...

  7. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...

  8. The Effects of Chunghyul-Dan, an Agent of Korean Medicine, on a Mouse Model of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Won-Woo Choi

    2017-01-01

    Full Text Available Chunghyul-Dan (CHD is the first choice agent for the prevention and treatment of stroke at the Kyung Hee Medical Hospital. To date, CHD has been reported to have beneficial effects on brain disease in animals and humans, along with antioxidative and anti-inflammatory effects. The aim of this study was to evaluate the pharmacological effects of CHD on a traumatic brain injury (TBI mouse model to explore the possibility of CHD use in patients with TBI. The TBI mouse model was induced using the controlled cortical impact method. CHD was orally administered twice a day for 5 d after TBI induction; mice were assessed for brain damage, brain edema, blood-brain barrier (BBB damage, motor deficits, and cognitive impairment. Treatment with CHD reduced brain damage seen on histological examination and improved motor and cognitive functions. However, CHD did not reduce brain edema and BBB damage. In conclusion, CHD could be a candidate agent in the treatment of patients with TBI. Further studies are needed to assess the exact mechanisms of the effects during the acute-subacute phase and pharmacological activity during the chronic-convalescent phase of TBI.

  9. Understanding Traumatic Brain Injury: An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  10. Narrative Language in Traumatic Brain Injury

    Science.gov (United States)

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  11. Occurrence and severity of agitated behavior after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Moth Wolffbrandt, Mia; Poulsen, Ingrid; Engberg, Aase W

    2013-01-01

    To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS).......To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS)....

  12. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    Science.gov (United States)

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance

  13. The image of a brain stroke in a computed tomograph

    International Nuclear Information System (INIS)

    Just, E.G.

    1982-01-01

    On the basis of 100 findings from patients who suffered brain strokes and by the use of 1500 ensured stroke images it was tested whether or not the stroke-predilection typologie outlined by Zuelch is based on a coincidental summation of individual cases. The radio-computed tomography with the possibility of evaluation of non-lethal cases proved itself as a suited method for confirmation or repudiation of this stroke theory. By means of the consistently achieved association of the frontal, respectively horizontal sectional image for the typology it could be proven and - with the exception of a few rather seldom types - also demonstrated that the basic and predilection types of brain stroke repeated themselves in their pattern. In individual cases a specification of lower types could also be undertaken. (orig./TRV) [de

  14. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: New insights for clinical applications

    Directory of Open Access Journals (Sweden)

    Marci G Crowley

    2017-01-01

    Full Text Available Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA-approved drug in place for stroke patients, tissue plasminogen activator (tPA, has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset. Due to this short time frame and other restrictions, such as any condition that increases a patient's risk for hemorrhaging, it has been predicted that <5% of ischemic stroke patients benefit from tPA. Given that rehabilitation therapy remains the only other option for stroke victims, there is a clear unmet clinical need for treatment available for the remaining 95%. While still considered an experimental treatment, the utilization of stem cell therapies for stroke holds consistent promise. Copious preclinical studies report the capacity for transplanted stem cells to rescue the brain parenchyma surrounding the stroke-induced infarct core. At present, the exact mechanisms in which stem cells contribute a robust therapeutic benefit remains unclear. Following stem cell administration, researchers have observed cell replacement, an increase in growth factors, and a reduction in inflammation. With a deeper understanding of the precise mechanism of stem cells, these therapies can be optimized in the clinic to afford the greatest therapeutic benefit. Recent studies have depicted a unique method of endogenous stem cell activation as a result of stem cell therapy. In both traumatic brain injury and stroke models, transplanted mesenchymal stromal cells (MSCs facilitated a pathway between the neurogenic niches of the brain and the damaged area through extracellular matrix remodeling. The biobridge pioneered by the MSCs was utilized by the endogenous stem cells, and these cells were able to travel to the damaged areas distal to the neurogenic niches, a feat unachievable without prior remodeling. These studies broaden our understanding of stem

  15. Fitness to drive after traumatic brain injury

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK

    This paper deals with the issue of fitness to drive in patients suffering from traumatic brain injury (TBI). Guidelines for assessment are proposed and three types of studies are reviewed: studies about impairments of attention and information processing, studies of driving competence, and driver

  16. The military's approach to traumatic brain injury and post-traumatic stress disorder

    Science.gov (United States)

    Ling, Geoffrey S. F.; Grimes, Jamie; Ecklund, James M.

    2014-06-01

    Traumatic brain injury (TBI) and Post Traumatic Stress Disorder (PTSD) are common conditions. In Iraq and Afghanistan, explosive blast related TBI became prominent among US service members but the vast majority of TBI was still due to typical causes such as falls and sporting events. PTS has long been a focus of the US military mental health providers. Combat Stress Teams have been integral to forward deployed units since the beginning of the Global War on Terror. Military medical management of disease and injury follows standard of care clinical practice guidelines (CPG) established by civilian counterparts. However, when civilian CPGs do not exist or are not applicable to the military environment, new practice standards are created. Such is the case for mild TBI. In 2009, the VA-DoD CPG for management of mild TBI/concussion was published and a system-wide clinical care program for mild TBI/concussion was introduced. This was the first large scale effort on an entire medical care system to address all severities of TBI in a comprehensive organized way. In 2010, the VA-DoD CPG for management of PTSD was published. Nevertheless, both TBI and PTS are still incompletely understood. Investment in terms of money and effort has been committed by the DoD to their study. The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury are prominent examples of this effort. These are just beginnings, a work in progress ready to leverage advances made scientifically and always striving to provide the very best care to its military beneficiaries.

  17. Erythropoietin in traumatic brain injury: study protocol for a randomised controlled trial.

    LENUS (Irish Health Repository)

    Nichol, Alistair

    2015-02-08

    Traumatic brain injury is a leading cause of death and disability worldwide. Laboratory and clinical studies demonstrate a possible beneficial effect of erythropoietin in improving outcomes in the traumatic brain injury cohort. However, there are concerns regarding the association of erythropoietin and thrombosis in the critically ill. A large-scale, multi-centre, blinded, parallel-group, placebo-controlled, randomised trial is currently underway to address this hypothesis.

  18. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2013-05-15

    ... Diagnosable Illnesses Associated With Traumatic Brain Injury Correction In proposed rule document 2012-29709...: The factors considered are: Structural imaging of the brain. LOC--Loss of consciousness. AOC--Alteration of consciousness/mental state. PTA--Post-traumatic amnesia. GCS--Glasgow Coma Scale. (For purposes...

  19. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  20. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy

    Directory of Open Access Journals (Sweden)

    Gratianne Rabiller

    2015-10-01

    Full Text Available Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1–4 Hz, 20–200 μV, θ (4–8 Hz, 10 μV, α (8–12 Hz, 20–200 μV, β (12–30 Hz, 5–10 μV, and γ (30–80 Hz, low amplitude. Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy.

  1. Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke

    Science.gov (United States)

    Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M

    2013-01-01

    Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281

  2. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2018-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  3. Oculometric Screening for Traumatic Brain Injury in Veterans

    Science.gov (United States)

    2017-06-01

    intake physicals as a detection method for acute injury and for management of brain health in military and VA hospitals. An immersive evaluation of the...risk of traumatic brain injury following deployment. Journal of Head Trauma Rehabilitation, 31(1), 28–35. xviii THIS PAGE INTENTIONALLY LEFT BLANK...device in operational units, military treatment facilities, or VA hospitals. This question will be answered through an immersive qualitative

  4. Traumatic Brain Injury and Personality Change

    Science.gov (United States)

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  5. Association Between Traumatic Brain Injury and Risk of Posttraumatic Stress Disorder in Active-Duty Marines

    Science.gov (United States)

    2013-01-01

    traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder ( PTSD ) has been difficult to determine because of the prevalence of...Qualification Test; CAPS, Clinician-Administered PTSD Scale; PTSD , posttraumatic stress disorder ; TBI, traumatic brain injury. a For the zeromodel, base...New onset and persistent symptoms of post - traumatic stress disorder self reported after deployment and combat exposures. BMJ.

  6. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha

    2012-01-01

    [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  7. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  8. Patients with the most severe traumatic brain injury benefit from rehabilitation

    DEFF Research Database (Denmark)

    Poulsen, Ingrid; Norup, Anne; Liebach, Annette

    2014-01-01

    Patients with the most severe traumatic brain injury benefit from rehabilitation Ingrid Poulsen, Anne Norup, Annette Liebach, Lars Westergaard, Karin Spangsberg Kristensen, Tina Haren, & Lars Peter Kammersgaard Department for Neurorehabilitation, TBI Unit, Copenhagen University, Glostrup Hospital......., Hvidovre, Denmark Objectives: During the last couple of years, studies have indicated that even patients with the most severe traumatic brain injuries (TBI) benefit from rehabilitation despite what initially appears to be dismal prognosis. In Denmark, all patients with severe TBI have had an opportunity......-acute inpatient rehabilitation during a 12-year period followed an intensive interdisciplinary rehabilitation programme. Severity of injury was defined by Glasgow Coma Scale (GCS) score on rehabilitation admission and duration of post-traumatic amnesia (PTA). Patients were routinely measured...

  9. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  10. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  11. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui-yan Sun

    2015-01-01

    Full Text Available Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  12. Psychiatric sequelae of traumatic brain injury: Retrospective ...

    African Journals Online (AJOL)

    Objective: Traumatic brain injury (TBI) is a public health problem and is associated with many complications. However little is known about the psychiatric sequelae of TBI in Nigeria. This study described the pattern and determinants of psychiatric sequelae among subjects with TBI. Materials and Methods: The study is a ...

  13. Use of Hippotherapy With a Boy After Traumatic Brain Injury: A Case Study.

    Science.gov (United States)

    Erdman, Ellen A; Pierce, Samuel R

    2016-01-01

    The purpose of this case report was to describe the use of hippotherapy with a boy who sustained a brain injury. A 13-year-old boy, 6 months after traumatic brain injury received 12 physical therapy sessions, which included hippotherapy. Improvements were noted in balance, strength, gross motor skills, gait speed, functional mobility, and reported participation. Hippotherapy used with a 13-year-old boy after traumatic brain injury may have had a positive effect in the body structure, activity, and participation domains.

  14. The dangerous gamble of heparinization within two weeks of nonoperative traumatic acute subdural hematoma in patients with increased stroke risk: a case series.

    Science.gov (United States)

    McClelland, S; Mackey, S J; Kim, S S

    2014-01-01

    In traumatic acute subdural hematoma (aSDH) management, systemic anticoagulation is contraindicated, particularly during the first 2 weeks. We present two cases of patients with nonoperative aSDH whose stroke risk led to heparinization within 2 weeks of the initial hemorrhage and examine their outcomes to illustrate the risks and benefits associated with systemic anticoagulation. Two elderly males, on warfarin at baseline who developed traumatic nonoperative aSDH were heparinized within 2 weeks of aSDH onset. One patient showed a decreased SDH volume on Day 19. The second patient developed sudden onset headache with fixed/dilated pupils on Day 5. In this patient, a CT scan of the brain revealed marked enlargement of the aSDH from 0.9 to 2.4 cm with midline shift of 1.5 cm, and uncal herniation that was incompatible with life. Heparinization within two weeks of aSDH may cause SDH enlargement resulting in rapidly fatal neurologic deterioration. Further study is needed to more definitively address this issue.

  15. Acromegaly resolution after traumatic brain injury: a case report

    OpenAIRE

    Cob, Alejandro

    2014-01-01

    Introduction Anterior hypopituitarism is a common complication of head trauma, with a prevalence of 30% to 70% among long-term survivors. This is a much higher frequency than previously thought and suggests that most cases of post-traumatic hypopituitarism remain undiagnosed and untreated. Symptoms of hypopituitarism are very unspecific and very similar to those in traumatic brain injury patients in general, which makes hypopituitarism difficult to diagnose. The factors that predict the likel...

  16. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan

    2016-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...

  17. Generating and measuring photochemical changes inside the brain using optical fibers: exploring stroke.

    Science.gov (United States)

    Tsiminis, Georgios; Klarić, Thomas S; Schartner, Erik P; Warren-Smith, Stephen C; Lewis, Martin D; Koblar, Simon A; Monro, Tanya M

    2014-11-01

    We report here on the development of a method for inducing a stroke in a specific location within a mouse brain through the use of an optical fiber. By capturing the emitted fluorescence signal generated using the same fiber it is possible to monitor photochemical changes within the brain in real-time, and directly measure the concentration of the stroke-inducing dye, Rose Bengal, at the infarct site. This technique reduces the requirement for post-operative histology to determine if a stroke has successfully been induced within the animal, and therefore opens up the opportunity to explore the recovery of the brain after the stroke event.

  18. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    Science.gov (United States)

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  19. Facial Expression Recognition for Traumatic Brain Injured Patients

    DEFF Research Database (Denmark)

    Ilyas, Chaudhary Muhammad Aqdus; Nasrollahi, Kamal; Moeslund, Thomas B.

    2018-01-01

    In this paper, we investigate the issues associated with facial expression recognition of Traumatic Brain Insured (TBI) patients in a realistic scenario. These patients have restricted or limited muscle movements with reduced facial expressions along with non-cooperative behavior, impaired reason...

  20. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    Science.gov (United States)

    ... sleep habits Behavior or mood changes Trouble with memory, concentration, attention, or thinking Loss of consciousness lasting a few ... may have caused a TBI should seek medical attention. 4 ... Traumatic brain injury information page . Retrieved May 4, 2018, from https://www. ...

  1. Brain hypoxia imaging

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ho Chun [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-04-15

    The measurement of pathologically low levels of tissue pO{sub 2} is an important diagnostic goal for determining the prognosis of many clinically important diseases including cardiovascular insufficiency, stroke and cancer. The target tissues nowadays have mostly been tumors or the myocardium, with less attention centered on the brain. Radiolabelled nitroimidazole or derivatives may be useful in identifying the hypoxic cells in cerebrovascular disease or traumatic brain injury, and hypoxic-ischemic encephalopathy. In acute stroke, the target of therapy is the severely hypoxic but salvageable tissue. {sup 18}F-MISO PET and {sup 99m}Tc-EC-metronidazole SPECT in patients with acute ischemic stroke identified hypoxic tissues and ischemic penumbra, and predicted its outcome. A study using {sup 123}I-IAZA in patient with closed head injury detected the hypoxic tissues after head injury. Up till now these radiopharmaceuticals have drawbacks due to its relatively low concentration with hypoxic tissues associated with/without low blood-brain barrier permeability and the necessity to wait a long time to achieve acceptable target to background ratios for imaging in acute ischemic stroke. It is needed to develop new hypoxic marker exhibiting more rapid localization in the hypoxic region in the brain. And then, the hypoxic brain imaging with imidazoles or non-imidazoles may be very useful in detecting the hypoxic tissues, determining therapeutic strategies and developing therapeutic drugs in several neurological disease, especially, in acute ischemic stroke.

  2. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  3. Working with Students with Traumatic Brain Injury

    Science.gov (United States)

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  4. Traumatic Brain Injury: Looking Back, Looking Forward

    Science.gov (United States)

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  5. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  6. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Directory of Open Access Journals (Sweden)

    Gonzalez-Brito Manuel

    2008-02-01

    Full Text Available Abstract Background Assessment of cerebral blood flow (CBF by SPECT could be important in the management of patients with severe traumatic brain injury (TBI because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia, or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI on cerebral blood flow (CBF by SPECT cerebral blood perfusion (CBP imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM. Results A significant area of hypoperfusion (P Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  7. Hypothermia for the treatment of ischemic and hemorrhagic stroke.

    Science.gov (United States)

    Linares, Guillermo; Mayer, Stephan A

    2009-07-01

    Hypothermia is considered nature's "gold standard" for neuroprotection, and its efficacy for improving outcome in patients with hypoxic-ischemic brain injury as a result of cardiac arrest is well-established. Hypothermia reduces brain edema and intracranial pressure in patients with traumatic brain injury. By contrast, only a few small pilot studies have evaluated hypothermia as a treatment for acute ischemic stroke, and no controlled trials of hypothermia for hemorrhagic stroke have been performed. Logistic challenges present an important barrier to the widespread application of hypothermia for stroke, most importantly the need for high-quality critical care to start immediately in the emergency department. Rapid induction of hypothermia within 3 to 6 hrs of onset has been hampered by slow cooling rates, but is feasible. Delayed cooling for the treatment of cytotoxic brain edema does not provide definitive or lasting treatment for intracranial mass effect, and should not be used as an alternative to hemicraniectomy. Sustained fever control is feasible in patients with intracerebral and subarachnoid hemorrhage, but has yet to be tested in a phase III study. Important observations from studies investigating the use of hypothermia for stroke to date include the necessity for proactive antishivering therapy for successful cooling, the importance of slow controlled rewarming to avoid rebound brain edema, and the high risk for infectious and cardiovascular complications in this patient population. More research is clearly needed to bring us closer to the successful application of hypothermia in the treatment for stroke.

  8. Hospitalizations for critically ill children with traumatic brain injuries: a longitudinal analysis.

    Science.gov (United States)

    Tilford, John M; Aitken, Mary E; Anand, K J S; Green, Jerril W; Goodman, Allen C; Parker, James G; Killingsworth, Jeffrey B; Fiser, Debra H; Adelson, P David

    2005-09-01

    This study examines the incidence, utilization of procedures, and outcomes for critically ill children hospitalized with traumatic brain injury over the period 1988-1999 to describe the benefits of improved treatment. Retrospective analysis of hospital discharges was conducted using data from the Health Care Cost and Utilization Project Nationwide Inpatient Sample that approximates a 20% sample of U.S. acute care hospitals. Hospital inpatient stays from all types of U.S. community hospitals. The study sample included all children aged 0-21 with a primary or secondary ICD-9-CM diagnosis code for traumatic brain injury and a procedure code for either endotracheal intubation or mechanical ventilation. None. Deaths occurring during hospitalization were used to calculate mortality rates. Use of intracranial pressure monitoring and surgical openings of the skull were investigated as markers for the aggressiveness of treatment. Patients were further classified by insurance status, household income, and hospital characteristics. Over the 12-yr study period, mortality rates decreased 8 percentage points whereas utilization of intracranial pressure monitoring increased by 11 percentage points. The trend toward more aggressive management of traumatic brain injury corresponded with improved hospital outcomes over time. Lack of insurance was associated with vastly worse outcomes. An estimated 6,437 children survived their traumatic brain injury hospitalization because of improved treatment, and 1,418 children died because of increased mortality risk associated with being uninsured. Improved treatment was valued at approximately dollar 17 billion, whereas acute care hospitalization costs increased by dollar 1.5 billion (in constant 2000 dollars). Increased mortality in uninsured children was associated with a dollar 3.76 billion loss in economic benefits. More aggressive management of pediatric traumatic brain injury appears to have contributed to reduced mortality rates over

  9. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  10. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation

    DEFF Research Database (Denmark)

    Kammersgaard, Lars Peter; Linnemann, Mia; Tibæk, Maiken

    2013-01-01

    To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI).......To investigate timing and clinical predictors that might predict hydrocephalus emerging during rehabilitation until 1 year following severe traumatic brain injury (TBI)....

  11. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies.

    Science.gov (United States)

    Loosemore, Mike; Knowles, Charles H; Whyte, Greg P

    2007-10-20

    To evaluate the risk of chronic traumatic brain injury from amateur boxing. Secondary research performed by combination of sport physicians and clinical academics. DESIGN, DATA SOURCES, AND METHODS: Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. There is no strong evidence to associate chronic traumatic brain injury with amateur boxing.

  12. Traumatic Brain Injury: Caregivers’ Problems and Needs

    Directory of Open Access Journals (Sweden)

    syed tajjudin syed hassan

    2011-03-01

    Full Text Available Traumatic brain injury (TBI is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, fi nancial inadequacy, anxiety, distress, coping defi cits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, fi nancial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders. Keywords: caregivers, rehabilitation, traumatic brain injury

  13. Impaired Pituitary Axes Following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Robert A. Scranton

    2015-07-01

    Full Text Available Pituitary dysfunction following traumatic brain injury (TBI is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed.

  14. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Science.gov (United States)

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  15. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-xiao Zhou

    2016-01-01

    Full Text Available Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5-3.0 atm impact force. The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.

  16. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  17. Training the brain to survive stroke.

    Directory of Open Access Journals (Sweden)

    Jeff F Dunn

    Full Text Available Presently, little can be done to repair brain tissue after stroke damage. We hypothesized that the mammalian brain has an intrinsic capacity to adapt to low oxygen which would improve outcome from a reversible hypoxic/ischemic episode. Acclimation to chronic hypoxia causes increased capillarity and tissue oxygen levels which may improve the capacity to survive ischemia. Identification of these adaptations will lead to protocols which high risk groups could use to improve recovery and reduce costs.Rats were exposed to hypoxia (3 weeks living at ½ an atmosphere. After acclimation, capillary density was measured morphometrically and was increased by 30% in the cortex. Novel implantable oxygen sensors showed that partial pressure of oxygen in the brain was increased by 40% in the normal cortex. Infarcts were induced in brain with 1 h reversible middle cerebral artery occlusions. After ischemia (48 h behavioural scores were improved and T2 weighted MRI lesion volumes were reduced by 52% in acclimated groups. There was a reduction in inflammation indicated by reduced lymphocytes (by 27-33%, and ED1 positive cells (by 35-45%.It is possible to stimulate a natural adaptive mechanism in the brain which will reduce damage and improve outcome for a given ischemic event. Since these adaptations occur after factors such as HIF-1α have returned to baseline, protection is likely related more to morphological changes such as angiogenesis. Such pre-conditioning, perhaps with exercise or pharmaceuticals, would not necessarily reduce the incidence of stroke, but the severity of damage could be reduced by 50%.

  18. Traumatic brain injury due to pressure cooker explosion in a child: case report

    Directory of Open Access Journals (Sweden)

    Calderon-Miranda Willem Guillermo

    2016-06-01

    Full Text Available Traumatic brain injury is a common condition in the emergency services, affecting the pediatric and adult population significantly. Patterns of head injury as well as management principles in children are important differences compared to adults. Traumatic brain injury by Domestic pressure cooker is rare and has not been described in children, which to our knowledge is the first report in the literature of this nature.

  19. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis.

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-09-15

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  20. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-01-01

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities. PMID:25206550

  1. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  2. Diabetes Insipidus after Traumatic Brain Injury

    Science.gov (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  3. Diabetes Insipidus after Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Cristina Capatina

    2015-07-01

    Full Text Available Traumatic brain injury (TBI is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI and the syndrome of inappropriate antidiuretic hormone secretion (SIADH are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH or of the posterior pituitary gland causing post-traumatic DI (PTDI. PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI.

  4. Hypopituitarism after traumatic brain injury.

    Science.gov (United States)

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Causes and Consequences of Treatment Variation in Moderate and Severe Traumatic Brain Injury : A Multicenter Study

    NARCIS (Netherlands)

    Criossen, Maryse C.; Polinder, Suzanne; Andriessen, Teuntje M.; van der Naalt, Joukje; Haitsma, Iain; Horn, Janneke; Franschman, Gaby; Vos, Pieter E.; Steyerberg, Ewout W.; Lingsma, Hester

    Objectives: Although guidelines have been developed to standardize care in traumatic brain injury, between-center variation in treatment approach has been frequently reported. We examined variation in treatment for traumatic brain injury by assessing factors influencing treatment and the association

  6. Using external lumbar CSF drainage to treat communicating external hydrocephalus in adult patients after acute traumatic or non-traumatic brain injury.

    Science.gov (United States)

    Manet, Romain; Payen, Jean-François; Guerin, Romain; Martinez, Orianne; Hautefeuille, Serge; Francony, Gilles; Gergelé, Laurent

    2017-10-01

    Despite various treatments to control intracranial pressure (ICP) after brain injury, patients may present a late onset of high ICP or a poor response to medications. External lumbar drainage (ELD) can be considered a therapeutic option if high ICP is due to communicating external hydrocephalus. We aimed at describing the efficacy and safety of ELD used in a cohort of traumatic or non-traumatic brain-injured patients. In this multicentre retrospective analysis, patients had a delayed onset of high ICP after the initial injury and/or a poor response to ICP treatments. ELD was considered in the presence of radiological signs of communicating external hydrocephalus. Changes in ICP values and side effects following the ELD procedure were reported. Thirty-three patients with a median age of 51 years (25-75th percentile: 34-61 years) were admitted after traumatic (n = 22) or non-traumatic (n = 11) brain injuries. Their initial Glasgow Coma Scale score was 8 (4-11). Eight patients underwent external ventricular drainage prior to ELD. Median time to ELD insertion was 5 days (4-8) after brain insult. In all patients, ELD was dramatically effective in lowering ICP: 25 mmHg (20-31) before versus 7 mmHg (3-10) after (p hydrocephalus has been made.

  7. A 2-years description of traumatic brain injury admissions in Tikur ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury (TBI) is a nondegenerative, noncongenital insult to the brain from an external mechanical force, possibly leading to permanent or temporary impairment of cognitive, physical, and psychosocial functions, with an associated diminished or altered state of consciousness.This study was ...

  8. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  9. Psychosocial consequences of mild traumatic brain injury in children

    DEFF Research Database (Denmark)

    Keightley, Michelle L; Côté, Pierre; Rumney, Peter

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding psychosocial consequences of mild traumatic brain injury (MTBI) in children. DATA SOURCES: MEDLINE, Embase, CINAHL, PsycINFO, and SPORTDiscus were searched (2001-2012). Inclusion criteria included published peer-reviewed reports...

  10. Visualization of venous vessels in cerebral arteriograms in various types of brain strokes

    International Nuclear Information System (INIS)

    Kruszewska, J.; Trzebicki, J.; Binkiewicz, M.

    1982-01-01

    1468 internal carotin angiograms including 945 performed in patients with strokes and 523 with brain tumours were analysed. Three phases were evaluated: arterial, middle and venous, directing attention to brain venous system filling in the arterial phase. Carotid arteriography carried out within 14 days after stroke onset visualizes early filling of the veins and this sign may be helpful in localizing the site brain damage. (author)

  11. Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.

    Science.gov (United States)

    Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2015-08-01

    Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.

  12. Traumatic brain injury in children in Denmark: a national 15-year study

    DEFF Research Database (Denmark)

    Engberg, A; Teasdale, T W

    1998-01-01

    Demographic trends are reported concerning three types of traumatic brain injury (concussions, cranial fractures, and intracranial contusions/haemorrhages) among children in Denmark of ages up to and including 14 years, for a fifteen year period from 1979 through 1993. The data were derived from...... a national computer-based hospitalization register and include 49,594 children, of whom 60% were boys and 89% had suffered a concussion. Virtually all injuries were the result of accidents. A major finding was that there has been a general decline in the incidence of traumatic brain injuries, especially...

  13. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping.

    Science.gov (United States)

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-02-29

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  14. Blood-brain barrier and cerebral blood flow: Age differences in hemorrhagic stroke

    Directory of Open Access Journals (Sweden)

    Semyachkina-Glushkovskaya Oxana

    2015-11-01

    Full Text Available Neonatal stroke is similar to the stroke that occurs in adults and produces a significant morbidity and long-term neurologic and cognitive deficits. There are important differences in the factors, clinical events and outcomes associated with the stroke in infants and adults. However, mechanisms underlying age differences in the stroke development remain largely unknown. Therefore, treatment guidelines for neonatal stroke must extrapolate from the adult data that is often not suitable for children. The new information about differences between neonatal and adult stroke is essential for identification of significant areas for future treatment and effective prevention of neonatal stroke. Here, we studied the development of stress-induced hemorrhagic stroke and possible mechanisms underlying these processes in newborn and adult rats. Using histological methods and magnetic resonance imaging, we found age differences in the type of intracranial hemorrhages. Newborn rats demonstrated small superficial bleedings in the cortex while adult rats had more severe deep bleedings in the cerebellum. Using Doppler optical coherent tomography, we found higher stress-reactivity of the sagittal sinus to deleterious effects of stress in newborn vs. adult rats suggesting that the cerebral veins are more vulnerable to negative stress factors in neonatal vs. adult brain in rats. However, adult but not newborn rats demonstrated the stroke-induced breakdown of blood brain barrier (BBB permeability. The one of possible mechanisms underlying the higher resistance to stress-related stroke injures of cerebral vessels in newborn rats compared with adult animals is the greater expression of two main tight junction proteins of BBB (occludin and claudin-5 in neonatal vs. mature brain in rats.

  15. Virtual Reality for Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Elisa R. Zanier

    2018-05-01

    Full Text Available In this perspective, we discuss the potential of virtual reality (VR in the assessment and rehabilitation of traumatic brain injury, a silent epidemic of extremely high burden and no pharmacological therapy available. VR, endorsed by the mobile and gaming industries, is now available in more usable and cheaper tools allowing its therapeutic engagement both at the bedside and during the daily life at chronic stages after injury with terrific potential for a longitudinal disease modifying effect.

  16. Found in translation: understanding the biology and behavior of experimental traumatic brain injury

    Science.gov (United States)

    Bondi, Corina O.; Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Osier, Nicole D.; Carlson, Shaun W.; Dixon, C. Edward; Giza, Christopher C.; Kline, Anthony E.

    2014-01-01

    BONDI, C.O., B.D. Semple, L.J. Noble-Haeusslein, N.D. Osier, S.W. Carlson, C.E. Dixon, C.C. Giza and A.E. Kline. Found in translation: understanding the biology and behavior of experimental traumatic brain injury. NEUROSCI BIOBEHAV REV. The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled “Traumatic brain injury: laboratory and clinical perspectives,” presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. PMID:25496906

  17. Misconceptions about traumatic brain injuries among South African ...

    African Journals Online (AJOL)

    Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs) harboured by university students. Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered ...

  18. Prevalence of traumatic brain injury in juvenile offenders: a meta-analysis.

    Science.gov (United States)

    Farrer, Thomas J; Frost, R Brock; Hedges, Dawson W

    2013-01-01

    Studies of traumatic brain injury (TBI) among adult populations demonstrate that such injuries can lead to aggressive behaviors. Related findings suggest that incarcerated individuals have high rates of brain injuries. Such studies suggest that traumatic brain injury may be related to the etiology and recidivism of criminal behavior. Relatively few studies have examined the prevalence of TBI using a delinquent juvenile sample. In order to assess the relationship between TBI and juvenile offender status, the current study used meta-analytic techniques to examine the odds of having a TBI among juvenile offenders. Across 9 studies, we found that approximately 30% of juvenile offenders have sustained a previous brain injury. Across 5 studies that used a control group, a calculated summary odds ratio of 3.37 suggests that juvenile offenders are significantly more likely to have a TBI compared to controls. Results suggest that the rate of TBIs within the juvenile offender population is significant and that there may be a relationship between TBIs and juvenile criminal behavior.

  19. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  20. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    Science.gov (United States)

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  1. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke.

    Science.gov (United States)

    Boss, H Myrthe; Van Schaik, Sander M; Witkamp, Theo D; Geerlings, Mirjam I; Weinstein, Henry C; Van den Berg-Vos, Renske M

    2017-10-01

    Background It is not known whether cardiorespiratory fitness is associated with better cognitive performance and brain structure in patients with a TIA or minor ischemic stroke. Aims To examine the association between cardiorespiratory fitness, cognition and brain structure in patients with a TIA and minor stroke. Methods The study population consisted of patients with a TIA or minor stroke with a baseline measurement of the peak oxygen consumption, a MRI scan of brain and neuropsychological assessment. Composite z-scores were calculated for the cognitive domains attention, memory and executive functioning. White matter hyperintensities, microbleeds and lacunes were rated visually. The mean apparent diffusion coefficient was measured in regions of interest in frontal and occipital white matter and in the centrum semiovale as a marker of white matter structure. Normalized brain volumes were estimated by use of Statistical Parametric Mapping. Results In 84 included patients, linear regression analysis adjusted for age, sex and education showed that a higher peak oxygen consumption was associated with higher cognitive z-scores, a larger grey matter volume (B = 0.15 (95% CI 0.05; 0.26)) and a lower mean apparent diffusion coefficient (B = -.004 (95% CI -.007; -.001)). We found no association between the peak oxygen consumption and severe white matter hyperintensities, microbleeds, lacunes and total brain volume. Conclusions These data suggest that cardiorespiratory fitness is associated with better cognitive performance, greater grey matter volume and greater integrity of the white matter in patients with a TIA or minor ischemic stroke. Further prospective trials are necessary to define the effect of cardiorespiratory fitness on cognition and brain structure in patients with TIA or minor stroke.

  2. Acute traumatic brain-stem hemorrhage produced by sudden caudal displacement of the brain

    International Nuclear Information System (INIS)

    Mirvis, S.E.; Wolf, A.L.; Thompson, R.K.

    1990-01-01

    This paper determines in an experimental canine study and a clinical review, whether acute caudal displacement of the brain following blunt trauma produces hemorrhage in the rostral anterior midline of the brain stem by tethering the basilar to the fixed carotid arteries. In four dogs, a balloon catheter was suddenly inflated over the frontal lobe; in two, the carotid-basilar vascular connections were severed prior to balloon inflation. ICP was monitored during and after balloon inflation. Hemorrhage was verified by MR imaging and direct inspection of the fixed brain specimens. Admission CT scans demonstrating acute traumatic brain stem hemorrhage (TBH) in human patients were reviewed to determine the site of TBH, predominant site of impact, and neurologic outcome

  3. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    Science.gov (United States)

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  4. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid

    2013-01-01

    Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute re......Objective: To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. Subjects: The study included 119 patients with severe traumatic brain injury admitted to centralized sub......-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Methods: Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive...... subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. Results: The majority of patients progressed to a post-confusional level...

  5. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  6. Dynamic change of serum protein S100b and its clinical significance in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-qing; ZHU Lie-lie

    2005-01-01

    Objective: To analyze the dynamic change of serum protein S100b in patients with traumatic brain injury and its clinical value in assessing brain damage. Methods: According to Glasgow coma scale (GCS), 102 cases of traumatic brain injury were divided into mild brain injury group (GCS≥13, n=31, Group A), moderate brain injury group (8brain injury group (GCS≤8, n=34, Group C). Serial S100b concentrations were analyzed by enzyme-linked immunosorbent assay (ELISA) in blood samples taken on admission, 12 h, 24 h, 48 h, 72 h and 7 days after traumatic brain injury. Results: The severe brain injury group showed significantly higher concentration of serum S100b, with earlier increase and longer duration, than the mild and moderate brain injury groups. The patients with higher S100b exhibited lower GCS scores and poor clinical prognosis. The increase in S100b could emerge before clinical image evidence indicated so. Conclusions: Serum S100b can be used as a sensitive index for assessment and prediction of traumatic brain injury severity and prognosis.

  7. Is sex an indicator of prognosis after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Cancelliere, Carol; Donovan, James; David Cassidy, J.

    2016-01-01

    . Most studies did not find a sex difference for postconcussion symptoms in children and adults. No sex difference was found for risk of dementia and primary brain tumor, return to work, or posttraumatic stress syndrome. Conclusions Sex is not a well-studied prognostic indicator for recovery after MTBI......Objective to determine sex differences in the recovery and prognosis after mild traumatic brain injury (MTBI) in adults and children. Data Sources We analyzed all scientifically admissible primary studies in the World Health Organization (WHO) (n=120) and International Collaboration on Mild...... Traumatic Brain Injury Prognosis (ICoMP) (n=101) systematic reviews regarding prognosis of MTBI for sex-stratified findings. They searched MEDLINE and other databases from 1980 through 2000 (WHO) and 2001 through 2012 (ICoMP) for published, peer-reviewed reports in English and other languages. Study...

  8. Traumatic Brain Injury: An Overview of School Re-Entry.

    Science.gov (United States)

    Tucker, Bonnie Foster; Colson, Steven E.

    1992-01-01

    This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)

  9. Characterizing on-road driving performance in individuals with traumatic brain injury who pass or fail an on-road driving assessment.

    Science.gov (United States)

    Stolwyk, Renerus J; Charlton, Judith L; Ross, Pamela E; Bédard, Michel; Marshall, Shawn; Gagnon, Sylvain; Gooden, James R; Ponsford, Jennie L

    2018-01-15

    To characterise on-road driving performance in individuals with traumatic brain injury who fail on-road driving assessment, compared with both those who pass assessment and healthy controls, and the injury and cognitive factors associated with driving performance. Cross-sectional. Forty eight participants with traumatic brain injury (Age M = 40.50 SD = 14.62, 77% male, post-traumatic amnesia days M = 28.74 SD =27.68) and 48 healthy matched controls completed a standardised on-road driving assessment in addition to cognitive measures. Individuals with traumatic brain injury who passed on-road driving assessment performed no differently from controls while individuals with traumatic brain injury who failed the assessment demonstrated significantly worse driving performance relative to controls across a range of driving manoeuvres and error types including observation of on-road environment, speed control, gap selection, lane position, following distance and basic car control. Longer time post-injury and reduced visual perception were both significantly correlated with reduced driving skills. This exploratory study indicated that drivers with traumatic brain injury who failed on-road assessment demonstrated a heterogeneous pattern of impaired driving manoeuvres, characterised by skill deficits across both operational (e.g., basic car control and lane position) and tactical domains (e.g., following distance, gap selection, and observation) of driving. These preliminary findings can be used for implementation of future driving assessments and rehabilitation programs. Implications for rehabilitation Clinicians should be aware that the majority of individuals with traumatic brain injury were deemed fit to resume driving following formal on-road assessment, despite having moderate to very severe traumatic brain injuries. Drivers with traumatic brain injury who failed an on-road assessment demonstrated a heterogeneous pattern of impaired skills including errors

  10. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain.

    Science.gov (United States)

    Semple, Bridgette D; O'Brien, Terence J; Gimlin, Kayleen; Wright, David K; Kim, Shi Eun; Casillas-Espinosa, Pablo M; Webster, Kyria M; Petrou, Steven; Noble-Haeusslein, Linda J

    2017-08-16

    Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments

  11. Brain perfusion CT in acute stroke: current status

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias E-mail: matthias.koenig@ruhr-uni-bochum.de

    2003-03-01

    Dynamic perfusion CT has become a widely accepted imaging modality for the diagnostic workup of acute stroke patients. Although compared with standard spiral CT the use of multislice CT has broadened the range from which perfusion data may be derived in a single scan run. The advent of multidetector row technology has not really overcome the limited 3D capability of this technique. Multidetector CT angiography (CTA) of the cerebral arteries may in part compensate for this by providing additional information about the cerebrovascular status. This article describes the basics of cerebral contrast bolus scanning with a special focus on optimization of contrast/noise in order to ensure high quality perfusion maps. Dedicated scan protocols including low tube voltage (80 kV) as well as the use of highly concentrated contrast media are amongst the requirements to achieve optimum contrast signal from the short bolus passage through the brain. Advanced pre and postprocessing algorithms may help reduce the noise level, which may become critical in unconscious stroke victims. Two theoretical concepts have been described for the calculation of tissue perfusion from contrast bolus studies, both of which can be equally employed for brain perfusion imaging. For each perfusion model there are some profound limitations regarding the validity of perfusion values derived from ischemic brain areas. This makes the use of absolute quantitative cerebral blood flow (CBF) values for the discrimination of the infarct core from periinfarct ischemia questionable. Multiparameter imaging using maps of CBF, cerebral blood volume (CBV), and a time parameter of the local bolus transit enables analyzing of the cerebral perfusion status in detail. Perfusion CT exceeds plain CT in depicting cerebral hypoperfusion at its earliest stage yielding a sensitivity of about 90% for the detection of embolic and hemodynamic lesions within cerebral hemispheres. Qualitative assessment of brain perfusion can be

  12. Developing a Family-Centered Care Model for Critical Care After Pediatric Traumatic Brain Injury.

    Science.gov (United States)

    Moore, Megan; Robinson, Gabrielle; Mink, Richard; Hudson, Kimberly; Dotolo, Danae; Gooding, Tracy; Ramirez, Alma; Zatzick, Douglas; Giordano, Jessica; Crawley, Deborah; Vavilala, Monica S

    2015-10-01

    This study examined the family experience of critical care after pediatric traumatic brain injury in order to develop a model of specific factors associated with family-centered care. Qualitative methods with semi-structured interviews were used. Two level 1 trauma centers. Fifteen mothers of children who had an acute hospital stay after traumatic brain injury within the last 5 years were interviewed about their experience of critical care and discharge planning. Participants who were primarily English, Spanish, or Cantonese speaking were included. None. Content analysis was used to code the transcribed interviews and develop the family-centered care model. Three major themes emerged: 1) thorough, timely, compassionate communication, 2) capacity building for families, providers, and facilities, and 3) coordination of care transitions. Participants reported valuing detailed, frequent communication that set realistic expectations and prepared them for decision making and outcomes. Areas for capacity building included strategies to increase provider cultural humility, parent participation in care, and institutional flexibility. Coordinated care transitions, including continuity of information and maintenance of partnerships with families and care teams, were highlighted. Participants who were not primarily English speaking reported particular difficulty with communication, cultural understanding, and coordinated transitions. This study presents a family-centered traumatic brain injury care model based on family perspectives. In addition to communication and coordination strategies, the model offers methods to address cultural and structural barriers to meeting the needs of non-English-speaking families. Given the stress experienced by families of children with traumatic brain injury, careful consideration of the model themes identified here may assist in improving overall quality of care to families of hospitalized children with traumatic brain injury.

  13. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  14. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  15. Pathophysiological links between traumatic brain injury and post-traumatic headaches [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Robert L. Ruff

    2016-08-01

    Full Text Available This article reviews possible ways that traumatic brain injury (TBI can induce migraine-type post-traumatic headaches (PTHs in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD, are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD.

  16. Language-specific dysgraphia in Korean patients with right brain stroke: influence of unilateral spatial neglect.

    Science.gov (United States)

    Jang, Dae-Hyun; Kim, Min-Wook; Park, Kyoung Ha; Lee, Jae Woo

    2015-03-01

    The purpose of the present study was to investigate the relationship between Korean language-specific dysgraphia and unilateral spatial neglect in 31 right brain stroke patients. All patients were tested for writing errors in spontaneous writing, dictation, and copying tests. The dysgraphia was classified into visuospatial omission, visuospatial destruction, syllabic tilting, stroke omission, stroke addition, and stroke tilting. Twenty-three (77.4%) of the 31 patients made dysgraphia and 18 (58.1%) demonstrated unilateral spatial neglect. The visuospatial omission was the most common dysgraphia followed by stroke addition and omission errors. The highest number of errors was made in the copying and the least was in the spontaneous writing test. Patients with unilateral spatial neglect made a significantly higher number of dysgraphia in the copying test than those without. We identified specific dysgraphia features such as a right side space omission and a vertical stroke addition in Korean right brain stroke patients. In conclusion, unilateral spatial neglect influences copy writing system of Korean language in patients with right brain stroke.

  17. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation.

    Science.gov (United States)

    Di Pino, Giovanni; Pellegrino, Giovanni; Assenza, Giovanni; Capone, Fioravante; Ferreri, Florinda; Formica, Domenico; Ranieri, Federico; Tombini, Mario; Ziemann, Ulf; Rothwell, John C; Di Lazzaro, Vincenzo

    2014-10-01

    Noninvasive brain stimulation (NIBS) techniques can be used to monitor and modulate the excitability of intracortical neuronal circuits. Long periods of cortical stimulation can produce lasting effects on brain function, paving the way for therapeutic applications of NIBS in chronic neurological disease. The potential of NIBS in stroke rehabilitation has been of particular interest, because stroke is the main cause of permanent disability in industrial nations, and treatment outcomes often fail to meet the expectations of patients. Despite promising reports from many clinical trials on NIBS for stroke recovery, the number of studies reporting a null effect remains a concern. One possible explanation is that the interhemispheric competition model--which posits that suppressing the excitability of the hemisphere not affected by stroke will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere, and forms the rationale for many studies--is oversimplified or even incorrect. Here, we critically review the proposed mechanisms of synaptic and functional reorganization after stroke, and suggest a bimodal balance-recovery model that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion. The proposed model could enable NIBS to be tailored to the needs of individual patients.

  18. Automated Quantification of Stroke Damage on Brain Computed Tomography Scans: e-ASPECTS

    Directory of Open Access Journals (Sweden)

    James Hampton-Till

    2015-08-01

    Full Text Available Emergency radiological diagnosis of acute ischaemic stroke requires the accurate detection and appropriate interpretation of relevant imaging findings. Non-contrast computed tomography (CT provides fast and low-cost assessment of the early signs of ischaemia and is the most widely used diagnostic modality for acute stroke. The Alberta Stroke Program Early CT Score (ASPECTS is a quantitative and clinically validated method to measure the extent of ischaemic signs on brain CT scans. The CE-marked electronic-ASPECTS (e-ASPECTS software automates the ASPECTS score. Anglia Ruskin Clinical Trials Unit (ARCTU independently carried out a clinical investigation of the e-ASPECTS software, an automated scoring system which can be integrated into the diagnostic pathway of an acute ischaemic stroke patient, thereby assisting the physician with expert interpretation of the brain CT scan. Here we describe a literature review of the clinical importance of reliable assessment of early ischaemic signs on plain CT scans, and of technologies automating these processed scoring systems in ischaemic stroke on CT scans focusing on the e-ASPECTS software. To be suitable for critical appraisal in this evaluation, the published studies needed a sample size of a minimum of 10 cases. All randomised studies were screened and data deemed relevant to demonstration of performance of ASPECTS were appraised. The literature review focused on three domains: i interpretation of brain CT scans of stroke patients, ii the application of the ASPECTS score in ischaemic stroke, and iii automation of brain CT analysis. Finally, the appraised references are discussed in the context of the clinical impact of e-ASPECTS and the expected performance, which will be independently evaluated by a non-inferiority study conducted by the ARCTU.

  19. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  20. Cognitive Rehabilitation for Mild Traumatic Brain Injury

    Science.gov (United States)

    2009-06-08

    Cate Miller, Dr. Maria Mouratidis, Dr. George Prigatano, Dr. Carole Roth, LTC Michael Russell, LT Rick Schobitz, Dr. Joel Scholten, CAPT Edward Simmer...New York: The Guilford Press. Gordon W.A, Zafonte R., Cicerone, K., Cantor , J., Brown, M., Lombard, L., Goldsmith, R, & Chandna, T. (2006...Traumatic brain injury rehabilitation: State of the science. American Journal of Physical Medicine and Rehabilitation, 85, 343–82. Gordon, W.A., Cantor

  1. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  2. Post traumatic Headache and Psychological Health: Mindfulness Training for Mild TraumaticBrain Injury

    Science.gov (United States)

    2015-10-01

    Traumatic Brain Injury (Contract #: W81XWH-10-1-1021): Ford, PI Table of Contents Page Introduction…………………………………………………………….………..….. 4 Body...catastrophizing, rumination , and locus of control on primary endpoints (headache frequency, headache severity and headache-related quality of life). Based on the

  3. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    Science.gov (United States)

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Therapeutic Approach of a High Functioning Individual With Traumatic Brain Injury and Subsequent Emotional Volatility With Features of Pathological Laughter and Crying With Dextromethorphan/Quinidine.

    Science.gov (United States)

    Garcia-Baran, Dynela; Johnson, Thomas M; Wagner, Joyce; Shen, Joann; Geers, Michelle

    2016-03-01

    Pathological laughing and crying, or pseudobulbar affect (PBA), has been described in patients with neurological disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, stroke, and traumatic brain injury (TBI) since the 19th century (Schiffer 2005). The syndrome is characterized by inappropriate episodes of laughing or crying after minor stimuli. It was first coined a disinhibition of cortical control by Kinnier Wilson in 1924. It was observed in brain disease and seen with mild TBI. It can impair social and occupational function and is largely underrecognized in clinical settings. PBA is usually treated with antidepressants and dopaminergic agents. In this case we treated a military recruit with TBI with Nuedexta-a dextromethorphan/Quinidine derivative with a subsequent decrease in his episodes.

  5. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    Science.gov (United States)

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  6. Traumatic brain injury pharmacological treatment: recommendations

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT This article presents the recommendations on the pharmacological treatment employed in traumatic brain injury (TBI at the outpatient clinic of the Cognitive Rehabilitation after TBI Service of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil. A systematic assessment of the consensus reached in other countries, and of articles on TBI available in the PUBMED and LILACS medical databases, was carried out. We offer recommendations of pharmacological treatments in patients after TBI with different symptoms.

  7. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p right hemisphere dominance in processing negative emotions.

  8. Quantifying the funding gap for management of traumatic brain ...

    African Journals Online (AJOL)

    Background: Trauma is an eminently preventable disease. However, prevention programs divert resources away from other priorities. Costing trauma related diseases helps policy makers to make decisions on re-source allocation. We used data from a prospective digital trauma registry to cost Traumatic Brain Injury (TBI) at ...

  9. School-Based Traumatic Brain Injury and Concussion Management Program

    Science.gov (United States)

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  10. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  11. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    NARCIS (Netherlands)

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time,

  12. The Incidence of Postconcussion Syndrome Remains Stable Following Mild Traumatic Brain Injury in Children.

    Science.gov (United States)

    Barlow, Karen M; Crawford, Susan; Brooks, Brian L; Turley, Brenda; Mikrogianakis, Angelo

    2015-12-01

    Improving our knowledge about the natural history and persistence of symptoms following mild traumatic brain injury is a vital step in improving the provision of health care to children with postconcussion syndrome. The purposes of this study were to (1) determine the incidence and persistence of symptoms after mild traumatic brain injury and (2) ascertain whether Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), symptom criteria for postconcussion syndrome in adults are appropriate for use in children. A tertiary care pediatric emergency department was the setting for this study. This was a prospective observational follow-up cohort study of children (ages 2 to 18 years) with mild traumatic brain injury. Data were collected in person during the acute presentation, and subsequent follow-up was performed by telephone at 7-10 days and 1, 2, and 3 months postinjury. Postconcussion Symptom Inventory for parents and children was used. The DSM-IV diagnostic criteria for postconcussion syndrome were explored using receiver operating characteristic curve analysis. A total of 467 children (62.5% boys, median age 12.04, range 2.34-18.0) with mild traumatic brain injury participated. The median time until symptom resolution was 29.0 days (95% confidence intervals: 26.09-31.91). Three months after injury, 11.8% of children with mild traumatic brain injury remained symptomatic. Receiver operating curve characteristic analysis of the postconcussion syndrome criteria successfully classified symptomatic participants at three months postinjury; the adolescent receiver operating characteristic curve was excellent with the area under the curve being 0.928 (P children presenting to the emergency room with a mild traumatic brain injury remain symptomatic at 3 months postinjury. This is the first study to demonstrate stable incidence rates of postconcussion syndrome in children and that modified DSM-IV criteria can be used to successfully classify

  13. [What happens after the accident? Psychosocial needs of people with traumatic brain injury and their families].

    Science.gov (United States)

    Gifre, Mariona; Gil, Ángel; Pla, Laura; Roig, Teresa; Monreal-Bosch, Pilar

    2015-09-01

    To identify factors that people with a traumatic brain injury and their families perceived as helping to improve their quality of life. Three focus groups and five interviews were conducted with a total of 37 participants: 14 persons with traumatic brain injury and 23 caregivers. A content analysis was conducted. The constant comparative method was applied. We detected five factors that improved the quality of life of persons with a traumatic brain and their families: 1) Informal support (family and friends); 2) formal support (counseling, employment, built and bureaucratic environment); 3) type of clinical characteristics; 4) social participation, and 5) social visibility. The needs expressed by our participants primarily focused on social and emotional factors. For persons with severe traumatic brain injury attempting to achieve the best possible community integration, a new semiology is required, not limited to medical care, but also involving social and psychological care tailored to the needs of each individual and family and their environment. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  14. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    International Nuclear Information System (INIS)

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-01-01

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques

  15. Hyperbaric Oxygen Therapy in the Treatment of Chronic Mild-Moderate Blast-Induced Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD)

    Science.gov (United States)

    2017-10-01

    Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) PRINCIPAL INVESTIGATOR: Paul G. Harch, M.D. CONTRACTING ORGANIZATION...Traumatic Brain Injury Post-Concussion Syndrome (PCS) and Post Traumatic Stress Disorder (PTSD) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...injury (TBI) and post-traumatic stress disorder (PTSD) affect 11-28% and 13-17%, respectively, of U.S. combat troops returning from Iraq and

  16. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Science.gov (United States)

    2012-12-10

    ... mental ``disabilities'' for VA compensation purposes. However, the behavioral, social, and occupational... Diagnosable Illnesses Associated With Traumatic Brain Injury AGENCY: Department of Veterans Affairs. ACTION... Sciences, Institute of Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic...

  17. Sleep-wake disturbances after traumatic brain injury.

    Science.gov (United States)

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Combat veterans, mental health issues, and the death penalty: addressing the impact of post-traumatic stress disorder and traumatic brain injury.

    Science.gov (United States)

    Giardino, Anthony E

    2009-05-01

    More than 1.5 million Americans have participated in combat operations in Iraq and Afghanistan over the past seven years. Some of these veterans have subsequently committed capital crimes and found themselves in our nation's criminal justice system. This Essay argues that combat veterans suffering from post-traumatic stress disorder or traumatic brain injury at the time of their offenses should not be subject to the death penalty.Offering mitigating evidence regarding military training, post-traumatic stress disorder, and traumatic brain injury presents one means that combat veterans may use to argue for their lives during the sentencing phase of their trials. Alternatively, Atkins v. Virginia and Roper v. Simmons offer a framework for establishing a legislatively or judicially created categorical exclusion for these offenders, exempting them from the death penalty as a matter of law. By understanding how combat service and service-related injuries affect the personal culpability of these offenders, the legal system can avoid the consequences of sentencing to death America's mentally wounded warriors, ensuring that only the worst offenders are subject to the ultimate punishment.

  19. 99mTc-HMPAO Brain SPECT in Patients with Post-Traumatic Organic Mental Disorder

    International Nuclear Information System (INIS)

    Lee, Kang Wook; Lee, Dong Jin; Shong, Min Ho; Kang, Min Hee; Ghi, Ick Sung; Shin, Young Tai; Ro, Heung Kyu

    1994-01-01

    It is well known that 99m Tc-HMPAO brain SPECT can reflect the functional lesions better than X-ray computerized tomography(CT) and magnetic resonance imaging(MRI) in the cerebral disorders. In order to evaluate the clinical utilities of 99m Tc-HMPAO brain SPECT in patients with post-traumatic chronic organic mental disorder(OMD). We included 28 patients diagnosed as OMD in department of psychiatry after traumatic head injury. And we compared the results of 99m Tc-HMPAO SPECT with those of MRI, EEG and MINI mental status examination(MMSE). The results were as follows 1) All patients diagnosed as OMD showed diffuse or focal decreased cerebral perfusion on 99m Tc-HMPAO SPECT. 2) Most frequent lesion on brain 99m Tc-HMPAO SPECT was decreased perfusion on both frontal lobe. And most frequent lesion on brain 99m Tc-HMPAO SPECT was decreased perfusion on both frontal lobe. And most frequent lesion on brain 99m Tc-HMPAO SPECT showing normal brain MRI result was also decreased both frontal perfusion. 3) Eight of 28 patients showed focal brain MRI lesions(4 small frontal hygroma, 3 small cerebral infarction and 1 cerebellar encephalomalacia) which were not detected in brain 99m Tc-HMPAO SPECT. 4) The patients showing less than 20 points on MMSE disclosed abnormal results of EEG more frequently than those disclosing more than 20 points. In conclusion, we think that 99m Tc-HMPAO brain SPECT is sensitive method to detect functional lesions of the brains in patients with chronic post-traumatic organic mental disorder.

  20. Imaging brain plasticity after trauma

    Institute of Scientific and Technical Information of China (English)

    Zhifeng Kou; Armin Iraji

    2014-01-01

    The brain is highly plastic after stroke or epilepsy;however, there is a paucity of brain plasticity investigation after traumatic brain injury (TBI). This mini review summarizes the most recent evidence of brain plasticity in human TBI patients from the perspective of advanced magnetic resonance imaging. Similar to other forms of acquired brain injury, TBI patients also demonstrat-ed both structural reorganization as well as functional compensation by the recruitment of other brain regions. However, the large scale brain network alterations after TBI are still unknown, and the ifeld is still short of proper means on how to guide the choice of TBI rehabilitation or treat-ment plan to promote brain plasticity. The authors also point out the new direction of brain plas-ticity investigation.

  1. Traumatic Brain Injury: Caregivers’ Problems and Needs

    OpenAIRE

    syed tajjudin syed hassan; WF Khaw; AR Rosna; J Husna

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information,...

  2. Cobalt-55 positron emission tomography in traumatic brain injury : A pilot study

    NARCIS (Netherlands)

    Jansen, HML; vanderNaalt, J; vanZomeren, AH; Paans, AMJ; VeenmavanderDuin, L; Hew, JM; Pruim, J; Minderhoud, JM; Korf, J

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Go-PET) as a calcium tracer enables

  3. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  4. Demographic profile of severe traumatic brain injury admissions to ...

    African Journals Online (AJOL)

    Background. Paediatric traumatic brain injury (PTBI) is a major public health problem. However, recent epidemiological data for PTBI in South Africa (SA) are lacking. Objectives. To establish a demographic profile of severe PTBI admissions to the Red Cross War Memorial Children's Hospital (RCWMCH) over a 5-year ...

  5. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    Science.gov (United States)

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  6. Mild Traumatic Brain Injury in U.S. Soldiers Returning from Iraq

    National Research Council Canada - National Science Library

    Hoge, Charles W; McGurk, Dennis; Thomas, Jeffrey L; Cox, Anthony L; Engel, Charles C; Castro, Carl A

    2008-01-01

    .... Validated clinical instruments were used to compare soldiers reporting mild traumatic brain injury, defined as an injury with loss of consciousness or altered mental status (e.g., dazed or confused...

  7. Harnessing the potential of biomaterials for brain repair after stroke

    Science.gov (United States)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  8. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury

    OpenAIRE

    S. Porter; I.J. Torres; W. Panenka; Z. Rajwani; D. Fawcett; A. Hyder; N. Virji-Babul

    2017-01-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to asse...

  9. Traumatic Brain Injury and Its Effect on Students

    Science.gov (United States)

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  10. Patients "At Risk'' of Suffering from Persistent Complaints after Mild Traumatic Brain Injury : The Role of Coping, Mood Disorders, and Post-Traumatic Stress

    NARCIS (Netherlands)

    Scheenen, Myrthe E.; Spikman, Jacoba M.; de Koning, Myrthe E.; van der Horn, Harm J.; Roks, Gerwin; Hageman, Gerard; van der Naalt, Joukje

    2017-01-01

    Although most patients recover fully following mild traumatic brain injury (mTBI), a minority (15-25%) of all patients develop persistent post-traumatic complaints (PTC) that interfere with the resumption of previous activities. An early identification of patients who are at risk for PTC is

  11. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study.

    Science.gov (United States)

    Farbota, Kimberly D M; Sodhi, Aparna; Bendlin, Barbara B; McLaren, Donald G; Xu, Guofan; Rowley, Howard A; Johnson, Sterling C

    2012-11-01

    After traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements.

  12. Adolescents\\' experience of a parental traumatic brain injury | Harris ...

    African Journals Online (AJOL)

    The phenomenon of parental traumatic brain injury was characterised by denial, anger, grief, guilt, anxiety, over-protectiveness, social isolation, and change in many areas of the participants' lives. The adolescents coped using both approaches and avoidance styles of coping. Religion was a theme in the lives of all four ...

  13. Free-Radical Scavenger Edaravone Treatment Confers Neuroprotection Against Traumatic Brain Injury in Rats

    Science.gov (United States)

    Wang, Guo-Hua; Li, Yong-Cai; Li, Xia; Shi, Hong; Gao, Yan-Qin; Vosler, Peter S.

    2011-01-01

    Abstract Traumatic brain injury (TBI) is one of the leading causes of neurological disability in young adults. Edaravone, a novel synthetic small-molecule free-radical scavenger, has been shown to have a neuroprotective effect in both animal models of cerebral ischemia and stroke patients; however, the underlying mechanism is poorly understood. In this report, we investigated the potential mechanisms of edaravone treatment in a rat model of TBI. TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. Edaravone (0.75, 1.5, or 3 mg/kg) or vehicle (normal saline) was intravenously administered at 2 and 12 h after TBI. Edaravone treatment significantly decreased hippocampal CA3 neuron loss, reduced oxidative stress, and decreased neuronal programmed cell death compared to vehicle treatment. The protective effects of edaravone treatment were also related to the pathology of TBI on non-neuronal cells, as edaravone decreased astrocyte and glial activation. Lastly, edaravone treatment significantly reduced the presence of inflammatory cytokines, cerebral edema, blood–brain barrier (BBB) permeability, and, importantly, neurological deficits following TBI. Our results suggest that edaravone exerts a neuroprotective effect in the rat model of TBI. The likely mechanism is via inhibiting oxidative stress, leading to a decreased inflammatory response and glial activation, and thereby reducing neuronal death and improving neurological function. PMID:21732763

  14. Role of the Prostaglandin E2 EP1 Receptor in Traumatic Brain Injury

    Science.gov (United States)

    Glushakov, Alexander V.; Fazal, Jawad A.; Narumiya, Shuh; Doré, Sylvain

    2014-01-01

    Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic

  15. The emergence of artistic ability following traumatic brain injury

    OpenAIRE

    Midorikawa, Akira; Kawamura, Mitsuru

    2014-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal...

  16. A systematic review of peer mentoring interventions for people with traumatic brain injury.

    Science.gov (United States)

    Morris, Richard Pg; Fletcher-Smith, Joanna C; Radford, Kathryn A

    2017-08-01

    This systematic review sought evidence concerning the effectiveness of peer mentoring for people with traumatic brain injury. Fourteen electronic databases were searched, including PsycINFO, MEDLINE, CINAHL, EMBASE and the Cochrane Library, from inception to September 21 2016. Ten grey literature databases, PROSPERO, two trials registers, reference lists and author citations were also searched. Studies which employed a model of one-to-one peer mentoring between traumatic brain injury survivors were included. Two reviewers independently screened all titles and abstracts before screening full texts of shortlisted studies. A third reviewer resolved disagreements. Two reviewers independently extracted data and assessed studies for quality and risk of bias. The search returned 753 records, including one identified through hand searching. 495 records remained after removal of duplicates and 459 were excluded after screening. Full texts were assessed for the remaining 36 studies and six met the inclusion criteria. All were conducted in the United States between 1996 and 2012 and employed a variety of designs including two randomised controlled trials. A total of 288 people with traumatic brain injury participated in the studies. No significant improvements in social activity level or social network size were found, but significant improvements were shown in areas including behavioural control, mood, coping and quality of life. There is limited evidence for the effectiveness of peer mentoring after traumatic brain injury. The available evidence comes from small-scale studies, of variable quality, without detailed information on the content of sessions or the 'active ingredient' of the interventions.

  17. Executive dysfunction, severity of traumatic brain injury, and IQ in workers with disabilities.

    Science.gov (United States)

    Matheson, Leonard

    2010-01-01

    To study whether severity of traumatic brain injury and the intelligence quotient are related to executive dysfunction. Sixty-two adults with brain injury who were referred for a work capacity evaluation. Retrospective review of severity of traumatic brain injury, intelligence quotient from a previously-conducted neuropsychological evaluation, determination of executive function status from the neuropsychological evaluation, and both self-report and informant-report executive dysfunction scores from the Behavior Rating Inventory of Executive Function. Executive dysfunction and the intelligence quotient are related to severity of traumatic brain injury, but executive dysfunction and the intelligence quotient are not related to each other. Executive dysfunction as determined by a neuropsychological evaluation was not consistent with clients' self-reports but was consistent with informant-reported executive dysfunction. Five types of executive dysfunction were reported by knowledgeable informants, with significant elevations on the Shift, Plan/Organize, Task Monitor, Organization of Materials, and Working Memory BRIEF clinical scales. The intelligence quotient is not a useful indicator of executive dysfunction. Informant-report executive dysfunction is a reliable and potentially useful adjunct to a neuropsychological evaluation. Working memory is the most severe type of executive dysfunction and may not be adequately measured by current neuropsychological evaluation methods.

  18. Clinical significance of measurement of plasma ET-1 and CGRP levels in patients with traumatic brain injury

    International Nuclear Information System (INIS)

    Jing Daping; Cheng Guanghua

    2007-01-01

    Objective: To study the changes of plasma ET-1 and CGRP levels in patients with traumatic brain injury of different severity. Methods: 107 patients with traumatic brain injury were divided into three group on the basis of GCS: mild group (n=25, GCS>12), moderate group (n=33, GCS9-12) and severe group (n=49, GCS3-8). The plasma ET-1 and CGRP levels in these patients and 30 controls were determined with RIA. Results: 1) The plasma ET-1 levels in patients with traumatic brain injury were signilieantly higher than those in controls, the more severe the illness, the higher the ET-1 levels. 2)The plasma CGRP levels in patients of mild and moderate brain injury were found significantly higher than those in controls, while no significant differences were found between those in severe and control group. 3)The more severe the illness was, the lower CGRP/ET-1 ratio were found. Conclusion: The changes of plasma levels of ET-1 and CGRP and the CGRP/ET-1 ratio in the patients with traumatic brain injury were correlated with the severity of the illness, and might be of prognostic value. (authors)

  19. A qualitative study exploring nurses’ attitudes, confidence, and perceived barriers to implementing a traumatic brain injury nursing chart in Uganda

    Directory of Open Access Journals (Sweden)

    Leslie Wynveen

    2018-06-01

    Full Text Available Introduction: In Africa, traumatic brain injuries frequently result from road traffic injuries and assaults. Despite limited resources and the high costs of life-saving neurosurgical interventions, secondary brain injury prevention has the potential for improving outcomes. However, nurses and other medical personnel infrequently monitor vital signs, blood sugar, and pulse oximetry and only sporadically re-assess neurological status. Methods: In one-on-one, semi-structured interviews, 27 nurses from Mulago Hospital’s emergency centre, a tertiary care trauma hospital in Kampala, Uganda, provided feedback regarding a traumatic brain injury-focused education session and use of a nursing chart for detecting secondary brain injury. The interviews explored the nurses’ confidence and perceived barriers to long-term chart implementation and traumatic brain injury care, as well as their ideas for improving this intervention. Interviews were audio recorded, transcribed, and coded using ATLAS.ti: Qualitative Data Analysis and Research Software (Cleverbridge, Inc., Chicago, USA and Microsoft Word and Excel (Microsoft Office, Redmond, USA for thematic content analysis. Results: Key findings identified in the interviews included the nurses’ attitudes toward the chart and their feelings of increased confidence in assessing and caring for these patients. The main barriers to continuous implementation included inadequate staffing and resources. Conclusion: Nurses were receptive to the education session and nursing chart, and felt that it increased their confidence and improved their ability to care for traumatic brain injured patients. However, lack of supplies, overwhelming numbers of patients, and inadequate staffing interfered with consistent monitoring of patients. The nurses offered various suggestions for improving traumatic brain injury care that should be further investigated. More research is needed to assess the applicability of a standardised

  20. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Minor traumatic brain injuries – what is new? | Hollander ...

    African Journals Online (AJOL)

    Minor traumatic brain injuries – what is new? D Hollander, J Coventry, M Du Trevou. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  2. Traumatic brain injury in children | Coughlan | South African Family ...

    African Journals Online (AJOL)

    South African Family Practice. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 45, No 5 (2003) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Traumatic brain injury in children. M Coughlan, G Fieggen ...

  3. Cerebellar stroke presenting with isolated dizziness: Brain MRI in 136 patients.

    Science.gov (United States)

    Perloff, Michael D; Patel, Nimesh S; Kase, Carlos S; Oza, Anuja U; Voetsch, Barbara; Romero, Jose R

    2017-11-01

    To evaluate occurrence of cerebellar stroke in Emergency Department (ED) presentations of isolated dizziness (dizziness with a normal exam and negative neurological review of systems). A 5-year retrospective study of ED patients presenting with a chief complaint of "dizziness or vertigo", without other symptoms or signs in narrative history or on exam to suggest a central nervous system lesion, and work-up included a brain MRI within 48h. Patients with symptoms commonly peripheral in etiology (nystagmus, tinnitus, gait instability, etc.) were included in the study. Patient demographics, stroke risk factors, and gait assessments were recorded. One hundred and thirty-six patients, who had a brain MRI for isolated dizziness, were included. There was a low correlation of gait assessment between ED physician and Neurologist (49 patients, Spearman's correlation r 2 =0.17). Based on MRI DWI sequence, 3.7% (5/136 patients) had acute cerebellar strokes, limited to or including, the medial posterior inferior cerebellar artery vascular territory. In the 5 cerebellar stroke patients, mean age, body mass index (BMI), hemoglobin A1c, gender distribution, and prevalence of hypertension were similar to the non-cerebellar stroke patient group. Mean LDL/HDL ratio was 3.63±0.80 and smoking prevalence was 80% in the cerebellar stroke group compared to 2.43±0.79 and 22% (respectively, p valuesstroke group. Though there was preselection bias for stroke risk factors, our study suggests an important proportion of cerebellar stroke among ED patients with isolated dizziness, considering how common this complaint is. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke

    Directory of Open Access Journals (Sweden)

    Maximilian Jonas Wessel

    2015-05-01

    Full Text Available Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current (tDCS, transcranial magnetic (TMS and paired associative (PAS stimulation are noninvasive brain stimulation techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  5. Traumatic brain injury: unmet support needs of caregivers and families in Florida.

    Directory of Open Access Journals (Sweden)

    Christina Dillahunt-Aspillaga

    Full Text Available Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented.

  6. Coping and emotional adjustment following traumatic brain injury.

    Science.gov (United States)

    Anson, Katie; Ponsford, Jennie

    2006-01-01

    To examine the association between coping style and emotional adjustment following traumatic brain injury. Thirty three individuals who had sustained a traumatic brain injury (mean duration of posttraumatic amnesia = 32 days) between 1(1/2) months and almost 7 years previously. Coping Scale for Adults, Hospital Anxiety and Depression Scale, Rosenberg Self-Esteem Scale, State-Trait Anger Expression Inventory, and the Sickness Impact Profile. Approximately 50% of the sample reported clinically significant levels of anxiety and depression. Coping characterized by avoidance, worry, wishful thinking, self-blame, and using drugs and alcohol was associated with higher levels of anxiety, depression, and psychosocial dysfunction and lower levels of self-esteem. Coping characterized by actively working on the problem and using humor and enjoyable activities to manage stress was associated with higher self-esteem. Lower premorbid intelligence (measured via the National Adult Reading Test) and greater self-awareness (measured via the Self-Awareness of Deficits Interview) were associated with an increased rate of maladaptive coping. The strong association between the style of coping used to manage stress and emotional adjustment suggests the possibility that emotional adjustment might be improved by the facilitation of more adaptive coping styles. It is also possible that improving emotional adjustment may increase adaptive coping. The development and evaluation of interventions aimed at facilitating adaptive coping and decreasing emotional distress represent important and potentially fruitful contributions to enhancing long-term outcome following brain injury.

  7. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  8. Pituitary dysfunction following traumatic brain injury or subarachnoid haemorrhage - in "Endocrine Management in the Intensive Care Unit".

    LENUS (Irish Health Repository)

    Hannon, M J

    2012-02-01

    Traumatic brain injury and subarachnoid haemorrhage are important causes of morbidity and mortality in the developed world. There is a large body of evidence that demonstrates that both conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in both traumatic brain injury and subarachnoid haemorrhage. In this article, we will review the history and pathophysiology of pituitary function in the acute phase following traumatic brain injury and subarachnoid haemorrhage, and we will discuss in detail three key aspects of pituitary dysfunction which occur in the early course of TBI; acute cortisol deficiency, diabetes insipidus and SIAD.

  9. Utility of the Croatian translation of the community integration questionnaire-revised in a sample of adults with moderate to severe traumatic brain injury.

    Science.gov (United States)

    Tršinski, Dubravko; Tadinac, Meri; Bakran, Žarko; Klepo, Ivana

    2018-02-23

    To examine the utility of the Community Integration Questionnaire-Revised, translated into Croatian, in a sample of adults with moderate to severe traumatic brain injury. The Community Integration Questionnaire-Revised was administered to a sample of 88 adults with traumatic brain injury and to a control sample matched by gender, age and education. Participants with traumatic brain injury were divided into four subgroups according to injury severity. The internal consistency of the Community Integration Questionnaire-Revised was satisfactory. The differences between the group with traumatic brain injury and the control group were statistically significant for the overall Community Integration Questionnaire-Revised score, as well as for all the subscales apart from the Home Integration subscale. The community Integration Questionnaire-Revised score varied significantly for subgroups with different severity of traumatic brain injury. The results show that the Croatian translation of the Community Integration Questionnaire-Revised is useful in assessing participation in adults with traumatic brain injury and confirm previous findings that severity of injury predicts community integration. Results of the new Electronic Social Networking scale indicate that persons who are more active on electronic social networks report better results for other domains of community integration, especially social activities. Implications for rehabilitation The Croatian translation of the Community Integration Questionnaire-Revised is a valid tool for long-term assessment of participation in various domains in persons with moderate to severe traumatic brain injury Persons with traumatic brain injury who are more active in the use of electronic social networking are also more integrated into social and productivity domains. Targeted training in the use of new technologies could enhance participation after traumatic brain injury.

  10. Brain network dysregulation, emotion, and complaints after mild traumatic brain injury.

    Science.gov (United States)

    van der Horn, Harm J; Liemburg, Edith J; Scheenen, Myrthe E; de Koning, Myrthe E; Marsman, Jan-Bernard C; Spikman, Jacoba M; van der Naalt, Joukje

    2016-04-01

    To assess the role of brain networks in emotion regulation and post-traumatic complaints in the sub-acute phase after non-complicated mild traumatic brain injury (mTBI). Fifty-four patients with mTBI (34 with and 20 without complaints) and 20 healthy controls (group-matched for age, sex, education, and handedness) were included. Resting-state fMRI was performed at four weeks post-injury. Static and dynamic functional connectivity were studied within and between the default mode, executive (frontoparietal and bilateral frontal network), and salience network. The hospital anxiety and depression scale (HADS) was used to measure anxiety (HADS-A) and depression (HADS-D). Regarding within-network functional connectivity, none of the selected brain networks were different between groups. Regarding between-network interactions, patients with complaints exhibited lower functional connectivity between the bilateral frontal and salience network compared to patients without complaints. In the total patient group, higher HADS-D scores were related to lower functional connectivity between the bilateral frontal network and both the right frontoparietal and salience network, and to higher connectivity between the right frontoparietal and salience network. Furthermore, whereas higher HADS-D scores were associated with lower connectivity within the parietal midline areas of the bilateral frontal network, higher HADS-A scores were related to lower connectivity within medial prefrontal areas of the bilateral frontal network. Functional interactions of the executive and salience networks were related to emotion regulation and complaints after mTBI, with a key role for the bilateral frontal network. These findings may have implications for future studies on the effect of psychological interventions. © 2016 Wiley Periodicals, Inc.

  11. The emergence of artistic ability following traumatic brain injury.

    Science.gov (United States)

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-02-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months.

  12. Cerebral Vascular Injury in Traumatic Brain Injury.

    Science.gov (United States)

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  13. Postdeployment Symptom Changes and Traumatic Brain Injury and/or Posttraumatic Stress Disorder in Men

    Science.gov (United States)

    2012-01-01

    Post - Deployment Health Assessment, according to traumatic brain injury (TBI) and posttraumatic stress disorder ( PTSD ...Key words: blasts, deployment, males, military, odds ratio, percent change, Post -Deployment Health Assessment, post - traumatic stress disorder ...Care Posttraumatic Stress Disorder Screen, PDHA = Post -Deployment Health Assessment, PDHRA = Post - Deployment Health Reassessment, PTSD =

  14. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  15. Novel Mechanism for Reducing Acute and Chronic Neurodegeneration After Traumatic Brain Injury

    Science.gov (United States)

    2017-07-01

    Award Number: W81XWH-14-1-0195 TITLE: Novel Mechanism for Reducing Acute and Chronic Neurodegeneration after Traumatic Brain Injury...Purpose: The purpose of this project is to develop a radically different strategy to reduce brain glutamate excitotoxicity and treat TBI. We will...objective of reducing blood levels of glutamate. This will produce a brain -to-blood gradient of glutamate which will enhance the removal of excess

  16. Traumatic brain injury, the hidden pandemic: A focused response to ...

    African Journals Online (AJOL)

    Introduction: Traumatic brain injury (TBI) has many potential cognitive, behavioural and psychological consequences, and contributes significantly to the national burden of disease and to ongoing violent behaviour. Few resources are available for the rehabilitation of patients with TBI in South Africa, and access to ...

  17. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  18. Racial differences in employment outcomes after traumatic brain injury.

    Science.gov (United States)

    Arango-Lasprilla, Juan Carlos; Ketchum, Jessica M; Williams, Kelli; Kreutzer, Jeffrey S; Marquez de la Plata, Carlos D; O'Neil-Pirozzi, Therese M; Wehman, Paul

    2008-05-01

    To examine racial differences in employment status and occupational status 1 year after a traumatic brain injury (TBI). Retrospective study. Longitudinal dataset of the Traumatic Brain Injury Model Systems national database. Subjects with primarily moderate to severe TBI (3468 whites vs 1791 minorities) hospitalized between 1989 and 2005. Not applicable. Employment status (competitively employed or unemployed) and occupational status (professional/managerial, skilled, or manual labor) at 1 year postinjury. Race and/or ethnicity has a significant effect on employment status at 1 year postinjury (chi(1)(2)=58.23, Pstatus, sex, Disability Rating Scale at discharge, marital status, cause of injury, age, and education. The adjusted odds of being unemployed versus competitively employed are 2.17 times (95% confidence interval, 1.78-2.65) greater for minorities than for whites. Race and ethnicity does not have a significant effect on occupational status at 1 year postinjury. With this empirical evidence supporting racial differences in employment outcomes between minorities and whites at 1 year postinjury, priority should be given to tailoring interventions to maximize minority survivors' work-related productivity.

  19. Severe Traumatic Brain Injury, Frontal Lesions, and Social Aspects of Language Use: A Study of French-Speaking Adults

    Science.gov (United States)

    Dardier, Virginie; Bernicot, Josie; Delanoe, Anaig; Vanberten, Melanie; Fayada, Catherine; Chevignard, Mathilde; Delaye, Corinne; Laurent-Vannier, Anne; Dubois, Bruno

    2011-01-01

    The purpose of this study was to gain insight into the social (pragmatic) aspects of language use by French-speaking individuals with frontal lesions following a severe traumatic brain injury. Eleven participants with traumatic brain injury performed tasks in three areas of communication: production (interview situation), comprehension (direct…

  20. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  1. Post-traumatic contrast enhancing brain lesion

    International Nuclear Information System (INIS)

    Kim, Dae Jung; Kim, Hyun Sook; Jeong, Min Sun; Kim, Deok Ryeong; Cho, Young Kwon; Choi, Yun Sun

    2014-01-01

    Only a few studies have been reported on the MR contrast enhancement and the apparent diffusion coefficient (ADC) findings of the post-traumatic lesion of the brain. We report a case of the venous ischemia in the left frontal lobe observed in the MRI obtained one day after the incidence of trauma. Considering the presented slight increase in the ADC, the vasogenic edema was thought to be the major mechanism of the venous ischemia and excitotoxic injury. In spite of a slight increase in the ADC, the hyperintensity in the diffusion weighted imaging and contrast-enhanced areas eventually changed into hemorrhagic lesions.

  2. Post-traumatic contrast enhancing brain lesion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jung; Kim, Hyun Sook; Jeong, Min Sun; Kim, Deok Ryeong; Cho, Young Kwon; Choi, Yun Sun [Eulji Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of)

    2014-10-15

    Only a few studies have been reported on the MR contrast enhancement and the apparent diffusion coefficient (ADC) findings of the post-traumatic lesion of the brain. We report a case of the venous ischemia in the left frontal lobe observed in the MRI obtained one day after the incidence of trauma. Considering the presented slight increase in the ADC, the vasogenic edema was thought to be the major mechanism of the venous ischemia and excitotoxic injury. In spite of a slight increase in the ADC, the hyperintensity in the diffusion weighted imaging and contrast-enhanced areas eventually changed into hemorrhagic lesions.

  3. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  4. The Effect of Naloxone on Plasma ET-1 and CGRP Levels in Patients with Traumatic Brain Injury

    International Nuclear Information System (INIS)

    Zhang Chunyin; Guang Ming; Cai Liang; Chen Boxun; Gan Xilun

    2009-01-01

    To investigate the effect of naloxone on the changes of plasma ET-1 and CGRP levels in patients with traumatic brain injury, ninety patients with traumatic brain injury were randomly divided into naloxone treated group and conventionally treated group (both n=45). The plasma levels of ET-1 and CGRP in both groups before and after treatment and in 30 healthy controls were measured by RIA. The results showed that the plasma levels of ET-1 were significantly increased in the patient before treatment and decreased markedly after treatment in both groups. The magnitude of decrease of the plasma ET-1 levels in the naloxone treated group was significantly higher than that in the conventionally treated group (P<0.01). The plasma levels of CGRP were significantly decreased in the patients before treatment and increased markedly after treatment in both groups. The magnitude of increase of the plasma CGRP levels in the naloxone treated group was significantly higher than that in the conventionally treated group (P<0.01). The plasma ET-1 levels in patients with traumatic brain injury was remarkably increased and markedly decreased after treatment with naloxone. The plasma CGRP levels in patients with traumatic brain injury was remarkably decreased and markedly increased after treatment with naloxone. Naloxone has a favorable effect on patient with traumatic brain injury, it may protect the neural cells and improve their living quality. (authors)

  5. Small brain lesions and incident stroke and mortality: A cohort study

    Science.gov (United States)

    Windham, B Gwen; Deere, Bradley; Griswold, Michael E.; Wang, Wanmei; Bezerra, Daniel C; Shibata, Dean; Butler, Kenneth; Knopman, David; Gottesman, Rebecca F; Heiss, Gerardo; Mosley, Thomas H

    2015-01-01

    Background Although cerebral lesions ≥3mm on imaging are associated with incident stroke, lesions stroke risks associated with subclinical brain lesions by size (stroke; average 14.5 years follow-up. Measurements MRI lesions: none (n=1611), stroke (n=157), overall mortality (n=576), stroke mortality (n=50). Hazard Ratios (HR) estimated with proportional hazards models. Results Compared to no lesions, stroke risk was tripled with lesions Stroke risk doubled with WMH ≥3 (HR=2.14, 95% CI:1.45-3.16). Stroke mortality risk tripled with lesions stroke events (n=147), especially hemorrhagic (n=15); limited numbers of participants with only lesions ≤3mm (n=50) or with both lesions ≤3mm and 3–20mm (n=35). Conclusions Very small cerebrovascular lesions may be associated with increased risks of stroke and mortality; having both < 3 mm and ≥3 mm lesions may represent a particularly striking risk increase. Larger studies are needed to confirm findings and provide more precise estimates. PMID:26148278

  6. Predictors of outcome after treatment of mild traumatic brain injury: a pilot study.

    Science.gov (United States)

    Leininger, Shelley; Strong, Carrie-Ann H; Donders, Jacobus

    2014-01-01

    To determine factors affecting outcome of comprehensive outpatient rehabilitation of individuals who sustained a mild traumatic brain injury. From a 4-year series of referrals, 49 nonconsecutive participants met criteria for mild traumatic brain injury (ie, loss of consciousness 12). Outpatient, community-based postconcussion clinic at a rehabilitation hospital. Participants and therapy staff completed the Mayo-Portland Adaptability Inventory-Fourth Edition (MPAI-4) at the initiation and conclusion of treatment. Participants were also administered the Trail Making Test at the start of treatment. Participants generally gave poorer adaptability ratings than staff at the beginning and discharge of treatment. Regression analyses revealed that after controlling for baseline ratings, psychiatric history was associated with worse participant-rated MPAI-4 Adjustment scores at treatment discharge, whereas better Trail Making Test Part B performance at initiation of treatment predicted better participant-rated MPAI-4 Ability at treatment discharge. Premorbid demographic and baseline neurocognitive factors should be taken into account prior to comprehensive treatment of mild traumatic brain injury, as they can influence long-term outcomes. Adaptability ratings from both staff and participants can be useful in gaining different perspectives and assessing factors affecting recovery.

  7. Adolescents’ experience of a parental traumatic brain injury

    Directory of Open Access Journals (Sweden)

    D Harris

    2006-11-01

    Full Text Available This study explores the experiences of four adolescents, each living with a parent who has sustained a traumatic brain injury, against the theoretical backdrop of existential-phenomenological psychology. Opsomming Hierdie navorsing verken die belewenisse van vier adolessente wat saam met ‘n ouer wat ‘n traumatiese breinbesering opgedoen het, leef. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  8. Evaluation of a Health Education Programme about Traumatic Brain Injury

    Science.gov (United States)

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  9. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: A 10-year follow-up nationally representative Taiwan survey.

    Science.gov (United States)

    Chen, Ying-Jen; Liang, Chang-Min; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lin, Tzu-Yu; Chung, Chi-Hsiang; Lin, Fu-Huang; Tsao, Chang-Huei; Chien, Wu-Chien

    2017-10-17

    Accumulating evidences had shown that traumatic brain injury was associated with visual impairment or vision loss. However, there were a limited number of empirical studies regarding the longitudinal relationship between traumatic brain injury and incident optic neuropathy. We studied a cohort from the Taiwanese National Health Insurance data comprising 553918 participants with traumatic brain injury and optic neuropathy-free in the case group and 1107836 individuals without traumatic brain injury in the control group from 1st January 2000. After the index date until the end of 2010, Cox proportional hazards analysis was used to compare the risk of incident optic neuropathy. During the follow-up period, case group was more likely to develop incident optic neuropathy (0.24%) than the control group (0.11%). Multivariate Cox regression analysis demonstrated that the case group had a 3-fold increased risk of optic neuropathy (HR = 3.017, 95% CI = 2.767-3.289, p optic neuropathy. Our study provided evidence of the increased risk of incident optic neuropathy after traumatic brain injury during a 10-year follow-up period. Patients with traumatic brain injury required periodic and thorough eye examinations for incident optic neuropathy to prevent potentially irreversible vision loss.

  10. Misconceptions about traumatic brain injuries among South African university students

    Directory of Open Access Journals (Sweden)

    Chrisma Pretorius

    2013-08-01

    Full Text Available Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs harboured by university students.  Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered students at Stellenbosch University. The participants had to complete the Common Misconceptions about Traumatic Brain Injury (CM-TBI questionnaire.  Results. The findings of this study suggest that the students subscribe to misconceptions from each of the 7 categories of misconceptions about TBIs. The mean percentages of misconceptions about TBIs were calculated and the amnesia (mean 49.7% and unconsciousness (mean 46.1% categories were identified as the categories about which the respondents had the most misconceptions, while the mean percentages of misconceptions were lower for the categories of recovery (mean 27.6%, rehabilitation (mean 26.56%, prevention (mean 20.8%, brain injury sequelae (mean 18.7% and brain damage (mean 8.4%.  Conclusion. Generally, these findings appear to be in keeping with previous literature, which suggests that misconceptions about TBIs are common among the general population. This study’s identification of these misconceptions could help create awareness, provide a focus for information provision, and contribute to the development of educational intervention programmes tailored for the South African context.

  11. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  12. Educational professionals' understanding of childhood traumatic brain injury.

    Science.gov (United States)

    Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah

    2013-01-01

    To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

  13. Survivors of a Silent Epidemic: The Learning Experience of College Students with a History of Traumatic Brain Injury

    Science.gov (United States)

    Schlessman, Heather A.

    2010-01-01

    A significant proportion of young adults experience a traumatic brain injury (TBI) every year, and students with this history are becoming a growing presence on college campuses. A review of the literature revealed very little research exploring the learning experiences of college students with a history of traumatic brain injury. The purpose of…

  14. Marrow stromal cells administrated intracisternally to rats after traumatic brain injury migrate into the brain and improve neurological function

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹

    2004-01-01

    @@ Marrow stromal cells(MSCs) have been reported to transplant into injured brain via intravenous or intraarterial or direct intracerebral administration.1-3 In the present study, we observed that MSCs migrated into the brain, survived and diffeneriated into neural cells after they were injected into the cisterna magna of rats, and that the behavior of the rats after traumatic brain injury (TBI) was improved.

  15. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury

    OpenAIRE

    Loane, David J; Pocivavsek, Ana; Moussa, Charbel E-H; Thompson, Rachel; Matsuoka, Yasuji; Faden, Alan I; Rebeck, G William; Burns, Mark P

    2009-01-01

    Amyloid-β (Aβ) peptides, found in Alzheimer’s disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either β- or γ-secretase, enzymes required for production of Aβ from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.

  16. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid

    2017-01-01

    BACKGROUND: Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [(18)F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. NEW METHOD......: The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering...... from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [(18)F]FDG-PET scan and venous blood sampling. RESULTS: Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI...

  17. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  18. Assisting Students with a Traumatic Brain Injury in School Interventions

    Science.gov (United States)

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  19. Altered oscillatory brain dynamics after repeated traumatic stress

    Directory of Open Access Journals (Sweden)

    Ruf Martina

    2007-10-01

    Full Text Available Abstract Background Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. Methods Using magnetoencephalographic (MEG-based source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD in comparison to 97 controls. Results PTSD patients showed elevated production of focally generated slow waves (1–4 Hz, particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. Conclusion The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala.

  20. Assessing Children with Traumatic Brain Injuries: Integrating Educational and Medical Issues.

    Science.gov (United States)

    Shaw, Steven R.; Yingst, Christine A.

    1992-01-01

    This overview of traumatic brain injuries discusses (1) incidence and prevalence; (2) characteristics; (3) the recovery process; and (4) educational/medical assessment, including premorbid functioning, current functioning, educationally relevant medical issues, and amount and type of family support. (JDD)

  1. Low prevalence of hypopituitarism after traumatic brain injury: a multicenter study

    NARCIS (Netherlands)

    Kokshoorn, N. E.; Smit, J. W. A.; Nieuwlaat, W. A.; Tiemensma, J.; Bisschop, P. H.; Groote Veldman, R.; Roelfsema, F.; Franken, A. A. M.; Wassenaar, M. J. E.; Biermasz, N. R.; Romijn, J. A.; Pereira, A. M.

    2011-01-01

    Hypopituitarism after traumatic brain injury (TBI) is considered to be a prevalent condition. However, prevalence rates differ considerably among reported studies, due to differences in definitions, endocrine assessments of hypopituitarism, and confounding factors, such as timing of evaluation and

  2. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    Science.gov (United States)

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  3. Early treatment with lyophilized plasma protects the brain in a large animal model of combined traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Imam, Ayesha M; Jin, Guang; Sillesen, Martin

    2013-01-01

    Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well as the assoc...... as the associated edema. However, FFP is a perishable product that is not well suited for use in the austere prehospital settings. In this study, we tested whether a shelf-stable, low-volume, lyophilized plasma (LSP) product was as effective as FFP.......Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well...

  4. Transcranial brain stimulation to promote functional recovery after stroke

    DEFF Research Database (Denmark)

    Raffin, Estelle; Siebner, Hartwig R

    2014-01-01

    as a therapeutic tool. RECENT FINDINGS: Recent meta-analyses showed that the treatment effects of NIBS in patients with stroke are rather inconsistent across studies and the evidence for therapeutic efficacy is still uncertain. This raises the question of how NIBS can be developed further to improve its...... therapeutic efficacy. SUMMARY: This review addressed six questions: How does NIBS facilitate the recovery of function after stroke? Which brain regions should be targeted by NIBS? Is there a particularly effective NIBS modality that should be used? Does the location of the stroke influence the therapeutic...... will be critical to fully unfold the therapeutic effects of NIBS and will pave the way towards adaptive NIBS protocols, in which NIBS is tailored to the individual patient....

  5. Wearable nanosensor system for monitoring mild traumatic brain injuries in football players

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  6. Recent neuroimaging techniques in mild traumatic brain injury.

    Science.gov (United States)

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  7. Cerebral sinus venous thrombosis in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Christina Mueller-Hoecker

    2016-04-01

    Full Text Available A 36-year-old, healthy man was admitted to the emergency department with a traumatic brain injury with an injury severity score of 25 points. The head computed tomography revealed a subarachnoidal, epidural hemorrhage as well as a fracture of the occipital calotte. Intracranial pressure (ICP management was installed according to the LUND concept. In the following scan an angiography revealed a thrombosis of the sinus sigmoideus and transversus. Located next to the fractured skull, the thrombosis was highly likely traumatic, caused by the head trauma. As there was only a little congestion of the blood flow, no lysis or thrombectomy was performed. To lower ICP, a craniectomy was performed. After seven days, mechanical ventilation was terminated. Four days later the patient was already stable enough to be discharged from the surgical itensive care unit.

  8. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    Science.gov (United States)

    2016-02-01

    excised after severe brain injury . Experimental neurology 2004;190:192-203. 24. Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative...Brain Injury PRINCIPAL INVESTIGATORs: Marc Diamond, MD CONTRACTING ORGANIZATION: Washington University, St Louis MO 63110 UT Southwestern, Dallas...of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-13-2-0016 5c. PROGRAM ELEMENT NUMBER 6

  9. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Sunil Munakomi

    2017-04-01

    Conclusion: Bromocriptine improves neurological sequelae of traumatic brain injury as well as the overall outcome in the patients. If medication is given to promote recovery and treat its associated disabilities, clinicians should thoroughly outline the goals and closely monitor adverse effects.

  10. Does gender matter? Differences in social-emotional behavior among infants and toddlers before and after mild traumatic brain injury: a preliminary study.

    Science.gov (United States)

    Kaldoja, Mari-Liis; Kolk, Anneli

    2015-06-01

    Traumatic brain injury is a common cause of acquired disability in childhood. While much is known about cognitive sequelae of brain trauma, gender-specific social-emotional problems in children with mild traumatic brain injury is far less understood. The aims of the study were to investigate gender differences in social-emotional behavior before and after mild traumatic brain injury. Thirty-five 3- to 65-month-old children with mild traumatic brain injury and 70 controls were assessed with Ages and Stages Questionnaires: Social-Emotional. Nine months later, 27 of 35 patients and 54 of 70 controls were reassessed. We found that before injury, boys had more self-regulation and autonomy difficulties and girls had problems with adaptive functioning. Nine months after injury, boys continued to struggle with self-regulation and autonomy and new difficulties with interaction had emerged, whereas in girls, problems in interaction had evolved. Even mild traumatic brain injury in early childhood disrupts normal social-emotional development having especially devastating influence on interaction skills. © The Author(s) 2014.

  11. Non invasive brain stimulation to enhance post-stroke recovery

    OpenAIRE

    Nathalie Kubis; Nathalie Kubis

    2016-01-01

    Brain plasticity after stroke remains poorly understood. Patients may improve spontaneously within the first 3 months and then more slowly in the coming year. The first days, decreased edema and reperfusion of the ischemic penumbra may possibly account for these phenomena, but the improvement during the next weeks suggests plasticity phenomena and cortical reorganization of the brain ischemic areas and of more remote areas. Indeed, the injured ischemic motor cortex has a reduced cortical exci...

  12. Non-Invasive Brain Stimulation to Enhance Post-Stroke Recovery

    OpenAIRE

    Kubis, Nathalie

    2016-01-01

    Brain plasticity after stroke remains poorly understood. Patients may improve spontaneously within the first 3 months and then more slowly in the coming year. The first day, decreased edema and reperfusion of the ischemic penumbra may possibly account for these phenomena, but the improvement during the next weeks suggests plasticity phenomena and cortical reorganization of the brain ischemic areas and of more remote areas. Indeed, the injured ischemic motor cortex has a reduced cortical excit...

  13. Objective Ventricle Segmentation in Brain CT with Ischemic Stroke Based on Anatomical Knowledge

    Directory of Open Access Journals (Sweden)

    Xiaohua Qian

    2017-01-01

    Full Text Available Ventricle segmentation is a challenging technique for the development of detection system of ischemic stroke in computed tomography (CT, as ischemic stroke regions are adjacent to the brain ventricle with similar intensity. To address this problem, we developed an objective segmentation system of brain ventricle in CT. The intensity distribution of the ventricle was estimated based on clustering technique, connectivity, and domain knowledge, and the initial ventricle segmentation results were then obtained. To exclude the stroke regions from initial segmentation, a combined segmentation strategy was proposed, which is composed of three different schemes: (1 the largest three-dimensional (3D connected component was considered as the ventricular region; (2 the big stroke areas were removed by the image difference methods based on searching optimal threshold values; (3 the small stroke regions were excluded by the adaptive template algorithm. The proposed method was evaluated on 50 cases of patients with ischemic stroke. The mean Dice, sensitivity, specificity, and root mean squared error were 0.9447, 0.969, 0.998, and 0.219 mm, respectively. This system can offer a desirable performance. Therefore, the proposed system is expected to bring insights into clinic research and the development of detection system of ischemic stroke in CT.

  14. PRISM II: an open-label study to assess effectiveness of dextromethorphan/quinidine for pseudobulbar affect in patients with dementia, stroke or traumatic brain injury.

    Science.gov (United States)

    Hammond, Flora M; Alexander, David N; Cutler, Andrew J; D'Amico, Stephen; Doody, Rachelle S; Sauve, William; Zorowitz, Richard D; Davis, Charles S; Shin, Paul; Ledon, Fred; Yonan, Charles; Formella, Andrea E; Siffert, Joao

    2016-06-09

    Phase 3 trials supporting dextromethorphan/quinidine (DM/Q) use as a treatment for pseudobulbar affect (PBA) were conducted in patients with amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS). The PRISM II study provides additional DM/Q experience with PBA secondary to dementia, stroke, or traumatic brain injury (TBI). Participants in this open-label, multicenter, 90-day trial received DM/Q 20/10 mg twice daily. The primary outcome was the Center for Neurologic Study-Lability Scale (CNS-LS), assessing change in PBA episode frequency and severity. The CNS-LS final visit score was compared to baseline (primary analysis) and to the response in a previously conducted placebo-controlled trial with DM/Q in patients with ALS or MS. Secondary outcomes included change in PBA episode count and Clinical Global Impression of Change with respect to PBA as rated by a clinician (CGI-C) and by the patient or caregiver (PGI-C). The study enrolled 367 participants with PBA secondary to dementia, stroke, or TBI. Mean (standard deviation [SD]) CNS-LS score improved significantly from 20.4 (4.4) at baseline to 12.8 (5.0) at Day 90/Final Visit (change, -7.7 [6.1]; P < .001, 95 % CI: -8.4, -7.0). This magnitude of improvement was consistent with DM/Q improvement in the earlier phase-3, placebo-controlled trial (mean [95 % CI] change from baseline, -8.2 [-9.4, -7.0]) and numerically exceeds the improvement seen with placebo in that study (-5.7 [-6.8, -4.7]). Reduction in PBA episode count was 72.3 % at Day 90/Final Visit compared with baseline (P < .001). Scores on CGI-C and PGI-C showed that 76.6 and 72.4 % of participants, respectively, were "much" or "very much" improved with respect to PBA. The most frequently occurring adverse events (AEs) were diarrhea (5.4 %), headache (4.1 %), urinary tract infection (2.7 %), and dizziness (2.5 %); 9.8 % had AEs that led to discontinuation. Serious AEs were reported in 6.3 %; however, none were considered treatment

  15. Exacerbation of Brain Injury by Post-Stroke Exercise Is Contingent Upon Exercise Initiation Timing

    Directory of Open Access Journals (Sweden)

    Fengwu Li

    2017-10-01

    Full Text Available Accumulating evidence has demonstrated that post-stroke physical rehabilitation may reduce morbidity. The effectiveness of post-stroke exercise, however, appears to be contingent upon exercise initiation. This study assessed the hypothesis that very early exercise exacerbates brain injury, induces reactive oxygen species (ROS generation, and promotes energy failure. A total of 230 adult male Sprague-Dawley rats were subjected to middle cerebral artery (MCA occlusion for 2 h, and randomized into eight groups, including two sham injury control groups, three non-exercise and three exercise groups. Exercise was initiated after 6 h, 24 h and 3 days of reperfusion. Twenty-four hours after completion of exercise (and at corresponding time points in non-exercise controls, infarct volumes and apoptotic cell death were examined. Early brain oxidative metabolism was quantified by examining ROS, ATP and NADH levels 0.5 h after completion of exercise. Furthermore, protein expressions of angiogenic growth factors were measured in order to determine whether post-stroke angiogenesis played a role in rehabilitation. As expected, ischemic stroke resulted in brain infarction, apoptotic cell death and ROS generation, and diminished NADH and ATP production. Infarct volumes and apoptotic cell death were enhanced (p < 0.05 by exercise that was initiated after 6 h of reperfusion, but decreased by late exercise (24 h, 3 days. This exacerbated brain injury at 6 h was associated with increased ROS levels (p < 0.05, and decreased (p < 0.05 NADH and ATP levels. In conclusion, very early exercise aggravated brain damage, and early exercise-induced energy failure with ROS generation may underlie the exacerbation of brain injury. These results shed light on the manner in which exercise initiation timing may affect post-stroke rehabilitation.

  16. Traumatic brain injury in pediatric age group: Predictors of outcome ...

    African Journals Online (AJOL)

    Objective: To determine predictors for outcomes of traumatic brain injury (TBI) in infants and children younger than twelve years admitted to our pediatric intensive care units (PICU). Methods: This is a retrospective cohort study from 2004-5, done at the PICU of King Fahad Hofuf Hospital, Eastern Province, Saudi Arabia.

  17. Coagulopathy and transfusion requirements in war related penetrating traumatic brain injury. A single centre study in a French role 3 medical treatment facility in Afghanistan.

    Science.gov (United States)

    Bordes, J; Joubert, C; Esnault, P; Montcriol, A; Nguyen, C; Meaudre, E; Dulou, R; Dagain, A

    2017-05-01

    Traumatic brain injury associated coagulopathy is frequent, either in isolated traumatic brain injury in civilian practice and in combat traumatic brain injury. In war zone, it is a matter of concern because head and neck are the second most frequent site of wartime casualty burden. Data focusing on transfusion requirements in patients with war related TBI coagulopathy are limited. A descriptive analysis was conducted of 77 penetrating traumatic brain injuries referred to a French role 3 medical treatment facility in Kabul, Afghanistan, deployed on the Kabul International Airport (KaIA), over a 30 months period. On 77 patients, 23 died during the prehospital phase and were not included in the study. Severe traumatic brain injury represented 50% of patients. Explosions were the most common injury mechanism. Extracranial injuries were present in 72% of patients. Traumatic brain injury coagulopathy was diagnosed in 67% of patients at role 3 admission. Red blood cell units (RBCu) were transfused in 39 (72%) patients, French lyophilized plasma (FLYP) in 41 (76%), and fresh whole blood (FWB) in 17 (31%). The results of this study support previous observations of coagulopathy as a frequent complication of traumatic brain injury. The majority of patients with war related penetrating traumatic brain injury presented with extracranial lesions. Most of them required a high level of transfusion capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    International Nuclear Information System (INIS)

    Bouchmanov, A.

    2000-01-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  19. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bouchmanov, A. [State Research Center of Russia, Moscow (Russian Federation). Inst. of Biophysics

    2000-05-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  20. Delayed Traumatic Intracranial Haemorrhage and Progressive Traumatic Brain Injury in a Major Referral Centre Based in a Developing Country

    Science.gov (United States)

    Jeng, Toh Charng; Haspani, Mohd Saffari Mohd; Adnan, Johari Siregar; Naing, Nyi Nyi

    2008-01-01

    A repeat Computer Tomographic (CT) brain after 24–48 hours from the 1st scanning is usually practiced in most hospitals in South East Asia where intracranial pressure monitoring (ICP) is routinely not done. This interval for repeat CT would be shortened if there was a deterioration in Glasgow Coma Scale (GCS). Most of the time the prognosis of any intervention may be too late especially in hospitals with high patient-to-doctor ratio causing high mortality and morbidity. The purpose of this study was to determine the important predictors for early detection of Delayed Traumatic Intracranial Haemorrhage (DTICH) and Progressive Traumatic Brain Injury (PTBI) before deterioration of GCS occurred, as well as the most ideal timing of repeated CT brain for patients admitted in Malaysian hospitals. A total of 81 patients were included in this study over a period of six months. The CT scan brain was studied by comparing the first and second CT brain to diagnose the presence of DTICH/PTBI. The predictors tested were categorised into patient factors, CT brain findings and laboratory investigations. The mean age was 33.1 ± 15.7 years with a male preponderance of 6.36:1. Among them, 81.5% were patients from road traffic accidents with Glasgow Coma Scale ranging from 4 – 15 (median of 12) upon admission. The mean time interval delay between trauma and first CT brain was 179.8 ± 121.3 minutes for the PTBI group. The DTICH group, 9.9% of the patients were found to have new intracranial clots. Significant predictors detected were different referral hospitals (p=0.02), total GCS status (p=0.026), motor component of GCS (p=0.043), haemoglobin level (p<0.001), platelet count (p=0.011) and time interval between trauma and first CT brain (p=0.022). In the PTBI group, 42.0% of the patients were found to have new changes (new clot occurrence, old clot expansion and oedema) in the repeat CT brain. Univariate statistical analysis revealed that age (p=0.03), race (p=0.035), types of

  1. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  2. Anti-high mobility group box-1 antibody therapy for traumatic brain injury.

    Science.gov (United States)

    Okuma, Yu; Liu, Keyue; Wake, Hidenori; Zhang, Jiyong; Maruo, Tomoko; Date, Isao; Yoshino, Tadashi; Ohtsuka, Aiji; Otani, Naoki; Tomura, Satoshi; Shima, Katsuji; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Takahashi, Hideo K; Mori, Shuji; Nishibori, Masahiro

    2012-09-01

    High mobility group box-1 (HMGB1) plays an important role in triggering inflammatory responses in many types of diseases. In this study, we examined the involvement of HMGB1 in traumatic brain injury (TBI) and evaluated the ability of intravenously administered neutralizing anti-HMGB1 monoclonal antibody (mAb) to attenuate brain injury. Traumatic brain injury was induced in rats or mice by fluid percussion. Anti-HMGB1 mAb or control mAb was administered intravenously after TBI. Anti-HMGB1 mAb remarkably inhibited fluid percussion-induced brain edema in rats, as detected by T2-weighted magnetic resonance imaging; this was associated with inhibition of HMGB1 translocation, protection of blood-brain barrier (BBB) integrity, suppression of inflammatory molecule expression, and improvement of motor function. In contrast, intravenous injection of recombinant HMGB1 dose-dependently produced the opposite effects. Experiments using receptor for advanced glycation end product (RAGE)(-/-) , toll-like receptor-4 (TLR4)(-/-) , and TLR2(-/-) mice suggested the involvement of RAGE as the predominant receptor for HMGB1. Anti-HMGB1 mAb may provide a novel and effective therapy for TBI by protecting against BBB disruption and reducing the inflammatory responses induced by HMGB1. Copyright © 2012 American Neurological Association.

  3. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  4. Late-onset social anxiety disorder following traumatic brain injury.

    Science.gov (United States)

    Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C

    2012-01-01

    Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.

  5. Hippotherapy in Adult Patients with Chronic Brain Disorders: A Pilot Study

    OpenAIRE

    Sunwoo, Hyuk; Chang, Won Hyuk; Kwon, Jeong-Yi; Kim, Tae-Won; Lee, Ji-Young; Kim, Yun-Hee

    2012-01-01

    Objective To investigate the effects of hippotherapy for adult patients with brain disorders. Method Eight chronic brain disorder patients (7 males, mean age 42.4?16.6 years) were recruited. The mean duration from injury was 7.9?7.7 years. The diagnoses were stroke (n=5), traumatic brain disorder (n=2), and cerebral palsy (n=1). Hippotherapy sessions were conducted twice a week for eight consecutive weeks in an indoor riding arena. Each hippotherapy session lasted 30 minutes. All participants...

  6. MENTAL ACTIVITY RESTORATION PECULIARITIES IN CHILDREN WITH SEVERE TRAUMATIC BRAIN INJURY AT THE EARLY STAGE OF REHABILITATION

    Directory of Open Access Journals (Sweden)

    A. V. Zakrepina

    2013-01-01

    Full Text Available The article is concerned with rehabilitation issues of children with severe traumatic brain injury (STBI. It gives the results of the study which was aimed at analyzing the psychophysical health restoration dynamics in children with STBI and determining the pedagogic typology of deviant development at traumatic brain injury in order to devise a training-organizational work plan for children being on the stages of complex rehabilitation.

  7. Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2014-01-01

    Andersson G (2009) The role of anxiety sensitivity and behavioral avoidance in tinnitus disability. IntJAudiol 48:295-299. Hiller W, Goebel G (1999...Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI) PRINCIPAL INVESTIGATOR...Induced Tinnitus and Related Traumatic Brain Injury (TBI) 5b. GRANT NUMBER W81XWH-11-2-0031 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  8. The Influence of Medical Evaluation Board Status on Symptom Reporting Among Service Members with Traumatic Brain Injury

    Science.gov (United States)

    2017-04-21

    MDW/SGVU SUBJECT: Professional Presentation Approvai 11APR 20 17 1. Your paper, entitled The Influence of Medical Evaluation Board Status on... influence o f medical evaluation board status on symptom reporting among service members w ith traumatic brain injury 7. FUNDING RECEIVED FOR THIS STUDY? D...Page 3 of 3 Pages Title: The influence of medical evaluation board status on symptom reporting among service members with traumatic brain injury

  9. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy.

    Science.gov (United States)

    Stern, Robert A; Riley, David O; Daneshvar, Daniel H; Nowinski, Christopher J; Cantu, Robert C; McKee, Ann C

    2011-10-01

    Chronic traumatic encephalopathy (CTE) has been linked to participation in contact sports such as boxing and American football. CTE results in a progressive decline of memory and cognition, as well as depression, suicidal behavior, poor impulse control, aggressiveness, parkinsonism, and, eventually, dementia. In some individuals, it is associated with motor neuron disease, referred to as chronic traumatic encephalomyelopathy, which appears clinically similar to amyotrophic lateral sclerosis. Results of neuropathologic research has shown that CTE may be more common in former contact sports athletes than previously believed. It is believed that repetitive brain trauma, with or possibly without symptomatic concussion, is responsible for neurodegenerative changes highlighted by accumulations of hyperphosphorylated tau and TDP-43 proteins. Given the millions of youth, high school, collegiate, and professional athletes participating in contact sports that involve repetitive brain trauma, as well as military personnel exposed to repeated brain trauma from blast and other injuries in the military, CTE represents an important public health issue. Focused and intensive study of the risk factors and in vivo diagnosis of CTE will potentially allow for methods to prevent and treat these diseases. Research also will provide policy makers with the scientific knowledge to make appropriate guidelines regarding the prevention and treatment of brain trauma in all levels of athletic involvement as well as the military theater. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  10. White matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Chad Parker Johnson

    2015-01-01

    Full Text Available Pediatric traumatic brain injury often results in significant long-term deficits in mastery of reading ability. This study aimed to identify white matter pathways that, when damaged, predicted reading deficits in children. Based on the dual-route model of word reading, we predicted that integrity of the inferior fronto-occipital fasciculus would be related to performance in sight word identification while integrity of the superior longitudinal fasciculus would be related to performance in phonemic decoding. Reading fluency and comprehension were hypothesized to relate to the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and cingulum bundle. The connectivity of white matter pathways was used to predict reading deficits in children aged 6 to 16 years with traumatic brain injury (n = 29 and those with orthopedic injury (n = 27 using tract-based spatial statistics. Results showed that children with traumatic brain injury and reduced microstructural integrity of the superior longitudinal fasciculus demonstrated reduced word-reading ability on sight word and phonemic decoding tasks. Additionally, children with traumatic brain injury and microstructural changes involving the cingulum bundle demonstrated reduced reading fluency. Results support the association of a dorsal pathway via the superior longitudinal fasciculus with both sight word reading and phonemic decoding. No association was identified between the inferior fronto-occipital fasciculus and sight word reading or phonemic decoding. Reading fluency was associated with the integrity of the cingulum bundle. These findings support dissociable pathways predicting word reading and fluency using Diffusion Tensor Imaging and provide additional information for developing models of acquired reading deficits by specifying areas of brain damage which may predict reading deficits following recovery from the acute phase of TBI.

  11. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    Science.gov (United States)

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. Copyright © 2015 the authors 0270-6474/15/350518-09$15.00/0.

  12. Traumatic brain injuries in children: A hospital-based study in Nigeria

    Directory of Open Access Journals (Sweden)

    David O Udoh

    2013-01-01

    Full Text Available Background: Traumatic Brain Injury (TBI is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. Aims: To determine the epidemiology of paediatric traumatic brain injuries. Setting and Design: This is a prospective analysis of paediatric head trauma at the University of Benin Teaching Hospital, a major referral centre for all traumatic brain injuries in Nigeria between October 2006 and September 2011. Materials and Methods: We studied the demographic, clinical and radiological data and treatment outcomes. Data was analysed using statistical package for the social sciences (SPSS 16.0. Results: We managed 127 cases of paediatric head injuries, 65 boys and 62 girls representing 13% of all head injuries managed over the 5-year period. They were aged 3 months to 17 years. The mean age was 7.4 years (median 7 years with peak incidence occurring at 6-8 years i.e. 31 (24.4% cases. Motor vehicle accidents resulted in 67.7%, falls 14% and violence 7%. The most frequent computed tomography finding was intracerebral haemorrhage. Mean duration of hospitalization was 18 days (median 11 days. Eleven patients died, mortality correlating well with severity and the presence of intracerebral haematoma. Conclusion: Head injuries in children are due to motor vehicle and motor vehicle-related accidents. Hence, rational priorities for prevention of head injuries in children should include prevention of vehicular, especially pedestrian, accidents in developing countries.

  13. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0......CBF from Day 0-3 to Day 4-7 (p = 0.050) and from Day 0-3 to Day 8-21 (p = 0.028). No correlation between rCBF and water content was found. Water content in ischemic brain tissue increased significantly between Day 4-7 after stroke. This should be considered when performing quantitative 1H-MRS using water...... as an internal standard in stroke patients....

  14. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Getting My Bearings, Returning to School: Issues Facing Adolescents with Traumatic Brain Injury

    Science.gov (United States)

    Schilling, Ethan J.; Getch, Yvette Q.

    2012-01-01

    Traumatic brain injury (TBI) is characterized by a blow to the head or other penetrating head injury resulting in impairment of the brain's functioning. Despite the high incidence of TBI in adolescents, many educators still consider TBI to be a low-incidence disability. In addition, school personnel often report receiving little to no pre-service…

  16. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Impact of helmet use on traumatic brain injury from road traffic accidents in Cambodia.

    Science.gov (United States)

    Gupta, Saksham; Klaric, Katherine; Sam, Nang; Din, Vuthy; Juschkewitz, Tina; Iv, Vycheth; Shrime, Mark G; Park, Kee B

    2018-01-02

    Rapid urbanization and motorization without corresponding increases in helmet usage have made traumatic brain injury due to road traffic accidents a major public health crisis in Cambodia. This analysis was conducted to quantify the impact of helmets on severity of injury, neurosurgical indication, and functional outcomes at discharge for motorcycle operators who required hospitalization for a traumatic brain injury following a road traffic accident in Cambodia. The medical records of 491 motorcycle operators who presented to a major tertiary care center in Cambodia with traumatic brain injury were retrospectively analyzed using multivariate logistic regression. The most common injuries at presentation were contusions (47.0%), epidural hematomas (30.1%), subdural hematomas (27.9%), subarachnoid hemorrhages (12.4%), skull fractures (21.4%), and facial fractures (18.5%). Moderate-to-severe loss of consciousness was present in 36.3% of patients. Not wearing a helmet was associated with an odds ratio of 2.20 (95% confidence interval [CI], 1.15-4.22) for presenting with moderate to severe loss of consciousness compared to helmeted patients. Craniotomy or craniectomy was indicated for evacuation of hematoma in 20.0% of cases, and nonhelmeted patients had 3.21-fold higher odds of requiring neurosurgical intervention (95% CI, 1.25-8.27). Furthermore, lack of helmet usage was associated with 2.72-fold higher odds of discharge with functional deficits (95% CI, 1.14-6.49). In total, 30.1% of patients were discharged with severe functional deficits. Helmets demonstrate a protective effect and may be an effective public health intervention to significantly reduce the burden of traumatic brain injury in Cambodia and other developing countries with increasing rates of motorization across the world.

  18. [Scandinavian guidelines for prehospital management of severe traumatic brain injury

    DEFF Research Database (Denmark)

    Sollid, S.; Sundstrom, T.; Kock-Jensen, C.

    2008-01-01

    . Evidence-based guidelines already exist that focus on all steps in the process. In the present article members of the Scandinavian Neurotrauma Committee present recommendations on prehospital management of traumatic brain injury adapted to the infrastructure of the Nordic region Udgivelsesdato: 2008/6/26......Head trauma is the cause the death for many young persons. The number of fatalities can be reduced through systematic management. Prevention of secondary brain injury combined with the fastest possible transport to a neurosurgical unit, have been shown to effectively reduce mortality and morbidity...

  19. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    Science.gov (United States)

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  20. SPECT Perfusion Imaging Demonstrates Improvement of Traumatic Brain Injury With Transcranial Near-infrared Laser Phototherapy.

    Science.gov (United States)

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.

  1. Incidence of Traumatic Brain Injury Across the Full Disease Spectrum: A Population-Based Medical Record Review Study

    Science.gov (United States)

    Leibson, Cynthia L.; Brown, Allen W.; Ransom, Jeanine E.; Diehl, Nancy N.; Perkins, Patricia K.; Mandrekar, Jay; Malec, James F.

    2012-01-01

    Background Extremely few objective estimates of traumatic brain injury incidence include all ages, both sexes, all injury mechanisms, and the full spectrum from very mild to fatal events. Methods We used unique Rochester Epidemiology Project medical records-linkage resources, including highly sensitive and specific diagnostic coding, to identify all Olmsted County, MN, residents with diagnoses suggestive of traumatic brain injury regardless of age, setting, insurance, or injury mechanism. Provider-linked medical records for a 16% random sample were reviewed for confirmation as definite, probable, possible (symptomatic), or no traumatic brain injury. We estimated incidence per 100,000 person-years for 1987–2000 and compared these record-review rates with rates obtained using Centers for Disease Control and Prevention (CDC) data-systems approach. For the latter, we identified all Olmsted County residents with any CDC-specified diagnosis codes recorded on hospital/emergency department administrative claims or death certificates 1987–2000. Results Of sampled individuals, 1257 met record-review criteria for incident traumatic brain injury; 56% were ages 16–64 years, 56% were male, 53% were symptomatic. Mechanism, sex, and diagnostic certainty differed by age. The incidence rate per 100,000 person-years was 558 (95% confidence interval = 528–590) versus 341 (331–350) using the CDC data system approach. The CDC approach captured only 40% of record-review cases. Seventy-four percent of missing cases presented to hospital/emergency department; none had CDC-specified codes assigned on hospital/emergency department administrative claims or death certificates; 66% were symptomatic. Conclusions Capture of symptomatic traumatic brain injuries requires a wider range of diagnosis codes, plus sampling strategies to avoid high rates of false-positive events. PMID:21968774

  2. [Correlation between post-stroke pneumonia and outcome in patients with acute brain infarction].

    Science.gov (United States)

    Li, S J; Hu, H Q; Wang, X L; Cao, B Z

    2016-09-20

    Objective: To investigate the correlation between post-stroke pneumonia and outcome in patients with acute brain infarction. Methods: Consecutive acute cerebral infarction patients who were hospitalized in Department of Neurology, Jinan Military General Hospital were prospectively recruited from August 2010 to August 2014. The baseline data including age, sex, the National Institute of Health Stroke Scale (NIHSS) scores, type of Oxfordshire Community Stroke Project (OCSP: total anterior circulation infarct, partial anterior circulation infarct, posterior circulation infarct and lacunar infarct), fasting blood glucose etc. after admission were recorded. Post-stroke pneumonia was diagnosed by treating physician according to criteria for hospital-acquired pneumonia of the Centers for Disease Control and Prevention. Recovery was assessed by modified Rankin Scale (mRS) 180 days after stroke by telephone interview (mRS≤2 reflected good prognosis, and mRS>2 reflected unfavorable prognosis). Multinominal Logistic regression analysis, Kaplan-Meier curve and log rank test were used. Results: A total of 1 249 patients were enrolled, among them 173 patients were lost during follow-up. A total of 159 patients had post-stroke pneumonia, while 1 090 patients were without post-stroke. Compared with patients without post-stoke pneumonia, patients with post-stroke pneumonia were older (67±13 vs 63±12 years, P =0.000), more severe (NIHSS, 15(14) vs 4(4), P =0.000). Compared with patients without post-stoke pneumonia, more patients with post-stroke pneumonia suffered from heart failure (12.58% vs 3.40%, P =0.000), atrial fibrillation (26.42% vs 8.81%, P =0.000), myocardial infarction (10.06% vs 5.05%, P =0.016), recurrent brain infarction (30.19% vs 22.66%, P =0.045), total anterior circulation infarct type of OCSP (46.54% vs 19.63%, P =0.000), posterior circulation infarct of OCSP (39.62% vs 25.51%, P =0.001); more patients suffered from disorder of consciousness (60.38% vs 9

  3. Acupuncture for central pain affecting the ribcage following traumatic brain injury and rib fractures--a case report.

    Science.gov (United States)

    Donnellan, Clare P

    2006-09-01

    This case report describes the use of acupuncture in the management of chronic central pain in a 51 year old man following severe traumatic brain injury and multiple injuries including rib fractures. The patient reported rapid and significant improvements in pain and mood during a course of acupuncture treatment. Chronic pain following traumatic brain injury is a significant problem. Chronic pain after rib fractures is also commonly reported. Acupuncture is widely used in the management of pain but its use has been reported rarely in the traumatic brain injury literature. This case report suggests that acupuncture may be a useful option to consider in these patients. Outcome was assessed formally using a 0-10 verbal numerical rating scale for pain, and the Hospital Anxiety and Depression Scale (HADS) for psychological status before and after the course of treatment. These scales are widely used in clinical practice as well as in research involving patients with traumatic brain injury, although they have not been validated in this population. The changes in this patient's outcome scores were not consistent with the benefits he reported. Treatment of this patient highlighted the difficulties of using standardised self rating scales for patients with cognitive impairment. The report also discusses the effects of acupuncture on this patient's mood.

  4. Influence of post-traumatic stress disorder on neuroinflammation and cell proliferation in a rat model of traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sandra A Acosta

    Full Text Available Long-term consequences of traumatic brain injury (TBI are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD, yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long

  5. Influence of post-traumatic stress disorder on neuroinflammation and cell proliferation in a rat model of traumatic brain injury.

    Science.gov (United States)

    Acosta, Sandra A; Diamond, David M; Wolfe, Steven; Tajiri, Naoki; Shinozuka, Kazutaka; Ishikawa, Hiroto; Hernandez, Diana G; Sanberg, Paul R; Kaneko, Yuji; Borlongan, Cesar V

    2013-01-01

    Long-term consequences of traumatic brain injury (TBI) are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD), yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long-term inflammation and suppressed

  6. Influence of Post-Traumatic Stress Disorder on Neuroinflammation and Cell Proliferation in a Rat Model of Traumatic Brain Injury

    Science.gov (United States)

    Diamond, David M.; Shinozuka, Kazutaka; Ishikawa, Hiroto; Hernandez, Diana G.; Sanberg, Paul R.; Kaneko, Yuji; Borlongan, Cesar V.

    2013-01-01

    Long-term consequences of traumatic brain injury (TBI) are closely associated with the development of severe psychiatric disorders, such as post-traumatic stress disorder (PTSD), yet preclinical studies on pathological changes after combined TBI with PTSD are lacking. In the present in vivo study, we assessed chronic neuroinflammation, neuronal cell loss, cell proliferation and neuronal differentiation in specific brain regions of adult Sprague-Dawley male rats following controlled cortical impact model of moderate TBI with or without exposure to PTSD. Eight weeks post-TBI, stereology-based histological analyses revealed no significant differences between sham and PTSD alone treatment across all brain regions examined, whereas significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle, but not cerebellum, in animals that received TBI alone and combined TBI-PTSD compared with PTSD alone and sham treatment. Additional immunohistochemical results revealed a significant loss of CA3 pyramidal neurons in the hippocampus of TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Further examination of neurogenic niches revealed a significant downregulation of Ki67-positive proliferating cells, but not DCX-positive neuronally migrating cells in the neurogenic subgranular zone and subventricular zone for both TBI alone and TBI-PTSD compared to PTSD alone and sham treatment. Comparisons of levels of neuroinflammation and neurogenesis between TBI alone and TBI+PTSD revealed that PTSD did not exacerbate the neuropathological hallmarks of TBI. These results indicate a progressive deterioration of the TBI brain, which, under the conditions of the present approach, was not intensified by PTSD, at least within our time window and within the examined areas of the brain. Although the PTSD manipulation employed here did not exacerbate the pathological effects of TBI, the observed long-term inflammation and suppressed

  7. Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2010-10-01

    Full Text Available Cognitive deficits following traumatic brain injury (TBI commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS. Primary outcome measures (HVLT, RBMT were collected at the time of the MRI scan, immediately following therapy, and again at one month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores. We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well.

  8. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  9. Current trends in stroke rehabilitation. A review with focus on brain plasticity.

    Science.gov (United States)

    Johansson, B B

    2011-03-01

    Current understanding of brain plasticity has lead to new approaches in ischemic stroke rehabilitation. Stroke units that combine good medical and nursing care with task-oriented intense training in an environment that provides confidence, stimulation and motivation significantly improve outcome. Repetitive trans-cranial magnetic stimulation (rTMS), and trans-cranial direct current stimulation (tDCS) are applied in rehabilitation of motor function. The long-term effect, optimal way of stimulation and possibly efficacy in cognitive rehabilitation need evaluation. Methods based on multisensory integration of motor, cognitive, and perceptual processes including action observation, mental training, and virtual reality are being tested. Different approaches of intensive aphasia training are described. Recent data on intensive melodic intonation therapy indicate that even patients with very severe non-fluent aphasia can regain speech through homotopic white matter tract plasticity. Music therapy is applied in motor and cognitive rehabilitation. To avoid the confounding effect of spontaneous improvement, most trials are preformed ≥3 months post stroke. Randomized controlled trials starting earlier after strokes are needed. More attention should be given to stroke heterogeneity, cognitive rehabilitation, and social adjustment and to genetic differences, including the role of BDNF polymorphism in brain plasticity. © 2010 John Wiley & Sons A/S.

  10. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  11. Human Recombinant Factor VIIa is Neuroprotective in a Model of Traumatic Brain Injury and Secondary Hypoxemia

    National Research Council Canada - National Science Library

    Bauman, R. A; Long, J. B; Ketchum, L. H; Macdonald, V. W

    2004-01-01

    .... In the untraumatized brain, TF is physically isolated from FVII. However, traumatic brain injury (TBI) frequently results in the disruption of the vascular endothelium and resultant exposure of FVII to subendothelial TF...

  12. Insomnia in workers with delayed recovery from mild traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Mollayeva, Shirin; Shapiro, Colin M

    2016-01-01

    Objective/Background/Aim Insomnia has not been explored as it relates to recovery after mild traumatic brain injury (mTBI). We aimed to evaluate the prevalence of insomnia among Ontario workers with delayed recovery from mTBI, and its relationship with sociodemographic, TBI- and claim-related, be...

  13. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Alejandro Lorón-Sánchez

    2016-01-01

    Full Text Available The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group or 0.01 mg/kg epinephrine (TBI-Epi group or no injection (TBI-0 and Sham-0 groups. Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal.

  14. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    Science.gov (United States)

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  15. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    Science.gov (United States)

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  16. Traumatic Brain Injury in the Accident and Emergency Department of ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is a major public health problem in Nigeria, as it could be associated with long term and life long deficits. Unlike other parts of the world, in our country, motorcycles are possibly the main cause of this injury. Unfortunately, we do not have a national epidemiological data base yet. This study ...

  17. Lycium barbarum Extracts Protect the Brain from Blood-Brain Barrier Disruption and Cerebral Edema in Experimental Stroke

    Science.gov (United States)

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2012-01-01

    Background and Purpose Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model. Methods C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO. Results LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains. Conclusions Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke. PMID:22438957

  18. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...... cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore....... Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...

  19. Serum Markers of Apoptosis in Traumatic and Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    N. N. Yepifantseva

    2009-01-01

    Full Text Available Objective: to study the time course of changes and relationship of the serum indicators of apoptotic processes in neurore-suscitation patients. Subjects and methods. Thirty-eight neuroresuscitation patients, including 14 patients with severe brain injury (SBI (mean age 41.4±4.3 years and 24 patients with strokes (mean age 53.8±2.5 years, were examined. The group of patients with strokes was divided into 2 subroups: 1 11 patients with ischemic strokes (IS and 2 13 with hemorrhagic strokes (HS. The Glasgow coma scores for admission consciousness loss were 7.6±0.8 in the SBI group and 9.5±0.7 in the stroke group; mortality was 28.6 and 37.5%, respectively. A control group included 16 subjects (mean age 47.9±3.8 years. The investigators measured the serum levels of FAS antigen and its ligand (sAPO-I/FAS and sFAS-L, cas-pase-1/ICE, sCD40 (Bender MedSystem, Austria and hTRAIL (Biosource, Belgium by solid-phase immunoassay in neuroresuscitation patients on days 1, 7, and 14 of the acute period of diseases. They used statistical methods, such as Wilcoxon-Mann-Whitney U-test, Spearman’s rank correlation test. Results. A reduction in hTRAIL was observed in all the groups. There was a decrease in serum sCD40 in strokes on days 1 to 14 and in SBI on days 7 to 14. An increase in caspase 1/ICE was seen in HS in the first 24 hours, in IS on days 1 to 7, and in SBI on days 1 to 14. The most pronounced rise in caspase-1/ICE was induced by ischemic brain lesion within the first week of disease. A prolonged increase up to 2 weeks was noted in SBI. No rise in serum FAS-L was found in the examinees. The time course of changes in sAPO-I/FAS was different in all the groups. The most marked, moderate, and none reductions were revealed in HS, IS, and SBI, respectively. There was a pronounced serum sAPO-I/FAS increase in SBI within the first 24 hours. Assessment of correlations between the serum indicators of apoptosis revealed that there were differences in the

  20. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke.

    Science.gov (United States)

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H

    2015-10-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on

  1. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  2. The Prognostic Value of MRI in Moderate and Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Haghbayan, Hourmazd; Boutin, Amélie; Laflamme, Mathieu; Lauzier, François; Shemilt, Michèle; Moore, Lynne; Zarychanski, Ryan; Douville, Vincent; Fergusson, Dean; Turgeon, Alexis F

    2017-12-01

    Traumatic brain injury is a major cause of death and disability, yet many predictors of outcome are not precise enough to guide initial clinical decision-making. Although increasingly used in the early phase following traumatic brain injury, the prognostic utility of MRI remains uncertain. We thus undertook a systematic review and meta-analysis of studies evaluating the predictive value of acute MRI lesion patterns for discriminating clinical outcome in traumatic brain injury. MEDLINE, EMBASE, BIOSIS, and CENTRAL from inception to November 2015. Studies of adults who had MRI in the acute phase following moderate or severe traumatic brain injury. Our primary outcomes were all-cause mortality and the Glasgow Outcome Scale. Two authors independently performed study selection and data extraction. We calculated pooled effect estimates with a random effects model, evaluated the risk of bias using a modified version of Quality in Prognostic Studies and determined the strength of evidence with the Grading of Recommendations, Assessment, Development, and Evaluation. We included 58 eligible studies, of which 27 (n = 1,652) contributed data to meta-analysis. Brainstem lesions were associated with all-cause mortality (risk ratio, 1.78; 95% CI, 1.01-3.15; I = 43%) and unfavorable Glasgow Outcome Scale (risk ratio, 2.49; 95% CI, 1.72-3.58; I = 81%) at greater than or equal to 6 months. Diffuse axonal injury patterns were associated with an increased risk of unfavorable Glasgow Outcome Scale (risk ratio, 2.46; 95% CI, 1.06-5.69; I = 74%). MRI scores based on lesion depth demonstrated increasing risk of unfavorable neurologic outcome as more caudal structures were affected. Most studies were at high risk of methodological bias. MRI following traumatic brain injury yields important prognostic information, with several lesion patterns significantly associated with long-term survival and neurologic outcome. Given the high risk of bias in the current body of literature, large well

  3. Depression Anxiety Stress Scales (DASS-21): Factor Structure in Traumatic Brain Injury Rehabilitation.

    Science.gov (United States)

    Randall, Diane; Thomas, Matt; Whiting, Diane; McGrath, Andrew

    To confirm the construct validity of the Depression Anxiety Stress Scales-21 (DASS-21) by investigating the fit of published factor structures in a sample of adults with moderate to severe traumatic brain injury (posttraumatic amnesia > 24 hours). Archival data from 504 patient records at the Brain Injury Rehabilitation Unit at Liverpool Hospital, Australia. Participants were aged between 16 and 71 years and were engaged in a specialist rehabilitation program. The DASS-21. Two of the 6 models had adequate fit using structural equation modeling. The data best fit Henry and Crawford's quadripartite model, which comprised a Depression, Anxiety and Stress factor, as well as a General Distress factor. The data also adequately fit Lovibond and Lovibond's original 3-factor model, and the internal consistencies of each factor were very good (α = 0.82-0.90). This study confirms the structure and construct validity of the DASS-21 and provides support for its use as a screening tool in traumatic brain injury rehabilitation.

  4. Neurosteroids and Ischemic Stroke: Progesterone a Promising Agent in Reducing the Brain Injury in Ischemic Stroke.

    Science.gov (United States)

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2017-01-01

    Progesterone (P4), a well-known neurosteroid, is produced by ovaries and placenta in females and by adrenal glands in both sexes. Progesterone is also synthesized by central nervous system (CNS) tissues to perform various vital neurological functions in the brain. Apart from performing crucial reproductive functions, it also plays a pivotal role in neurogenesis, regeneration, cognition, mood, inflammation, and myelination in the CNS. A substantial body of experimental evidence from animal models documents the neuroprotective role of P4 in various CNS injury models, including ischemic stroke. Extensive data have revealed that P4 elicits neuroprotection through multiple mechanisms and systems in an integrated manner to prevent neuronal and glial damage, thus reducing mortality and morbidity. Progesterone has been described as safe for use at the clinical level through different routes in several studies. Data regarding the neuroprotective role of P4 in ischemic stroke are of great interest due to their potential clinical implications. In this review, we succinctly discuss the biosynthesis of P4 and distribution of P4 receptors (PRs) in the brain. We summarize our work on the general mechanisms of P4 mediated via the modulation of different PR and neurotransmitters. Finally, we describe the neuroprotective mechanisms of P4 in ischemic stroke models and related clinical prospects.

  5. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  6. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    Full Text Available Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas.In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO, significant BBB alterations characterized by large Evans Blue (EB parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices.These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke.

  7. Quantitative autoradiography of 14C-D-glucose metabolism of normal and traumatized rat brain using micro-absorption photometry

    International Nuclear Information System (INIS)

    Bonorden, S.

    1980-01-01

    It could be shown using 14 C-glucose as energy-providing substrate for brain tissue metabolism that for bolus type application a retarded and even channelling of the substrate into the metabolic process takes place. The presence of tracer in the tissue was established using autoradiography. A linear correlation between the amount of tissue-incorporated 14 C section thickness and exposure time could be established by means of densitometric measurement of brain sections of various thicknesses, by applying various 14 C-activities and by different exposure times. From these correlations direct conclusions may be made regarding the specific activity of the tissue provided that exposure time and section thickness of the sample are known. Comparative studies between cortex and narrow and between traumatized and non-traumatized brain tissue show that the rate of metabolism in brain cortex is markedly higher than in the marrow and that 14 C-incorporation is higher in traumatized tissue than in non-traumatized tissue. Whilst the difference in rate of metabolism between brain cortex and marrow can be clearly related to the differing cell count/unit surface area for cortex and marrow, the different energy conversion rates for functionally damaged and normal brain tissue is a specific characteristic of injury. Apart from the fact that an increased 14 C-deposition is in no way indicative of an increased metabolic activity, the possibility of quantifying 14 C-tissue content provides a basis for estimating therapeutic effects e.g. in the treatment of trauma-caused brain edema. (orig.) [de

  8. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  9. Factors affecting mortality in severe traumatic brain injury in adults at ...

    African Journals Online (AJOL)

    Objective: To assess factors contributing to mortality of adult patients admitted to intensive care units for severe traumatic brain injury (TBI). Patients and methods: This is a retrospective, descriptive and analytical study. Included in the study were all adults patients admitted for severe TBI. From the hospital records, ...

  10. Predicting Story Goodness Performance from Cognitive Measures Following Traumatic Brain Injury

    Science.gov (United States)

    Le, Karen; Coelho, Carl; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Purpose: This study examined the prediction of performance on measures of the Story Goodness Index (SGI; Le, Coelho, Mozeiko, & Grafman, 2011) from executive function (EF) and memory measures following traumatic brain injury (TBI). It was hypothesized that EF and memory measures would significantly predict SGI outcomes. Method: One hundred…

  11. Traumatic brain injuries in children: A hospital-based study in Nigeria

    African Journals Online (AJOL)

    Background: Traumatic Brain Injury (TBI) is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. Aims: To determine the epidemiology of ...

  12. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke

    OpenAIRE

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-01-01

    OBJECTIVE: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation.METHODS: The development progression of ro...

  13. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy.

    Science.gov (United States)

    Puvenna, Vikram; Engeler, Madeline; Banjara, Manoj; Brennan, Chanda; Schreiber, Peter; Dadas, Aaron; Bahrami, Ashkon; Solanki, Jesal; Bandyopadhyay, Anasua; Morris, Jacqueline K; Bernick, Charles; Ghosh, Chaitali; Rapp, Edward; Bazarian, Jeffrey J; Janigro, Damir

    2016-01-01

    Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE. Copyright © 2015 Elsevier B.V. All rights

  14. Suicide after traumatic brain injury: a population study

    DEFF Research Database (Denmark)

    Teasdale, T W; Engberg, A W

    2001-01-01

    OBJECTIVES: To determine the rates of suicide among patients who have had a traumatic brain injury. METHODS: From a Danish population register of admissions to hospital covering the years 1979-93 patients were selected who had had either a concussion (n=126 114), a cranial fracture (n=7560......), or a cerebral contusion or traumatic intracranial haemorrhage (n=11 766). All cases of deaths by the end of the study period were identified. RESULTS: In the three diagnostic groups there had been 750 (0.59%), 46 (0.61%), and 99 (0.84%) cases of suicide respectively. Standardised mortality ratios, stratified...... by sex and age, showed that the incidence of suicide among the three diagnostic groups was increased relative to the general population (3.0, 2.7, and 4.1 respectively). In all diagnosis groups the ratios were higher for females than for males, and lower for patients injured before the age of 21 or after...

  15. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kurca, E.; Sivak, S.; Kucera, P.

    2006-01-01

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  16. Impaired cognitive functions in mild traumatic brain injury patients with normal and pathologic magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kurca, E.; Sivak, S. [Comenius University, Clinic of Neurology, Jessenius Faculty of Medicine, Martin (Slovakia); Kucera, P. [Comenius University, 1st Clinic of Neurology, Faculty of Medicine, Bratislava (Slovakia)

    2006-09-15

    Mild traumatic brain injury (MTBI) is a common neurological (neurotraumatological) diagnosis. As well as different subjective symptoms, many patients develop neuropsychological dysfunction with objective impairment of attention, memory and certain executive functions. Magnetic resonance imaging (MRI) is not routinely used in MTBI patients despite its proven greater sensitivity and specificity in comparison with computed tomography (CT). The patient group consisted of 30 persons with MTBI and the control group consisted of 30 sex- and age-matched healthy volunteers. Both groups underwent neurological examination, neuropsychological testing (including the Postconcussion Symptoms Scale questionnaire, PCSS) and brain MRI (the patient group within 96 h after injury). The analyzed groups did not differ significantly in terms of sex, age, or level or duration of education. MRI pathological findings (traumatic and nonspecific) were present in nine patients. Traumatic lesions were found in seven patients. Nonspecific white matter lesions were found in five healthy controls. There were significant differences between MTBI patients and controls in terms of subjective symptoms (PCSS) and selected neuropsychological tests. Statistically significant neuropsychological differences were found between MTBI patients with true traumatic lesions and MTBI patients with nonspecific lesions. There is evidence that MTBI patients with true traumatic MRI lesions are neuropsychologically different from MTBI patients with nonspecific MRI lesions or normal brain MRI. These results support the hypothesis that some acute MTBI signs and symptoms have a real organic basis which can be detected by selected new MRI modalities. (orig.)

  17. An audit of traumatic brain injury (TBI) in a busy developing-world ...

    African Journals Online (AJOL)

    Committee in Neurotraumatology.[7] Four years later, at the ... the resources necessary to manage severe TBI according to interna- ... An audit of traumatic brain injury (TBI) in a busy .... The danger with this approach is that it risks becoming a.

  18. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  19. 99mTc-HMPAO perfusion indices and brain-mapping in stroke patients

    International Nuclear Information System (INIS)

    Minchev, D.; Klisarova, A.

    1997-01-01

    It is the purpose of the study to establish correlations between 99mTc-HMPAO (hexamethylpropylenaminoxym) perfusion indices and changes in brain-mapping among patients with acute stroke. Forty-six patients with definitely proved stroke syndrome are investigated in the first 72 hours and 15 days after the onset of cerebrovascular accident using clinical, neuro-physiological and 99mTc-HMPAO SPECT methods. Regional and hemispheric perfusion asymmetry correlate with the brain-mapping cerebral disturbance (p < 0.001). In patients presenting focal hypoperfusion there is a significant correlation between perfusion indices and local EEG disturbance (r = 0.87). The dynamic study demonstrates a significant correlation between perfusion indices and electrical cerebral disturbance in the first 72 hours after the onset of the cerebrovascular accident. Fifteen days later no such correlation is documented. The obtained results demonstrate the essential practical bearing of 99mTc-HMPAO SPECT indices on the objective assessment of perfusion hemispheric and regional asymmetry in stroke patients, and the possibility of being used for indirect estimation of the regional cerebral blood flow in acute stroke patients against the background of visual and quantitative EEG changes (author)

  20. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  1. In vivo 1H MR spectroscopic findings in traumatic contusion of ICR mouse brain induced by fluid percussion injury

    International Nuclear Information System (INIS)

    Choi, Chi-Bong; Kim, Hwi-Yool; Han, Duk-Young; Kang, Young-Woon; Han, Young-Min; Jeun, Sin-Soo; Choe, Bo-Young

    2005-01-01

    Purpose: The purpose of this study was to investigate the proton metabolic differences of the right parietal cortex with experimental brain contusions of ICR mouse induced by fluid percussion injury (FPI) compared to normal controls and to test the possibility that 1 H magnetic resonance spectroscopy (MRS) findings could provide neuropathologic criteria in the diagnosis and monitoring of traumatic brain contusions. Materials and methods: A homogeneous group of 20 ICR male mice was used for MRI and in vivo 1 H MRS. Using image-guided, water-suppressed in vivo 1 H MRS with a 4.7 T MRI/MRS system, we evaluated the MRS measurement of the relative proton metabolite ratio between experimental brain contusion of ICR mouse and healthy control subjects. Results: After trauma, NAA/Cr ratio, as a neuronal marker decreased significantly versus controls, indicating neuronal loss. The ratio of NAA/Cr in traumatic brain contusions was 0.90 ± 0.11, while that in normal control subjects was 1.13 ± 0.12 (P = 0.001). The Cho/Cr ratio had a tendency to rise in experimental brain contusions (P = 0.02). The Cho/Cr ratio was 0.91 ± 0.17, while that of the normal control subjects was 0.76 ± 0.15. However, no significant difference of Glx/Cr was established between the experimental traumatic brain injury models and the normal controls. Discussion and conclusions: The present 1 H MRS study shows significant proton metabolic changes of parietal cortex with experimental brain contusions of ICR mouse induced by FPI compared to normal controls. In vivo 1 H MRS may be a useful modality for the clinical evaluation of traumatic contusions and could aid in better understanding the neuropathologic process of traumatic contusions induced by FPI

  2. In vivo real-time multiphoton imaging of T lymphocytes in the mouse brain after experimental stroke

    DEFF Research Database (Denmark)

    Fumagalli, Stefano; Coles, Jonathan A; Ejlerskov, Patrick

    2011-01-01

    To gain a better understanding of T cell behavior after stroke, we have developed real-time in vivo brain imaging of T cells by multiphoton microscopy after middle cerebral artery occlusion.......To gain a better understanding of T cell behavior after stroke, we have developed real-time in vivo brain imaging of T cells by multiphoton microscopy after middle cerebral artery occlusion....

  3. Brain Stroke Detection by Microwaves Using Prior Information from Clinical Databases

    Directory of Open Access Journals (Sweden)

    Natalia Irishina

    2013-01-01

    Full Text Available Microwave tomographic imaging is an inexpensive, noninvasive modality of media dielectric properties reconstruction which can be utilized as a screening method in clinical applications such as breast cancer and brain stroke detection. For breast cancer detection, the iterative algorithm of structural inversion with level sets provides well-defined boundaries and incorporates an intrinsic regularization, which permits to discover small lesions. However, in case of brain lesion, the inverse problem is much more difficult due to the skull, which causes low microwave penetration and highly noisy data. In addition, cerebral liquid has dielectric properties similar to those of blood, which makes the inversion more complicated. Nevertheless, the contrast in the conductivity and permittivity values in this situation is significant due to blood high dielectric values compared to those of surrounding grey and white matter tissues. We show that using brain MRI images as prior information about brain's configuration, along with known brain dielectric properties, and the intrinsic regularization by structural inversion, allows successful and rapid stroke detection even in difficult cases. The method has been applied to 2D slices created from a database of 3D real MRI phantom images to effectively detect lesions larger than 2.5 × 10−2 m diameter.

  4. Stimulation of the sphenopalatine ganglion induces reperfusion and blood-brain barrier protection in the photothrombotic stroke model.

    Directory of Open Access Journals (Sweden)

    Haviv Levi

    Full Text Available The treatment of stroke remains a challenge. Animal studies showing that electrical stimulation of the sphenopalatine ganglion (SPG exerts beneficial effects in the treatment of stroke have led to the initiation of clinical studies. However, the detailed effects of SPG stimulation on the injured brain are not known.The effect of acute SPG stimulation was studied by direct vascular imaging, fluorescent angiography and laser Doppler flowmetry in the sensory motor cortex of the anaesthetized rat. Focal cerebral ischemia was induced by the rose bengal (RB photothrombosis method. In chronic experiments, SPG stimulation, starting 15 min or 24 h after photothrombosis, was given for 3 h per day on four consecutive days. Structural damage was assessed using histological and immunohistochemical methods. Cortical functions were assessed by quantitative analysis of epidural electro-corticographic (ECoG activity continuously recorded in behaving animals.Stimulation induced intensity- and duration-dependent vasodilation and increased cerebral blood flow in both healthy and photothrombotic brains. In SPG-stimulated rats both blood brain-barrier (BBB opening, pathological brain activity and lesion volume were attenuated compared to untreated stroke animals, with no apparent difference in the glial response surrounding the necrotic lesion.SPG-stimulation in rats induces vasodilation of cortical arterioles, partial reperfusion of the ischemic lesion, and normalization of brain functions with reduced BBB dysfunction and stroke volume. These findings support the potential therapeutic effect of SPG stimulation in focal cerebral ischemia even when applied 24 h after stroke onset and thus may extend the therapeutic window of currently administered stroke medications.

  5. Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Da-Hye Kim

    Full Text Available Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal

  6. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    Science.gov (United States)

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  7. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    OpenAIRE

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time, whiplash-associated disorder is one of the most frequent consequences of motor vehicle related accidents affecting about 300 per 100,000 inhabitants per year in the United States and Western European countrie...

  8. [Scandinavian guidelines on the pre-hospital management of traumatic brain injury

    DEFF Research Database (Denmark)

    Juul, N.; Sollid, S.; Sundstrom, T.

    2008-01-01

    . Evidence-based guidelines already exist that focus on all steps in the management. This article, which was written by members of the Scandinavian Neurotrauma Committee, presents recommendations on the pre-hospital management of traumatic brain injury adapted to the infrastructure of Scandinavia......Head trauma causes the death of many young persons. The number of fatalities can be reduced through systematic management. Preventing secondary brain injury together with the fastest possible transport to a neurosurgical unit has been shown to be effective in reducing mortality and morbidity...

  9. Isolated medulla oblongata function after severe traumatic brain injury

    OpenAIRE

    Wijdicks, E; Atkinson, J; Okazaki, H

    2001-01-01

    The objective was to report the first pathologically confirmed case of partly functionally preserved medulla oblongata in a patient with catastrophic traumatic brain injury.
A patient is described with epidural haematoma with normal breathing and blood pressure and a retained coughing reflex brought on only by catheter suctioning of the carina. Multiple contusions in the thalami and pons were found but the medulla oblongata was spared at necropsy. 
In conclusion, medulla oblong...

  10. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke.

    Science.gov (United States)

    Wessel, Maximilian J; Zimerman, Máximo; Hummel, Friedhelm C

    2015-01-01

    Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation (NIBS) techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current, transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  11. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Immersive virtual reality in traumatic brain injury rehabilitation: A literature review.

    Science.gov (United States)

    Aida, Jared; Chau, Brian; Dunn, Justin

    2018-04-07

    Traumatic brain injury (TBI) is a common cause of morbidity and mortality in the United States with its sequelae often affecting individuals long after the initial injury. Innovations in virtual reality (VR) technology may offer potential therapy options in the recovery from such injuries. However, there is currently no consensus regarding the efficacy of VR in the setting of TBI rehabilitation. The aim of this review is to evaluate and summarize the current literature regarding immersive VR in the rehabilitation of those with TBI. A comprehensive literature search was conducted utilizing PubMed, Google Scholar, and the Cochrane Review using the search terms "virtual reality," "traumatic brain injury," "brain injury," and "immersive." A total of 11 studies were evaluated. These were primarily of low-level evidence, with the exception of two randomized, controlled trials. 10 of 11 studies demonstrated improvement with VR therapy. VR was most frequently used to address gait or cognitive deficits. While the current literature generally offers support for the use of VR in TBI recovery, there is a paucity of strong evidence to support its widespread use. The increasing availability of immersive VR technology offers the potential for engaging therapy in TBI rehabilitation, but its utility remains uncertain given the limited studies available at this time.

  13. Neuroprotective effects of collagen matrix in rats after traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Grandhi, Ramesh; Henchir, Jeremy; Yan, Hong Q; Badylak, Stephen F; Dixon, C Edward

    2015-01-01

    In previous studies, collagen based matrices have been implanted into the site of lesion in different models of brain injury. We hypothesized that semisynthetic collagen matrix can have neuroprotective function in the setting of traumatic brain injury. Rats were subjected to sham injury or controlled cortical impact. They either received extracellular matrix graft (DuraGen) over the injury site or did not receive any graft and underwent beam balance/beam walking test at post injury days 1-5 and Morris water maze at post injury days 14-18. Animals were sacrificed at day 18 for tissue analysis. Collagen matrix implantation in injured rats did not affect motor function (beam balance test: p = 0.627, beam walking test: p = 0.921). However, injured group with collagen matrix had significantly better spatial memory acquisition (p < 0.05). There was a significant reduction in lesion volume, as well as neuronal loss in CA1 (p < 0.001) and CA3 (p < 0.05) regions of the hippocampus in injured group with collagen matrix (p < 0.05). Collagen matrix reduces contusional lesion volume, neuronal loss, and cognitive deficit after traumatic brain injury. Further studies are needed to demonstrate the mechanisms of neuroprotection by collagen matrix.

  14. Shining light on the head: Photobiomodulation for brain disorders

    Directory of Open Access Journals (Sweden)

    Michael R. Hamblin

    2016-12-01

    Full Text Available Photobiomodulation (PBM describes the use of red or near-infrared light to stimulate, heal, regenerate, and protect tissue that has either been injured, is degenerating, or else is at risk of dying. One of the organ systems of the human body that is most necessary to life, and whose optimum functioning is most worried about by humankind in general, is the brain. The brain suffers from many different disorders that can be classified into three broad groupings: traumatic events (stroke, traumatic brain injury, and global ischemia, degenerative diseases (dementia, Alzheimer's and Parkinson's, and psychiatric disorders (depression, anxiety, post traumatic stress disorder. There is some evidence that all these seemingly diverse conditions can be beneficially affected by applying light to the head. There is even the possibility that PBM could be used for cognitive enhancement in normal healthy people. In this transcranial PBM (tPBM application, near-infrared (NIR light is often applied to the forehead because of the better penetration (no hair, longer wavelength. Some workers have used lasers, but recently the introduction of inexpensive light emitting diode (LED arrays has allowed the development of light emitting helmets or “brain caps”. This review will cover the mechanisms of action of photobiomodulation to the brain, and summarize some of the key pre-clinical studies and clinical trials that have been undertaken for diverse brain disorders.

  15. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  16. Barriers to Meeting the Needs of Students with Traumatic Brain Injury

    Science.gov (United States)

    Canto, Angela I.; Chesire, David J.; Buckley, Valerie A.; Andrews, Terrie W.; Roehrig, Alysia D.

    2014-01-01

    Many students with traumatic brain injury (TBI) are identified by the medical community each year and many more experience head injuries that are not examined by medical personnel. School psychologists and allied consultants have important liaison roles to identify and assist these students post-injury. In this study, 75 school psychologists (the…

  17. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  18. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke.

    Directory of Open Access Journals (Sweden)

    Zahra Hassani

    Full Text Available Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully characterised. This study investigated the cellular events occurring after CTX0E03 transplantation in the brains of rats that underwent ischemic stroke.We focused on the endogenous proliferative activity of the host brain in response to cell transplantation and determined the identity of the proliferating cells using markers for young neurons (doublecortin, Dcx and microglia (CD11b. So as to determine the chronology of events occurring post-transplantation, we analysed the engrafted brains one week and four weeks post-transplantation.We observed a significantly greater endogenous proliferation in the striatum of ischemic brains receiving a CTX0E03 graft compared to vehicle-treated ischemic brains. A significant proportion of these proliferative cells were found to be Dcx+ striatal neuroblasts. Further, we describe an enhanced immune response after CTX0E03 engraftment, as shown by a significant increase of proliferating CD11b+ microglial cells.Our study demonstrates that few Dcx+ neuroblasts are proliferative in normal conditions, and that this population of proliferative neuroblasts is increased in response to stroke. We further show that CTX0E03 transplantation after stroke leads to the maintenance of this proliferative activity. Interestingly, the preservation of neuronal proliferative activity upon CTX0E03 transplantation is preceded and accompanied by a high rate of proliferating microglia. Our study suggests that microglia might mediate in part the effect of CTX0E03 transplantation on neuronal proliferation in ischemic stroke conditions.

  19. An overview of attention deficits after paediatric traumatic brain injury.

    Science.gov (United States)

    Ginstfeldt, Tim; Emanuelson, Ingrid

    2010-01-01

    Attention could be categorized into sustained, selective, shifting, divided and attention span. The primary objective was to evaluate the type of attention deficits that occurs after paediatric traumatic brain injury. Keywords were used such as 'attention', 'child', 'traumatic', 'brain' and 'injury' on MEDLINE articles published in 1991-2009. Articles found through MEDLINE were manually cross-referenced. Out of the examined categorizes, divided and sustained attention seem to be the most vulnerably, frequently displaying deficits in the children with TBI. Attention span seemed to be the most resistant and the shifting and selective categories falling somewhere in between. Most of the recovery is expected within the first year post-injury, even if some individuals continue to improve for years, and deficits often persist into adulthood. The attention domains are not affected to the same extent by TBI and this should be taken into consideration when evaluating a child. The commonly used tests also seem to differ in how sensitive they are in detecting deficits. The definition of attention domains and TBI would benefit to be stricter and agreed upon, to further facilitate research and rehabilitation programmes.

  20. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection

    NARCIS (Netherlands)

    Geurts, B.H.J.; Andriessen, T.M.J.C.; Goraj, B.M.; Vos, P.E.

    2012-01-01

    Objective: This study compares inter-rater-reliability, lesion detection and clinical relevance of T2-weighted imaging (T2WI), Fluid Attenuated Inversion Recovery (FLAIR), T2*-gradient recalled echo (T2*-GRE) and Susceptibility Weighted Imaging (SWI) in Traumatic Brain Injury (TBI). Methods: Three

  1. Early prediction of favourable recovery 6 months after mild traumatic brain injury.

    NARCIS (Netherlands)

    Stulemeijer, M.; Werf, S.P. van der; Borm, G.F.; Vos, P.E.

    2008-01-01

    BACKGROUND: Predicting outcome after mild traumatic brain injury (MTBI) is notoriously difficult. Although it is recognised that milder head injuries do not necessarily mean better outcomes, less is known about the factors that do enable early identification of patients who are likely to recover

  2. Outcome and comparative effectiveness research in traumatic brain injury : a methodological perspective

    NARCIS (Netherlands)

    M.C. Cnossen (Maryse)

    2017-01-01

    markdownabstractTraumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Although research activity in TBI has expanded rapidly, all these endeavors have not yet resulted in major advances in our understanding of TBI. This thesis addresses two important topics

  3. Patient Characterization Protocols for Psychophysiological Studies of Traumatic Brain Injury and Post-TBI Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Paul E. Rapp

    2013-07-01

    Full Text Available Psychophysiological investigations of traumatic brain injury (TBI are being conducted for several reasons, including the objective of learning more about the underlying physiological mechanisms of the pathological processes that can be initiated by a head injury. Additional goals include the development of objective physiologically based measures that can be used to monitor the response to treatment and to identify minimally symptomatic individuals who are at risk of delayed onset neuropsychiatric disorders following injury. Research programs studying TBI search for relationships between psychophysiological measures, particularly ERP component properties (e.g. timing, amplitude, scalp distribution, and a participant’s clinical condition. Moreover, the complex relationships between brain injury and psychiatric disorders are receiving increased research attention, and ERP technologies are making contributions to this effort. This review has two objectives supporting such research efforts. The first is to review evidence indicating that traumatic brain injury is a significant risk factor for post-injury neuropsychiatric disorders. The second objective is to introduce ERP researchers who are not familiar with neuropsychiatric assessment to the instruments that are available for characterizing traumatic brain injury, post-concussion syndrome, and psychiatric disorders. Specific recommendations within this very large literature are made. We have proceeded on the assumption that, as is typically the case in an ERP laboratory, the investigators are not clinically qualified and that they will not have access to participant medical records.

  4. Traumatic Brain Injury in Kenya

    Directory of Open Access Journals (Sweden)

    Benson Kinyanjui

    2016-03-01

    Full Text Available Kenya has a disproportionately high rate of road traffic accidents each year, many of them resulting in traumatic brain injuries (TBIs. A review of articles written on issues pertaining to the medical treatment of people with TBI in the past 15 years in Kenya indicates a significantly high incidence of TBIs and a high mortality rate. This article reviews the available literature as a first step in exploring the status of rehabilitation of Kenyans with cognitive impairments and other disabilities resulting from TBIs. From this preliminary review, it is apparent that despite TBI being a pervasive public health problem in Kenya, it has not received due attention in the public and private sectors as evidenced by a serious lack of post-acute rehabilitation services for people with TBIs. Implications for this lack of services are discussed and recommendations are made for potential approaches to this problem.

  5. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Science.gov (United States)

    Xie, J.; Qian, Z.; Yang, T.; Li, W.; Hu, G.

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μs') and BWC. By recording μs' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  6. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J; Qian, Z; Li, W; Hu, G [Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Yang, T, E-mail: zhiyu@nuaa.edu.cn [School of Clinical Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009 (China)

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient ({mu}{sub s}') and BWC. By recording {mu}{sub s}' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  7. Near-infrared spectroscopy technique to evaluate the effects of drugs in treating traumatic brain edema

    International Nuclear Information System (INIS)

    Xie, J; Qian, Z; Li, W; Hu, G; Yang, T

    2011-01-01

    The aim of this study was to evaluate the effects of several drugs in treating traumatic brain edema (TBE) following traumatic brain injury (TBI) using near-infrared spectroscopy (NIRs) technology. Rats with TBE models were given hypertonic saline (HS), mannitol and mannitol+HS respectively for different groups. Light scattering properties of rat's local cortex was measured by NIRs within the wavelength range from 700 to 850 nm. TBE models were built in rats' left brains. The scattering properties of the right and left target corresponding to the position of normal and TBE tissue were measured and recorded in vivo and real-time by a bifurcated needle probe. The brain water contents (BWC) were measured by the wet and dry weight method after injury and treatment hours 1, 6, 24, 72 and 120. A marked linear relationship was observed between reduced scattering coefficient (μ s ') and BWC. By recording μ s ' of rats' brains, the entire progressions of effects of several drugs were observed. The result may suggest that the NIRs techniques have a potential for assessing effects in vivo and real-time on treatment of the brain injury.

  8. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder.

    Science.gov (United States)

    Bremner, James Douglas; Mishra, Sanskriti; Campanella, Carolina; Shah, Majid; Kasher, Nicole; Evans, Sarah; Fani, Negar; Shah, Amit Jasvant; Reiff, Collin; Davis, Lori L; Vaccarino, Viola; Carmody, James

    2017-01-01

    Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD. Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures. Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group. This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with

  9. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    James Douglas Bremner

    2017-08-01

    Full Text Available ObjectiveBrain imaging studies in patients with post-traumatic stress disorder (PTSD have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD.MethodTwenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT. PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS, mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures.ResultsPost-traumatic stress disorder patients treated with MBSR (but not PCGT had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group.ConclusionThis study shows that MBSR is a safe and effective treatment for PTSD

  10. The Spectrum of Disease in Chronic Traumatic Encephalopathy

    Science.gov (United States)

    McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging…

  11. Brain magnetic resonance imaging findings in cryptogenic stroke patients under 60 years with patent foramen ovale

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Claire, E-mail: claire.boutet@chu-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Rouffiange-Leclair, Laure, E-mail: laurerouffiange@hotmail.com [Department of Radiology, University Hospital of Saint-Etienne (France); Garnier, Pierre, E-mail: pierre.garnier@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Quenet, Sara, E-mail: sara.quenet@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Delsart, Daphné, E-mail: daphne.delsart@hotmail.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Therapeutic Medicine, CHU Saint-Etienne, Hôpital Nord, Saint-Etienne (France); Inserm, CIE3, F-42055 Saint-Etienne (France); Varvat, Jérôme, E-mail: jvarvat@9online.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Epinat, Magali, E-mail: magali.epinat@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Schneider, Fabien, E-mail: fabien.schneider@univ-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Antoine, Jean-Christophe, E-mail: j.christophe.antoine@chu-st-etienne.fr [Department of Neurology, University Hospital of Saint-Etienne (France); Lyon Neuroscience Research Center, INSERM U1028 – CNRS UMR5292 (France); EA 4338, Jean Monnet University, Saint-Etienne (France); and others

    2014-05-15

    Purpose: To compare magnetic resonance imaging (MRI) brain feature in cryptogenic stroke patients with patent foramen ovale (PFO), cryptogenic stroke patients without PFO and patients with cardioembolic stroke. Materials and methods: The ethics committee required neither institutional review board approval nor informed patient consent for retrospective analyses of the patients’ medical records and imaging data. The patients’ medical files were retrospectively reviewed in accordance with human subject research protocols. Ninety-two patients under 60 years of age were included: 15 with cardioembolic stroke, 32 with cryptogenic stroke with PFO and 45 with cryptogenic stroke without PFO. Diffusion-weighted imaging of brain MRI was performed by a radiologist blinded to clinical data. Univariate, Fischer's exact test for qualitative data and non-parametric Wilcoxon test for quantitative data were used. Results: There was no statistically significant difference found between MRI features of patients with PFO and those with cardioembolic stroke (p < .05). Patients without PFO present more corticosubcortical single lesions (p < .05) than patients with PFO. Patients with PFO have more often subcortical single lesions larger than 15 mm, involvement of posterior cerebral arterial territory and intracranial occlusion (p < .05) than patients with cryptogenic stroke without PFO. Conclusion: Our study suggests a cardioembolic mechanism in ischemic stroke with PFO.

  12. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    Science.gov (United States)

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  13. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  14. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  15. Feasibility of a skills-based substance abuse prevention program following traumatic brain injury.

    Science.gov (United States)

    Vungkhanching, Martha; Heinemann, Allen W; Langley, Mervin J; Ridgely, Mary; Kramer, Karen M

    2007-01-01

    To demonstrate the feasibility of a skills-based substance abuse prevention counseling program in a community setting for adults who sustained traumatic brain injury. Convenience sample of 117 participants (mean age=35 years) with preinjury history of alcohol or other drug use. Intervention group participants (n=36) from 3 vocational rehabilitation programs; a no-intervention comparison group (n=81) from an outpatient rehabilitation service. 12 individual counseling sessions featuring skills-based intervention. Changes in self-reported alcohol and other drug use, coping skillfulness, affect, and employment status from baseline to 9 months postintervention. Significant differences were noted at baseline for the intervention and comparison groups on ethnicity, time postinjury, marital status, and employment (Pcoping skillfulness (Pskills-based intervention provides a promising approach to promoting abstinence from all substances and increasing readiness for employment for adults with traumatic brain injuries in outpatient settings.

  16. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury

    DEFF Research Database (Denmark)

    Cnossen, Maryse C; Huijben, Jilske A; van der Jagt, Mathieu

    2017-01-01

    BACKGROUND: No definitive evidence exists on how intracranial hypertension should be treated in patients with traumatic brain injury (TBI). It is therefore likely that centers and practitioners individually balance potential benefits and risks of different intracranial pressure (ICP) management......, and it was pilot-tested in 16 centers. The questionnaire was sent to 68 neurotrauma centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. RESULTS: The survey was completed by 66 centers (97% response rate). Centers were mainly academic....... There was no consensus on other indications or on peri-insertion precautions. We found wide variation in the use of first- and second-tier treatments for elevated ICP. Approximately half of the centers were classified as using a relatively aggressive approach to ICP monitoring and treatment (n = 32, 48%), whereas...

  17. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  18. Correlation between brain injury and dysphagia in adult patients with stroke

    Directory of Open Access Journals (Sweden)

    Nunes, Maria Cristina de Alencar

    2012-01-01

    Full Text Available Introduction: In the literature, the incidence of oropharyngeal dysphagia in patients with cerebrovascular accident (AVE ranges 20-90%. Some studies correlate the location of a stroke with dysphagia, while others do not. Objective: To correlate brain injury with dysphagia in patients with stroke in relation to the type and location of stroke. Method: A prospective study conducted at the Hospital de Clinicas with 30 stroke patients: 18 women and 12 men. All patients underwent clinical evaluation and swallowing nasolaryngofibroscopy (FEES®, and were divided based on the location of the injury: cerebral cortex, cerebellar cortex, subcortical areas, and type: hemorrhagic or transient ischemic. Results: Of the 30 patients, 18 had ischemic stroke, 10 had hemorrhagic stroke, and 2 had transient stroke. Regarding the location, 10 lesions were in the cerebral cortex, 3 were in the cerebral and cerebellar cortices, 3 were in the cerebral cortex and subcortical areas, and 3 were in the cerebral and cerebellar cortices and subcortical areas. Cerebral cortex and subcortical area ischemic strokes predominated in the clinical evaluation of dysphagia. In FEES®, decreased laryngeal sensitivity persisted following cerebral cortex and ischemic strokes. Waste in the pharyngeal recesses associated with epiglottic valleculae predominated in the piriform cortex in all lesion areas and in ischemic stroke. A patient with damage to the cerebral and cerebellar cortices from an ischemic stroke exhibited laryngeal penetration and tracheal aspiration of liquid and honey. Conclusion: Dysphagia was prevalent when a lesion was located in the cerebral cortex and was of the ischemic type.

  19. Time Is Brain: The Stroke Theory of Relativity.

    Science.gov (United States)

    Gomez, Camilo R

    2018-04-25

    Since the introduction of the philosophical tenet "Time is Brain!," multiple lines of research have demonstrated that other factors contribute to the degree of ischemic injury at any one point in time, and it is now clear that the therapeutic window of acute ischemic stroke is more protracted than it was first suspected. To define a more realistic relationship between time and the ischemic process, we used computational modeling to assess how these 2 variables are affected by collateral circulatory competence. Starting from the premise that the expression "Time=Brain" is mathematically false, we reviewed the existing literature on the attributes of cerebral ischemia over time, with particular attention to relevant clinical parameters, and the effect of different variables, particularly collateral circulation, on the time-ischemia relationship. We used this information to construct a theoretical computational model and applied it to categorically different yet abnormal cerebral perfusion scenarios, allowing comparison of their behavior both overall (i.e., final infarct volume) and in real-time (i.e., instantaneous infarct growth rate). Optimal collateral circulatory competence was predictably associated with slower infarct growth rates and prolongation of therapeutic window. Modeling of identifiable specific types of perfusion maps allows forecasting of the fate of the ischemic process over time. Distinct cerebral perfusion map patterns can be readily identified in patients with acute ischemic stroke. These patterns have inherently different behaviors relative to the time-ischemia construct, allowing the possibility of improving parsing and treatment allocation. It is clearly evident that the effect of time on the ischemic process is relative. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Traumatic brain injury: future assessment tools and treatment prospects

    Directory of Open Access Journals (Sweden)

    Steven R Flanagan

    2008-10-01

    Full Text Available Steven R Flanagan1, Joshua B Cantor2, Teresa A Ashman21New York University School of Medicine, The Rusk Institute of Rehabilitation, New York, NY, USA; 2Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY, USAAbstract: Traumatic brain injury (TBI is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the problem of treating TBI successfully will require improvements in the understanding of normal cerebral anatomy, physiology, and function throughout the lifespan, as well as the pathological and recuperative responses that result from trauma. New treatment approaches and combinations will need to be targeted to the heterogeneous needs of TBI populations. This article explores and evaluates the research evidence in areas that will likely lead to a reduction in TBI-related morbidity and improved outcomes. These include emerging assessment instruments and techniques in areas of structural/chemical and functional neuroimaging and neuropsychology, advances in the realms of cell-based therapies and genetics, promising cognitive rehabilitation techniques including cognitive remediation and the use of electronic technologies including assistive devices and virtual reality, and the emerging field of complementary and alternative medicine.Keywords: traumatic brain injury, assessments, treatments

  1. [Description of functional outcome in pediatric traumatic brain injury after a comprehensive rehabilitation programme].

    Science.gov (United States)

    Laxe, Sara; León, Daniel; Salgado, Dalila; Zabaleta, Mikel

    2015-01-01

    Traumatic brain injury is the leading cause of mortality and disability in children in the developed countries. Despite the plasticity of an infant's brain, injury at this early stage can lead to important sequelae that will affect functioning later in life. The understanding of the functional profile after a traumatic brain injury is important for planning interventions and treatment resources once the preventive phase has failed. This was a retrospective study of the patients admitted in a neurorehabilitation unit with the aim of describing their functioning after an intensive rehabilitation programme. A total of 65 records of children with a mean age of 10.38 years that had been admitted to a rehabilitation programme were reviewed. Of the traumatic brain injuries, 89.2% were severe and 78.4% were secondary to traffic accidents. The mean length of stay was 79.35 days. At discharge, 72% were able to walk, but 76.9% showed some cognitive impairment. Despite good physical recovery, only 29.2% of the children were able to return to school. Permanence of deficits made 21.5% of the children unable to return to any type of education. The population under study was characterised by a good clinical outcome as well as good physical improvement. Nevertheless, cognitive problems were notable and were the main factor responsible for the changes in school attendance and return to normal life. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  2. Dissecting the Roles of Brain Injury and Combat-Related Stress in Post-Traumatic Headache

    Science.gov (United States)

    2015-10-01

    Dissecting the Roles of Brain Injury and Combat-Related Stress in Post- Traumatic Headache 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0366 5c...consequences of TBI is post-traumatic headache (PTH). Because both TBI and stress could contribute to PTH, we examine them together and separately...significant stress . Both TBI and stress are risk factors for chronic headache . They may contribute separate or overlapping mechanisms, and treatment can be

  3. Fatigue following mild Traumatic Brain Injury : A six-month prospective cohort study

    NARCIS (Netherlands)

    Rakers, Sandra; Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm J.; van der Naalt, Joukje; Spikman, Jacoba

    2017-01-01

    Objective: Fatigue is a frequent and profoundly disabling symptom following mild traumatic brain injury (mTBI), that may even persist for years. Approximately 85–90% of thepatients with TBI sustain a mild TBI, and among these patients, about 68% experience complaints of fatigue in the acute phase

  4. ECONOMIC LOSSES CAUSED BY TRAUMATIC BRAIN INJURY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    S. A. Valiulina

    2015-01-01

    Full Text Available Background: Currently, analyzing the economic losses caused by health problems in population is of particular importance since it stipulates calculations of the volumes invested in healthcare systems in order to improve population’s health. Objective: The aim of our study was to find out economic losses caused by traumatic brain injury (TBI in children. Methods: The given work has utilized governmental statistical reports for Russia, for federal regions as well as for individual subjects. Direct medical expenses (medical services and indirect expenses (losses due to a temporary disability of parents having a sick child were calculated both in general and per patient. Results: Among all the direct medical costs of treatment of children with TBI inpatient care costs account for 85%. In the Central and Volga Federal District accounted for half of nationwide spending in general, brain injury and to provide certain kinds of healthcare. The structure of Russian costs as a result of the incidence of TBI children Moscow accounts for 20%. In Moscow, the cost of treating cases of traumatic brain injury in children is 3.2 times higher than the average for Russia. The resulting calculations of the value of health care costs attributable to a case of child head injury, behind the cost of treatment of the case of a child with head trauma, calculated according to the standards of Russia and the territories. This difference in the whole RF is 23%. Conclusion: The obtained findings have shown that in 2010 in Russia the magnitude of losses caused by TBI incidence in children amounted to 3 billion roubles or 0.008% of the gross product 1.2 billion roubles of which were direct expenses. However, this figure is considerably lower of the real amount; it becomes evident after the analysis of direct medical expenses per one case of pediatric TBI. Our calculations have shown that in Russia and in its regions the amount of expenses per one TBI patient is a quarter less

  5. Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke

    Directory of Open Access Journals (Sweden)

    Petterson Jodie

    2010-02-01

    Full Text Available Abstract Background The link between early blood- brain barrier (BBB breakdown and endothelial cell activation in acute stroke remain poorly defined. We hypothesized that P-selectin, a mediator of the early phase of leukocyte recruitment in acute ischemia is also a major contributor to early BBB dysfunction following stroke. This was investigated by examining the relationship between BBB alterations following transient ischemic stroke and expression of cellular adhesion molecule P-selectin using a combination of magnetic resonance molecular imaging (MRMI, intravital microscopy and immunohistochemistry. MRMI was performed using the contrast, gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA conjugated to Sialyl Lewis X (Slex where the latter is known to bind to activated endothelium via E- or P selectins. Middle cerebral artery occlusion was induced in male C57/BL 6 wild-type (WT mice and P-selectin-knockout (KO mice. At 24 hours following middle cerebral artery occlusion, T1 maps were acquired prior to and following contrast injection. In addition to measuring P- and E-selectin expression in brain homogenates, alterations in BBB function were determined immunohistochemically by assessing the extravasation of immunoglobulin G (IgG or staining for polymorphonuclear (PMN leukocytes. In vivo assessment of BBB dysfunction was also investigated optically using intravital microscopy of the pial circulation following the injection of Fluorescein Isothiocyanate (FITC-dextran (MW 2000 kDa. Results MRI confirmed similar infarct sizes and T1 values at 24 hours following stroke for both WT and KO animals. However, the blood to brain transfer constant for Gd DTPA (Kgd demonstrated greater tissue extravasation of Gd DTPA in WT animals than KO mice (P 1 stroke -Δ T1 contralateral control cortex, decreased significantly in the Gd-DTPA(sLeX group compared to Gd-DTPA, indicative of sLeX mediated accumulation of the targeted contrast agent. Regarding BBB

  6. Photobiomodulation of the brain: a new paradigm (Conference Presentation)

    Science.gov (United States)

    Hamblin, Michael R.

    2017-02-01

    Photobiomodulation (PBM) describes the use of red or near-infrared light to stimulate, heal, regenerate, and protect tissue that has either been injured, is degenerating, or else is at risk of dying. One of the organ systems of the human body that is most necessary to life, and whose optimum functioning is most worried about by humankind in general, is the brain. The brain suffers from many different disorders that can be classified into three broad groupings: traumatic events (stroke, traumatic brain injury, and global ischemia), degenerative diseases (dementia, Alzheimer's and Parkinson's), and psychiatric disorders (depression, anxiety, post traumatic stress disorder). There is some evidence that all these seemingly diverse conditions can be beneficially affected by applying light to the head. There is even the possibility that PBM could be used for cognitive enhancement in normal healthy people. In this transcranial PBM (tPBM) application, near-infrared (NIR) light is often applied to the forehead because of the better penetration (no hair, longer wavelength). Some workers have used lasers, but recently the introduction of inexpensive light emitting diode (LED) arrays has allowed the development of light emitting helmets or "brain caps". This presentation will cover the mechanisms of action of photobiomodulation to the brain, and summarize some of the key pre-clinical studies and clinical trials that have been undertaken in this area.

  7. Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review.

    Science.gov (United States)

    Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel

    2014-08-01

    This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.

  8. Stroke Treatments

    Science.gov (United States)

    ... Stroke Association.org Professionals for Stroke Association.org Shop for Stroke Association.org Support for Stroke Association. ... works by dissolving the clot and improving blood flow to the part of the brain being deprived ...

  9. Transcranial brain stimulation (TMS and tDCS for post-stroke aphasia rehabilitation: Controversies

    Directory of Open Access Journals (Sweden)

    Lucia Iracema Zanotto de Mendonça

    Full Text Available Transcranial brain stimulation (TS techniques have been investigated for use in the rehabilitation of post-stroke aphasia. According to previous reports, functional recovery by the left hemisphere improves recovery from aphasia, when compared with right hemisphere participation. TS has been applied to stimulate the activity of the left hemisphere or to inhibit homotopic areas in the right hemisphere. Various factors can interfere with the brain's response to TS, including the size and location of the lesion, the time elapsed since the causal event, and individual differences in the hemispheric language dominance pattern. The following questions are discussed in the present article: [a] Is inhibition of the right hemisphere truly beneficial?; [b] Is the transference of the language network to the left hemisphere truly desirable in all patients?; [c] Is the use of TS during the post-stroke subacute phase truly appropriate? Different patterns of neuroplasticity must occur in post-stroke aphasia.

  10. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    Science.gov (United States)

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  11. Traumatic Brain Injury and Grief: Considerations and Practical Strategies for School Psychologists

    Science.gov (United States)

    Jantz, Paul B.; Comerchero, Victoria A.; Canto, Angela I.; Pierson, Eric

    2015-01-01

    Traumatic brain injury (TBI) can result in a range of social, emotional, neurological, cognitive, and behavioral outcomes. If these outcomes are significant, family members and the individual who has sustained the TBI may struggle with accepting the effects of these deficits. They may grieve over disrupted family relationships, roles, and routines…

  12. Traumatic Brain Injury: Exploring the Role of Cooperative Extension in Kansas Communities

    Science.gov (United States)

    Sellers, Debra M.; Garcia, Jane Mertz

    2012-01-01

    TBI"options" helps survivors of traumatic brain injury and their families identify, locate, and contact helpful organizations in their local communities to promote successful living. This article discusses the role of county agents in the program and the support offered by community partners. Results of pre- and post-surveys for both…

  13. Motor Deficits Following Pediatric Mild Traumatic Brain Injury: Implications for School Psychologists

    Science.gov (United States)

    Davis, Andrew S.; Moore, Brittney; Rice, Valerie; Decker, Scott

    2015-01-01

    Mild traumatic brain injury (mTBI), sometimes referred to as concussion, is one of the most common acquired neurological problems of childhood. When children return to school following mTBI, school psychologists should be actively involved in the determination of neurocognitive and functional deficits for the purpose of designing strength-based…

  14. Cryptogenic Stroke

    Directory of Open Access Journals (Sweden)

    Mohammad Saadatnia

    2017-02-01

    Full Text Available Cryptogenic stroke is defined as brain infarction that is not attributable to a source of definite embolism, large artery atherosclerosis, or small artery disease despite a thorough vascular, cardiac, and serologic evaluation. Despite many advances in our understanding of ischemic stroke, cryptogenic strokes remain a diagnostic and therapeutic challenge. The pathophysiology of cryptogenic stroke is likely various. Probable mechanisms include cardiac embolism secondary to occult paroxysmal atrial fibrillation, aortic atheromatous disease or other cardiac sources, paradoxical embolism from atrial septal abnormalities such as patent foramen ovale, hypercoagulable states, and preclinical or subclinical cerebrovascular disease.  Cryptogenic stroke is one-fourth among cerebral infarction, but most of them could be ascribed to embolic stroke. A significant proportion of cryptogenic strokes adhere to embolic infarct topography on brain imaging and improvement in our ability to detect paroxysmal atrial fibrillation in patients with cryptogenic stroke has strengthened the idea that these strokes are embolic in nature. a significant proportion of cryptogenic strokes adhere to embolic infarct topography on brain imaging.embolic stroke of undetermined sources(ESUS was planned for unifying embolic stroke of undetermined source.  The etiologies underlying ESUS included minor-risk potential cardioembolic sources, covert paroxysmal atrial fibrillation, cancer-associated coagulopathy and embolism, arteriogenic emboli, and paroxysmal embolism. Extensive evaluation including transesophageal echocardiography and cardiac monitoring for long time could identify the etiology of these patients. Therefore cryptogenic stroke is a diagnosis of exclusion. Compared with other stroke subtypes, cryptogenic stroke tends to have a better prognosis and lower long-term risk of recurrence.

  15. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Priyanka eShah

    2013-12-01

    Full Text Available Stroke victims tend to prioritize speaking, writing and walking as the three most important rehabilitation goals. Of note is that two of these goals involve communication. This underscores the significance of developing successful approaches to aphasia treatment for the several hundred thousand new aphasia patients each year and over 1 million stroke survivors with chronic aphasia in the U.S. alone. After several years of growth as a research tool, noninvasive brain stimulation (NBS is gradually entering the arena of clinical aphasiology. In this review, we first examine the current state of knowledge of post-stroke language recovery including the contributions from the dominant and non-dominant hemispheres. Next, we briefly discuss the methods and the physiologic basis of the use of inhibitory and excitatory repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS as research tools in patients who experience post-stroke aphasia. Finally, we provide a critical review of the most influential evidence behind the potential use of these two brain stimulation methods as clinical rehabilitative tools.

  16. Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation.

    Science.gov (United States)

    Shah, Priyanka P; Szaflarski, Jerzy P; Allendorfer, Jane; Hamilton, Roy H

    2013-12-24

    Stroke victims tend to prioritize speaking, writing, and walking as the three most important rehabilitation goals. Of note is that two of these goals involve communication. This underscores the significance of developing successful approaches to aphasia treatment for the several hundred thousand new aphasia patients each year and over 1 million stroke survivors with chronic aphasia in the U.S. alone. After several years of growth as a research tool, non-invasive brain stimulation (NBS) is gradually entering the arena of clinical aphasiology. In this review, we first examine the current state of knowledge of post-stroke language recovery including the contributions from the dominant and non-dominant hemispheres. Next, we briefly discuss the methods and the physiologic basis of the use of inhibitory and excitatory repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) as research tools in patients who experience post-stroke aphasia. Finally, we provide a critical review of the most influential evidence behind the potential use of these two brain stimulation methods as clinical rehabilitative tools.

  17. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  18. Probabilistic Matching of Deidentified Data From a Trauma Registry and a Traumatic Brain Injury Model System Center: A Follow-up Validation Study.

    Science.gov (United States)

    Kumar, Raj G; Wang, Zhensheng; Kesinger, Matthew R; Newman, Mark; Huynh, Toan T; Niemeier, Janet P; Sperry, Jason L; Wagner, Amy K

    2018-04-01

    In a previous study, individuals from a single Traumatic Brain Injury Model Systems and trauma center were matched using a novel probabilistic matching algorithm. The Traumatic Brain Injury Model Systems is a multicenter prospective cohort study containing more than 14,000 participants with traumatic brain injury, following them from inpatient rehabilitation to the community over the remainder of their lifetime. The National Trauma Databank is the largest aggregation of trauma data in the United States, including more than 6 million records. Linking these two databases offers a broad range of opportunities to explore research questions not otherwise possible. Our objective was to refine and validate the previous protocol at another independent center. An algorithm generation and validation data set were created, and potential matches were blocked by age, sex, and year of injury; total probabilistic weight was calculated based on of 12 common data fields. Validity metrics were calculated using a minimum probabilistic weight of 3. The positive predictive value was 98.2% and 97.4% and sensitivity was 74.1% and 76.3%, in the algorithm generation and validation set, respectively. These metrics were similar to the previous study. Future work will apply the refined probabilistic matching algorithm to the Traumatic Brain Injury Model Systems and the National Trauma Databank to generate a merged data set for clinical traumatic brain injury research use.

  19. Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury, Annual Report 2009

    Science.gov (United States)

    2009-01-01

    applications for recovering from disaster and trauma Defense and Veterans Brain Injury Center Develops and delivers advanced TBI-specifi c treatment...specifically aimed at developing cognitive and motor therapy tools using videogame technology, game-based PH outreach tools and support tools for children of...Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Annual Report 2009 Report Documentation Page Form ApprovedOMB No

  20. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  1. Gabapentin in the management of dysautonomia following severe traumatic brain injury: a case series

    DEFF Research Database (Denmark)

    Baguley, Ian J; Heriseanu, Roxana E; Gurka, Joseph A

    2007-01-01

    The pharmacological management of dysautonomia, otherwise known as autonomic storms, following acute neurological insults, is problematic and remains poorly researched. This paper presents six subjects with dysautonomia following extremely severe traumatic brain injury where gabapentin controlled...

  2. Assessment of R18, COG1410, and APP96-110 in excitotoxicity and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Chiu Li Shan

    2017-11-01

    Full Text Available Cationic arginine-rich and poly-arginine peptides (referred to as CARPs have potent neuroprotective properties in in vitro excitotoxicity and in vivo models of stroke. Traumatic brain injury (TBI shares many pathophysiological processes as stroke, including excitotoxicity. Therefore, we evaluated our lead peptide, poly-arginine R18, with the COG1410 and APP96-110 peptides, which have neuroprotective actions following TBI. In an in vitro cortical neuronal glutamic acid excitotoxicity injury model, R18 was highly neuroprotective and reduced neuronal calcium influx, while COG1410 and APP96-110 displayed modest neuroprotection and were less effective at reducing calcium influx. In an impact-acceleration closed-head injury model (Marmarou model, R18, COG1410, and APP96-110 were administered intravenously (300 nmol/kg at 30 minutes after injury in male Sprague-Dawley rats. When compared to vehicle, no peptide significantly improved functional outcomes, however the R18 and COG1410 treatment groups displayed positive trends in the adhesive tape test and rotarod assessments. Similarly, no peptide had a significant effect on hippocampal neuronal loss, however a significant reduction in axonal injury was observed for R18 and COG1410. In conclusion, this study has demonstrated that R18 is significantly more effective than COG1410 and APP96-110 at reducing neuronal injury and calcium influx following excitotoxicity, and that both R18 and COG1410 reduce axonal injury following TBI. Additional dose response and treatment time course studies are required to further assess the efficacy of R18 in TBI.

  3. Effectiveness of a Treatment for Impairments in Social Cognition and Emotion Regulation (T-ScEmo) After Traumatic Brain Injury : A Randomized Controlled Trial

    NARCIS (Netherlands)

    Westerhof-Evers, Herma J.; Visser-Keizer, Annemarie C.; Fasotti, Luciano; Schonherr, Marleen C.; Vink, Martie; van der Naalt, Joukje; Spikman, Jacoba M.

    Objective: To evaluate the effects of a multifaceted Treatment for Social cognition and Emotion regulation (T-ScEmo) in patients with a traumatic brain injury.  Participants: Sixty-one patients with moderate to severe traumatic brain injury randomly assigned to an experimental T-ScEmo intervention

  4. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    International Nuclear Information System (INIS)

    Liu, Hao; Rose, Marie E.; Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward; Graham, Steven H.

    2016-01-01

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  5. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Rose, Marie E. [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States); Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurosurgery, University of Pittsburgh, PA 15216 (United States); Department of Critical Care Medicine, University of Pittsburgh, PA 15216 (United States); Graham, Steven H., E-mail: Steven.Graham@va.gov [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States)

    2016-04-15

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  6. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Implicit Memory Influences on Metamemory during Verbal Learning after Traumatic Brain Injury

    Science.gov (United States)

    Ramanathan, Pradeep; Kennedy, Mary R. T.; Marsolek, Chad J.

    2014-01-01

    Purpose: Prior research has shown that individuals with traumatic brain injury (TBI) may be overconfident in their judgments of learning (JOLs; online measures of self-monitoring of learning and memory). JOLs had been presumed to be driven by explicit processes, but recent research has also revealed implicit memory involvement. Given that implicit…

  8. Trends in Traumatic Brain Injury Research in School Psychology Journals 1985-2014

    Science.gov (United States)

    Smith, Shannon M.; Canto, Angela I.

    2015-01-01

    Every year, approximately 2.4 million people experience a traumatic brain injury (TBI), and nearly half a million children receive emergency medical attention from hospital personnel due to a TBI in the United States (Centers for Disease Control, 2010; Coronado et al., 2014). It is imperative for key stakeholders, including school psychologists,…

  9. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control.

    Science.gov (United States)

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G

    2015-08-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Investigations of primary blast-induced traumatic brain injury

    Science.gov (United States)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  11. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Prediction of driving capacity after traumatic brain injury: a systematic review.

    Science.gov (United States)

    Ortoleva, Claudia; Brugger, Camille; Van der Linden, Martial; Walder, Bernhard

    2012-01-01

    To review the current evidence on predictors for the ability to return to driving after traumatic brain injury. Systematic searches were conducted in MEDLINE, PsycINFO, EMBASE, and CINAHL up to March 1, 2010. Studies were rigorously rated for their methodological content and quality and standardized data were extracted from eligible studies. We screened 2341 articles, of which 7 satisfied our inclusion criteria. Five studies were of limited quality because of undefined, unrepresentative samples and/or absence of blinding. Studies mentioned 38 candidate predictors and tested 37. The candidate predictors most frequently mentioned were "selective attention" and "divided attention" in 4/7 studies, and "executive functions" and "processing speed," both in 3/7 studies. No association with driving was observed for 19 candidate predictors. Eighteen candidate predictors from 3 domains were associated with driving capacity: patient and trauma characteristics, neuropsychological assessments, and general assessments; 10 candidate predictors were tested in only one study and 8 in more than one study. The results of associations were contradictory for all but one: time between trauma and driving evaluation. There is no sound basis at present for predicting driving capacity after traumatic brain injury because most studies have methodological limitations.

  13. Case control study: Hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Paul G Harch

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI persistent post-concussion syndrome (PPCS and post-traumatic stress disorder (PTSD are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT for mild TBI PPCS and PTSD. Thirty military subjects aged 18–65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects experienced due to the HBOT: reversible middle ear barotrauma (n = 6, transient deterioration in symptoms (n = 7, reversible bronchospasm (n = 1, and increased anxiety (n = 2; not related to confinement; unrelated to HBOT: ureterolithiasis (n = 1, chest pain (n = 2. Significant improvement (29 subjects was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation, and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and

  14. Case control study: hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder.

    Science.gov (United States)

    Harch, Paul G; Andrews, Susan R; Fogarty, Edward F; Lucarini, Juliette; Van Meter, Keith W

    2017-01-01

    Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18-65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects) experienced due to the HBOT: reversible middle ear barotrauma ( n = 6), transient deterioration in symptoms ( n = 7), reversible bronchospasm ( n = 1), and increased anxiety ( n = 2; not related to confinement); unrelated to HBOT: ureterolithiasis ( n = 1), chest pain ( n = 2). Significant improvement (29 subjects) was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation), and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and

  15. Deficiency of vasodilator-stimulated phosphoprotein (VASP increases blood-brain-barrier damage and edema formation after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Peter Kraft

    2010-12-01

    Full Text Available Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification.Focal cerebral ischemia was induced in Vasp(-/- mice and wild-type (WT littermates by transient middle cerebral artery occlusion (tMCAO. Evan's Blue tracer was applied to visualize the extent of blood-brain-barrier (BBB damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p0.05 towards worse neurological outcomes.Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.

  16. 4: Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Khan, Fary; Baguley, Ian J; Cameron, Ian D

    2003-03-17

    Traumatic brain injury (TBI) commonly affects younger people and causes life-long impairments in physical, cognitive, behavioural and social function. The cognitive, behavioural and personality deficits are usually more disabling than the residual physical deficits. Recovery from TBI can continue for at least 5 years after injury. Rehabilitation is effective using an interdisciplinary approach, and close liaison with the patient, family and carers. The focus is on issues such as retraining in activities of daily living, pain management, cognitive and behavioural therapies, and pharmacological management. The social burden of TBI is significant, and therefore family education and counselling, and support of patient and carers, is important. General practitioners play an important role in providing ongoing support in the community, monitoring for medical complications, behavioural and personality issues, social reintegration, carer coping skills and return-to-work issues.

  17. Fever in trauma patients: evaluation of risk factors, including traumatic brain injury.

    Science.gov (United States)

    Bengualid, Victoria; Talari, Goutham; Rubin, David; Albaeni, Aiham; Ciubotaru, Ronald L; Berger, Judith

    2015-03-01

    The role of fever in trauma patients remains unclear. Fever occurs as a response to release of cytokines and prostaglandins by white blood cells. Many factors, including trauma, can trigger release of these factors. To determine whether (1) fever in the first 48 hours is related to a favorable outcome in trauma patients and (2) fever is more common in patients with head trauma. Retrospective study of trauma patients admitted to the intensive care unit for at least 2 days. Data were analyzed by using multivariate analysis. Of 162 patients studied, 40% had fever during the first 48 hours. Febrile patients had higher mortality rates than did afebrile patients. When adjusted for severity of injuries, fever did not correlate with mortality. Neither the incidence of fever in the first 48 hours after admission to the intensive care unit nor the number of days febrile in the unit differed between patients with and patients without head trauma (traumatic brain injury). About 70% of febrile patients did not have a source found for their fever. Febrile patients without an identified source of infection had lower peak white blood cell counts, lower maximum body temperature, and higher minimum platelet counts than did febrile patients who had an infectious source identified. The most common infection was pneumonia. No relationship was found between the presence of fever during the first 48 hours and mortality. Patients with traumatic brain injury did not have a higher incidence of fever than did patients without traumatic brain injury. About 30% of febrile patients had an identifiable source of infection. Further studies are needed to understand the origin and role of fever in trauma patients. ©2015 American Association of Critical-Care Nurses.

  18. Effect of Posttraumatic Serum Thyroid Hormone Levels on Severity and Mortality of Patients with Severe Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Forough Saki

    2012-02-01

    Full Text Available Traumatic brain injury (TBI is an important cause of death and disability in young adults ,and may lead to physical disabilities and long-term cognitive, behavioral psychological and social defects. There is a lack of definite result about the effect of thyroid hormones after traumatic brain injury in the severity and no data about their effect on mortality of the injury. The aim of this study is to evaluate the effect of thyroid hormones after traumatic brain injury in the severity and mortality and gain a clue in brain injury prognosis. In a longitudinal prospective study from February 2010 until February 2011, we checked serum levels of T3, T4, TSH and TBG of severely brain injured patients and compared the relationship of them with primary Glasgow Coma Scale (GCS score and mortality of patients. Statistical analysis used SPSS 11.5 software with using chi-square and Fisher exact test. Serum levels of T3 and T4 were decreased after brain trauma but not TSH and TBG. Mortality rates were higher in patients with lower T4 serum levels. The head injury was more severe in whom with low T3 and T4. Follow a severe brain injury a secondary hypothyroidism is happened due to pituitary dysfunction. Also, serum level of T3 and T4 on the first day admission affect on primary GCS score of patients which is an indicator of severity of brain injury. In addition, mortality rates of severely brain injured patients have a high correlation with the serum level of T4 in the first day admission.

  19. Predictors of Hypopituitarism in Patients with Traumatic Brain Injury.

    Science.gov (United States)

    Silva, Paula P B; Bhatnagar, Saurabha; Herman, Seth D; Zafonte, Ross; Klibanski, Anne; Miller, Karen K; Tritos, Nicholas A

    2015-11-15

    Hypopituitarism may often occur in association with traumatic brain injury (TBI). Identification of reliable predictors of pituitary dysfunction is of importance in order to establish a rational testing approach. We searched the records of patients with TBI, who underwent neuroendocrine evaluation in our institution between 2007 and 2013. One hundred sixty-six adults (70% men) with TBI (median age: 41.6 years; range: 18-76) were evaluated at a median interval of 40.4 months (0.2-430.4).Of these, 31% had ≥1 pituitary deficiency, including 29% of patients with mild TBI and 35% with moderate/severe TBI. Growth hormone deficiency was the most common deficiency (21%); when body mass index (BMI)-dependent cutpoints were used, this was reduced to 15%. Central hypoadrenalism occurred in10%, who were more likely to have suffered a motor vehicle accident (MVA, p = 0.04), experienced post-traumatic seizures (p = 0.04), demonstrated any intracranial hemorrhage (p = 0.05), petechial brain hemorrhages (p = 0.017), or focal cortical parenchymal contusions (p = 0.02). Central hypothyroidism occurred in 8% and central hypogonadism in 12%; the latter subgroup had higher BMI (p = 0.03), were less likely to be working after TBI (p = 0.002), and had lower Global Assessment of Functioning (GAF) scores (p = 0.03). Central diabetes insipidus (DI) occurred in 6%, who were more likely to have experienced MVA (p hypopituitarism.

  20. Effects of a Self-Monitoring Intervention on Children with Traumatic Brain Injury

    Science.gov (United States)

    Davies, Susan C.; Jones, Kevin M.; Rafoth, Mary A.

    2010-01-01

    The purpose of this study was to examine the effects of a self-monitoring intervention on teachers' direct behavior ratings of 3 students with traumatic brain injury. The authors used a multiple-baseline-across-participants design to evaluate the effect of the strategy on each child's classwork and classroom behavior. The self-monitoring strategy…

  1. Neuro emotional technique effects on brain physiology in cancer patients with traumatic stress symptoms: preliminary findings.

    Science.gov (United States)

    Monti, Daniel A; Tobia, Anna; Stoner, Marie; Wintering, Nancy; Matthews, Michael; He, Xiao-Song; Doucet, Gaelle; Chervoneva, Inna; Tracy, Joseph I; Newberg, Andrew B

    2017-08-01

    The purpose of this study was to characterize the neurophysiological and clinical effects that may result from the neuro emotional technique (NET) in patients with traumatic stress symptoms associated with a cancer-related event. We hypothesized that self-regulatory processing of traumatic memories would be observable as physiological changes in key brain areas after undergoing the NET intervention and that these changes would be associated with improvement of traumatic stress symptoms. We enrolled 23 participants with a prior cancer diagnosis who expressed a distressing cancer-related memory that was associated with traumatic stress symptoms of at least 6 months in duration. Participants were randomized to either the NET intervention or a waitlist control condition. To evaluate the primary outcome of neurophysiological effects, all participants received functional magnetic resonance imaging (fMRI) during the auditory presentation of both a neutral stimulus and a description of the specific traumatic event. Pre/post-comparisons were performed between the traumatic and neutral condition, within and between groups. Psychological measures included the Impact of Event Scale (IES), State Trait Anxiety Index (STAI), Brief Symptom Inventory (BSI)-18, and Posttraumatic Cognitions Inventory (PTCI). The initial fMRI scans in both groups showed significant increases in the bilateral parahippocampus and brainstem. After NET, reactivity in the parahippocampus, brainstem, anterior cingulate, and insula was significantly decreased during the traumatic stimulus. Likewise, participants receiving the NET intervention had significant reductions (p stress as measured by the IES and PTCI. This study is an initial step towards understanding mechanistic features of the NET intervention. Specifically, brain regions involved with traumatic memories and distress such as the brainstem, insula, anterior cingulate gyrus, and parahippocampus had significantly reduced activity after the NET

  2. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  3. Mild Traumatic Brain Injury: Lessons Learned from Clinical, Sports, and Combat Concussions

    Directory of Open Access Journals (Sweden)

    Judy C. Kelly

    2012-01-01

    Full Text Available Over the past forty years, a tremendous amount of information has been gained on the mechanisms and consequences of mild traumatic brain injuries. Using sports as a laboratory to study this phenomenon, a natural recovery curve emerged, along with standards for managing concussions and returning athletes back to play. Although advances have been made in this area, investigation into recovery and return to play continues. With the increase in combat-related traumatic brain injuries in the military setting, lessons learned from sports concussion research are being applied by the Department of Defense to the assessment of blast concussions and return to duty decision making. Concussion management and treatment for military personnel can be complicated by additional combat related stressors not present in the civilian environment. Cognitive behavioral therapy is one of the interventions that has been successful in treating symptoms of postconcussion syndrome. While we are beginning to have an understanding of the impact of multiple concussions and subconcussive blows in the sports world, much is still unknown about the impact of multiple blast injuries.

  4. Traumatic brain injury in children in Denmark: A national 15-year study

    International Nuclear Information System (INIS)

    Engberg, Aase; Teasdale, Thomas W.

    1998-01-01

    Demographic trends are reported concerning three types of traumatic brain injury (concussions, cranial fractures, and intracranial contusions/ haemorrhages) among children in Denmark of ages up to and including 14 years, for a fifteen year period from 1979 through 1993. The data were derived from a national computer-based hospitalization register and include 49,594 children, of whom 60% were boys and 89% had suffered a concussion. Virtually all injuries were the result of accidents. A major finding was that there has been a general decline in the incidence of traumatic brain injuries, especially for boys from 5 to 14 years old, suggesting a degree of success in preventive measures, particularly regarding road safety. The incidence of fatal cases of intracranial contusions/haemorrhages approximately halved over the 15 year period. However, as a proportion of all diagnosed cases, mortality from intracranial contusions/haemorrhages remained fairly constant at about 22%, perhaps because there have been no markedly successful innovations in acute care. Among children surviving a intracranial contusions/haemorrhages, rather considerable numbers were found to have been awarded disability pension at ages under 30

  5. The Cognitive Basis for Sentence Planning Difficulties in Discourse after Traumatic Brain Injury

    Science.gov (United States)

    Peach, Richard K.

    2013-01-01

    Purpose: Analyses of language production of individuals with traumatic brain injury (TBI) place increasing emphasis on microlinguistic (i.e., within-sentence) patterns. It is unknown whether the observed problems involve implementation of well-formed sentence frames or represent a fundamental linguistic disturbance in computing sentence structure.…

  6. Traumatic Brain Injury and the Transition to Postsecondary Education: Recommendations for Student Success

    Science.gov (United States)

    Davies, Susan C.; Trunk, Daniel J.; Kramer, Michaela M.

    2014-01-01

    For many students with traumatic brain injuries (TBIs), postsecondary education presents a new set of cognitive, academic, social, and emotional challenges. Students with TBI warranted services and accommodations through an Individualized Education Program or 504 plan may find supports and services not readily accessible at the postsecondary…

  7. Additive Manufacturing of Cranial Simulants for Blast Induced Traumatic Brain Injury

    Science.gov (United States)

    2017-08-28

    REPORT TYPE 08/28/2017 Poster 4. TITLE AND SUBTITLE Additive Manufacturing of Cranial Sin1ulants for Blast Induced Traumatic Brain Injut’y 6... manufacturing techniques: Fused deposition modeling: ca sling molds Casting: white and gray matter Polymerization of injected solution...Sandia National Laboratories Conclusion MICHIGAN STAT[ l- I’ll I \\ I R <, I r \\ Additive manufacturrng provrdes a cost effective fabrration

  8. Technical knockout: when is traumatic brain injury “just” a concussion?

    LENUS (Irish Health Repository)

    O’Halloran, P J

    2016-05-01

    While cricket is an unlikely source of concussion, the fierce contagion of media coverage surrounding Rugby and Gaelic Football has led to difficulties in deciphering real from perceived risk. The surge in public interest has forced this young science to mature quickly. The principles of managing head injury have not changed, but there is now a greater awareness that concussion is a traumatic brain injury (TBI).\\r\

  9. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  10. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  11. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  12. Severe traumatic brain injury in children: an evidence-based review of emergency department management [digest].

    Science.gov (United States)

    Morrissey, Kirsten; Fairbrother, Hilary; Vazquez, Michelle N

    2016-10-22

    More than 1.7 million traumatic brain injuries occur in adults and children each year in the United States, with approximately 30% occurring in children aged digest of Pediatric Emergency Medicine Practice].

  13. Revised and updated recommendations for the establishment of primary stroke centers: a summary statement from the brain attack coalition.

    Science.gov (United States)

    Alberts, Mark J; Latchaw, Richard E; Jagoda, Andy; Wechsler, Lawrence R; Crocco, Todd; George, Mary G; Connolly, E S; Mancini, Barbara; Prudhomme, Stephen; Gress, Daryl; Jensen, Mary E; Bass, Robert; Ruff, Robert; Foell, Kathy; Armonda, Rocco A; Emr, Marian; Warren, Margo; Baranski, Jim; Walker, Michael D

    2011-09-01

    The formation and certification of Primary Stroke Centers has progressed rapidly since the Brain Attack Coalition's original recommendations in 2000. The purpose of this article is to revise and update our recommendations for Primary Stroke Centers to reflect the latest data and experience. We conducted a literature review using MEDLINE and PubMed from March 2000 to January 2011. The review focused on studies that were relevant for acute stroke diagnosis, treatment, and care. Original references as well as meta-analyses and other care guidelines were also reviewed and included if found to be valid and relevant. Levels of evidence were added to reflect current guideline development practices. Based on the literature review and experience at Primary Stroke Centers, the importance of some elements has been further strengthened, and several new areas have been added. These include (1) the importance of acute stroke teams; (2) the importance of Stroke Units with telemetry monitoring; (3) performance of brain imaging with MRI and diffusion-weighted sequences; (4) assessment of cerebral vasculature with MR angiography or CT angiography; (5) cardiac imaging; (6) early initiation of rehabilitation therapies; and (7) certification by an independent body, including a site visit and disease performance measures. Based on the evidence, several elements of Primary Stroke Centers are particularly important for improving the care of patients with an acute stroke. Additional elements focus on imaging of the brain, the cerebral vasculature, and the heart. These new elements may improve the care and outcomes for patients with stroke cared for at a Primary Stroke Center.

  14. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jace B. King

    2016-01-01

    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  15. Attention and driving in traumatic brain injury : A question of coping with time-pressure

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK; Tant, MLM; van Zomeren, AH

    Background: Diffuse and focal traumatic brain injury (TBI) can result in perceptual, cognitive, and motor dysfunction possibly leading to activity limitations in driving. Characteristic dysfunctions for severe diffuse TBI are confronted with function requirements derived from the hierarchical task

  16. Traumatic Brain Injury in Domestic Violence Victims: A Retrospective Study at the Barrow Neurological Institute.

    Science.gov (United States)

    Zieman, Glynnis; Bridwell, Ashley; Cárdenas, Javier F

    2017-02-15

    Domestic violence is a national health crisis, which affects people of all ages, races, and socioeconomic classes. Traumatic brain injury is common in victims because of the high frequency of head and neck injuries inflicted through abuse. These recurrent injuries can lead to chronic symptoms with high morbidity. We conducted a retrospective chart review of 115 patients with a history of head trauma as a result of domestic violence. All patients were seen in a subspecialty traumatic brain injury clinic, at which time information regarding their histories and self-reported symptoms were recorded. In total, 109 females and 6 males were included in our study, with an age range of 4-68 years. Overall, 88% reported more than one injury and 81% reported a history of loss of consciousness associated with their injuries. Only 21% sought medical help at the time of injury. Whereas 85% had a history of abuse in adulthood, 22% had experienced abuse in both childhood and adulthood, and 60% of the patients abused as children went on to be abused as adults. Headache was the most common chief complaint, but on a self-reported symptom severity scale, behavioral symptoms were the most severe. Psychiatric disease was present in 84% of patients. Traumatic brain injury is a frequent sequela of domestic violence, from which many victims sustain multiple injuries without seeking medical care. Brain injuries are often sustained over many years and lead to lasting physical, behavioral, and cognitive consequences. Better understanding of these injuries will lead to improved care for this population.

  17. [Functional neuroimaging of the brain structures associated with language in healthy individuals and patients with post-stroke aphasia].

    Science.gov (United States)

    Alferova, V V; Mayorova, L A; Ivanova, E G; Guekht, A B; Shklovskij, V M

    2017-01-01

    The introduction of non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI), in the practice of scientific and clinical research can increase our knowledge about the organization of cognitive processes, including language, in normal and reorganization of these cognitive functions in post-stroke aphasia. The article discusses the results of fMRI studies of functional organization of the cortex of a healthy adult's brain in the processing of various voice information as well as the main types of speech reorganization after post-stroke aphasia in different stroke periods. The concepts of 'effective' and 'ineffective' brain plasticity in post-stroke aphasia were considered. It was concluded that there was an urgent need for further comprehensive studies, including neuropsychological testing and several complementary methods of functional neuroimaging, to develop a phased treatment plan and neurorehabilitation of patients with post-stroke aphasia.

  18. Medical aspects of pediatric rehabilitation after moderate to severe traumatic brain injury.

    Science.gov (United States)

    Cantore, Lisa; Norwood, Kenneth; Patrick, Peter

    2012-01-01

    Recovery from severe traumatic brain injury (TBI) is prolonged, complicated and challenging. Medical rehabilitation is the bridge from acute medical care and stabilization to community reintegration. The process of caring for the recovering brain introduces unknown challenges of neural plasticity with demands to restore and to also move the child and family back to the developmental trajectory they once knew. While the ongoing focus is to maintain and advance medical stability, co- morbid conditions are addressed, and a plan for ongoing health is established. While no one manuscript can cover all of the medical aspects, this article will present in a "systems review" manner the most challenging and demanding medical conditions that children may confront following severe brain injury.

  19. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  20. The role and dynamics of β-catenin in precondition induced neuroprotection after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Gali Umschweif

    Full Text Available Preconditioning via heat acclimation (34°C 30 d results in neuroprotection from traumatic brain injury due to constitutive as well as dynamic changes triggered by the trauma. Among these changes is Akt phosphorylation, which decreases apoptosis and induces HIF1α. In the present study we investigated the Akt downstream GSK3β/β-catenin pathway and focused on post injury alternations of β catenin and its impact on the cellular response in preconditioned heat acclimated mice. We found that the reduction in motor disability is accompanied with attenuation of depressive like behavior in heat acclimated mice that correlates with the GSK3β phosphorylation state. Concomitantly, a robust β catenin phosphorylation is not followed by its degradation, or by reduced nuclear accumulation. Enhanced tyrosine phosphorylation of β catenin in the injured area weakens the β catenin-N cadherin complex. Membrane β catenin is transiently reduced in heat acclimated mice and its recovery 7 days post TBI is accompanied by induction of the synaptic marker synaptophysin. We suggest a set of cellular events following traumatic brain injury in heat acclimated mice that causes β catenin to participate in cell-cell adhesion alternations rather than in Wnt signaling. These events may contribute to synaptogenesis and the improved motor and cognitive abilities seen heat acclimated mice after traumatic brain injury.

  1. SPET brain perfusion imaging in mild traumatic brain injury without loss of consciousness and normal computed tomography.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Singh, M; el-Zeftawy, H; Atay, S; Kumar, M; Naddaf, S; Aleksic, S; Abdel-Dayem, H M

    1999-06-01

    We present SPET brain perfusion findings in 32 patients who suffered mild traumatic brain injury without loss of consciousness and normal computed tomography. None of the patients had previous traumatic brain injury, CVA, HIV, psychiatric disorders or a history of alcohol or drug abuse. Their ages ranged from 11 to 61 years (mean = 42). The study was performed in 20 patients (62%) within 3 months of the date of injury and in 12 (38%) patients more than 3 months post-injury. Nineteen patients (60%) were involved in a motor vehicle accident, 10 patients (31%) sustained a fall and three patients (9%) received a blow to the head. The most common complaints were headaches in 26 patients (81%), memory deficits in 15 (47%), dizziness in 13 (41%) and sleep disorders in eight (25%). The studies were acquired approximately 2 h after an intravenous injection of 740 MBq (20.0 mCi) of 99Tcm-HMPAO. All images were acquired on a triple-headed gamma camera. The data were displayed on a 10-grade colour scale, with 2-pixel thickness (7.4 mm), and were reviewed blind to the patient's history of symptoms. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in the cortex or basal ganglia less than 70%, or less than 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. The results show that 13 (41%) had normal studies and 19 (59%) were abnormal (13 studies performed within 3 months of the date of injury and six studies performed more than 3 months post-injury). Analysis of the abnormal studies revealed that 17 showed 48 focal lesions and two showed diffuse supratentorial hypoperfusion (one from each of the early and delayed imaging groups). The 12 abnormal studies performed early had 37 focal lesions and averaged 3.1 lesions per patient, whereas there was a reduction to--an average of 2.2 lesions per patient in the five studies (total 11 lesions) performed more than 3 months post-injury. In the

  2. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia.

    Science.gov (United States)

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95% CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.

  3. NINDS Traumatic Brain Injury Information Page

    Science.gov (United States)

    ... Stroke Association 9707 East Easter Lane Suite B Centennial CO Centennial, CO 80112-3747 info@stroke.org http://www. ... Stroke Association 9707 East Easter Lane Suite B Centennial CO Centennial, CO 80112-3747 info@stroke.org ...

  4. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke

    Directory of Open Access Journals (Sweden)

    Hrvoje Brzica

    2017-03-01

    Full Text Available Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA. A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps and organic cation transporters (Octs. In addition, multidrug resistance proteins (Mrps are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.

  5. Electrical Bioimpedance Spectroscopy on Acute Unilateral Stroke Patients: Initial Observations regarding Differences between Sides

    Directory of Open Access Journals (Sweden)

    Fernando Seoane

    2015-01-01

    Full Text Available Purpose. Electrical Bioimpedance Cerebral Monitoring is assessment in real time of health of brain tissue through study of passive dielectric properties of brain. During the last two decades theory and technology have been developed in parallel with animal experiments aiming to confirm feasibility of using bioimpedance-based technology for prompt detection of brain damage. Here, for the first time, we show that electrical bioimpedance measurements for left and right hemispheres are significantly different in acute cases of unilateral stroke within 24 hours from onset. Methods. Electrical BIS measurements have been taken in healthy volunteers and patients suffering from acute stroke within 24 hours of onset. BIS measurements have been obtained using SFB7 bioimpedance spectrometer manufactured by Impedimed ltd. and 4-electrode method. Measurement electrodes, current, and voltage have been placed according to 10–20 EEG system obtaining mutual BIS measurements from 4 different channels situated in pairs symmetrically from the midsagittal line. Obtained BIS data has been analyzed, assessing for symmetries and differences regarding healthy control data. Results. 7 out of 10 patients for Side-2-Side comparisons and 8 out 10 for central/lateral comparison presented values outside the range defined by healthy control group. When combined only 1 of 10 patients exhibited values within the healthy range. Conclusions. If these initial observations are confirmed with more patients, we can foresee emerging of noninvasive monitoring technology for brain damage with the potential to lead to paradigm shift in treatment of brain stroke and traumatic brain damage.

  6. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  7. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    OpenAIRE

    Meierhans, Roman; B?chir, Markus; Ludwig, Silke; Sommerfeld, Jutta; Brandi, Giovanna; Haberth?r, Christoph; Stocker, Reto; Stover, John F

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 ?l/min, collecting samples at 60 minute intervals. Occult metabolic alteratio...

  8. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose beneath 1 mM in patients with severe traumatic brain injury.

    OpenAIRE

    Meierhans, R; Bechir, M; Ludwig, S; Sommerfeld, J; Brandi, G; Haberthur, C; Stocker, R; Stover, J F

    2010-01-01

    ABSTRACT: INTRODUCTION: The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS: In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 mul/ min, collecting samples at 60 minute intervals. Occult metab...

  9. Draft evidence report : traumatic brain injury and commercial motor vehicle driver safety (comprehensive review).

    Science.gov (United States)

    2009-03-30

    Purpose of this evidence report is to address several key questions posed by the Federal Motor Carrier Safety Administration : Key question 1: What is the impact of traumatic brain injury on crash risk/driving performance? Key question 2: What factor...

  10. 78 FR 27036 - Final Priority. National Institute on Disability and Rehabilitation Research-Traumatic Brain...

    Science.gov (United States)

    2013-05-09

    ... affect a sector of the economy, productivity, competition, jobs, the environment, public health or safety... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY: Office of Special Education and Rehabilitative Services, Department of Education. ACTION: Final priority...

  11. Interest of workplace support for returning to work after a traumatic brain injury: a retrospective study.

    Science.gov (United States)

    Bonneterre, V; Pérennou, D; Trovatello, V; Mignot, N; Segal, P; Balducci, F; Laloua, F; de Gaudemaris, R

    2013-12-01

    To analyse usefulness of the SPASE programme, a coordinated facility programme to assist traumatic brain injury (TBI) persons in returning to work and retaining their job in the ordinary work environment. A retrospective study including 100 subjects aged over 18 who had suffered traumatic brain injury (GOS 1 or 2). The criterion for return to work (RTW) success was the ability to return to the job he/she had before the accident or to a new professional activity. Factors associated with RTW success were at short-term (2-3 years): the presence of significant workplace support OR=15.1 [3.7-61.7], the presence of physical disabilities OR=0.32 [0.12-0.87] or serious traumatic brain injury OR=0.22 [0.07-0.66]. At medium-term (over 3 years) these factors were: significant workplace support OR=3.9 [1.3-11.3] and presence of mental illness OR=0.15 [0.03-0.7]. This study suggests that a case coordination vocational programme may facilitate the return and maintain to work of TBI persons. It reveals that the workplace support is a key factor for job retention in the medium-term. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  13. Humor, Rapport, and Uncomfortable Moments in Interactions with Adults with Traumatic Brain Injury

    Science.gov (United States)

    Kovarsky, Dana; Schiemer, Christine; Murray, Allison

    2011-01-01

    We examined uncomfortable moments that damaged rapport during group interactions between college students in training to become speech-language pathologists and adults with traumatic brain injury. The students worked as staff in a community-based program affiliated with a university training program that functioned as a recreational gathering…

  14. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat

    Science.gov (United States)

    Hanlon, Lauren A.; Huh, Jimmy W.

    2016-01-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  15. Thrombolysis in Stroke within 30 Minutes: Results of the Acute Brain Care Intervention Study

    NARCIS (Netherlands)

    Zinkstok, Sanne M.; Beenen, Ludo F.; Luitse, Jan S.; Majoie, Charles B.; Nederkoorn, Paul J.; Roos, Yvo B.

    2016-01-01

    Time is brain: benefits of intravenous thrombolysis (IVT) in ischemic stroke last for 4.5 hours but rapidly decrease as time progresses following symptom onset. The goal of the Acute Brain Care (ABC) intervention study was to reduce the door-to-needle time (DNT) to ≤30 minutes by optimizing

  16. Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury.

    Science.gov (United States)

    Frieler, Ryan A; Nadimpalli, Sameera; Boland, Lauren K; Xie, Angela; Kooistra, Laura J; Song, Jianrui; Chung, Yutein; Cho, Kae W; Lumeng, Carey N; Wang, Michael M; Mortensen, Richard M

    2015-10-22

    Immune cells have important roles during disease and are known to contribute to secondary, inflammation-induced injury after traumatic brain injury. To delineate the functional role of macrophages during traumatic brain injury, we depleted macrophages using transgenic CD11b-DTR mice and subjected them to controlled cortical impact. We found that macrophage depletion had no effect on lesion size assessed by T2-weighted MRI scans 28 days after injury. Macrophage depletion resulted in a robust increase in proinflammatory gene expression in both the ipsilateral and contralateral hemispheres after controlled cortical impact. Interestingly, this sizeable increase in inflammation did not affect lesion development. We also showed that macrophage depletion resulted in increased proinflammatory gene expression in the brain and kidney in the absence of injury. These data demonstrate that depletion of macrophages in CD11b-DTR mice can significantly modulate the inflammatory response during brain injury without affecting lesion formation. These data also reveal a potentially confounding inflammatory effect in CD11b-DTR mice that must be considered when interpreting the effects of macrophage depletion in disease models. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    Science.gov (United States)

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Mobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat

    Directory of Open Access Journals (Sweden)

    Mohsen Marzban

    2010-01-01

    Full Text Available Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF administration in rats for 6 weeks after traumatic brain injury (TBI. Methods: Adult male Wistar rats (n = 30 were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each were injected subcutaneously with recombinant human G-CSF. Vehicle group (n=10 received phosphate buffered saline (PBS and only Brdu intraperitoneally. Bromodeoxyuridine (BrdU was used for mitotic labeling. Experimental rats were injected intraperitoneally with BrdU. Rats were killed at 6th week after traumatic brain injury. Neurological functional evaluation of animals was performed before and after injury using neurological severity scores (NSS. Animals were sacrificed 42 days after TBI and brain sections were stained using Brdu immunohistochemistry. Results: Statistically significant improvement in functional outcome was observed in treatment groups when compared with control (p<0.01. This benefit was visible 7 days after TBI and persisted until 42 days (end of trial. Histological analysis showed that Brdu cell positive was more in the lesion boundary zone at treatment animal group than all injected animals. Discussion: We believe that G-CSF therapeutic protocol reported here represents an attractive strategy for the development of a clinically significant noninvasive traumatic brain injury therapy.

  19. Perspectives on creating clinically relevant blast models for mild traumatic brain injury and post traumatic stress disorder symptoms

    Directory of Open Access Journals (Sweden)

    Lisa eBrenner

    2012-03-01

    Full Text Available Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic, behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI and/or post traumatic stress disorder (PTSD. Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast TBI can be used to facilitate the development of clinically relevant blast models.

  20. Managing cognitive difficulties after traumatic brain injury: a review of online resources for families.

    Science.gov (United States)

    Poulin, Valérie; Dawson, Deirdre R; Bottari, Carolina; Verreault, Cynthia; Turcotte, Samantha; Jean, Alexandra

    2018-03-22

    To identify and critically appraise the content, readability, reliability and usability of websites providing information for managing cognitive difficulties in everyday life for the families of adults with moderate to severe traumatic brain injury. Systematic searches on the Internet for relevant websites were conducted using five search engines, and through consultation of the lists of resources published on websites of traumatic brain injury organizations. Two team members assessed eligibility of the websites. To be included, they had to provide information related to management of cognitive difficulties following moderate to severe traumatic brain injury, to be in English or French and available free of charge. Two reviewers evaluated each website according to: (1) its readability using Flesch-Kincaid Grade Level; (2) the quality of its content using a checklist of eight recommendations for managing memory, attention and executive function problems; (3) its usability (e.g., clear design) and reliability (e.g., currency of information) using the Minervation Validation Instrument for Health Care Web Sites. Of the 38 websites included, 10 provide specific tips for families that cover several domains of cognitive function, including memory, attention and executive function. The most frequent recommendations focused on the use of environmental supports for memory problems (n = 33 websites). The readability of information is below the recommended grade 7 for only nine of the websites. All sites show acceptable usability, but their quality is variable in terms of reliability of the information. This review provides useful information for selecting online resources to educate families about the management of cognitive difficulties following moderate to severe traumatic brain injury, as a complement to information and training provided by the rehabilitation team. Implications for rehabilitation This review describes standardized criteria for the evaluation of the