WorldWideScience

Sample records for stroke brain injury

  1. Exacerbation of Brain Injury by Post-Stroke Exercise Is Contingent Upon Exercise Initiation Timing

    Directory of Open Access Journals (Sweden)

    Fengwu Li

    2017-10-01

    Full Text Available Accumulating evidence has demonstrated that post-stroke physical rehabilitation may reduce morbidity. The effectiveness of post-stroke exercise, however, appears to be contingent upon exercise initiation. This study assessed the hypothesis that very early exercise exacerbates brain injury, induces reactive oxygen species (ROS generation, and promotes energy failure. A total of 230 adult male Sprague-Dawley rats were subjected to middle cerebral artery (MCA occlusion for 2 h, and randomized into eight groups, including two sham injury control groups, three non-exercise and three exercise groups. Exercise was initiated after 6 h, 24 h and 3 days of reperfusion. Twenty-four hours after completion of exercise (and at corresponding time points in non-exercise controls, infarct volumes and apoptotic cell death were examined. Early brain oxidative metabolism was quantified by examining ROS, ATP and NADH levels 0.5 h after completion of exercise. Furthermore, protein expressions of angiogenic growth factors were measured in order to determine whether post-stroke angiogenesis played a role in rehabilitation. As expected, ischemic stroke resulted in brain infarction, apoptotic cell death and ROS generation, and diminished NADH and ATP production. Infarct volumes and apoptotic cell death were enhanced (p < 0.05 by exercise that was initiated after 6 h of reperfusion, but decreased by late exercise (24 h, 3 days. This exacerbated brain injury at 6 h was associated with increased ROS levels (p < 0.05, and decreased (p < 0.05 NADH and ATP levels. In conclusion, very early exercise aggravated brain damage, and early exercise-induced energy failure with ROS generation may underlie the exacerbation of brain injury. These results shed light on the manner in which exercise initiation timing may affect post-stroke rehabilitation.

  2. Environmental factors item development for persons with stroke, traumatic brain injury, and spinal cord injury.

    Science.gov (United States)

    Heinemann, Allen W; Magasi, Susan; Hammel, Joy; Carlozzi, Noelle E; Garcia, Sofia F; Hahn, Elizabeth A; Lai, Jin-Shei; Tulsky, David; Gray, David B; Hollingsworth, Holly; Jerousek, Sara

    2015-04-01

    To describe methods used in operationalizing environmental factors; to describe the results of a research project to develop measures of environmental factors that affect participation; and to define an initial item set of facilitators and barriers to participation after stroke, traumatic brain injury, and spinal cord injury. Instrument development included an extensive literature review, item classification and selection, item writing, and cognitive testing following the approach of the Patient-Reported Outcomes Measurement Information System. Community. Content area and outcome measurement experts (n=10) contributed to instrument development; individuals (n=200) with the target conditions participated in focus groups and in cognitive testing (n=15). None. Environmental factor items were categorized in 6 domains: assistive technology; built and natural environment; social environment; services, systems, and policies; access to information and technology; and economic quality of life. We binned 2273 items across the 6 domains, winnowed this pool to 291 items for cognitive testing, and recommended 274 items for pilot data collection. Five of the 6 domains correspond closely to the International Classification of Functioning, Disability and Health taxonomy of environmental factors; the sixth domain, economic quality of life, reflects an important construct that reflects financial resources that affect participation. Testing with a new and larger sample is underway to evaluate reliability, validity, and sensitivity. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Erythropoietin reduces brain injury after intracerebral hemorrhagic stroke in rats.

    Science.gov (United States)

    Yu, Zhen; Tang, Ling; Chen, Lifen; Li, Jinfang; Wu, Wanfu; Hu, Changlin

    2013-11-01

    Erythropoietin (EPO) has been shown to be neuroprotective in various models of neuronal injury. The aim of the present study was to investigate the beneficial effect of recombinant human EPO (rhEPO) following intracerebral hemorrhage (ICH) and the underlying molecular and cellular mechanisms. ICH was induced using autologous blood injection in adult rats. rhEPO (5000 IU/kg) or vehicle was administered to rats with ICH 2 h following surgery and every 24 h for 1 or 3 days. To study the involvement of the PI3K signaling pathway in the rhEPO‑mediated effect, the PI3K inhibitor wortmannin (15 µg/kg), was intravenously administered to rats with ICH 90 min prior to rhEPO treatment. Brain edema was measured 3 days following ICH and behavioral outcomes were measured at 1, 7, 14, 21 and 28 days following ICH using the modified neurological severity score (mNSS) and the corner turn test. Proinflammatory cytokines, including tumor necrosis factor (TNF)‑α, interleukin (IL)-1β and IL-6, in the ipsilateral striatum were analyzed using an enzyme-linked immunosorbent assay 24 h following ICH. Neuronal apoptosis in the perihematomal area was determined by NeuN and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) double-staining. The results showed that rhEPO treatment reversed ICH, increased brain water content, upregulated proinflammatory cytokines, neuronal loss and apoptosis in the perihematomal area and rescued behavioral deficits in injured rats. Inhibiting the PI3K pathway with wortmannin abolished the rhEPO‑mediated neuroprotective effects. Moreover, western blot analysis showed that rhEPO induced the upregulation of Akt phosphorylation and downregulation of glycogen synthase kinase (GSK)‑3β phosphorylation, which were reversed by pretreatment with wortmannin, indicating the involvement of PI3K signaling in rhEPO-mediated anti-apoptotic and anti-inflammatory effects following ICH. In conclusion, these results suggested that rhEPO may exert its

  4. Characteristics of Dysphagia in Severe Traumatic Brain Injury Patients: A Comparison With Stroke Patients.

    Science.gov (United States)

    Lee, Won Kyung; Yeom, Jiwoon; Lee, Woo Hyung; Seo, Han Gil; Oh, Byung-Mo; Han, Tai Ryoon

    2016-06-01

    To compare the swallowing characteristics of dysphagic patients with traumatic brain injury (TBI) with those of dysphagic stroke patients. Forty-one patients with TBI were selected from medical records (between December 2004 to March 2013) and matched to patients with stroke (n=41) based on age, sex, and disease duration. Patients' swallowing characteristics were analyzed retrospectively using a videofluoroscopic swallowing study (VFSS) and compared between both groups. Following thorough review of medical records, patients who had a history of diseases that could affect swallowing function at the time of the study were excluded. Dysphagia characteristics and severity were evaluated using the American Speech-Language-Hearing Association National Outcome Measurement System swallowing scale, clinical dysphagia scale, and the videofluoroscopic dysphagia scale. There was a significant difference in radiological lesion location (p=0.024) between the two groups. The most common VFSS finding was aspiration or penetration, followed by decreased laryngeal elevation and reduced epiglottis inversion. Swallowing function, VFSS findings, or quantified dysphagia severity showed no significant differences between the groups. In a subgroup analysis of TBI patients, the incidence of tube feeding was higher in patients with surgical intervention than in those without (p=0.011). The swallowing characteristics of dysphagic patients after TBI were comparable to those of dysphagic stroke patients. Common VFSS findings comprised aspiration or penetration, decreased laryngeal elevation, and reduced epiglottis inversion. Patients who underwent surgical intervention after TBI were at high risk of tube feeding requirement.

  5. Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations With Subclinical Vascular Brain Injury and Incident Stroke

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Preis, Sarah R; Beiser, Alexa

    2015-01-01

    BACKGROUND AND PURPOSE: Growth differentiation factor-15 (GDF-15) and soluble (s)ST2 are markers of cardiac and vascular stress. We investigated the associations between circulating concentrations of these biomarkers and incident stroke and subclinical vascular brain injury in a sample from the F...

  6. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    Science.gov (United States)

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction. © 2013 Published by Elsevier B.V.

  7. Interventions for dysarthria due to stroke and other adult-acquired, non-progressive brain injury.

    Science.gov (United States)

    Mitchell, Claire; Bowen, Audrey; Tyson, Sarah; Butterfint, Zoe; Conroy, Paul

    2017-01-25

    Dysarthria is an acquired speech disorder following neurological injury that reduces intelligibility of speech due to weak, imprecise, slow and/or unco-ordinated muscle control. The impact of dysarthria goes beyond communication and affects psychosocial functioning. This is an update of a review previously published in 2005. The scope has been broadened to include additional interventions, and the title amended accordingly. To assess the effects of interventions to improve dysarthric speech following stroke and other non-progressive adult-acquired brain injury such as trauma, infection, tumour and surgery. We searched the Cochrane Stroke Group Trials Register (May 2016), CENTRAL (Cochrane Library 2016, Issue 4), MEDLINE, Embase, and CINAHL on 6 May 2016. We also searched Linguistics and Language Behavioral Abstracts (LLBA) (1976 to November 2016) and PsycINFO (1800 to September 2016). To identify further published, unpublished and ongoing trials, we searched major trials registers: WHO ICTRP, the ISRCTN registry, and ClinicalTrials.gov. We also handsearched the reference lists of relevant articles and contacted academic institutions and other researchers regarding other published, unpublished or ongoing trials. We did not impose any language restrictions. We selected randomised controlled trials (RCTs) comparing dysarthria interventions with 1) no intervention, 2) another intervention for dysarthria (this intervention may differ in methodology, timing of delivery, duration, frequency or theory), or 3) an attention control. Three review authors selected trials for inclusion, extracted data, and assessed risk of bias. We attempted to contact study authors for clarification and missing data as required. We calculated standardised mean difference (SMD) and 95% confidence interval (CI), using a random-effects model, and performed sensitivity analyses to assess the influence of methodological quality. We planned to conduct subgroup analyses for underlying clinical

  8. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin

    2011-01-01

    to suggest that CSD is involved in the mechanism of migraine, stroke, subarachnoid hemorrhage and traumatic brain injury. The implications of these findings are widespread and suggest that intrinsic brain mechanisms have the potential to worsen the outcome of cerebrovascular episodes or brain trauma...... as a pathophysiological mechanism for this group of acute neurological disorders. The findings have implications for monitoring and treatment of patients with acute brain disorders in the intensive care unit. Drawing on the large body of experimental findings from animal studies of CSD obtained during decades we suggest...... treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves....

  9. Associations of Circulating GDF-15 and ST2 concentrations with Subclinical Vascular Brain Injury and Incident Stroke

    Science.gov (United States)

    Andersson, Charlotte; Preis, Sarah R.; Beiser, Alexa; DeCarli, Charles; Wollert, Kai C.; Wang, Thomas J; Januzzi, James L.; Vasan, Ramachandran S; Seshadri, Sudha

    2015-01-01

    Background and Purpose Growth differentiation factor-15 (GDF-15) and soluble (s)ST2 are markers of cardiac and vascular stress. We investigated the associations between circulating concentrations of these biomarkers and incident stroke and subclinical vascular brain injury in a sample from the Framingham Offspring cohort. Methods We followed 3374 stroke- and dementia-free individuals (mean age 59.0±9.7 years, 53% women) attending the Framingham Offspring 6th examination cycle 11.8±3.0 years for incident stroke. A subsample of 2463 individuals underwent brain magnetic resonance imaging and neuropsychological testing approximately 4.0±1.7 years after the 6th examination. Results After adjustment for traditional cardiovascular risk factors, B-type natriuretic peptide, high-sensitivity C-reactive protein, and urine albumin levels, higher stress biomarker levels were associated cross-sectionally with lower brain volumes (βs for intracranial volume comparing 4rth [Q4] vs. 1st biomarker [Q1] quartiles −0.71% for GDF-15, p=0.002, and 0.47% for sST2, p=0.02) and worse performance on the visual reproduction test (βs for Q4 vs. Q1=−0.62 for GDF-15, p=0.009, and −0.40 for sST2, p=0.04). Higher GDF-15 concentrations were also associated with greater log-transformed white-matter hyperintensity volumes (β for Q4 vs. Q1=0.19, p=0.01). Prospectively, a total of 203 (6%) individuals developed incident stroke/transient ischemic attack (TIA) during follow-up. After multivariable adjustment, sST2 remained significantly associated with stroke/TIA, hazard ratio for Q4 vs. Q1 of 1.76, 95% confidence interval 1.06–2.92, p=0.03. Conclusions Circulating GDF-15 and sST2 are associated with subclinical brain injury and cognitive impairment. Higher sST2 concentrations are also associated with incident stroke, suggesting potential links between cardiac stress biomarkers and brain injury. PMID:26219649

  10. Stroke injury, cognitive impairment and vascular dementia☆

    Science.gov (United States)

    Kalaria, Raj N.; Akinyemi, Rufus; Ihara, Masafumi

    2016-01-01

    The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25–30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood–brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700

  11. Near-infrared spectroscopy (NIRS) as a diagnostic tool in patients with suspected stroke or traumatic brain injury

    Science.gov (United States)

    Goldberg, Sonja; Lott, Carsten; Ostermeyer, M.; Hennes, Hans-Juergen

    2001-10-01

    Near-Infrared Spectroscopy (NIRS) as a diagnostic tool in patients with suspected stroke or brain injury S. Goldberg, C. Lott, M. Ostermeyer, H.-J. Hennes Absorption of Near-Infrared (NIR) light in the brain is mainly caused by hemoglobin. Superficial intracranial hematoma with a higher concentration of hemoglobin causes a higher absorption in NIRS. The existence of hemorrhage can be demonstrated by the difference of optical density, comparing identical measuring points at both hemispheres of the brain: absorption of NIR light is greater at the side of the hemorrhage, causing less reflection in NIRS. In a prospective, blinded study, 100 patients who were scheduled for CCT-scan for brain injury or symptoms of stroke have been measured by NIRS. The measurement results were proved by the CCT-diagnosis. A sensitivity of the NIR measurement of 65% and a specificity of 87% was achieved including all patients with any pathology, whereas the subgroup of 58 patients with suspected superficial hematoma and without other pathology showed pathologic findings by NIRS in all of 16 patients indicating superficial bleeding by CCT, pathology could be excluded by NIRS and CCT in 41 patients, one false positive and no false negative result. The results (sensitivity 98%, specificity 100%) support the hypothesis that NIRS is a reliable device for the detection of superficial intracranial hematoma.

  12. Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration

    Directory of Open Access Journals (Sweden)

    Olena Y Glushakova

    2017-01-01

    Full Text Available Acute brain injuries, including ischemic and hemorrhagic stroke, as well as traumatic brain injury (TBI, are major worldwide health concerns with very limited options for effective diagnosis and treatment. Stroke and TBI pose an increased risk for the development of chronic neurodegenerative diseases, notably chronic traumatic encephalopathy, Alzheimer's disease, and Parkinson's disease. The existence of premorbid neurodegenerative diseases can exacerbate the severity and prognosis of acute brain injuries. Apoptosis involving caspase-3 is one of the most common mechanisms involved in the etiopathology of both acute and chronic neurological and neurodegenerative diseases, suggesting a relationship between these disorders. Over the past two decades, several clinical biomarkers of apoptosis have been identified in cerebrospinal fluid and peripheral blood following ischemic stroke, intracerebral and subarachnoid hemorrhage, and TBI. These biomarkers include selected caspases, notably caspase-3 and its specific cleavage products such as caspase-cleaved cytokeratin-18, caspase-cleaved tau, and a caspase-specific 120 kDa αII-spectrin breakdown product. The levels of these biomarkers might be a valuable tool for the identification of pathological pathways such as apoptosis and inflammation involved in injury progression, assessment of injury severity, and prediction of clinical outcomes. This review focuses on clinical studies involving biomarkers of caspase-3-mediated pathways, following stroke and TBI. The review further examines their prospective diagnostic utility, as well as clinical utility for improved personalized treatment of stroke and TBI patients and the development of prophylactic treatment chronic neurodegenerative disease.

  13. Non-pharmacological interventions for perceptual disorders following stroke and other adult-acquired, non-progressive brain injury.

    Science.gov (United States)

    Bowen, Audrey; Knapp, Peter; Gillespie, David; Nicolson, Donald J; Vail, Andy

    2011-04-13

    Stroke and other adult-acquired brain injury may impair perception leading to distress and increased dependence on others. Perceptual rehabilitation includes functional training, sensory stimulation, strategy training and task repetition. To examine the evidence for improvement in activities of daily living (ADL) six months post randomisation for active intervention versus placebo or no treatment. We searched the trials registers of the Cochrane Stroke Group and the Cochrane Infectious Diseases Group (May 2009) but not the Injuries Group, the Cochrane Central Register of Controlled Trials (The Cochrane Library 2009, Issue 3), MEDLINE (1950 to August 2009), EMBASE (1980 to August 2009), CINAHL (1982 to August 2009), PsycINFO (1974 to August 2009), REHABDATA and PsycBITE (May to June 2009). We also searched trials and research registers, handsearched journals, searched reference lists and contacted authors. Randomised controlled trials of adult stroke or acquired brain injury. Our definition of perception excluded visual field deficits, neglect/inattention and apraxia. One review author assessed titles, abstracts and keywords for eligibility. At least two review authors independently extracted data. We requested unclear or missing information from corresponding authors. We included six single-site trials in rehabilitation settings, involving 338 participants. Four trials included people with only stroke. All studies provided sensory stimulation, sometimes with another intervention. Sensory stimulation typically involved practising tasks that required visuo-perceptual processing with occupational therapist assistance. Repetition was never used and only one study included functional training. No trials provided data on longer term improvement in ADL scores. Only three trials provided any data suitable for analysis. Two of these trials compared active to placebo intervention. There was no evidence of a difference in ADL scores at the scheduled end of intervention: mean

  14. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    International Nuclear Information System (INIS)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M.; Liao, Hong; Pang, Tao

    2015-01-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  15. Improving Walking Capacity by Surgical Correction of Equinovarus Foot Deformity in Adult Patients with Stroke Or Traumatic Brain Injury: A Systematic Review

    NARCIS (Netherlands)

    Renzenbrink, G.J.; Buurke, J.H.; Nene, A.V.; Geurts, A.C.H.; Kwakkel, G.; Rietman, J.S.

    2012-01-01

    Objective: Equinovarus foot deformity following stroke or traumatic brain injury compromises walking capacity, interfering with activities of daily living. In soft-tissue surgery the imbalanced muscles responsible for the deviant position of the ankle and foot are lengthened, released and/or

  16. Synergistic Association of Valproate and Resveratrol Reduces Brain Injury in Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lara Faggi

    2018-01-01

    Full Text Available Histone deacetylation, together with altered acetylation of NF-κB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275, respectively, an activator of the AMP-activated kinase (AMPK-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs, synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD, valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL. Resveratrol and valproate restored the acetylation of histone H3 (K9/18, and they reduced the RelA(K310 acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18 acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO, the association of resveratrol 680 µg/kg and valproate 200 µg/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage.

  17. Traumatic Brain Injury

    Science.gov (United States)

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  18. Stroke and Cerebrovascular Diseases Registry

    Science.gov (United States)

    2017-09-11

    Stroke; Acute Stroke; Acute Brain Injury; Ischemic Stroke; Hemorrhagic Stroke; Transient Ischemic Attack; Subarachnoid Hemorrhage; Cerebral Ischemia; Cerebral Infarction; Cerebral Stroke; Venous Sinus Thrombosis, Cranial

  19. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis - a systematic review and meta-analysis.

    Science.gov (United States)

    Beez, Thomas; Steiger, Hans-Jakob; Etminan, Nima

    2017-12-07

    The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities. Randomized, controlled, double-blinded trials on aforementioned entities with 'death' as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients. In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85-1.02)], ICH [RR 0.92 (95% CI:0.82-1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68-1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00-1.11)] and TBI [RR 1.03 (95% CI:0.93-1.15)]. Additional analysis of "poor outcome" as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category "oxidative metabolism/stress" for aSAH with a risk ratio of 0.86 [95% CI: 0.73-1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis. Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms

  20. Motor rehabilitation after traumatic brain injury and stroke - Advances in assessment and therapy.

    Science.gov (United States)

    Platz, Thomas; Hesse, S.; Mauritz, K.-H.

    1999-01-01

    A long-term goal in motor rehabilitation is that treatment is not selected on the basis of 'schools of thought', but rather, based on knowledge about efficacy and effectiveness of specific interventions for specific situations (e.g. functional syndromes). Motor dysfunction after stroke or TBI can be caused by many different functional syndromes such as paresis, ataxia, deafferentaion, visuo-perceptual deficits, or apraxia. Examples are provided showing that theory-based analysis of motor behavior makes it possible to describe 'syndrome-specific motor deficits'. Its potential implications for motor rehabilitation are that our understanding of altered motor behavior as well as specific therapeutic approaches might be promoted. A methodological prerequisite for clinical trials in rehabilitation is knowledge about test properties of assessment tools in follow-up situations such as test-retest reliability and responsiveness to change. Test-retest reliability assesses whether a test can produce stable measures with test repetition, while sensitivity to change reflects whether a test detects changes that occur over time. Exemplifying these considerations, a reliability and validity study of a kinematic arm movement analysis is summarized. In terms of new therapeutic developments, two examples of clinical therapeutic studies are provided assessing the efficacy of specific inter-ventions for specific situations in arm and gait rehabilitation: the Arm Ability Training for high functioning hemiparetic stroke and TBI patients, and the treadmill training for non-ambulatory hemiparetic patients. In addition, a new technical development, a machine-controlled gait trainer ist introduced.

  1. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  2. Pretreatment with Shuanghe-Tang Extract Attenuates Postischemic Brain Injury and Edema in a Mouse Model of Stroke: An Analysis of Medicinal Herbs Listed in Dongui Bogam

    Directory of Open Access Journals (Sweden)

    Min Jae Kim

    2018-01-01

    Full Text Available Aim. Although stroke is among the leading causes of death and long-term disability, there are few effective treatments for limiting the severity of neurological sequelae. We evaluated the effects of 29 medicinal herbs listed in the Pung chapter of the 17th century Korean medical text Dongui Bogam on stroke symptoms in a mouse model of cerebral ischemia. Methods. Focal cerebral ischemia was induced via photothrombosis. Infarct volume, brain edema, and neurological deficits were evaluated. Immunofluorescence staining for tight junction proteins and aquaporin 4 (AQP4 was performed following ischemic injury. Results. Based on our initial findings, we examined the effects of two prescriptions in which the candidate herbs comprised more than 60% of the total formula: Shuanghe-tang and Zengsunsiwu-tang. Pretreatment with Shuanghe-tang significantly reduced infarct volume, decreased blood-brain barrier (BBB breakdown, attenuated edema, and improved neurological and motor functions in a dose-dependent manner (30, 100, and 300 mg/kg, while no such effects were observed in mice pretreated with Zengsunsiwu-tang. Immunohistochemical analysis revealed significant increases in ipsilateral occludin and zonula occludens 1 (ZO-1 expression in Shuanghe-tang-pretreated mice, as well as increased AQP4 immunofluorescence. Conclusions. These results indicate that Shuanghe-tang may protect against brain injury and promote recovery of neurological function following ischemia.

  3. Dysautonomia after pediatric brain injury.

    Science.gov (United States)

    Kirk, Katherine A; Shoykhet, Michael; Jeong, Jong H; Tyler-Kabara, Elizabeth C; Henderson, Maryanne J; Bell, Michael J; Fink, Ericka L

    2012-08-01

    Dysautonomia after brain injury is a diagnosis based on fever, tachypnea, hypertension, tachycardia, diaphoresis, and/or dystonia. It occurs in 8 to 33% of adults with brain injury and is associated with poor outcome. We hypothesized that children with brain injury with dysautonomia have worse outcomes and prolonged rehabilitation, and sought to determine the prevalence of dysautonomia in children and to characterize its clinical features. We developed a database of children (n = 249, 154 males, 95 females; mean [SD] age 11 years 10 months [5 y 7 mo]) with traumatic brain injury, cardiac arrest, stroke, infection of the central nervous system, or brain neoplasm admitted for rehabilitation to The Children's Institute of Pittsburgh between 2002 and 2009. Dysautonomia diagnosis, injury type, clinical signs, length of stay, and Functional Independence Measure for Children (WeeFIM) testing were extracted from medical records, and analysed for differences between groups with and without dysautonomia. Dysautonomia occurred in 13% of children with brain injury (95% confidence interval 9.3-18.0%), occurring in 10% after traumatic brain injury and 31% after cardiac arrest. The combination of hypertension, diaphoresis, and dystonia best predicted a diagnosis of dysautonomia (area under the curve = 0.92). Children with dysautonomia had longer stays, worse WeeFIM scores, and improved less on the score's motor component (all p ≤ 0.001). Dysautonomia is common in children with brain injury and is associated with prolonged rehabilitation. Prospective study and standardized diagnostic approaches are needed to maximize outcomes. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  4. Physical therapy activities in stroke, knee arthroplasty, and traumatic brain injury rehabilitation: their variation, similarities, and association with functional outcomes.

    Science.gov (United States)

    DeJong, Gerben; Hsieh, Ching-Hui; Putman, Koen; Smout, Randall J; Horn, Susan D; Tian, Wenqiang

    2011-12-01

    The mix of physical therapy services is thought to be different with different impairment groups. However, it is not clear how much variation there is across impairment groups. Furthermore, the extent to which the same physical therapy activities are associated with functional outcomes across different types of patients is unknown. The purposes of this study were: (1) to examine similarities and differences in the mix of physical therapy activities used in rehabilitation among patients from different impairment groups and (2) to examine whether the same physical therapy activities are associated with functional improvement across impairment groups. This was a prospective observational cohort study. The study was conducted in inpatient rehabilitation facilities. The participants were 433 patients with stroke, 429 patients with total knee arthroplasty (TKA), and 207 patients with traumatic brain injury (TBI). Measures used in this study included: (1) the Comprehensive Severity Index to measure the severity of each patient's medical condition, (2) the Functional Independence Measure (FIM) to measure function, and (3) point-of-care instruments to measure time spent in specific physical therapy activities. All 3 groups had similar admission motor FIM scores but varying cognitive FIM scores. Patients with TKA spent more time on exercise than the other 2 groups (average=31.7 versus 6.2 minutes per day). Patients with TKA received the most physical therapy (average=65.3 minutes per day), whereas the TBI group received the least physical therapy (average=38.3 minutes per day). Multivariate analysis showed that only 2 physical therapy activities (gait training and community mobility) were both positively associated with discharge motor FIM outcomes across all 3 groups. Three physical therapy activities (assessment time, bed mobility, and transfers) were negatively associated with discharge motor FIM outcome. The study focused primarily on physical therapy without

  5. Low-load coordination dynamics in athletes, physiotherapists, gymnasts, musicians and patients with spinal cord injury, after stroke, traumatic brain lesion and with cerebral palsy.

    Science.gov (United States)

    Schalow, G; Pääsuke, M

    2003-06-01

    Low-load coordination dynamics were measured in athletes, physiotherapists, gymnasts, musicians and patients after stroke, traumatic brain injury and spinal cord lesion during exercise on a special coordination dynamic therapy device to quantify differences in central nervous system (CNS) organization between healthy subjects and patients with CNS injury. In healthy humans coordination dynamics (arrhythmicity of turning) varied between 5.2 and 6.0 for forward and between 6.9 and 10.7 1/s for backward turning. The frequency of turning varied between 1.24 (athletes) and 1.49 Hz (musicians) for forward and between 1.11 and 1.25 Hz for backward turning. Apart from the poor rhythmicity of backward turning among physiotherapists, gymnasts and musicians, inter-group differences were small in comparison to intra-group variation. In patients with spinal cord lesion the coordination dynamics value was 8.3 for forward and 11.0 for backward turning. The frequencies for forward and backward turning were 1.20 and 1.20 Hz respectively. The values for coordination dynamics and frequency of turning thus did only slightly differ from those measured for healthy subjects. The patients after stroke, traumatic brain injury and cerebral palsy had much higher coordination dynamic values (20.4, 22.9 and 30 1/s respectively) and lower forward (0.85, 0.93, and 0.52 Hz) and backward turning frequencies (0.98, 1.06, 0.42 Hz), suggesting strongly pathologic CNS organization. Low-load coordination dynamics (20N) are thus useful to measure progress in CNS organization due to therapy in patients with CNS injury.

  6. Penetrating brain injury

    Directory of Open Access Journals (Sweden)

    Achyut Prashad Sharma

    2013-12-01

    Full Text Available In the past 20 years, there has been an increase in the incidence of head injuries caused by gunshot wounds.  Penetrating brain injury is a traumatic brain injury caused by high-velocity projectiles or low-velocity sharp objects. A wound in which the projectile breaches the cranium but does not exit is referred as a penetrating wound, and an injury in which the projectile passes entirely through the head, leaving both entrance  and exit wounds, is referred to as a perforating wound. A large number of these patients who survive their initial wounding will nevertheless expire shortly after admission to the hospital. Until the introduction of aseptic surgery in the last quarter of the nineteenth century, penetrating missile injuries of the brain were almost universally fatal. We have learned a great deal about gunshot wounds and their management from military experience gained during times of war, when a large number of firearm-related casualties are treated in a short period of time. Newly designed protective body armor has reduced the incidence of penetrating brain injuries significantly. Many of the victims in the vicinity of a cased explosive or an improvised explosive device will incur injuries by fragments. Blast injury is a common mechanism of traumatic brain injury among soldiers serving in war zone. Each war has had different lessons to teach. World War I for example, proved the efficacy of vigorous surgical intervention. During World War II, the importance of initial dural repair and antibiotic medication was first, debated, then acknowledged, and finally, universally accepted. The incidence of blast-induced traumatic brain injury has increased substantially in recent military conflicts. Blast-induced neurotrauma is the term given to describe an injury to the brain that occurs after exposure to a blast. Resent conflict has exposed military personnel to sophisticated explosive devices generating blast overpressure that results in

  7. Effects of the Treatment with ‍Nigella sativa Oil on Brain Injury and Edema in Experimental Model of Stroke in Rats

    Directory of Open Access Journals (Sweden)

    H Panahpour

    2015-09-01

    Full Text Available Background & objectives: Stroke is third leading cause of death and disability in the most of human communities. The use of herbs and medicinal plants in different countries is increasing. Today, herbal medicine is used as alternative or complementary therapies with a fewer side effects. Nigella sativa has a rich medical and religious history. Oxidative stress has important role in the pathophysiology of stroke. As Nigella sativa has antioxidant effects, its administration may produce a protective effect against complications of this disease. We examined the effects of the treatment with Nigella sativa oil on the cerebral infarction and edema. Methods: 48 Male Sprague-Dawley rats were divided into three groups, sham, control ischemic and Nigella sativa oil treated (2 ml/kg ischemic groups. Transient focal cerebral ischemia was induced by 90-min-long occlusion of the left middle cerebral artery followed by 24-h-long reperfusion. Neurological deficit score was evaluated at the end of the reperfusion period. Thereafter, the animals were randomly selected and used for two projects: (i Measurement of the infarct volumes and neurological outcome (ii investigation of ischemic brain edema formation using a wet/dry method. Results: Induction of cerebral ischemia in the control group produced considerable brain infarction in conjunction with impaired motor functions and severely brain edema. Treatment with Nigella sativa oil significantly reduced the infarct volume and improved the motor functions. The water content in the left (lesioned hemisphere was considerably elevated in the control ischemic group. Administration of the Nigella sativa oil significantly lowered the water content in the ischemic lesioned hemisphere. Conclusion: Treatment with Nigella sativa oil can noticeably decrease the ischemic brain injury, attenuate edema formation and improve motor disabilities.

  8. Neonatal ischemic brain injury: what every radiologist needs to know

    International Nuclear Information System (INIS)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E.

    2012-01-01

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  9. SECONDARY BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Ida Ayu Basmatika

    2013-03-01

    Full Text Available Secondary brain injury is a condision that occurs at some times after the primary impact and can be largely prevented and treated. Most brain injury ends with deadly consequences which is caused by secondary damage to the brain. Traumatic brain injured still represents the leading cause of morbidity and mortality in individuals under the age of 45 years in the world. The classification of secondary brain injured is divided into extracranial and intracranial causes. The cause of extracranial such as hipoxia, hypotensi, hyponatremia, hypertermia, hypoglycemia or hyperglycemia. The cause of intracranial such as extradural, subdural, intraserebral, intraventrikular, dan subarachnoid hemorrhage. Beside that secondary injury can also be caused by edema and infection. Post-traumatic cerebral injured is characterized by direct tissue damage, impaired regulation of cerebral blood flow (cerebral blood flow / CBF, and disruption of metabolism. Manifestations of secondary brain injured include increased intracranial pressure, ischemic brain damage, cerebral hypoxia and hypercarbi, as well as disruption of cerebral autoregulation. The first priority is to stabilize the patient's cervical spine injury, relieve and maintain airway, ensure adequate ventilation (breathing, and making venous access for fluid resuscitation pathways (circulation and assessing the level of awareness and disability. This steps is crucial in patients with head injured to prevent hypoxia and hypotension, which is the main cause of secondary brain injury.

  10. Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study.

    Science.gov (United States)

    Freivogel, Susanna; Mehrholz, Jan; Husak-Sotomayor, Tanya; Schmalohr, Dieter

    2008-07-01

    To evaluate the feasibility of using a newly developed electromechanical gait device (LokoHelp) for locomotion training in neurological patients with impaired walking ability with respect to training effects and patients' and therapists' efforts and discomfort. design: Case series. setting: A neurological rehabilitation centre for children, adolescents and young adults. subjects: Six patients with impaired walking function: two after stroke, two after spinal cord injury and two after brain injury. Twenty additional training sessions on a treadmill fitted with a newly developed electromechanical gait device and body weight support (BWS), performed over a study-period of 6 weeks. Patients' progress was assessed with the following instruments: the Functional Ambulation Category FAC (walking ability), the 10-metre walk test (gait velocity), the Motricity Index (lower limb strength), the Berg Balance Scale (postural capacity), the modified Ashworth Scale (spasticity) and the Rivermead Mobility Index (activity). After each therapy session, therapists completed a form, thereby indicating whether manual assistance was necessary and, if so, how much physical effort was expended and how much discomfort was experienced during the therapy session. The therapists also indicated on the form information about the patient's effort and discomfort. No severe adverse events were observed during the locomotion training with the LokoHelp device. Patients improved with regard to Functional Ambulation Category (FAC) (from mean 0.7, SD = 1.6, to mean 2.5, SD = 2.1, p = 0.048), Motricity Index (from mean 94 points, SD = 50, to mean 111, SD = 52, p = 0.086), Berg Balance Scale (BBS) (from mean 20 points, SD = 23 to mean 25, SD = 23, p = 0.168) and Rivermead Mobility Index (RMI) (from mean 5 points, SD = 4, to mean 7, SD = 5, p = 0.033). Therapists required a low level of effort to carry out the training and seldom experienced discomfort. Patients described their effort during training as

  11. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  12. Brain repair after stroke--a novel neurological model.

    Science.gov (United States)

    Small, Steven L; Buccino, Giovanni; Solodkin, Ana

    2013-12-01

    Following stroke, patients are commonly left with debilitating motor and speech impairments. This article reviews the state of the art in neurological repair for stroke and proposes a new model for the future. We suggest that stroke treatment--from the time of the ictus itself to living with the consequences--must be fundamentally neurological, from limiting the extent of injury at the outset, to repairing the consequent damage. Our model links brain and behaviour by targeting brain circuits, and we illustrate the model though action observation treatment, which aims to enhance brain network connectivity. The model is based on the assumptions that the mechanisms of neural repair inherently involve cellular and circuit plasticity, that brain plasticity is a synaptic phenomenon that is largely stimulus-dependent, and that brain repair required both physical and behavioural interventions that are tailored to reorganize specific brain circuits. We review current approaches to brain repair after stroke and present our new model, and discuss the biological foundations, rationales, and data to support our novel approach to upper-extremity and language rehabilitation. We believe that by enhancing plasticity at the level of brain network interactions, this neurological model for brain repair could ultimately lead to a cure for stroke.

  13. Structural MRI markers of brain aging early after ischemic stroke.

    Science.gov (United States)

    Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy

    2017-07-11

    To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  14. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    Science.gov (United States)

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.

  15. Interleukin-1 and acute brain injury

    Directory of Open Access Journals (Sweden)

    Katie N Murray

    2015-02-01

    Full Text Available Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review.

  16. [Automobile driving after a brain injury].

    Science.gov (United States)

    Mosberg, A; Østen, P E; Schanke, A K

    2000-11-20

    Little is known about driving fitness after brain damage. The present study describes 62 brain injured patients, 36 with cerebral vascular accidents, 15 with traumatic brain injuries, and 11 with other neurological diseases, mean age 50 years, who after thorough assessment had been found fit enough for driving a car. 15 months later they were sent a questionnaire about their driving behaviour and skills. A higher number of traffic incidents were found after brain injury, but the difference was not significant. Patients with traumatic brain injury had a significantly higher number of traffic incidents post-injury than patients with stroke. A majority of those involved in incidents were young males with traumatic brain injury, who had deficits in cognitive executive functions. Patients with traumatic brain injuries seem to need special attention when assessed for driving. Time to follow-up is too short for the results to be conclusive for the whole material of brain-injured patients. Further studies should be conducted.

  17. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    more common in males and young people. Keywords: Traumatic Brain Injury, Plasma Glucose, Cortisol, ... disability and death among young adults through a variety of mechanisms, and is now recognised as a .... such as ischaemic stroke, intracranial haemorrhage or traumatic brain injury and is associated with increased.

  18. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  19. Autoimmune Responses to Brain Following Stroke

    OpenAIRE

    Becker, Kyra

    2012-01-01

    This review provides a synthesis of the work done by our laboratory that demonstrates the presence of cellular immune responses directed towards brain antigens in animals following experimental stroke as well as in patients following ischemic stroke. These responses include both antigenspecific Th1(+) responses, which are associated with worse stroke outcome, and antigen-specific Treg responses, which are associated with better stroke outcome. The likelihood of developing a detrimental Th1(+)...

  20. Oral health and Brain Injury: Causal or Casual Relation?

    DEFF Research Database (Denmark)

    Pillai, Rajath; Iyer, Kiran; Spin-Neto, Rubens

    2018-01-01

    Background: To systematically review the current literature investigating the association between oral health and acquired brain injury. Methods: A structured search strategy was applied to PubMed, Embase, Web of Science, and CENTRAL electronic databases until March 2017 by two independent...... reviewers. The preferred reporting items for systematic review and meta-analysis guidelines were used for systematic review. Results: Even though the objective was to assess the association between oral health and acquired brain injury, eligible studies focused solely on different forms of stroke and stroke...... on the possible association between gingivitis and stroke. Patients with stroke generally had poorer oral hygiene practices and oral health. Dental prophylaxis and professional intervention reduced the incidence of stroke. Conclusions: Overall, oral health and stroke were related. Periodontitis and tooth loss...

  1. Neonatal ischemic brain injury: what every radiologist needs to know

    Energy Technology Data Exchange (ETDEWEB)

    Badve, Chaitra A.; Khanna, Paritosh C.; Ishak, Gisele E. [Seattle Children' s Hospital, University of Washington Medical Center, Department of Radiology, Seattle, WA (United States)

    2012-05-15

    We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested. (orig.)

  2. PERSONALITY CHANGES IN BRAIN INJURY

    Science.gov (United States)

    Garcia, Patricia Gracia; Mielke, Michelle M.; Rosenberg, Paul; Bergey, Alyssa; Rao, Vani

    2011-01-01

    Traumatic brain injury (TBI) is frequently complicated by alterations in mood and behaviour and changes in personality. We report mild personality changes post-TBI as a possible indicator of traumatic brain injury, but not of injury severity or psychiatric complications. PMID:21677207

  3. Neural function, injury, and stroke subtype predict treatment gains after stroke.

    Science.gov (United States)

    Burke Quinlan, Erin; Dodakian, Lucy; See, Jill; McKenzie, Alison; Le, Vu; Wojnowicz, Mike; Shahbaba, Babak; Cramer, Steven C

    2015-01-01

    This study was undertaken to better understand the high variability in response seen when treating human subjects with restorative therapies poststroke. Preclinical studies suggest that neural function, neural injury, and clinical status each influence treatment gains; therefore, the current study hypothesized that a multivariate approach incorporating these 3 measures would have the greatest predictive value. Patients 3 to 6 months poststroke underwent a battery of assessments before receiving 3 weeks of standardized upper extremity robotic therapy. Candidate predictors included measures of brain injury (including to gray and white matter), neural function (cortical function and cortical connectivity), and clinical status (demographics/medical history, cognitive/mood, and impairment). Among all 29 patients, predictors of treatment gains identified measures of brain injury (smaller corticospinal tract [CST] injury), cortical function (greater ipsilesional motor cortex [M1] activation), and cortical connectivity (greater interhemispheric M1-M1 connectivity). Multivariate modeling found that best prediction was achieved using both CST injury and M1-M1 connectivity (r(2) = 0.44, p = 0.002), a result confirmed using Lasso regression. A threshold was defined whereby no subject with >63% CST injury achieved clinically significant gains. Results differed according to stroke subtype; gains in patients with lacunar stroke were best predicted by a measure of intrahemispheric connectivity. Response to a restorative therapy after stroke is best predicted by a model that includes measures of both neural injury and function. Neuroimaging measures were the best predictors and may have an ascendant role in clinical decision making for poststroke rehabilitation, which remains largely reliant on behavioral assessments. Results differed across stroke subtypes, suggesting the utility of lesion-specific strategies. © 2014 American Neurological Association.

  4. Oral Health and Brain Injury: Causal or Casual Relation?

    Directory of Open Access Journals (Sweden)

    Rajath Sasidharan Pillai

    2018-01-01

    Full Text Available Background: To systematically review the current literature investigating the association between oral health and acquired brain injury. Methods: A structured search strategy was applied to PubMed, Embase, Web of Science, and CENTRAL electronic databases until March 2017 by 2 independent reviewers. The preferred reporting items for systematic review and meta-analysis guidelines were used for systematic review. Results: Even though the objective was to assess the association between oral health and acquired brain injury, eligible studies focused solely on different forms of stroke and stroke subtypes. Stroke prediction was associated with various factors such as number of teeth, periodontal conditions (even after controlling for confounding factors, clinical attachment loss, antibody levels to Aggregatibacter actinomycetemcomitans and Prevotella intermedia. The literature showed no consensus on the possible association between gingivitis and stroke. Patients with stroke generally had poorer oral hygiene practices and oral health. Dental prophylaxis and professional intervention reduced the incidence of stroke. Conclusions: Overall, oral health and stroke were related. Periodontitis and tooth loss were independently associated with stroke. However, prevention and timely intervention may reduce the risk of stroke. Stroke was the main cerebral lesion studied in the literature, with almost no publications on other brain lesions.

  5. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  6. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study.

    Science.gov (United States)

    Laskowitz, Daniel T; Kasner, Scott E; Saver, Jeffrey; Remmel, Kerri S; Jauch, Edward C

    2009-01-01

    One of the significant limitations in the evaluation and management of patients with suspected acute cerebral ischemia is the absence of a widely available, rapid, and sensitive diagnostic test. The objective of the current study was to assess whether a test using a panel of biomarkers might provide useful diagnostic information in the early evaluation of stroke by differentiating patients with cerebral ischemia from other causes of acute neurological deficit. A total of 1146 patients presenting with neurological symptoms consistent with possible stroke were prospectively enrolled at 17 different sites. Timed blood samples were assayed for matrix metalloproteinase 9, brain natriuretic factor, d-dimer, and protein S100beta. A separate cohort of 343 patients was independently enrolled to validate the multiple biomarker model approach. A diagnostic tool incorporating the values of matrix metalloproteinase 9, brain natriuretic factor, d-dimer, and S-100beta into a composite score was sensitive for acute cerebral ischemia. The multivariate model demonstrated modest discriminative capabilities with an area under the receiver operating characteristic curve of 0.76 for hemorrhagic stroke and 0.69 for all stroke (likelihood test P<0.001). When the threshold for the logistic model was set at the first quartile, this resulted in a sensitivity of 86% for detecting all stroke and a sensitivity of 94% for detecting hemorrhagic stroke. Moreover, results were reproducible in a separate cohort tested on a point-of-care platform. These results suggest that a biomarker panel may add valuable and time-sensitive diagnostic information in the early evaluation of stroke. Such an approach is feasible on a point-of-care platform. The rapid identification of patients with suspected stroke would expand the availability of time-limited treatment strategies. Although the diagnostic accuracy of the current panel is clearly imperfect, this study demonstrates the feasibility of incorporating a

  7. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    Science.gov (United States)

    2016-12-01

    brain), brain tumors, encephalopathy (a disease that causes brain dysfunction), memory problems, sleep disorders, strokes, and dementia (Zehtabchi...useful in diagnosing epilepsy, multiple sclerosis, brain abscesses, brain tumors, mild traumatic brain injury, and hypertensive encephalopathy ...Bebek, N., Baykan, B., & Gokyigit, A. (2016). Appraisal of epileptic pain as a rare symptom of seizures. Epilepsy & Behavior, 55, 101–107. Pinho, F

  8. Paediatric stroke

    African Journals Online (AJOL)

    2011-04-02

    Apr 2, 2011 ... Ischemic Stroke Registry yielded an incidence of 3.3 cases per 100 000 children per year, of ... Neonatal stroke. The newborn period confers the highest risk period for childhood ischaemic stroke. Focal patterns of ischaemic brain injury to the perinatal brain are .... family history of young stroke/ thrombosis.

  9. Traumatic Brain Injury and Aggression.

    Science.gov (United States)

    Miller, Laurence

    1994-01-01

    Persons who have suffered traumatic injury to the brain may subsequently display aggressive behavior. Three main syndromes of aggression following traumatic brain injury are described: (1) episodic dyscontrol; (2) frontal lobe disinhibition; and (3) exacerbation of premorbid antisociality. The neuropsychological substrates of these syndromes are…

  10. Traumatic Brain Injury - Multiple Languages

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://medlineplus.gov/ ... W XYZ List of All Topics All Traumatic Brain Injury - Multiple Languages To use the sharing features on this page, ...

  11. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2016-01-01

    Full Text Available Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury.

  12. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    Science.gov (United States)

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  13. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  14. Brain Injury Association of America

    Science.gov (United States)

    ... com/Godspeed-Story-Pag.. Read More... BIAA Applauds Trump Administration's Opioid Emergency Declaration; Calls for More Resources ... The Brain Injury Association of America salutes the Trump Administration for directing the Department of Health and ...

  15. The Role of Substance P in Ischaemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Robert Vink

    2013-01-01

    Full Text Available Stroke is a leading cause of death, disability and dementia worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients, meaning that death, severe disability and the requirement for long-term rehabilitation are common outcomes. Cell loss and tissue injury following stroke occurs through a number of diverse secondary injury pathways, whose delayed nature provides an opportunity for pharmacological intervention. Amongst these secondary injury factors, increased blood-brain barrier permeability and cerebral oedema are well-documented complications of cerebral ischaemia, whose severity has been shown to be associated with final outcome. Whilst the mechanisms of increased blood-brain barrier permeability and cerebral oedema are largely unknown, recent evidence suggests that the neuropeptide substance P (SP plays a central role. The aim of this review is to examine the role of SP in ischaemic stroke and report on the potential utility of NK1 tachykinin receptor antagonists as therapeutic agents.

  16. Decoding post-stroke motor function from structural brain imaging

    Directory of Open Access Journals (Sweden)

    Jane M. Rondina

    2016-01-01

    Full Text Available Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged. However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature. In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes

  17. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic

  18. Volumetric Integral Phase-shift Spectroscopy for Noninvasive Detection of Hemispheric Bioimpedance Asymmetry in Acute Brain Pathology

    Science.gov (United States)

    2018-01-18

    Stroke; Stroke, Acute; Ischemic Stroke; Hemorrhage; Clot (Blood); Brain; Subarachnoid Hemorrhage; Cerebral Infarction; Cerebral Hemorrhage; Cerebral Stroke; Intracerebral Hemorrhage; Intracerebral Injury

  19. Traumatic Brain Injury

    Science.gov (United States)

    ... not always visible on your skin. A skull fracture is when the skull cracks. Sometimes broken bones cut into your brain and cause bleeding or ... brain. They show if there is a skull fracture or bleeding, bruising, or blood ... skating, horse riding, and skiing and snowboarding avoid dangerous sports ...

  20. Missile injuries of the brain

    International Nuclear Information System (INIS)

    Kazmi, S.A.M.; Ashraf, A.T.; Qureshi, N.A.

    2001-01-01

    Data was analyzed relating to a consecutive series of 16 patients of penetrating brain injuries received at forward defense lines. Characteristics studied were the cause of injury, level of consciousness and various neurological deficits presented on initial examination, CT scan findings, the surgical procedures performed and the final outcome after one year of follow-up. One out of 16 patients, died due to severe associated injuries to abdominal viscera and major vessels. Meningitis occurred in one patient during the immediate postoperative period. All patients with motor weakness speech deficits and incontinence showed significant improvement. Hearing loss of one ear persisted in one patient. Two patients developed delayed onset seizures. It is concluded that, patients with penetrating brain injuries should be evacuated to the tertiary care neurosurgical centres as soon as possible. In operation only obviously necrotic brain and easily accessible metal and bone pieces should be removed. There is no need to explore the normal brain as it would only result in increased neurological deficits. The patients with such injuries should receive broad-spectrum antibiotics to prevent the infective complications. (author)

  1. Defense and Veterans Brain Injury Center

    Science.gov (United States)

    ... content Search form Search Basket Contact Us DVBIC Defense and Veterans Brain Injury Center About DVBIC Leadership ... link is external) Read more DCoE news articles » Defense and Veterans Brain Injury Center Crisis Intervention (24/ ...

  2. Family needs after brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Perrin, Paul B; Cuberos-Urbano, Gustavo

    2015-01-01

    OBJECTIVE: The objective of this study was to explore differences by country in the importance of family needs after traumatic brain injury (TBI), as well as differences in met/unmet needs. METHOD: Two hundred and seventy-one family members of an individual with TBI in Mexico, Colombia, Spain...

  3. MRI of perinatal brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Mary; Allsop, Joanna [Imperial College, Robert Steiner MR Unit, Perinatal Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Martinez Biarge, Miriam [La Paz University Hospital, Dept of Neonatology, Madrid (Spain); Counsell, Serena [Imperial College, Robert Steiner MR Unit, Neonatal Medicine, MRC Clinical Sciences Centre, Hammersmith Hospital, London (United Kingdom); Cowan, Frances [Imperial College, Dept of Paediatrics, Hammersmith Hospital, London (United Kingdom)

    2010-06-15

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  4. MRI of perinatal brain injury

    International Nuclear Information System (INIS)

    Rutherford, Mary; Allsop, Joanna; Martinez Biarge, Miriam; Counsell, Serena; Cowan, Frances

    2010-01-01

    MRI is invaluable in assessing the neonatal brain following suspected perinatal injury. Good quality imaging requires adaptations to both the hardware and the sequences used for adults or older children. The perinatal and postnatal details often predict the pattern of lesions sustained and should be available to aid interpretation of the imaging findings. Perinatal lesions, the pattern of which can predict neurodevelopmental outcome, are at their most obvious on conventional imaging between 1 and 2 weeks from birth. Very early imaging during the first week may be useful to make management decisions in ventilated neonates but brain abnormalities may still be subtle using conventional sequences. Diffusion-weighted imaging (DWI) is very useful for the early identification of ischaemic tissue in the neonatal brain but may underestimate the final extent of injury, particularly basal ganglia and thalamic lesions. MR imaging is an excellent predictor of outcome following perinatal brain injury and can therefore be used as a biomarker in interventional trials designed to reduce injury and improve neurodevelopmental outcome. (orig.)

  5. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  6. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain.

    Science.gov (United States)

    Rink, Cameron; Gnyawali, Surya; Stewart, Richard; Teplitsky, Seth; Harris, Hallie; Roy, Sashwati; Sen, Chandan K; Khanna, Savita

    2017-04-01

    Ischemic stroke results in excessive release of glutamate, which contributes to neuronal cell death. Here, we test the hypothesis that otherwise neurotoxic glutamate can be productively metabolized by glutamate oxaloacetate transaminase (GOT) to maintain cellular energetics and protect the brain from ischemic stroke injury. The GOT-dependent metabolism of glutamate was studied in primary neural cells and in stroke-affected C57-BL6 mice using magnetic resonance spectroscopy and GC-MS. Extracellular Glu sustained cell viability under hypoglycemic conditions and increased GOT-mediated metabolism in vitro Correction of stroke-induced hypoxia using supplemental oxygen in vivo lowered Glu levels as measured by 1 H magnetic resonance spectroscopy. GOT knockdown abrogated this effect and caused ATP loss in the stroke-affected brain. GOT overexpression increased anaplerotic refilling of tricarboxylic acid cycle intermediates in mouse brain during ischemic stroke. Furthermore, GOT overexpression not only reduced ischemic stroke lesion volume but also attenuated neurodegeneration and improved poststroke sensorimotor function. Taken together, our results support a new paradigm that GOT enables metabolism of otherwise neurotoxic extracellular Glu through a truncated tricarboxylic acid cycle under hypoglycemic conditions.-Rink, C., Gnyawali, S., Stewart, R., Teplitsky, S., Harris, H., Roy, S., Sen, C. K., Khanna, S. Glutamate oxaloacetate transaminase enables anaplerotic refilling of TCA cycle intermediates in stroke-affected brain. © FASEB.

  7. Traumatic brain injury : from impact to rehabilitation

    NARCIS (Netherlands)

    Halliday, J.; Absalom, A. R.

    Traumatic brain injury is a significant cause of mortality and morbidity in our society, particularly among the young. This review discusses the pathophysiology of traumatic brain injury, and current management from the acute phase through to rehabilitation of the traumatic brain injury patient.

  8. Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy.

    Science.gov (United States)

    Duncan, Kelsey; Gonzales-Portillo, Gabriel S; Acosta, Sandra A; Kaneko, Yuji; Borlongan, Cesar V; Tajiri, Naoki

    2015-10-14

    Distinguished by an infarct core encased within a penumbra, stroke remains a primary source of mortality within the United States. While our scientific knowledge regarding the pathology of stroke continues to improve, clinical treatment options for patients suffering from stroke are extremely limited. Tissue plasminogen activator (tPA) remains the sole FDA-approved drug proven to be helpful following stroke. However, due to the need to administer the drug within 4.5h of stroke onset its usefulness is constrained to less than 5% of all patients suffering from ischemic stroke. One experimental therapy for the treatment of stroke involves the utilization of stem cells. Stem cell transplantation has been linked to therapeutic benefit by means of cell replacement and release of growth factors; however the precise means by which this is accomplished has not yet been clearly delineated. Using a traumatic brain injury model, we recently demonstrated the ability of transplanted mesenchymal stromal cells (MSCs) to form a biobridge connecting the area of injury to the neurogenic niche within the brain. We hypothesize that MSCs may also have the capacity to create a similar biobridge following stroke; thereby forming a conduit between the neurogenic niche and the stroke core and peri-infarct area. We propose that this biobridge could assist and promote interaction of host brain cells with transplanted stem cells and offer more opportunities to enhance the effectiveness of stem cell therapy in stroke. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Training the brain to survive stroke.

    Directory of Open Access Journals (Sweden)

    Jeff F Dunn

    Full Text Available Presently, little can be done to repair brain tissue after stroke damage. We hypothesized that the mammalian brain has an intrinsic capacity to adapt to low oxygen which would improve outcome from a reversible hypoxic/ischemic episode. Acclimation to chronic hypoxia causes increased capillarity and tissue oxygen levels which may improve the capacity to survive ischemia. Identification of these adaptations will lead to protocols which high risk groups could use to improve recovery and reduce costs.Rats were exposed to hypoxia (3 weeks living at ½ an atmosphere. After acclimation, capillary density was measured morphometrically and was increased by 30% in the cortex. Novel implantable oxygen sensors showed that partial pressure of oxygen in the brain was increased by 40% in the normal cortex. Infarcts were induced in brain with 1 h reversible middle cerebral artery occlusions. After ischemia (48 h behavioural scores were improved and T2 weighted MRI lesion volumes were reduced by 52% in acclimated groups. There was a reduction in inflammation indicated by reduced lymphocytes (by 27-33%, and ED1 positive cells (by 35-45%.It is possible to stimulate a natural adaptive mechanism in the brain which will reduce damage and improve outcome for a given ischemic event. Since these adaptations occur after factors such as HIF-1α have returned to baseline, protection is likely related more to morphological changes such as angiogenesis. Such pre-conditioning, perhaps with exercise or pharmaceuticals, would not necessarily reduce the incidence of stroke, but the severity of damage could be reduced by 50%.

  10. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    Science.gov (United States)

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  11. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Shamloo, Mehrdad; Rickhag, Karl Mattias

    2011-01-01

    Stroke leads to brain damage with subsequent slow and incomplete recovery of lost brain functions. Enriched housing of stroke-injured rats provides multi-modal sensorimotor stimulation, which improves recovery, although the specific mechanisms involved have not been identified. In rats housed......)piperazine dihydrochloride, an agonist of the sigma-1 receptor, starting two days after injury, enhanced the recovery of lost sensorimotor function without decreasing infarct size. The sigma-1 receptor was found in the galactocerebroside enriched membrane microdomains of reactive astrocytes and in neurons. Sigma-1 receptor...... of biomolecules required for brain repair, thereby stimulating brain plasticity. Pharmacological targeting of the sigma-1 receptor provides new opportunities for stroke treatment beyond the therapeutic window of neuroprotection....

  12. Investigations into Brain-Computer Interfacing for Stroke Rehabilitation

    OpenAIRE

    Leamy, Darren J.

    2015-01-01

    A stroke is the loss of brain function following the cessation of blood supply to a region of the brain caused by either a blockage or haemorrhage in the vasculature. It is a leading cause of death worldwide but survival rates have increased significantly in the past 25 years with recent estimates putting the number of worldwide stroke survivors at 33 million. Stroke survivors live with lasting effects such as limb weakness, limb paralysis, loss of speech, loss of comprehens...

  13. Brain repair: cell therapy in stroke

    Directory of Open Access Journals (Sweden)

    Kalladka D

    2014-02-01

    Full Text Available Dheeraj Kalladka, Keith W Muir Institute of Neuroscience and Psychology, University of Glasgow, Southern General Hospital, Glasgow, United Kingdom Abstract: Stroke affects one in every six people worldwide, and is the leading cause of adult disability. Some spontaneous recovery is usual but of limited extent, and the mechanisms of late recovery are not completely understood. Endogenous neurogenesis in humans is thought to contribute to repair, but its extent is unknown. Exogenous cell therapy is promising as a means of augmenting brain repair, with evidence in animal stroke models of cell migration, survival, and differentiation, enhanced endogenous angiogenesis and neurogenesis, immunomodulation, and the secretion of trophic factors by stem cells from a variety of sources, but the potential mechanisms of action are incompletely understood. In the animal models of stroke, both mesenchymal stem cells (MSCs and neural stem cells (NSCs improve functional recovery, and MSCs reduce the infarct volume when administered acutely, but the heterogeneity in the choice of assessment scales, publication bias, and the possible confounding effects of immunosuppressants make the comparison of effects across cell types difficult. The use of adult-derived cells avoids the ethical issues around embryonic cells but may have more restricted differentiation potential. The use of autologous cells avoids rejection risk, but the sources are restricted, and culture expansion may be necessary, delaying treatment. Allogeneic cells offer controlled cell numbers and immediate availability, which may have advantages for acute treatment. Early clinical trials of both NSCs and MSCs are ongoing, and clinical safety data are emerging from limited numbers of selected patients. Ongoing research to identify prognostic imaging markers may help to improve patient selection, and the novel imaging techniques may identify biomarkers of recovery and the mechanism of action for cell

  14. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  15. BPSD following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI in Brazil. Objective: We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Methods: Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Results: Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Conclusion: Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  16. BPSD following traumatic brain injury

    Science.gov (United States)

    Anghinah, Renato; Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; Schmidt, Magali Taino; Calado, Vanessa Tomé Gonçalves; Ianof, Jéssica Natuline; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson Luis

    2013-01-01

    Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI) in Brazil. OBJECTIVE We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD) findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. METHODS Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. RESULTS Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. CONCLUSION Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery. PMID:29213850

  17. Response of the cerebral vasculature following traumatic brain injury.

    Science.gov (United States)

    Salehi, Arjang; Zhang, John H; Obenaus, Andre

    2017-07-01

    The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.

  18. Maxillofacial injuries and traumatic brain injury--a pilot study.

    Science.gov (United States)

    Rajandram, Rama Krsna; Syed Omar, Syed Nabil; Rashdi, Muhd Fazly Nizam; Abdul Jabar, Mohd Nazimi

    2014-04-01

    Maxillofacial injuries comprising hard tissue as well as soft tissue injuries can be associated with traumatic brain injuries due to the impact of forces transmitted through the head and neck. To date, the role of maxillofacial injury on brain injury has not been properly documented with some saying it has a protective function on the brain while others opposing this idea. This cross-sectional retrospective study evaluated all patients with maxillofacial injuries. The aim of the study was to analyze the occurrence and relationship of maxillofacial injuries with traumatic brain injuries. We retrospectively studied the hospital charts of all trauma patients seen at the accident and emergency department of UKM Medical Centre from November 2010 until November 2011. A detail analysis was then carried out on all patients who satisfied the inclusion and exclusion criteria. A total of 11294 patients were classified as trauma patients in which 176 patients had facial fractures and 292 did not have facial fractures. Middle face fractures was the most common pattern of facial fracture seen. Traumatic brain injury was present in 36.7% of maxillofacial cases. A significant association was found between facial fractures and traumatic brain injury (P maxillofacial injuries with or without facial fractures are at risk of acute or delayed traumatic brain injury. All patients should always have proper radiological investigations together with a proper observation and follow-up schedule. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Safety and efficacy of abobotulinumtoxinA for hemiparesis in adults with upper limb spasticity after stroke or traumatic brain injury: a double-blind randomised controlled trial.

    Science.gov (United States)

    Gracies, Jean-Michel; Brashear, Allison; Jech, Robert; McAllister, Peter; Banach, Marta; Valkovic, Peter; Walker, Heather; Marciniak, Christina; Deltombe, Thierry; Skoromets, Alexander; Khatkova, Svetlana; Edgley, Steven; Gul, Fatma; Catus, France; De Fer, Beatrice Bois; Vilain, Claire; Picaut, Philippe

    2015-10-01

    Resistance from antagonistic muscle groups might be a crucial factor reducing function in chronic hemiparesis. The resistance due to spastic co-contraction might be reduced by botulinum toxin injections. We assessed the effects of abobotulinumtoxinA injection in the upper limb muscles on muscle tone, spasticity, active movement, and function. In this randomised, placebo-controlled, double-blind study, we enrolled adults (aged 18-80 years) at least 6 months after stroke or brain trauma from 34 neurology or rehabilitation clinics in Europe and the USA. Eligible participants were randomly allocated in a 1:1:1 ratio with a computer-generated list to receive a single injection session of abobotulinumtoxinA 500 U or 1000 U or placebo into the most hypertonic muscle group among the elbow, wrist, or finger flexors (primary target muscle group [PTMG]), and into at least two additional muscle groups from the elbow, wrist, or finger flexors or shoulder extensors. Patients and investigators were masked to treatment allocation. The primary endpoint was the change in muscle tone (Modified Ashworth Scale [MAS]) in the PTMG from baseline to 4 weeks. Secondary endpoints were Physician Global Assessment (PGA) at week 4 and change from baseline to 4 weeks in the perceived function (Disability Assessment Scale [DAS]) in the principal target of treatment, selected by the patient together with physician from four functional domains (dressing, hygiene, limb position, and pain). Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01313299. 243 patients were randomly allocated to placebo (n=81), abobotulinumtoxinA 500 U (n=81), or abobotulinumtoxinA 1000 U (n=81). Mean change in MAS score from baseline at week 4 in the PTMG was -0·3 (SD 0·6) in the placebo group (n=79), -1·2 (1·0) in the abobotulinumtoxinA 500 U group (n=80; difference -0·9, 95% CI -1·2 to -0·6; pvs placebo), and -1·4 (1·1) in the abobotulinumtoxinA 1000 U group (n=79

  20. Traumatic brain injury-induced sleep disorders

    Directory of Open Access Journals (Sweden)

    Viola-Saltzman M

    2016-02-01

    Full Text Available Mari Viola-Saltzman, Camelia Musleh Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA Abstract: Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. Keywords: traumatic brain injury, insomnia, hypersomnia, sleep apnea, periodic limb movement disorder, fatigue

  1. Music therapy for acquired brain injury.

    Science.gov (United States)

    Bradt, Joke; Magee, Wendy L; Dileo, Cheryl; Wheeler, Barbara L; McGilloway, Emer

    2010-07-07

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, sensory processing and emotional disturbances. This may severely reduce a survivor's quality of life. Music therapy has been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions and sensory perceptions. A systematic review is needed to gauge the efficacy of music therapy as a rehabilitation intervention for people with ABI. To examine the effects of music therapy with standard care versus standard care alone or standard care combined with other therapies on gait, upper extremity function, communication, mood and emotions, social skills, pain, behavioral outcomes, activities of daily living and adverse events. We searched the Cochrane Stroke Group Trials Register (February 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 2, 2009), MEDLINE (July 2009), EMBASE (August 2009), CINAHL (March 2010), PsycINFO (July 2009), LILACS (August 2009), AMED (August 2009) and Science Citation Index (August 2009). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted experts and music therapy associations. There was no language restriction. Randomized and quasi-randomized controlled trials that compared music therapy interventions and standard care with standard care alone or combined with other therapies for people older than 16 years of age who had acquired brain damage of a non-degenerative nature and were participating in treatment programs offered in hospital, outpatient or community settings. Two review authors independently assessed methodological quality and extracted data. We present results using mean differences (using post-test scores) as all outcomes were measured with the same scale. We included seven studies (184 participants). The results suggest that rhythmic

  2. Traumatic Brain Injury: Hope Through Research

    Science.gov (United States)

    ... a traumatic brain injury, marked by difficulty with perception, thinking, remembering, and concentration; during this acute stage, ... of nerve cells in the brain causing strange sensations, emotions, and behavior, or sometimes convulsions, muscle spasms, ...

  3. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  4. Brain protection by magnesium ion against radioaction brain injury

    International Nuclear Information System (INIS)

    Yang Meiyu; Wang Lili; Tu Yu

    2010-01-01

    Radiation brain injury is a serious complication among the radiotherapy of brain tumors. It is demonstrated that the protective action of magnesium ion in the brain injury from some experimental studies recent years, which is the prospective neuro protective agents overall merits. This article is summarized the causes and the variance of magnesium ion in the brain tissue afterwards the radioactive brain injury, additionally the defense mechanism of magnesium ion from the aspects of inflammation reduction, encephaledema alleviation, anti-apoptosis and improvement of nerve function. (authors)

  5. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    Science.gov (United States)

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  6. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    Science.gov (United States)

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  7. Severe Blood–Brain Barrier Disruption in Cardioembolic Stroke

    OpenAIRE

    Chang Liu; Feina Shi; Zhicai Chen; Shenqiang Yan; Xinfa Ding; Min Lou

    2018-01-01

    BackgroundPrevious studies demonstrated that cardioembolism (CE) was prone to develop hemorrhagic transformation (HT), whereas hyper-permeability of blood–brain barrier (BBB) might be one reason for the development of HT. We, thus, aimed to investigate whether the BBB permeability (BBBP) was higher in CE stroke than other stroke subtypes in acute ischemic stroke (AIS) patients.MethodsThis study was a retrospective review of prospectively collected clinical and imaging database of AIS patients...

  8. Deep brain stimulation for stroke: Current uses and future directions.

    Science.gov (United States)

    Elias, Gavin J B; Namasivayam, Andrew A; Lozano, Andres M

    Survivors of stroke often experience significant disability and impaired quality of life related to ongoing maladaptive responses and persistent neurologic deficits. Novel therapeutic options are urgently needed to augment current approaches. One way to promote recovery and ameliorate symptoms may be to electrically stimulate the surviving brain. Various forms of brain stimulation have been investigated for use in stroke, including deep brain stimulation (DBS). We conducted a comprehensive literature review in order to 1) review the use of DBS to treat post-stroke maladaptive responses including pain, dystonia, dyskinesias, and tremor and 2) assess the use and potential utility of DBS for enhancing plasticity and recovery from post-stroke neurologic deficits. A large variety of brain structures have been targeted in post-stroke patients, including motor thalamus, sensory thalamus, basal ganglia nuclei, internal capsule, and periventricular/periaqueductal grey. Overall, the reviewed clinical literature suggests a role for DBS in the management of several post-stroke maladaptive responses. More limited evidence was identified regarding DBS for post-stroke motor deficits, although existing work tentatively suggests DBS-particularly DBS targeting the posterior limb of the internal capsule-may improve paresis in certain circumstances. Substantial future work is required both to establish optimal targets and parameters for treatment of maladapative responses and to further investigate the effectiveness of DBS for post-stroke paresis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Constraint-induced movement therapy and rehabilitation exercises lessen motor deficits and volume of brain injury after striatal hemorrhagic stroke in rats.

    Science.gov (United States)

    DeBow, Suzanne B; Davies, Melissa L A; Clarke, Heather L; Colbourne, Frederick

    2003-04-01

    Constraint-induced movement therapy (CIMT) promotes motor recovery after occlusive stroke in humans, but its efficacy after intracerebral hemorrhage (ICH) has not been investigated clinically or in the laboratory. In this study we tested whether CIMT and a rehabilitation exercise program would lessen motor deficits after ICH in rats. Rats were subjected to striatal ICH (via infusion of collagenase) or sham stroke. Seven days later, treatment began with CIMT (8 h/d of ipsilateral forelimb restraint), rehabilitation exercises (eg, reaching, walking; 1 h/d), or both for 7 days. Some rats were not treated. Motor deficits were assessed up to the 60-day survival time, after which the volume of tissue lost was determined. Untreated ICH rats made more limb slips traversing a horizontal ladder and showed an asymmetry toward less use of the contralateral paw in the cylinder test of limb use asymmetry (day 28). These rats were also significantly less successful in the Montoya staircase test (days 55 to 59) of skilled reaching. Neither therapy alone provided much benefit. However, the combination of daily exercises and CIMT substantially and persistently improved recovery. Unexpectedly, this group had a statistically smaller volume of tissue lost than untreated ICH rats. The combination of focused rehabilitation exercises and CIMT effectively promotes functional recovery after ICH, while either therapy alone is less effective. This therapy may work in part by reducing the volume of tissue lost, likely through reducing atrophy while promoting remodeling.

  10. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke

    Directory of Open Access Journals (Sweden)

    Maximilian Jonas Wessel

    2015-05-01

    Full Text Available Stroke is the leading cause of disability among adults. Motor deficit is the most common impairment after stroke. Especially, deficits in fine motor skills impair numerous activities of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor performance is paramount to regain function, and is the basis of behavioral motor therapy after stroke. Within the past years, there has been a rapid technological and methodological development in neuroimaging leading to a significant progress in the understanding of the neural substrates that underlie motor skill acquisition and functional recovery in stroke patients. Based on this and the development of novel non-invasive brain stimulation techniques, new adjuvant interventional approaches that augment the response to behavioral training have been proposed. Transcranial direct current (tDCS, transcranial magnetic (TMS and paired associative (PAS stimulation are noninvasive brain stimulation techniques that can modulate cortical excitability, neuronal plasticity and interact with learning and memory in both healthy individuals and stroke patients. These techniques can enhance the effect of practice and facilitate the retention of tasks that mimic daily life activities. The purpose of the present review is to provide a comprehensive overview of neuroplastic phenomena in the motor system during learning of a motor skill, recovery after brain injury, and of interventional strategies to enhance the beneficial effects of customarily used neurorehabilitation after stroke.

  11. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    Science.gov (United States)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  12. Personality Disturbances Associated with Traumatic Brain Injury.

    Science.gov (United States)

    Prigatano, George P.

    1992-01-01

    Reviews personality disturbances associated with traumatic brain injury. Attempts to clarify terms and review empirical findings. Notes that longitudinal prospective studies that use appropriate control groups are needed. Suggests future research may benefit by considering long-term effects of early agitation following traumatic brain injury and…

  13. MECHANISMS OF SECONDARY BRAIN DAMAGE IN COMA DEVELOPED IN ACUTE PERIOD OF ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    Константин Владимирович Лукашев

    2017-06-01

    Conclusions. One of the mechanisms of secondary brain damage in patients in coma in acute period of ischemic stroke is a worsening dysfunction of the brain stem followed bythe cerebral autoregulationdisturbance in the absence of a significant increase of intracranial pressure.This causes disturbances of the central hemodynamics, the mechanical and gas exchange properties,the accumulation of extravascular lung water.These processesresult in acute lung injury, itbeing a critical element in the development and progression of systemic hypoxia as a key mechanism of secondary brain damage.

  14. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  15. Early Brain Injury: A Common Mechanism in Subarachnoid Hemorrhage and Global Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Mohammed Sabri

    2013-01-01

    Full Text Available Early brain injury (EBI has become an area of extreme interest in the recent years and seems to be a common denominator in the pathophysiology of global transient ischemia and subarachnoid hemorrhage (SAH. In this paper, we highlight the importance of cerebral hypoperfusion and other mechanisms that occur in tandem in both pathologies and underline their possible roles in triggering brain injury after hemorrhagic or ischemic strokes.

  16. The image of a brain stroke in a computed tomograph

    International Nuclear Information System (INIS)

    Just, E.G.

    1982-01-01

    On the basis of 100 findings from patients who suffered brain strokes and by the use of 1500 ensured stroke images it was tested whether or not the stroke-predilection typologie outlined by Zuelch is based on a coincidental summation of individual cases. The radio-computed tomography with the possibility of evaluation of non-lethal cases proved itself as a suited method for confirmation or repudiation of this stroke theory. By means of the consistently achieved association of the frontal, respectively horizontal sectional image for the typology it could be proven and - with the exception of a few rather seldom types - also demonstrated that the basic and predilection types of brain stroke repeated themselves in their pattern. In individual cases a specification of lower types could also be undertaken. (orig./TRV) [de

  17. Blunt Traumatic Extracranial Cerebrovascular Injury and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Paul M. Foreman

    2017-04-01

    Full Text Available Background: Ischemic stroke occurs in a significant subset of patients with blunt traumatic cerebrovascular injury (TCVI. The patients are victims of motor vehicle crashes, assaults or other high-energy collisions, and suffer ischemic stroke due to injury to the extracranial carotid or vertebral arteries. Summary: An increasing number of patients with TCVI are being identified, largely because of the expanding use of computed tomography angiography for screening patients with blunt trauma. Patients with TCVI are particularly challenging to manage because they often suffer polytrauma, that is, numerous additional injuries including orthopedic, chest, abdominal, and head injuries. Presently, there is no consensus about optimal management. Key Messages: Most literature about TCVI and stroke has been published in trauma, general surgery, and neurosurgery journals; because of this, and because these patients are managed primarily by trauma surgeons, patients with stroke due to TCVI have been essentially hidden from view of neurologists. This review is intended to bring this clinical entity to the attention of clinicians and investigators with specific expertise in neurology and stroke.

  18. Brain-machine interfaces in neurorehabilitation of stroke.

    Science.gov (United States)

    Soekadar, Surjo R; Birbaumer, Niels; Slutzky, Marc W; Cohen, Leonardo G

    2015-11-01

    Stroke is among the leading causes of long-term disabilities leaving an increasing number of people with cognitive, affective and motor impairments depending on assistance in their daily life. While function after stroke can significantly improve in the first weeks and months, further recovery is often slow or non-existent in the more severe cases encompassing 30-50% of all stroke victims. The neurobiological mechanisms underlying recovery in those patients are incompletely understood. However, recent studies demonstrated the brain's remarkable capacity for functional and structural plasticity and recovery even in severe chronic stroke. As all established rehabilitation strategies require some remaining motor function, there is currently no standardized and accepted treatment for patients with complete chronic muscle paralysis. The development of brain-machine interfaces (BMIs) that translate brain activity into control signals of computers or external devices provides two new strategies to overcome stroke-related motor paralysis. First, BMIs can establish continuous high-dimensional brain-control of robotic devices or functional electric stimulation (FES) to assist in daily life activities (assistive BMI). Second, BMIs could facilitate neuroplasticity, thus enhancing motor learning and motor recovery (rehabilitative BMI). Advances in sensor technology, development of non-invasive and implantable wireless BMI-systems and their combination with brain stimulation, along with evidence for BMI systems' clinical efficacy suggest that BMI-related strategies will play an increasing role in neurorehabilitation of stroke. Copyright © 2014. Published by Elsevier Inc.

  19. Development and Testing of Iron Based Phantoms as Standards for the Diagnosis of Microbleeds and Oxygen Saturation with Applications in Dementia, Stroke, and Traumatic Brain Injury

    Science.gov (United States)

    2013-10-01

    imgMeasuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging Weili Zheng a, Helen Nichol b, Saifeng Liu c...acquired at wiggler beam line 10–2 at SSRL. The samples were mounted onto a set of motorized stages oriented at 45° to the incident beam. The incident...Flagmeyer, R.-H., Heitmann, J., Jamieson, D.N., Legge, G.J.F., Lehmann, D., Reibetanz, U., Reinert, T., Saint , A., Spemann, D., Szymanski, R., Tröger, W

  20. Plasticity and injury in the developing brain.

    Science.gov (United States)

    Johnston, Michael V; Ishida, Akira; Ishida, Wako Nakajima; Matsushita, Hiroko Baber; Nishimura, Akira; Tsuji, Masahiro

    2009-01-01

    The child's brain is more malleable or plastic than that of adults and this accounts for the ability of children to learn new skills quickly or recovery from brain injuries. Several mechanisms contribute to this ability including overproduction and deletion of neurons and synapses, and activity-dependent stabilization of synapses. The molecular mechanisms for activity-dependent synaptic plasticity are being discovered and this is leading to a better understanding of the pathogenesis of several disorders including neurofibromatosis, tuberous sclerosis, Fragile X syndrome and Rett syndrome. Many of the same pathways involved in synaptic plasticity, such as glutamate-mediated excitation, can also mediate brain injury when the brain is exposed to stress or energy failure such as hypoxia-ischemia. Recent evidence indicates that cell death pathways activated by injury differ between males and females. This new information about the molecular pathways involved in brain plasticity and injury are leading to insights that will provide better therapies for pediatric neurological disorders.

  1. Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shaheen E. Lakhan

    2013-04-01

    Full Text Available Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs in blood-brain barrier (BBB disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPA-associated hemorrhagic complications. Reactive oxygen species can enhance the effects of tPA on MMP activation through the loss of caveolin-1 (cav-1, a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs’ role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined.

  2. A Systematic Review of the Prevalence of Oropharyngeal Dysphagia in Stroke, Parkinson's Disease, Alzheimer's Disease, Head Injury, and Pneumonia.

    Science.gov (United States)

    Takizawa, Claire; Gemmell, Elizabeth; Kenworthy, James; Speyer, Renée

    2016-06-01

    Oropharyngeal dysphagia is a common condition after stroke, Parkinson's disease (PD), and Alzheimer's disease (AD), and can cause serious complications including malnutrition, aspiration pneumonia, and premature mortality. Despite its high prevalence among the elderly and associated serious complications, dysphagia is often overlooked and under-diagnosed in vulnerable patient populations. This systematic review aimed to improve understanding and awareness of the prevalence of dysphagia in susceptible patient populations. MEDLINE, EMBASE, the Cochrane library, PROSPERO, and disease-specific websites were systematically searched for studies reporting oropharyngeal dysphagia prevalence or incidence in people with stroke, PD, AD, traumatic brain injury, and community-acquired pneumonia, from the USA, Canada, France, Germany, Italy, Spain, UK, Japan, China, and regional studies. The quality of study descriptions were assessed based on STROBE guidelines. A total of 1207 publications were identified and 33 met inclusion criteria: 24 in stroke, six in PD, two in traumatic brain injury, and one in patients with traumatic brain injury. Dysphagia was reported in 8.1-80 % of stroke patients, 11-81 % of PD, 27-30 % of traumatic brain injury patients, and 91.7 % of patients with community-acquired pneumonia. No relevant studies of dysphagia in AD were identified. This review demonstrates that dysphagia is highly prevalent in these populations, and highlights discrepancies between studies, gaps in dysphagia research, and the need for better dysphagia management starting with a reliable, standardized, and validated method for oropharyngeal dysphagia identification.

  3. A Case of Anoxic Brain Injury Presenting with Agraphia of kanji in the Foreground

    Directory of Open Access Journals (Sweden)

    Yasutaka Kobayashi

    2017-03-01

    Full Text Available A 63-year-old woman was hospitalized for rehabilitation from the aftereffects of an anoxic brain injury. In addition to a general cognitive decline, agraphia of kana and kanji was noted at the time of admission, which had advanced to agraphia which is dominant in kanji at the time of hospital discharge. Brain magnetic resonance imaging revealed no stroke lesions, and brain perfusion scintigraphy found a decreased blood flow in the bilateral parietal lobes. We hereby report on this case because case reports on agraphia caused by anoxic brain injury are extremely rare.

  4. Exercise rehabilitation immediately following ischemic stroke exacerbates inflammatory injury.

    Science.gov (United States)

    Li, Fengwu; Pendy, John T; Ding, Jessie N; Peng, Changya; Li, Xiaorong; Shen, Jiamei; Wang, Sainan; Geng, Xiaokun

    2017-06-01

    The rehabilitative benefits of physical exercise after stroke appear to be contingent upon exercise initiation timing. The present study assessed the hypothesis that very early post-stroke exercise would amplify cellular stress and increases expression of pro-inflammatory mediators, while exercise initiated later would limit the inflammation associated with cerebral ischemia/reperfusion injury. Adult rats were subjected to middle cerebral artery occlusion and subsequently assigned to one of seven groups: one sham injury control group, three stroke groups subjected to exercise initiated after 6, 24 hours, or 3 days of reperfusion, and three stroke groups not subjected to exercise. Expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM-1), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were examined 3 and 24 hours after completion of exercise regimens (and at corresponding time points in non-exercise controls). Heat shock protein-70 (Hsp70) and hypoxia inducible factor-1α (HIF-1α) expression levels were also compared between exercise and non-exercise groups. Early post-stroke exercise was associated with increased expression of pro-inflammatory mediators (ICAM-1, VCAM-1, TNF-α, and IL-1β) and increased expression of cell stress markers (Hsp70 and HIF-1α). Exercise initiated after 3 days of reperfusion was associated with decreased expression of these molecules. Post-stroke exercise, if too early, may result in elevated levels of cell stress and increased expression of pro-inflammatory cytokines, which may amplify the tissue damage associated with cerebral ischemia/reperfusion injury. The results shed light on the manner in which exercise initiation timing may affect post-stroke rehabilitation.

  5. Traumatic brain injury and forensic neuropsychology.

    Science.gov (United States)

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition.

  6. Traumatic Brain Injury service (TBI) Service

    Data.gov (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  7. Dysautonomia after severe traumatic brain injury.

    NARCIS (Netherlands)

    Hendricks, H.T.; Heeren, J.H.M.; Vos, P.E.

    2010-01-01

    BACKGROUND: Dysautonomia after traumatic brain injury (TBI) is characterized by episodes of increased heart rate, respiratory rate, temperature, blood pressure, muscle tone, decorticate or decerebrate posturing, and profuse sweating. This study addresses the incidence of dysautonomia after severe

  8. Long Term Effects of Soft Splints on Stroke Patients and Patients With Disorders of Consciousness

    Science.gov (United States)

    2017-06-01

    Brain Injuries; Disorder of Consciousness; Stroke; Spasticity as Sequela of Stroke; Contracture; Hypertonic Disorder; Central Nervous System Diseases; Pathologic Processes; Craniocerebral Trauma; Trauma, Nervous System; Neurocognitive Disorders

  9. Spinal cord injury drives chronic brain changes

    Directory of Open Access Journals (Sweden)

    Ignacio Jure

    2017-01-01

    Full Text Available Only a few studies have considered changes in brain structures other than sensory and motor cortex after spinal cord injury, although cognitive impairments have been reported in these patients. Spinal cord injury results in chronic brain neuroinflammation with consequent neurodegeneration and cognitive decline in rodents. Regarding the hippocampus, neurogenesis is reduced and reactive gliosis increased. These long-term abnormalities could explain behavioral impairments exhibited in humans patients suffering from spinal cord trauma.

  10. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    Science.gov (United States)

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  11. Music interventions for acquired brain injury.

    Science.gov (United States)

    Magee, Wendy L; Clark, Imogen; Tamplin, Jeanette; Bradt, Joke

    2017-01-20

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, and sensory processing, and in emotional disturbances, which can severely reduce a survivor's quality of life. Music interventions have been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions, and sensory perceptions. An update of the systematic review published in 2010 was needed to gauge the efficacy of music interventions in rehabilitation for people with ABI. To assess the effects of music interventions for functional outcomes in people with ABI. We expanded the criteria of our existing review to: 1) examine the efficacy of music interventions in addressing recovery in people with ABI including gait, upper extremity function, communication, mood and emotions, cognitive functioning, social skills, pain, behavioural outcomes, activities of daily living, and adverse events; 2) compare the efficacy of music interventions and standard care with a) standard care alone, b) standard care and placebo treatments, or c) standard care and other therapies; 3) compare the efficacy of different types of music interventions (music therapy delivered by trained music therapists versus music interventions delivered by other professionals). We searched the Cochrane Stroke Group Trials Register (January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 6), MEDLINE (1946 to June 2015), Embase (1980 to June 2015), CINAHL (1982 to June 2015), PsycINFO (1806 to June 2015), LILACS (1982 to January 2016), and AMED (1985 to June 2015). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted relevant experts and music therapy associations to identify unpublished research. We imposed no language restriction. We performed the original search in 2009. We included all randomised controlled trials

  12. Multisensory stimulation improves functional recovery and resting-state functional connectivity in the mouse brain after stroke

    Directory of Open Access Journals (Sweden)

    Jakob Hakon

    2018-01-01

    Full Text Available Stroke causes direct structural damage to local brain networks and indirect functional damage to distant brain regions. Neuroplasticity after stroke involves molecular changes within perilesional tissue that can be influenced by regions functionally connected to the site of injury. Spontaneous functional recovery can be enhanced by rehabilitative strategies, which provides experience-driven cell signaling in the brain that enhances plasticity. Functional neuroimaging in humans and rodents has shown that spontaneous recovery of sensorimotor function after stroke is associated with changes in resting-state functional connectivity (RS-FC within and across brain networks. At the molecular level, GABAergic inhibitory interneurons can modulate brain plasticity in peri-infarct and remote brain regions. Among this cell-type, a decrease in parvalbumin (PV-immunoreactivity has been associated with improved behavioral outcome. Subjecting rodents to multisensory stimulation through exposure to an enriched environment (EE enhances brain plasticity and recovery of function after stroke. Yet, how multisensory stimulation relates to RS-FC has not been determined. In this study, we investigated the effect of EE on recovery of RS-FC and behavior in mice after stroke, and if EE-related changes in RS-FC were associated with levels of PV-expressing neurons. Photothrombotic stroke was induced in the sensorimotor cortex. Beginning 2 days after stroke, mice were housed in either standard environment (STD or EE for 12 days. Housing in EE significantly improved lost tactile-proprioceptive function compared to mice housed in STD environment. RS-FC in the mouse was measured by optical intrinsic signal imaging 14 days after stroke or sham surgery. Stroke induced a marked reduction in RS-FC within several perilesional and remote brain regions. EE partially restored interhemispheric homotopic RS-FC between spared motor regions, particularly posterior secondary motor

  13. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury.

    Science.gov (United States)

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-09-05

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury.

  14. Dementia resulting from traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Joana Ramalho

    Full Text Available ABSTRACT Traumatic brain injury (TBI represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge.

  15. Stereotypic movement disorder after acquired brain injury.

    Science.gov (United States)

    McGrath, Cynthia M; Kennedy, Richard E; Hoye, Wayne; Yablon, Stuart A

    2002-05-01

    Stereotypic movement disorder (SMD) consists of repetitive, non-functional motor behaviour that interferes with daily living or causes injury to the person. It is most often described in patients with mental retardation. However, recent evidence indicates that this condition is common among otherwise normal individuals. This case study describes a patient with new-onset SMD occurring after subdural haematoma and brain injury. SMD has rarely been reported after acquired brain injury, and none have documented successful treatment. The current psychiatric literature regarding neurochemistry, neuroanatomy, and treatment of SMD are reviewed with particular application to one patient. Treatment options include serotonin re-uptake inhibitors, opioid antagonists and dopamine antagonists. SMD has been under-appreciated in intellectually normal individuals, and may also be unrecognized after brain injury. Further investigation is needed in this area, which may benefit other individuals with SMD as well.

  16. Speed of perceptual grouping in acquired brain injury.

    Science.gov (United States)

    Kurylo, Daniel D; Larkin, Gabriella Brick; Waxman, Richard; Bukhari, Farhan

    2014-09-01

    Evidence exists that damage to white matter connections may contribute to reduced speed of information processing in traumatic brain injury and stroke. Damage to such axonal projections suggests a particular vulnerability to functions requiring integration across cortical sites. To test this prediction, measurements were made of perceptual grouping, which requires integration of stimulus components. A group of traumatic brain injury and cerebral vascular accident patients and a group of age-matched healthy control subjects viewed arrays of dots and indicated the pattern into which stimuli were perceptually grouped. Psychophysical measurements were made of perceptual grouping as well as processing speed. The patient group showed elevated grouping thresholds as well as extended processing time. In addition, most patients showed progressive slowing of processing speed across levels of difficulty, suggesting reduced resources to accommodate increased demands on grouping. These results support the prediction that brain injury results in a particular vulnerability to functions requiring integration of information across the cortex, which may result from dysfunction of long-range axonal connection.

  17. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  18. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Science.gov (United States)

    2010-10-01

    ... child is classified as having traumatic brain injury whose brain injuries are caused by an external... adversely affect educational performance. The term includes children with open or closed head injuries, but does not include children with brain injuries that are congenital or degenerative or caused by birth...

  19. Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells

    OpenAIRE

    Anna Kraft; Eduardo Rosales Jubal; Ruth von Laer; Claudia Döring; Adriana Rocha; Moyo Grebbin; Martin Zenke; Helmut Kettenmann; Albrecht Stroh; Stefan Momma

    2017-01-01

    Summary Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ) to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48?hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather...

  20. Vagus Nerve Stimulation Delivered with Motor Training Enhances Recovery of Function after Traumatic Brain Injury

    OpenAIRE

    Pruitt, David T.; Schmid, Ariel N.; Kim, Lily J.; Abe, Caroline M.; Trieu, Jenny L.; Choua, Connie; Hays, Seth A.; Kilgard, Michael P.; Rennaker, Robert L.

    2016-01-01

    Traumatic Brain Injury (TBI) is one of the largest health problems in the United States, and affects nearly 2 million people every year. The effects of TBI, including weakness and loss of coordination, can be debilitating and last years after the initial injury. Recovery of motor function is often incomplete. We have developed a method using electrical stimulation of the vagus nerve paired with forelimb use by which we have demonstrated enhanced recovery from ischemic and hemorrhagic stroke. ...

  1. Lipid Peroxidation in Brain Injury (Experimental Study

    Directory of Open Access Journals (Sweden)

    V. N. Yelsky

    2009-01-01

    Full Text Available Objective: to study the general mechanisms responsible for the formation and stepwise development of the endogenous intoxication syndrome in the injury. Material and methods. One hundred and thirty animals with experimental brain injury (a blow upon the calvarium delivered by a free weight falling were examined to study the pro- and antioxidant systems, the enzymatic activity in the blood and brain tissue homogenates; the markers of endogenous intoxication, such as medium-weight molecules, were determined. According to the neurological deficit scale developed by A. Ya. Yevtushenko (1989, the animals were divided into 2 groups: 1 those with a good (compensated posttraumatic course and 2 those with a poor (decompensated one. A package of the applied statistical programs «STADIA.6.1/prof» and «STATISTIKA» was employed. Results. Brain injury was used as an example to show how the posttraumatic endogenous intoxication syndrome developed. The latter developed on the cascade principle with the stepwise involvement of the homeostatic systems and with the more aggravated injury. The syndrome is determined by the initiation of processes of lipid peroxidation with the accumulation of its products and by the exhausted spares of antioxidant systems. This leads to hyperenzymemia (the enhanced activity of cathepsin D, acid phosphatase in the brain tissues and blood and to the blood accumulation of toxic substances (medium-weight molecules (toxemia. Key words: posttraumatic endogenous intoxication syndrome, lipid peroxidation, brain injury.

  2. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  3. Do brain lesions in stroke affect basic emotions and attachment?

    Science.gov (United States)

    Farinelli, Marina; Panksepp, Jaak; Gestieri, Laura; Maffei, Monica; Agati, Raffaele; Cevolani, Daniela; Pedone, Vincenzo; Northoff, Georg

    2015-01-01

    The aim of the current study was to investigate basic emotions and attachment in a sample of 86 stroke patients. We included a control group of 115 orthopedic patients (matched for age and cognitive status) without brain lesions to control for unspecific general illness effects of a traumatic recent event on basic emotions and attachment. In order to measure basic emotions and attachment style we applied the Affective Neuroscience Personality Scale (ANPS) and the Attachment Style Questionnaire (ASQ). The stroke patients showed significantly different scores in the SEEKING, SADNESS, and ANGER subscales of the ANPS as well as in the Relationship as Secondary Attachment dimension of the ASQ when compared to the control group. These differences show a pattern influenced by lesion location mainly as concerns basic emotions. Anterior, medial, left, and subcortical patients provide scores significantly lower in ANPS-SEEKING than the control group; ANPS-SADNESS scores in anterior, right, medial, and subcortical patients were significantly higher than those of the control group. ANPS-ANGER scores in posterior, right, and lateral patients were significantly higher than those in the control group; finally, the ANPS-FEAR showed slightly lower scores in posterior patients than in the control group. Minor effects on brain lesions were also individuated in the attachment style. Anterior lesion patients showed a significantly higher average score in the ASQ-Need for Approval subscale than the control group. ASQ-Confidence subscale scores differed significantly in stroke patients with lesions in medial brain regions when compared to control subjects. Scores at ANPS and ASQ subscales appear significantly more correlated in stroke patients than in the control group. Such finding of abnormalities, especially concerning basic emotions in stroke brain-lesioned patients, indicates that the effect of brain lesions may enhance the interrelation between basic emotions and attachment with

  4. The Effect of Hyperbaric Oxygen on Symptoms after Mild Traumatic Brain Injury

    Science.gov (United States)

    2012-11-20

    Proceedings of the 2nd International Symposium on Hy- perbaric Oxygenation for Cerebral Palsy and the Brain-Injured Child. J.T. Joiner (ed). Best...Krages, K.P., and Helfand, M. (2003). Hyperbaric oxygen therapy for brain injury, cerebral palsy , and stroke: summary, in: AHRQ Evidence Report...PCL, PCL-M, Immediate Post-Concussion Assessment and Cognitive Testing, ImPACT 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  5. siRNA Treatment: “A Sword-in-the-Stone” for Acute Brain Injuries

    Directory of Open Access Journals (Sweden)

    Jerome Badaut

    2013-09-01

    Full Text Available Ever since the discovery of small interfering ribonucleic acid (siRNA a little over a decade ago, it has been highly sought after for its potential as a therapeutic agent for many diseases. In this review, we discuss the promising possibility of siRNA to be used as a drug to treat acute brain injuries such as stroke and traumatic brain injury. First, we will give a brief and basic overview of the principle of RNA interference as an effective mechanism to decrease specific protein expression. Then, we will review recent in vivo studies describing siRNA research experiments/treatment options for acute brain diseases. Lastly, we will discuss the future of siRNA as a clinical therapeutic strategy against brain diseases and injuries, while addressing the current obstacles to effective brain delivery.

  6. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  7. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  8. Managing traumatic brain injury secondary to explosions

    Directory of Open Access Journals (Sweden)

    Burgess Paula

    2010-01-01

    Full Text Available Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  9. Traumatic Brain Injury and Sleep Disorders

    OpenAIRE

    Viola-Saltzman, Mari; Watson, Nathaniel F.

    2012-01-01

    Sleep disturbance is common following traumatic brain injury (TBI), affecting 30–70% of individuals, many occurring after mild injuries. Insomnia, fatigue and sleepiness are the most frequent post-TBI sleep complaints with narcolepsy (with or without cataplexy), sleep apnea (obstructive and/or central), periodic limb movement disorder, and parasomnias occurring less commonly. In addition, depression, anxiety and pain are common TBI co-morbidities with substantial influence on sleep quality. T...

  10. Prehospital Care of Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    TVSP Murthy

    2008-01-01

    Full Text Available Traumatic brain injury (TBI occurs when a sudden trauma causes brain damage. Depending on the severity, outcome can be anything from complete recovery to permanent disability or death. Emergency medical services play a dominant role in provision of primary care at the site of injury. Since little can be done to reverse the initial brain damage due to trauma, attempts to prevent further brain damage and stabilize the patient before he can be brought to a specialized trauma care centre play a pivotal role in the final outcome. Recognition and early treatment of hypoten-sion, hypoxemia, and hypoglycemia, objective neurological assessment based on GCS and pupils, and safe transport to an optimal care centre are the key elements of prehospital care of a TBI patient.

  11. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  12. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  13. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  14. Non-invasive brain stimulation in early rehabilitation after stroke.

    Science.gov (United States)

    Blesneag, A V; Popa, L; Stan, A D

    2015-01-01

    The new tendency in rehabilitation involves non-invasive tools that, if applied early after stroke, promote neurorecovery. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation may correct the disruption of cortical excitability and effectively contribute to the restoration of movement and speech. The present paper analyses the results of non-invasive brain stimulation (NIBS) trials, highlighting different aspects related to the repetitive transcranial magnetic stimulation frequency, transcranial direct current stimulation polarity, the period and stimulation places in acute and subacute ischemic strokes. The risk of adverse events, the association with motor or language recovery specific training, and the cumulative positive effect evaluation are also discussed.

  15. An associative Brain-Computer-Interface for acute stroke patients

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas; Aliakbaryhosseinabadi, Susan

    2016-01-01

    An efficient innovative Brain-Computer-Interface system that empowers chronic stroke patients to control an artificial activation of their lower limb muscle through task specific motor intent has been tested in the past. In the current study it was applied to acute stroke patients. The system...... (tibialis anterior). This activation is precisely and individually timed such that the sensory signal arising from the stimulation reaches the motor cortex during its maximum activation due to the intention. The output of the motor cortical area representing the dorsiflexor muscles was significantly...

  16. Plasticity and Injury in the Developing Brain

    OpenAIRE

    JOHNSTON, Michael V.; ISHIDA, Akira; ISHIDA, Wako Nakajima; MATSUSHITA, Hiroko Baber; NISHIMURA, Akira; TSUJI, Masahiro

    2008-01-01

    The child’s brain is more malleable or plastic than that of adults and this accounts for the ability of children to learn new skills quickly or recovery from brain injuries. Several mechanisms contribute to this ability including overproduction and deletion of neurons and synapses, and activity-dependent stabilization of synapses. The molecular mechanisms for activity dependent synaptic plasticity are being discovered and this is leading to a better understanding of the pathogenesis of severa...

  17. Blast-induced Mild Traumatic Brain Injury

    Science.gov (United States)

    2010-01-01

    directly to the brain after craniotomy 154 or 240 kPa Unknown 2.8 or 20 kPa 40 kPa 1 or 10 MPa Redistribution of phosphorylated neurofilament H...m a: 1𔃻) .... !l ~ Blast-induced Mild Traumatic Brain Injury 767 colleagues55 compared neuropsychological test results in a group of primarily...patterns between blast and non-blast-injured subjects, thus providing no support at the neuropsychological level that blast is different. However

  18. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    Science.gov (United States)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is

  19. Severe Blood–Brain Barrier Disruption in Cardioembolic Stroke

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2018-02-01

    Full Text Available BackgroundPrevious studies demonstrated that cardioembolism (CE was prone to develop hemorrhagic transformation (HT, whereas hyper-permeability of blood–brain barrier (BBB might be one reason for the development of HT. We, thus, aimed to investigate whether the BBB permeability (BBBP was higher in CE stroke than other stroke subtypes in acute ischemic stroke (AIS patients.MethodsThis study was a retrospective review of prospectively collected clinical and imaging database of AIS patients who underwent CT perfusion. Hypoperfusion was defined as Tmax >6 s. The average relative permeability-surface area product (rPS, reflecting the BBBP, was calculated within the hypoperfusion region (rPShypo. CE was diagnosed according to the international Trial of Org 10172 in Acute Stroke Treatment criteria. Receiver operating characteristics (ROC curve analysis was used to determine predictive value of rPShypo for CE. Logistic regression was used to identify independent predictors for CE.ResultsA total of 187 patients were included in the final analysis [median age, 73 (61–80 years; 75 (40.1% females; median baseline National Institutes of Health Stroke Scale score, 12 (7–16]. Median rPShypo was 65.5 (35.8–110.1%. Ninety-seven (51.9% patients were diagnosed as CE. ROC analysis revealed that the optimal rPShypo threshold for CE was 86.71%. The value of rPShypo and the rate of rPShypo>86.71% were significantly higher in patients with CE than other stroke subtypes (p < 0.05, after adjusting for the potential confounds.ConclusionThe extent of BBB disruption is more severe in CE stroke than other stroke subtypes during the hyperacute stage.

  20. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  1. TRAUMATIC BRAIN INJURY IN PEDIATRIC AGE GROUP

    Directory of Open Access Journals (Sweden)

    Hayagriva

    2015-11-01

    Full Text Available Traumatic brain injury is one of the major causes of morbidity and mortality in children. The anatomical features, physiological response to injury, neuronal development, and low myelination in children cause different clinical features compared to the adult traumatic brain injury. Our aim is to study the incidence, predisposing factors, clinical presentations, and outcome in pediatric head injuries. The patients included in this retrospective study are under the age of 14 years admitted in the Neurosurgery Department of King George Hospital, Visakhapatnam, which is a tertiary care centre. The study period is two years’ duration from 1.1.2013 to 31.12.2014. Data collected on the basis of history, physical examination, base line investigations, and the plain CT scan is all cases. The pediatric patients were 226 in total 1643 case of head injury cases. There were 64.6% (n=146 males and 35.4% (n=80 females. The age ranged from 12 days to 14 years. Fall from height was the commonest cause of head injury found in 48.6% (n=110 cases, road traffic accidents (RTA in 34.5% (n=78 and other causes 16.8% (n=38; 49 (21.68% patients had associated injuries. At 55.75% (n=126 cases mild head injury with GCS 13-15 was present and severe head injury with GCS less than 8 in 29 (12.8% patients. The 188 patients are treated conservatively, 38 patients underwent different neurosurgical procedures in which 5 patients died. CONCLUSION: Head injury in pediatric age group carries high risk of morbidity and mortality. Good outcome achieved by early diagnosis and referral from primary care centers to tertiary care centers.

  2. [Acoustic thermometry of the patient brain with traumatic brain injury].

    Science.gov (United States)

    Anosov, A A; Balashov, I S; Beliaev, R V; Vilkov, V A; Garskov, R V; Kazanskiĭ, A S; Mansfel'd, A D; Shcherbakov, M I

    2014-01-01

    Non-invasive deep brain acoustic thermometry is carried out for two patients at Burdenko Neurosurgery Institute. This method is based on the measurements of the own thermal acoustic radiation of the investigated object. These two patients have got the brain injury. Some of their skull bones are absent. Infrared thermometry was also used to measure the surface temperature of the forehead skin. On the basis of the experimental data the temperatures deep within the brain were reconstructed. The values for the two patients are equal to 37.3 0.7 and 37.0 0.3 degrees C.

  3. Decreased integration and information capacity in stroke measured by whole brain models of resting state activity.

    Science.gov (United States)

    Adhikari, Mohit H; Hacker, Carl D; Siegel, Josh S; Griffa, Alessandra; Hagmann, Patric; Deco, Gustavo; Corbetta, Maurizio

    2017-04-01

    While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to

  4. Neural plasticity after acquired brain injury: evidence from functional neuroimaging.

    Science.gov (United States)

    Chen, Haiwen; Epstein, Jane; Stern, Emily

    2010-12-01

    The reorganization of the adult central nervous system after damage is a relatively new area of investigation. Neuroimaging methods, such as functional magnetic resonance imaging, diffusion tensor imaging, and positron emission tomography, have the ability to identify, in vivo, some of the processes involved in these neuroplastic changes and can help with diagnosis, prognosis, and potentially treatment approaches. In this article, traumatic brain injury and stroke are used as examples in which neural plasticity plays an important role in recovery. Basic concepts related to brain remodeling, including spontaneous reorganization and training-induced recovery, as well as characteristics of reorganization in successful recovery, are reviewed. The microscopic and molecular mechanisms that underlie neural plasticity and neurogenesis are briefly described. Finally, exciting future directions for the evaluation, diagnosis, and treatment of severe brain injury are explored, with an emphasis on how neuroimaging can help to inform these new approaches. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  6. Traumatic Brain Injury as a Disorder of Brain Connectivity

    Science.gov (United States)

    Hayes, Jasmeet P.; Bigler, Erin D.; Verfaellie, Mieke

    2017-01-01

    Objectives Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition. Methods We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury. Results The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes. Conclusions TBI has a negative impact on distributed brain networks that lead to behavioral disturbance. PMID:26888612

  7. New Antioxidant Drugs for Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Maria Luisa Tataranno

    2015-01-01

    Full Text Available The brain injury concept covers a lot of heterogeneity in terms of aetiology involving multiple factors, genetic, hemodynamic, metabolic, nutritional, endocrinological, toxic, and infectious mechanisms, acting in antenatal or postnatal period. Increased vulnerability of the immature brain to oxidative stress is documented because of the limited capacity of antioxidant enzymes and the high free radicals (FRs generation in rapidly growing tissue. FRs impair transmembrane enzyme Na+/K+-ATPase activity resulting in persistent membrane depolarization and excessive release of FR and excitatory aminoacid glutamate. Besides being neurotoxic, glutamate is also toxic to oligodendroglia, via FR effects. Neuronal cells die of oxidative stress. Excess of free iron and deficient iron/binding metabolising capacity are additional features favouring oxidative stress in newborn. Each step in the oxidative injury cascade has become a potential target for neuroprotective intervention. The administration of antioxidants for suspected or proven brain injury is still not accepted for clinical use due to uncertain beneficial effects when treatments are started after resuscitation of an asphyxiated newborn. The challenge for the future is the early identification of high-risk babies to target a safe and not toxic antioxidant therapy in combination with standard therapies to prevent brain injury and long-term neurodevelopmental impairment.

  8. Interviewing Children with Acquired Brain Injury (ABI)

    Science.gov (United States)

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  9. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    , assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...

  10. Traumatic Brain Injury: Nuclear Medicine Neuroimaging

    NARCIS (Netherlands)

    Sánchez-Catasús, Carlos A; Vállez Garcia, David; Le Riverend Morales, Eloísa; Galvizu Sánchez, Reinaldo; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; de Vries, Erik FJ; van Waarde, Aren; Leenders, Klaus L

    2014-01-01

    This chapter provides an up-to-date review of nuclear medicine neuroimaging in traumatic brain injury (TBI). 18F-FDG PET will remain a valuable tool in researching complex mechanisms associated with early metabolic dysfunction in TBI. Although evidence-based imaging studies are needed, 18F-FDG PET

  11. Fitness to drive after traumatic brain injury

    NARCIS (Netherlands)

    Brouwer, WH; Withaar, FK

    This paper deals with the issue of fitness to drive in patients suffering from traumatic brain injury (TBI). Guidelines for assessment are proposed and three types of studies are reviewed: studies about impairments of attention and information processing, studies of driving competence, and driver

  12. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults fr...

  13. Association between Severe Upper Limb Spasticity and Brain Lesion Location in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Alessandro Picelli

    2014-01-01

    Full Text Available Association between the site of brain injury and poststroke spasticity is poorly understood. The present study investigated whether lesion analysis could document brain regions associated with the development of severe upper limb poststroke spasticity. A retrospective analysis was conducted on 39 chronic stroke patients. Spasticity was assessed at the affected upper limb with the modified Ashworth scale (shoulder, elbow, wrist, and fingers. Brain lesions were traced from magnetic resonance imaging performed within the first 7 days after stroke and region of interest images were generated. The association between severe upper limb spasticity (modified Ashworth scale ≥2 and lesion location was determined with the voxel-based lesion-symptom mapping method implemented in MRIcro software. Colored maps representing the z statistics were generated and overlaid onto the automated anatomical labeling and the Johns Hopkins University white matter templates provided with MRIcron. Thalamic nuclei were identified with the Talairach Daemon software. Injuries to the insula, the thalamus, the basal ganglia, and white matter tracts (internal capsule, corona radiata, external capsule, and superior longitudinal fasciculus were significantly associated with severe upper limb poststroke spasticity. Further advances in our understanding of the neural correlates of spasticity may lead to early targeted rehabilitation when key regions are damaged.

  14. The Contribution of Mannose Binding Lectin to Reperfusion Injury after Ischemic Stroke

    Science.gov (United States)

    Morrison, Helena; Frye, Jennifer; Davis-Gorman, Grace; Funk, Janet; McDonagh, Paul; Stahl, Gregory; Ritter, Leslie

    2012-01-01

    After complement system (CS) activation, the sequential production of complement products increases cell injury and death through opsonophagocytosis, cytolysis, adaptive, and inflammatory cell responses. These responses potentiate cerebral ischemia-reperfusion (IR) injury after ischemic stroke and reperfusion. Activation of the CS via mannose binding lectin (MBL)-initiated lectin pathway is known to increase tissue damage in response to IR in muscle, myocardium and intestine tissue. In contrast, the contribution of this pathway to cerebral IR injury, a neutrophil-mediated event, is less clear. Therefore, we investigated the potential protective role of MBL deficiency in neutrophil-mediated cerebral injury after IR. Using an intraluminal filament method, neutrophil activation and cerebral injury were compared between MBL-deficient and wild type C57Bl/6 mice subjected to 60 minutes of MCA ischemia and reperfusion. Systemic neutrophil activation was not decreased in MBL-deficient animals after IR. In MBL-deficient animals, cerebral injury was significantly decreased only in the striatum (p reperfusion. These results indicate that while MBL deficiency results in a modest protection of a sub-cortical brain region during IR, redundant complement pathway activation may overwhelm further beneficial effects of MBL deficiency during reperfusion. PMID:21208161

  15. Centralized rehabilitation after servere traumatic brain injury

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Liebach, Annette; Nordenbo, Annette Mosbæk

    2006-01-01

    OBJECTIVES: To present results from the first 3 years of centralized subacute rehabilitation after very severe traumatic brain injury (TBI), and to compare results of centralized versus decentralized rehabilitation. MATERIAL AND METHODS: Prospectively, the most severely injured group of adults from...... an uptake area of 2.4 million in Denmark were included at admission to a regional brain injury unit (BIU), on average 19 days after injury. Patients in the retrospective study used for comparison were randomly chosen from the national hospital register. RESULTS AND CONCLUSIONS: Out of 117 patients...... post-trauma was 0.29, and at 1 year 0.055 per 100,000 population. By comparison of 39 patients from the centralized unit injured in 2000-2003 with 21 patients injured in 1982, 1987 or 1992 and with similar PTA- and age distributions and male/female ratio, Glasgow Outcome Scale score at discharge...

  16. Relatives of patients with severe brain injury

    DEFF Research Database (Denmark)

    Norup, Anne; Petersen, Janne; Lykke Mortensen, Erik

    2015-01-01

    relatives of patients with severe brain injury. METHODS: The relatives were assessed on the anxiety and depression scales from the Symptom Checklist-90-Revised and latent variable growth curve models were used to model the trajectories. The effects of patient's age, patient's Glasgow Coma Score, level......PRIMARY OBJECTIVE: To investigate trajectories and predictors of trajectories of anxiety and depression in relatives of patients with a severe brain injury during the first year after injury. RESEARCH DESIGN: A prospective longitudinal study with four repeated measurements. SUBJECTS: Ninety...... improvement. Higher initial level of symptoms of depression was seen in female relatives. Higher initial level of anxiety was associated with younger patient age, lower level of function and consciousness in the patient and the relative being female or the spouse. CONCLUSION: Future research and interventions...

  17. Resting network plasticity following brain injury.

    Directory of Open Access Journals (Sweden)

    Toru Nakamura

    Full Text Available The purpose of this study was to examine neural network properties at separate time-points during recovery from traumatic brain injury (TBI using graph theory. Whole-brain analyses of the topological properties of the fMRI signal were conducted in 6 participants at 3 months and 6 months following severe TBI. Results revealed alterations of network properties including a change in the degree distribution, reduced overall strength in connectivity, and increased "small-worldness" from 3 months to 6 months post injury. The findings here indicate that, during recovery from injury, the strength but not the number of network connections diminishes, so that over the course of recovery, the network begins to approximate what is observed in healthy adults. These are the first data examining functional connectivity in a disrupted neural system during recovery.

  18. Advanced Neuromonitoring and Imaging in Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Stuart H. Friess

    2012-01-01

    Full Text Available While the cornerstone of monitoring following severe pediatric traumatic brain injury is serial neurologic examinations, vital signs, and intracranial pressure monitoring, additional techniques may provide useful insight into early detection of evolving brain injury. This paper provides an overview of recent advances in neuromonitoring, neuroimaging, and biomarker analysis of pediatric patients following traumatic brain injury.

  19. Perspective on Pediatric Traumatic Brain Injury | Igun | African ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is an important aspect of paediatric trauma because of its contribution to mortality ant post trauma seqeulae. Management of traumatic brain injury remains a challenge to surgeons, especially in developing countries. This study aims to determine the pattern of traumatic brain injury among ...

  20. Heterogeneity of brain lesions in pediatric traumatic brain injury.

    Science.gov (United States)

    Bigler, Erin D; Abildskov, Tracy J; Petrie, Joann; Farrer, Thomas J; Dennis, Maureen; Simic, Nevena; Taylor, H Gerry; Rubin, Kenneth H; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Owen Yeates, Keith

    2013-07-01

    Magnetic resonance imaging (MRI) provides a method to identify and quantify abnormalities resulting from traumatic brain injury (TBI). MRI abnormalities in children with TBI have not been fully characterized according to the frequency, location, and quantitative measurement of a range of pathologies critical for studies of neuropsychological outcome. Here, we report MRI findings from a large, multicenter study of childhood TBI, the Social Outcomes of Brain Injury in Kids (SOBIK) study, which compared qualitative and quantitative neuroimaging findings in 72 children with complicated mild-to-severe TBI to 52 children with orthopedic injury (OI). Qualitative analyses of MRI scans coded white matter hyperintensities (WMHs), hemosiderin deposits reflecting prior hemorrhagic lesions, regions of encephalomalacia and/or atrophy, and corpus callosum atrophy and traumatic shear lesions. Two automated quantitative analyses were conducted: (a) FreeSurfer methods computed volumes for total brain, white matter (WM), gray matter (GM), corpus callosum, ventricles, amygdala, hippocampus, basal ganglia, and thalamus along with a ventricle-to-brain ratio (VBR); and (b) voxel-based morphometry (VBM) to identify WM, GM, and cerebrospinal fluid. We also examined performance on the Processing Speed Index (PSI) from the Wechsler Intelligence Scale for Children, Fourth Edition, in relation to the above-mentioned neuroimaging variables. WMHs, hemosiderin deposits, and focal areas of encephalomalacia or atrophy were common in children with TBI, were related to injury severity, and were mostly observed within a frontotemporal distribution. Quantitative analyses showed volumetric changes related to injury severity, especially ventricular enlargement and reduced corpus callosum volume. VBM demonstrated similar findings, but, in addition, GM reductions in the inferior frontal, basal forebrain region, especially in the severe TBI group. The complicated mild TBI group showed few differences from

  1. Social functioning after traumatic brain injury.

    Science.gov (United States)

    Temkin, Nancy R; Corrigan, John D; Dikmen, Sureyya S; Machamer, Joan

    2009-01-01

    To determine the relationship between adult-onset traumatic brain injury (TBI) and social functioning including employment, social relationships, independent living, recreation, functional status, and quality of life 6 months or longer after injury. Not applicable. Systematic review of the published, peer-reviewed literature. Not applicable. Fourteen primary and 25 secondary studies were identified that allowed comparison to controls for adults who were at least 6 months post-TBI. TBI decreases the probability of employment after injury in those who were workers before their injury, lengthens the timing of their return if they do return to work, and decreases the likelihood that they will return to the same position. Those with moderate and severe TBI are clearly affected, but there was insufficient evidence of a relationship between unemployment and mild TBI. Penetrating head injury sustained in wartime is clearly associated with increased unemployment. TBI also adversely affects leisure and recreation, social relationships, functional status, quality of life, and independent living. Although there is a dose-response relationship between severity of injury and social outcomes, there is insufficient evidence to determine at what level of severity the adverse effects are demonstrated. TBI clearly has adverse effects on social functioning for adults. While some consequences might arise from injuries to other parts of the body, those with moderate to severe TBI have more impaired functioning than do those with other injuries alone.

  2. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  3. Inhibition of Myeloperoxidase by N-Acetyl Lysyltyrosylcysteine Amide Reduces Oxidative Stress-Mediated Inflammation, Neuronal Damage, and Neural Stem Cell Injury in a Murine Model of Stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Zheng, Shikan; Zhang, Hao

    2018-02-01

    Recent studies suggest that myeloperoxidase (MPO)-dependent oxidative stress plays a significant role in brain injury in stroke patients. We previously showed that N -acetyl lysyltyrosylcysteine amide (KYC), a novel MPO inhibitor, significantly decreased infarct size, blood-brain barrier leakage, infiltration of myeloid cells, loss of neurons, and apoptosis in the brains of middle cerebral artery occlusion (MCAO) mice. Inhibition of MPO also noticeably reduced neurologic severity scores of MCAO mice. Thus, our data support the idea that MPO-dependent oxidative stress plays a detrimental role in tissue injury in ischemic stroke. However, the mechanisms of MPO-induced injury in stroke are still largely unknown. Here, we present new evidence showing that KYC treatment greatly reduced inflammation by decreasing the number of proinflammatory M1 microglial cells and N1 neutrophils in the brains of MCAO mice. KYC also markedly reduced the expression of high-mobility group box 1, receptor for advanced glycation end products, and nuclear factor- κ B in the brains of MCAO mice. Both neurons and neural stem cells (NSCs) were oxidatively injured by MPO-dependent oxidative stress in MCAO mice. Inhibiting MPO-dependent oxidative stress with KYC significantly reduced oxidative injury and apoptosis in neurons and NSCs. KYC treatment also protected transplanted exogenous NSCs in the brains of MCAO mice. Thus, our studies suggest that MPO-dependent oxidative stress directly injures brain tissues by oxidizing neurons and NSCs and increasing inflammation during stroke. Inhibition of MPO activity with KYC preserves neuronal function and helps the brain recover from injury after stroke. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  4. MR Vascular Fingerprinting in Stroke and Brain Tumors Models.

    Science.gov (United States)

    Lemasson, B; Pannetier, N; Coquery, N; Boisserand, Ligia S B; Collomb, Nora; Schuff, N; Moseley, M; Zaharchuk, G; Barbier, E L; Christen, T

    2016-11-24

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  5. Astrocyte roles in traumatic brain injury

    Science.gov (United States)

    Burda, Joshua E.; Bernstein, Alexander M.; Sofroniew, Michael V.

    2015-01-01

    Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered. PMID:25828533

  6. Magnetic resonance imaging in diffuse brain injury

    International Nuclear Information System (INIS)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author)

  7. Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Adam Denes

    2013-07-01

    Interleukin-1 (IL-1 is a key regulator of inflammation and ischaemic brain injury, but the contribution of central and peripheral sources of IL-1 to brain injury is not well understood. Here we show that haematopoietic-derived IL-1 is a key driver of ischaemic brain injury. Wild type (WT mice transplanted with IL-1αβ-deficient bone marrow displayed a significant (40% reduction in brain injury induced by focal cerebral ischaemia compared with WT mice transplanted with WT bone marrow. This was paralleled by improved neurological outcome and the almost complete absence of splenic-derived, but not liver-derived, IL-1α after stroke in WT mice lacking haematopoietic-derived IL-1. IL-1αβ knockout (KO mice transplanted with IL-1αβ-deficient bone marrow showed a 60% reduction in brain injury compared with WT mice receiving WT bone marrow. Transplantation of WT bone marrow in IL-1αβ KO mice resulted in a similar level of blood-brain-barrier injury to that observed in WT mice receiving IL-1αβ-deficient bone marrow. Cerebral oedema after brain injury was reduced in IL-1αβ KO recipients irrespective of donor-derived IL-1, but a lack of haematopoetic IL-1 has also been associated with smaller brain oedema independently of recipient status. Thus, both central and haematopoietic-derived IL-1 are important contributors to brain injury after cerebral ischaemia. Identification of the cellular sources of IL-1 in the periphery could allow targeted interventions at these sites.

  8. Therapeutic irradiation and brain injury

    International Nuclear Information System (INIS)

    Sheline, G.E.; Wara, W.M.; Smith, V.

    1980-01-01

    This is a review and reanalysis of the literature on adverse effects of therapeutic irradiation on the brain. Reactions have been grouped and considered according to time of appearance. The emphasis of the analysis is on delayed reactions, especially those that occur from a few months to several years after irradiation. All dose specifications were converted into equivalent megavoltage rads. The data were analyzed in terms of total dose, overall treatment time and number of treatment fractions. Also discussed were acute radiation reactions, early delayed radiation reactions, somnolence and leukoencephalopathy post-irradiation/chemotherapy and combined effects of radiation and chemotherapy

  9. Reverse phase protein microarray technology in traumatic brain injury.

    Science.gov (United States)

    Gyorgy, Andrea B; Walker, John; Wingo, Dan; Eidelman, Ofer; Pollard, Harvey B; Molnar, Andras; Agoston, Denes V

    2010-09-30

    Antibody based, high throughput proteomics technology represents an exciting new approach in understanding the pathobiologies of complex disorders such as cancer, stroke and traumatic brain injury. Reverse phase protein microarray (RPPA) can complement the classical methods based on mass spectrometry as a high throughput validation and quantification method. RPPA technology can address problematic issues, such as sample complexity, sensitivity, quantification, reproducibility and throughput, which are currently associated with mass spectrometry-based approaches. However, there are technical challenges, predominantly associated with the selection and use of antibodies, preparation and representation of samples and with analyzing and quantifying primary RPPA data. Here we present ways to identify and overcome some of the current issues associated with RPPA. We believe that using stringent quality controls, improved bioinformatics analysis and interpretation of primary RPPA data, this method will significantly contribute in generating new level of understanding about complex disorders at the level of systems biology. Published by Elsevier B.V.

  10. Traumatic brain injury and olfactory deficits

    DEFF Research Database (Denmark)

    Fortin, Audrey; Lefebvre, Mathilde Beaulieu; Ptito, Maurice

    2010-01-01

    PRIMARY OBJECTIVE: Olfactory functions are not systematically evaluated following traumatic brain injury (TBI). This study aimed at comparing two smell tests that are used in a clinical setting. RESEARCH DESIGN: The University of Pennsylvania Smell Identification Test (UPSIT) and the Alberta Smell....... RESULTS: The scores of the two smell tests were significantly correlated. Both tests indicated that patients with frontal lesion performed significantly worse than patients with other types of lesion. Mood and injury severity were not associated with olfactory impairment when age was taken into account...

  11. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  12. Systematic Analysis of RNA Regulatory Network in Rat Brain after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2018-01-01

    Full Text Available Although extensive studies have identified large number of microRNAs (miRNAs and long noncoding RNAs (lncRNAs in ischemic stroke, the RNA regulation network response to focal ischemia remains poorly understood. In this study, we simultaneously interrogate the expression profiles of lncRNAs, miRNAs, and mRNAs changes during focal ischemia induced by transient middle cerebral artery occlusion. A set of 1924 novel lncRNAs were identified and may involve brain injury and DNA repair as revealed by coexpression network analysis. Furthermore, many short interspersed elements (SINE mediated lncRNA:mRNA duplexes were identified, implying that lncRNAs mediate Staufen1-mediated mRNA decay (SMD which may play a role during focal ischemia. Moreover, based on the competitive endogenous RNA (ceRNA hypothesis, a stroke regulatory ceRNA network which reveals functional lncRNA:miRNA:mRNA interactions was revealed in ischemic stroke. In brief, this work reports a large number of novel lncRNAs responding to focal ischemia and constructs a systematic RNA regulation network which highlighted the role of ncRNAs in ischemic stroke.

  13. [Evaluation of the community integration of persons with lateralised post-acute acquired brain injury].

    Science.gov (United States)

    Huertas-Hoyas, E; Pedrero-Perez, E J; Aguila-Maturana, A M; Gonzalez-Alted, C

    2013-08-16

    INTRODUCTION. Hemispheric specialization is a topic of interest that has motivated an enormous amount of research in recent decades. After a unilateral brain injury, the consequences can affect various areas of specialization, leading, depending on the location of the injury, impairment in quality of life and community integration. PATIENTS AND METHODS. Cross-sectional study with a sample of 58 patients, 28 traumatic brain injury (TBI) and 30 cerebrovascular accidents, both lateralized. The level of integration in the community is measured by the Community Integration Questionnaire. RESULTS. There were three groups analyzed by considering unilateral injury (full sample, stroke sample, and TBI sample). Results showed a significantly high community integration of people with right hemisphere injury. However, to measure the level of community integration between TBI and stroke, the results showed no significant differences. CONCLUSION. According to the results of the study people with brain injury in the right hemisphere have a better community integration than people with lesions in the left hemisphere regardless of the origin of the lesions (vascular or traumatic). We discussed the reasons that may motivate the differences and clinical implications.

  14. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  15. Body representation in patients after vascular brain injuries.

    Science.gov (United States)

    Razmus, Magdalena

    2017-11-01

    Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the different types of body representation. The question about correlations between body representation deficits and neuropsychological dysfunctions was also investigated. Fifty patients after strokes and 50 control individuals participated in the study. They were examined with tasks referring to dynamic representation of body parts positions, topological body map, and lexical and semantic knowledge about the body. Data analysis showed that vascular brain injuries result in deficits of body representation, which may co-occur with cognitive dysfunctions, but the latter are a possible risk factor for body representation deficits rather than sufficient or imperative requisites for them. The study suggests that types of body representation may be separated on the basis not only of their content, but also of their relation with self. Principal component analysis revealed three factors, which explained over 66% of results variance. The factors, which may be interpreted as types or dimensions of mental model of a body, represent different degrees of connection with self. The results indicate another possibility of body representation types classification, which should be verified in future research.

  16. Models to Tailor Brain Stimulation Therapies in Stroke

    Directory of Open Access Journals (Sweden)

    E. B. Plow

    2016-01-01

    Full Text Available A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.

  17. Harnessing the potential of biomaterials for brain repair after stroke

    Science.gov (United States)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  18. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission.

    Science.gov (United States)

    Hennebelle, Marie; Zhang, Zhichao; Metherel, Adam H; Kitson, Alex P; Otoki, Yurika; Richardson, Christine E; Yang, Jun; Lee, Kin Sing Stephen; Hammock, Bruce D; Zhang, Liang; Bazinet, Richard P; Taha, Ameer Y

    2017-06-28

    Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO 2 -induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.

  19. Cognitive retraining in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Diya Nangia

    2012-04-01

    Full Text Available Traumatic brain injury (TBI is often associated with cognitive impairments. The psychological sequelae of cognitive deficits and emotional problems contribute significantly to the disability in the patient and to the distress of the family. The study aimed to develop a cognitive retraining programme to enhance cognitive functioning in TBI. 25 years old male presenting with history of left temporal hemorrhagic contusion with cerebral edema underwent 2 months of a cognitive retaining programme, addressing executive functions impairment. A single case experimental design with pre- and post-assessment was adopted to evaluate changes in the patient in response to the intervention. Improvements were found in cognitive functioning, and in symptom reduction and behaviour. The 2 months hospital based cognitive retraining programme was found to be efficacious in ameliorating symptoms and improving cognitive, social and occupational functioning post traumatic brain injury.

  20. The neuroethics and neurolaw of brain injury.

    Science.gov (United States)

    Aggarwal, Neil Krishan; Ford, Elizabeth

    2013-01-01

    Neuroethics and neurolaw are fields of study that involve the interface of neuroscience with clinical and legal decision-making. The past two decades have seen increasing attention being paid to both fields, in large part because of the advances in neuroimaging techniques and improved ability to visualize and measure brain structure and function. Traumatic brain injury (TBI), along with its acute and chronic sequelae, has emerged as a focus of neuroethical issues, such as informed consent for treatment and research, diagnostic and prognostic uncertainties, and the subjectivity of interpretation of data. The law has also more frequently considered TBI in criminal settings for exculpation, mitigation and sentencing purposes and in tort and administrative law for personal injury, disability and worker's compensation cases. This article provides an overview of these topics with an emphasis on the current challenges that the neuroscience of TBI faces in the medicolegal arena. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Surgical management of traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Vidgeon, Steven; Strong, Anthony J

    2014-01-01

    OBJECT: Mass lesions from traumatic brain injury (TBI) often require surgical evacuation as a life-saving measure and to improve outcomes, but optimal timing and surgical technique, including decompressive craniectomy, have not been fully defined. The authors compared neurosurgical approaches...... in the treatment of TBI at 2 academic medical centers to document variations in real-world practice and evaluate the efficacies of different approaches on postsurgical course and long-term outcome. METHODS: Patients 18 years of age or older who required neurosurgical lesion evacuation or decompression for TBI were...... enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010. Subdural electrode strips were placed at the time of surgery for subsequent electrocorticographic...

  2. [Prognosis in pediatric traumatic brain injury. A dynamic cohort study].

    Science.gov (United States)

    Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma

    2013-01-01

    traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.

  3. Reducing Secondary Insults in Traumatic Brain Injury

    Science.gov (United States)

    2015-03-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 24 Jun 2015 2. REPORT TYPE Journal...transport, intracranial pressure, monitoring, hypoxia, hypotension 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...of productivity8 Previous studies suggest that secondary insults such as hypoxia and hypotension may worsen a brain injury.9-’ 9 Recent recognition

  4. Traumatic Brain Injury: Caregivers’ Problems and Needs

    OpenAIRE

    syed tajjudin syed hassan; WF Khaw; AR Rosna; J Husna

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information,...

  5. Traumatic brain injury in modern war

    Science.gov (United States)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  6. Misconceptions about brain injury in Turkey.

    Science.gov (United States)

    Maviş, Ilknur; Akyıldız, Didem

    2013-01-01

    The aim of the study is to provide information about the knowledge and beliefs that people have regarding brain injury and to examine if the misbeliefs of adults in Turkey are similar to the misconceptions previously reported in the US and UK. Two hundred and fifty-three respondents answered questions about general brain injury knowledge, coma and unconsciousness, memory deficits and brain injury recovery in a questionnaire. Chi-square analyses revealed significant differences based on age, education and gender. Significant differences were determined between Turkish and US participants and Turkish and UK participants by Student t-test analysis. Findings were compared with those reported by previous researchers from the UK and US who administered the same questionnaire. A close examination of the survey makes it clear that the percentages for the 'general knowledge on BI' were found to be higher. Participants' levels of accurate information on coma and unconsciousness and memory deficits ranked secondly and thirdly, respectively. The recovery process paled in significance, as it did not feature very highly. The general public should be informed about the seriousness and pervasiveness of the problems related to consequences of BI before taking decisions concerning language or cognitive therapies for their victims. Healthcare professionals should take roles in advocating reliable publicity primarily by dispelling misconceptions about BI.

  7. Emerging Therapies in Traumatic Brain Injury

    Science.gov (United States)

    Kochanek, Patrick M.; Jackson, Travis C.; Ferguson, Nikki Miller; Carlson, Shaun W.; Simon, Dennis W.; Brockman, Erik C.; Ji, Jing; Bayir, Hülya; Poloyac, Samuel M.; Wagner, Amy K.; Kline, Anthony E.; Empey, Philip E.; Clark, Robert S.B.; Jackson, Edwin K.; Dixon, C. Edward

    2015-01-01

    Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discuss TBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field. PMID:25714870

  8. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    Science.gov (United States)

    2015-11-01

    Restoration of function after brain damage using a neural prosthesis ,” Proc. Natl. Acad. Sci. USA (PNAS), vol. 110, no. 52, pp. 21177-21182...of function after brain damage using a neural prosthesis David J. Guggenmosa,b,1, Meysam Azinc,2, Scott Barbaya,b, Jonathan D. Mahnkend, Caleb Dunhama...can be used effectively to bridge damaged neural pathways functionally and promote recovery after brain injury. brain–machine–brain interface | neural

  9. Aquaporin 9 in rat brain after severe traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2012-03-01

    Full Text Available OBJECTIVE: To reveal the expression and possible roles of aquaporin 9 (AQP9 in rat brain, after severe traumatic brain injury (TBI. METHODS: Brain water content (BWC, tetrazolium chloride staining, Evans blue staining, immunohistochemistry (IHC, immunofluorescence (IF, western blot, and real-time polymerase chain reaction were used. RESULTS: The BWC reached the first and second (highest peaks at 6 and 72 hours, and the blood brain barrier (BBB was severely destroyed at six hours after the TBI. The worst brain ischemia occurred at 72 hours after TBI. Widespread AQP9-positive astrocytes and neurons in the hypothalamus were detected by means of IHC and IF after TBI. The abundance of AQP9 and its mRNA increased after TBI and reached two peaks at 6 and 72 hours, respectively, after TBI. CONCLUSIONS: Increased AQP9 might contribute to clearance of excess water and lactate in the early stage of TBI. Widespread AQP9-positive astrocytes might help lactate move into neurons and result in cellular brain edema in the later stage of TBI. AQP9-positive neurons suggest that AQP9 plays a role in energy balance after TBI.

  10. Effect of dexmedetomidine on brain edema and neurological outcomes in surgical brain injury in rats.

    Science.gov (United States)

    Benggon, Michael; Chen, Han; Applegate, Richard; Martin, Robert; Zhang, John H

    2012-07-01

    Surgical brain injury (SBI) is damage to functional brain tissue resulting from neurosurgical manipulations such as sharp dissection, electrocautery, retraction, and direct applied pressure. Brain edema is the major contributor to morbidity with inflammation, necrosis, oxidative stress, and apoptosis likely playing smaller roles. Effective therapies for SBI may improve neurological outcomes and postoperative morbidities associated with brain surgery. Previous studies show an adrenergic correlation to blood-brain barrier control. The α-2 receptor agonist dexmedetomidine (DEX) has been shown to improve neurological outcomes in stroke models. We hypothesized that DEX may reduce brain edema and improve neurological outcomes in a rat model of SBI. Male Sprague-Dawley rats (n = 63) weighing 280 to 350 g were randomly assigned to 1 of 4 IP treatment groups: sham IP, vehicle IP, DEX 10 mg/kg, and DEX 30 mg/kg. Treatments were given 30 min before SBI. These treatment groups were repeated to observe the physiologic impact of DEX on mean arterial blood pressure (MAP), heart rate (HR), and blood glucose on SBI naïve animals. Rats were also assigned to 4 postinjury IV treatment groups: sham IV, vehicle IV, DEX 10/5, and DEX 30/15 (DEX group doses were 10 and 30 mg/kg/hr, with 5 and 15 mg/kg initial loading doses, respectively). Initial loading doses began 20 min after SBI, followed by 2 h of infusion. SBI animals were subjected to neurological testing 24 h after brain injury by a blinded observer, promptly killed, and brain water content measured via the dry/wet weight method. All treatment groups showed a significant difference in ipsilateral frontal brain water content and neurological scores when compared with sham animals. However, there was no difference between DEX-treated and vehicle animals. Physiologic monitoring showed treatment with low or high doses of DEX significantly decreased MAP and HR, and briefly increased blood glucose compared with naïve or vehicle

  11. Back to the future: estimating pre-injury brain volume in patients with traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Ochs, Alfred L; D Zannoni, Megan; Seabaugh, Jan M

    2014-11-15

    A recent meta-analysis by Hedman et al. allows for accurate estimation of brain volume changes throughout the life span. Additionally, Tate et al. showed that intracranial volume at a later point in life can be used to estimate reliably brain volume at an earlier point in life. These advancements were combined to create a model which allowed the estimation of brain volume just prior to injury in a group of patients with mild or moderate traumatic brain injury (TBI). This volume estimation model was used in combination with actual measurements of brain volume to test hypotheses about progressive brain volume changes in the patients. Twenty six patients with mild or moderate TBI were compared to 20 normal control subjects. NeuroQuant® was used to measure brain MRI volume. Brain volume after the injury (from MRI scans performed at t1 and t2) was compared to brain volume just before the injury (volume estimation at t0) using longitudinal designs. Groups were compared with respect to volume changes in whole brain parenchyma (WBP) and its 3 major subdivisions: cortical gray matter (GM), cerebral white matter (CWM) and subcortical nuclei+infratentorial regions (SCN+IFT). Using the normal control data, the volume estimation model was tested by comparing measured brain volume to estimated brain volume; reliability ranged from good to excellent. During the initial phase after injury (t0-t1), the TBI patients had abnormally rapid atrophy of WBP and CWM, and abnormally rapid enlargement of SCN+IFT. Rates of volume change during t0-t1 correlated with cross-sectional measures of volume change at t1, supporting the internal reliability of the volume estimation model. A logistic regression analysis using the volume change data produced a function which perfectly predicted group membership (TBI patients vs. normal control subjects). During the first few months after injury, patients with mild or moderate TBI have rapid atrophy of WBP and CWM, and rapid enlargement of SCN+IFT. The

  12. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  13. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  14. Acute Blast Injury Reduces Brain Abeta in Two Rodent Species

    Science.gov (United States)

    2012-12-01

    Traumatic brain injury: football , warfare, and long- term effects. N. Engl. J. Med. 363, 1293–1296. Elder, G. A., Dorr, N. P., De Gasperi, R., Gama Sosa, M. A...al. (2012). Intranasal administration of nerve growth fac - tor ameliorate beta-amyloid deposi- tion after traumatic brain injury in rats. Brain Res

  15. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  16. Acute Management of Hemostasis in Patients With Neurological Injury

    NARCIS (Netherlands)

    Baharoglu, M. Irem; Brand, Anneke; Koopman, Maria M.; Vermeulen, Marinus; Roos, Yvo B. W. E. M.

    2017-01-01

    Neurological injuries can be divided into those with traumatic and nontraumatic causes. The largest groups are traumatic brain injury (TBI) and nontraumatic stroke. TBI patients may present with intracranial hemorrhages (contusions, or subdural or epidural hematomas). Strokes are ischemic or

  17. Novel humanized recombinant T cell receptor ligands protect the female brain after experimental stroke.

    Science.gov (United States)

    Pan, Jie; Palmateer, Julie; Schallert, Timothy; Hart, Madison; Pandya, Arushi; Vandenbark, Arthur A; Offner, Halina; Hurn, Patricia D

    2014-10-01

    Transmigration of peripheral leukocytes to the brain is a major contributor to cerebral ischemic cell death mechanisms. Humanized partial major histocompatibility complex class II constructs (pMHC), covalently linked to myelin peptides, are effective for treating experimental stroke in males, but new evidence suggests that some inflammatory cell death mechanisms after brain injury are sex-specific. We here demonstrate that treatment with pMHC constructs also improves outcomes in female mice with middle cerebral artery occlusion (MCAO). HLA-DR2 transgenic female mice with MCAO were treated with RTL1000 (HLA-DR2 moiety linked to human MOG-35-55 peptide), HLA-DRa1-MOG-35-55, or vehicle (VEH) at 3, 24, 48, and 72 h after reperfusion and were recovered for 96 h or 2 weeks post-injury for measurement of histology (TTC staining) or behavioral testing. RTL1000- and DRa1-MOG-treated mice had profoundly reduced infarct volumes as compared to the VEH group, although higher doses of DRa1-MOG were needed for females vs. males evaluated previously. RTL1000-treated females also exhibited strongly improved functional recovery in a standard cylinder test. In novel studies of post-ischemic ultrasonic vocalization (USV), as measured by animal calls to their cage mates, we modeled in mice the post-stroke speech deficits common in human stroke survivors. The number of calls was reduced in injured animals relative to pre-MCAO baseline regardless of RTL1000 treatment status. However, call duration was significantly improved by RTL1000 treatment, suggesting benefit to the animal's recovery of vocalization capability. We conclude that both the parent RTL1000 molecule and the novel non-polymorphic DRα1-MOG-35-55 construct were highly effective immunotherapies for treatment of transient cerebral ischemia in females.

  18. Subjective complaints after acquired brain injury: presentation of the Brain Injury Complaint Questionnaire (BICoQ).

    Science.gov (United States)

    Vallat-Azouvi, Claire; Paillat, Cyrille; Bercovici, Stéphanie; Morin, Bénédicte; Paquereau, Julie; Charanton, James; Ghout, Idir; Azouvi, Philippe

    2018-04-01

    The objective of the present study was to present a new complaint questionnaire designed to assess a wide range of difficulties commonly reported by patients with acquired brain injury. Patients (n =  619) had been referred to a community re-entry service at a chronic stage after brain injury, mainly traumatic brain injury (TBI). The Brain Injury Complaint Questionnaire (BICoQ) includes 25 questions in the following domains: cognition, behavior, fatigue and sleep, mood, and somatic problems. A self and a proxy questionnaire were given. An additional question was given to the relative, about the patient's awareness of his difficulties. The questionnaires had a good internal coherence, as measured with Cronbach's alpha. The most frequent complaints were, in decreasing order, mental slowness, memory troubles, fatigue, concentration difficulties, anxiety, and dual tasking problems. Principal component analysis with varimax rotation yielded six underlying factors explaining 50.5% of total variance: somatic concerns, cognition, and lack of drive, lack of control, psycholinguistic disorders, mood, and mental fatigue/slowness. About 52% of patients reported fewer complaints than their proxy, suggesting lack of awareness. The total complaint scores were not significantly correlated with any injury severity measure, but were significantly correlated with disability and poorer quality of life (Note: only factor 2 [cognition/lack of drive] was significantly related to disability.) The BICoQ is a simple scale that can be used in addition to traditional clinical and cognitive assessment measures, and to assess awareness of everyday life problems. © 2017 Wiley Periodicals, Inc.

  19. Cannabinoids: Well-Suited Candidates for the Treatment of Perinatal Brain Injury

    Directory of Open Access Journals (Sweden)

    José Martínez-Orgado

    2013-07-01

    Full Text Available Perinatal brain injury can be induced by a number of different damaging events occurring during or shortly after birth, including neonatal asphyxia, neonatal hypoxia-ischemia and stroke-induced focal ischemia. Typical manifestations of these conditions are the presence of glutamate excitoxicity, neuroinflammation and oxidative stress, the combination of which can potentially result in apoptotic-necrotic cell death, generation of brain lesions and long-lasting functional impairment. In spite of the high incidence of perinatal brain injury, the number of clinical interventions available for the treatment of the affected newborn babies is extremely limited. Hence, there is a dramatic need to develop new effective therapies aimed to prevent acute brain damage and enhance the endogenous mechanisms of long-term brain repair. The endocannabinoid system is an endogenous neuromodulatory system involved in the control of multiple central and peripheral functions. An early responder to neuronal injury, the endocannabinoid system has been described as an endogenous neuroprotective system that once activated can prevent glutamate excitotoxicity, intracellular calcium accumulation, activation of cell death pathways, microglia activation, neurovascular reactivity and infiltration of circulating leukocytes across the blood-brain barrier. The modulation of the endocannabinoid system has proven to be an effective neuroprotective strategy to prevent and reduce neonatal brain injury in different animal models and species. Also, the beneficial role of the endocannabinoid system on the control of the endogenous repairing responses (neurogenesis and white matter restoration to neonatal brain injury has been described in independent studies. This review addresses the particular effects of several drugs that modulate the activity of the endocannabinoid system on the progression of different manifestations of perinatal brain injury during both the acute and chronic

  20. Narrative Medicine: Suggestions for Clinicians to Help Their Clients Construct a New Identity Following Acquired Brain Injury

    Science.gov (United States)

    Fraas, Michael R.

    2015-01-01

    Survivors of brain injury from trauma and stroke often lose their sense of identity and face a series of lifelong obstacles that challenge their ability to integrate back into their communities and live meaningful and productive lives. Their stories provide powerful accounts of these challenges, which can inform clinical decision-making. Arguably,…

  1. Time dysperception perspective for acquired brain injury.

    Science.gov (United States)

    Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Danese, Emanuela; Caltagirone, Carlo; Spalletta, Gianfranco

    2014-01-13

    Distortions of time perception are presented by a number of neuropsychiatric illnesses. Here we survey timing abilities in clinical populations with focal lesions in key brain structures recently implicated in human studies of timing. We also review timing performance in amnesic and traumatic brain injured patients in order to identify the nature of specific timing disorders in different brain damaged populations. We purposely analyzed the complex relationship between both cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will clarify whether time distortions are a manifestation of, or a mechanism for, cognitive and behavioral symptoms of neuropsychiatric disorders.

  2. Isolated traumatic brain injury and venous thromboembolism.

    Science.gov (United States)

    Van Gent, Jan-Michael; Bandle, Jesse; Calvo, Richard Y; Zander, Ashley L; Olson, Erik J; Shackford, Steven R; Peck, Kimberly A; Sise, C Beth; Sise, Michael J

    2014-08-01

    Traumatic brain injury (TBI) is considered an independent risk factor of venous thromboembolism (VTE). However, the role of TBI severity in VTE risk has not been determined. We hypothesized that increased severity of brain injury in patients with isolated TBI (iTBI) is associated with an increased incidence of VTE. The records of patients admitted from June 2006 to December 2011 were reviewed for injury data, VTE risk factors, results of lower extremity surveillance ultrasound, and severity of TBI. Patients were identified by DRG International Classification of Diseases-9th Rev. codes for TBI, and only those with a nonhead Abbreviated Injury Scale (AIS) score of 1 or lower, indicating minimal associated injury, were included. The association of iTBI and VTE was determined using a case-control design. Among iTBI patients, those diagnosed with VTE (cases) were matched for age, sex, and admission year to those without VTE (controls). Data were analyzed using conditional logistic regression. There were 345 iTBI patients: 41 cases (12%) and 304 controls (88%). A total of 151 controls could not be matched to an appropriate case and were excluded. Of the remaining 153 controls, 1 to 16 controls were matched to each of the 41 VTE cases. Compared with the controls, the cases had a higher mean head-AIS score (4.4 vs. 3.9, p = 0.001) and overall Injury Severity Score (20.4 vs. 16.8, p = 0.001). Following adjustment for all factors found to be associated with VTE (ventilator days, central line placement, operative time > 2 hours, chemoprophylaxis, history of VTE, and history of cancer), the cases were significantly more likely to have a greater head injury severity (head-AIS score ≥ 5; odds ratio, 5.25; 95% confidence interval, 1.59-17.30; p = 0.006). The incidence of VTE in iTBI patients was significantly associated with the severity of TBI. VTE surveillance protocols may be warranted in these high-risk patients, as early detection of VTE could guide subsequent therapy

  3. Traumatic Brain Injury: Are We Conducting Enough Resarch

    Science.gov (United States)

    2017-04-17

    FROM: 59 MDW/SGVU SUBJECT: Professional Presentation Approval 7 APR 2017 1. Your paper, entitled Traumatic Brain Injury: Are We Conducting Enough...review and approval.) NA - Pubmed searches w ere the only source of data 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Traumatic Brain Injury...Traumatic Brain Injury: Are We Conducting Enough Research? Capt Mariya Gusman MD, Lt Col Jonathan A Sosnov MD, Jeffrey T Howard PhD Background

  4. Hypersexuality or altered sexual preference following brain injury.

    Science.gov (United States)

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322

  5. Hypersexuality or altered sexual preference following brain injury.

    OpenAIRE

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury.

  6. 4: Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Khan, Fary; Baguley, Ian J; Cameron, Ian D

    2003-03-17

    Traumatic brain injury (TBI) commonly affects younger people and causes life-long impairments in physical, cognitive, behavioural and social function. The cognitive, behavioural and personality deficits are usually more disabling than the residual physical deficits. Recovery from TBI can continue for at least 5 years after injury. Rehabilitation is effective using an interdisciplinary approach, and close liaison with the patient, family and carers. The focus is on issues such as retraining in activities of daily living, pain management, cognitive and behavioural therapies, and pharmacological management. The social burden of TBI is significant, and therefore family education and counselling, and support of patient and carers, is important. General practitioners play an important role in providing ongoing support in the community, monitoring for medical complications, behavioural and personality issues, social reintegration, carer coping skills and return-to-work issues.

  7. Multiplex Brain Proteomic Analysis Revealed the Molecular Therapeutic Effects of Buyang Huanwu Decoction on Cerebral Ischemic Stroke Mice.

    Directory of Open Access Journals (Sweden)

    Hong-Jhang Chen

    Full Text Available Stroke is the second-leading cause of death worldwide, and tissue plasminogen activator (TPA is the only drug used for a limited group of stroke patients in the acute phase. Buyang Huanwu Decoction (BHD, a traditional Chinese medicine prescription, has long been used for improving neurological functional recovery in stroke. In this study, we characterized the therapeutic effect of TPA and BHD in a cerebral ischemia/reperfusion (CIR injury mouse model using multiplex proteomics approach. After the iTRAQ-based proteomics analysis, 1310 proteins were identified from the mouse brain with <1% false discovery rate. Among them, 877 quantitative proteins, 10.26% (90/877, 1.71% (15/877, and 2.62% (23/877 of the proteins was significantly changed in the CIR, BHD treatment, and TPA treatment, respectively. Functional categorization analysis showed that BHD treatment preserved the integrity of the blood-brain barrier (BBB (Alb, Fga, and Trf, suppressed excitotoxicity (Grm5, Gnai, and Gdi, and enhanced energy metabolism (Bdh, thereby revealing its multiple effects on ischemic stroke mice. Moreover, the neurogenesis marker doublecortin was upregulated, and the activity of glycogen synthase kinase 3 (GSK-3 and Tau was inhibited, which represented the neuroprotective effects. However, TPA treatment deteriorated BBB breakdown. This study highlights the potential of BHD in clinical applications for ischemic stroke.

  8. Fear of falling after brain injury.

    Science.gov (United States)

    Collicutt McGrath, Joanna

    2008-07-01

    To investigate the prevalence and nature of fear of falling in a sample of people with severe acquired brain injury. A descriptive study. A regional inpatient neurological rehabilitation unit. One hundred and five adults with acquired brain injury of mixed aetiology. All 105 participants were rated by observers who were asked to judge the degree to which fear behaviour interfered with rehabilitation therapy (activity limitation). Eighty-two participants also rated themselves. They were asked to report the degree of distress caused by fear. Both participants and observers were asked to describe the focus of any reported fear. Two stepwise logistic regression analyses were carried out to identify variables that predicted fear giving rise to significant activity limitation and fear giving rise to significant subjective distress. Self and observer rating scales designed and constructed specifically for the study. Raters reported significant fear-related activity limitation in 12-15% of participants. Significant fear-related subjective distress was reported by 40% of participants. Fear of falling, fear of physical harm and fear of not making sufficient rehabilitation progress dominated the reports of both observers and participants. The variables predicting significant activity limitation were premorbid alcohol misuse, low functional ability and the occurrence of a fall since onset. The variables predicting significant subjective distress were poor motor coordination and organization, and good verbal comprehension. Fear of falling is a clinically significant phenomenon in younger adults recovering from severe acquired brain injury. Fear sufficient to cause high degrees of subjective distress was often not evident to observers. Proactive questioning about fear of falling is therefore advisable when working clinically with this group.

  9. Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Arshed Nazmi

    2018-03-01

    Full Text Available BackgroundPeriventricular leukomalacia (PVL is the most common form of preterm brain injury affecting the cerebral white matter. This type of injury involves a multiphase process and is induced by many factors, including hypoxia–ischemia (HI and infection. Previous studies have suggested that lymphocytes play a significant role in the pathogenesis of brain injury, and the aim of this study was to determine the contribution of lymphocyte subsets to preterm brain injury.MethodsImmunohistochemistry on brain sections from neonatal mice was performed to evaluate the extent of brain injury in wild-type and T cell and B cell-deficient neonatal mice (Rag1−/− mice using a mouse model of HI-induced preterm brain injury. Flow cytometry was performed to determine the presence of different types of immune cells in mouse brains following HI. In addition, immunostaining for CD3 T cells and CD20 B cells was performed on postmortem preterm human infant brains with PVL.ResultsMature lymphocyte-deficient Rag1−/− mice showed protection from white matter loss compared to wild type mice as indicated by myelin basic protein immunostaining of mouse brains. CD3+ T cells and CD20+ B cells were observed in the postmortem preterm infant brains with PVL. Flow cytometry analysis of mouse brains after HI-induced injury showed increased frequency of CD3+ T, αβT and B cells at 7 days after HI in the ipsilateral (injured hemisphere compared to the contralateral (control, uninjured hemisphere.ConclusionLymphocytes were found in the injured brain after injury in both mice and humans, and lack of mature lymphocytes protected neonatal mice from HI-induced brain white matter injury. This finding provides insight into the pathology of perinatal brain injury and suggests new avenues for the development of therapeutic strategies.

  10. [Injuries to the upper cervical medulla in severe brain injuries].

    Science.gov (United States)

    Woischneck, D; Kapapa, T; Grimm, C; Skalej, M; Schmitz, B; Blumstein, N; Firsching, R

    2011-10-01

    Cranial magnetic resonance imaging (MRI) was performed in 250 patients who had been unconscious post-trauma for at least 24 hours. The frequency and the characteristics of injuries to the upper cervical myelon were determined. Between 1996 and 2009, MRI was carried out within 8 days of trauma. No lesions of the upper cervical medulla were found without accompanying damage to the medulla oblongata. Two groups were found to have a lesion in the upper cervical myelon. (i) In 3.2 % of the patients in a state of deep coma MRI revealed lesions in the entire brain stem. These died without waking from coma. (ii) 2 % of the patients were found to have additional damage to the distal medulla oblongata. These victims of high-speed traumas awoke from coma after 2-3 days. They revealed frontal contusions of the brain and traumatic subarachnoidal hemorrhages. Injuries to the bony upper cervical spine and/or the skull base were frequent. Four of them died, one patient survived with severe disabilities. Two types of lesions involving the upper cervical myelon could be differentiated, both of which occur only in association with lesions in the medulla oblongata. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Prediction of stroke thrombolysis outcome using CT brain machine learning

    Directory of Open Access Journals (Sweden)

    Paul Bentley

    2014-01-01

    Full Text Available A critical decision-step in the emergency treatment of ischemic stroke is whether or not to administer thrombolysis — a treatment that can result in good recovery, or deterioration due to symptomatic intracranial haemorrhage (SICH. Certain imaging features based upon early computerized tomography (CT, in combination with clinical variables, have been found to predict SICH, albeit with modest accuracy. In this proof-of-concept study, we determine whether machine learning of CT images can predict which patients receiving tPA will develop SICH as opposed to showing clinical improvement with no haemorrhage. Clinical records and CT brains of 116 acute ischemic stroke patients treated with intravenous thrombolysis were collected retrospectively (including 16 who developed SICH. The sample was split into training (n = 106 and test sets (n = 10, repeatedly for 1760 different combinations. CT brain images acted as inputs into a support vector machine (SVM, along with clinical severity. Performance of the SVM was compared with established prognostication tools (SEDAN and HAT scores; original, or after adaptation to our cohort. Predictive performance, assessed as area under receiver-operating-characteristic curve (AUC, of the SVM (0.744 compared favourably with that of prognostic scores (original and adapted versions: 0.626–0.720; p < 0.01. The SVM also identified 9 out of 16 SICHs, as opposed to 1–5 using prognostic scores, assuming a 10% SICH frequency (p < 0.001. In summary, machine learning methods applied to acute stroke CT images offer automation, and potentially improved performance, for prediction of SICH following thrombolysis. Larger-scale cohorts, and incorporation of advanced imaging, should be tested with such methods.

  12. Neurobehavioral Assessments in a Mouse Model of Neonatal Hypoxic-ischemic Brain Injury.

    Science.gov (United States)

    Kim, MinGi; Yu, Ji Hea; Seo, Jung Hwa; Shin, Yoon-Kyum; Wi, Soohyun; Baek, Ahreum; Song, Suk-Young; Cho, Sung-Rae

    2017-11-24

    We performed unilateral carotid artery occlusion on CD-1 mice to create a neonatal hypoxic-ischemic (HI) model and investigated the effects of neonatal HI brain injury by studying neurobehavioral functions in these mice compared to non-operated (i.e., normal) mice. During the study, Rice-Vannucci's method was used to induce neonatal HI brain damage in postnatal day 7-10 (P7-10) mice. The HI operation was performed on the pups by unilateral carotid artery ligation and exposure to hypoxia (8% O2 and 92% N2 for 90 min). One week after the operation, the damaged brains were evaluated with the naked eye through the semi-transparent skull and were categorized into subgroups based on the absence ("no cortical injury" group) or presence ("cortical injury" group) of cortical injury, such as a lesion in the right hemisphere. On week 6, the following neurobehavioral tests were performed to evaluate the cognitive and motor functions: passive avoidance task (PAT), ladder walking test, and grip strength test. These behavioral tests are helpful in determining the effects of neonatal HI brain injury and are used in other mouse models of neurodegenerative diseases. In this study, neonatal HI brain injury mice showed motor deficits that corresponded to right hemisphere damage. The behavioral test results are relevant to the deficits observed in human neonatal HI patients, such as cerebral palsy or neonatal stroke patients. In this study, a mouse model of neonatal HI brain injury was established and showed different degrees of motor deficits and cognitive impairment compared to non-operated mice. This work provides basic information on the HI mouse model. MRI images demonstrate the different phenotypes, separated according to the severity of brain damage by motor and cognitive tests.

  13. Integrative Medicine in Traumatic Brain Injury.

    Science.gov (United States)

    Drake, David F; Hudak, Anne M; Robbins, William

    2017-05-01

    Complementary and alternative medicine (CAM) is a group of diverse medical and health care systems, practices, and products that are not presently considered to be a part of conventional medicine. Integrative medicine combines treatment with conventional medical practices and elements of CAM in which there is strong evidence in efficacy and safety. Although there is growing interest in the integrative medical approach in treating the patient population with traumatic brain injury, there is a paucity in high-quality clinical trials supporting its use. This article reviews the background and current clinical data concerning some of the more common CAM interventions. Published by Elsevier Inc.

  14. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...... of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain...

  15. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  16. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  17. Traumatic Brain Injury in the Workplace.

    Science.gov (United States)

    Paci, Michael; Infante-Rivard, Claire; Marcoux, Judith

    2017-09-01

    Work-related traumatic brain injuries (TBIs) are not well documented in the literature. Published studies mostly rely on worker databases that fail to provide clinically relevant information. Our objective is to describe the characteristics of hospitalized patients and their work-related TBI. We used the Québec provincial trauma and TBI program databases to identify all patients with a diagnosis of work-related TBI admitted to the Montreal General Hospital, a level 1 trauma center, between 2000 and 2014. Data from their medical records were extracted using a predetermined information sheet. Simple descriptive statistics (means and percentages) were used to summarize the data. A total of 285 cases were analyzed. Workplace TBI patients were middle-aged (mean, 43.62 years), overwhelmingly male (male:female 18:1), mostly healthy, and had completed a high school level education. Most workers were from the construction industry; falling was the most common mechanism of injury. The majority of patients (76.8%) presented with a mild TBI; only a minority (14%) required neurosurgery. The most common finding on computed tomography was skull fracture. The median length of hospitalization was 7 days, after which most patients were discharged directly home. A total of 8.1% died of their injuries. Our study found that most hospitalized victims of work-related TBI had mild injury; however, some required neurosurgical intervention and a non-negligible proportion died of their injury. Improving fall prevention, accurately document helmet use and increasing the safety practice in the construction industry may help decrease work-related TBI burden.

  18. Evaluation of role of brain SPECT in diagnosis of post stroke dementia

    International Nuclear Information System (INIS)

    Yousepour, G.; Alavi, M.

    2003-01-01

    Post stroke dementia is one of the most common complications of stroke that is preventable and relatively treatable too. The purpose of the study is comparison between the positive findings in the brain CT scan and brain perfusion SPECT. 15 patients who were complicated by dementia after cerebrovascular accident and also 5 patients as a control group enrolled in this study. Brain CT scan and brain SPECT were performed during at most one week after stroke. Abnormal findings in both brain CT scan and SPECT were seen in 46% of patients. Brain CT scan disclosed more abnormal findings compared to brain SPECT (33.3%). While brain SPECT findings were more information than brain CT scan (20%) this study is indicating that brain CT scan and the brain SPECT concomitantly for each other in better diagnosis of post stroke dementia. We did not find any specific diagnostic pattern in brain SPECT of patients suffering from post stroke dementia. The low quality of brain SPECT in spite of uniformity of gamma camera may be suggestive of low quality of Iran produced ECD kit that needs further evaluation

  19. DIAGNOSTICS AND TREATMENT OF MILD AND MODERATE BRAIN INJURY IN CHILDREN WITH ACUTE CRANIOCEREBRAL TRAUMA

    Directory of Open Access Journals (Sweden)

    V.N. Shadrin

    2010-01-01

    Full Text Available Authors present modern approach to the diagnostics and treatment of children with acute period of mild and moderate brain injury. It is necessary to provide timely diagnostics in children with craniocerebral trauma via neurovisualization: ultrasonic scan and computer tomography of brain (for a diagnostics of ischemic and hemorrhagic strokes, duplex ultrasonic scan and magnetic resonance imaging (for a detection of traumatic dissections of main arteries of head. The article considers main aspects of treatment of children with craniocerebral injury, describes indications to pathogenetical therapy aimed to compensation of disorders in dynamics of cerebrospinal liquor, microcirculation and antioxidant status.Key words: children, cerebrospinal injury, diagnostics, treatment.(Voprosy sovremennoi pediatrii — Current Pediatrics. 2010;9(2:90-93

  20. Burden and outcome of prevalent ischemic brain disease in a national acute stroke registry.

    Science.gov (United States)

    Koton, Silvia; Tsabari, Rakefet; Molshazki, Noa; Kushnir, Moshe; Shaien, Radi; Eilam, Anda; Tanne, David

    2013-12-01

    Previous overt stroke and subclinical stroke are frequent in patients with stroke; yet, their clinical significance and effects on stroke outcome are not clear. We studied the burden and outcome after acute ischemic stroke by prevalent ischemic brain disease in a national registry of hospitalized patients with acute stroke. Patients with ischemic stroke in the National Acute Stroke Israeli prospective hospital-based registry (February to March 2004, March to April 2007, and April to May 2010) with information on previous overt stroke and subclinical stroke per computed tomography/MRI (n=3757) were included. Of them, a subsample (n=787) was followed up at 3 months. Logistic regression models were computed for outcomes in patients with prior overt stroke or subclinical stroke, compared with patients with first stroke, adjusting for age, sex, vascular risk factors, stroke severity, and clinical classification. Two-thirds of patients had a prior overt stroke or subclinical stroke. Death rates were similar for patients with and without prior stroke. Adjusted odds ratios (OR; 95% confidence interval [CI]) for disability were increased for patients with prior overt stroke (OR, 1.31; 95% CI, 1.03-1.66) and subclinical stroke (OR, 1.45; 95% CI, 1.16-1.82). Relative odds of Barthel Index≤60 for patients with prior overt stroke (OR, 2.04; 95% CI, 1.14-3.68) and with prior subclinical stroke (OR, 2.04; 95% CI, 1.15-3.64) were twice higher than for patients with a first stroke. ORs for dependency were significantly increased for patients with prior overt stroke (OR, 1.95; 95% CI, 1.19-3.20) but not for those with subclinical stroke (OR, 1.36; 95% CI, 0.84-2.19). In our national cohort of patients with acute ischemic stroke, nearly two thirds had a prior overt stroke or subclinical stroke. Risk of poor functional outcomes was increased for patients with prior stroke, both overt and subclinical.

  1. Ischemic preconditioning protects against ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Xiao-meng Ma

    2016-01-01

    Full Text Available In this study, we hypothesized that an increase in integrin αv ß 3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αv ß 3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αv ß 3 and vascular endothelial growth factor levels in the brain following ischemia.

  2. MRI of radiation injury to the brain

    International Nuclear Information System (INIS)

    Curnes, J.T.; Laster, D.W.; Ball, M.R.; Moody, D.M.; Witcofski, R.L.

    1986-01-01

    Nine patients with a history of radiation of 2400-6000 rad (24-60 Gy) to the brain were examined by magnetic resonance imaging (MRI) and computed tomography (CT). MRI demonstrated abnormalities in the periventricular white matter in all patients. The abnormal periventricular signal was characterized by a long T2 and was demonstrated best on coronal spin-echo (SE) 1000/80 images. A characteristic scalloped appearance at the junction of the gray-white matter was seen on MR images of seven patients, and represented extensive white-matter damage involving the more peripheral arcuate fiber systems. This differs from transependymal absorption, which is seen best on SE 3000/80 images and has a smooth peripheral margin. Cranial CT demonstrated white-matter lucencies in six cases but generally failed to display the extent of white-matter injury demonstrated by MRI. MRI is uniquely suited to detect radiation injury to the brain because of its extreme sensitivity to white-matter edema

  3. Neuropsychological rehabilitation for traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Marzena Chantsoulis

    2015-05-01

    Full Text Available The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI. More broadly, we discussed cognitive rehabilitation therapy (CRT which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the ‘Academy of Life,’ which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.

  4. Traumatic Brain Injury: Caregivers’ Problems and Needs

    Directory of Open Access Journals (Sweden)

    syed tajjudin syed hassan

    2011-03-01

    Full Text Available Traumatic brain injury (TBI is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers’ problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, fi nancial inadequacy, anxiety, distress, coping defi cits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, fi nancial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders. Keywords: caregivers, rehabilitation, traumatic brain injury

  5. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  6. Ethics of neuroimaging after serious brain injury.

    Science.gov (United States)

    Weijer, Charles; Peterson, Andrew; Webster, Fiona; Graham, Mackenzie; Cruse, Damian; Fernández-Espejo, Davinia; Gofton, Teneille; Gonzalez-Lara, Laura E; Lazosky, Andrea; Naci, Lorina; Norton, Loretta; Speechley, Kathy; Young, Bryan; Owen, Adrian M

    2014-05-20

    Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to "yes" or "no" answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients' interests, and we explore conceptual issues in the

  7. Exogenous stem cells pioneer a biobridge to the advantage of host brain cells following stroke: New insights for clinical applications

    Directory of Open Access Journals (Sweden)

    Marci G Crowley

    2017-01-01

    Full Text Available Stroke continues to maintain its status as one of the top causes of mortality within the United States. Currently, the only Food and Drug Administration (FDA-approved drug in place for stroke patients, tissue plasminogen activator (tPA, has a rigid therapeutic window, closing at approximately 4.5 h after stroke onset. Due to this short time frame and other restrictions, such as any condition that increases a patient's risk for hemorrhaging, it has been predicted that <5% of ischemic stroke patients benefit from tPA. Given that rehabilitation therapy remains the only other option for stroke victims, there is a clear unmet clinical need for treatment available for the remaining 95%. While still considered an experimental treatment, the utilization of stem cell therapies for stroke holds consistent promise. Copious preclinical studies report the capacity for transplanted stem cells to rescue the brain parenchyma surrounding the stroke-induced infarct core. At present, the exact mechanisms in which stem cells contribute a robust therapeutic benefit remains unclear. Following stem cell administration, researchers have observed cell replacement, an increase in growth factors, and a reduction in inflammation. With a deeper understanding of the precise mechanism of stem cells, these therapies can be optimized in the clinic to afford the greatest therapeutic benefit. Recent studies have depicted a unique method of endogenous stem cell activation as a result of stem cell therapy. In both traumatic brain injury and stroke models, transplanted mesenchymal stromal cells (MSCs facilitated a pathway between the neurogenic niches of the brain and the damaged area through extracellular matrix remodeling. The biobridge pioneered by the MSCs was utilized by the endogenous stem cells, and these cells were able to travel to the damaged areas distal to the neurogenic niches, a feat unachievable without prior remodeling. These studies broaden our understanding of stem

  8. Chronic Traumatic Brain Injury in Amateur Boxers

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2008-04-01

    Full Text Available Introduction & objective: Despite of young and adolescence intent to the boxing sport, because of dominant aggression and direct blows contact to head, face and central nervous system, it is continuously criticize by different groups. The groups of sporting and physician conventions are distinguished boxing with physical and neuropsychological disorders and some groups believe that side effects of this sport are not more than other sports. For this base the aim of this study was to determine the chronic traumatic brain injury in a group amateur boxers.Materials & Methods: In a case-control study, three groups of sport men were considered, each group contained 20 randomly selected cases. The first group were amateur boxers with 4 years minimal activity(directly has been presented to the head blows, second group were amateur soccer players with 4 years minimal activity(has been presented to the not very severe head blows, third group were non athlete subjects .The groups were matched in weight, height, age and education .To understand brain disorder interview by medicine method has been used, then Wiskancin, Bonardele, Bender geshtalt, Kim karad visual memory, Benton and wechler memory (Alef type tests has been performed and EEG has got in the same hour and condition.Results: The homogeneity of between group variances was gained by the statistical method. Also between structural–visual abilities neuropsychological aspect in groups, significant difference has been gained (p= 0.000. In Kim karad visual memory test at the mild and long term visual memory deficit, significant differences between three groups was observed (P= 0.000, P=0.009 that least score has been belonged to the boxers. Also in boxers 6 abnormal EEGs is observed.Conclusion: It can be said that of four years amateur boxing can affect on boxers visual and memory perception and their spatial orientation. Additionally our study have showed that amateur boxing has a significant

  9. Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury

    Directory of Open Access Journals (Sweden)

    Shelly A Cruz

    2018-01-01

    Full Text Available Ischemic brain injury triggers neuronal cell death by apoptosis via caspase activation and by necroptosis through activation of the receptor-interacting protein kinases (RIPK associated with the tumor necrosis factor-alpha (TNF-α/death receptor. Recent evidence shows RIPK inhibitors are neuroprotective and alleviate ischemic brain injury in a number of animal models, however, most have not yet undergone clinical trials and safety in humans remains in question. Dabrafenib, originally identified as a B-raf inhibitor that is currently used to treat melanoma, was later revealed to be a potent RIPK3 inhibitor at micromolar concentrations. Here, we investigated whether Dabrafenib would show a similar neuroprotective effect in mice subjected to ischemic brain injury by photothrombosis. Dabrafenib administered intraperitoneally at 10 mg/kg one hour after photothrombosis-induced focal ischemic injury significantly reduced infarct lesion size in C57BL6 mice the following day, accompanied by a markedly attenuated upregulation of TNF-α. However, subsequent lower doses (5 mg/kg/day failed to sustain this neuroprotective effect after 4 days. Dabrafenib blocked lipopolysaccharides-induced activation of TNF-α in bone marrow-derived macrophages, suggesting that Dabrafenib may attenuate TNF-α-induced necroptotic pathway after ischemic brain injury. Since Dabrafenib is already in clinical use for the treatment of melanoma, it might be repurposed for stroke therapy.

  10. Outcomes of a multicomponent intervention on occupational performance in persons with unilateral acquired brain injury.

    Science.gov (United States)

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; Rojo Mota, G; Martínez Piédrola, R; Pérez de Heredia Torres, M

    2016-01-01

    Complications after unilateral acquired brain injury (ABI) can affect various areas of expertise causing (depending on the location of the lesion) impairment in occupational performance. The aim of this study was to analyze and compare the concepts of occupational performance and functional independence, both before and after a multicomponent intervention including occupational therapy, in persons with unilateral brain damage. This was a longitudinal quasi-experimental pretest post-test study in a sample of 58 patients with unilateral brain injury (28 with traumatic brain injury and 30 with ischemic stroke). The patients' level of independence was measured using the short version of the International Classification of Functioning, Disability and Health. We also measured quality of performance using the Assessment of Motor and Process Skills. The findings of this study showed that patients with injury in the right hemisphere improved more than those with left hemisphere damage (p<0.001). All the patients with ABI, especially those with right-sided injury, derived benefit from the multicomponent intervention, except in the area of motor skills. More research is needed on the specific techniques that might address such skills.

  11. Traumatic brain injury among refugees and asylum seekers.

    Science.gov (United States)

    McPherson, Jacob I

    2017-12-28

    Refugees and asylum seekers face many challenges in their pursuit of a safe home. The journey for displaced individuals can be extremely dangerous and many do not survive or go missing. Survivors face significant risks of injury, abuse, and torture. Traumatic brain injury is one of the most common and disabling injuries sustained by these populations. This already complex condition can have profound implications on these groups and their families due to factors related to mental health, cultural perspectives, and their ability to navigate healthcare systems. A literature review was performed to investigate the incidence and prevalence of torture and traumatic brain injury in displaced and fleeing populations. Impacts of traumatic brain injury and residency status on outcomes in these individuals were also examined. The incidence and prevalence of torture and traumatic brain injury among refugees and asylum seekers is significant. These populations may access healthcare systems differently than other groups and as a result may experience a unique health-related outcomes following traumatic brain injury. This information should sensitize healthcare providers to a potential history of traumatic brain injury sustained by patients/clients who are refugees or asylum seekers and may serve to guide some clinical encounters. Implications for rehabilitation Traumatic brain injuries are commonly sustained by refugees and asylum seekers. Cultural factors may complicate how refugees and asylum seekers understand, report, and manage these injuries. The above may be worsened by cognitive, emotional, and behavioral changes following traumatic brain injury. Rehabilitation providers should be aware of potential traumatic brain injury history during encounters with refugee and asylum seeker populations, especially if a history of torture is suspected.

  12. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury

    Science.gov (United States)

    2008-06-19

    brain slices were treated after injury with either a nootropic agent (aniracetam, cyclothiazide, IDRA 21, or 1-BCP) or the antiepileptic drug...pharmacological approach. 15. SUBJECT TERMS traumatic brain injury, cell necrosis, neuroprotection, nootropics , epilepsy, long-term potentiation...render their use problematic in an effective brain tourniquet system. We chose to focus our investigations on the nootropic (cognition enhancing) drugs

  13. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke.

    Science.gov (United States)

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H

    2015-10-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on

  14. Increased Risk of Hemorrhagic and Ischemic Strokes in Patients With Splenic Injury and Splenectomy

    Science.gov (United States)

    Lin, Jiun-Nong; Lin, Cheng-Li; Lin, Ming-Chia; Lai, Chung-Hsu; Lin, Hsi-Hsun; Yang, Chih-Hui; Kao, Chia-Hung

    2015-01-01

    Abstract The spleen is a crucial organ in humans. Little is known about the association between stroke and splenic injury or splenectomy. The aim of this study was to determine the risk of stroke in patients with splenic injury and splenectomy. A nationwide cohort study was conducted by analyzing the National Health Insurance Research Database in Taiwan. For comparison, control patients were selected and matched with splenic injury patients in a ratio of 4:1 according to age, sex, and the year of hospitalization. We analyzed the risks of stroke using a Cox proportional-hazards regression analysis. A total of 11,273 splenic injury patients, including 5294 splenectomized and 5979 nonsplenectomized patients, and 45,092 control patients were included in this study. The incidence rates of stroke were 8.05, 6.53, and 4.25 per 1000 person-years in splenic injury patients with splenectomy, those without splenectomy, and the control cohort, respectively. Compared with the control cohort, splenic injury patients with splenectomy exhibited a 2.05-fold increased risk of stroke (95% confidence interval [CI] 1.8–2.34), whereas those without splenectomy exhibited a 1.74-fold increased risk (95% CI 1.51–2). Splenectomy entailed an additional 1.21-fold increased risk of stroke compared with nonsplenectomy in patients with splenic injury. This study revealed that splenic injury and splenectomy were significantly associated with an increased risk of hemorrhagic and ischemic strokes. The results of this study may alert physicians and patients to the complications of splenic injury and splenectomy. PMID:26334909

  15. Apathy following traumatic brain injury: a review.

    Science.gov (United States)

    Worthington, Andrew; Wood, Rodger Ll

    2018-04-13

    Apathy is a common problem after traumatic brain injury (TBI) and can have a major impact on cognitive function, psychosocial outcome and engagement in rehabilitation. For scientists and clinicians it remains one of the least understood aspects of brain-behaviour relationships encompassing disturbances of cognition, motivation, emotion and action, and is variously an indication of organic brain disease or psychiatric disorder. Apathy can be both sign and symptom and has been proposed as a diagnosis in its own right as well as a secondary feature of other conditions. This review considers previous approaches to apathy in terms of relevant psychological constructs and those neural counterparts most likely to be implicated after TBI. Neurobehavioural disorders of apathy are characterised chiefly by dysfunction of executive control of goal-oriented behaviour or the neural substrates of reward-based and emotional learning. We argue that it is possible to distinguish a primary disorder of apathy as an organic neurobehavioural state from secondary presentations due to an impoverished environment or psychological disturbance which has implications for treatment. Copyright © 2018. Published by Elsevier Ltd.

  16. Impact of additional extracranial injuries on outcome after mild traumatic brain injury.

    NARCIS (Netherlands)

    Stulemeijer, M.; Werf, S.P. van der; Jacobs, B.; Biert, J.; Vugt, A.B. van; Brauer, J.; Vos, P.E.

    2006-01-01

    Many patients with mild traumatic brain injury (MTBI) concurrently sustain extracranial injuries; however, little is known about the impact of these additional injuries on outcome. We assessed the impact of additional injuries on the severity of postconcussional symptoms (PCS) and functional outcome

  17. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate...... brain water content during the course of cerebral infarction. Measurements were performed serially in the acute, subacute, and chronic phase of infarction. Fourteen patients with acute cerebral infarction were examined as well as 9 healthy controls. To correlate with regional cerebral blood flow (r......CBF) SPECT-scanning using 99mTc-HMPAO as flow tracer was performed in the patients. Mean water content (SD) in the infarct area was 37.7 (5.1); 41.8 (4.8); 35.2 (5.4); and 39.3 (5.1) mol x [kg wet weight](-1) at 0-3; 4-7; 8-21; and >180 days after stroke, respectively. Water content increased between Day 0...

  18. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  19. Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury

    Science.gov (United States)

    Jiang, Xiaoyan; Zhang, Lili; Pu, Hongjian; Hu, Xiaoming; Zhang, Wenting; Cai, Wei; Gao, Yanqin; Leak, Rehana K.; Keep, Richard F.; Bennett, Michael V. L.; Chen, Jun

    2017-01-01

    The damage borne by the endothelial cells (ECs) forming the blood–brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs—namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30–60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R). Using in vivo and in vitro models, we found that targeted overexpression of HSP27 specifically within ECs—but not within neurons—ameliorated BBB impairment 1–24 h after I/R. Mechanistically, HSP27 suppressed I/R-induced aberrant actin polymerization, stress fiber formation, and junctional protein translocation in brain microvascular ECs, independent of its protective actions against cell death. By preserving BBB integrity after I/R, EC-targeted HSP27 overexpression attenuated the infiltration of potentially destructive neutrophils and macrophages into brain parenchyma, thereby improving long-term stroke outcome. Notably, early poststroke administration of HSP27 attached to a cell-penetrating transduction domain (TAT-HSP27) rapidly elevated HSP27 levels in brain microvessels and ameliorated I/R-induced BBB disruption and subsequent neurological deficits. Thus, the present study demonstrates that HSP27 can function at the EC level to preserve BBB integrity after I/R brain injury. HSP27 may be a therapeutic agent for ischemic stroke and other neurological conditions involving BBB breakdown. PMID:28137866

  20. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  1. Transcriptomics of Post-Stroke Angiogenesis in the Aged Brain

    OpenAIRE

    Buga, Ana Maria; Margaritescu, Claudiu; Scholz, Claus Juergen; Radu, Eugen; Zelenak, Christine; Popa-Wagner, Aurel

    2014-01-01

    Despite the obvious clinical significance of post-stroke angiogenesis in aged subjects, a detailed transcriptomic analysis of post-stroke angiogenesis has not yet been undertaken in an aged experimental model. In this study, by combining stroke transcriptomics with immunohistochemistry in aged rats and post-stroke patients, we sought to identify an age-specific gene expression pattern that may characterize the angiogenic process after stroke. We found that both young and old infarcted rats in...

  2. Nonsurgical interventions after mild traumatic brain injury

    DEFF Research Database (Denmark)

    Nygren-de Boussard, Catharina; Holm, Lena W; Cancelliere, Carol

    2014-01-01

    OBJECTIVE: To synthesize the best available evidence regarding the impact of nonsurgical interventions on persistent symptoms after mild traumatic brain injury (MTBI). DATA SOURCES: MEDLINE and other databases were searched (2001-2012) with terms including "rehabilitation." Inclusion criteria were...... of 7 studies related to nonsurgical interventions were found to have a low risk of bias. One studied the effect of a scheduled telephone intervention offering counseling and education on outcome and found a significantly better outcome for symptoms (6.6 difference in adjusted mean symptom score; 95...... evidence suggests that early, reassuring educational information is beneficial after MTBI. Well-designed intervention studies are required to develop effective treatments and improve outcomes for adults and children at risk for persistent symptoms after MTBI....

  3. Monitoring Agitated Behavior After acquired Brain Injury

    DEFF Research Database (Denmark)

    Aadal, Lena; Mortensen, Jesper; Nielsen, Jørgen Feldbaek

    2016-01-01

    Purpose: To describe the onset, duration, intensity, and nursing shift variation of agitated behavior in patients with acquired brain injury (ABI) at a rehabilitation hospital. Design: Prospective descriptive study. Methods: A total of 11 patients with agitated behavior were included. Agitated...... behavior was registered with the Agitated Behavior Scale (ABS). The nurse or therapist allocated the individual patient assessed ABS during each shift. Intensity of agitated behavior was tested using exact test. A within-subject shift effect was analyzed with repeated-measure ANOVA. Findings: The onset...... of agitated behavior was at a median of 14 (1–28) days from admission. Seven patients remained agitated beyond 3 weeks from onset. Severe intensity of agitation was observed in 86 of 453 nursing shifts. Differences in agitated behavior between day, evening, and night shifts were found, F(2.20) = 7.90, p...

  4. Traumatic brain injury: caregivers' problems and needs.

    Science.gov (United States)

    Hassan, S T S; Khaw, W F; Rosna, A R; Husna, J

    2011-01-01

    Traumatic brain injury (TBI) is an increasingly major world health problem. This short review using the most pertinent articles on TBI caregiving problems and needs highlights the pressing issues. Articles focusing on both TBI-caregivers' problems and needs are rarely found, especially for developing countries. Most TBI-caregiving is done by family members, whose altered lives portend burden and stresses which add to the overwhelming demand of caring for the TBI-survivor. Lack of information, financial inadequacy, anxiety, distress, coping deficits, poor adaptability, inadequate knowledge and skills, and a poor support system comprise the major problems. Dysfunctional communication between caregivers and care-receivers has been little researched. The major needs are focused on health and rehabilitation information, financial advice and assistance, emotional and social support, and positive psychological encouragement. In time, health information needs may be met, but not emotional support. Information on TBI caregiving problems and unmet needs is critical to all relevant healthcare stakeholders.

  5. Brain injury in a forensic psychiatry population.

    Science.gov (United States)

    Colantonio, A; Stamenova, V; Abramowitz, C; Clarke, D; Christensen, B

    2007-12-01

    The prevalence and profile of adults with a history of traumatic brain injury (TBI) has not been studied in large North American forensic mental health populations. This study investigated how adults with a documented history of TBI differed with the non-TBI forensic population with respect to demographics, psychiatric diagnoses and history of offences. A retrospective chart review of all consecutive admissions to a forensic psychiatry programme in Toronto, Canada was conducted. Information on history of TBI, psychiatric diagnoses, living environments and types of criminal offences were obtained from medical records. History of TBI was ascertained in 23% of 394 eligible patient records. Compared to those without a documented history of TBI, persons with this history were less likely to be diagnosed with schizophrenia but more likely to have alcohol/substance abuse disorder. There were also differences observed with respect to offence profiles. This study provides evidence to support routine screening for a history of TBI in forensic psychiatry.

  6. Destination memory in traumatic brain injuries.

    Science.gov (United States)

    Wili Wilu, Amina; Coello, Yann; El Haj, Mohamad

    2018-03-17

    Destination memory, which is socially driven, refers to the ability to remember to whom one has sent information. Our study investigated destination memory in patients with traumatic brain injuries (TBIs). Patients and control participants were invited to tell proverbs (e.g., "the pen is mightier than the sword") to pictures of celebrities (e.g., Barack Obama). Then they were asked to indicate to which celebrity they had previously told the proverbs. Besides the assessment of destination memory, participants performed a binding task in which they were required to associate letters with their corresponding location. Analysis demonstrated less destination memory and binding in patients with TBIs than in controls. In both populations, significant correlations were observed between destination memory and performances on the binding task. These findings demonstrate difficulty in the ability to attribute information to its appropriate destination in TBI patients, perhaps owing to difficulties in binding separate information together to form a coherent representation of an event in memory.

  7. Rehabilitation of persons with traumatic brain injury.

    Science.gov (United States)

    The objective of this NIH Consensus Statement is to inform the biomedical research and clinical practice communities of the results of the NIH Consensus Development Conference on Rehabilitation of Persons with Traumatic Brain Injury. The statement provides state-of-the-art information regarding effective rehabilitation measures for persons who have suffered a traumatic brain injury (TBI) and presents the conclusions and recommendations of the consensus panel regarding these issues. In addition, the statement identifies those areas that deserve further investigation. Upon completion of this educational activity, the reader should possess a clear working clinical knowledge of the state of the art regarding this topic. The target audience for this statement includes, but is not limited to, pediatricians, family practitioners, internists, neurologists, physiatrists, psychologists, and behavioral medicine specialists. Participants were a non-Federal, nonadvocate, 16-member panel representing the fields of neuropsychology, neurology, psychiatry, behavioral medicine, family medicine, pediatrics, physical medicine and rehabilitation, speech and hearing, occupational therapy, nursing, epidemiology, biostatistics and the public. In addition, 23 experts from these same fields presented data to the panel and a conference audience of 883. The literature was searched through Medline and an extensive bibliography of references was provided to the panel and the conference audience. Experts prepared abstracts with relevant citations from the literature. A compendium of evidence was prepared by the panel which included a contribution from a patient with TBI, a report from an Evidence Based Practice Center of the Agency for Health Care Policy and Research, and a report from the National Center for Injury Prevention and Control at the Centers for Disease Control and Prevention. Scientific evidence was given precedence over clinical anecdotal experience. The panel, answering predefined

  8. Neuroprotective Strategies after Repetitive Mild Traumatic Brain Injury

    Science.gov (United States)

    2011-06-01

    performance in the HBOT groups improved sig- nificantly and was highly correlated with increased ipsilat- eral hippocampal blood volume ( cerebrovascular ...Oxygen Therapy Induces Cerebrovascular Changes and Improves Complex Learning/Memory in a Rat Open Head Bonk Chronic Brain Contusion Model. Undersea...injury. Dynamic brain trauma includes direct injury where trauma is directly imposed on the brain (e.g., non- accidental trauma, contact sports, falls

  9. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    Science.gov (United States)

    2011-09-01

    reaching chamber and a single banana -flavored food pellet (45 mg, Bioserv) was placed into a shallow food well 2 cm from the front wall on an external...Kansas City, Kansas, September 21, 2010. Invited Speaker, Neural Bases of Recovery after Brain Injury, Neuroplasticity in the Mature Brain, 20th...in rats. Eur. J. Neurosci. 17, 623–627. Rema, V., and Ebner, F.F. (2003). Lesions of mature barrel field cortex interfere with sensory processing and

  10. Diabetes Insipidus after Traumatic Brain Injury

    Science.gov (United States)

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  11. Iatrogenic traumatic brain injury during tooth extraction.

    Science.gov (United States)

    Troxel, Mark

    2015-01-01

    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures.

  12. Dysautonomia after severe traumatic brain injury.

    Science.gov (United States)

    Hendricks, H T; Heeren, A H; Vos, P E

    2010-09-01

    Dysautonomia after traumatic brain injury (TBI) is characterized by episodes of increased heart rate, respiratory rate, temperature, blood pressure, muscle tone, decorticate or decerebrate posturing, and profuse sweating. This study addresses the incidence of dysautonomia after severe TBI, the clinical variables that are associated with dysautonomia, and the functional outcome of patients with dysautonomia. A historic cohort study in patients with severe TBI [Glasgow Coma Scale (GCS) dysautonomia was 11.8%. Episodes of dysautonomia were prevalent during a mean period of 20.1 days (range 3-68) and were often initiated by discomfort. Patients with dysautonomia showed significant longer periods of coma (24.78 vs. 7.99 days) and mechanical ventilation (22.67 vs. 7.21 days). Dysautonomia was associated with diffuse axonal injury (DAI) [relative risk (RR) 20.83, CI 4.92-83.33] and the development of spasticity (RR 16.94, CI 3.96-71.42). Patients with dysautonomia experienced more secondary complications. They tended to have poorer outcome. Dysautonomia occurs in approximately 10% of patients surviving severe TBI and is associated with DAI and the development of spasticity at follow-up. The initiation of dysautonomia by discomfort supports the Excitatory: Inhibitory Ratio model as pathophysiological mechanism.

  13. Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: Is Metformin a viable countermeasure?

    Science.gov (United States)

    Kaisar, Mohammad A; Villalba, Heidi; Prasad, Shikha; Liles, Taylor; Sifat, Ali Ehsan; Sajja, Ravi K; Abbruscato, Thomas J; Cucullo, Luca

    2017-10-01

    Recently published in vitro and in vivo findings strongly suggest that BBB impairment and increased risk for stroke by tobacco smoke (TS) closely resemble that of type-2 diabetes (2DM) and develop largely in response to common key modulators such oxidative stress (OS), inflammation and alterations of the endogenous antioxidative response system (ARE) regulated by the nuclear factor erythroid 2-related factor (Nrf2). Preclinical studies have also shown that nicotine (the principal e-liquid's ingredient used in e-cigarettes) can also cause OS, exacerbation of cerebral ischemia and secondary brain injury. Herein we provide evidence that likewise to TS, chronic e-Cigarette (e-Cig) vaping can be prodromal to the loss of blood-brain barrier (BBB) integrity and vascular inflammation as well as act as a promoting factor for the onset of stroke and worsening of post-ischemic brain injury. In addition, recent reports have shown that Metformin (MF) treatment before and after ischemic injury reduces stress and inhibits inflammatory responses. Recent published data by our group revealead that MF promotes the activation of counteractive mechanisms mediated by the activation of Nrf2 which drastically reduce TS toxicity at the brain and cerebrovascular levels and protect BBB integrity. In this study we provide additional in vivo evidence showing that MF can effectively reduce the oxidative and inflammatory risk for stroke and attenuate post-ischemic brain injury promoted by TS and e-Cig vaping. Our data also suggest that MF administration could be extended as prophylactic care during the time window required for the renormalization of the risk levels of stroke following smoking cessation thus further studies in that direction are warrated. Published by Elsevier B.V.

  14. Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: Is Metformin a viable countermeasure?

    Directory of Open Access Journals (Sweden)

    Mohammad A. Kaisar

    2017-10-01

    Full Text Available Recently published in vitro and in vivo findings strongly suggest that BBB impairment and increased risk for stroke by tobacco smoke (TS closely resemble that of type-2 diabetes (2DM and develop largely in response to common key modulators such oxidative stress (OS, inflammation and alterations of the endogenous antioxidative response system (ARE regulated by the nuclear factor erythroid 2-related factor (Nrf2. Preclinical studies have also shown that nicotine (the principal e-liquid's ingredient used in e-cigarettes can also cause OS, exacerbation of cerebral ischemia and secondary brain injury. Herein we provide evidence that likewise to TS, chronic e-Cigarette (e-Cig vaping can be prodromal to the loss of blood-brain barrier (BBB integrity and vascular inflammation as well as act as a promoting factor for the onset of stroke and worsening of post-ischemic brain injury. In addition, recent reports have shown that Metformin (MF treatment before and after ischemic injury reduces stress and inhibits inflammatory responses. Recent published data by our group revealead that MF promotes the activation of counteractive mechanisms mediated by the activation of Nrf2 which drastically reduce TS toxicity at the brain and cerebrovascular levels and protect BBB integrity. In this study we provide additional in vivo evidence showing that MF can effectively reduce the oxidative and inflammatory risk for stroke and attenuate post-ischemic brain injury promoted by TS and e-Cig vaping. Our data also suggest that MF administration could be extended as prophylactic care during the time window required for the renormalization of the risk levels of stroke following smoking cessation thus further studies in that direction are warrated.

  15. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  16. Sports-related brain injuries: connecting pathology to diagnosis.

    Science.gov (United States)

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  17. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke.

    Science.gov (United States)

    Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung

    2017-11-01

    Use of photostimulation including low-level light emitting diode (LED) therapy has broadened greatly in recent years because it is compact, portable, and easy to use. Here, the effects of photostimulation by LED (610 nm) therapy on ischemic brain damage was investigated in mice in which treatment started after a stroke in a clinically relevant setting. The mice underwent LED therapy (20 min) twice a day for 3 days, commencing at 4 hours post-ischemia. LED therapy group generated a significantly smaller infarct size and improvements in neurological function based on neurologic test score. LED therapy profoundly reduced neuroinflammatory responses including neutrophil infiltration and microglia activation in the ischemic cortex. LED therapy also decreased cell death and attenuated the NLRP3 inflammasome, in accordance with down-regulation of pro-inflammatory cytokines IL-1β and IL-18 in the ischemic brain. Moreover, the mice with post-ischemic LED therapy showed suppressed TLR-2 levels, MAPK signaling and NF-kB activation. These findings suggest that by suppressing the inflammasome, LED therapy can attenuate neuroinflammatory responses and tissue damage following ischemic stroke. Therapeutic interventions targeting the inflammasome via photostimulation with LED may be a novel approach to ameliorate brain injury following ischemic stroke. Effect of post-ischemic low-level light emitting diode therapy (LED-T) on infarct reduction was mediated by inflammasome suppression. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Traumatic Brain Injury and Delayed Sequelae: A Review - Traumatic Brain Injury and Mild Traumatic Brain Injury (Concussion are Precursors to Later-Onset Brain Disorders, Including Early-Onset Dementia

    Directory of Open Access Journals (Sweden)

    Michael A. Kiraly

    2007-01-01

    Full Text Available Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI and mild traumatic brain injury (MTBI. Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD and Parkinson's disease (PD. Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  19. Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke

    Science.gov (United States)

    Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M

    2013-01-01

    Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281

  20. Therapeutic Potential of Umbilical Cord Blood Stem Cells on Brain Damage of a Model of Stroke

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Nikravesh

    2011-11-01

    Full Text Available Introduction: Human cord blood-derived stem cells are a rich source of stem cells as well as precursors. With regard to the researchers have focused on the therapeutic potential of stem cell in the neurological disease such as stroke, the aim of this study was the investiga-tion of the therapeutic effects of human cord blood-derived stem cells in cerebral ischemia on rat. Methods: This study was carried out on young rats. Firstly, to create a laboratory model of ischemic stroke, carotid artery of animals was occluded for 30 minutes. Then, umbilical cord blood cells were isolated and labeled using bromodeoxyuridine and 2×105 cells were injected into the experimental group via the tail vein. Rats with hypoxic condi-tions were used as a sham group. A group of animals did not receive any injection or sur-geries were used as a control. Results: Obtained results were evaluated based on behavior-al responses and immunohistochemistry, with emphasis on areas of putamen and caudate nucleus in the control, sham and experimental groups. Our results indicated that behavioral recovery was observed in the experimental group compared to the either the sham or the control group. However, histological studies demonstrated a low percent of tissue injury in the experimental group in comparison with the sham group. Conclusion: Stem cell trans-plantation is beneficial for the brain tissue reparation after hypoxic ischemic cell death.

  1. Spontaneous ischaemic stroke lesions in a dog brain: neuropathological characterisation and comparison to human ischaemic stroke

    DEFF Research Database (Denmark)

    Thomsen, Barbara Blicher; Gredal, Hanne; Wirenfeldt, Martin

    2017-01-01

    Background Dogs develop spontaneous ischaemic stroke with a clinical picture closely resembling human ischaemic stroke patients. Animal stroke models have been developed, but it has proved difficult to translate results obtained from such models into successful therapeutic strategies in human....../macrophages and astrocytes. Conclusions The neuropathological changes reported in the present study were similar to findings in human patients with ischaemic stroke. The dog with spontaneous ischaemic stroke is of interest as a complementary spontaneous animal model for further neuropathological studies....... stroke patients. In order to face this apparent translational gap within stroke research, dogs with ischaemic stroke constitute an opportunity to study the neuropathology of ischaemic stroke in an animal species. Case presentation A 7 years and 8 months old female neutered Rottweiler dog suffered...

  2. DARPA challenge: developing new technologies for brain and spinal injuries

    Science.gov (United States)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  3. Stroke Rehabilitation

    Science.gov (United States)

    A stroke can cause lasting brain damage. People who survive a stroke need to relearn skills they lost because of ... them relearn those skills. The effects of a stroke depend on which area of the brain was ...

  4. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  5. A model to guide the rehabilitation of high-functioning employees after mild brain injury.

    Science.gov (United States)

    Dodson, Matthew B

    2010-01-01

    Impairment in executive functioning can occur after mild stroke, mild Traumatic Brain Injury, and neurodegenerative disease, and this can have deleterious effects on employment outcomes, occupational functioning, and general quality of life. What is not as well identified is the symbiotic relationship between executive functioning and other important psychosocial constructs inherent in successful employees ("Employee Performance Enablers"), and how various aspects of the employment environment can enable or inhibit the success of the employee with executive functioning deficits in meeting their essential job functions ("Workplace Ecology"). From an extensive review of the literature and the author's practice experience, a clinical model was developed to elucidate these two critical variables, as well as to provide guidance for organizing, planning, and implementing interventions that will address both employee enablers and workplace ecology to affect positive return to work outcomes for individuals with mild brain injury.

  6. Hypothermia for treatment of stroke

    Directory of Open Access Journals (Sweden)

    Jong Youl Kim

    2015-01-01

    Full Text Available Stroke is a major cause of neurological disability and death in industrialized nations. Therapeutic hypothermia has been shown to protect the brain from ischemia, stroke, and other acute neurological insults at the laboratory level. It has been shown to improve neurological outcome in certain clinical settings including anoxic brain injury due to cardiac arrest and hypoxic-ischemic neonatal encephalopathy. Hypothermia seems to affect multiple aspects of brain physiology and it is likely that multiple mechanisms underlie its protective effect. Understanding the events that occur in the ischemic brain during hypothermia might help lead to an understanding of how to protect the brain against acute injuries.

  7. Plasticity in the developing brain: intellectual, language and academic functions in children with ischaemic perinatal stroke

    OpenAIRE

    Ballantyne, Angela O.; Spilkin, Amy M.; Hesselink, John; Trauner, Doris A.

    2008-01-01

    The developing brain has the capacity for a great deal of plasticity. A number of investigators have demonstrated that intellectual and language skills may be in the normal range in children following unilateral perinatal stroke. Questions have been raised, however, about whether these skills can be maintained at the same level as the brain matures. This study aimed to examine the stability of intellectual, academic and language functioning during development in children with perinatal stroke...

  8. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Pediatric traumatic brain injury affects multisensory integration.

    Science.gov (United States)

    Königs, Marsh; Weeda, Wouter D; van Heurn, L W Ernest; Vermeulen, R Jeroen; Goslings, J Carel; Luitse, Jan S K; Poll-The, Bwee Tien; Beelen, Anita; van der Wees, Marleen; Kemps, Rachèl J J K; Catsman-Berrevoets, Coriene E; Oosterlaan, Jaap

    2017-02-01

    To investigate the impact of pediatric traumatic brain injury (TBI) on multisensory integration in relation to general neurocognitive functioning. Children with a hospital admission for TBI aged between 6 and 13 years (n = 94) were compared with children with trauma control (TC) injuries (n = 39), while differentiating between mild TBI without risk factors for complicated TBI (mild RF- ; n = 19), mild TBI with ≥1 risk factor (mild RF+ ; n = 45), and moderate/severe TBI (n = 30). We measured set-shifting performance based on visual information (visual shift condition) and set-shifting performance based on audiovisual information, requiring multisensory integration (audiovisual shift condition). Effects of TBI on set-shifting performance were traced back to task strategy (i.e., boundary separation), processing efficiency (i.e., drift rate), or extradecisional processes (i.e., nondecision time) using diffusion model analysis. General neurocognitive functioning was measured using estimated full-scale IQ (FSIQ). The TBI group showed selectively reduced performance in the audiovisual shift condition (p = .009, Cohen's d = -0.51). Follow-up analyses in the audiovisual shift condition revealed reduced performance in the mildRF+ TBI group and moderate/severe TBI group (ps ≤ .025, ds ≤ -0.61). These effects were traced back to lower drift rate (ps ≤ .048, ds ≤ -0.44), reflecting reduced multisensory integration efficiency. Notably, accuracy and drift rate in the audiovisual shift condition partially mediated the relation between TBI and FSIQ. Children with mildRF+ or moderate/severe TBI are at risk for reduced multisensory integration efficiency, possibly contributing to decreased general neurocognitive functioning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Traumatic Brain Injury in Rats Induces Lung Injury and Systemic Immune Suppression

    NARCIS (Netherlands)

    Vermeij, Jan-Dirk; Aslami, Hamid; Fluiter, Kees; Roelofs, Joris J.; van den Bergh, Walter M.; Juffermans, Nicole P.; Schultz, Marcus J.; Van der Sluijs, Koen; van de Beek, Diederik; van Westerloo, David J.

    2013-01-01

    Traumatic brain injury (TBI) is frequently complicated by acute lung injury, which is predictive for poor outcome. However, it is unclear whether lung injury develops independently or as a result of mechanical ventilation after TBI. Further, TBI is strongly associated with the development of

  11. Breaking the Blood-Brain Barrier With Mannitol to Aid Stem Cell Therapeutics in the Chronic Stroke Brain.

    Science.gov (United States)

    Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.

  12. Development of brain injury criteria (BrIC).

    Science.gov (United States)

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  13. Persuasive discourse impairments in traumatic brain injury.

    Science.gov (United States)

    Ghayoumi, Zahra; Yadegari, Fariba; Mahmoodi-Bakhtiari, Behrooz; Fakharian, Esmaeil; Rahgozar, Mehdi; Rasouli, Maryam

    2015-03-01

    Considering the cognitive and linguistic complexity of discourse production, it is expected that individuals with traumatic brain injury (TBI) should face difficulties in this task. Therefore, clinical examination of discourse has become a useful tool for studying and assessment of communication skills of people suffering from TBI. Among different genres of discourse, persuasive discourse is considered as a more cognitively demanding task. However, little is known about persuasive discourse in individuals suffering from TBI. The purpose of this study was to evaluate the performance of adults with TBI on a task of spoken persuasive discourse to determine the impaired linguistic measures. Thirteen TBI nonaphasic Persian speaking individuals, ranged between 19 to 40 years (Mean = 25.64 years; SD = 6.10) and 59 healthy adults matched by age, were asked to perform the persuasive discourse task. The task included asking the participants to express their opinion on a topic, and after the analysis of the produced discourse, the two groups were compared on the basis of their language productivity, sentential complexity, maze ratio and cohesion ratio. The TBI group produced discourses with less productivity, sentential complexity, cohesion ratio and more maze ratio compared the control group. As it is important to consider acquired communication disorders particularly discourse impairment of brain injured patients along with their other clinical impairments and regarding the fact that persuasive discourse is crucial in academic and social situations, the persuasive discourse task presented in this study could be a useful tool for speech therapists, intending to evaluate communication disorders in patients with TBI.

  14. Brain Function and Upper Limb Outcome in Stroke: A Cross-Sectional fMRI Study.

    Science.gov (United States)

    Buma, Floor E; Raemaekers, Mathijs; Kwakkel, Gert; Ramsey, Nick F

    2015-01-01

    The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls. We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task. Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well. Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists.

  15. The effect of ultrasound on thromboembolic model of brain stroke in rat

    Directory of Open Access Journals (Sweden)

    Shabanzadeh A

    2007-08-01

    Full Text Available Background: Ultrasound (US has been used in neuroprotection after cerebral ischemia; however, its use is controversial. Application of US in combination with fibrinolytic agents may improve fibrinolytic effects. In this study the effects of US, alone or in combination with tissue plasminogen activator (tPA, on brain ischemic injury were examined and we studied whether US is protective in the brain injured by ischemia under normothermic conditions. Methods: We performed two studies. In the first study, rectal and brain temperatures were compared. In the second study, we studied whether US alone or in combination with tPA is neuroprotective in thromboembolic stroke. To induce focal cerebral ischemia, a clot was formed in a catheter. Once the clot had formed, the catheter was advanced 17 mm in the internal carotid artery until its tip was 1-2 mm away from the origin of the middle cerebral artery (MCA. The preformed clot in the catheter was then injected, and the catheter was removed. The wound was then closed and the infarction volume, edema and neurological deficits were measured after MCA occlusion. Results: The temperature in the brain was approximately 0.50 ºC lower than the rectal temperature. In the control, US+low tPA, low tPA, US+high tPA and, high tPA groups, the infarct volume (% was 34.56±4.16, 17.09±6.72, 21.25±7.8, 13.5±10.72 and 20.61±6.17 (mean ±SD at 48 h after MCA occlusion, respectively. The results indicate that US alone reduces the infarct volume by 30% compared to that of the control group (P<0.05. US improved neurological deficits and reduced brain edema significantly (p<0.05. Conclusions: This study indicate that US appears to have a protective effect, alone and in combination with tPA, in an embolic model of stroke.

  16. Spreading depolarisations and outcome after traumatic brain injury

    DEFF Research Database (Denmark)

    Hartings, Jed A; Bullock, M Ross; Okonkwo, David O

    2011-01-01

    Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...

  17. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  18. Preliminary questions before studying mild traumatic brain injury outcome.

    Science.gov (United States)

    Fayol, P; Carrière, H; Habonimana, D; Dumond, J-J

    2009-07-01

    To point out from the literature the issues in mild traumatic brain injury outcome. METHODOLOGY-RESULTS: The literature review allows to point out several different factors involved in the difficulty to study mild traumatic brain injury: mild traumatic brain injury definition, postconcussional syndrome definition, diagnosis threshold, severity and functional symptoms outcome, neuropsychological tests, unspecific syndrome feature, individual factors, confounding factors and treatment interventions. The mild traumatic brain injury outcome study is complicated by the definitions issues and especially their practical use and by the multiplicity and the intricate interrelationships among involved factors. The individual outcome and social cost weight is widely emphasized for an event still considered as medically trivial. The well-ordered preventive interventions necessity and the targeted treatment programs need for the persisting postconcussive symptoms complete our critical review.

  19. Falls and traumatic brain injury among older adults.

    Science.gov (United States)

    Filer, William; Harris, Matthew

    2015-04-01

    This commentary discusses traumatic brain injury (TBI) related to falls among elderly individuals, as well as common TBI sequelae and their treatment. It also discusses the current understanding of TBI-related dementia and chronic traumatic encephalopathy.

  20. Rehabilitation of discourse impairments after acquired brain injury.

    Science.gov (United States)

    Gindri, Gigiane; Pagliarin, Karina Carlesso; Casarin, Fabíola Schwengber; Branco, Laura Damiani; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz

    2014-01-01

    Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  1. Rates of symptom reporting following traumatic brain injury.

    Science.gov (United States)

    Dikmen, Sureyya; Machamer, Joan; Fann, Jesse R; Temkin, Nancy R

    2010-05-01

    This study examines rates of reporting of new or worse post-traumatic symptoms for patients with a broad range of injury severity at 1 month and 1 year after traumatic brain injury (TBI), as compared with those whose injury spared the head, and assesses variables related to symptom reporting at 1 year post-injury. Seven hundred thirty two TBI subjects and 120 general trauma comparison (TC) subjects provided new or worse symptom information at 1 month and/or 1 year post-injury. Symptom reporting at 1 year post-injury was compared in subgroups based on basic demographics, preexisting conditions, and severity of brain injury. The TBI group reported significantly more symptoms at 1 month and 1 year after injury than TCs (each p < .001). Although symptom endorsement declined from 1 month to 1 year, 53% of people with TBI and 24% of TC continued to report 3 or more symptoms at 1 year post-injury. Symptom reporting in the TBI group was significantly related to age, gender, preinjury alcohol abuse, pre-injury psychiatric history, and severity of TBI. Symptom reporting is common following a traumatic injury and continues to be experienced by a substantial number of TBI subjects of all severity levels at 1 year post-injury.

  2. Cooking breakfast after a brain injury

    Directory of Open Access Journals (Sweden)

    Annick N. Tanguay

    2014-09-01

    Full Text Available Acquired brain injury (ABI often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients’ difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik & Bialystok, 2006 as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task and the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003. Patients also prepared actual meals, and were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on relative to controls. Surprisingly, however, patients’ Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency.

  3. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  4. Parameters Influencing Tracheostomy Decannulation in Patients Undergoing Rehabilitation after severe Acquired Brain Injury (sABI).

    Science.gov (United States)

    Perin, Cecilia; Meroni, Roberto; Rega, Vincenzo; Braghetto, Giacomo; Cerri, Cesare Giuseppe

    2017-10-01

    Introduction  Tracheostomy weaning in patients who suffered a severe acquired brain injury is often a challenge and decannulation failures are not uncommon. Objective  Our study objective is to describe the decannulation failure rate in patients undergoing rehabilitation following a severe acquired brain injury (sABI); to describe the factors associated with a successful tube weaning. Methods  We conduct a retrospective analysis of charts, consecutively retrieved considering a 3-year window. Variables analyzed were: age, sex, body mass index (BMI), Glasgow Coma Scale (GCS), cause of hospitalization (stroke, trauma, cardiac arrest), date of the pathological event, gap between the index event and the first day of hospitalization, duration of Neurorehabilitation Ward hospitalization, comorbidities, chest morphological alteration, kind of tracheostomy tube used (overall dimension, cap, fenestration), SpO2, presentation and quantification of pulmonary secretion, maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP), respiratory frequency and pattern, cardiac frequency, presence of spontaneous cough, cough strength, and blood gas analysis. Results  We analyzed 45 tracheostomised sABI patients following stroke, trauma, or cardiac arrest. The weaning success percentage was higher in Head Trauma patients and in patients presenting positive spontaneous cough. Failures seem to be associated with presence of secretions and anoxic brain damage. GCS seemed not related to the decannulation outcome. Conclusions  Parameters that could be used as positive predictors of weaning are: mean expiratory pressure, presence of spontaneous cough, and cough strength. Provoked cough and GCS were not predictive of weaning success.

  5. Participation in leisure activities during brain injury rehabilitation.

    Science.gov (United States)

    Fleming, Jennifer; Braithwaite, Helen; Gustafsson, Louise; Griffin, Janelle; Collier, Ann Maree; Fletcher, Stephanie

    2011-01-01

    To describe and compare pre- and post-injury leisure activities of individuals receiving brain injury rehabilitation and explore levels of leisure participation and satisfaction. Cross-sectional descriptive study incorporating a survey of current and past leisure activities. Questionnaires were completed by 40 individuals with an acquired brain injury receiving inpatient or outpatient rehabilitation. Shortened Version of the Nottingham Leisure Questionnaire and Changes in Leisure Questionnaire (developed for this study). Leisure participation declined following injury, particularly in social leisure activities. Pre-injury activities with high rates of discontinued or decreased participation were driving, going to pubs and parties, do-it-yourself activities and attending sports events. Inpatient participants generally attributed decreased participation to the hospital environment, whereas outpatient participants reported this predominantly as a result of disability. Post-injury levels of perceived leisure satisfaction were significantly lower for the inpatient group compared to pre-injury, but not for the outpatient group. Uptake of some new leisure activities was reported post-injury, however not at the rate to which participation declined. Leisure participation decreases during brain injury rehabilitation compared to pre-injury levels. Re-engagement in relevant, age-appropriate leisure activities needs to be addressed during rehabilitation to improve participation in this domain.

  6. Ipsilateral motor pathways after stroke: implications for noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Lynley V Bradnam

    2013-05-01

    Full Text Available In humans the two cerebral hemispheres have essential roles in controlling the upper limb. The purpose of this article is to draw attention to the potential importance of ipsilateral descending pathways for functional recovery after stroke, and the use of noninvasive brain stimulation (NBS protocols of the contralesional primary motor cortex (M1. Conventionally NBS is used to suppress contralesional M1, and to attenuate transcallosal inhibition onto the ipsilesional M1. There has been little consideration of the fact that contralesional M1 suppression may also reduce excitability of ipsilateral descending pathways that may be important for paretic upper limb control for some patients. One such ipsilateral pathway is the cortico-reticulo-propriospinal pathway (CRPP. In this review we outline a neurophysiological model to explain how contralesional M1 may gain control of the paretic arm via the CRPP. We conclude that the relative importance of the CRPP for motor control in individual patients must be considered before using NBS to suppress contralesional M1. Neurophysiological, neuroimaging and clinical assessments can assist this decision making and facilitate the translation of NBS into the clinical setting.

  7. Exploring associations between self-regulatory mechanisms and neuropsychological functioning and driver behaviour after brain injury.

    Science.gov (United States)

    Rike, Per-Ola; Johansen, Hans J; Ulleberg, Pål; Lundqvist, Anna; Schanke, Anne-Kristine

    2018-04-01

    The objective of this prospective one-year follow-up study was to explore the associations between self-regulatory mechanisms and neuropsychological tests as well as baseline and follow-up ratings of driver behaviour. The participants were a cohort of subjects with stroke and traumatic brain injury (TBI) who were found fit to drive after a multi-disciplinary driver assessment (baseline). Baseline measures included neuropsychological tests and ratings of self-regulatory mechanisms, i.e., executive functions (Behavior Rating Inventory of Executive Function-Adult Version; BRIEF-A) and impulsive personality traits (UPPS Impulsive Behavior Scale). The participants rated pre-injury driving behaviour on the Driver Behaviour Qestionnaire (DBQ) retrospectively at baseline and after one year of post-injury driving (follow-up). Better performance on neuropsychological tests was significantly associated with more post-injury DBQ Violations. The BRIEF-A main indexes were significantly associated with baseline and follow-up ratings of DBQ Mistakes and follow-up DBQ Inattention. UPPS (lack of) Perseverance was significantly associated with baseline DBQ Inattention, whereas UPPS Urgency was significantly associated with baseline DBQ Inexperience and post-injury DBQ Mistakes. There were no significant changes in DBQ ratings from baseline (pre-injury) to follow-up (post-injury). It was concluded that neuropsychological functioning and self-regulatory mechanisms are related to driver behaviour. Some aspects of driver behaviour do not necessarily change after brain injury, reflecting the influence of premorbid driving behaviour or impaired awareness of deficits on post-injury driving behaviour. Further evidence is required to predict the role of self-regulatory mechanisms on driver behaviour and crashes or near misses.

  8. Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury

    OpenAIRE

    Bernier, Rachel Anne; Roy, Arnab; Venkatesan, Umesh Meyyappan; Grossner, Emily C.; Brenner, Einat K.; Hillary, Frank Gerard

    2017-01-01

    Objective Changes in functional network connectivity following traumatic brain injury (TBI) have received increasing attention in recent neuroimaging literature. This study sought to understand how disrupted systems adapt to injury during resting and goal-directed brain states. Hyperconnectivity has been a common finding, and dedifferentiation (or loss of segregation of networks) is one possible explanation for this finding. We hypothesized that individuals with TBI would show dedifferenti...

  9. [Brain injury knowledge in family members of neurosurgical patients].

    Science.gov (United States)

    Navarro-Main, Blanca; Castaño-León, Ana M; Munarriz, Pablo M; Gómez, Pedro A; Rios-Lago, Marcos; Lagares, Alfonso

    Several studies have shown misconceptions about brain injury in different populations. The aim of this study was to assess the knowledge and perceptions about brain injury of family members of neurosurgical patients in our hospital. The participants (n=81) were relatives of patients admitted to the neurosurgery department between February and August 2016. They voluntarily completed a 19-item true-false format survey about brain injury based on a translation of other questionnaires used in previous studies from other countries (USA, Canada, UK, Ireland and New Zealand). Also, some sociodemographic data were collected (age, sex, education level and the patient's pathology). Data analysis was developed through graphical modelling with a regularisation parameter plotted on a network representing the association of the items of the questionnaire from the response pattern of participants. Data analysis showed two conceptual areas with a high rate of wrong answers: behaviour and management of patients, and expectations about acquired brain injury recovery. The results obtained in this study would enable us to objectify misconceptions about acquired brain injury in patients' relatives attended in the neurosurgery department. This lack of knowledge could be a great obstacle in patients' recovery process. Therefore, we suggest placing the emphasis on the provision of information on brain injury to patients' families, especially with regard to its symptoms and course of development. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Posttraumatic growth following acquired brain injury: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Elaine Louise Kinsella

    2015-08-01

    Full Text Available The idea that acquired brain injury (ABI caused by stroke, haemorrhage, infection or traumatic insult to the brain can result in posttraumatic growth (PTG for individuals is increasingly attracting psychological attention. However PTG also attracts controversy as a result of ambiguous empirical findings. The extent that demographic variables, injury factors, subjective beliefs, and psychological health are associated with PTG following ABI is not clear. Consequently, this systematic review and meta-analysis explores the correlates of variables within these four broad areas and PTG. From a total of 744 published studies addressing PTG in people with ABI, eight studies met inclusion criteria for detailed examination. Meta-analysis of these studies indicated that growth was related to employment, longer education, subjective beliefs about change post-injury, relationship status, older age, longer time since injury, and lower levels of depression. Results from homogeneity analyses indicated significant inter-study heterogeneity across variables. There is general support for the idea that people with ABI can experience growth, and that various demographics, injury-related variables, subjective beliefs and psychological health are related to growth. The contribution of social integration and the forming of new identities post-ABI to the experience of PTG is explored. These meta-analytic findings are however constrained by methodological limitations prevalent in the literature. Clinical and research implications are discussed with specific reference to community and collective factors that enable PTG.

  11. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  12. Traumatic Brain Injury in the Accident and Emergency Department of ...

    African Journals Online (AJOL)

    Background: Traumatic brain injury is a major public health problem in Nigeria, as it could be associated with long term and life long deficits. Unlike other parts of the world, in our country, motorcycles are possibly the main cause of this injury. Unfortunately, we do not have a national epidemiological data base yet. This study ...

  13. Deep into the Brain: Artificial Intelligence in Stroke Imaging.

    Science.gov (United States)

    Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha

    2017-09-01

    Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.

  14. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  15. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury.

    Science.gov (United States)

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig

    2017-08-28

    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  16. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  17. Combined high cervical spine and brain stem injuries: a complex and devastating injury in children.

    Science.gov (United States)

    Meyer, Philippe-Gabriel; Meyer, Fabien; Orliaguet, Gilles; Blanot, Stéphane; Renier, Dominique; Carli, Pierre

    2005-10-01

    In young children, high cervical spine injuries (HCSI) can result in inaugural reversible, cardiac arrest or apnea. We noted in children sustaining such injuries an unusual incidence of associated brain stem injuries and defined a special pattern of combined lesions. Children with HSCI surviving inaugural cardiac arrest/apnea were selected for a retrospective analysis of a trauma data bank. Epidemiologic, clinical, and radiological characteristics, and outcome were reviewed and compared with those of the rest of the trauma population with severe neurologic injuries (defined by a Glasgow Coma Scale brain stem injury in all patients. Children with combined lesions had more frequent severe facial and skull base fractures compared with the rest of the population. They also were younger and sustained more frequent severe distracting injury to the neck than the rest of the population. Mortality rate (69%) was 2.6-fold higher than that observed in children without HCSI. In survivors, none demonstrated spinal cord injury resulting in persistent peripheral neurologic deficits, but only one achieved a good recovery. Combined HCSI and brain stem injuries must be suspected in young children sustaining a severe distracting injury to the craniocervical junction. Early recognition of these catastrophic injuries by systematic spiral cervical spine and brain stem computed tomographic scan evaluation is mandatory.

  18. Neuropsychological Consequences of Traumatic Brain Injury in Children and Adolescents.

    Science.gov (United States)

    Lord-Maes, Janiece; Obrzut, John E.

    1996-01-01

    This article discusses recent findings concerning cognitive outcomes in traumatic brain injury (TBI) in children and adolescents, with a particular focus on age differences with TBI. It suggests a relationship between specific learning disorders and brain dysfunction, addresses differential hemispheric functioning with TBI, and outlines recent…

  19. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha

    2012-01-01

    [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  20. [Traumatic brain injuries--forensic and expertise aspects].

    Science.gov (United States)

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  1. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    International Nuclear Information System (INIS)

    Bouchmanov, A.

    2000-01-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  2. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    Science.gov (United States)

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the

  3. Valvular heart disease by transthoracic echocardiography is associated with focal brain injury and central neuropsychiatric systemic lupus erythematosus.

    Science.gov (United States)

    Roldan, Carlos A; Gelgand, Erika A; Qualls, Clifford R; Sibbitt, Wilmer L

    2007-01-01

    Previous studies using transesophageal echocardiography (TEE) report an association of valvular heart disease (VHD) with cerebral infarcts and central neuropsychiatric systemic lupus erythematosus (NPSLE). However, TEE cannot be routinely used. To determine if VHD detected by transthoracic echocardiography (TTE) is associated with focal brain injury on magnetic resonance imaging (MRI) and secondarily with central NPSLE. Sixty-nine patients with systemic lupus erythematosus underwent general clinical, neuropsychiatric and laboratory evaluations followed by MRI of the brain and TTE. Forty-one patients (59%) had NPSLE (stroke, transient ischemic attack, cognitive dysfunction, acute confusional state, seizures or psychosis); 46 (67%) had focal brain injury on MRI (cerebral infarcts, white matter lesions or small punctate lesions); 38 (55%) had VHD (vegetations, thickening or regurgitation). VHD was more common in patients with than in those without focal brain injury and NPSLE (all p < 0.05); focal brain lesions were more common in patients with than in those without NPSLE (all p < 0.04); and VHD was an independent predictor of focal brain lesions and NPSLE (both p < 0.04). In patients with systemic lupus erythematosus, VHD detected by TTE is associated with focal brain injury and NPSLE. (c) 2007 S. Karger AG, Basel.

  4. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice.

    Directory of Open Access Journals (Sweden)

    Emil Zeynalov

    Full Text Available Stroke is a major cause of morbidity and mortality. Stroke is complicated by brain edema and blood-brain barrier (BBB disruption, and is often accompanied by increased release of arginine-vasopressin (AVP. AVP acts through V1a and V2 receptors to trigger hyponatremia, vasospasm, and platelet aggregation which can exacerbate brain edema. The AVP receptor blockers conivaptan (V1a and V2 and tolvaptan (V2 are used to correct hyponatremia, but their effect on post-ischemic brain edema and BBB disruption remains to be elucidated. Therefore, we conducted this study to investigate if these drugs can prevent brain edema and BBB disruption in mice after stroke.Experimental mice underwent the filament model of middle cerebral artery occlusion (MCAO with reperfusion. Mice were treated with conivaptan, tolvaptan, or vehicle. Treatments were initiated immediately at reperfusion and administered IV (conivaptan or orally (tolvaptan for 48 hours. Physiological variables, neurological deficit scores (NDS, plasma and urine sodium and osmolality were recorded. Brain water content (BWC and Evans Blue (EB extravasation index were evaluated at the end point.Both conivaptan and tolvaptan produced aquaresis as indicated by changes in plasma and urine sodium levels. However plasma and urine osmolality was changed only by conivaptan. Unlike tolvaptan, conivaptan improved NDS and reduced BWC in the ipsilateral hemisphere: from 81.66 ± 0.43% (vehicle to 78.28 ± 0.48% (conivaptan, 0.2 mg, p < 0.05 vs vehicle. Conivaptan also attenuated the EB extravasation from 1.22 ± 0.08 (vehicle to 1.01 ± 0.02 (conivaptan, 0.2 mg, p < 0.05.Continuous IV infusion with conivaptan for 48 hours after experimental stroke reduces brain edema, and BBB disruption. Conivaptan but not tolvaptan may potentially be used in patients to prevent brain edema after stroke.

  5. Blood-brain barrier and cerebral blood flow: Age differences in hemorrhagic stroke

    Directory of Open Access Journals (Sweden)

    Semyachkina-Glushkovskaya Oxana

    2015-11-01

    Full Text Available Neonatal stroke is similar to the stroke that occurs in adults and produces a significant morbidity and long-term neurologic and cognitive deficits. There are important differences in the factors, clinical events and outcomes associated with the stroke in infants and adults. However, mechanisms underlying age differences in the stroke development remain largely unknown. Therefore, treatment guidelines for neonatal stroke must extrapolate from the adult data that is often not suitable for children. The new information about differences between neonatal and adult stroke is essential for identification of significant areas for future treatment and effective prevention of neonatal stroke. Here, we studied the development of stress-induced hemorrhagic stroke and possible mechanisms underlying these processes in newborn and adult rats. Using histological methods and magnetic resonance imaging, we found age differences in the type of intracranial hemorrhages. Newborn rats demonstrated small superficial bleedings in the cortex while adult rats had more severe deep bleedings in the cerebellum. Using Doppler optical coherent tomography, we found higher stress-reactivity of the sagittal sinus to deleterious effects of stress in newborn vs. adult rats suggesting that the cerebral veins are more vulnerable to negative stress factors in neonatal vs. adult brain in rats. However, adult but not newborn rats demonstrated the stroke-induced breakdown of blood brain barrier (BBB permeability. The one of possible mechanisms underlying the higher resistance to stress-related stroke injures of cerebral vessels in newborn rats compared with adult animals is the greater expression of two main tight junction proteins of BBB (occludin and claudin-5 in neonatal vs. mature brain in rats.

  6. Association Between Brain-Derived Neurotrophic Factor Genotype and Upper Extremity Motor Outcome After Stroke.

    Science.gov (United States)

    Chang, Won Hyuk; Park, Eunhee; Lee, Jungsoo; Lee, Ahee; Kim, Yun-Hee

    2017-06-01

    The identification of intrinsic factors for predicting upper extremity motor outcome could aid the design of individualized treatment plans in stroke rehabilitation. The aim of this study was to identify prognostic factors, including intrinsic genetic factors, for upper extremity motor outcome in patients with subacute stroke. A total of 97 patients with subacute stroke were enrolled. Upper limb motor impairment was scored according to the upper limb of Fugl-Meyer assessment score at 3 months after stroke. The prediction of upper extremity motor outcome at 3 months was modeled using various factors that could potentially influence this impairment, including patient characteristics, baseline upper extremity motor impairment, functional and structural integrity of the corticospinal tract, and brain-derived neurotrophic factor genotype. Multivariate ordinal logistic regression models were used to identify the significance of each factor. The independent predictors of motor outcome at 3 months were baseline upper extremity motor impairment, age, stroke type, and corticospinal tract functional integrity in all stroke patients. However, in the group with severe motor impairment at baseline (upper limb score of Fugl-Meyer assessment stroke. Brain-derived neurotrophic factor genotype may be a potentially useful predictor of upper extremity motor outcome in patients with subacute stroke with severe baseline motor involvement. © 2017 American Heart Association, Inc.

  7. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  8. Biomarkers of brain injury in the premature infant

    Directory of Open Access Journals (Sweden)

    Martha V. Douglas-Escobar

    2013-01-01

    Full Text Available The term encephalopathy of prematurity encompasses not only the acute brain injury (such as intraventricular hemorrhage but also complex disturbance on the infant’s subsequent brain development. In premature infants, the most frequent recognized source of brain injury is intraventricular hemorrhage (IVH and periventricular leukomalacia (PVL. Furthermore 20-25% infants with birth weigh less than 1,500 g will have IVH and that proportion increases to 45% if the birth weight is less than 500-750 g. In addition, nearly 60% of very low birth weight newborns will have hypoxic-ischemic injury. Therefore permanent lifetime neurodevelopmental disabilities are frequent in premature infants. Innovative approach to prevent or decrease brain injury in preterm infants requires discovery of biomarkers able to discriminate infants at risk for injury, monitor the progression of the injury and assess efficacy of neuroprotective clinical trials. In this article, we will review biomarkers studied in premature infants with IVH, Post-hemorrhagic ventricular dilation (PHVD and PVL including: S100b, Activin A, erythropoietin, chemokine CCL 18, GFAP and NFL will also be examined. Some of the most promising biomarkers for IVH are S100β and Activin. The concentrations of TGF-β1, MMP-9 and PAI-1 in cerebrospinal fluid could be used to discriminate patients that will require shunt after post-hemorrhagic ventricular dilation. Neonatal brain injury is frequent in premature infants admitted to the neonatal intensive care and we hope to contribute to the awareness and interest in clinical validation of established as well as novel neonatal brain injury biomarkers.

  9. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke.

    Science.gov (United States)

    Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas

    2011-03-09

    Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.

  10. DAMP signaling is a key pathway inducing immune modulation after brain injury.

    Science.gov (United States)

    Liesz, Arthur; Dalpke, Alexander; Mracsko, Eva; Antoine, Daniel J; Roth, Stefan; Zhou, Wei; Yang, Huan; Na, Shin-Young; Akhisaroglu, Mustafa; Fleming, Thomas; Eigenbrod, Tatjana; Nawroth, Peter P; Tracey, Kevin J; Veltkamp, Roland

    2015-01-14

    Acute brain lesions induce profound alterations of the peripheral immune response comprising the opposing phenomena of early immune activation and subsequent immunosuppression. The mechanisms underlying this brain-immune signaling are largely unknown. We used animal models for experimental brain ischemia as a paradigm of acute brain lesions and additionally investigated a large cohort of stroke patients. We analyzed release of HMGB1 isoforms by mass spectrometry and investigated its inflammatory potency and signaling pathways by immunological in vivo and in vitro techniques. Features of the complex behavioral sickness behavior syndrome were characterized by homecage behavior analysis. HMGB1 downstream signaling, particularly with RAGE, was studied in various transgenic animal models and by pharmacological blockade. Our results indicate that the cytokine-inducing, fully reduced isoform of HMGB1 was released from the ischemic brain in the hyperacute phase of stroke in mice and patients. Cytokines secreted in the periphery in response to brain injury induced sickness behavior, which could be abrogated by inhibition of the HMGB1-RAGE pathway or direct cytokine neutralization. Subsequently, HMGB1-release induced bone marrow egress and splenic proliferation of bone marrow-derived suppressor cells, inhibiting the adaptive immune responses in vivo and vitro. Furthermore, HMGB1-RAGE signaling resulted in functional exhaustion of mature monocytes and lymphopenia, the hallmarks of immune suppression after extensive ischemia. This study introduces the HMGB1-RAGE-mediated pathway as a key mechanism explaining the complex postischemic brain-immune interactions. Copyright © 2015 the authors 0270-6474/15/350583-16$15.00/0.

  11. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage.

    Science.gov (United States)

    Chung, Charlie S Y; Pollock, Alex; Campbell, Tanya; Durward, Brian R; Hagen, Suzanne

    2013-04-30

    Executive functions are the controlling mechanisms of the brain and include the processes of planning, initiation, organisation, inhibition, problem solving, self monitoring and error correction. They are essential for goal-oriented behaviour and responding to new and novel situations. A high number of people with acquired brain injury, including around 75% of stroke survivors, will experience executive dysfunction. Executive dysfunction reduces capacity to regain independence in activities of daily living (ADL), particularly when alternative movement strategies are necessary to compensate for limb weakness. Improving executive function may lead to increased independence with ADL. There are various cognitive rehabilitation strategies for training executive function used within clinical practice and it is necessary to determine the effectiveness of these interventions. To determine the effects of cognitive rehabilitation on executive dysfunction for adults with stroke or other non-progressive acquired brain injuries. We searched the Cochrane Stroke Group Trials Register (August 2012), the Cochrane Central Register of Controlled Trials (The Cochrane Library, August 2012), MEDLINE (1950 to August 2012), EMBASE (1980 to August 2012), CINAHL (1982 to August 2012), PsycINFO (1806 to August 2012), AMED (1985 to August 2012) and 11 additional databases. We also searched reference lists and trials registers, handsearched journals and conference proceedings, and contacted experts. We included randomised trials in adults after non-progressive acquired brain injury, where the intervention was specifically targeted at improving cognition including separable executive function data (restorative interventions), where the intervention was aimed at training participants in methods to compensate for lost executive function (compensative interventions) or where the intervention involved the training in the use of an adaptive technique for improving independence with ADL (adaptive

  12. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia.

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-11-15

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia.

  13. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  14. Time use and physical activity in a specialised brain injury rehabilitation unit: an observational study.

    Science.gov (United States)

    Hassett, Leanne; Wong, Siobhan; Sheaves, Emma; Daher, Maysaa; Grady, Andrew; Egan, Cara; Seeto, Carol; Hosking, Talia; Moseley, Anne

    2018-04-18

    To determine what is the use of time and physical activity in people undertaking inpatient rehabilitation in a specialised brain injury unit. To determine participants' level of independence related to the use of time and physical activity. Design: Cross-sectional observation study. Fourteen people [mean (SD) age 40 (15) years] with brain injuries undertaking inpatient rehabilitation. Participants were observed every 12 minutes over 5 days (Monday to Friday from 7:30 am until 7:30 pm) using a behaviour mapping tool. Observation of location, people present, body position and activity engaged in (both therapeutic and nontherapeutic). Functional Independence Measure (FIM) scores were determined for each participant. Participants spent a large part of their time alone (34%) in sedentary positions (83%) and in their bedrooms (48%) doing non-therapeutic activities (78%). There was a positive relationship between a higher level of independence (higher FIM score) and being observed in active body positions (r=0.60; p=0.03) and participating in physically active therapeutic activities (r=0.53; p=0.05). Similar to stroke units, inpatients in a specialised brain injury unit spend large parts of the day sedentary, alone and doing non-therapeutic activities. Strategies need to be evaluated to address this problem, particularly for people with greater physical dependence.

  15. Microglia-mediated BAFF-BAFFR ligation promotes neuronal survival in brain ischemia injury.

    Science.gov (United States)

    Li, Kai; Yu, Wei; Cao, Rangjuan; Zhu, Zhihua; Zhao, Guoqing

    2017-11-05

    The innate immune responses of brain to vascular occlusion are primarily orchestrated by activated microglia. However, the roles of microglia in inflammatory responses to brain ischemic injuries are controversial. Here, we report a new mechanism by which microglia confer protective effects on ischemic neuronal cells. We found that under ischemic condition, the B-cell-activating factor (BAFF) was vastly upregulated in microglia and this upregulation could at least be attributed to JAK-STAT signaling pathway activated by IFN-γ and IL-10, which were spatio-temporally enriched in I/R-injured brain as well. Meanwhile, the expression of BAFFR, one member of BAFF receptors, was also upregulated on neurons after I/R injury. More importantly, recombinant BAFF treatment not only promoted neuronal survival under ischemic stresses in vitro but also attenuated infarct volume and neural deficit caused by middle cerebral artery occlusion (MCAO) in vivo. Furthermore, blocking BAFF-BAFFR ligation with TACI-Ig abrogated these therapeutic benefits. Taken together, these results indicate that the BAFF-BAFFR ligation bridged between microglia and neurons could play a critical neuroprotective role in I/R injury. Thus, augmenting BAFF-BAFFR signaling might represent a potential target for clinical stroke therapy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  17. Social Competence at Two Years after Childhood Traumatic Brain Injury.

    Science.gov (United States)

    Anderson, Vicki; Beauchamp, Miriam H; Yeates, Keith Owen; Crossley, Louise; Ryan, Nicholas; Hearps, Stephen J C; Catroppa, Cathy

    2017-07-15

    Children with traumatic brain injury (TBI) are at risk for social impairment, but research has yet to document the trajectory of these skills post-injury and factors that may predict social problems. This study addressed these gaps in knowledge, reporting on findings from a prospective, longitudinal follow-up study that investigated social outcomes post-injury and explored factors contributing to these outcomes at two years post-injury. The sample included 113 children, 74 with TBI and 39 typically developing (TD) controls. TBI participants were recruited on presentation to the hospital. Parents rated pre-injury function at that time, and all children underwent magnetic resonance imaging (MRI). Participants were followed up at two years post-injury. Outcomes were social adjustment, social participation, social relationships, and social cognition. Predictors of social outcomes examined included brain lesion characteristics, child cognition (6 months post-TBI), and behavior and environmental factors (pre-injury and two years). Reduced social adjustment (p = 0.011) and social participation (p Poor social adjustment was predicted by externalizing behavior problems and younger age at injury. Reduced social participation was linked to internalizing behavior problems. Greater lesion volume, lower socioeconomic status, and family burden contributed to poorer social relationships, whereas age at injury predicted social cognition. Within the TBI group, 23% of children exhibited social impairments. Younger age at injury, greater pre-injury, and current behavior problems and family dysfunction, and poorer intelligence quotient (IQ), processing speed, and empathy were linked to impairment. Further follow-up is required to track social recovery and the influences of cognition, brain, and environment over time.

  18. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  19. Central diabetes insipidus in pediatric severe traumatic brain injury.

    Science.gov (United States)

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Foster, Jennifer; Morrison, Gavin C; Fraser, Douglas D

    2013-02-01

    To determine the occurrence rate of central diabetes insipidus in pediatric patients with severe traumatic brain injury and to describe the clinical, injury, biochemical, imaging, and intervention variables associated with mortality. Retrospective chart and imaging review. Children's Hospital, level 1 trauma center. Severely injured (Injury Severity Score ≥ 12) pediatric trauma patients (>1 month and diabetes insipidus between January 2000 and December 2011. Of 818 severely injured trauma patients, 180 had severe traumatic brain injury with an overall mortality rate of 27.2%. Thirty-two of the severe traumatic brain injury patients developed acute central diabetes insipidus that responded to desamino-8-D-arginine vasopressin and/or vasopressin infusion, providing an occurrence rate of 18%. At the time of central diabetes insipidus diagnosis, median urine output and serum sodium were 6.8 ml/kg/hr (interquartile range = 5-11) and 154 mmol/L (interquartile range = 149-159), respectively. The mortality rate of central diabetes insipidus patients was 87.5%, with 71.4% declared brain dead after central diabetes insipidus diagnosis. Early central diabetes insipidus onset, within the first 2 days of severe traumatic brain injury, was strongly associated with mortality (p diabetes insipidus were more likely to have intracranial pressure monitoring (p = 0.03), have thiopental administered to induce coma (p = 0.04) and have received a decompressive craniectomy for elevated intracranial pressure (p = 0.04). The incidence of central diabetes insipidus in pediatric patients with severe traumatic brain injury is 18%. Mortality was associated with early central diabetes insipidus onset and cerebral edema on head computed tomography. Central diabetes insipidus nonsurvivors were less likely to have received intracranial pressure monitoring, thiopental coma and decompressive craniectomy.

  20. Fatal traumatic brain injury with electrical weapon falls.

    Science.gov (United States)

    Kroll, Mark W; Adamec, Jiri; Wetli, Charles V; Williams, Howard E

    2016-10-01

    While generally reducing morbidity and mortality, electrical weapons have risks associated with their usage, including eye injuries and falls. With sufficient probe spread, an uncontrolled fall to the ground typically occurs along with the possibility of a fatal brain injury. We analyzed possible risk factors including running and elevated surfaces with established head-injury criteria to estimate the risk of brain injury. We searched for cases of arrest-related or in-custody death, with TASER(®) electrical weapon usage where fall-induced injuries might have contributed to the death. We found 24 cases meeting our initial inclusion criteria of a fatal fall involving electronic control. We then excluded 5 cases as intentional jumps, leaving 19 cases of forced falls. Autopsy reports and other records were analyzed to determine which of these deaths were from brain injury caused by the fall. We found 16 probable cases of fatal brain injuries induced by electronic control from electrical weapons. Out of 3 million field uses, this gives a risk of 5.3 ± 2.6 PPM which is higher than the theoretical risk of electrocution. The mean age was 46 ± 14 years which is significantly greater that the age of the typical ARD (36 ± 10). Probe shots to the subject's back may present a higher risk of a fatal fall. The use of electronic control presents a small but real risk of death from fatal traumatic brain injury. Increased age represents an independent risk factor for such fatalities. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Severe traumatic head injury: prognostic value of brain stem injuries detected at MRI.

    Science.gov (United States)

    Hilario, A; Ramos, A; Millan, J M; Salvador, E; Gomez, P A; Cicuendez, M; Diez-Lobato, R; Lagares, A

    2012-11-01

    Traumatic brain injuries represent an important cause of death for young people. The main objectives of this work are to correlate brain stem injuries detected at MR imaging with outcome at 6 months in patients with severe TBI, and to determine which MR imaging findings could be related to a worse prognosis. One hundred and eight patients with severe TBI were studied by MR imaging in the first 30 days after trauma. Brain stem injury was categorized as anterior or posterior, hemorrhagic or nonhemorrhagic, and unilateral or bilateral. Outcome measures were GOSE and Barthel Index 6 months postinjury. The relationship between MR imaging findings of brain stem injuries, outcome, and disability was explored by univariate analysis. Prognostic capability of MR imaging findings was also explored by calculation of sensitivity, specificity, and area under the ROC curve for poor and good outcome. Brain stem lesions were detected in 51 patients, of whom 66% showed a poor outcome, as expressed by the GOSE scale. Bilateral involvement was strongly associated with poor outcome (P brain stem injuries detected at MR imaging are poor prognostic signs. Nonhemorrhagic injuries showed the highest positive predictive value for good outcome.

  2. Neutrophil elastase and neurovascular injury following focal stroke and reperfusion

    NARCIS (Netherlands)

    Stowe, A.M.; Adair-Kirk, T.L.; Gonzales, E.R.; Perez, R.S.G.M.; Shah, A.M.; Park, T.S.; Gidday, J.M.

    2009-01-01

    Neutrophil elastase (NE) degrades basal lamina and extracellular matrix molecules, and recruits leukocytes during inflammation; however, a basic understanding of the role of NE in stroke pathology is lacking. We measured an increased number of extravascular NE-positive cells, as well as increased

  3. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  4. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  5. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke.

    Science.gov (United States)

    Cook, Douglas J; Nguyen, Cynthia; Chun, Hyun N; L Llorente, Irene; Chiu, Abraham S; Machnicki, Michal; Zarembinski, Thomas I; Carmichael, S Thomas

    2017-03-01

    Stroke is the leading cause of adult disability. Systemic delivery of candidate neural repair therapies is limited by the blood-brain barrier and off-target effects. We tested a bioengineering approach for local depot release of BDNF from the infarct cavity for neural repair in chronic periods after stroke. The brain release levels of a hyaluronic acid hydrogel + BDNF were tested in several stroke models in mouse (strains C57Bl/6, DBA) and non-human primate ( Macaca fascicularis) and tracked with MRI. The behavioral recovery effects of hydrogel + BDNF and the effects on tissue repair outcomes were determined. Hydrogel-delivered BDNF diffuses from the stroke cavity into peri-infarct tissue over 3 weeks in two mouse stroke models, compared with 1 week for direct BDNF injection. Hydrogel delivery of BDNF promotes recovery of motor function. Mapping of motor system connections indicates that hydrogel-BDNF induces axonal sprouting within existing cortical and cortico-striatal systems. Pharmacogenetic studies show that hydrogel-BDNF induces the initial migration of immature neurons into the peri-infarct cortex and their long-term survival. In chronic stroke in the non-human primate, hydrogel-released BDNF can be detected up to 2 cm from the infarct, a distance relevant to human functional recovery in stroke. The hydrogel can be tracked by MRI in mouse and primate.

  6. Sexual dysfunction in male stroke patients: correlation between brain lesions and sexual function.

    Science.gov (United States)

    Jung, Jea-Hun; Kam, Sung-Chul; Choi, Sae-Min; Jae, Sung-Uk; Lee, Seung-Hyun; Hyun, Jae-Seog

    2008-01-01

    To identify the sexual function of, and effect of the location of brain lesions on sexual function in, stroke patients. We conducted a survey on 109 stroke patients (64.93 +/- 8.81 years) and 109 age-matched controls (64.69 +/- 8.85 years). We used a questionnaire that included the five-item version of the International Index of Erectile Function (IIEF-5) and questions about changes in sexual desire, ejaculatory function, and sexual satisfaction after a stroke. We analyzed the correlation between the results of the questionnaire and the locations of brain lesions. Erectile function was significantly decreased in the stroke patient group (IIEF-5, 5.89 +/- 7.08) compared with the control group (IIEF-5, 10.67 +/- 7.10). In most patients, the frequency of intercourse and sexual desire decreased after stroke, and an ejaculation disorder accompanied intercourse, but fear regarding intercourse was not severe. A lack of sexual desire was the largest cause (59.4%) of an absence of sexual intercourse. In cases with lesions in the right cerebellum and the left basal ganglia, a significant ejaculation disorder and decrease of sexual desire were more likely to occur, respectively. The sexual desire, erectile function, and ejaculatory function were impaired after stroke. A lack of sexual desire was the major cause of an absence of sexual intercourse. The specific locations of the stroke lesions, such as the left basal ganglia and right cerebellum, might be associated with sexual desire and ejaculation disorder, respectively.

  7. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  8. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  9. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    Science.gov (United States)

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  10. Risk factors associated with injury attributable to falling among elderly population with history of stroke.

    Science.gov (United States)

    Divani, Afshin A; Vazquez, Gabriela; Barrett, Anna M; Asadollahi, Marjan; Luft, Andreas R

    2009-10-01

    Stroke survivors are at high risk for falling. Identifying physical, clinical, and social factors that predispose stroke patients to falls may reduce further disability and life-threatening complications, and improve overall quality of life. We used 5 biennial waves (1998-2006) from the Health and Retirement Study to assess risk factors associated with falling accidents and fall-related injuries among stroke survivors. We abstracted demographic data, living status, self-evaluated general health, and comorbid conditions. We analyzed the rate ratio (RR) of falling and the OR of injury within 2 follow-up years using a multivariate random effects model. We identified 1174 stroke survivors (mean age+/-SD, 74.4+/-7.2 years; 53% female). The 2-year risks of falling, subsequent injury, and broken hip attributable to fall were 46%, 15%, and 2.1% among the subjects, respectively. Factors associated with an increased frequency of falling were living with spouse as compared to living alone (RR, 1.4), poor general health (RR, 1.1), time from first stroke (RR, 1.2), psychiatric problems (RR, 1.7), urinary incontinence (RR, 1.4), pain (RR, 1.4), motor impairment (RR, 1.2), and past frequency of > or = 3 falls (RR, 1.3). Risk factors associated with fall-related injury were female gender (OR, 1.5), poor general health (OR, 1.2), past injury from fall (OR, 3.2), past frequency of > or = 3 falls (OR, 3.1), psychiatric problems (OR, 1.4), urinary incontinence (OR, 1.4), impaired hearing (OR, 1.6), pain (OR, 1.8), motor impairment (OR, 1.3), and presence of multiple strokes (OR, 3.2). This study demonstrates the high prevalence of falls and fall-related injuries in stroke survivors, and identifies factors that increase the risk. Modifying these factors may prevent falls, which could lead to improved quality of life and less caregiver burden and cost in this population.

  11. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. The role of free radicals in traumatic brain injury.

    Science.gov (United States)

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  13. Feasibility of progesterone treatment for ischaemic stroke.

    Science.gov (United States)

    Gibson, Claire L; Bath, Philip M

    2016-03-01

    Two multi-centre phase III clinical trials examining the protective potential of progesterone following traumatic brain injury have recently failed to demonstrate any improvement in outcome. Thus, it is timely to consider how this impacts on the translational potential of progesterone treatment for ischaemic stroke. A wealth of experimental evidence supports the neuroprotective properties of progesterone, and associated metabolites, following various types of central nervous system injury. In particular, for ischaemic stroke, studies have also begun to reveal possible mechanisms of such neuroprotection. However, the results in traumatic brain injury now question whether further clinical development of progesterone for ischaemic stroke is relevant. © The Author(s) 2015.

  14. Capillaries in the Brain Microcirculatory Bed in the Acute Period of Experimental Brain Injury

    Directory of Open Access Journals (Sweden)

    V. Ye. Klimenko

    2010-01-01

    Full Text Available Objective: to provide a morphochemical evaluation of the capillaries in the brain microcirculatory bed of experimental animals in the acute period of brain injury (BI. Materials and methods. An experiment was carried out on 40 sexually mature Wister rats. Gradual BI was inflicted by a falling load blow on the right parietotemporal region, as described by T. F. Sokolova (1986. Brain magnetic resonance imaging was made in the animals an hour after injury infliction to define the extent of the damage and its site. Morphological studies of the brain were conducted 24 and 72 hours and 7 days after the injury. The capillaries were identified by the injection technique (Indian ink imbedding. The NO-producing function of endotheliocytes was evaluated using the NADPH-diaphorase histochemical technique. To study microcirculatory changes, the similar brain portions ipsilateral to the site of injury and in the intact hemisphere were compared in each animal. The changes in the diameter of capillaries, the volume density of the microcirculatory bed, the exchange surface area and activity of NADPH diaphorase in the capillary wall were analyzed. The findings were processed by the variation statistical method, by determining the arithmetic mean, the standard error of the arithmetic mean, and the test of significance. The findings give an insight into the mechanisms responsible for secondary ischemic lesions in the early period of brain injury. The NO-dependent capillary blood flow reduction leading to hypoxia may be one of the most important causes of secondary cerebral lesion. All changes in the dynamics of microvessels (their lumen and area are in line with the activity of the enzyme. Conclusion. In severe BI, changes in the brain microcirculatory bed, its capillary link in particular, are manifested not only with in a traumatic injury focus, but also involve the brain as a whole. Key words: brain, brain njury, capillaries, nitric oxide (NO.

  15. Neuroimaging Cerebrovascular Function and Diffuse Axonal Injury after Traumatic Brain Injury and Response to Sildenafil Treatment

    Science.gov (United States)

    2016-04-05

    brain coverage using the dedicated perfusion labeling neck coil. All images were acquired with 200um2 in-plane resolution, slice thickness 800um. Resting... damage after mild traumatic brain injury: a pilot study. J Neurotrauma 24:1447-59 12. Bederson JB, Bartkowski HM, Moon K, Halks-Miller M, Nishimura...Mol Psychiatry 18:963-74 121. Terpolilli NA, Kim SW, Thal SC, Kuebler WM, Plesnila N. 2013. Inhaled nitric oxide reduces secondary brain damage after

  16. A novel snake venom-derived GPIb antagonist, anfibatide, protects mice from acute experimental ischaemic stroke and reperfusion injury.

    Science.gov (United States)

    Li, Ting-Ting; Fan, Man-Li; Hou, Shi-Xiang; Li, Xiao-Yi; Barry, Devin M; Jin, Hui; Luo, Sheng-Yong; Kong, Feng; Lau, Lit-Fui; Dai, Xiang-Rong; Zhang, Guo-Hui; Zhou, Lan-Lan

    2015-08-01

    Ischaemic stroke is a serious disease with limited therapy options. Glycoprotein (GP)Ib binding to von Willebrand factor (vWF) exposed at vascular injury initiates platelet adhesion and contributes to platelet aggregation. GPIb has been suggested as an effective target for antithrombotic therapy in stroke. Anfibatide is a GPIb antagonist derived from snake venom and we investigated its protective effect on experimental brain ischaemia in mice. Focal cerebral ischaemia was induced by 90 min of transient middle cerebral artery occlusion (MCAO). These mice were then treated with anfibatide (4, 2, 1 μg·kg(-1) ), injected i.v., after 90 min of MCAO, followed by 1 h of reperfusion. Tirofiban, a GPIIb/IIIα antagonist, was used as a positive control. Twenty-four hours after MCAO, anfibatide-treated mice showed significantly improved ischaemic lesions in a dose-dependent manner. The mice had smaller infarct volumes, less severe neurological deficits and histopathology of cerebrum tissues compared with the untreated MCAO mice. Moreover, anfibatide decreased the amount of GPIbα, vWF and accumulation of fibrin(ogen) in the vasculature of the ischaemic hemisphere. Tirofiban had similar effects on infarct size and fibrin(ogen) deposition compared with the MCAO group. Importantly, the anfibatide-treated mice showed a lower incidence of intracerebral haemorrhage and shorter tail bleeding time compared with the tirofiban-treated mice. Our data indicate anfibatide is a safe GPIb antagonist that exerts a protective effect on cerebral ischaemia and reperfusion injury. Anfibatide is a promising candidate that could be beneficial for the treatment of ischaemic stroke. © 2015 The British Pharmacological Society.

  17. Brain imaging and cognitive predictors of stroke and Alzheimer disease in the Framingham Heart Study.

    Science.gov (United States)

    Weinstein, Galit; Beiser, Alexa S; Decarli, Charles; Au, Rhoda; Wolf, Philip A; Seshadri, Sudha

    2013-10-01

    Exposure to vascular risk factors has a gradual deleterious effect on brain MRI and cognitive measures. We explored whether a pattern of these measures exists that predicts stroke and Alzheimer disease (AD) risk. A cognitive battery was administered to 1679 dementia and stroke-free Framingham offspring (age, >55 years; mean, 65.7±7.0) between 1999 and 2004; participants were also free of other neurological conditions that could affect cognition and >90% also had brain MRI examination. We related cognitive and MRI measures to risks of incident stroke and AD ≤10 years of follow-up. As a secondary analysis, we explored these associations in The Framingham Heart Study original cohort (mean age, 67.5±7.3 and 84.8±3.3 years at the cognitive assessment and MRI examination, respectively). A total of 55 Offspring participants sustained strokes and 31 developed AD. Offspring who scored stroke (hazard ratio [HR], 2.27; 95% confidence interval [CI], 1.06-4.85) and AD (HR, 3.60; 95% CI, 1.52-8.52); additional cognitive tests also predicted AD. Participants with low (20 percentile) white matter hyperintensity volume had a higher risk of stroke (HR, 1.97; 95% CI, 1.03-3.77 and HR, 2.74; 95% CI, 1.51-5.00, respectively) but not AD. Hippocampal volume at the bottom quintile predicted AD in the offspring and original cohorts (HR, 4.41; 95% CI, 2.00-9.72 and HR, 2.37; 95% CI, 1.12-5.00, respectively). A stepwise increase in stroke risk was apparent with increasing numbers of these cognitive and imaging markers. Specific patterns of cognitive and brain structural measures observed even in early aging predict stroke risk and may serve as biomarkers for risk prediction.

  18. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  19. The emergence of artistic ability following traumatic brain injury

    OpenAIRE

    Midorikawa, Akira; Kawamura, Mitsuru

    2014-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal...

  20. YiQiFuMai powder injection ameliorates blood–brain barrier dysfunction and brain edema after focal cerebral ischemia–reperfusion injury in mice

    Directory of Open Access Journals (Sweden)

    Cao GS

    2016-01-01

    Full Text Available Guosheng Cao, Xinyi Ye, Yingqiong Xu, Mingzhu Yin, Honglin Chen, Junping Kou, Boyang Yu Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: YiQiFuMai powder injection (YQFM is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People’s Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood–brain barrier (BBB dysfunction induced by cerebral ischemia–reperfusion (I/R injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg was then given intraperitoneally (IP. The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1 and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins. Keywords: YiQiFuMai powder injection, YQFM, ischemic stroke, blood–brain barrier, microvascular permeability, tight junctions

  1. Long-Term Dosing of Intrathecal Baclofen in the Treatment of Spasticity After Acquired Brain Injury.

    Science.gov (United States)

    Maneyapanda, Mithra B; McCormick, Zachary L; Marciniak, Christina; Reger, Christopher

    2017-06-01

    Intrathecal baclofen (ITB) often is used to treat severe spasticity of cerebral origin. Although literature exists regarding the efficacy of ITB, there has been minimal investigation related to dosing in the adult-acquired brain injury population, particularly at long-term duration. To investigate long-term dosing of ITB in adult patients with spasticity of cerebral origin due traumatic brain injury (TBI), stroke, and hypoxic-ischemic encephalopathy (HIE). Retrospective cohort study. An academic outpatient rehabilitation clinic. Forty-two adult patients with spasticity secondary to TBI, stroke, or HIE treated with ITB for greater than 3 years. Medical records and device manufacturer records of included patients were reviewed to obtain demographic data, dosing information, dates of pump and catheter placements, and revisions. Average daily ITB doses and mean change in ITB dose over 1, 2, and 3 years. Goal of ITB treatment (active function versus comfort/care/positioning) also was compared. Of 42 total patients, spasticity was attributed to either TBI (n = 19), stroke (n = 11), or HIE (n = 12). The mean (standard deviation) age was 35.21 (10.17), 56.7 (13.1), and 35.1 (12.4) years for the TBI, stroke, and HIE groups, respectively (P < .001). There was a significant difference in the goal of therapy with "improving functional independence," accounting for 27.8%, 72.8%, and 0% in the TBI, stroke, and HIE groups, respectively (P = .002). The mean duration of ITB therapy was 8.5 (5.0), 7.8 (3.4), and 9.1 (4.6) years in the TBI, stroke, and HIE groups, respectively (P = .79). The mean daily ITB dose was 596.9 (322.8) μg/d, 513.2 (405.7) μg/d, and 705.2 (271.7) μg/d for the TBI, stroke, and HIE groups, respectively (P = .39). In the subset of the cohort with ITB therapy for more than 5 years, the mean percent change in daily ITB dose between time of chart review and 1, 2, and 3 years previously was 7.3% (13.6), 12.7% (16), and 24.7% (50.3), respectively. A complex

  2. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study ... All moderate and severe head injury patients admitted to Groote Schuur Hospital over a 3-month period were studied prospectively. Data were obtained from ...

  3. Automated Quantification of Stroke Damage on Brain Computed Tomography Scans: e-ASPECTS

    Directory of Open Access Journals (Sweden)

    James Hampton-Till

    2015-08-01

    Full Text Available Emergency radiological diagnosis of acute ischaemic stroke requires the accurate detection and appropriate interpretation of relevant imaging findings. Non-contrast computed tomography (CT provides fast and low-cost assessment of the early signs of ischaemia and is the most widely used diagnostic modality for acute stroke. The Alberta Stroke Program Early CT Score (ASPECTS is a quantitative and clinically validated method to measure the extent of ischaemic signs on brain CT scans. The CE-marked electronic-ASPECTS (e-ASPECTS software automates the ASPECTS score. Anglia Ruskin Clinical Trials Unit (ARCTU independently carried out a clinical investigation of the e-ASPECTS software, an automated scoring system which can be integrated into the diagnostic pathway of an acute ischaemic stroke patient, thereby assisting the physician with expert interpretation of the brain CT scan. Here we describe a literature review of the clinical importance of reliable assessment of early ischaemic signs on plain CT scans, and of technologies automating these processed scoring systems in ischaemic stroke on CT scans focusing on the e-ASPECTS software. To be suitable for critical appraisal in this evaluation, the published studies needed a sample size of a minimum of 10 cases. All randomised studies were screened and data deemed relevant to demonstration of performance of ASPECTS were appraised. The literature review focused on three domains: i interpretation of brain CT scans of stroke patients, ii the application of the ASPECTS score in ischaemic stroke, and iii automation of brain CT analysis. Finally, the appraised references are discussed in the context of the clinical impact of e-ASPECTS and the expected performance, which will be independently evaluated by a non-inferiority study conducted by the ARCTU.

  4. Comparison of brain perfusion SPECT abnormalities with anatomical imaging in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Majid Asadi

    2007-02-01

    Full Text Available Background: Trauma is the most common cause of morbidity and mortality in industrialized countries and also in Iran. Anatomical imaging (AI CT and MRI is helpful in the diagnosis of acute traumatic complications however it is not efficient in the diagnosis of disabling injury syndrome. In contrast, brain perfusion SPECT (Single Photon Emission Computed Tomography can be more useful for evaluation of microvascular structure. This study was designed to compare these two diagnostic methods. Methods: A total of 50 patients who had been suffering from traumatic brain injury for more than 1 year, and were followed as mild traumatic brain injury group according to “the Brain Injury Interdisciplinary Special Interest Group of the Ameri can Congress of Rehabilitation Medicine” criteria, were examined by brain perfusion SPECT and AI. The common anatomical classification of the lobes of brain was used. Results: The male to female ratio was 3:2. The mean age was 32.32±11.8 years and mean post-traumatic time was 1.48±0.65 years. The most common symptoms were headache (60%, agusia (36% and anosmia (32%. Among 400 examined brain lobes in this study, brain perfusion SPECT revealed remarkable abnormality in 76 lobes (19%, but AI determined abnormalities in 38 lobes (9.5% therefore, SPECT was twice sensitive than AI in mild traumatic brain injury (P<0.001. The correlation between SPECT and AI findings was 84%. SPECT was more sensitive than AI in demonstrating brain abnormalities in frontal lobe it was more obvious in the male group however, there was no significant difference between more and less than 30 years old groups. Conclusion: According to the findings of this study, we recommend using brain perfusion SPECT for all patients with chronic complications of head trauma, particularly those who have signs and symptoms of hypofrontalism, even though with some abnormalities in AI.

  5. Current pre-hospital traumatic brain injury management in China

    Science.gov (United States)

    Kou, Kou; Hou, Xiang-yu; Sun, Jian-dong; Chu, Kevin

    2014-01-01

    BACKGROUND: Traumatic brain injury (TBI) is associated with most trauma-related deaths. Secondary brain injury is the leading cause of in-hospital deaths after traumatic brain injury. By early prevention and slowing of the initial pathophysiological mechanism of secondary brain injury, pre-hospital service can significantly reduce case-fatality rates of TBI. In China, the incidence of TBI is increasing and the proportion of severe TBI is much higher than that in other countries. The objective of this paper is to review the pre-hospital management of TBI in China. DATA SOURCES: A literature search was conducted in January 2014 using the China National Knowledge Infrastructure (CNKI). Articles on the assessment and treatment of TBI in pre-hospital settings practiced by Chinese doctors were identified. The information on the assessment and treatment of hypoxemia, hypotension, and brain herniation was extracted from the identified articles. RESULTS: Of the 471 articles identified, 65 met the selection criteria. The existing literature indicated that current practices of pre-hospital TBI management in China were sub-optimal and varied considerably across different regions. CONCLUSION: Since pre-hospital care is the weakest part of Chinese emergency care, appropriate training programs on pre-hospital TBI management are urgently needed in China. PMID:25548596

  6. Misconceptions on neuropsychological rehabilitation and traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Alberto García- Molina

    2013-12-01

    Full Text Available There are many misconceptions about traumatic brain injuries, their recovery and outcome; misconceptions that have their origin in a lack of information influenced by the image that the media show of the brain damage. Development. Based on clinical experience, the authors of this essay sets out his personal view on some of the most frequent misconceptions in the field of neuropsychological rehabilitation of traumatic brain injury: 1 All deficits are evident; 2 The recovery depends mainly on the involvement of the patient: more effort, more rapid recovery; 3 Two years after traumatic brain injury there is no possibility of improvement and recovery; and 4 The “miracle” of recovery will occur when is found the appropriate professional or treatment. These and other beliefs may influence directly or indirectly on the recovery process and the expectations placed on it by the families and patients. Conclusions. Provide accurate, clear and honest information, at the right time, helps patients and their families to better understand the deficits, the course of recovery and to adapt to the new reality resulting from a traumatic brain injury.

  7. Cerebellar stroke presenting with isolated dizziness: Brain MRI in 136 patients.

    Science.gov (United States)

    Perloff, Michael D; Patel, Nimesh S; Kase, Carlos S; Oza, Anuja U; Voetsch, Barbara; Romero, Jose R

    2017-11-01

    To evaluate occurrence of cerebellar stroke in Emergency Department (ED) presentations of isolated dizziness (dizziness with a normal exam and negative neurological review of systems). A 5-year retrospective study of ED patients presenting with a chief complaint of "dizziness or vertigo", without other symptoms or signs in narrative history or on exam to suggest a central nervous system lesion, and work-up included a brain MRI within 48h. Patients with symptoms commonly peripheral in etiology (nystagmus, tinnitus, gait instability, etc.) were included in the study. Patient demographics, stroke risk factors, and gait assessments were recorded. One hundred and thirty-six patients, who had a brain MRI for isolated dizziness, were included. There was a low correlation of gait assessment between ED physician and Neurologist (49 patients, Spearman's correlation r 2 =0.17). Based on MRI DWI sequence, 3.7% (5/136 patients) had acute cerebellar strokes, limited to or including, the medial posterior inferior cerebellar artery vascular territory. In the 5 cerebellar stroke patients, mean age, body mass index (BMI), hemoglobin A1c, gender distribution, and prevalence of hypertension were similar to the non-cerebellar stroke patient group. Mean LDL/HDL ratio was 3.63±0.80 and smoking prevalence was 80% in the cerebellar stroke group compared to 2.43±0.79 and 22% (respectively, p values<0.01) in the non-cerebellar stroke group. Though there was preselection bias for stroke risk factors, our study suggests an important proportion of cerebellar stroke among ED patients with isolated dizziness, considering how common this complaint is. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Emerging Molecular Targets for Brain Repair after Stroke

    Directory of Open Access Journals (Sweden)

    Jerzy Krupinski

    2013-01-01

    Full Text Available The field of neuroprotection generated consistent preclinical findings of mechanisms of cell death but these failed to be translated into clinics. The approaches that combine the modulation of the inhibitory environment together with the promotion of intrinsic axonal outgrowth needs further work before combined therapeutic strategies will be transferable to clinic trials. It is likely that only when some answers have been found to these issues will our therapeutic efforts meet our expectations. Stroke is a clinically heterogeneous disease and combinatorial treatments require much greater work in pharmacological and toxicological testing. Advances in genetics and results of the Whole Human Genome Project (HGP provided new unknown information in relation to stroke. Genetic factors are not the only determinants of responses to some diseases. It was recognized early on that “epigenetic” factors were major players in the aetiology and progression of many diseases like stroke. The major players are microRNAs that represent the best-characterized subclass of noncoding RNAs. Epigenetic mechanisms convert environmental conditions and physiological stresses into long-term changes in gene expression and translation. Epigenetics in stroke are in their infancy but offer great promise for better understanding of stroke pathology and the potential viability of new strategies for its treatment.

  9. Brain perfusion-CT in acute stroke patients

    International Nuclear Information System (INIS)

    Andreev, T.; Totsev, N.; Tzvetanov, P.

    2013-01-01

    Since 1979 when Grodfrey Hounsfield and Allan Corman introduced the computed tomography new generations of CT were developed that improved the special resolution and time of acquisition. The role of neuro-imaging in the evaluation of acute stroke has changed dramatically in the past decade. Previously, neuro-imaging was used in this set-ting to provide anatomic imaging that indicated the presence or absence of acute cerebral ischemia and excluded lesions that produce symptoms or signs mimicking those of stroke, such as hemorrhage and neoplasms. More recently, the introduction of thrombolysis has changed the goals of neuro-imaging from providing solely anatomic information to providing physiologic information that could help to determine which patients might benefit from therapy. In particular, significant emphasis has been placed on the delineation of the ischemic penumbra, also called tissue at risk. Modem CT survey, consisting of three indissociable elements; noncontrast CT (NCT) of course, perfusion-CT (PCT) and CT-angiography (CTA), fulfill all the requirements for hyperacute stroke imaging. CTA can define the occlusion site, depict arterial dissection, grade collateral blood flow, and characterize atherosclerotic disease, whereas PCT accurately defines the infarct core and the ischemic penumbra. CT offers a number of practical advantages over other cerebral perfusion imaging methods, including its wide availability. Using PCT and CTA to define new individualized strategies for acute reperfusion will allow more acute stroke patients to benefit from thrombolytic therapy. Key words: Stroke. Penumbra. Computed Tomography. Perfusion-CT. CT Angiography. Outcome

  10. Acute Inflammatory Response in Rodent Brain and Blood Following a Blast Induced Traumatic Brain Injury

    Science.gov (United States)

    2014-11-01

    dehydrated with 30% sucrose before storing at -80 °C. Thirty micron coronal sections were stained with a primary antibody against microglia ...strongly Iba-1 stained cells as compared to controls. These results indicate blast exposure induces activation of microglia in the hippocampus... Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain, behaviour and Immunity 26: 1191-1201. Loane, D. J

  11. Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury

    NARCIS (Netherlands)

    F.K. Korley (Frederick K.); R. Diaz-Arrastia (Ramon); A.H.B. Wu (Alan H. B.); J.K. Yue (John); G. Manley (Geoffrey); H.I. Sair (Haris I.); J.E. van Eyk (Jennifer); A.D. Everett (Allen D.); D. Okonkwo (David); A.B. Valadka (Alex); W.A. Gordon (Wayne A.); A.I.R. Maas (Andrew I.R.); P. Mukherjee (Pratik); E.L. Yuh (Esther); H.F. Lingsma (Hester); A.M. Puccio (Ava); D.M. Schnyer (David)

    2016-01-01

    textabstractBrain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency

  12. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  13. Neuroendocrine Abnormalities in Patients with Traumatic Brain Injury

    Science.gov (United States)

    1991-01-01

    oxytocin (41). However. global brain damage may not substantially increase ACTH secretion. Our study in rats showed that fluid percussion brain injury...who were comatose following trauma. Plasma cortisol and aldosterone levels wcre measured at 4-h intervals throughout three consecutive 24-h cycles in...148). In dog and rabbit, hypothalamic compressive lesion led to a hypothyroidisr within 4 weeks (30). The relationship between responses to head

  14. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury

    Science.gov (United States)

    2009-01-14

    In 1969, Olney found that subcutaneous injection of monosodium glutamate resulted in necrotic brain lesions in the hypothalamus of newborn mice...Thesis: "Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury" Name of Candidate: Michael Doh Molecular & Cell...TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Pharmacological Treatment Of Glutamate Excitotoxicity Following Traumatic

  15. Brain volume loss contributes to arousal and empathy dysregulation following severe traumatic brain injury.

    Science.gov (United States)

    Rushby, Jacqueline A; McDonald, Skye; Fisher, Alana C; Kornfeld, Emma J; De Blasio, Frances M; Parks, Nicklas; Piguet, Olivier

    2016-01-01

    Severe traumatic brain injury (TBI) often leads to deficits in physiological arousal and empathy, which are thought to be linked. This study examined whether injury-related brain volume loss in key limbic system structures is associated with these deficits. Twenty-four adults with TBI and 24 matched Controls underwent MRI scans to establish grey matter volumes in the amygdala, thalamus, and hippocampus. EEG and skin conductance levels were recorded to index basal physiological arousal. Self-report emotional empathy levels were also assessed. The TBI group had reduced brain volumes, topographic alpha differences, and lower emotional empathy compared to Controls. Regional brain volumes were differentially correlated to arousal and self-report empathy. Importantly, lower volume in pertinent brain structures correlated with lower empathy, for participants with and without TBI. Overall we provide new insights into empathic processes after TBI and their relationship to brain volume loss.

  16. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    Science.gov (United States)

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  17. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  18. YiQiFuMai powder injection ameliorates blood-brain barrier dysfunction and brain edema after focal cerebral ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Cao, Guosheng; Ye, Xinyi; Xu, Yingqiong; Yin, Mingzhu; Chen, Honglin; Kou, Junping; Yu, Boyang

    2016-01-01

    YiQiFuMai powder injection (YQFM) is a modern preparation derived from the traditional Chinese medicine Sheng-Mai-San. YQFM is widely used in clinical practice in the People's Republic of China, mainly for the treatment of microcirculatory disturbance-related diseases. However, little is known about its role in animals with ischemic stroke. The aim of this study was to examine the effect of YQFM on brain edema and blood-brain barrier (BBB) dysfunction induced by cerebral ischemia-reperfusion (I/R) injury. Male C57BL/6J mice underwent right middle cerebral artery occlusion for 1 hour with a subsequent 24-hour reperfusion to produce I/R injury. YQFM (three doses: 0.336, 0.671, and 1.342 g/kg) was then given intraperitoneally (IP). The results demonstrated that YQFM significantly decreased infarct size, improved neurological deficits, reduced brain water content, and increased cerebral blood flow after I/R injury. 18F-fluorodeoxyglucose micro-positron emission tomography imaging and hematoxylin and eosin staining results indicated that YQFM is able to ameliorate brain metabolism and histopathological damage after I/R. Moreover, YQFM administration reduced BBB leakage and upregulated the expression of zona occludens-1 (ZO-1) and occludin, which was confirmed by Evans Blue extravasation, Western blotting, and immunofluorescence assay. Our findings suggest that YQFM provides protection against focal cerebral I/R injury in mice, possibly by improving BBB dysfunction via upregulation of the expression of tight junction proteins.

  19. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  20. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p amusia with greater severity in RBD than LBD. These results supported the "valence hypothesis" of right hemisphere dominance in processing negative emotions.

  2. Potential risk factors for developing heterotopic ossification in patients with severe traumatic brain injury

    NARCIS (Netherlands)

    Kampen, P.J. van; Martina, J.D.; Vos, P.E.; Hoedemaekers, C.W.E.; Hendricks, H.T.

    2011-01-01

    BACKGROUND: Heterotopic ossification (HO) is a frequent complication after traumatic brain injury (TBI). The current preliminary study is intended to provide additional data on the potential roles that brain injury severity, concomitant orthopaedic trauma, and specific intensive care complicating

  3. Script generation and the dysexecutive syndrome in patients with brain injury

    NARCIS (Netherlands)

    Boelen, Danielle H. E.; Allain, Philippe; Spikman, Jacoba M.; Fasotti, Luciano

    2011-01-01

    Objective: The authors investigated whether patients with brain injury suffering from dysexecutive symptoms had difficulties with script generation. Method: Forty-eight patients with brain injury of various etiology with complaints of executive dysfunctioning and deficient scores on executive tests

  4. Injury versus non-injury factors as predictors of post-concussive symptoms following mild traumatic brain injury in children

    Science.gov (United States)

    McNally, Kelly A.; Bangert, Barbara; Dietrich, Ann; Nuss, Kathy; Rusin, Jerome; Wright, Martha; Taylor, H. Gerry; Yeates, Keith Owen

    2013-01-01

    Objective To examine the relative contributions of injury characteristics and non-injury child and family factors as predictors of postconcussive symptoms (PCS) following mild traumatic brain injury (TBI) in children. Methods Participants were 8- to 15-year-old children, 186 with mild TBI and 99 with mild orthopedic injuries (OI). Parents and children rated PCS shortly after injury and at 1, 3, and 12 months post-injury. Hierarchical regression analyses were conducted to predict PCS from (1) demographic variables; (2) pre-morbid child factors (WASI IQ; WRAT-3 Reading; Child Behavior Checklist; ratings of pre-injury PCS); (3) family factors (Family Assessment Device General Functioning Scale; Brief Symptom Inventory; and Life Stressors and Social Resources Inventory); and (4) injury group (OI, mild TBI with loss of consciousness [LOC] and associated injuries [AI], mild TBI with LOC but without AI, mild TBI without LOC but with AI, and mild TBI without LOC or AI) Results Injury group predicted parent and child ratings of PCS but showed a decreasing contribution over time. Demographic variables consistently predicted symptom ratings across time. Premorbid child factors, especially retrospective ratings of premorbid symptoms, accounted for the most variance in symptom ratings. Family factors, particularly parent adjustment, consistently predicted parent, but not child, ratings of PCS. Conclusions Injury characteristics predict PCS in the first months following mild TBI but show a decreasing contribution over time. In contrast, non-injury factors are more consistently related to persistent PCS. PMID:23356592

  5. Applications of Brain-Machine Interface Systems in Stroke Recovery and Rehabilitation.

    Science.gov (United States)

    Venkatakrishnan, Anusha; Francisco, Gerard E; Contreras-Vidal, Jose L

    2014-06-01

    Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation.

  6. Implications of MMP9 for Blood Brain Barrier Disruption And Hemorrhagic Transformation Following Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Renee Jade Turner

    2016-03-01

    Full Text Available Numerous studies have documented increases in matrix metalloproteinases (MMPs, specifically MMP-9 levels following stroke, with such perturbations associated with disruption of the blood brain barrier (BBB, increased risk of hemorrhagic complications and worsened outcome. Despite this, controversy remains as to which cells release MMP-9 at the normal and pathological BBB, with even less clarity in the context of stroke. This may be further complicated by the influence of tissue plasminogen activator (tPA treatment. The aim of the present review is to examine the relationship between neutrophils, MMP-9 and tPA following ischemic stroke to elucidate which cells are responsible for the increases in MMP-9 and resultant barrier changes and hemorrhage observed following stroke.

  7. Psychiatric sequelae of traumatic brain injury: Retrospective ...

    African Journals Online (AJOL)

    Information obtained included the sociodemographic characteristics, type of injury, durations of unconsciousness (LOC) and posttraumatic amnesia (PTA), psychiatric and psychoactive substance use history. Psychiatric diagnosis was based on the criteria of the 10th edition of the International Classification of Diseases ...

  8. Mild Traumatic Brain Injury Pocket Guide (CONUS)

    Science.gov (United States)

    2010-01-01

    gastrointestinal ( GERD /GI) dysfunction Assessment and Treatment Appetite Changes Nausea history `y Pre-injury causes of appetite issues `y Define triggers and...Multidimensional Assessment of Fatigue (MAF) http://www.son.washington.edu/ research /maf Neurobehavioral Symptom Inventory (NSI) http...y The DVBIC Regional Care Coordinator (RCC) Program is a network of professionals ( nurses , social workers, counselors) specializing in TBI who

  9. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke

    Directory of Open Access Journals (Sweden)

    Hrvoje Brzica

    2017-03-01

    Full Text Available Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA. A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps and organic cation transporters (Octs. In addition, multidrug resistance proteins (Mrps are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.

  10. Association of reduced folate carrier-1 (RFC-1) polymorphisms with ischemic stroke and silent brain infarction.

    Science.gov (United States)

    Cho, Yunkyung; Kim, Jung O; Lee, Jeong Han; Park, Hye Mi; Jeon, Young Joo; Oh, Seung Hun; Bae, Jinkun; Park, Young Seok; Kim, Ok Joon; Kim, Nam Keun

    2015-01-01

    Stroke is the second leading cause of death in the world and in South Korea. Ischemic stroke and silent brain infarction (SBI) are complex, multifactorial diseases influenced by multiple genetic and environmental factors. Moderately elevated plasma homocysteine levels are a major risk factor for vascular diseases, including stroke and SBI. Folate and vitamin B12 are important regulators of homocysteine metabolism. Reduced folate carrier (RFC), a bidirectional anion exchanger, mediates folate delivery to a variety of cells. We selected three known RFC-1 polymorphisms (-43C>T, 80A>G, 696T>C) and investigated their relationship to cerebral infarction in the Korean population. We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to analyze associations between the three RFC-1 polymorphisms, disease status, and folate and homocysteine levels in 584 ischemic stroke patients, 353 SBI patients, and 505 control subjects. The frequencies of the RFC-1 -43TT, 80GG, and 696CC genotypes differed significantly between the stroke and control groups. The RFC-1 80A>G substitution was also associated with small artery occlusion and SBI. In a gene-environment analysis, the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms in the ischemic stroke group had combined effects with all environmental factors. In summary, we found that the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms may be risk factors for ischemic stroke.

  11. SPET brain imaging with 201 diethyldithiocarbamate in acute ischaemic stroke

    NARCIS (Netherlands)

    de Bruïne, J. F.; Limburg, M.; van Royen, E. A.; Hijdra, A.; Hill, T. C.; van der Schoot, J. B.

    1990-01-01

    Thirty-five patients with acute ischaemic stroke were studied within 24 h after hospital admission with thallium 201 diethyldithiocarbamate single photon emission tomography (201Tl-DDC SPET) and X-ray computed tomography (CT). 201Tl-DDC is a non-redistributing agent that allows postponed imaging

  12. Advances in Intracranial Pressure Monitoring and Its Significance in Managing Traumatic Brain Injury

    Science.gov (United States)

    Kawoos, Usmah; McCarron, Richard M.; Auker, Charles R.; Chavko, Mikulas

    2015-01-01

    Intracranial pressure (ICP) measurements are essential in evaluation and treatment of neurological disorders such as subarachnoid and intracerebral hemorrhage, ischemic stroke, hydrocephalus, meningitis/encephalitis, and traumatic brain injury (TBI). The techniques of ICP monitoring have evolved from invasive to non-invasive—with both limitations and advantages. Some limitations of the invasive methods include short-term monitoring, risk of infection, restricted mobility of the subject, etc. The invasiveness of a method limits the frequency of ICP evaluation in neurological conditions like hydrocephalus, thus hampering the long-term care of patients with compromised ICP. Thus, there has been substantial interest in developing noninvasive techniques for assessment of ICP. Several approaches were reported, although none seem to provide a complete solution due to inaccuracy. ICP measurements are fundamental for immediate care of TBI patients in the acute stages of severe TBI injury. In severe TBI, elevated ICP is associated with mortality or poor clinical outcome. ICP monitoring in conjunction with other neurological monitoring can aid in understanding the pathophysiology of brain damage. This review article presents: (a) the significance of ICP monitoring; (b) ICP monitoring methods (invasive and non-invasive); and (c) the role of ICP monitoring in the management of brain damage, especially TBI. PMID:26690122

  13. Transcranial brain stimulation (TMS and tDCS for post-stroke aphasia rehabilitation: Controversies

    Directory of Open Access Journals (Sweden)

    Lucia Iracema Zanotto de Mendonça

    Full Text Available Transcranial brain stimulation (TS techniques have been investigated for use in the rehabilitation of post-stroke aphasia. According to previous reports, functional recovery by the left hemisphere improves recovery from aphasia, when compared with right hemisphere participation. TS has been applied to stimulate the activity of the left hemisphere or to inhibit homotopic areas in the right hemisphere. Various factors can interfere with the brain's response to TS, including the size and location of the lesion, the time elapsed since the causal event, and individual differences in the hemispheric language dominance pattern. The following questions are discussed in the present article: [a] Is inhibition of the right hemisphere truly beneficial?; [b] Is the transference of the language network to the left hemisphere truly desirable in all patients?; [c] Is the use of TS during the post-stroke subacute phase truly appropriate? Different patterns of neuroplasticity must occur in post-stroke aphasia.

  14. Cognitive Task Demands and Discourse Performance after Traumatic Brain Injury

    Science.gov (United States)

    Byom, Lindsey; Turkstra, Lyn S.

    2017-01-01

    Background: Social communication problems are common in adults with traumatic brain injury (TBI), particularly problems in spoken discourse. Social communication problems are thought to reflect underlying cognitive impairments. Aims: To measure the contribution of two cognitive processes, executive functioning (EF) and theory of mind (ToM), to the…

  15. Headache in traumatic brain injuries from blunt head trauma

    OpenAIRE

    Chelse, Ana B.; Epstein, Leon G.

    2015-01-01

    Investigators from New York Presbyterian Morgan Stanley Children’s Hospital examined whether having an isolated headache following minor blunt head trauma was suggestive of traumatic brain injury (TBI) among a large cohort of children 2-18 years of age.

  16. Integration of Neuropsychology in Educational Planning Following Traumatic Brain Injury

    Science.gov (United States)

    Stavinoha, Peter L.

    2005-01-01

    Traumatic brain injuries (TBIs) have the potential to significantly disrupt a student's cognitive, academic, social, emotional, behavioral, and physical functioning. It is important for educators to appreciate the array of difficulties students with TBI may experience in order to appropriately assess needs and create an educational plan that…

  17. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    Science.gov (United States)

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  18. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  19. Traumatic Brain Injury and Metabolic Dysfunction Among Head ...

    African Journals Online (AJOL)

    Traumatic Brain Injury (TBI) is a common health problem which is one of the main causes of chronic disability and it is associated with hormonal and metabolic disorders. This work was carried out to investigate the relationship between some stress hormones (i.e. prolactin and cortisol) and plasma glucose level in TBI ...

  20. Fluoxetine as a treatment for emotional lability after brain injury.

    Science.gov (United States)

    Sloan, R L; Brown, K W; Pentland, B

    1992-01-01

    Emotional lability or emotionalism is a relatively common phenomenon and frequently occurs following vascular or traumatic brain injury. It is distressing and embarrassing to sufferers and their families, and often interferes with rehabilitation. At present there is no satisfactory or reliable treatment for this condition. We describe an open trial using fluoxetine, a newer antidepressant with a specific serotonergic action, in the treatment of emotional lability due to brain injury. Six consecutive cases of emotional lability attending a rehabilitation unit were studied (five cases of cerebrovascular accident and one of traumatic brain injury). Response to treatment was measured using a modification of the scale described by Lawson and MacLeod [1]. All showed a marked improvement within one week of commencing fluoxetine and the drug was well tolerated with no reported side-effects. The speed of onset and degree of improvement suggest that fluoxetine may be a useful agent in the treatment of emotional lability due to brain injury. Our observations indicate that further investigation of the role of fluoxetine in the treatment of emotional lability is warranted.

  1. Effective protection of rabbits' explosive brain injury through blocking ...

    African Journals Online (AJOL)

    Background: The gap junction plays an important role in spreading of apoptotic and necrotic signals from injured and stressed cells to the neighboring viable cells. The present study was performed to investigate the important role of gap junction communication on rabbits' explosive brain injury. Methods: Explosion of paper ...

  2. Issues of cultural diversity in acquired brain injury (ABI) rehabilitation.

    Science.gov (United States)

    Lequerica, Anthony; Krch, Denise

    2014-01-01

    With the general population in the United States becoming increasingly diverse, it is important for rehabilitation professionals to develop the capacity to provide culturally sensitive treatment. This is especially relevant when working with minority populations who have a higher risk for brain injury and poorer rehabilitation outcomes. This article presents a number of clinical vignettes to illustrate how cultural factors can influence behavior in patients recovering from brain injury, as well as rehabilitation staff. The main objectives are to raise awareness among clinicians and stimulate research ideas by highlighting some real world examples of situations where a specialized, patient-centered approach needs to consider factors of cultural diversity. Because one's own world view impacts the way we see the world and interpret behavior, it is important to understand one's own ethnocentrism when dealing with a diverse population of patients with brain injury where behavioral sequelae are often expected. Being able to see behavior after brain injury with an open mind and taking into account cultural and contextual factors is an important step in developing culturally competent rehabilitation practices.

  3. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    Science.gov (United States)

    2015-09-01

    compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology. 2011;44:158-164. Rochat L...well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and Pappagallo, 2005; Koob and Volkow, 2010). Physical dependence

  4. Opioid Abuse After Traumatic Brain Injury: Evaluation Using Rodet Models

    Science.gov (United States)

    2014-07-01

    impulsivity relates to compulsive buying and the burden perceived by caregivers after moderate-to-severe traumatic brain injury. Psychopathology...mechanism for the continued misuse/abuse of opioid drugs as well as the progression from abuse to compulsive drug taking and addiction (Coluzzi and

  5. Pathological and immunohistochemical study of lethal primary brain stem injuries

    Directory of Open Access Journals (Sweden)

    Rongchao Sun

    2012-05-01

    Full Text Available Abstract Background Many of the deaths that occur shortly after injury or in hospitals are caused by mild trauma. Slight morphological changes are often found in the brain stems of these patients during autopsy. The purpose of this study is to investigate the histopathological changes involved in primary brain stem injuries (PBSI and their diagnostic significance. Methods A total of 65 patients who had died of PBSI and other conditions were randomly selected. They were divided into 2 groups, an injury group (25 cases and a control group (20 cases. Slides of each patient’s midbrain, pons, and medulla oblongata were prepared and stained with HE, argentaffin, and immunohistochemical agents (GFAP, NF, amyloid-ß, MBP. Under low power (×100 and NF staining, the diameter of the thickest longitudinal axon was measured at its widest point. Ten such diameters were collected for each part of the brain (midbrain, pons, and medulla oblongata. Data were recorded and analyzed statistically. Results Brain stem contusions, astrocyte activity, edema, and pathological changes in the neurons were visibly different in the injury and control groups (P P  Conclusions These histopathological changes may prove beneficial to the pathological diagnosis of PBSI during autopsy. The measurement of axon diameters provides a referent quantitative index for the diagnosis of the specific causes of death involved in PBSI. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1345298818712204

  6. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2013-07-01

    Full Text Available Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  7. Working with Parents of Students with Traumatic Brain Injuries.

    Science.gov (United States)

    Rhein, Barbara; And Others

    Intended for educators working with children who have suffered traumatic brain injuries (TBI), this brief paper addresses parent issues, administrative issues, and programmatic issues. Noted are the five stages of adjustment typically experienced by parents: shock, elation, reality, crisis, and mourning. Professionals are encouraged to be informed…

  8. Swallowing Disorders in Severe Brain Injury in the Arousal Phase.

    Science.gov (United States)

    Bremare, A; Rapin, A; Veber, B; Beuret-Blanquart, F; Verin, E

    2016-08-01

    The objective of this study was to determine the clinical characteristics of swallowing disorders in severe brain injury in the arousal phase after coma. Between December 1, 2013 and June 30, 2014, eleven patients with severe acquired brain injury who were admitted to rehabilitation center (Male 81.8 %; 40.7 ± 14.6 years) were included in the study. Evaluation of swallowing included a functional examination, clinical functional swallowing test, and naso-endoscopic swallowing test. All patients had swallowing disorders at admission. The first functional swallowing test showed oral (77.8 %) and pharyngeal (66.7 %) food bolus transport disorders; and alterations in airway protection mechanisms (80 %). Swallowing test under endoscopic control showed a disorder in swallowing coordination in 55.6 % of patients tested. Seven (63.6 %) patients resumed oral feeding within an average of 6 weeks after admission to rehabilitation center and 14 weeks after acquired brain injury. Six (85.7 %) of these seven patients continued to require modified solid and liquid textures. Swallowing disorders are a major concern in severe brain injury in the arousal phase. Early bedside assessment of swallowing is essential for detection of swallowing disorders to propose appropriate medical rehabilitation care to these patients in a state of altered consciousness.

  9. Adolescents\\' experience of a parental traumatic brain injury | Harris ...

    African Journals Online (AJOL)

    The phenomenon of parental traumatic brain injury was characterised by denial, anger, grief, guilt, anxiety, over-protectiveness, social isolation, and change in many areas of the participants' lives. The adolescents coped using both approaches and avoidance styles of coping. Religion was a theme in the lives of all four ...

  10. Endogenous lipoid pneumonia in a cachectic patient after brain injury.

    Science.gov (United States)

    Zhang, Ji; Mu, Jiao; Lin, Wei; Dong, Hongmei

    2015-01-01

    Endogenous lipoid pneumonia (EnLP) is an uncommon non-life-threatening inflammatory lung disease that usually occurs in patients with conditions such as lung cancers, primary sclerosing cholangitis, and undifferentiated connective tissue disease. Here we report a case of EnLP in a paralytic and cachectic patient with bronchopneumonia after brain injury. A 40-year-old man experienced a severe brain injury in an automobile accident. He was treated for 1 month and his status plateaued. However, he became paralyzed and developed cachexia and ultimately died 145 days after the accident. Macroscopically, multifocal yellowish firm nodules were visible on scattered gross lesions throughout the lungs. Histologically, many foam cells had accumulated within the alveoli and alveolar walls accompanied by a surrounding interstitial infiltration of lymphocytes. The findings were in accordance with a diagnosis of EnLP. Bronchopneumonia was also noted. To our knowledge, there have been few reports of EnLP associated with bronchopneumonia and cachexia after brain injury. This uncommon pathogenesis should be well recognized by clinicians and forensic pathologists. The case reported here should prompt medical staff to increase the nutritional status and fight pulmonary infections in patients with brain injury to prevent the development of EnLP.

  11. Sex, Gender, and Traumatic Brain Injury: A Commentary.

    Science.gov (United States)

    Colantonio, Angela

    2016-02-01

    The goal of this supplemental issue is to address major knowledge, research, and clinical practice gaps regarding the limited focus on brain injury in girls and women as well as limited analysis of the effect of sex and gender in research on acquired brain injury. Integrating sex and gender in research is recognized as leading to better science and, ultimately, to better clinical practice. A sex and gender analytical approach to rehabilitation research is crucial to understanding traumatic brain injury and improving quality of life outcomes for survivors. Put another way, the lack of focus on sex and gender reduces the rigor of research design, the generalizability of study findings, and the effectiveness of clinical implementation and knowledge dissemination practices. The articles in this supplement examine sex and gender using a variety of methodological approaches and research contexts. Recommendations for future research on acquired brain injury that consciously incorporates sex and gender are made throughout this issue. This supplement is a product of the Girls and Women with ABI Task Force of the American Congress of Rehabilitation Medicine. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Traumatic brain injury in children | Coughlan | South African Family ...

    African Journals Online (AJOL)

    South African Family Practice. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 45, No 5 (2003) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Traumatic brain injury in children. M Coughlan, G Fieggen ...

  13. Demographic profile of severe traumatic brain injury admissions to ...

    African Journals Online (AJOL)

    This retrospective, descriptive, quantitative study included children admitted to the RCWMCH with severe traumatic brain injury (TBI) between June 2006 and April 2011, who required intracranial monitoring. We used the Division of Paediatric Neurosurgery's TBI database to identify cases for inclusion in the study and to ...

  14. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    Objectives. This retrospective review of a prospectively entered and maintained hybrid electronic trauma registry was intended to develop a comprehensive overview of traumatic brain injury (TBI) in children and adolescents and to compare it with previous audits from our local environment and from other developing world ...

  15. Minor traumatic brain injuries – what is new? | Hollander ...

    African Journals Online (AJOL)

    Minor traumatic brain injuries – what is new? D Hollander, J Coventry, M Du Trevou. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  16. Oxidative stress following traumatic brain injury: enhancement of ...

    African Journals Online (AJOL)

    Background: Management of brain injury can pose enormous challenges to the health team. There are many studies aimed at discovering or developing pharmacotherapeutic agents targeted at improving outcome of head-injured patients. This paper reviews the role of oxidative stress in neuronal loss following traumatic ...

  17. Minor traumatic brain injuries – what is new?

    African Journals Online (AJOL)

    Research has concentrated on indications for neuroimaging, management guidelines for sports-related concussion and sequelae of minor traumatic brain injuries (mTBIs). Despite the emergence of several guidelines there is little agreement on several important issues, including the definition of mTBIs and concussion.

  18. Spoken Persuasive Discourse Abilities of Adolescents with Acquired Brain Injury

    Science.gov (United States)

    Moran, Catherine; Kirk, Cecilia; Powell, Emma

    2012-01-01

    Purpose: The aim of this study was to examine the performance of adolescents with acquired brain injury (ABI) during a spoken persuasive discourse task. Persuasive discourse is frequently used in social and academic settings and is of importance in the study of adolescent language. Method: Participants included 8 adolescents with ABI and 8 peers…

  19. Brain-Machine Interface in chronic stroke rehabilitation: A controlled study

    NARCIS (Netherlands)

    Ramos-Murguialday, A.; Brötz, D.; Rea, M.; Laër, L.; Yilmaz, O.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia Cossio, E.; Vyziotis, A.; Cho, W.; Agostini, M.; Soares, E.; Soekadar, S.R.; Caria, A.; Cohen, L.G.; Birbaumer, N.

    2013-01-01

    Objective: Chronic stroke patients with severe hand weakness respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine interface (BMI) training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double-blind

  20. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  1. Plasticity in the Developing Brain: Intellectual, Language and Academic Functions in Children with Ischaemic Perinatal Stroke

    Science.gov (United States)

    Ballantyne, Angela O.; Spilkin, Amy M.; Hesselink, John; Trauner, Doris A.

    2008-01-01

    The developing brain has the capacity for a great deal of plasticity. A number of investigators have demonstrated that intellectual and language skills may be in the normal range in children following unilateral perinatal stroke. Questions have been raised, however, about whether these skills can be maintained at the same level as the brain…

  2. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  3. Penetrating brain injury with a bike key: a case report.

    Science.gov (United States)

    Das, Joe M; Chandra, Satheesh; Prabhakar, Rajmohan B

    2015-12-01

    Penetrating brain injury (PBI) may be caused by low-velocity or high-velocity objects. Several objects are known to cause such injury ranging from knives to rooster pecks. However, an assault with the key of a bike causing PBI has not been reported in the literature. The objective of this study was to report the case of a 21-year-old male patient, who presented after an assault with a bike key. The key was impacted in the left parietal region. Left parietal craniotomy was done and the key was removed. There was an underlying parenchymal contusion, which was excised. On post-operative day two, the patient developed motor aphasia, which subsided in subsequent days with antiedema measures. At the first month follow-up, the patient was having normal speech and consciousness. Prompt treatment of penetrating brain injury is important and angiography is not always necessary for PBI.

  4. Patterns of Post-Stroke Brain Damage that Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-01-01

    Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457

  5. Genomic responses in rat cerebral cortex after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mathiesen Tiit

    2005-11-01

    Full Text Available Abstract Background Traumatic brain injury (TBI initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future

  6. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  7. Clinical course of brain stroke in the persons exposed to ionizing radiation under the production conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bouchmanov, A. [State Research Center of Russia, Moscow (Russian Federation). Inst. of Biophysics

    2000-05-01

    The purpose was to study the risk factors and clinical course of brain strokes in professionally exposed workers being employed in plutonium production in comparison with a control group. The method and materials of study -clinical supervision and clinical database creation on 162 cases of brain stroke (128 males and 34 females) developed among professionally exposed workers. Age of patient varied from 21 to 68 years (in average -51.6 y.). The control group consisted of patients with the same diagnosis, worked on the same enterprise, but non-exposed to radiation. Data on the totally accumulated dose of external gamma radiation were received on the base of the individual dosimeters (from 0.1 cSv to 52 cSv, in average about 13 cSv); the plutonium-239 body content was estimated accordingly to the level of urine radionuclide excretion (from 0.4 kBq to 1.6 kBq, in average about 0.33 kBq). Muscle's hypertinsion and pathological great-toe reflexes in paretic legs and hands, hemianopsia, impressive and ataxic aphasia prevailed in the patients with ischemic brain strokes in system of internal carotid artery, exposed to radiation. The changes of muscle's tension, ataxia and nystagmus were marked more often in the professionals with ischemic brain strokes in system of vertebrobasilar artery. The illness proceeded more easy and with smaller frequency of frustration of consciousness and algesthesia, irrespective of a type ischemic brain strokes in the people exposed to ionizing radiation, than in patients of non-irradiated group. It was found that the arterial hypertension appeared to be the main risk factor for the brain stroke in both groups of patients (in 81.48% and 91.15% of cases). There was no marked differences in significance of risk factors and in main clinical parameters of various types of ischemic brain strokes among the patients professionally exposed to radiation in comparison with a control group. (author)

  8. Role of the prostaglandin E2 EP1 receptor in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Alexander V Glushakov

    Full Text Available Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2, leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI model, a preclinical model of traumatic brain injury (TBI. The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of

  9. Decompressive craniectomy following brain injury: factors important ...

    African Journals Online (AJOL)

    2010-01-07

    Jan 7, 2010 ... Background: Decompressive craniectomy (DC) is often performed as an empirical lifesaving measure to protect the injured brain from the damaging effects of propagating oedema and intracranial hypertension. However, there are no clearly defined indications or specified guidelines for patient selection for ...

  10. Severe traumatic brain injury managed with decompressive ...

    African Journals Online (AJOL)

    2012-05-29

    May 29, 2012 ... adequate decompression for patients with severe TBI. Studies of potential gains in cranial volume against size of craniectomy have shown that small craniectomies risk brain herniation with venous infarction at the bone margins.[2]. In our patient, a large fronto-temporo-parietal free bone flap was raised.

  11. Penetrating Brain Injury after Suicide Attempt with Speargun

    Directory of Open Access Journals (Sweden)

    John Ross Williams

    2014-07-01

    Full Text Available Penetrating cranial injury by mechanisms other than are exceedingly rare, and so strategies and guidelines for the management of PBI are largely informed by data from higher-velocity penetrating injuries. Here we present a case of penetrating brain injury by the low velocity mechanism of a harpoon from an underwater fishing speargun in an attempted suicide by a 56-year-old Caucasian male. The case raised a number of interesting points in management of lower-velocity penetrating brain injury (LVPBI, including benefit in delaying foreign body removal to allow for tamponade; the importance of history taking in establishing the social/legal significance of the events surrounding the injury; the use of cerebral angiogram in all cases of PBI; advantages of using DECT to reduce artifact when available; and antibiotic prophylaxis in the context of idiosyncratic histories of usage of penetrating objects before coming in contact with the intracranial environment. We present here the management of the case in full along with an extended discussion and review of existing literature regarding key points in management of LVPBI vs. higher velocity forms of intracranial injury.

  12. Misconceptions about traumatic brain injury among probation services.

    Science.gov (United States)

    O'Rourke, Conall; Linden, Mark A; Lohan, Maria

    2018-05-01

    The prevalence of traumatic brain injury (TBI) among offender populations is significantly higher than among the general population. Despite this, no study has yet assessed the knowledge of members of the probation service surrounding TBI. Knowledge was assessed among members of the Probation Board for Northern Ireland (PBNI) using a cross-sectional online version of the Common Misconceptions about TBI (CM-TBI) questionnaire. Mean total misconception scores, along with scores on four subdomains (recovery, sequelae, insight, and hidden injury) were calculated. Analysis of variance was used to explore differences in misconceptions based on the collected demographic information. The overall mean percentage of misconceptions for the group was 22.37%. The subdomain with the highest rate of misconceptions (38.21%) was insight into injury which covered misconceptions around offenders' self-awareness of injuries. Those who knew someone with a brain injury scored significantly higher in the CM-TBI total score, F(1,63) = 6.639, p = 0.012, the recovery subdomain, F(1,63) = 10.080, p = 0.002, and the insight subdomain, F(1,63) = 5.834, p = 0.019. Additionally, significant training deficits around TBI were observed among the probation service. This study is the first of its kind to examine the level of understanding around TBI within probation services. The findings reflect potential barriers to identification and rehabilitation of TBI for offenders coming into contact with the criminal justice system. A lack of identification coupled with misconceptions about TBI could lead to inaccurate court reporting with a subsequent impact on sentencing. Implications for Rehabilitation Despite being one of the first points of contact for offenders entering the criminal justice system, members of the probation service reported having no formal training on traumatic brain injury (TBI). The subdomain with the highest rate of misconceptions (insight into injury

  13. The issues in the study of brain plasticity after stroke

    International Nuclear Information System (INIS)

    Zuo Chuantao

    2004-01-01

    Nowadays, the study on the plasticity of the brain is one of the hotspots in nerve scientific research. PET and fMRI provided powerful weapon to study brain plasticity, but some metholody can conflict the brain function study. The review elucide the the metholody questions from the choice of pantiets and control, defining motor recovery, the choice of motor task, the effect of brian morphological, interpreting changes in activation and analysis methods of PET images. (authors)

  14. Acute Respiratory Distress Syndrome in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2009-01-01

    Full Text Available Objective: to study the development of acute respiratory distress syndrome (ARDS in victims with isolated severe brain injury (SBI. Subject and methods. 171 studies were performed in 16 victims with SBI. Their general condition was rated as very critical. The patients were divided into three groups: 1 non-ARDS; 2 Stage 1 ARDS; and 3 Stage 2 ARDS. The indicators of Stages 1 and 2 were assessed in accordance with the classification proposed by V. V. Moroz and A. M. Golubev. Intracranial pressure (ICP, extravascular lung water index, pulmonary vascular permeability, central hemodynamics, oxygenation index, lung anastomosis, the X-ray pattern of the lung and brain (computed tomography, and its function were monitored. Results. The hemispheric cortical level of injury of the brain with function compensation of its stem was predominantly determined in the controls; subcompensation and decompensation were ascertained in the ARDS groups. According to the proposed classification, these patients developed Stages 1 and 2 ARDS. When ARDS developed, there were rises in the level of extravascular lung fluid and pulmonary vascular permeability, a reduction in the oxygenation index (it was 6—12 hours later as compared with them, increases in a lung shunt and ICP; X-ray study revealed bilateral infiltrates in the absence of heart failure in Stage 2 ARDS. The correlation was positive between ICP and extravascular lung water index, and lung vascular permeability index (r>0.4;p<0.05. Conclusion. The studies have indicated that the classification proposed by V. V. Moroz and A. M. Golubev enables an early diagnosis of ARDS. One of its causes is severe brainstem injury that results in increased extravascular fluid in the lung due to its enhanced vascular permeability. The ICP value is a determinant in the diagnosis of secondary brain injuries. Key words: acute respiratory distress syndrome, extravascu-lar lung fluid, pulmonary vascular permeability, brain injury

  15. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    Injury Using Novel Matrices and Human Bone Marrow Stem Cells.” 4th Annual Los Angeles Tissue Engineering Meeting, UCLA Dec. 2006. (c) Presentations...Task 1). Task 1: Differentiate Adult Stem Cells into Neurons. Each of three different adult stem cell types (ADSCs, MSCs and amniotic -derived...gel properties. Evaluate gel material properties such as liquid to gel transition temperature, fiber and pore sizes, mechanical strength, resistance

  16. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke

    Directory of Open Access Journals (Sweden)

    Jianping Hu

    2017-07-01

    outcome of hand motion performance in the early chronic stages. Couplings between RSFC and motion-related activation were dynamically changed with stroke progression, which suggested changes in the prediction of resting-state brain activity for task-evoked brain activity in different pathological states. The changes in coupling strength between these two types of brain activity implicate a reparative mechanism of brain injury and may represent a biomarker for predicting motor recovery in cerebral stroke.

  17. Increased Risk of Hemorrhagic and Ischemic Strokes in Patients With Splenic Injury and Splenectomy: A Nationwide Cohort Study.

    Science.gov (United States)

    Lin, Jiun-Nong; Lin, Cheng-Li; Lin, Ming-Chia; Lai, Chung-Hsu; Lin, Hsi-Hsun; Yang, Chih-Hui; Kao, Chia-Hung

    2015-09-01

    The spleen is a crucial organ in humans. Little is known about the association between stroke and splenic injury or splenectomy. The aim of this study was to determine the risk of stroke in patients with splenic injury and splenectomy.A nationwide cohort study was conducted by analyzing the National Health Insurance Research Database in Taiwan. For comparison, control patients were selected and matched with splenic injury patients in a ratio of 4:1 according to age, sex, and the year of hospitalization. We analyzed the risks of stroke using a Cox proportional-hazards regression analysis.A total of 11,273 splenic injury patients, including 5294 splenectomized and 5979 nonsplenectomized patients, and 45,092 control patients were included in this study. The incidence rates of stroke were 8.05, 6.53, and 4.25 per 1000 person-years in splenic injury patients with splenectomy, those without splenectomy, and the control cohort, respectively. Compared with the control cohort, splenic injury patients with splenectomy exhibited a 2.05-fold increased risk of stroke (95% confidence interval [CI] 1.8-2.34), whereas those without splenectomy exhibited a 1.74-fold increased risk (95% CI 1.51-2). Splenectomy entailed an additional 1.21-fold increased risk of stroke compared with nonsplenectomy in patients with splenic injury.This study revealed that splenic injury and splenectomy were significantly associated with an increased risk of hemorrhagic and ischemic strokes. The results of this study may alert physicians and patients to the complications of splenic injury and splenectomy.

  18. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    . Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...... to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field " hot spots" in the cortex. However, these maxima were......Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...

  19. Neuroinflammatory responses to traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Paiva WS

    2015-03-01

    Full Text Available Wellingson Silva Paiva,1 Angelica Duarte Correia,2 Suely Kazue Marie2 1Division of Neurological Surgery, 2Laboratory of Medical Investigation 15, Department of Neurology, University of São Paulo Medical School, Sao Paulo, Brazil We read with great interest the recent study by Lozano et al1 published in the Neuropsychiatric Disease and Treatment. The recovery after traumatic brain injury (TBI is related to severity of the initial injury (primary injury and the presence of secondary injury.2 Evidences suggest that inflammation, oxidative stress, excitotoxicity, apoptosis, and neuroendocrine responses play an important role in the development of secondary brain injury.3 Therefore, an important part in the management of patients with TBI is trying to minimize the occurrence of deleterious secondary lesions. Lozano et al’s1 paper focused on the role of neuroinflammation in brain injury.Although some studies have described experimental drugs which may eventually have neuroprotective effects in patients with TBI,2–4 there is currently no approved pharmacological treatment for neuroinflammatory effects of the acute phase of the injury. The dissociation between experimental data with positive results and consecutive clinical trials with negative results leads to a dilemma for the treatment of patients with TBI. And, we agree with Lozano et al1 that further clarification of the neuroinflammatory mechanisms could be the basis for addressing the gap between bench and clinical results to provide better treatment and reduce death and sequelae of TBI.View original paper by Lozano and colleagues.

  20. Formation and function of acute stroke-ready hospitals within a stroke system of care recommendations from the brain attack coalition.

    Science.gov (United States)

    Alberts, Mark J; Wechsler, Lawrence R; Jensen, Mary E Lee; Latchaw, Richard E; Crocco, Todd J; George, Mary G; Baranski, James; Bass, Robert R; Ruff, Robert L; Huang, Judy; Mancini, Barbara; Gregory, Tammy; Gress, Daryl; Emr, Marian; Warren, Margo; Walker, Michael D

    2013-12-01

    Many patients with an acute stroke live in areas without ready access to a Primary or Comprehensive Stroke Center. The formation of care facilities that meet the needs of these patients might improve their care and outcomes and guide them and emergency responders to such centers within a stroke system of care. The Brain Attack Coalition conducted an electronic search of the English medical literature from January 2000 to December 2012 to identify care elements and processes shown to be beneficial for acute stroke care. We used evidence grading and consensus paradigms to synthesize recommendations for Acute Stroke-Ready Hospitals (ASRHs). Several key elements for an ASRH were identified, including acute stroke teams, written care protocols, involvement of emergency medical services and emergency department, and rapid laboratory and neuroimaging testing. Unique aspects include the use of telemedicine, hospital transfer protocols, and drip and ship therapies. Emergent therapies include the use of intravenous tissue-type plasminogen activator and the reversal of coagulopathies. Although many of the care elements are similar to those of a Primary Stroke Center, compliance rates of ≥67% are suggested in recognition of the staffing, logistical, and financial challenges faced by rural facilities. ASRHs will form the foundation for acute stroke care in many settings. Recommended elements of an ASRH build on those proven to improve care and outcomes at Primary Stroke Centers. The ASRH will be a key component for patient care within an evolving stroke system of care.

  1. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  2. Results of brain perfusion Temp in acute ischaemic stroke

    International Nuclear Information System (INIS)

    Darcourt, J.; Migneco, O.; Mahagne, M.H.

    1999-01-01

    Perfusion SPECT allows immediate evaluation of cerebral ischaemia during the acute phase of stroke. Its prognostic value has been demonstrated by several studies. This prognostic value increases in comparison to clinical evaluation alone when injection is performed early after the first neurological signs. The classical three patterns fist described on PET studies by Marchal and Baron are also seen using SPECT: (pattern I) severe irreversible ischaemia with poor prognosis, (pattern III) normal study due to spontaneous reperfusion with complete clinical recovery and (pattern II) ischaemic penumbra with unpredictable prognosis. Two recent studies prove that SPECT can identify with high accuracy the extreme hemodynamic situations which are on one hand spontaneous re-perfusions (100 % sensitivity and specificity) and on the other hand the 'malignant middle cerebral artery infarctions' (82 % sensitivity and 98 % specificity). Therefore early SPECT is a valid tool to select stroke patients for thrombolytic therapy. (author)

  3. Computed tomography and brain scintigraphy in ischemic stroke

    International Nuclear Information System (INIS)

    Chiu, L.C.; Fodor, L.B.; Cornell, S.H.; Christie, J.H.

    1976-01-01

    Radionuclide and computed tomographic (CT) scans were reviewed in 215 patients with ischemic stroke. The findings vary depending on the site of vascular occlusion. In middle cerebral artery occlusion, four distinct patterns may be seen on the scintigrams. The CT scans show little variation in appearance. The tentorial confluence sign is an important finding on scintigrams of patients with occipital infarction; the absence of this sign should suggest another diagnosis. During the first week and after the fourth week following an ischemic stroke, the scintigram is usually negative, whereas the lesion is visible by CT. However, there are a significant number of false negative CT scans; therefore, both examinations are advocated in difficult cases

  4. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    International Nuclear Information System (INIS)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui

    2011-01-01

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  5. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wu-song; Zheng, Ping; Xu, Jun-fa; Guo, Yi-jun; Zeng, Jing-song; Yang, Wen-jin; Li, Gao-yi; He, Bin; Yu, Hui [Pudong New Area People' s Hospital, Department of Neurosurgery, Shanghai (China)

    2011-05-15

    Since progressive hemorrhagic injury (PHI) was introduced in neurosurgical literatures, several studies have been performed, the results of which have influenced doctors but do not define guidelines for the best treatment of PHI. PHI may be confirmed by a serial computerized tomography (CT) scan, and it has been shown to be associated with a fivefold increase in the risk of clinical worsening and is a significant cause of morbidity and mortality as well. So, early detection of PHI is practically important in a clinical situation. To analyze the early CT signs of progressive hemorrhagic injury following acute traumatic brain injury (TBI) and explore their clinical significances, PHI was confirmed by comparing the first and repeated CT scans. Data were analyzed and compared including times from injury to the first CT and signs of the early CT scan. Logistic regression analysis was used to show the risk factors related to PHI. A cohort of 630 TBI patients was evaluated, and there were 189 (30%) patients who suffered from PHI. For patients with their first CT scan obtained as early as 2 h post-injury, there were 116 (77.25%) cases who suffered from PHI. The differences between PHIs and non-PHIs were significant in the initial CT scans showing fracture, subarachnoid hemorrhage (SAH), brain contusion, epidural hematoma (EDH), subdural hematoma (SDH), and multiple hematoma as well as the times from injury to the first CT scan (P < 0.01). Logistic regression analysis showed that early CT scans (EDH, SDH, SAH, fracture, and brain contusion) were predictors of PHI (P < 0.01). For patients with the first CT scan obtained as early as 2 h post-injury, a follow-up CT scan should be performed promptly. If the initial CT scan shows SAH, brain contusion, and primary hematoma with brain swelling, an earlier and dynamic CT scan should be performed for detection of PHI as early as possible and the medical intervention would be enforced in time. (orig.)

  6. Correlation of serum homocysteine levels with nerve injury and atherosclerosis in patients with stroke

    Directory of Open Access Journals (Sweden)

    Gai-Zhuang Liu

    2017-07-01

    Full Text Available Objective: To study the correlation of serum homocysteine levels with nerve injury and atherosclerosis in patients with stroke. Methods: Patients who were diagnosed with ischemic stroke in our hospital between January 2014 and December 2016 were selected and then divided into moderate-severe stenosis group (C group, mild stenosis group (B group and no stenosis group (A group according to carotid artery ultrasonography; healthy volunteers who received physical examination during the same period were chosen as control group. The serum levels of homocysteine, nerve injury indexes and atherosclerosis indexes were detected. Results: Serum Hcy, S100B, NSE, UCH-L1, GFAP, FGF23, CD36, ox-LDL, MMP8 and MMP9 levels of C group, B group and A group were significantly higher than those of control group, and the severer the carotid stenosis, the higher the serum S100B, NSE, UCHL1, GFAP, FGF23, CD36, ox-LDL, MMP8 and MMP9 levels; serum S100B, NSE, UCHL1, GFAP, FGF23, CD36, ox-LDL, MMP8 and MMP9 levels in stoke patients with high Hcy were significantly higher than those of patients with normal Hcy. Conclusions: Serum homocysteine levels increase in patients with stroke and are closely related to the nerve injury and atherosclerosis.

  7. MR-visible brain water content in human acute stroke

    DEFF Research Database (Denmark)

    Gideon, P; Rosenbaum, S; Sperling, B

    1999-01-01

    Quantification of metabolite concentrations by proton magnetic resonance spectroscopy (1H-MRS) in the human brain using water as an internal standard is based on the assumption that water content does not change significantly in pathologic brain tissue. To test this, we used 1H-MRS to estimate...

  8. Prediction of Clinically Important Traumatic Brain Injury in Pediatric Minor Head Trauma; proposing Pediatric Traumatic Brain Injury (PTBI Prognostic Rule

    Directory of Open Access Journals (Sweden)

    Babak Nakhjavan-Shahraki

    2017-01-01

    Full Text Available Background: The present study assesses independent predictors of clinically important traumatic brain injury (ciTBI in order to design a prognostic rule for identification of high risk children with mild head injury. Materials and Methods: In a retrospective cross-sectional study, 3,199 children with mild traumatic brain injury (TBI brought to emergency ward of three hospitals in Tehran, Iran were gathered, from April 2014 to April 2016. The associations between probable predictors of ciTBI in children with mild TBI were assessed and a prediction rule for identification of high risk children in need of computed tomography (CT scan was designed based on a stepwise multivariate logistic regression. Results: 592 (18.5% children had ciTBI. History of loss of conciseness (odds ratio [OR]=3.0; p

  9. Current trends in stroke rehabilitation. A review with focus on brain plasticity.

    Science.gov (United States)

    Johansson, B B

    2011-03-01

    Current understanding of brain plasticity has lead to new approaches in ischemic stroke rehabilitation. Stroke units that combine good medical and nursing care with task-oriented intense training in an environment that provides confidence, stimulation and motivation significantly improve outcome. Repetitive trans-cranial magnetic stimulation (rTMS), and trans-cranial direct current stimulation (tDCS) are applied in rehabilitation of motor function. The long-term effect, optimal way of stimulation and possibly efficacy in cognitive rehabilitation need evaluation. Methods based on multisensory integration of motor, cognitive, and perceptual processes including action observation, mental training, and virtual reality are being tested. Different approaches of intensive aphasia training are described. Recent data on intensive melodic intonation therapy indicate that even patients with very severe non-fluent aphasia can regain speech through homotopic white matter tract plasticity. Music therapy is applied in motor and cognitive rehabilitation. To avoid the confounding effect of spontaneous improvement, most trials are preformed ≥3 months post stroke. Randomized controlled trials starting earlier after strokes are needed. More attention should be given to stroke heterogeneity, cognitive rehabilitation, and social adjustment and to genetic differences, including the role of BDNF polymorphism in brain plasticity. © 2010 John Wiley & Sons A/S.

  10. Diagnosis of small posterior fossa stroke on brain CT: effect of iterative reconstruction designed for brain CT on detection performance

    International Nuclear Information System (INIS)

    Inoue, Taihei; Yoshida, Morikatsu; Yokoyama, Koichi; Nakaura, Takeshi; Hirata, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki; Harada, Kazunori

    2017-01-01

    In this study, we aimed to determine whether iterative model reconstruction designed for brain CT (IMR-neuro) would improve the accuracy of posterior fossa stroke diagnosis on brain CT. We enrolled 37 patients with ischaemic stroke in the posterior fossa and 37 patients without stroke (controls). Using axial images reconstructed using filtered back-projection (FBP) and IMR-neuro, we compared the CT numbers in infarcted areas, image noise in the pons, and contrast-to-noise ratios (CNRs) of infarcted and non-infarcted areas on scans subjected to IMR-neuro and FBP. To analyse the performance of hypo-attenuation detection, we used receiver-operating characteristic (ROC) curve techniques. The image noise was significantly lower (2.2 ± 0.5 vs. 5.1 ± 0.9 Hounsfield units, p < 0.01) and the difference in CNR between the infarcted and non-infarcted areas was significantly higher with IMR-neuro than with FBP (2.2 ± 1.7 vs. 4.0 ± 3.6, p < 0.01). Furthermore, the average area under the ROC curve was significantly higher with IMR-neuro (0.90 vs. 0.86 for FBP, p = 0.04). IMR-neuro yielded better image quality and improved hypo-attenuation detection in patients with ischaemic stroke. (orig.)

  11. Diagnosis of small posterior fossa stroke on brain CT: effect of iterative reconstruction designed for brain CT on detection performance

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Taihei; Yoshida, Morikatsu; Yokoyama, Koichi [Amakusa Medical Center, Department of Radiology, Amakusa, Kumamoto (Japan); Nakaura, Takeshi; Hirata, Kenichiro; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2017-09-15

    In this study, we aimed to determine whether iterative model reconstruction designed for brain CT (IMR-neuro) would improve the accuracy of posterior fossa stroke diagnosis on brain CT. We enrolled 37 patients with ischaemic stroke in the posterior fossa and 37 patients without stroke (controls). Using axial images reconstructed using filtered back-projection (FBP) and IMR-neuro, we compared the CT numbers in infarcted areas, image noise in the pons, and contrast-to-noise ratios (CNRs) of infarcted and non-infarcted areas on scans subjected to IMR-neuro and FBP. To analyse the performance of hypo-attenuation detection, we used receiver-operating characteristic (ROC) curve techniques. The image noise was significantly lower (2.2 ± 0.5 vs. 5.1 ± 0.9 Hounsfield units, p < 0.01) and the difference in CNR between the infarcted and non-infarcted areas was significantly higher with IMR-neuro than with FBP (2.2 ± 1.7 vs. 4.0 ± 3.6, p < 0.01). Furthermore, the average area under the ROC curve was significantly higher with IMR-neuro (0.90 vs. 0.86 for FBP, p = 0.04). IMR-neuro yielded better image quality and improved hypo-attenuation detection in patients with ischaemic stroke. (orig.)

  12. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    Science.gov (United States)

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  13. Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus.

    Science.gov (United States)

    Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui

    2016-04-15

    Traumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.

  14. The possibility of application of spiral brain computed tomography to traumatic brain injury.

    Science.gov (United States)

    Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin

    2014-09-01

    The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Lycium barbarum Extracts Protect the Brain from Blood-Brain Barrier Disruption and Cerebral Edema in Experimental Stroke

    Science.gov (United States)

    Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.

    2012-01-01

    Background and Purpose Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model. Methods C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO. Results LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains. Conclusions Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke. PMID:22438957

  16. Robotic devices and brain-machine interfaces for hand rehabilitation post-stroke.

    Science.gov (United States)

    McConnell, Alistair C; Moioli, Renan C; Brasil, Fabricio L; Vallejo, Marta; Corne, David W; Vargas, Patricia A; Stokes, Adam A

    2017-06-28

    To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.

  17. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2016-01-01

    Full Text Available Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = -0.609, P = 0.047 and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = -0.737, P = 0.010. Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  18. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study.

    Science.gov (United States)

    Wu, Ping; Zhou, Yu-Mei; Zeng, Fang; Li, Zheng-Jie; Luo, Lu; Li, Yong-Xin; Fan, Wei; Qiu, Li-Hua; Qin, Wei; Chen, Lin; Bai, Lin; Nie, Juan; Zhang, San; Xiong, Yan; Bai, Yu; Yin, Can-Xin; Liang, Fan-Rong

    2016-09-01

    Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment ( r = -0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale ( r = -0.737, P = 0.010). Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients.

  19. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  20. Conversion Disorder in Stroke: A Case Report

    Directory of Open Access Journals (Sweden)

    Hsien-Yeh Chou

    2006-11-01

    Full Text Available Conversion disorder is caused by previous severe stress, emotional conflict, or an associated psychiatric disorder, and usually presents with one or more neurologic symptoms. Clinically, it is challenging to diagnose diseases such as transient ischemia attack, stroke, brain tumor, spinal cord injury, and neuropathy. In this case report, we present a male stroke patient who had a typical conversion disorder.

  1. Perinatal Hypoxic-Ischemic brain injury; MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Woo; Seo, Chang Hye [Inje University Pusan Paik Hospital, Pusan (Korea, Republic of)

    1994-09-15

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult.

  2. Misconceptions about traumatic brain injuries among South African university students

    Directory of Open Access Journals (Sweden)

    Chrisma Pretorius

    2013-08-01

    Full Text Available Objective. To investigate the incidence and type of misconceptions about traumatic brain injuries (TBIs harboured by university students.  Method. A convenience sample of 705 university students were recruited and data were collected using an electronic survey. The link to the survey was sent via e-mail to all registered students at Stellenbosch University. The participants had to complete the Common Misconceptions about Traumatic Brain Injury (CM-TBI questionnaire.  Results. The findings of this study suggest that the students subscribe to misconceptions from each of the 7 categories of misconceptions about TBIs. The mean percentages of misconceptions about TBIs were calculated and the amnesia (mean 49.7% and unconsciousness (mean 46.1% categories were identified as the categories about which the respondents had the most misconceptions, while the mean percentages of misconceptions were lower for the categories of recovery (mean 27.6%, rehabilitation (mean 26.56%, prevention (mean 20.8%, brain injury sequelae (mean 18.7% and brain damage (mean 8.4%.  Conclusion. Generally, these findings appear to be in keeping with previous literature, which suggests that misconceptions about TBIs are common among the general population. This study’s identification of these misconceptions could help create awareness, provide a focus for information provision, and contribute to the development of educational intervention programmes tailored for the South African context.

  3. Prognostic factors in childhood-acquired brain injury.

    Science.gov (United States)

    Shaklai, Sharon; Peretz Fish, Relly; Simantov, M; Groswasser, Z

    2018-01-01

    A long-term follow-up study comparing children after anoxic brain injury (AnBI) with those after traumatic brain injury (TBI) was conducted, and prognostic factors were mapped. A prospective historical study following long-term functional outcome after childhood brain injury was conducted in two phases. The first phase included patients suffering from moderate-severe TBI. The second phase assessed children after AnBI, and the results were compared. Functional outcome was recorded and factors influencing prognosis were outlined. On admission vegetative state (VS) was twice as prevalent in the AnBI subgroup. Approximately 90% of children with TBI and 60% of patients with AnBI gained independency in activities of daily living (ADL) and mobility. Long-term positive outcome, i.e., return to school and open-market employment, were higher in patients with TBI when compared with AnBI (61% and 48.1%, respectively). Significant outcome-predicting factors were VS at admission to rehabilitation, length of loss of consciousness (LOC) up to 11 days and functional independence measure (FIM) score at admission and discharge. Aetiology was not found to be a predicting factor. Duration of unconsciousness is the main long-term negative prognostic outcome factor. Anoxic brain damage, associated with longer periods of unconsciousness also heralds a less favourable outcome.

  4. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  5. Brain strokes related to aortic aneurysma – the analysis of three cases

    Directory of Open Access Journals (Sweden)

    Pastuszak Żanna

    2017-04-01

    Full Text Available Brain stroke connected with aortic blood flow disturbances is a rare disease and its incidence is difficult to assume. Nevertheless, 10-50% of patients with aortic dissection may not experience any pain. In case of 18-30% patients with aortic dissection neurological signs are first disease presentation and among them ischemic stroke is the most common. The most popular aortic dissection classification is with use of Stanford system. Type A involves the ascending aorta and type B is occurring distal to the subclavian artery. Aortic dissection risk factors include hypertension, cystic medionecrosis, bicuspid aortic valve and Marfan’s or Ehlers-Danlos syndrome.

  6. [The effects of dancing on the brain and possibilities as a form of rehabilitation in severe brain injuries].

    Science.gov (United States)

    Kullberg-Turtiainen, Marjo

    2013-01-01

    Very little research has been done on the effect of dancing on the rehabilitation of patients having a severe brain injury. In addition to motor problems, the symptom picture of the sequelae of severe brain injuries often involves strong fatigability, reduced physiological arousal, disturbances of coordination of attention, difficulties of emotional control and impairment of memory. This review deals with the neural foundation of dancing and the possibilities of dancing in the rehabilitation of severe brain injuries.

  7. Baby STEPS: a giant leap for cell therapy in neonatal brain injury.

    Science.gov (United States)

    Borlongan, Cesar V; Weiss, Michael D

    2011-07-01

    We advance Baby STEPS or Stem cell Therapeutics as an Emerging Paradigm in Stroke as a guide in facilitating the critical evaluation in the laboratory of the safety and efficacy of cell therapy for neonatal encephalopathy. The need to carefully consider the clinical relevance of the animal models in mimicking human neonatal brain injury, selection of the optimal stem cell donor, and the application of functional outcome assays in small and large animal models serve as the foundation for preclinical work and beginning to understand the mechanism of this cellular therapy. The preclinical studies will aid our formulation of a rigorous human clinical trial that encompasses not only efficacy testing but also monitoring of safety indices and demonstration of mechanisms of action. This schema forms the basis of Baby STEPS. Our goal is to resonate the urgent call to enhance the successful translation of cell therapy from the laboratory to the clinic.

  8. Impact of road traffic injury to pediatric traumatic brain injury in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Thara Tunthanathip

    2017-01-01

    Full Text Available Background: Motor vehicle is a major transportation in Southern Thailand as the result of road traffic injury and death. Consequently, severe disability and mortality in pediatric traumatic brain injury (TBI were observed from traffic accident, particularly motorcycle accident. To identify the risk of intracranial injury in children, the association of treatment outcome with various factors including mechanisms of injury, clinical characteristics, and intracranial pathology can be assessed. Materials and Methods: This was a retrospective study conducted on children, who were younger than 15 years old with TBI and were enrolled from 2004 to 2015. Several clinically relevant issues were reviewed and statistically analyzed. Results: A total of 948 casualties were enrolled. Compared with falling down, the motorcycle accident was significantly associated with intracranial injury (odds ratio 1.73, 95% confidence interval [CI] 1.08–2.76. Other factors associated with intracranial injury were hemiparesis (odds ratio 5.69, 95% CI 1.44–22.36, positive of basal skull fracture signs (odds ratio 15.66, 95% CI 3.44-71.28, and fixed reaction to light of both pupils (odds ratio 5.74, 95% CI 1.71–19.23. Mortality found in thirty cases (3.2%. Furthermore, the risk of death correlated with motorcycle accident (P = 0.02 and severe head injury (P < 0.001. Neurosurgical intervention was not associated with outcome, but severe head injury, hemorrhagic shock, epidural, and subdural hematoma were impact factors. Conclusion: The findings demonstrate road traffic injury, especially motorcycle accident leading to brain injury and death. Prevention program is a necessary key to decrease mortality and disability in pediatric TBI.

  9. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  10. Indications for brain computed tomography scan after minor head injury.

    Science.gov (United States)

    Sharif-Alhoseini, Mahdi; Khodadadi, Hossein; Chardoli, Mojtaba; Rahimi-Movaghar, Vafa

    2011-10-01

    Minor head injury (MHI) is a common injury seen in Emergency Departments (ED). Computed tomography (CT) scan of the brain is a good method of investigation to diagnose intracranial lesions, but there is a disagreement about indications in MHI patients. We surveyed the post-traumatic symptoms, signs or past historical matters that can be used for the indication of brain CT scan. All patients with MHI who were older than 2 years, had a Glasgow Coma Scale (GCS) score ≥13 and were referred to the ED, underwent brain CT scan. Data on age, headache, vomiting, loss of consciousness (LOC) or amnesia, post-traumatic seizure, physical evidence of trauma above the clavicles, alcohol intoxication, and anticoagulant usage were collected. The main outcome measure was the presence of lesions related to the trauma in brain CT scan. For categorical variables, Chi-square test was used. Six hundred and forty-two patients were examined by brain CT scan after MHI, and 388 patients (60.4%) did not have any risk indicator. Twenty patients (3.1%) had abnormal brain CT scans. The logistic regression model showed that headache (P=0.006), LOC or amnesia (P=0.024) and alcohol (P=0.036) were associated with abnormal brain CT. WE SUGGESTED THAT ABNORMAL BRAIN CT SCAN RELATED TO THE TRAUMA AFTER MHI CAN BE PREDICTED BY THE PRESENCE OF ONE OR MORE OF THE FOLLOWING RISK INDICATORS: Headache, vomiting, LOC or amnesia, and alcohol intoxication. Thus, if any patient has these indicators following MHI, he must be considered as a high-risk MHI.

  11. Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy

    Directory of Open Access Journals (Sweden)

    Morries LD

    2015-08-01

    Full Text Available Larry D Morries,1 Paolo Cassano,2 Theodore A Henderson1,3 1Neuro-Laser Foundation, Lakewood, CO, 2Harvard Medical School, Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, 3The Synaptic Space, Centennial, CO, USA Abstract: Traumatic brain injury (TBI is a growing health concern affecting civilians and military personnel. In this review, treatments for the chronic TBI patient are discussed, including pharmaceuticals, nutraceuticals, cognitive therapy, and hyperbaric oxygen therapy. All available literature suggests a marginal benefit with prolonged treatment courses. An emerging modality of treatment is near-infrared (NIR light, which has benefit in animal models of stroke, spinal cord injury, optic nerve injury, and TBI, and in human trials for stroke and TBI. The extant literature is confounded by variable degrees of efficacy and a bewildering array of treatment parameters. Some data indicate that diodes emitting low-level NIR energy often have failed to demonstrate therapeutic efficacy, perhaps due to failing to deliver sufficient radiant energy to the necessary depth. As part of this review, we present a retrospective case series using high-power NIR laser phototherapy with a Class IV laser to treat TBI. We demonstrate greater clinical efficacy with higher fluence, in contrast to the bimodal model of efficacy previously proposed. In ten patients with chronic TBI (average time since injury 9.3 years given ten treatments over the course of 2 months using a high-power NIR laser (13.2 W/0.89 cm2 at 810 nm or 9 W/0.89 cm2 at 810 nm and 980 nm, symptoms of headache, sleep disturbance, cognition, mood dysregulation, anxiety, and irritability improved. Symptoms were monitored by depression scales and a novel patient diary system specifically designed for this study. NIR light in the power range of 10–15 W at 810 nm and 980 nm can safely and effectively treat chronic symptoms of TBI. The clinical

  12. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  13. Multicenter trial of early hypothermia in severe brain injury.

    Science.gov (United States)

    Clifton, Guy L; Drever, Pamala; Valadka, Alex; Zygun, David; Okonkwo, David

    2009-03-01

    The North American Brain Injury Study: Hypothermia IIR (NABIS:H IIR) is a randomized clinical trial designed to enroll 240 patients with severe brain injury between the ages of 16 and 45 years. The primary outcome measure is the dichotomized Glasgow Outcome Scale (GOS) at 6 months after injury. The study has the power to detect a 17.5% absolute difference in the percentage of patients with a good outcome with a power of 80%. All patients are randomized by waiver of consent unless family is immediately available. Enrollment is within 2.5 h of injury. Patients may be enrolled in the field by emergency medical services personnel affiliated with the study or by study personnel when the patient arrives at the emergency department. Patients who do not follow commands and have no exclusion criteria and who are enrolled in the hypothermia arm of the study are cooled to 35 degrees C as rapidly as possible by intravenous administration of up to 2 liters of chilled crystalloid. Those patients who meet the criteria for the second phase of the protocol (primarily a post-resuscitation GCS 3-8 without hypotension and without severe associated injuries) are cooled to 33 degrees C. Patients enrolled in the normothermia arm receive standard management at normothermia. As of December 2007, 74 patients had been randomized into phase II of the protocol. Patients in the hypothermia arm reached 35 degrees C in 2.7 +/- 1.1 (SD) h after injury and reached 33 degrees C at 4.4 +/- 1.5 h after injury.

  14. Predicting Intracranial Pressure and Brain Tissue Oxygen Crises in Patients With Severe Traumatic Brain Injury.

    Science.gov (United States)

    Myers, Risa B; Lazaridis, Christos; Jermaine, Christopher M; Robertson, Claudia S; Rusin, Craig G

    2016-09-01

    To develop computer algorithms that can recognize physiologic patterns in traumatic brain injury patients that occur in advance of intracranial pressure and partial brain tissue oxygenation crises. The automated early detection of crisis precursors can provide clinicians with time to intervene in order to prevent or mitigate secondary brain injury. A retrospective study was conducted from prospectively collected physiologic data. intracranial pressure, and partial brain tissue oxygenation crisis events were defined as intracranial pressure of greater than or equal to 20 mm Hg lasting at least 15 minutes and partial brain tissue oxygenation value of less than 10 mm Hg for at least 10 minutes, respectively. The physiologic data preceding each crisis event were used to identify precursors associated with crisis onset. Multivariate classification models were applied to recorded data in 30-minute epochs of time to predict crises between 15 and 360 minutes in the future. The neurosurgical unit of Ben Taub Hospital (Houston, TX). Our cohort consisted of 817 subjects with severe traumatic brain injury. Our algorithm can predict the onset of intracranial pressure crises with 30-minute advance warning with an area under the receiver operating characteristic curve of 0.86 using only intracranial pressure measurements and time since last crisis. An analogous algorithm can predict the start of partial brain tissue oxygenation crises with 30-minute advanced warning with an area under the receiver operating characteristic curve of 0.91. Our algorithms provide accurate and timely predictions of intracranial hypertension and tissue hypoxia crises in patients with severe traumatic brain injury. Almost all of the information needed to predict the onset of these events is contained within the signal of interest and the time since last crisis.

  15. Increased risk of dementia in patients with mild traumatic brain injury: a nationwide cohort study.

    Directory of Open Access Journals (Sweden)

    Yi-Kung Lee

    Full Text Available BACKGROUND: It is known that the risk of dementia in patients with moderate to severe traumatic brain injury (TBI is higher. However, the relationship between mild traumatic brain injury (mTBI and dementia has never been established. OBJECTIVES: We investigated the incidences of dementia among patients with mTBI in Taiwan to evaluate if there is higher risk compared with general population. METHODS: We utilized a sampled National Health Insurance (NHI claims data containing one million beneficiaries. We followed all adult beneficiaries from January 1, 2005 till December 31, 2009 to see if they had been diagnosed with dementia. We further identify patients with mTBI and compared their risk of dementia with the general population. RESULTS: We identified 28551 patients with mTBI and 692382 without. After controlled for age, gender, urbanization level, socioeconomic status, diabetes, hypertension, coronary artery disease, hyperlipidemia, history of alcohol intoxication, history of ischemic stroke, history of intracranial hemorrhage and Charlson Comorbidity Index Score, the adjusted hazard ratio is 3.26 (95% Confidence interval, 2.69-3.94. CONCLUSIONS: TBI is an independent significant risk factor of developing dementia even in the mild type.

  16. Invisible Injuries: The Experiences of College Students with Histories of Mild Traumatic Brain Injury

    Science.gov (United States)

    Childers, Carrie; Hux, Karen

    2016-01-01

    This qualitative study explored the college life phenomenon as experienced by students with mild traumatic brain injury (MTBI). Previous research about such students has focused on topics including study strategy use, access of support services, and insights from caregivers or instructors. However, little attention has been paid to the perceptions…

  17. Impact of Posttraumatic Stress Disorder and Injury Severity on Recovery in Children with Traumatic Brain Injury

    Science.gov (United States)

    Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne

    2012-01-01

    The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…

  18. Dose-response relationships using brain-computer interface technology impact stroke rehabilitation.

    Science.gov (United States)

    Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Remsik, Alexander; Song, Jie; Nair, Veena A; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2015-01-01

    Brain-computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 < p < 0.1) negative correlations with LI changes, while therapy frequency did not affect LI. Reductions in LI were then correlated (p ≤ 0.05) with increased SIS Activities of Daily Living scores and improved 9-HPT performance. Therefore, some behavioral changes may be reflected by brain changes sensitive to differences in BCI therapy administration, while others such as SIS Strength may be directly responsive to BCI therapy administration. Data preliminarily suggest that when using BCI in stroke rehabilitation, therapy frequency may be less important than dose and

  19. Brain injury and severe eating difficulties at admission

    DEFF Research Database (Denmark)

    Kjærsgaard, Annette; Kaae Kristensen, Hanne

    and drinking, meals and social life. Three predominating experiences were: fed by tube, ‘relearning’ to eat, and eating meals together. Conclusions: The preliminary results regarding the four participants suggest that the meaning of food and being able to eat and take part in meals may be nearly the same......Objective: The objective of this pilot study was to explore and interpret the way that individuals with acquired brain injury, admitted to inpatient neurorehabilitation with severe eating difficulties, experienced eating nine to fifteen months after discharge. Methods: Four individuals...... with acquired brain injury were interviewed via qualitative semi-structured interviews. An explorative study was conducted to study eating difficulties. Qualitative content analysis was used. Results: Four main themes emerged from the analysis: personal values related to eating, swallowing difficulties, eating...

  20. The neuropathology and neurobiology of traumatic brain injury.

    Science.gov (United States)

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship

    Directory of Open Access Journals (Sweden)

    Cristina Angeloni

    2015-01-01

    Full Text Available Traumatic brain injury (TBI represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox, ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS, have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.

  2. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kent Reifschneider

    2015-07-01

    Full Text Available Traumatic brain injuries (TBI are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  3. Factors contributing to outcome following traumatic brain injury.

    Science.gov (United States)

    Ponsford, Jennie

    2013-01-01

    Traumatic brain injury results in some distinctive patterns of cognitive, behavioural and physical impairment which impact significantly on independent living skills and participation in work or study, social and leisure activities and interpersonal relationships. There is, however, still considerable variability in outcome across individuals in each of the reported domains. This has led to a significant body of research examining factors associated with outcome. A range of injury-related, personal and social factors have been shown to influence survival, as well as cognitive, functional and employment outcome. This paper reviews the factors associated with each of these aspects of outcome specifically injury-related factors, including neuroimaging findings, GCS and PTA, other injuries, and cognitive and behavioural impairments; demographic factors, including age, gender, genetic status, education, pre-injury IQ and employment status; and social factors including family and other social support, cultural factors, pre-injury psychiatric history and coping style. The paper identifies contributions and complex interrelationships of all of these factors to outcome following TBI. It concludes with a brief discussion of the implications of these factors for the rehabilitation process.

  4. Astrocyte-Derived Pentraxin 3 Supports Blood-Brain Barrier Integrity Under Acute Phase of Stroke.

    Science.gov (United States)

    Shindo, Akihiro; Maki, Takakuni; Mandeville, Emiri T; Liang, Anna C; Egawa, Naohiro; Itoh, Kanako; Itoh, Naoki; Borlongan, Mia; Holder, Julie C; Chuang, Tsu Tshen; McNeish, John D; Tomimoto, Hidekazu; Lok, Josephine; Lo, Eng H; Arai, Ken

    2016-04-01

    Pentraxin 3 (PTX3) is released on inflammatory responses in many organs. However, roles of PTX3 in brain are still mostly unknown. Here we asked whether and how PTX3 contributes to blood-brain barrier dysfunction during the acute phase of ischemic stroke. In vivo, spontaneously hypertensive rats were subjected to focal cerebral ischemia by transient middle cerebral artery occlusion. At day 3, brains were analyzed to evaluate the cellular origin of PTX3 expression. Correlations with blood-brain barrier breakdown were assessed by IgG staining. In vitro, rat primary astrocytes and rat brain endothelial RBE.4 cells were cultured to study the role of astrocyte-derived PTX3 on vascular endothelial growth factor-mediated endothelial permeability. During the acute phase of stroke, reactive astrocytes in the peri-infarct area expressed PTX3. There was negative correlation between gradients of IgG leakage and PTX3-positive astrocytes. Cell culture experiments showed that astrocyte-conditioned media increased levels of tight junction proteins and reduced endothelial permeability under normal conditions. Removing PTX3 from astrocyte-conditioned media by immunoprecipitation increased endothelial permeability. PTX3 strongly bound vascular endothelial growth factor in vitro and was able to decrease vascular endothelial growth factor-induced endothelial permeability. Astrocytes in peri-infarct areas upregulate PTX3, which may support blood-brain barrier integrity by regulating vascular endothelial growth factor-related mechanisms. This response in astrocytes may comprise a compensatory mechanism for maintaining blood-brain barrier function after ischemic stroke. © 2016 American Heart Association, Inc.

  5. Acute respiratory distress syndrome assessment after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Shahrooz Kazemi

    2016-01-01

    Full Text Available Background: Acute respiratory distress syndrome (ARDS is one of the most important complications associated with traumatic brain injury (TBI. ARDS is caused by inflammation of the lungs and hypoxic damage with lung physiology abnormalities associated with acute respiratory distress syndrome. Aim of this study is to determine the epidemiology of ARDS and the prevalence of risk factors. Methods: This prospective study performed on patients with acute traumatic head injury hospitalization in the intensive care unit of the Shohaday-e Haftom-e-Tir Hospital (September 2012 to September 2013 done. About 12 months, the data were evaluated. Information including age, sex, education, employment, drug and alcohol addiction, were collected and analyzed. The inclusion criteria were head traumatic patients and exclusion was the patients with chest trauma. Questionnaire was designed with doctors supervision of neurosurgery. Then the collected data were analysis. Results: In this study, the incidence of ARDS was 23.8% and prevalence of metabolic acidosis was 31.4%. Most injury with metabolic acidosis was Subarachnoid hemorrhage (SAH 48 (60% and Subdural hemorrhage (SDH was Next Level with 39 (48% Correlation between Glasgow Coma Scale (GCS and Respiratory Distress Syndrome (ARDS were significantly decreased (P< 0.0001. The level of consciousness in patients with skull fractures significantly lower than those without fractures (P= 0.009 [(2.3±4.6 vs (4.02±7.07]. Prevalence of metabolic acidosis during hospitalization was 80 patients (31.4%. Conclusion: Acute respiratory distress syndrome is a common complication of traumatic brain injury. Management and treatment is essential to reduce the mortality. In this study it was found the age of patients with ARDS was higher than patients without complications. ARDS risk factor for high blood pressure was higher in men. Most victims were pedestrians. The most common injury associated with ARDS was SDH. Our analysis

  6. Traumatic brain injury neuropsychology in Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Quijano María Cristina

    2012-04-01

    Full Text Available Objetive: comparative analysis between control group and patients with TBI to determine whetherthere neuropsychological differences at 6 months of evolution, to guide timely interventioncommensurate with the needs of this population. Materials and methods: a total of 79 patientswith a history of TBI with a minimum of 6 months of evolution and 79 control subjects were evaluated.Both groups with a mean age of 34 and without previous neurological or psychiatric disorders and an average schooling of 11 years for the control group and 9 years for the TBI group.The Glasgow Coma Scale in the TBI group was classified as moderate with 11 points. The BriefNeuropsychological Evaluation in Spanish Neuropsi was applied to both groups. Results: significantdifferences (p≤0.05 in the tasks of orientation, attention, memory, language, reading andwriting were found. Conclusions: TBI generates significant neuropsychological changes, even sixmonths after discharge from the health service. It suggests that patients with head injury requiretreatment after overcoming the initial stage.

  7. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  8. α-linolenic omega-3 fatty acid for stroke protection: from brain preconditioning paradigm to nutrition

    Directory of Open Access Journals (Sweden)

    Blondeau Nicolas

    2011-09-01

    Full Text Available Stroke is the third leading cause of death, due to its high incidence, the severity of the insult, and lack of treatment options. The only therapeutic is restoration of cerebral blood flow achieved by recombinant tissue plasminogen activator treatment, but only approximately 5% of patients receive it. In addition, therapeutics aimed at achieving neuroprotection by blocking the ischemic cascade, as identified in numerous preclinical studies, failed in clinical trials. This failure in translation from experimental models to clinical trials led to a re-evaluation of properties which would constitute the ‘‘best-in class’’ therapeutics to be used against stroke. Given that neuroprotection appears ineffective per se, an emerging direction is to identify therapies, probably combinatorial in nature, which protect the whole neurovascular unit and target timedependent neurotoxic mechanisms. Molecules that activate complex cellular signaling cascades that render the brain resistant to subsequent ischemia, known as preconditioners, offer a novel perspective in stroke protection. Preconditioning elicits complex endogenous neuroprotective responses that act by pleiotropic mechanisms to block death pathways, promote survival pathways and increase resistance. In addition to chemical preconditioners, natural/endogenous compounds such as adenosine, glutamate, lysophospholipids, and omega-3 polyunsaturated fatty acids have been demonstrated to be excellent preconditioners. Consequently, a major new concept in preconditioning to combat stroke is introduced, which is preconditioning achieved through supplementation of an essential item in diet or as a nutraceutical. Several epidemiologic studies suggested a beneficial effect of a seafood/omega-3-enriched diet in cerebral diseases, but the omega-3-induced protective mechanisms are still poorly identified. This review highlights how α-linolenic acid (ALA, the omega-3 polyunsaturated fatty acid precursor

  9. Stroke

    Science.gov (United States)

    ... adjust your treatment as needed. Rehabilitation After a stroke, you may need rehabilitation (rehab) to help you recover. Rehab may include working with speech, physical, and occupational therapists. Language, ... may have trouble communicating after a stroke. You may not be able to find the ...

  10. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury

    OpenAIRE

    Bigler, Erin D.

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in researc...

  11. Traumatic brain injury: future assessment tools and treatment prospects

    OpenAIRE

    Flanagan, Steve

    2008-01-01

    Steven R Flanagan1, Joshua B Cantor2, Teresa A Ashman21New York University School of Medicine, The Rusk Institute of Rehabilitation, New York, NY, USA; 2Department of Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY, USAAbstract: Traumatic brain injury (TBI) is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the probl...

  12. Neuropsychology of Neuroendocrine Dysregulation after Traumatic Brain Injury

    OpenAIRE

    Zihl, J.; Almeida, O.

    2015-01-01

    Endocrine dysfunction is a common effect of traumatic brain injury (TBI). In addition to affecting the regulation of important body functions, the disruption of endocrine physiology can significantly impair mental functions, such as attention, memory, executive function, and mood. This mini-review focuses on alterations in mental functioning that are associated with neuroendocrine disturbances in adults who suffered TBI. It summarizes the contribution of hormones to the regulation of mental f...

  13. Brain Injury Following Repetitive Apnea in Newborn Piglets

    Science.gov (United States)

    Schears, Gregory; Creed, Jennifer; Antoni, Diego; Zaitseva, Tatiana; Greeley, William; Wilson, David F.; Pastuszko, Anna

    Repetitive apnea is associated with a significant increase in extracellular dopamine, generation of free radicals as determined by o-tyrosine formation and increase in Fluoro-Jade staining of degenerating neurons. This increase in extracellular dopamine and of hydroxyl radicals in striatum of newborn brain is likely to be at least partly responsible for the neuronal injury and neurological side effects of repetitive apnea.

  14. Technological memory aid use by people with acquired brain injury

    OpenAIRE

    Jamieson, Matthew; Cullen, Breda; McGee-Lennon, Marilyn; Brewster, Stephen; Evans, Jonathan

    2017-01-01

    Evans, Wilson, Needham, and Brentnall (2003) investigated memory aid use by people with acquired brain injury (ABI) and found little use of technological memory aids. The present study aims to investigate use of technological and other memory aids and strategies 10 years on, and investigate what predicts use. People with ABI and self-reported memory impairments (n = 81) completed a survey containing a memory aid checklist, demographic questions and memory questionnaires. Chi-square analysis s...

  15. Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance

    Science.gov (United States)

    2016-02-01

    USAARL Report No. 2016-16 Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance By Ben Lawson1, Bethany Ranes1, Amanda... Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden for this...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT

  16. Body representation in patients after vascular brain injuries

    OpenAIRE

    Razmus, Magdalena

    2017-01-01

    Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the differe...

  17. Longitudinal Locomotor and Postural Control Following Mild Traumatic Brain Injury

    OpenAIRE

    Fino, Peter C.

    2016-01-01

    Millions of people sustain a mild traumatic brain injury (concussion) each year. While most clinical signs and symptoms resolve within 7-10 days for the majority of typical concussions, some gait and balance tasks have shown abnormalities lasting beyond the resolution of clinical symptoms. These abnormalities can persist after athletes have been medically cleared for competition, yet the implications of such changes are unclear. Most prior research has examined straight gait and standard meas...

  18. Treatment for Depression after Traumatic Brain Injury: A Systematic Review

    OpenAIRE

    Fann, Jesse R.; Hart, Tessa; Schomer, Katherine G.

    2009-01-01

    The aim of this systematic review was to critically evaluate the evidence on interventions for depression following traumatic brain injury (TBI) and provide recommendations for clinical practice and future research. We reviewed pharmacological, other biological, psychotherapeutic, and rehabilitation interventions for depression following TBI from the following data sources: PubMed, CINAHL, PsycINFO, ProQuest, Web of Science, and Google Scholar. We included studies written in English published...

  19. [International multicenter studies of treatment of severe traumatic brain injury].

    Science.gov (United States)

    Talypov, A E; Kordonsky, A Yu; Krylov, V V

    2016-01-01

    Despite the introduction of new diagnostic and therapeutic methods, traumatic brain injury (TBI) remains one of the leading cause of death and disability worldwide. Standards and recommendations on conservative and surgical treatment of TBI patients should be based on concepts and methods with proven efficacy. The authors present a review of studies of the treatment and surgery of severe TBI: DECRA, RESCUEicp, STITCH(TRAUMA), CRASH, CRASH-2, CAPTAIN, NABIS: H ll, Eurotherm 3235. Important recommendations of the international group IMPACT are considered.

  20. Coping styles in relation to cognitive rehabilitation and quality of life after brain injury.

    Science.gov (United States)

    Wolters, Gisela; Stapert, Sven; Brands, Ingrid; Van Heugten, Caroline

    2010-08-01

    This study investigated the changes in coping styles of patients with acquired brain injury who underwent cognitive rehabilitation, and the effects of these changes on their quality of life. Participants were 110 patients in the chronic phase post-injury, who underwent outpatient cognitive rehabilitation according to current guidelines and standards. Coping style (Utrecht Coping List) was measured at the start of rehabilitation (T0) and repeated at least 5 months later (T1). Coping style was related to quality of life measured at T1 (Life Satisfaction Questionnaire and Stroke-Adapted Sickness Impact Profile). Results indicated that active problem-focused coping styles decreased and passive emotion-focused coping styles increased significantly between T0 and T1. Furthermore, the study showed that increases in active problem-focused coping styles and decreases in passive emotion-focused coping styles predicted a higher quality of life in the long term. These changes in coping styles are adaptive for the adjustment process in the chronic phase post-injury. Overall however, most participants showed maladaptive changes in coping styles. Implications for cognitive rehabilitation are therefore discussed.

  1. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    Directory of Open Access Journals (Sweden)

    Laurent Chazalviel

    2016-01-01

    Full Text Available Normobaric oxygen (NBO and hyperbaric oxygen (HBO are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO 2 = 1 atmospheres absolute (ATA = 0.1 MPa and HBO (pO 2 = 2.5 ATA = 0.25 MPa through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  2. Injury versus noninjury factors as predictors of postconcussive symptoms following mild traumatic brain injury in children.

    Science.gov (United States)

    McNally, Kelly A; Bangert, Barbara; Dietrich, Ann; Nuss, Kathy; Rusin, Jerome; Wright, Martha; Taylor, H Gerry; Yeates, Keith Owen

    2013-01-01

    To examine the relative contributions of injury characteristics and noninjury child and family factors as predictors of postconcussive symptoms (PCS) following mild traumatic brain injury (TBI) in children. Participants were 8- to 15-year-old children, 186 with mild TBI and 99 with mild orthopedic injuries (OI). Parents and children rated PCS shortly after injury and at 1, 3, and 12 months postinjury. Hierarchical regression analyses were conducted to predict PCS from (1) demographic variables; (2) premorbid child factors (WASI IQ; WRAT-3 Reading; Child Behavior Checklist; ratings of preinjury PCS); (3) family factors (Family Assessment Device General Functioning Scale; Brief Symptom Inventory; and Life Stressors and Social Resources Inventory); and (4) injury group (OI, mild TBI with loss of consciousness [LOC] and associated injuries [AI], mild TBI with LOC but without AI, mild TBI without LOC but with AI, and mild TBI without LOC or AI). Injury group predicted parent and child ratings of PCS but showed a decreasing contribution over time. Demographic variables consistently predicted symptom ratings across time. Premorbid child factors, especially retrospective ratings of premorbid symptoms, accounted for the most variance in symptom ratings. Family factors, particularly parent adjustment, consistently predicted parent, but not child, ratings of PCS. Injury characteristics predict PCS in the first months following mild TBI but show a decreasing contribution over time. In contrast, noninjury factors are more consistently related to persistent PCS.

  3. Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

    Directory of Open Access Journals (Sweden)

    Aurore Thibaut

    2017-05-01

    Full Text Available What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS and brain oscillations (electroencephalography—EEG. In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.

  4. Aspiration-Induced Acute Lung Injury in Victims with Isolated Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Gorodovikova

    2009-01-01

    Full Text Available Objective: to determine the time and development rate of acute lung injury (ALI in severe brain injury (SBI complicated by aspiration of gastric contents or blood. Subjects and methods. Twenty-nine patients aged 19 to 70 years, who had isolated SBI, of whom there were 24 males and 5 females, were examined. The patients were divided into 2 groups: those with aspiration of gastric contents (n=9 or blood (n=10. A control group included 10 patients with SBI without aspiration. A PiCCO plus device was used to determine pulmonary extravascular fluid. ALI was diagnosed in accordance with the recommendations of the Research Institute of General Reanimatology, Russian Academy of Medical Sciences. Results. SBI patients with aspiration of gastric contents or blood were found to have significantly increased pulmonary extravascular water (p<0.01 and a lower oxygenation index (<300, which correlated with each other. ALI was recorded in the first hours after injury in about 50% of cases in both patients with gastric contents aspiration and those with blood aspiration. Conclusion. In patients with SBI complicated by aspiration of gastric contents or blood, pulmonary extravascular fluid accumulation concurrent with other signs of injury may be regarded as a criterion for acute lung injury. Key words: severe brain injury, aspiration, acute lung lesion.

  5. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury.

    Science.gov (United States)

    Jin, Guang; Duggan, Michael; Imam, Ayesha; Demoya, Marc A; Sillesen, Martin; Hwabejire, John; Jepsen, Cecilie H; Liu, Baoling; Mejaddam, Ali Y; Lu, Jennifer; Smith, William Michael; Velmahos, George C; Socrate, Simona; Alam, Hasan B

    2012-12-01

    We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters, intracranial pressure, and brain tissue oxygenation. A custom-designed, computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4-m/s velocity, 100-millisecond dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 hours of shock, animals were randomized to one of three resuscitation groups (n = 7 per group) as follows: (1) isotonic sodium chloride solution; (2) 6% hetastarch, Hex; and (3) Hex and VPA 300 mg/kg (Hex + VPA). Volumes of Hex matched the shed blood, whereas that of the isotonic sodium chloride solution was three times the volume. VPA treatment was started after an hour of shock. After 6 hours of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with 2, 3, 5-Triphenyltetrazolium chloride to quantify the lesion size (mm) and brain swelling (percent change compared with uninjured side). Levels of acetylated histone H3 were determined to quantify acetylation, and myeloperoxidase and interleukine-1β (IL-1β) levels were measured as markers of brain inflammation. Combination of 40% blood loss with cortical impact and a period of shock (2 hours) and resuscitation resulted in a highly reproducible brain injury. Lesion size and brain swelling in the Hex

  6. Executive dysfunction in psychosis following traumatic brain injury (PFTBI).

    Science.gov (United States)

    Batty, Rachel; Francis, Andrew; Thomas, Neil; Hopwood, Malcolm; Ponsford, Jennie; Johnston, Lisa; Rossell, Susan

    2015-01-01

    Executive dysfunction is well established in patients with traumatic brain injury and in schizophrenia (SCZ). However, assessments of executive function in psychosis following traumatic brain injury (PFTBI) are limited and inconsistent, and often do not reflect the deficits demonstrated in patients with traumatic brain injury (TBI) or SCZ. We sought to determine the extent of executive dysfunction in PFTBI relative to three comparison cohorts. Measures of executive function were administered to dually diagnosed patients with PFTBI (n = 10) including tests of mental inhibition and switching, processing speed, and attention: the Stroop Task, Trail Making Test (TMT), and the Attention subtest of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Demographically comparable patients with TBI (n = 10), SCZ (n = 23), and healthy controls (n = 23) underwent an identical battery. Significant executive dysfunction was evident in patients with PFTBI on all measures. Relative to all three comparison cohorts patients with PFTBI performed most poorly. These data present novel evidence of substantially impaired executive function across four task types in PFTBI and suggest that TBI and psychosis have an additive influence on executive function deficits. Treatment programs requiring substantial executive engagement are not suitable for patients dually diagnosed with PFTBI.

  7. Percutaneous dilatational tracheostomy for ICU patients with severe brain injury

    Directory of Open Access Journals (Sweden)

    Guo Dongyuan

    2014-12-01

    Full Text Available 【Abstract】Objective: To sum up our experience in percutaneous dilatational tracheostomy (PDT in ICU patient with severe brain injury. Methods: Between November 2011 and April 2014, PDTs were performed on 32 severe brain injury patients in ICU by a team of physicians and intensivists. The success rate, effi cacy, safety, and complications including stomal infection and bleeding, paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, as well as clinically significant tracheal stenosis were carefully monitored and recorded respectively. Results: The operations took 4-15 minutes (mean 9.1 minutes±4.2 minutes. Totally 4 cases suffered from complications in the operations: 3 cases of stomal bleeding, and 1 case of intratracheal bloody secretion, but none required intervention. Paratracheal insertion, pneumothorax, pneumomediastinum, tracheal laceration, or clinically signifi cant tracheal stenosis were not found in PDT patients. There was no procedure-related death occurring during or after PDT. Conclusion: Our study demonstrats that PDT is a safe, highly effective, and minimally invasive procedure. The appropriate sedation and airway management perioperatively help to reduce complication rates. PDT should be performed or supervised by a team of physicians with extensive experience in this procedure, and also an intensivist with experience in diffi cult airway management. Key words: Brain injuries; Percutaneous dilatational tracheostomy; ICU

  8. Acquired brain injury self-management programme: a pilot study.

    Science.gov (United States)

    Kendrick, Denise; Silverberg, Noah D; Barlow, Susan; Miller, William C; Moffat, Jacqui

    2012-01-01

    Traditional rehabilitation is not well suited to individuals with chronic mild symptoms following an acquired brain injury. To address this, this study adapted a supported self-management programme (SMP) for this population. The aim of this study was to evaluate the potential effectiveness of this novel SMP. Retrospective case series with repeated measures. Fifty-three participants with chronic mild symptoms following an acquired brain injury (primarily mild traumatic brain injury) completed an SMP. The intervention involved eight coaching sessions with each an occupational therapist and psychologist, carried out in the community and based on SMP principles. The Canadian Occupational Performance Measure was administered at baseline, discharge and 3- and 9-month follow-up. This measure yielded scores for performance and satisfaction with daily functioning, covering the domains of self-care, productivity and leisure. A complete case analysis of programme completers revealed that participants' ratings of their occupational performance and satisfaction improved markedly between baseline and discharge from the SMP. This set of outcome measures remained stable between discharge and the two follow-up points. This pilot study suggests that SMPs may improve daily functioning in individuals with chronic mild ABI symptoms. More methodologically robust clinical trials are warranted.

  9. Standardized outcome assessment in brain injury rehabilitation for younger adults.

    Science.gov (United States)

    Turner-Stokes, L

    2002-05-10

    To explore possible candidates for a common outcome measure for brain injury rehabilitation in younger adults. Patients recovering from brain injury pass through several different stages of rehabilitation, illustrated by the 'Slinky model'. Outcome measures used to assess progress must not only meet scientific criteria for validity and reliability--they must be practical to use in a clinical setting and relevant to the rehabilitation goals at each stage. Within most major rehabilitation settings, the commonest goals focus on reducing disability or dependency. Among the most widely used measures in the UK are the Barthel Index, the Functional Independence Measure (FIM) and the extended Functional Assessment Measure (FIM + FAM). The relationship between these instruments is discussed. No single outcome measure is suitable for all brain injury rehabilitation, but by taking these most widely used measures and understanding the relationship between them, we already have a potential common language in disability measurement between the majority of rehabilitation centres in the UK and beyond. These instruments, however, have clear floor and ceiling effects and further work is needed to agree common measures for rehabilitation intervention that falls outside the sensitivity range of these three scales.

  10. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  11. Emerging pharmacological agents to improve survival from traumatic brain injury.

    Science.gov (United States)

    Radosevich, John J; Patanwala, Asad E; Erstad, Brian L

    2013-01-01

    To review emerging pharmacological agents for the treatment of traumatic brain injury with regard to survival outcomes and provide recommendations regarding their use. An Ovid MEDLINE (up to May 2013) and the Cochrane Central Register of Controlled Trials (up to May 2013) search was conducted to identify emerging pharmacological therapies for the treatment of traumatic brain injury. The search was limited to English language and humans. Pharmacological agents that were evaluated with respect to survival as an outcome were included. Based on the search, the investigators identified the following new therapies: beta-receptor antagonists, erythropoiesis stimulating agents, hydroxymethylglutaryl-CoA reductase inhibitors (statins) and progesterone. With the exception of progesterone, which was studied in several small, randomized, controlled trials, the remaining agents were primarily studied in observational retrospective cohorts. For each of the agents identified, a potential increase in survival was noted. Emerging pharmacological agents represent promising treatment options for traumatic brain injury to improve survival. Most of these agents are commercially available for other indications. However, limitations in study design, sample size, duration of treatment, timing of treatment and inclusion of heterogeneous patient populations make it difficult to draw definitive conclusions from the literature.

  12. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  13. Epidemiology of mild traumatic brain injury and neurodegenerative disease.

    Science.gov (United States)

    Gardner, Raquel C; Yaffe, Kristine

    2015-05-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma have been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. This article is part of a Special Issue entitled SI:Traumatic Brain Injury. Published by Elsevier Inc.

  14. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  15. Atypical moral judgment following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Angelica Muresan

    2012-07-01

    Full Text Available Previous research has shown an association between emotions, particularly social emotions, and moral judgments. Some studies suggested an association between blunted emotion and the utilitarian moral judgments observed in patients with prefrontal lesions. In order to investigate how prefrontal brain damage affects moral judgment, we asked a sample of 29 TBI patients (12 females and 17 males and 41 healthy participants (16 females and 25 males to judge 22 hypothetical dilemmas split into three different categories (non-moral, impersonal and personal moral. The TBI group presented a higher proportion of affirmative (utilitarian responses for personal moral dilemmas when compared to controls, suggesting an atypical pattern of utilitarian judgements. We also found a negative association