WorldWideScience

Sample records for strippable low-sulfur coals

  1. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  2. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  3. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  4. Research on the Composition and Distribution of Organic Sulfur in Coal.

    Science.gov (United States)

    Zhang, Lanjun; Li, Zenghua; Yang, Yongliang; Zhou, Yinbo; Li, Jinhu; Si, Leilei; Kong, Biao

    2016-05-13

    The structure and distribution of organic sulfur in coals of different rank and different sulfur content were studied by combining mild organic solvent extraction with XPS technology. The XPS results have shown that the distribution of organic sulfur in coal is related to the degree of metamorphism of coal. Namely, thiophenic sulfur content is reduced with decreasing metamorphic degree; sulfonic acid content rises with decreasing metamorphic degree; the contents of sulfate sulfur, sulfoxide and sulfone are rarely related with metamorphic degree. The solvent extraction and GC/MS test results have also shown that the composition and structure of free and soluble organic sulfur small molecules in coal is closely related to the metamorphic degree of coal. The free organic sulfur small molecules in coal of low metamorphic degree are mainly composed of aliphatic sulfides, while those in coal of medium and high metamorphic degree are mainly composed of thiophenes. Besides, the degree of aromatization of organic sulfur small molecules rises with increasing degree of coalification.

  5. Determining total sulfur content in coal by MSC radiometric sulfur meter

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T; Golebiowski, W

    1976-01-01

    The MSC radiometric sulfur meter is used to determine total sulfur content in brown and black coals. Sulfur content is determined by measuring intensity of radiation beam which has travelled through a coal sample with the optimum constant surface mass. Construction of the MSC, consisting of a measuring head and the electronic measuring system, is shown in a scheme. AM-241 (with activity of 50 mCi) is the source of radiation. Energy of 25.3 keV (tin disc) is selected as the optimum. The SSU-70 probe with NaJ/Tl crystal is the radiation detector. The black coal sample weighs 10 g and the brown coal sample weighs 18 g. Duration of sulfur determination is 10 min. Error of sulfur determination ranges from plus or minus 0.2% to 0.3%. The results of operational tests of MSC radiometric sulfur meters in black and brown coal mines are discussed. Accuracy of measurement is shown in 5 tables. (8 refs.)

  6. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  7. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Saikia, Binoy K.; Khound, Kakoli; Baruah, Bimala P.

    2014-01-01

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H 2 O 2 and V 2 O 5 . Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO 2 ) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  8. Transformation of sulfur during pyrolysis and hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Yang, J.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1998-05-01

    It is reported that the transformation of sulfur during pyrolysis (Py) under nitrogen and hydropyrolysis (HyPy) of Chinese Yanzhou high sulfur bituminous coal and Hongmiao lignite was studied in a fixed-bed reactor. The volatile sulfur-containing products were determined by gas chromatography with flame photometric detection. The sulfur in initial coal and char (mainly aliphatic and thiophenic sulfur forms) was quantitatively analyzed using X-ray photoelectron spectroscopy (XPS). The desulfurization yield was calculated by elemental analysis. The main volatile sulfur-containing gas was H{sub 2}S in both Py and HyPy. Both the elemental analysis and XPS results indicated that more sulfur was removed in HyPy than in Py under nitrogen. Thiophenic sulfur can be partially hydrogenated and removed in HyPy. Pyrite can be reduced to a ferrous sulfide completely even as low as 400{degree}C in HyPy while in Py the reduction reaction continues up to 650{degree}C. Mineral matter can not only fix H{sub 2}S produced in Py and HyPy to form higher sulfur content chars but also catalyses the desulfurization reactions to form lower sulfur content tars in HyPy. 24 refs., 8 figs., 4 tabs.

  9. Characterization of desulfurization, denitrogenation and process sulfur transfer during hydropyrolysis of Chinese high sulfur coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chenggong; Li Baoqing [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1997-12-31

    The process desulphurization and denitrogenation of Chinese high sulfur coals and the characteristics of sulfur transformation during non-catalytic hydropyrolysis were investigated by a 10 g fixed-bed reactor and a small-scaled reactor with online spectrometry respectively. It was indicated that more than 70% of the total sulfur of the two high sulfur coals and almost all pyritic sulfur are removed as H{sub 2}S, leaving the char and tar products with much less sulfur distribution. The liability of sulfur transformation to tar products is closely related to the thiophenic structure forms rather than sulfidic forms. At the same time, the formation of trace amount of sulfur dioxide indicates the presence of inherent sulfur oxidation reactions inside coal frame structures even under H{sub 2} pressure. (orig.)

  10. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  11. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  12. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Sri [Department of Mining Engineering, Moslem University of Indonesia, Jln. Urip Sumoharjo, Makassar (Indonesia); Oschmann, Wolfgang [Institute of Geosciece, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany); Bechtel, Achim; Sachsenhofer, Reinhard F. [Department of Applied Geoscience and Geophysics, University of Leoben, Peter-Tunner-Str.5, A-8700 Leoben (Austria); Anggayana, Komang [Department of Mining Engineering, Bandung Institute of Technology, Jln. Ganesa 10, I-40132 Bandung (Indonesia); Puettmann, Wilhelm [Institute of Atmospheric and Environmental Sciences, Dapartment of Analytical Enviromental Chemistry, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany)

    2010-03-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (< 1%) and pyrite contents. The ash, mineral, total sulfur, iron (Fe) and pyrite contents of most of the coal samples from the Sebulu and Centra Busang coal mines are high and positively related in these samples. Low contents of ash, mineral, total sulfur, iron (Fe) and pyrite have been found only in sample TNT-32 from Centra Busang coal mine. Pyrite was the only sulfur form that we could recognize under reflected light microscope (oil immersion). Pyrite occurred in the coal as framboidal, euhedral, massive, anhedral and epigenetic pyrite in cleats/fractures. High concentration of pyrite argues for the availability of iron (Fe) in the coal samples. Most coal samples from the Embalut coal mine show lower sulfur (< 1 wt.%) and pyrite contents as found within Centra Busang and Sebulu coals. One exception is the coal sample KTD-38 from Embalut mine with total sulfur content of 1.41 wt.%. The rich ash, mineral, sulfur and pyrite contents of coals in the Kutai Basin (especially Centra Busang and Sebulu coals) can be related to the volcanic activity (Nyaan volcanic) during Tertiary whereby aeolian material was transported to the mire during or after the peatification process. Moreover, the adjacent early Tertiary deep marine sediment, mafic igneous rocks and melange in the center of Kalimantan Island might have provided mineral to the coal by uplift and erosion. The inorganic matter in the mire might also originate from the ground and surface water from the highland of central Kalimantan. (author)

  13. Estimation of sulfur in coal by fast neutron activation

    International Nuclear Information System (INIS)

    Das, G.C.; Bhattacharyya, P.K.

    1995-01-01

    A simple method is described for estimation of sulfur in coal using fast neutron activation of sulfur, i.e. 32 S(n,p) 32 P and subsequent measurement of 32 P β-activity (1.72 MeV) by a Geiger-Mueller counter. Since the sulfur content of Indian coal ranges from 0.25 to 3%, simulated samples of coal containing sulfur in the range from 0.25 to 3% and common impurities like oxides of aluminium, calcium, iron and silicon have been used to establish the method. (author). 6 refs., 2 figs., 1 tab

  14. Sulfur transformation during rapid hydropyrolysis of coal under high pressure by using a continuous free fall pyrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    W.-C. Xu; M. Kumagai

    2003-02-01

    The behavior of sulfur transformation during rapid hydropyrolysis of coal was investigated using a pressurized, continuous free fall pyrolyzer under the conditions of temperature ranging from 923 to 1123 K and hydrogen pressure up to 5 MPa. The yields of sulfur converted to gas, tar and char were determined, together with the analyses of sulfur form distributions in coals and chars. The results showed that the decomposition of inorganic sulfur species was affected only by the temperature, while the increases in temperature and hydrogen pressure obviously enhanced the removal of organic sulfur from coal. The extent of organic sulfur removal was proportional to the coal conversion, depending on coal type. A significant retention of gaseous sulfur products by the organic matrix of the char was observed during hydropyrolysis of a Chinese coal above 1023 K, even under the pressurized hydrogen atmosphere. The kinetic analysis indicates that the rate of organic sulfur removal from coal was 0.2th-order with respect to the hydrogen pressure, and the activation energy for total sulfur removal and organic sulfur removal is 17 26 and 13 55 kJ/mol, respectively. The low activation energies suggest that the transformation and removal of sulfur from coal might be controlled by the diffusion and/or thermodynamic equilibrium during hydropyrolysis under the pressurized conditions. 29 refs., 10 figs., 3 tabs.

  15. Annotated bibliography of methods for determining sulfur and forms of sulfur in coal and coal-related materials

    Energy Technology Data Exchange (ETDEWEB)

    Chriswell, C.D.; Norton, G.A.; Akhtar, S.S.; Straszheim, W.E.; Markuszewski, R.

    1993-01-01

    Over 400 published papers, presentations at scientific meetings, and reports relating to the determination of sulfur and sulfur forms in coal-related materials have been accumulated, classified, and an evaluation made of their content.

  16. Forensic collection of trace chemicals from diverse surfaces with strippable coatings.

    Science.gov (United States)

    Jakubowski, Michael J; Beltis, Kevin J; Drennan, Paul M; Pindzola, Bradford A

    2013-11-07

    Surface sampling for chemical analysis plays a vital role in environmental monitoring, industrial hygiene, homeland security and forensics. The standard surface sampling tool, a simple cotton gauze pad, is failing to meet the needs of the community as analytical techniques become more sensitive and the variety of analytes increases. In previous work, we demonstrated the efficacy of non-destructive, conformal, spray-on strippable coatings for chemical collection from simple glass surfaces. Here we expand that work by presenting chemical collection at a low spiking level (0.1 g m(-2)) from a diverse array of common surfaces - painted metal, engineering plastics, painted wallboard and concrete - using strippable coatings. The collection efficiency of the strippable coatings is compared to and far exceeds gauze pads. Collection from concrete, a particular challenge for wipes like gauze, averaged 73% over eight chemically diverse compounds for the strippable coatings whereas gauze averaged 10%.

  17. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  18. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Science.gov (United States)

    Hackley, Keith C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W.

    1990-01-01

    Hot tetrachloroethene (perchloroethylene, PCE) extracts significant amounts of elemental sulfur (So) from weathered coals but not from pristine coals. The objective of this study was to determine whether So extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted So was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The So was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, So and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. ?? 1990.

  19. Sulfur Rich Coal Gasification and Low Impact Methanol Production

    Directory of Open Access Journals (Sweden)

    Andrea Bassani

    2018-03-01

    Full Text Available In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3% and the higher methanol production (about 0.5% without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.

  20. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, K.C.; Buchanan, D.H.; Coombs, K.; Chaven, C.; Kruse, C.W. (Eastern Illinois University, Charleston, IL (USA). Chemistry Dept.)

    1990-01-01

    Hot tetrachloroethene (perchloroethylen PCE) extracts significant amounts of elemental sulfur (S{sup o}) from weathered coals but not from pristine coals. The objective of this study was to determine whether S{sup o} extracted by PCE is an oxidation product of pyrite or whether it originates in some way from unstable, organically-bound sulfur. The isotopic composition of the PCE-extracted S{sup o} was compared to the isotopic compositions of the pyritic and the organic sulfur in a coal. The S{sup o} was shown to have an isotopic signature similar to the pyritic sulfur. Additionally, the isotopic differences observed between the pyritic, S{sup o} and sulfatic sulfur were consistent with bacterial mediated oxidation of sulfide sulfur (pyrite) as the source of both the sulfatic and elemental sulfur. 21 refs., 2 tabs.

  1. ALARA trademark 1146 strippable coating

    International Nuclear Information System (INIS)

    Fricke, V.

    1999-01-01

    Strippable or temporary coatings are innovative technologies for decontamination that effectively reduce loose contamination at low cost. These coatings have become a viable option during the deactivation and decommissioning of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. The ALARA trademark 1146 strippable coating was demonstrated as part of the Savannah River Site LSDDP and successfully removed transferable (surface) contamination from multiple surfaces (metal and concrete) with an average decontamination factor for alpha contamination of 6.68 and an average percentage of alpha contamination removed of 85.0%. Beta contamination removed was an average DF of 5.55 and an average percentage removed of 82.0%. This paper is an Innovative Technology Summary Report designed to provide potential users with the information they need to quickly determine if a technology would apply to a particular environmental management problem. They also are designed for readers who may recommend that a technology be considered by prospective users. This Innovative Technology offers a 35% cost savings over the Baseline Technology

  2. Biological removal of sulfur from coal flotation concentrate by culture isolated from coal washery plant tailing dump

    Energy Technology Data Exchange (ETDEWEB)

    Jorjani, E. [Azad University, Tehran (Iran). Mining Engineering Dept.

    2005-10-15

    A combination of flotation and microbial leaching processes was used to achieve acceptable level of sulfur and ash in Tabas coal sample of Iran. Representative sample of the minus 500 micron size fraction was subjected to flotation separation for the removal of ash and sulfur. The final concentrate with recovery, combustion value and sulfur content of 86.03, 86.45 and 1.35% respectively was achieved at pH 8 and following reagent dosage and operating conditions: collector: diesel oil (1200 g/ton), frother: MIBC (5%) + pine oil (95%) with concentration of 120 (g/ton), depressant: sodium silicate (1000 g/ton), particle size: {lt} 500 {mu} m and pulp density: 7%. Because of fine distribution of sulfur on Tabas coal macerals and lithotypes, high percentage of total sulfur (79.9%) is distributed in flotation concentrate and only 20.1% is yielded in the tails. So microbial leaching using a species isolated from coal washery plant tailing dump was used in batch system to remove sulfur from flotation concentrate. The conditions were optimized for the maximum removal of sulfur. These conditions were found to be pH of 2, particle size less than 0.18 mm; pulp density: 8%, temperature: 30 {sup o}C, shaking rate: 150 rpm conditions. Total sulfur and ash content was reduced by bioleaching from 13.55 and 1.35 in flotation concentrate to 9.47 and 0.55 in the final leached concentrate, a reduction of 35 and 61.9% respectively. Sterilization of coal adversely affects the sulfur reduction. The results suggest that the isolated culture is sufficiently effective for depyritization of Tabas coal flotation concentrate in stirred system.

  3. Experimental study of desulfurization of Zhong Liang Shau high sulfur coal by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.; Huang, B.; Cao, J. [China University of Mining and Technology (China). Beijing Graduate School

    1994-12-01

    Emission of large amount of SO{sub 2} from combustion of high sulfur coal causes serious environmental pollution. Pre-combustion desulfurization of high sulfur coal has become a necessity. This paper reports test results of fine coal desulfurization with different flotation technology and the effect of pyrite depressant. Test work showed that when the coal sample from Zhong Liang Shau was processed with a Free Jet Flotation Column its pyritic sulfur content was reduced from 3.08% to 0.84%, with 72.22% recovery of combustible matter in clean coal. The concept of Desulfurization Efficiency Index E{sub ds} for comprehensive evaluation of desulfurization process is proposed, which is defined as the product of the ratio of sulfur content reduction of clean coal and the recovery of combustible matters. 6 refs., 4 figs., 3 tabs.

  4. Thermal dynamic analysis of sulfur removal from coal by electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Gao, J.; Meng, F. [Qinghua University, Beijing (China). Dept. of Thermal Engineering

    2002-06-01

    The electrolytic reactions about sulfur removal from coal were studied by using chemical thermal dynamic analysis. According to the thermodynamical data, the Gibbs free energy value of the electrolytic reactions of pyritic and organic sulfur removal from coal is higher than zero. So, these electrolytic reactions are not spontaneous chemical reactions. In order to carry out desulfurisation by electrolysis, a certain voltage is necessary and important. Because theoretic decomposition voltage of pyrite and some parts of organic sulfur model compound is not very high, electrolysis reactions are easily to be carried out by using electrolysis technology. Mn ion and Fe ion are added into electrolysis solutions to accelerate the desulfurisation reaction. The electrolytic decomposition of coal is discussed. Because the theoretical decomposition voltage of some organic model compound is not high, the coal decomposition might happen. 17 refs., 4 tabs.

  5. Clean utilization of low-rank coals for low-cost power generation

    International Nuclear Information System (INIS)

    Sondreal, E.A.

    1992-01-01

    Despite the unique utilization problems of low-rank coals, the ten US steam electric plants having the lowest operating cost in 1990 were all fueled on either lignite or subbituminous coal. Ash deposition problems, which have been a major barrier to sustaining high load on US boilers burning high-sodium low-rank coals, have been substantially reduced by improvements in coal selection, boiler design, on-line cleaning, operating conditions, and additives. Advantages of low-rank coals in advanced systems are their noncaking behavior when heated, their high reactivity allowing more complete reaction at lower temperatures, and the low sulfur content of selected deposits. The principal barrier issues are the high-temperature behavior of ash and volatile alkali derived from the coal-bound sodium found in some low-rank coals. Successful upgrading of low-rank coals requires that the product be both stable and suitable for end use in conventional and advanced systems. Coal-water fuel produced by hydrothermal processing of high-moisture low-rank coal meets these criteria, whereas most dry products from drying or carbonizing in hot gas tend to create dust and spontaneous ignition problems unless coated, agglomerated, briquetted, or afforded special handling

  6. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  7. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  8. Assessment of strippable coatings for decontamination and decommissioning

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described

  9. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  10. Decontamination of Belarus research reactor installation by strippable coatings

    International Nuclear Information System (INIS)

    Voronik, N.I.; Shatilo, N.N.

    2002-01-01

    The goal of this study was to develop new strippable coatings using water-based solutions of polyvinyl alcohol and active additives for decontamination of research reactor equipment. The employment of strippable coatings makes it possible to minimize the quantity of liquid radioactive waste. The selection of strippable decontaminating coatings was carried out on the basis of general requirements to decontaminating solutions: successfully dissolve corrosion deposits; ensure the desorption of radionuclides from the surfaces and the absence of resorption; introduce minimal corrosion effect of construction materials; to be relatively cheap and available in reagents. The decontaminating ability and adhesion properties of these coatings depending on metal and deposit sorts were investigated. Research on the chemical stability of solid wastes was carried out. The data obtained were the base for recommendations on waste management procedure for used films and pastes. A full-scale case-study analysis was performed for comparing strippable coatings with decontaminating solutions. (author)

  11. 21 CFR 175.230 - Hot-melt strippable food coatings.

    Science.gov (United States)

    2010-04-01

    ..., white For use only as a component of hot-melt strippable food coatings applied to frozen meats and... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hot-melt strippable food coatings. 175.230 Section 175.230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  12. Ultrasonic coal-wash for de-ashing and de-sulfurization. Experimental investigation and mechanistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ambedkar, B. [Indian Institute of Technology Madras, Chennai (India). Dept. of Chemical Engineering

    2012-07-01

    This study focuses on the physical aspects of ultrasonic de-ashing and de-sulfurization, such as cavitation, streaming and their combined effects. Ambedkar Balraj proposes an ultrasound-assisted coal particle breakage mechanism and explores aqueous and solvent-based ultrasonic techniques for de-ashing and de-sulfurization. Ambedkar designs a Taguchi L-27 fractional-factorial matrix to assess the individual effects of key process variables. In this volume he also describes process optimization and scale-up strategies. The author provides a mechanism-based model for ultrasonic reagent-based coal de-sulfurization, proposes a flow diagram for ultrasonic methods of high-throughput coal-wash and discusses the benefits of ultrasonic coal-wash. Coal will continue to be a major fuel source for the foreseeable future and this study helps improve its use by minimising ash and sulfur impurities.

  13. A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts

    Science.gov (United States)

    Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

    1993-01-01

    A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

  14. Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M.; Zhang, G.L.; Zhang, Y.X.; Li, Y.; Lin, J.; Liu, W.; Cao, Q.C.; Zhao, Y.D.; Ma, C.Y.; Han, Y. [Chinese Academy of Sciences, Shanghai (China). Shanghai Institute of Applied Physics

    2009-11-15

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO{sub 4}2{sup -}. It can monitor the sulfur pollution in atmosphere.

  15. Monitoring the sulfur content of coal streams by thermal-neutron-capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Martin, J.W.; Hall, A.W.

    1976-07-01

    A theory was developed for evaluating a complex, prompt gamma ray spectrum to serve as the basis for an instrument to monitor continuously the sulfur content of tonnage streams of coal. Equations for the energies and intensities of prompt gamma rays emitted from 13 most significant elements in coal are combined into a single equation that defines the basic electronic design of the meter. The sulfur content of up to 10 tons per hour of coal was determined in pilot plant tests with a prototype meter. The precision of 0.04 percent sulfur substantiates the validity of the theory. In subsequent industrial plant tests the precision was determined to be a comparable 0.05 percent sulfur

  16. Steam versus coking coal and the acid rain program

    International Nuclear Information System (INIS)

    Lange, Ian

    2010-01-01

    The Clean Air Act of 1990 initiated a tradable permit program for emissions of sulfur dioxide from coal-fired power plants. One effect of this policy was a large increase in the consumption of low-sulfur bituminous coal by coal-fired power plants. However, low-sulfur bituminous coal is also the ideal coking coal for steel production. The analysis presented here will attempt to determine how the market responded to the increased consumption of low-sulfur bituminous coal by the electricity generation sector. Was there a decrease in the quality and/or quantity of coking coal consumption or did extraction increase? Most evidence suggests that the market for coking coal was unaffected, even as the extraction and consumption of low-sulfur bituminous coal for electricity generation increased substantially.

  17. A case study of PFBC for low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, S.A. [ABB Carbon AB, Finspong (Sweden)

    1995-12-01

    Pressurized Fluidized Combined-Cycle (PFBC) technology allows the efficient and environmentally friendly utilization of solid fuels for power and combined heat and power generation. With current PFBC technology, thermal efficiencies near 46%, on an LHV basis and with low condenser pressures, can be reached in condensing power plants. Further efficiency improvements to 50% or more are possible. PFBC plants are characterized by high thermal efficiency, compactness, and extremely good environmental performance. The PFBC plants which are now in operation in Sweden, the U.S. and Japan burn medium-ash, bituminous coal with sulfur contents ranging from 0.7 to 4%. A sub- bituminous {open_quotes}black lignite{close_quotes} with high levels of sulfur, ash and humidity, is used as fuel in a demonstration PFBC plant in Spain. Project discussions are underway, among others in Central and Eastern Europe, for the construction of PFBC plants which will burn lignite, oil-shale and also mixtures of coal and biomass with high efficiency and extremely low emissions. This paper will provide information about the performance data for PFBC plants when operating on a range of low grade coals and other solid fuels, and will summarize other advantages of this leading new clean coal technology.

  18. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  19. Effect of Prussian blue on organic sulfur of coal in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. of Chemical Engineering

    2007-01-15

    This study is an attempt to desulfurize organic sulfur from coal samples with ferric hexacyanoferrate (II), Fe{sub 4} (Fe(CN){sub 6}), as the desulfurization agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the coal samples has been investigated. The temperature and stirring time are the most important parameters for the level of desulfurization of organic sulfur. Removal of organic sulfur content increased continuously with increasing temperature from 298 to 368 K. The organic sulfur removal rate sharply increases from 10 min to 30 min stirring time. After 30 min, it reaches a value of plateau. Particle size between -100 mesh and -200 mesh slightly affects the amount of organic sulfur removal. Gradual increase in the concentration of ferric hexacyanoferrate (II) raised the magnitude of desulfurization, but at higher concentration, the variation is not significant.

  20. Use of the Moessbauer effect for determining pyritic sulfur content in coal

    Energy Technology Data Exchange (ETDEWEB)

    Czerw, B; Sikora, T

    1986-10-01

    This paper discusses investigations into resonance absorption of gamma radiation. Standard equipment for measuring the Moessbauer effect in black coal consisting of a measuring head, the SM-4T spectrometer, a multichannel analyzer, the Standard electronic unit and a printer is evaluated. The MSP measuring system developed jointly by the EMAG Mine Automation Company and the Nuclear Research Institute in Swierk is described. The MSP equipment is used for measuring content of pyritic sulfur in coal. Its accuracy is satisfactory. Results of measuring pyritic and total sulfur content by means of quantitative chemical analysis and by the MSP resonance absorption method (Moessbauer effect) are compared. The mean standard deviation for pyritic sulfur is 0.14% and for total sulfur content 0.21%. 11 refs.

  1. Development of strippable gel for surface decontamination applications

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.

    2015-07-01

    Strippable gels are an attractive option for decontamination of surfaces particularly when materials are to be reused after decontamination. The process in general results in good decontamination performance with minimal secondary waste generation. This paper reports on development of strippable gel formulation using polyvinyl alcohol as the gel former. Peeling behavior of the gel film improved when glycerol was used as plasticizer. Incorporation of decontaminating agents is essential for the gel to be effective, so a number of decontaminating agents were screened based on their miscibility with the gel, smooth peeling, and good decontamination performance. Based on this study, a strippable gel, ‘INDIGEL’ was formulated as a potential candidate for surface decontamination applications. Extensive trials on evaluation of decontamination performance of Indigel were done on simulated surfaces like stainless steel tray, stainless steel fume hood, PVC floor, granite and ceramic table tops. Results show that Indigel is highly effective for decontamination of surfaces contaminated with all types of radionuclides. Simplicity of its use coupled with good decontamination ability will find application in nuclear and other chemical industries. (author)

  2. LCA of strippable coatings and of steam vacuum technology used for nuclear plants decontamination

    International Nuclear Information System (INIS)

    Guidi, Giambattista; Cumo, Fabrizio; Santoli, Livio de

    2010-01-01

    The application of strippable coatings is an innovative technology for decontamination of nuclear plants and for any decontamination project aiming at removing surface contamination. An adhesive plastic coating is applied on the contaminated surface. The strippable coating is allowed to cure for up to 24 h, after which it can be easily peeled. The coating traps the contaminants in the polymer matrix. Strippable coatings are non-toxic and do not contain volatile compounds or heavy metals. Since the coating constitutes a solid waste, disposal is easier than treating contaminated liquid wastes, produced by the baseline technology: steam vacuum cleaning, based upon superheated pressurized water in order to remove contaminants from floors and walls. A life cycle assessment (LCA) has been carried out with the purpose of comparing the strippable coating with the steam vacuum technology. The functional unit of the study is represented by a surface of 1 m 2 to be decontaminated. The results of LCA achieved using Sima Pro 5.0 registered software confirm the good environmental performances of strippable coatings. Taking into account both LCA and environmental costs for liquid wastes, the advantages of strippable coatings will be more and more evident. (orig.)

  3. Coal sulfur-premium models for SO2 allowance valuation

    International Nuclear Information System (INIS)

    Henry, J.B. II; Radulski, D.R.; Ellingson, E.G.; Engels, J.P.

    1995-01-01

    Clean Air Capital Markets, an investment bank structuring SO 2 Allowance transactions, has designed two allowance value models. The first forecasts an equilibrium allowance value based on coal supply and demand. The second estimates the sulfur premium of all reported coal deliveries to utilities. Both models demonstrate that the fundamental allowance value is approximately double current spot market prices for small volumes of off-system allowances

  4. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  5. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  6. Environmental Policy Induced Input Substitution? The Case of Coking and Steam Coal

    OpenAIRE

    Ian Lange

    2007-01-01

    The Clean Air Act of 1990 initiated a tradable permit program for emissions of sulfur dioxide from coal-fired power plants. The effect of this enlightened policy on the coal industry was a large increase in consumption of low-sulfur bituminous and subbituminous coals. Low-sulfur bituminous coal is most attractive to coal-fired power plants as they have higher heat content and require less alteration to the boiler to burn as effectively the coal previously in use. However, low-sulfur bituminou...

  7. Surface decontamination studies using polyvinyl acetate based strippable polymer

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.

    2004-01-01

    Polyvinyl acetate based strippable polymer has been developed for surface decontamination. Stainless steel, mild steel, polyvinyl chloride and rubber have been selected as candidate materials for the radioactive decontamination studies. The ease of strippability and homogeneity of the polymer coating has been studied using infrared spectrophotometer. Decontamination of used radioactive respirator has been carried out and the peels obtained have been subjected to leaching and incineration studies. The infrared spectrophotometric studies also have been conducted to study the interaction between polyvinyl acetate and ions, like cesium, strontium and cobalt. (author)

  8. 13C-NMR Study on Structure Evolution Characteristics of High-Organic-Sulfur Coals from Typical Chinese Areas

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2018-02-01

    Full Text Available The structure evolution characteristics of high-organic-sulfur (HOS coals with a wide range of ranks from typical Chinese areas were investigated using 13C-CP/MAS NMR. The results indicate that the structure parameters that are relevant to coal rank include CH3 carbon (fal*, quaternary carbon, CH/CH2 carbon + quaternary carbon (falH, aliphatic carbon (falC, protonated aromatic carbon (faH, protonated aromatic carbon + aromatic bridgehead carbon (faH+B, aromaticity (faCP, and aromatic carbon (farC. The coal structure changed dramatically in the first two coalification jumps, especially the first one. A large number of aromatic structures condensed, and aliphatic structures rapidly developed at the initial stage of bituminous coal accompanied by remarkable decarboxylation. Compared to ordinary coals, the structure evolution characteristics of HOS coals manifest in three ways: First, the aromatic CH3 carbon, alkylated aromatic carbon (faS, aromatic bridgehead carbon (faB, and phenolic ether (faP are barely relevant to rank, and abundant organic sulfur has an impact on the normal evolution process of coal. Second, the average aromatic cluster sizes of some super-high-organic-sulfur (SHOS coals are not large, and the extensive development of cross bonds and/or bridged bonds form closer connections among the aromatic fringes. Moreover, sulfur-containing functional groups are probably significant components in these linkages. Third, a considerable portion of “oxygen-containing functional groups” in SHOS coals determined by 13C-NMR are actually sulfur-containing groups, which results in the anomaly that the oxygen-containing structures increase with coal rank.

  9. Synfuels from low-rank coals at the Great Plains Gasification Plant

    International Nuclear Information System (INIS)

    Pollock, D.

    1992-01-01

    This presentation focuses on the use of low rank coals to form synfuels. A worldwide abundance of low rank coals exists. Large deposits in the United States are located in Texas and North Dakota. Low rank coal deposits are also found in Europe, India and Australia. Because of the high moisture content of lignite ranging from 30% to 60% or higher, it is usually utilized in mine mouth applications. Lignite is generally very reactive and contains varying amounts of ash and sulfur. Typical uses for lignite are listed. A commercial application using lignite as feedstock to a synfuels plant, Dakota Gasification Company's Great Plains Gasification Plant, is discussed

  10. The application of an isotopic ratio technique to a study of the atmospheric oxidation of sulfur dioxide in the plume from a coal fired power plant

    International Nuclear Information System (INIS)

    Newman, L.; Forrest, J.; Manowitz, B.

    1975-01-01

    The extent of oxidation of sulfur dioxide to sulfate in the plume of a coal fired plant has been studied by using sampling with a single engine aircraft. A technique employing isotopic ratio measurements was utilized in conjunction with simultaneous concentration measurements of sulfur dioxide and sulfate. The use of sulfur hexafluroide as a conservative tracer was explored. The heterogeneous mechanism postulated in an oil fired plume study appears to pertain to the coal fired plume. However, the extent of oxidation seldom exceeded 5% and is limited by the relatively low particulate content of the coal fired plume. Evidence is presented for the apparent dropping out of sulfate from the plume. Implications pertaining to the ambient oxidation of sulfur dioxide are presented. (author)

  11. Energy Policy Act transportation rate study: Interim report on coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  12. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR; F

    International Nuclear Information System (INIS)

    K.C. Kwon

    2002-01-01

    Removal of hydrogen sulfide (H(sub 2)S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that employ coal and natural gas and produce electric power and clean transportation fuels. These Vision 21 plants will require highly clean coal gas with H(sub 2)S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at Research Triangle Institute (RTI) in which the H(sub 2)S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H(sub 2)S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objective of this research is to support the near- and long-term DOE efforts to commercialize this direct oxidation technology. Specifically, we aim to: Measure the kinetics of direct oxidation of H(sub 2)S to elemental sulfur over selective catalysts in the presence of major

  13. The effect of coal sulfur on the behavior of alkali metals during co-firing biomass and coal

    Energy Technology Data Exchange (ETDEWEB)

    Tianhua Yang; Xingping Kai; Yang Sun; Yeguang He; Rundong Li [Shenyang Aerospace University, Liaoning (China). Liaoning Key Laboratory of Clean Energy and Institute of Clean Energy and Environmental Engineering

    2011-07-15

    Biomass contains high amounts of volatile alkali metals and chlorine, which can cause deposition, corrosion and agglomeration during combustion. Meanwhile coal contains a certain amount of sulfur that produces serious environmental pollution following combustion. To investigate the effects of sulfur on the migration of alkali metals during biomass and coal co-combustion, thermodynamic equilibrium calculations were applied and experiments were performed in a laboratory scale reactor combining with a scanning electron microscope (SEM), X-ray powder diffraction (XRD) and other analytical approaches. The results indicate that inorganic sulfur FeS{sub 2} addition significantly enhanced the formation of potassium sulfate when the S/K molar ratio was less than 2. Meanwhile increasing FeS{sub 2} dosage reduced the formation of KCl(g) and KOH(g) and increased the release of HCl(g). In addition potassium sulfate can react with silica and aluminum to form potassium aluminosilicates and release HCl at the S/K molar ratio above 4. 18 refs., 9 figs., 1 tab.

  14. Application and Removal of Strippable Coatings via Remote Platform - 13133

    International Nuclear Information System (INIS)

    Shoffner, P.; Lagos, L.; Maggio, S.

    2013-01-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations. To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to

  15. Sulfur isotope in nature. Determination of sulfur isotope ratios in coal and petroleum by mass spectrometry

    International Nuclear Information System (INIS)

    Derda, M.

    1999-01-01

    Elementary sulfur or in chemical compounds is one of the elements widespread in the earth's crust and biosphere. Its participation in earth's crust amounts to 0.26 % by weight. Measurement of isotope composition of natural samples can deliver many information about origin, creation and transformation ranges of rocks and minerals. Sulfur isotope ratio contained in minerals is variable and for this reason investigation of isotope sulfur composition can deliver useful information about the geochemistry of each component. Therefore in the investigated sample it is necessary to determine not only the content of sulfur but also the isotope composition of each component. Differentiation of contents of sulfur-34 in natural sulfur compounds can reach up to 110 per mile. So large divergences can be explained by a kinetic effect or by bacterial reduction of sulphates. In this report a wide review of the results of investigations of isotope sulfur compositions in coal and petroleum are presented as well as the methods for the preparation of samples for mass spectrometry analysis are proposed. (author)

  16. Sulfur content measurement in coal by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Thinova, L.

    2001-01-01

    X-ray fluorescence, using backscattering, was employed in the determination of sulfur content and ash content measurement in coal. The results of the methods are given to illustrate the differences between the chemical analysis and X-ray fluorescence method.

  17. Rosebud syncoal partnership SynCoal{sup {reg_sign}} demonstration technology development update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Company, Billings, MT (United States); Heintz, S.J. [Department of Energy, Pittsburgh, PA (United States)

    1995-12-01

    Rosebud SynCoal{reg_sign} Partnership`s Advanced Coal Conversion Process (ACCP) is an advanced thermal coal upgrading process coupled with physical cleaning techniques to upgrade high moisture, low-rank coals to produce a high-quality, low-sulfur fuel. The coal is processed through two vibrating fluidized bed reactors where oxygen functional groups are destroyed removing chemically bound water, carboxyl and carbonyl groups, and volatile sulfur compounds. After thermal upgrading, the SynCoal{reg_sign} is cleaned using a deep-bed stratifier process to effectively separate the pyrite rich ash. The SynCoal{reg_sign} process enhances low-rank western coals with moisture contents ranging from 2555%, sulfur contents between 0.5 and 1.5 %, and heating values between 5,500 and 9,000 Btu/lb. The upgraded stable coal product has moisture contents as low as 1 %, sulfur contents as low as 0.3%, and heating values up to 12,000 Btu/lb.

  18. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    Science.gov (United States)

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  19. Neutron-capture gamma-ray analysis of coal for sulfur, iron, silicon and moisture

    International Nuclear Information System (INIS)

    Fay, D.A.

    1979-05-01

    Samples of coal weighing approximately 200 grams placed in a collimated beam of neutrons from the thermal column of the Ames Laboratory Research Reactor produced capture gamma-rays which could be used for the simultaneous determination of sulfur and iron. Spectra from NaI(Tl) and Ge(Li) detectors were used and interferences were located by examining spectra of the major elemental components of coal. In determining sulfur, iron is a potential source of interference when gamma-ray spectra are collected with a NaI(Tl) detector. Corrections for iron interference were made by use of a higher energy iron peak. The possibility of determining silicon in coal was investigated but this element determination was unsuccessful since capture gamma-ray spectrometry lacked the necessary sensitivity for silicon. A linear relation was found between the area of the hydrogen capture peak at 2.23 MeV and the amount of water added to coal

  20. Quantitative analysis of sulfur forms of coal and the pyrolysis behavior of sulfur compounds; Sekitanchu no io kagobutsu no keitaibetsu gan`yuryo no teiryo to sono netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Mae, K.; Miura, K.; Shimada, M. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1996-10-28

    As part of the studies on coal utilization basics, considerations were given on quantification of sulfur forms of coal and the pyrolysis behavior of sulfur compounds. With the temperature raising oxidation method, a thermo-balance was connected directly to a mass analyzer, and the coal temperature was raised at a rate of 5{degree}C per minute and gasified. Peak division was performed on SO2 and COS production to derive sulfur forms of coal. Using the slow-speed pyrolysis method, production rates of H2S, COS, SO2 and mercaptans were measured at a temperature raising rate of 20{degree}C per minute. Sulfur content in char was also measured. With the quick pyrolysis method, a Curie point pyrolyzer was connected directly to a gas chromatograph, by which secondary reaction is suppressed, and initial pyrolytic behavior can be tracked. All kinds of coals produce a considerable amount of SO2 in the slow-speed pyrolysis, but very little in the quick pyrolysis. Instead, H2S and mercaptans are produced. Sulfur compound producing mechanisms vary depending on the temperature raising rates. By using a parallel primary reaction model, analysis was made on reactions of H2S production based on different activation energies, such as those generated from pyrite decomposition and organic sulfur decomposition. The analytic result agreed also with that from the temperature raising oxidation method. 4 refs., 6 figs., 1 tab.

  1. Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases

    Science.gov (United States)

    Hsi, H.-C.; Chen, S.; Rostam-Abadi, M.; Rood, M.J.; Richardson, C.F.; Carey, T.R.; Chang, R.

    1998-01-01

    Coal-derived activated carbons (CDACs) were tested for their suitability in removing trace amounts of vapor-phase mercury from simulated flue gases generated by coal combustion. CDACs were prepared in bench-scale and pilot-scale fluidized-bed reactors with a three-step process, including coal preoxidation, carbonization, and then steam activation. CDACs from high-organicsulfur Illinois coals had a greater equilibrium Hg0 adsorption capacity than activated carbons prepared from a low-organic-sulfur Illinois coal. When a low-organic-sulfur CDAC was impregnated with elemental sulfur at 600 ??C, its equilibrium Hg0 adsorption capacity was comparable to the adsorption capacity of the activated carbon prepared from the high-organicsulfur coal. X-ray diffraction and sulfur K-edge X-ray absorption near-edge structure examinations showed that the sulfur in the CDACs was mainly in organic forms. These results suggested that a portion of the inherent organic sulfur in the starting coal, which remained in the CDACs, played an important role in adsorption of Hg0. Besides organic sulfur, the BET surface area and micropore area of the CDACs also influenced Hg0 adsorption capacity. The HgCl2 adsorption capacity was not as dependent on the surface area and concentration of sulfur in the CDACs as was adsorption of Hg0. The properties and mercury adsorption capacities of the CDACs were compared with those obtained for commercial Darco FGD carbon.

  2. Investigation of sulfur-polycyclic aromatic hydrocarbon in coal derived tars of pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    1999-07-01

    A study was undertaken to characterize sulphur forms in coal derived tars from pyrolysis and hydropyrolysis of bituminous coal and lignite. The pyrolysis tars were analyzed for content of polycyclic aromatic sulfur hydrocarbons (PASH). 5 refs., 3 figs., 3 tabs.

  3. Application and Removal of Strippable Coatings via Remote Platform - 13133

    Energy Technology Data Exchange (ETDEWEB)

    Shoffner, P.; Lagos, L. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Maggio, S. [International Climbing Machine, 630 Elmira Road, Ithaca, NY 14850 (United States)

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations. To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next

  4. Results of Study of Sulfur Oxide Reduction During Combustion of Coal-Water Slurry Fuel Through use of Sulfur Capturing Agents

    Directory of Open Access Journals (Sweden)

    Murko Vasiliy I.

    2016-01-01

    Full Text Available It is shown that an effective way of burning high sulfur coal is to burn coal-water slurry fuel (CWF prepared on its basis containing a sulfur capture agent (SCA entered in the slurry at the stage of preparation. The technique of thermodynamic analysis of chemical reactions during CWF burning has been developed including burning in the presence of SCA. Using the developed calculation program, the optimal temperature conditions have been determined as required for the effective reduction of sulfur oxides in flue gases when using different types of SCA. According to the results of calculating the composition of CWF combustion products when entering various substances in the burner space as SCA it has been determined that magnesite, calcite, and dolomite are the most effective natural minerals. The analysis of calculated and experimental data proves the efficiency of SCA addition as well as validity of the obtained results.

  5. Washability and Distribution Behaviors of Trace Elements of a High-Sulfur Coal, SW Guizhou, China

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    2018-02-01

    Full Text Available The float-sink test is a commonly used technology for the study of coal washability, which determines optimal separation density for coal washing based on the desired sulfur and ash yield of the cleaned coal. In this study, the float-sink test is adopted for a high-sulfur Late Permian coal from Hongfa coalmine (No.26, southwestern Guizhou, China, to investigate its washability, and to analyze the organic affinities and distribution behaviors of some toxic and valuable trace elements. Results show that the coal is difficult to separate in terms of desulfurization. A cleaned coal could theoretically be obtained with a yield of 75.50%, sulfur 2.50%, and ash yield 11.33% when the separation density is 1.57 g/cm3. Trace elements’ distribution behaviors during the gravity separation were evaluated by correlation analysis and calculation. It was found that Cs, Ga, Ta, Th, Rb, Sb, Nb, Hf, Ba, Pb, In, Cu, and Zr are of significant inorganic affinity; while Sn, Co, Re, U, Mo, V, Cr, Ni, and Be are of relatively strong organic affinity. LREE (Light rare earth elements, however, seem to have weaker organic affinity than HREE (Heavy rare earth elements, which can probably be attributed to lanthanide contraction. When the separation density is 1.60 g/cm3, a large proportion of Sn, Be, Cr, U, V, Mo, Ni, Cd, Pb, and Cu migrate to the cleaned coal, but most of Mn, Sb and Th stay in the gangue. Coal preparation provides alternativity for either toxic elements removal or valuable elements preconcentration in addition to desulfurization and deashing. The enrichment of trace elements in the cleaned coal depends on the predetermined separation density which will influence the yields and ash yields of the cleaned coal.

  6. Effect of sulfur or hydrogen sulfide on initial stage of coal liquefaction in tetralin; Sekitan ekika shoki katei ni okeru io to ryuka suiso no hatasu yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, M. [Government Industrial Research Institute, Kyushu, Saga (Japan)

    1996-10-28

    It is well known that the solubilization of coal can be accelerated by adding sulfur or hydrogen sulfide during direct liquefaction of difficult coals. From the studies of authors on the coal liquefaction under the conditions at rather low temperatures between 300 and 400{degree}C, liquefaction products with high quality can be obtained by suppressing the aromatization of naphthene rings, but it was a problem that the reaction rate is slow. For improving this point, results obtained by changing solvents have been reported. In this study, to accelerate the liquefaction reaction, Illinois No.6 coal was liquefied in tetralin at temperature range from 300 to 400{degree}C by adding a given amount of sulfur or hydrogen sulfide at the initial stage of liquefaction. The addition of sulfur or hydrogen sulfide provided an acceleration effect of liquefaction reaction at temperature range between 300 and 400{degree}C. The addition of sulfur or hydrogen sulfide at 400{degree}C increased the oil products. At 370 and 400{degree}C, the liquid yield by adding sulfur was slightly higher than that by adding hydrogen sulfide, unexpectedly. The effects of sulfur and hydrogen sulfide were reversed when increasing the hydrogen pressure. 5 figs., 1 tab.

  7. Desulfurization of organic sulfur from a subbituminous coal by electron-transfer process with K{sub 4}(Fe(CN){sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Dipu Borah [Pragjyotika J College, Titabar (India). Department of Chemistry

    2006-02-01

    The desulfurization reaction involving direct electron transfer from potassium ferrocyanide, K{sub 4}(Fe(CN){sub 6}), successfully removed organic sulfur from a subbituminous coal. The temperature variation of desulfurization revealed that increase of temperature enhanced the level of sulfur removal. Moreover, the desulfurization reaction was found to be dependent on the concentration of K{sub 4}(Fe(CN){sub 6}). Gradual increase in the concentration of K{sub 4}(Fe(CN){sub 6}) raised the magnitude of desulfurization, but at higher concentration the variation was not significant. The removal of organic sulfur from unoxidized coal slightly increased with reduced particle size. Desulfurization from oxidized coals (prepared by aerial oxidation) revealed a higher level of sulfur removal in comparison to unoxidized coal. Highest desulfurization of 36.4 wt % was obtained at 90{sup o}C and 0.1 M concentration of K{sub 4}(Fe(CN){sub 6}) in the 100-mesh size oxidized coal prepared at 200{sup o}C. Model sulfur compound study revealed that aliphatic types of sulfur compounds are primarily responsible for desulfurization. Because of higher stability, thiophene and condensed thiophene-type of compounds perhaps remained unaffected by the electron-transfer agent. Infrared study revealed the formation of oxidized sulfur compounds (sulfoxide, sulfone, sulfonic acid, etc.) in the oxidized coals. The desulfurization reaction in different systems is well-represented by the pseudo-first-order kinetic model. Application of the transition state theory indicated that the desulfurization reaction proceeds with the absorption of heat (endothermic reaction) and is nonspontaneous in nature. 53 refs., 6 figs., 3 tabs.

  8. Non-matrix corrected organic sulfur determination by energy dispersive X-ray spectroscopy for western Kentucky coals and residues

    International Nuclear Information System (INIS)

    Clark, C.P.; Freeman, G.B.; Hower, J.C.

    1984-01-01

    A method for non-matrix corrected organic sulfur analysis by energy dispersive X-ray spectroscopy has been developed using petroleum coke standards. Typically, electron beam microanalysis is a rapid, nondestructive analytical technique to quantitatively measure organic sulfur in coal. The results show good correlation to ASTM values for numerous well characterized coals with a wide range in total and pyritic sulfur content. This direct analysis is capable of reducing error commonly associated with the present ASTM method which relies on an indirect measure of organic sulfur by difference. The precision of the organic sulfur values determined in the present study is comparable to that obtained by ZAF matrix corrected microanalysis. The energy dispersive microanalysis is capable of measuring micro as well as bulk organic sulfur levels

  9. The large scale use of strippable coatings in preventative, tie-down and decontamination applications

    International Nuclear Information System (INIS)

    Sanders, M.J.; Pengelly, M.G.A.

    1985-05-01

    The use of strippable coatings both to remove and prevent the radioactive contamination of equipment is discussed. Details of application by brush, roller, conventional (air) and airless spray are given. The use of strippable coatings to prevent the components of a re-useable temporary containment system from becoming contaminated is described and results of simple tests in which the coatings were used to remove plutonium dioxide contamination from a number of different surfaces in a Pressurised Suit Area are given. It is concluded that strippable coatings are particularly useful in contamination prevention and tie-down roles but test results indicate that they do not possess overwhelming advantages when used as a decontamination technique. The products used in the work reported here are water based. (author)

  10. Decontamination with pasty pickling agents forming a strippable foil

    International Nuclear Information System (INIS)

    Weichselgartner, H.

    1991-01-01

    This paper describes the development of an in-situ decontamination procedure by applying onto the contaminated surface (in an one-step or multi-step process) pasty, chemically aggressive agents causing dilution and adsorption of the contaminant and then hardening to form a strippable foil. The use of such a foil will result in following advantages, with respect to usual techniques: - sensibly shorter operation duration resulting in lower personnel doses; - reduction of the arising secondary waste volume because there is no need for washing; the volume of the spent strippable foil is much smaller than currently used water volumes; - optimal conditioning of the radioactive waste due to its fixation in a solid (foil); - an accidental contamination in a controlled area can easily be fixed and covered avoiding its propagation

  11. Development of low rank coals upgrading and their CWM producing technology; Teihin`itan kaishitsu ni yoru CWM seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T [Center for Coal Utilization, Japan, Tokyo (Japan); Tsurui, M; Suto, Y; Asakura, M [JGC Corp., Tokyo (Japan); Ogawa, J; Yui, M; Takano, S [Japan COM Co. Ltd., Japan, Tokyo (Japan)

    1996-09-01

    A CWM manufacturing technology was developed by means of upgrading low rank coals. Even though some low rank coals have such advantages as low ash, low sulfur and high volatile matter content, many of them are merely used on a small scale in areas near the mine-mouths because of high moisture content, low calorification and high ignitability. Therefore, discussions were given on a coal fuel manufacturing technology by which coal will be irreversibly dehydrated with as much volatile matters as possible remaining in the coal, and the coal is made high-concentration CWM, thus the coal can be safely transported and stored. The technology uses a method to treat coal with hot water under high pressure and dry it with hot water. The method performs not only removal of water, but also irreversible dehydration without losing volatile matters by decomposing hydrophilic groups on surface and blocking micro pores with volatile matters in the coal (wax and tar). The upgrading effect was verified by processing coals in a pilot plant, which derived greater calorification and higher concentration CWM than with the conventional processes. A CWM combustion test proved lower NOx, lower SOx and higher combustion rate than for bituminous coal. The ash content was also found lower. This process suits a Texaco-type gasification furnace. For a production scale of three million tons a year, the production cost is lower by 2 yen per 10 {sup 3} kcal than for heavy oil with the same sulfur content. 11 figs., 15 tabs.

  12. Coal marketability: Effects of deregulation and regulation

    International Nuclear Information System (INIS)

    Attanasi, E.

    2000-01-01

    Electrical utility deregulation will force power plants to compete for sales because they will not longer have captive markets. Market uncertainty and uncertainty about future environmental regulations have encouraged power plants to shift to low sulfur coal and/or to use emissions allowances to comply with Phase 2 of the 1990 Clean Air Act Amendments. Mines in Northern and Central Appalachia and the Illinois Basin shipped 240 million tons of non-compliance coal to power plants without scrubbers in 1997. Under Phase 2, this coal will be replaced by low sulfur coal and/or be used with emission permits. It is possible that Powder River Basin coal production will have to increase by over 200 million tons/year to meet new demand. The prices of emissions permits will impose penalties on non-compliance coal that will probably drive out marginal coal producers. For example, if the cost of an emission permit is $200, coal from the Pittsburgh bed could bear a sulfur penalty of $6.55 per ton and similarly, coal from the Herrinbed could bear a penalty of $8.64 per ton

  13. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  14. Emerging trends in regional coal production

    International Nuclear Information System (INIS)

    Watson, W.D.

    1994-01-01

    At an average annual growth rate of 1.9%, the total national demand for coal will increase from 850 million short tons in 1985 to 2 billion short tons annually by the year 2030. A market simulation model (described in this paper) determines the regional pattern of coal production needed to meet these demands. Because compliance or low-sulfur coal resources are a low-cost option for meeting environmental regulations, they could be mined out substantially in the medium term. In the next 15 to 25 years, most of the Eastern compliance coal up to a mining cost of $40 per ton could be mined out and 4 billion short tons of Western compliance coal could be produced. By the year 2030, almost all Eastern low-sulfur coal could be mined out. Most Western compliance coal costing less than $20/ton could be mined out by 2030

  15. Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1989-04-28

    This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

  16. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  17. Coal resources of Indiana

    Science.gov (United States)

    Spencer, Frank Darwyn

    1953-01-01

    The Indiana coal field forms the eastern edge of the eastern interior coal basin, which is near some of the most densely populated and highly productive manufacturing areas of the United States. (See fig. 1. ) For this reason Indiana coal reserves are an important State and National asset. In dollar value the coal mining industry is the largest of Indiana's natural-resource-producing industries. The total value of coil production for the year 1950 was more than 100 million dollars, or more than that of all other natural-resource industries in the State combined. As estimated herein, the original coal reserves of Indiana total 37,293 million tons, of which 27,320 million tons is contained in beds more than 42 inches thick; 7,632 million tons in beds 28 to 49. inches thick; and 2,341 million tons in beds 14 to 28 inches thick. The remaining reserves as of January 1951, total 35,806 million tons, of which 18,779 million tons is believed to be recoverable. The distribution of the reserves in these several categories is summarized by counties in table 1. Of the total original reserves of 37,293 million tons, 6,355 million tons can be classified as measured; 8,657 million tons as indicated; and 22,281 million tons as inferred. Strippable reserves constitute 3,524 million tons, or 9.5 percent of the total original reserves. The distribution of the strippable and nonstrippable original reserves is summarized in tables 2 and 3 by counties and by several categories, according to the thickness of the beds and the relative abundance and reliability of the information available for preparing the estimates. The distribution of the estimated 18,779 million tons of recoverable strippable and nonstrippable reserves in Indiana is further summarized by counties in table 4, and the information is presented graphically in figures 2 and 3. The tables i to 4 and figures 2 and 3 include beds in the 14- to 28-inch category, because thin beds have been mined in many places. However, many

  18. Radioactive Decontamination by Strippable Paint

    International Nuclear Information System (INIS)

    Chantaraparprachoom, N.; Mishima, K.

    1998-01-01

    The strippable paint, one of the adhesion method, is to decontaminate solid surface of materials or/and a large area. Two kinds of specimen planchet, SUS 304 stainless steel and polycarbonate plastic, contaminated with radioactive 137 Cs were studied under various conditions. It included surface bottom types, the flat and convex concentric circle type, normal condition at room temperature and overheat condition (∼80 degree celsius). This method used coating paints which contains some elements to have a reaction with radioactive materials selectively. ALARA-Decon clear, Rempack-X200 clear, JD-P5-Mrs.Coat and Pro-Blue-color guard were selected to use as the coating paints. The contaminated surface was coated by the strippable paint under the optimum time, followed by peeling the paint seal. The Rempack-X200 showed the best result, the highest decontamination efficiency which are about 99-100% for all conditions of specimens. The JD-P5 and ALARA-Decon showed good results, which are 98-99% decontamination efficiency for the normal condition set of specimens and about 94-97% for the overheat set of specimens. They can decontaminate polycarbonate specimens better than stainless steel specimens. The Pro-Blue-color guard showed the lowest decontamination efficiency of which 60% for polycarbonate specimens at normal condition and 40%, 30% for stainless steel specimens at normal and overheat conditions respectively. There was no effects of surface bottom types significantly

  19. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  20. Low-grade coals: a review of some prospective upgrading technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hassan Katalambula; Rajender Gupta [University of Alberta, Edmonton, AB (Canada). Department of Chemical and Materials Engineering

    2009-07-15

    There is a growing need of using low-grade coals because of higher quest for power generation. In the present carbon-constrained environment, there is a need of upgrading these coals in terms of moisture, ash, and/or other trace elements. The current paper reviews technologies used mainly categorized as drying for reducing moisture and cleaning the coal for reducing mineral content of coal and related harmful constituents, such as sulfur and mercury. The earliest upgrading of high-moisture lignite involved drying and manufacturing of briquettes. Drying technologies consist of both evaporative and non-evaporative (dewatering) types. The conventional coal cleaning used density separation in water medium. However, with water being a very important resource, conservation of water is pushing toward the development of dry cleaning of coal. There are also highly advanced coal-cleaning technologies that produce ultra-clean coals and produce coals with less than 0.1% of ash. The paper discusses some of the promising upgrading technologies aimed at improving these coals in terms of their moisture, ash, and other pollutant components. It also attempts to present the current status of the technologies in terms of development toward commercialization and highlights on problems encountered. It is obvious that still the upgrading goal has not been realized adequately. It can therefore be concluded that, because reserves for low-grade coals are quite plentiful, it is important to intensify efforts that will make these coals usable in an acceptable manner in terms of energy efficiency and environmental protection. 68 refs., 7 figs.

  1. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  2. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  3. Alkaline hydrothermal de-ashing and desulfurization of low quality coal and its application to hydrogen-rich gas generation

    International Nuclear Information System (INIS)

    Mursito, Anggoro Tri; Hirajima, Tsuyoshi; Sasaki, Keiko

    2011-01-01

    This paper describes experimental research and a fundamental study of alkaline hydrothermal treatment of high-sulfur, high-ash coal from Banten, Java-Indonesia. Experiments were carried out on a laboratory-scale 0.5 L batch reactor. The alkaline hydrothermal treatment gave upgraded clean coal with low sulfur content (about 0.3 wt.%) and low ash content (about 2.1 wt.%). A zero carbon dioxide and pure hydrogen gas were produced at 330 o C by introducing an alkali (sodium hydroxide, NaOH) to the hydrothermal treatment of raw coal. X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques were used to test for the removal or reduction of major inorganic elements in the coal, and changes in carbon-functional groups and their properties were determined by Fourier transform infrared spectroscopy (FTIR) and Carbon-13 of nuclear magnetic resonance ( 13 C NMR) tests on the product of the hydrothermal upgrading and demineralization process.

  4. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  5. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  6. Self-Scrubbing Coal -- an integrated approach to clean air

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K.E. [Custom Coals Corp., Pittsburgh, PA (United States)

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  7. ASSESSMENT OF STRIPPABLE COATINGS FOR DEACTIVATION AND DECOMMISSIONING

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    Strippable coatings are polymer mixtures, such as water-based organic polymers, that are applied to a surface by paintbrush, roller, or spray applicator. As the polymer reacts, it attracts, absorbs, and chemically binds the contaminants; then, during the curing process, it mechanically locks the contaminants into the polymer matrix. Incorporating fiber reinforcement (such as a cotton scrim) into the coating may enhance the strength of these coatings. Once the coating dries, it can be stripped manually from the surface, In the case of auto-release coatings, the mixture cracks, flakes, and is collected by vacuuming. The surface properties of these coatings may be modified by applying a thin top coat (e.g., polyvinyl alcohol), which may provide a smoother, less permeable surface that would become less severely contaminated. In such a duplex, the thicker basis layer provides the required mechanical properties (e.g., strength and abrasion resistance), while the top layer provides protection from contamination. Once the strippable coating is removed, the loose surface contamination is removed with the coating, producing a dry, hard, non-airborne waste product. The use of strippable coatings during D and D operations has proved a viable option. These coatings can be used in the following three functions: As a protective coating, when applied to an uncontaminated surface in an area where contamination is present, so that on its removal the surface remains uncontaminated; As a decontamination agent, when applied to a contaminated surface, so that on its removal a significant decontamination of loose particulate activity is achieved; and As a fixative or tie-down coating, when applied to a contaminated surface, so that any loose contamination is tied down, thus preventing the spread of contamination during subsequent handling

  8. Analysis of material flow in a utillzation technology of low grade manganese ore and sulphur coal complementary

    Science.gov (United States)

    Wang, Bo-Zhi; Deng, Biao; Su, Shi-Jun; Ding, Sang-Lan; Sun, Wei-Yi

    2018-03-01

    Electrolytic manganese is conventionally produced through low-grade manganese ore leaching in SO2, with the combustion of high sulfur coal. Subsequently the coal ash and manganese slag, produced by the combustion of high sulfur coal and preparation of electrolytic manganese, can be used as raw ingredients for the preparation of sulphoaluminate cement. In order to realize the `coal-electricity-sulfur-manganese-building material' system of complementary resource utilization, the conditions of material inflow and outflow in each process were determined using material flow analysis. The material flow models in each unit and process can be obtained by analyzed of material flow for new technology, and the input-output model could be obtained. Through the model, it is possible to obtain the quantity of all the input and output material in the condition of limiting the quantity of a substance. Taking one ton electrolytic manganese as a basis, the quantity of other input material and cements can be determined with the input-output model. The whole system had thusly achieved a cleaner production level. Therefore, the input-output model can be used for guidance in practical production.

  9. Fast neutron activation analysis of Kalewa (Myanmar) coal

    Energy Technology Data Exchange (ETDEWEB)

    Myint, U; Naing, W [Yangon Univ. (Myanmar). Dept. of Chemistry

    1994-06-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab.

  10. Fast neutron activation analysis of Kalewa (Myanmar) coal

    International Nuclear Information System (INIS)

    Myint, U.; Naing, W.

    1994-01-01

    Aluminium, silicon, copper, iron, magnesium and sulfur in Kalewa (Myanmar) coal were determined by fast neutron activation analysis. For activation a KAMAN A-710 Neutron Generator was used. Kalewa coal was found to be low in sulfur and relatively rich in iron. (author) 2 refs.; 1 fig.; 1 tab

  11. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  12. 40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).

    Science.gov (United States)

    2010-07-01

    ....0 pounds of sulfur dioxide per million BTU actual heat input for the coal-fired boiler and 0.4... BTU actual heat input for coal-fired boiler C exiting through stack 5. (3) 2.24 pounds of sulfur dioxide per million BTU acutal heat input for coal-fired boiler D exiting through stack 6. (E) In lieu of...

  13. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. 1. Preliminary experiments in controlled shaken flasks

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/l to inoculated 20 or 30% coal refuse slurries. Here 25 mg/l concentrations of SLS, ABS and ABS plus BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited. 22 references.

  14. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion, Inst. of Coal Chemistry

    2000-10-01

    The thermal behaviour of pure pyrite was studied under nitrogen and hydrogen atmospheres in a pressurized thermal balance. The transfer of pyrite in coal during pyrolysis and hydropyrolysis was investigated in a fixed-bed reactor. The results suggest that the indigenous hydro-carbon with hydrogen donor ability in coal can promote the reduction of pyrite in pyrolysis. At low temperatures, organic sulfur removal is almost the same in pyrolysis and hydropyrolysis of two coals. It is likely that indigenous hydrogen in coal is the dominant factor in organic sulfur elimination in the low-temperature stage. An increase of organic sulfur in pyrolysis of Hongmiao coal indicates that the lack of the indigenous hydrogen may be the key factor determining the transformation of pyritic sulfur into organic sulfur. Oxygen affects the conversion of pyrite into organic sulfur through the competitive consumption of hydrogen. 12 refs., 5 figs., 1 tab.

  15. Influence of coal properties on mercury uptake from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  16. Present state in coal preparation. Stanje u pripremi uglja

    Energy Technology Data Exchange (ETDEWEB)

    Jevremovic, C. (Rudarsko-Geoloski Fakultet, Tuzla (Yugoslavia))

    1990-01-01

    Describes the low technological state of Yugoslav coal enterprises,in particular of those that exploit low grade lignite and brown coal with high ash and sulfur content. Unadjusted coal prices (almost the same price level for low and high energy coal) and absence of stringent laws on environmental pollution are regarded as main reasons for the low technological level of coal preparation and beneficiation plants. Modern preparation equipment for coal classification, coal washing, coal drying and briquetting is pointed out. Advanced coal carbonization and gasification should have a wider application in Yugoslavia for reducing environmental pollution and producing clean fuel.

  17. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  18. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  19. Study on the technology of decreasing ash and sulfur in coking coal concentrate by deep-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, A.; Li, P.; Chen, S. [Hefei Design and Research Institute of Coal Industry, Hefei (China)

    2007-06-15

    Middling fractions of coking coal, a rare resource in China, were analysed for their embedded minerals both in kind and distribution. Observation with a microscope shows that most are clay minerals of very small particle size. The embedded minerals can be liberated from middling by grinding. Clean coal can be obtained from ground middling by the flocculation-flotation process. The yield of clean coal could thus be increased and its ash and sulfur content decreased. 3 refs., 2 figs., 4 tabs.

  20. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. II. Inhibition in run of mine refuse under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, P.R.

    1987-01-01

    The combination of sodium lauryl sulfate and benzoic acid effectively inhibits iron- and sulfur-oxidizing bacteria in coal refuse and prevents the conversion of iron pyrite to sulfate, ferric iron, and sulfuric acid, thereby significantly reducing the formation of acidic drainage from coal refuse. The inhibitors were effective in a concentration of 1.1. mg/kg refuse, and data indicate that the SLS was in excess of the concentration required. The treatment was compatible with the use of lime for neutralization of acid present prior to inhibition of its formation.

  1. Research of coal flash hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Zhu, H.; Wu, Y.; Tang, L.; Cheng, L.; Xu, Z. [East China University of Science and Technology, Shanghai (China)

    2001-02-01

    Using x-ray photoelectron spectroscopy (XPS) analyses the organic sufur of seven different Chinese coals and their semi-cokes from flash hydropyrolysis were studied. The results showed that the organic sulfur in coal was alkyal sulfur and thiophene with the peak of XPS located in 163.1-163.5 eV and 164.1-164.5 eV. The relative thiophene content in coal increased with the coal rank. The type of organic sulfur in semi-coke in flash hydropyrolysis was generally thiophene species; its XPS peak also located in 164.1-164.5 eV, and was in accord with its corresponding coal. Total alkyl sulfur and some thiophene sulfur were removed during the flash hydropyrolysis process. The alkyl sulfur had very high activity in hydrogenation reaction. Flash hydropyrolysis was an important new clean-coal technique and had notable desulfurization effect. 13 refs., 2 figs., 4 tabs.

  2. Role of coal in the world and Asia

    International Nuclear Information System (INIS)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning

  3. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  4. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.R.; Keohane, N.O. [University of California Berkeley, Berkeley, CA (United States)

    2007-01-01

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  5. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  6. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  7. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  8. Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Morita, K.; Jia, C.Q. [University of Toronto, Toronto, ON (Canada)

    2010-07-01

    Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO{sub 2}) and sulfur trioxide (SO{sub 3}) may interfere in the removal process. Most of the current literature suggests that SO{sub 2} hinders elemental mercury (Hg{sup 0}) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO{sub 2} with oxygen (O{sub 2}) enhances Hg{sup 0} oxidation by promoting Cl2 formation below 100{sup o}C. However, studies in which SO{sub 2} was shown to have a positive correlation with Hg{sup 0} oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO{sub 3} are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO{sub 3} is an inevitable product of SO{sub 2} oxidation by O{sub 2}, a reaction that hinders Hg{sup 0} oxidation, it readily reacts with water vapor, forms sulfuric acid (H{sub 2 }SO{sub 4}) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H{sub 2}SO{sub 4} on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.

  9. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  10. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Kai; Cao, Yan; Pan, Wei-ping

    2013-03-01

    Despite much research on co-combustion of tobacco stem and high-sulfur coal, their blending optimization has not been effectively found. This study investigated the combustion profiles of tobacco stem, high-sulfur bituminous coal and their blends by thermogravimetric analysis. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions were also studied by thermogravimetric and mass spectrometry analyses. The results indicated that combustion of tobacco stem was more complicated than that of high-sulfur bituminous coal, mainly shown as fixed carbon in it was divided into two portions with one early burning and the other delay burning. Ignition and burnout performances, heat release performances, and gaseous pollutant emissions of the blends present variable trends with the increase of tobacco stem content. Taking into account the above three factors, a blending ratio of 0–20% tobacco stem content is conservatively proposed as optimum amount for blending. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  12. Strippable coating used for the TMI-2 reactor building decontamination

    International Nuclear Information System (INIS)

    Adams, J.W.; Dougherty, D.R.; Barletta, R.E.

    1984-01-01

    Strippable coating material used in the TMI-2 reactor building decontamination has been tested for Sr, Cs, and Co leachability, for radiation stability, thermal stability, and for resistance to biodegradation. It was also immersion tested in water, a water solution saturated with toluene and xylene, toluene, xylene, and liquid scintillation counting (LSC) cocktail. Leach testing resulted in all of the Cs and Co activity and most of the Sr activity being released from the coating in just a few days. Immersion resulted in swelling of the coating in all of the liquids tested. Gamma irradiation and heating of the coating did not produce any apparent physical changes in the coating to 1 x 10 8 rad and 100 0 C; however, gas generation of H 2 , CO, CO 2 was observed in both cases. Biodegradation of the coating occurred readily in soils as indicated by monitoring CO 2 produced from microbial respiration. These test results indicate that strippable coating radwaste would have to be stabilized to meet the requirements for Class B waste outlined in 10 CFR Part 61 and the NRC Draft Technical Position on Waste Form

  13. Study on the Inference Factors of Huangling Coking Coal Pyrolysis

    Science.gov (United States)

    Du, Meili; Yang, Zongyi; Fan, Jinwen

    2018-01-01

    In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.

  14. Fabrication of poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer as a self-embrittling strippable coating for radioactive decontamination

    International Nuclear Information System (INIS)

    Liu Renlong; Zhang Huiyan; Li Yintao; Zhou Yuanlin; Zhang Quanping; Zheng Jian; Wang Shanqiang

    2016-01-01

    The poly(methyl methacrylate)-block-poly(methacrylic acid) diblock copolymer with different monomer compositions was synthesized via reversible addition-fragmentation chain transfer polymerization. Meanwhile, a novel self-embrittling strippable coating was prepared using the diblock copolymers, which is proposed to be used as radioactive decontamination agents without manual operation. Furthermore, the decontamination efficiencies of self-embrittling strippable coatings for radioactive contamination on glass, marble, and stainless steel surfaces were studied. (author)

  15. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  16. Question marks of the Czech coal mining industry

    International Nuclear Information System (INIS)

    Dopita, M.; Pesek, J.

    1995-01-01

    An overview of brown and black coal mining in the Czech Republic is presented, and problems of the extent of coal reserves and of the profitability of deep black coal mining are discussed. Costs of coal mining in foreign countries are given. Coal mining in the Czech Republic can be expected to be loss-making unless coal prices are increased. Since coal resources in the Czech Republic are limited, additional nuclear power plants will have to be constructed or else coal for power generation will have to be imported. The environmental aspects of coal mining and burning are discussed. Medium-term and long-term solutions to reduce the environmental burden include thermal power plant desulfurization, application of the fluidized-bed combustion regime to coals with large ash and/or sulfur contents, and introduction of gas in towns and power plants. In the short run, large-scale consumers in towns and coal basins should be obliged to accumulate reserves of low-sulfur coal for later use. (J.B.). 2 tabs., 3 figs., 8 refs

  17. Process for converting coal into liquid fuel and metallurgical coke

    Science.gov (United States)

    Wolfe, Richard A.; Im, Chang J.; Wright, Robert E.

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  18. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    International Nuclear Information System (INIS)

    Federal Energy Technology Center

    1999-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO(sub x)) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of$23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH(sub 3)) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO(sub x) and NH(sub 3) react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  19. Sulfur Tolerant Solid Oxide Fuel Cell for Coal Syngas Application: Experimental Study on Diverse Impurity Effects and Fundamental Modeling of Electrode Kinetics

    Science.gov (United States)

    Gong, Mingyang

    With demand over green energy economy, fuel cells have been developed as a promising energy conversion technology with higher efficiency and less emission. Solid oxide fuel cells (SOFC) can utilize various fuels in addition to hydrogen including coal derived sygas, and thus are favored for future power generation due to dependence on coal in electrical industry. However impurities such as sulfur and phosphorous present in coal syngas in parts per million (p.p.m.) levels can severely poison SOFC anode typically made of Ni/yttria-stabilized-zirconia (Ni-YSZ) and limit SOFC applicability in economically derivable fuels. The focus of the research is to develop strategy for application of high performance SOFC in coal syngas with tolerance against trace impurities such as H2S and PH3. To realize the research goal, the experimental study on sulfur tolerant anode materials and examination of various fuel impurity effects on SOFC anode are combined with electrochemical modeling of SOFC cathode kinetics in order to benefit design of direct-coal-syngas SOFC. Tolerant strategy for SOFC anode against sulfur is studied by using alternative materials which can both mitigate sulfur poisoning and function as active anode components. The Ni-YSZ anode was modified by incorporation of lanthanum doped ceria (LDC) nano-coatings via impregnation. Cell test in coal syngas containing 20 ppm H2S indicated the impregnated LDC coatings inhibited on-set of sulfur poisoning by over 10hrs. Cell analysis via X-ray photon spectroscopy (XPS), X-ray diffraction (XRD) and electrochemistry revealed LDC coatings reacted with H2S via chemisorptions, resulting in less sulfur blocking triple--phase-boundary and minimized performance loss. Meanwhile the effects of PH3 impurity on SOFC anode is examined by using Ni-YSZ anode supported SOFC. Degradation of cell is found to be irreversible due to adsorption of PH3 on TPB and further reaction with Ni to form secondary phases with low melting point. The

  20. Development of upgraded brown coal process

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, N.; Sugita, S.; Deguchi, T.; Shigehisa, T.; Makino, E. [Kobe Steel Ltd., Hyogo (Japan). Coal and Energy Project Department

    2004-07-01

    Half of the world's coal resources are so-called low rank coal (LRC) such as lignite, subbituminous coal. Utilization of such coal is limited due to low heat value and high propensity of spontaneous combustion. Since some of LRCs have advantages as clean coal, i.e. low ash and low sulfur content, LRC can be the excellent feedstock for power generation and metallurgy depending on the upgrading technology. The UBC (upgraded brown coal) process introduced here converts LRC to solid fuel with high heat value and less propensity of self-heating. Various world coals, such as Australian, Indonesian and USA LRC, were tested using the Autoclave and Bench Scale Unit, and the process application to LRC of wide range is proven. The R & D activities of the UBC process are introduced including a demonstration project with a 5 ton/day test plant in progress in Indonesia, expecting near future commercialisation in order to utilize abundant LRC of clean properties. 8 refs., 12 figs., 3 tabs.

  1. Sulfur removal from low-sulfur gasoline and diesel fuel by metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, G.; Haemmerle, M.; Moos, R. [Functional Materials, University of Bayreuth, Bayreuth (Germany); Malkowsky, I.M.; Kiener, C. [BASF SE, Ludwigshafen (Germany); Achmann, S.

    2010-02-15

    Several materials in the class of metal-organic frameworks (MOF) were investigated to determine their sorption characteristics for sulfur compounds from fuels. The materials were tested using different model oils and common fuels such as low-sulfur gasoline or diesel fuel at room temperature and ambient pressure. Thiophene and tetrahydrothiophene (THT) were chosen as model substances. Total-sulfur concentrations in the model oils ranged from 30 mg/kg (S from thiophene) to 9 mg/kg (S from tetrahydrothiophene) as determined by elementary analysis. Initial sulfur contents of 8 mg/kg and 10 mg/kg were identified for low-sulfur gasoline and for diesel fuel, respectively, by analysis of the common liquid fuels. Most of the MOF materials examined were not suitable for use as sulfur adsorbers. However, a high efficiency for sulfur removal from fuels and model oils was noticed for a special copper-containing MOF (copper benzene-1,3,5-tricarboxylate, Cu-BTC-MOF). By use of this material, 78 wt % of the sulfur content was removed from thiophene containing model oils and an even higher decrease of up to 86 wt % was obtained for THT-based model oils. Moreover, the sulfur content of low-sulfur gasoline was reduced to 6.5 mg/kg, which represented a decrease of more than 22 %. The sulfur level in diesel fuel was reduced by an extent of 13 wt %. Time-resolved measurements demonstrated that the sulfur-sorption mainly occurs in the first 60 min after contact with the adsorbent, so that the total time span of the desulfurization process can be limited to 1 h. Therefore, this material seems to be highly suitable for sulfur reduction in commercial fuels in order to meet regulatory requirements and demands for automotive exhaust catalysis-systems or exhaust gas sensors. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  3. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  4. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  5. Strippable core-shell polymer emulsion for decontamination of radioactive surface contamination

    International Nuclear Information System (INIS)

    Hwang, Ho-Sang; Seo, Bum-Kyoung; Lee, Kune-Woo

    2011-01-01

    In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors of the strippable polymeric emulsion were evaluated with the polymer blend contents. (author)

  6. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  7. High-sulfur coal: tonnage and money at risk

    International Nuclear Information System (INIS)

    McMahan, R.L.; Knutson, K.S.

    1991-01-01

    More than 286 million tons of coal exceeds the Phase I standard i.e. 2.5 lb SO 2 per mmBtu, of the US Clean Air Act (1990). 85 mmtpy goes to currently scrubbed or unaffected (i.e. small) units. This leaves 201 mmtpy of high-sulphur coal at risk. 129 mmtpy of this is moving on a spot basis or is shipped under contracts that expire by 1995. This leaves about 72 mmtpy of captive and longterm contracts which many utility fuel buyers assume will be cancelled or renegotiated at a lower price. The legal position remains uncertain. However, the massive cancellation and/or renegotiation of existing contracts will have a tremendous economic impact on the coal industry. The resultant price change will in turn influence decisions to scrub or switch to low sulphur coals. 2 figs., 2 tabs

  8. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  9. Isotopic investigation of ground water resources in the Ojo Alamo sandstone, Nacimiento, and San Jose Formations, San Juan Basin, New Mexico. Technical completion report

    International Nuclear Information System (INIS)

    Phillips, F.M.; Peeters, L.A.; Tansey, M.K.

    1984-06-01

    The San Juan Basin, in northwest New Mexico, has vast reserves of strippable, low-sulfur coal. Development of the resource will require large quantities of water, from an area where water resources are not abundant. Since surface-water supplies are fully allocated, increased future water demands will have to be met through ground-water development. The study concentrates on the Ojo Alamo, Nacimiento, and San Jose Formations, the aquifers directly above the principal coal unit. Carbon-14 and tritium methods were used to date the ground water in these units. Initial radiocarbon activities were calculated using the models of Vogel, Tamers, Pearson, Mook and Fontes. The observation lends support to the hypothesis of isotopically lighter Pleistocene precipitation. Such lighter recharge was most likely due to a colder mean annual temperature and perhaps increased winter precipitation. A similar change is obtained from noble-gas paleothermometry

  10. Mineralogical and geochemical characterization of the Jurassic coal from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Baioumy, H.M. [Central Metallurgical Research and Development Institute, Cairo (Egypt)

    2009-06-15

    The Jurassic coal deposit in the Maghara area, Sinai, Egypt contains at least 11 coal seams of lenticular shape. The thickness of the main coal seams ranges from 130 cm to 2 m and are underlain and overlain by thin black shale beds. Mineralogical analysis indicated that this coal is characterized by low mineral matter with traces of quartz in some samples. However, coal ash is made up of quartz with traces of calcite, anhydrite, and hematite. Analysis of coal rank parameters indicated that the Maghara coal can be classified as medium volatile bituminous coal. The high sulfur contents and the relatively high proportion of pyritic sulfur suggest a possible marine transgression after the deposition of precursor peat. This interpretation is supported by the relatively high B contents. The relatively high Ge in the Maghara coal could be attributed to an infiltration of Ge enriched water from the surrounding siliceous sediments probably during diagenesis. The high Au contents were contributed to an Au-rich provenance of the ash contents of this coal. Rare earth elements geochemistry indicated low concentrations of these elements with slight enrichment of light rare earth elements (LREEs), slight negative Eu anomaly, and relatively flat heavy rare earth elements (HREEs) patterns. The low contents of trace and rare earth elements, particularly those with environmental relevance, compared to the usual concentration ranges in worldwide coal gives an advantage for this coal.

  11. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  12. Comments on Interior’s Surface Mining Regulations.

    Science.gov (United States)

    1981-08-05

    regulations and responses to pro- posed regulati n, (2) identified studies on cost/benefit analy- sis of environme ital regulations and selected ...agricultural production at the national level, in some rural counties essentially the entire area is underlain with strippable coal. obviously, surface mining...1980).) Illinois, which has the most strippable coal reserves underlying prime farmland, has two heavily worked coal seams which are continuous. One

  13. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  14. Development of enhanced sulfur rejection processes

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1996-03-01

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern U.S. coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR) processes. The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The project was initiated on October 1, 1992 and all technical work has been completed. This report is based on the research carried out under Tasks 2-7 described in the project proposal. These tasks include Characterization, Electrochemical Studies, In Situ Monitoring of Reagent Adsorption on Pyrite, Bench Scale Testing of the EESR Process, Bench Scale Testing of the PESR Process, and Modeling and Simulation.

  15. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  16. Effect of commercial activated carbons in sulfur cathodes on the electrochemical properties of lithium/sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Icpyo [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo; Ahn, Jou-Hyeon [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Ryu, Ho-Suk [Department of Material and Energy Engineering, Gyeongwoon University, 730, Gangdong-ro, Sandong-myeon, Gumi, Gyeongbuk, 39160 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828 (Korea, Republic of)

    2016-10-15

    Highlights: • The sulfur/activated carbon composite is fabricated using commercial activated carbons. • The sulfur/activated carbon composite with coal shows the best performance. • The Li/S battery has capacities of 1240 mAh g{sup −1} at 1 C and 567 mAh g{sup −1} at 10 C. - Abstract: We prepared sulfur/active carbon composites via a simple solution-based process using the following commercial activated carbon-based materials: coal, coconut shells, and sawdust. Although elemental sulfur was not detected in any of the sulfur/activated carbon composites based on Thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy, Energy-dispersive X-ray spectroscopy results confirmed its presence in the activated carbon. These results indicate that sulfur was successfully impregnated in the activated carbon and that all of the activated carbons acted as sulfur reservoirs. The sulfur/activated carbon composite cathode using coal exhibited the highest discharge capacity and best rate capability. The first discharge capacity at 1 C (1.672 A g{sup −1}) was 1240 mAh g{sup −1}, and a large reversible capacity of 567 mAh g{sup −1} was observed at 10 C (16.72 A g{sup −1}).

  17. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  18. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  19. Export market potential for Alaskan and Western US coals

    International Nuclear Information System (INIS)

    Sims, J.

    1992-01-01

    Major utilization trends may create opportunity for dramatic expansion of Alaska's coal exports from a huge ultra-low sulfur coal resource base. Markets are expected to open up in the Pacific Basin for sub-bituminous and bituminous steam coals from Alaska to include not only run-of-mine coals but also product streams from beneficiation technologies. Market considerations aside, deficiencies in physical infrastructure and an unresolved resource ownership issue are the principal impediments at this time to property development

  20. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    International Nuclear Information System (INIS)

    Belkin, Harvey E.; Tewalt, Susan J.; Hower, James C.; Stucker, J.D.; O'Keefe, J.M.K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential. (author)

  1. Cleaning and Decontamination Using Strippable and Protective Coatings at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Tripp, J.; Archibald, K.; Lauerhass, L.; Argyle, M.; Demmer, R.

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Liquid Waste Reduction (RLWR) group is conducting a testing and evaluation program on strippable and protective coatings. The purpose of the program is to determine how and where these coatings can be used to aid in the minimization of liquid waste generation. These coatings have become more important in daily operations because of the increased concern of secondary liquid waste generation at the INEEL. Several different strippable and protective coatings were investigated by the RLWR group, including Pentek 604, Bartlett (TLC), and ALARA 1146. During the tests quantitative data was determined, such as effectiveness at reducing contamination levels, or costs, as well as some qualitative data on issues like ease of application or removal. PENTEK 604 and Bartlett TLC are seen as superior products with slightly different uses

  2. Relationships between coal-quality and organic-geochemical parameters: A case study of the Hafik coal deposits (Sivas Basin, Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Erik, N. Yalcin; Sancar, S. [Cumhuriyet University, Department of Geological Engineering, Sivas (Turkey)

    2010-09-01

    This study provides coal-quality, organic-petrographic and organic-geochemical data on Tertiary subbituminous coal of the Hafik area, northwestern part of the Sivas Basin, Turkey. Coal-petrological studies along with proximate and ultimate analyses were undertaken to determine the organic-petrographic characteristics of the Hafik coals. Huminite reflectances were found to be between 0.38 and 0.48% (corresponding to an organic-material-rich and coal layers), values characteristic of low maturity. This parameter shows a good correlation with calorific values (average 21,060 kJ/kg) and average T{sub max} (422 C) mineral-matter diagenesis, indicating immaturity. The studied coals and organic material underwent only low-grade transformation, a consequence of low lithostatic pressure. Therefore, the Hafik coals are actually subbituminous in rank. Rock-Eval analysis results show types II/III and III kerogens. The organic fraction of the coals is mostly comprised of humic-group macerals (gelinites), with small percentages derived from the inertinite and liptinite groups. In this study, organic-petrographic, organic-geochemical and coal quality data were compared. The Hafik deposit is a high-ash, high-sulfur coal. The mineral matter of the coals is comprised mainly of calcite and clay minerals. (author)

  3. Technological and economic aspects of coal biodesulfurisation.

    Science.gov (United States)

    Klein, J

    1998-01-01

    The sulfur found in coal is either part of the molecular coal structure (organically bound sulfur), is contained in minerals such as pyrite (FeS2), or occurs in minor quantities in the form of sulfate and elemental sulfur. When pyrite crystals are finely distributed within the coal matrix, mechanical cleaning can only remove part of the pyrite. It can, however, be removed by microbial action requiring only mild conditions. The process involves simple equipment, almost no chemicals, but relatively long reaction times, and treatment of iron sulfate containing process water. Different process configurations are possible, depending on the coal particle size. Coal with particle sizes of less than 0.5 mm is preferably desulfurised in slurry reactors, while lump coal (> 0.5 mm) should be treated in heaps. Investment and operating costs are estimated for different process configurations on an industrial scale. Concerning the organically bound sulfur in coal there is up to now no promising biochemical pathway for the degradation and/or desulfurisation of such compounds.

  4. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    Science.gov (United States)

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  5. Upgrading of brown coal by slurry-dewatering; Kattan no yuchu dassui ni yoru clean kotai nenryo no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, O.; Shimizu, T.; Inoue, T.; Shigehisa, T.; Deguchi, T.; Katsushima, S. [Kobe Steel, Ltd., Kobe (Japan)

    1996-10-28

    This paper describes an outline of solid fuel production process from brown coal and the investigation results of its elemental techniques. Dried coal is produced by this process which consists of a dewatering of crushed brown coal in oil-based solvent, a solid and liquid separation of slurry, and a remained oil recovery by heating. This process is characterized by the higher thermal efficiency compared with usual drying and the restraint of spontaneous combustion of product coal. It was revealed that solid fuel with low moisture, low ash, low sulfur, and suppressed spontaneous combustion property can be produced from Australian brown coal through this process. From the comparison between kerosene and fuel oil A, it was confirmed that the oil content during dewatering was smaller and the oil recovery by heating was easier by using a solvent with lower boiling point. It was also confirmed that the spontaneous combustion property can be suppressed using small amount of asphalt by solving asphalt in the solvent and adsorbing asphalt on the surface of brown coal. From these results, low rank coals including brown coal, which are difficult to use, are expected to be used as clean coal with low ash and low sulfur through this process. 2 refs., 7 figs., 2 tabs.

  6. Applications of micellar enzymology to clean coal technology. [Laccase

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  7. Fiscal 1994 survey of the base arrangement promotion for foreign coal import. Project to heighten the quality of subbituminous coal by low temperature carbonization process; 1994 nendo kaigaitan yunyu kiban seibi sokushin chosa. Teion kanryuho ni yoru arekiseitan no kohinshitsuka jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The low-temperature carbonization process of coal is a technology to produce high grade reformed coal corresponding to bituminous coal and coal oil corresponding to heavy oil from subbituminous coal and supply them at prices close to the present market ones. From viewpoints of diversified sources and multiple export harbors, an initial-stage survey was conducted of the whole flow from new development of undeveloped mining areas in the northwest of Sumatra, Indonesia to bringing by ships to Japan of products reformed by LFC process of the US SGI`s low-temperature carbonization technology. Clean coal prepared after mining is produceable at a little higher than $12. At processing ability of 10,000 tons/day of raw coal, production is expected of approximately 5,700 tons/day of solid products of more than 6,500 kcal/kg and approximately 1,000 tons/day of low sulfur C heavy oil class oil. The finished cost of solid products is about $25/ton, which becomes about $40/ton at the harbor price in Japan. In conclusion, the project to enhance the quality of subbituminous coal by the low-temperature carbonization is promising as a total system. 10 refs., 54 figs., 30 tabs.

  8. Investigation cost subsidizing project for improving development of overseas coals in fiscal 1999. Investigations on improving development of Asian and Pacific coals (Investigation on optimizing the coal transportation system in East Karimantan Province in Indonesia); 1999 nendo Asia Taiheiyo sekitan kaihatsu kodoka chosa. Indonesia Higashi Karimantan shu ni okeru sekitan yuso system saitekika chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Evaluation was given on coal production quantity and coal transportation capability in areas scheduled of future development in Karimantan, Indonesia. Discussions were given on an optimal coal transportation system in East Karimantan Province. The coal production quantity in East Karimantan in fiscal 1999 was 35.27 million tons, accounting for 48% of the total Indonesian coal production. Production of 81.90 million tons is anticipated in 2020. Quality of the coal being produced is low in ash and high in water content in general. Calorific power is 5800 kcal or more. Sulfur content is 0.5% or more, not necessarily a low sulfur coal. The result of analyzing the optimal transportation routes by using the LP model may be summarized as follows: such scenarios are regarded to be largely profitable and advantageous that assume making railways utilizable as the land transportation in addition to use of trucks, belt conveyers, and barges, expanding coal terminals at the ports of PBCT, KPC, BCT and NPLCT, and newly building ports at Tarakan, TgSengatta, BPCTH, and Mangkapadie. (NEDO)

  9. National Coal Utilization Assessment: a preliminary assessment of coal utilizaton in the South. [Southern USA to 2020; forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L. B.; Bjornstad, D. J.; Boercker, F. D.

    1978-01-01

    Some of the major problems and issues related to coal development and use in the South are identified and assessed assuming a base-case energy scenario for the next 45 years. This scenario assumes a midrange of coal use and a relatively high rate of nuclear use over the forecast period. The potential impacts from coal development and use are significant, particularly in the 1990-2020 time period. Practically all available sites suitable for power plant development in the assessment will be utilized by 2020. Overall, sulfur dioxide will be well below the annual primary standard; however, several local hot-spot areas were identified. In addition, sulfate concentrations will be increased significantly, particularly over Virginia, West Virginia, and northern Kentucky. Coal mining is expected to affect 6 of the 12 major ecological regions. Coal mining will lead to increased average suspended sediment concentrations in some river basins, and special measures will be required to control acid discharges from active mines in pyritic regions. The increased mining of coal and subsequent sulfur dioxide increases from its combustion may also give rise to a land-use confrontation with food and fiber production. Potential health effects from exposure to sulfur dioxide and sulfates are expected to increase rapidly in several areas, particularly in parts of Kentucky, Maryland, District of Columbia, and Georgia. Regional social costs should be relatively low, although some site-specific costs are expected to be very high. Alternative energy technologies, careful siting selection, and deployment of environmental control technologies and operating policies will be required to reduce or mitigate these potential impacts.

  10. Hydrology of area 52, Rocky Mountain coal province Wyoming, Colorado, Idaho, and Utah

    Science.gov (United States)

    Lowham, H.W.; Peterson, D.A.; Larson, L.R.; Zimmerman, E.A.; Ringen, B.H.; Mora, K.L.

    1985-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 52 (in the Rocky Mountain Coal Province) includes the Green River Basin upstream from the Yampa River, and the Bear River upstream from the Bear Lake - a total of 23,870 sq mi. Area 52 contains over 3 billion tons of strippable coal, most of which is located in the arid and semiarid plains. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. More than 40 individual topics are discussed in a brief text that is accompanied by maps, graphs, photographs, and other illustrations. Primary topics in the report are: general features, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  11. Two-step rapid sulfur capture. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The primary goal of this program was to test the technical and economic feasibility of a novel dry sorbent injection process called the Two-Step Rapid Sulfur Capture process for several advanced coal utilization systems. The Two-Step Rapid Sulfur Capture process consists of limestone activation in a high temperature auxiliary burner for short times followed by sorbent quenching in a lower temperature sulfur containing coal combustion gas. The Two-Step Rapid Sulfur Capture process is based on the Non-Equilibrium Sulfur Capture process developed by the Energy Technology Office of Textron Defense Systems (ETO/TDS). Based on the Non-Equilibrium Sulfur Capture studies the range of conditions for optimum sorbent activation were thought to be: activation temperature > 2,200 K for activation times in the range of 10--30 ms. Therefore, the aim of the Two-Step process is to create a very active sorbent (under conditions similar to the bomb reactor) and complete the sulfur reaction under thermodynamically favorable conditions. A flow facility was designed and assembled to simulate the temperature, time, stoichiometry, and sulfur gas concentration prevalent in the advanced coal utilization systems such as gasifiers, fluidized bed combustors, mixed-metal oxide desulfurization systems, diesel engines, and gas turbines.

  12. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, Harvey E.; Tewalt, Susan J. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Stucker, J.D. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States)]|[University of Kentucky Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); O' Keefe, J.M.K. [Morehead State University, Department of Physical Science, Morehead, KY 40351 (United States)

    2009-01-31

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential. (author)

  13. Using stable isotopes to monitor forms of sulfur during desulfurization processes: A quick screening method

    Science.gov (United States)

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.

    1987-01-01

    A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.

  14. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  15. Development of economical and high efficient desulfurization process using low rank coal; Teitankadotan wo mochiita ankana kokoritsu datsuryuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takarada, Y; Kato, K; Kuroda, M; Nakagawa, N [Gunma University, Gunma (Japan). Faculty of Engineering; Roman, M [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    Experiment reveals the characteristics of low rank coal serving as a desulfurizing material in fluidized coal bed reactor with oxygen-containing functional groups exchanged with Ca ions. This effort aims at identifying inexpensive Ca materials and determining the desulfurizing characteristics of Ca-carrying brown coal. A slurry of cement sludge serving as a Ca source and low rank coal is agitated for the exchange of functional groups and Ca ions, and the desulfurizing characteristics of the Ca-carrying brown coal is determined. The Ca-carrying brown coal and high-sulfur coal char is mixed and incinerated in a fluidized bed reactor, and it is found that a desulfurization rate of 75% is achieved when the Ca/S ratio is 1 in the desulfurization of SO2. This rate is far higher than the rate obtained when limestone or cement sludge without preliminary treatment is used as a desulfurizer. Next, Ca-carrying brown coal and H2S are caused to react upon each other in a fixed bed reactor, and then it is found that desulfurization characteristics are not dependent on the diameter of the Ca-carrying brown coal grain, that the coal is different from limestone in that it stays quite active against H2S for long 40 minutes after the start of the reaction, and that CaO small in crystal diameter is dispersed in quantities into the char upon thermal disintegration of Ca-carrying brown coal to cause the coal to say quite active. 5 figs.

  16. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  17. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  18. Dew point of gases with low sulfuric acid content

    Energy Technology Data Exchange (ETDEWEB)

    Fieg, J.

    1981-07-01

    Discusses control of air pollution caused by sulfur compounds in solid fuels during combustion. Excessive amount of oxygen during combustion leads to formation of sulfur trioxide. Sulfur trioxide reacts with water vapor and forms sulfuric acid. Chemical reactions which lead to formation of sulfuric acid are described. Conditions for sulfuric acid condensation are analyzed. Several methods for determining dew point of flue gases with low sulfuric acid content are reviewed: methods based on determination of electric conductivity of condensed sulfuric acid (Francis, Cheney, Kiyoure), method based on determination of sulfuric acid concentration in the gaseous phase and in the liquid phase after cooling (Lee, Lisle and Sensenbaugh, Ross and Goksoyr). (26 refs.) (In Polish)

  19. The Bulgarian coal and the fluid bed technology

    International Nuclear Information System (INIS)

    Konstantinov, M.; Georgiev, J.; Lebedov, K.; Petrov, N.

    2000-01-01

    Because of low-quality of the most of Bulgarian coal and more rigorous ecological restrictions for decreasing of greenhouse gases the fluidized bed technology is the most appropriate combustion technology. A study with a pilot plant aiming to establish the values of technological parameters in view to maintain stable process of fluidized bed combustion at the specific burning characteristics of the Bulgarian coal was carried out. Coal of different quality and particle size production of 'Marbas' LTD mines were used. Series of experiments with batches of strictly determined content were carried out at minimal, average and maximal load. The technological factors as: layer's aerodynamics, layer's height, fuel's quantity and quantity of inert material were changed at each batch. The ecological factors were optimized considering coal's quality, plant's parameters, limestone's dosing and layer's aerodynamics. A regressive model for optimization of technological and ecological factors was created. An average coefficient of performance was achieved, resp. 82.27 % at combustion of coal from mines 'Maritsa-West' and 90 % from mine 'Lev'. A coefficient of sulfur oxides' capture 70 % was obtained at coal with sulfur content 3.1-3.9 %. In conclusion the fluidized bed technology is very suitable for combustion's characteristics of the Bulgarian coal

  20. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    Science.gov (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  1. Sulfur gained from flue gas, a demonstration unit of the Wellman-Lord process annexed to a black coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H

    1977-12-16

    Details of reducing air pollution by desulfurization of flue gases are presented. The demonstration unit is annexed to a 115 MW block at the Gary power plant in Indiana, USA. A second unit is being installed at the larger coal power plant in San Juan, New Mexico. The Wellman-Lord technology achieves a higher than 90% desulfurization of industrial waste gases. The technology is based on washing the gases with sodium sulfide. The resulting concentrated sulfur dioxide gas is used for pure sulfur and sulfuric acid production. Sodium sulfate is another commercial by-product obtained from the sodium sulfide regeneration cycle. Chemical details and the technological flow sheet are discussed. Electricity production costs in the power plants due to desulfurization of waste gases will increase by an estimated 15%. Advantages, in addition to reducing air pollution and marketing sulfur products, are also seen in the absence of sulfur containing wastes for disposal. (In German)

  2. Comparison Analysis of Coal Biodesulfurization and Coal’s Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Fen-Fen Hong

    2013-01-01

    Full Text Available Acidithiobacillus ferrooxidans (A. ferrooxidans was applied in coal biodesulfurization and coal’s pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal’s pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal’s pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32% and jarosite (18.99% were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34% and elemental sulfur (50.72% but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process.

  3. Applications of micellar enzymology to clean coal technology. Second quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, C.T.

    1990-04-27

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophene (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  4. Demand outlook for sulfur and high-sulfur petroleum coke

    Energy Technology Data Exchange (ETDEWEB)

    Koshkarov, V.Ya.; Danil' yan, P.G.; Feotov, V.E.; Gimaev, R.N.; Koshkarova, M.E.; Sadykova, S.R.; Vodovichenko, N.S.

    1980-01-01

    The feasibility of using sulfur and high-sulfur petroleum coke fines in pyrometallurgical processes and also in the chemical and coal-tar chemical industry is examined. Results of industrial tests on briquetting fines of petroleum coke with a petroleum binder are presented. The feasibility of using the obtained briquets in shaft furnace smelting of oxidized nickel ores, production of anode stock, and also in the chemical industry are demonstrated.

  5. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  6. Low-Btu coal gasification in the United States: company topical. [Brick producers

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  7. Biodiesel as a lubricity additive for ultra low sulfur diesel

    Directory of Open Access Journals (Sweden)

    Subongkoj Topaiboul1 and 2,*

    2010-05-01

    Full Text Available With the worldwide trend to reduce emission from diesel engines, ultra low sulfur diesel has been introduced with thesulfur concentration of less than 10 ppm. Unfortunately, the desulfurization process inevitably reduces the lubricity of dieselfuel significantly. Alternatively, biodiesel, with almost zero sulfur content, has been added to enhance lubricity in an ultralow sulfur diesel. This work has evaluated the effectiveness of the biodiesel amount, sourced from palm and jatropha oil,and origin in ultra low sulfur diesel locally available in the market. Wear scar from a high-frequency reciprocating rig isbenchmarked to the standard value (460 m of diesel fuel lubricity. It was found that very small amount (less than 1% ofbiodiesel from either source significantly improves the lubricity in ultra low sulfur diesel, and the biodiesel from jatropha oilis a superior lubricity enhancer.

  8. Potential to cofire high-sulfur coal and MSW/RDF in Illinois utility boilers: A survey and analysis

    International Nuclear Information System (INIS)

    South, D.W.

    1993-01-01

    The disposal of refuse is of ever-increasing concern for municipalities and other organizations and agencies throughout the United States. Disposal in landfills is becoming more costly, and new landfills are more difficult to site because of stricter environmental regulations. Mass burning incinerators for municipal solid wastes (MSW) have also met with increased public resistance due to excessive emissions. Nevertheless, increased awareness of the need for alternative disposal techniques has led to a new interest in cofiring MSW with coal. In addition to solid waste concerns, the requirements to reduce SO 2 and NO x emissions from coal-fired utility boilers in the Clean Air Act Amendments of 1990, present an opportunity to cofire MSW/RDF with coal as an emission control measure. These issues were the impetus for a 1992 study (conducted by ANL for the Illinois Clean Coal Institute) to examine the potential to cofire coal with MSW/RDF in Illinois utility boilers. This paper will provide a synopsis of the ANL/ICCI report. It will summarize (1) the combustibility and emission characteristics of high-sulfur coal and MSW/RDF; (2) the facilities firing RDF and/or producing/selling RDF, together with their combustion and emissions experience; (3) the applicable emissions regulations in Illinois; and (4) the analysis of candidate utility boilers in Illinois capable of cofiring, together with the effect on coal consumption and SO 2 and NO x emissions that would result from 20% cofiring with RDF/MSW

  9. Bugs and coal: processing fuels with biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1987-06-01

    Bioprocessing of coal is developing along several fronts, each of potential significance to utilities. Researchers have found a fungus, polyporous versicolor, which can liquefy certain kinds of coal and scientists have genetically engineered bacteria that remove sulfur and ash-forming metal impurities from coal. Research programs are being undertaken to find organisms that will convert lignite into gaseous methane to produce gaseous fuel more economically than the current coal gasification methods. Researchers looking for ways to remove sulfur from coal before it is burned are evaluating the use of a bacterium called thiobacillus ferroxidans to enhance the physical removal of pyrite. 2 refs.

  10. Coal Fields and Federal Lands of the Conterminous United States

    Science.gov (United States)

    Biewick, Laura

    1997-01-01

    The map depicts the relationship of coal and public lands in the conterminous U. S. Multiple GIS layers are being created for the purpose of deriving estimates of how much coal is owned and administered by the Federal government. Federal coal areas have a profound effect on land-management decisions. Regulatory agencies attempt to balance energy development with alternative land-use and environmental concerns. A GIS database of Federal lands used in energy resource assessments is being developed by the U. S. Geological Survey (USGS) in cooperation with the U.S. Bureau of Land Management (BLM) to integrate information on status of public land, and minerals owned by the Federal government with geologic information on coal resources, other spatial data, coal quality characteristics, and coal availability for development. Using national-scale data we estimate that approximately 60 percent of the area underlain by coal-bearing rocks in the conterminous United States are under Federal surface. Coal produced from Federal leases has tripled from about 12 percent of the total U.S. production in 1976 to almost 34 percent in 1995 (Energy Information Administration website ftp://ftp.eia.doe.gov/pub/coal/cia_95_tables/t13p01.txt). The reason for this increase is demand for low-sulfur coal for use in power plants and the fact that large reserves of this low-sulfur coal are in the western interior U.S., where the Federal government owns the rights to most of the coal reserves. The map was created using Arc/Info 7.0.3 on a UNIX system. The HPGL2 plot file for this map is available from the USGS Energy Resource Surveys Team from http://energy.cr.usgs.gov:8080/energy/coal.html.

  11. Special emission measurements on Riley Stoker's advanced CFB pilot facility co-firing non-recyclable de-inking paper fiber and high sulfur eastern bituminous coal

    International Nuclear Information System (INIS)

    Dixit, V.B.; Mongeon, R.K.; Reicker, E.L.

    1993-01-01

    Riley Stoker has developed advanced industrial CFB designs that utilize eastern bituminous coals as fuel, and have the potential to use coal in combination with other fuels. Various fiber waste streams in paper recycling processes have sufficient carbonaceous content to be considered as possible sources of such fuels that could fire FBC combustors. The American Paper Institute estimates that by the mid-1990's more than 40% of the waste paper will be recycled, reaching much higher numbers by the year 2000. To evaluate the effectiveness of co-firing such fuels, a test program was conducted on Riley's pilot-scale circulating fluidized bed test facility. A de-inked newsprint derived fiber waste was successfully co-fired with high sulfur coal. The waste fiber material containing approximately 50% moisture had a heating value of 3500 Btu/lb. The coal was strip-mined and contained a lot of clay and excessive quantities of fines making it difficult to burn in conventional boilers. Tests were also conducted with a combination fuel consisting of coal, fiber waste and a high carbon fly ash. In addition to obtaining performance data on combustion efficiency, sulfur capture, and NO x emissions, special emission measurements were also made to quantify the organics, trace metals and hydrochloric acid levels in the flue gas. The co-firing tests achieved a maximum combustion efficiency of 98% and sulfur capture of 90%. The effect of Ca/S mole ratio and temperature is discussed. Although there are no formal regulations in place for FBC systems regarding special emissions, the levels measured were far below the allowable limits for waste incinerators. Materials handling experience on the pilot facility relating to co-firing is also discussed. This is done to identify special considerations for designing commercial facilities. A brief overview of the de-inking waste fiber combustion market is also presented

  12. Chemical and microbiological problems associated with research on the biodesulfurization of coal. A review

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G J; Kelly, R M [National Institute of Standards and Technology, Gaithersburg, MD (USA). Polymer Division

    1991-04-01

    The study of microbial processes for the removal of organic and inorganic sulfur from coals is complicated by the lack of direct methods of measurement for organic sulfur content and the related incomplete understanding of the specific forms of organic sulfur in coal. In addition, the accessibility of specific chemical groups in the coal matrix to microorganisms and their enzymes is uncertain, raising questions about the nature and validity of model compound studies. Thus, interpretation of data from numerous efforts focussed on the microbial removal of inorganic and organic sulfur from coals remains controversial. The discussion here reviews recent developments in the chemical characterization of coal sulfur related to bioprocessing research and describes some recent efforts in involving sulfur transformation by hyperthermophilic archaebacteria. 26 refs., 4 figs., 1 tab.

  13. Advanced sulfur control concepts for hot gas desulfurization technology

    International Nuclear Information System (INIS)

    1998-01-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H 2 S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct. The Direct Sulfur Recovery Process (DSRP), a leading process for producing an elemental sulfur byproduct in hot-gas desulfurization systems, incurs a coal gas use penalty, because coal gas is required to reduce the SO 2 in regeneration off-gas to elemental sulfur. Alternative regeneration schemes, which avoid coal gas use and produce elemental sulfur, will be evaluated. These include (i) regeneration of sulfided sorbent using SO 2 ; (ii) partial oxidation of sulfided sorbent in an O 2 starved environment; and (iii) regeneration of sulfided sorbent using steam to produce H 2 S followed by direct oxidation of H 2 S to elemental sulfur. Known regenerable sorbents will be modified to improve the feasibility of the above alternative regeneration approaches. Performance characteristics of the modified sorbents and processes will be obtained through lab- and bench-scale testing. Technical and economic evaluation of the most promising processes concept(s) will be carried out

  14. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  15. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  16. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  17. Ultra Low Sulfur Home Heating Oil Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Batey, John E. [Energy Research Center, Inc., Easton, CT (United States); McDonald, Roger [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  18. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    Science.gov (United States)

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  19. ADVANCED SULFUR CONTROL CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  20. Underground gasification of coal - possibilities and trends

    International Nuclear Information System (INIS)

    Dushanov, D.; Minkova, V.

    1994-01-01

    A detailed historical review is given on the problem of underground coal gasification (UCG) with emphasis on its physical, chemical, technological and financial aspects. The experience of USA, Japan, former USSR, Belgium, UK and France is described. The feasibility of UCG in the Dobrudzhan Coal Bed in Bulgaria is discussed. The deposit has reserves of about 1.5 billion tones at relatively shallow depths. Almost the whole scale from long flame to dry coal is covered. According to its coalification degree the bed belongs to gas coal - V daf 35-40%; C daf 80-83%, eruption index = 1. Enriched samples has low sulfur content - 0.6-1.5% and low mineral content - 6-12%. Having in mind the lack of domestic natural gas and petroleum resources, the authors state that the utilisation of the bed will alleviate the energy problems in Bulgaria. 24 refs., 5 figs., 1 tab

  1. Low smoke coal in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Surridge, A.D.; Asamoah, J.K.; Grobbelaar, C.J. [Department of Minerals and Energy, Pretoria (South Africa)

    1997-09-01

    The South African government has started a low-smoke coal programme to reduce air pollution from combustion of coal, which is used for cooking and heating in some residential areas despite electrification. Government policy is to assist the private sector to manufacture and market low-smoke fuels and to encourage use of cleaner fuels. The philosophy and the implementation of this programme are discussed. Preliminary results from a macro scale experiment, that involved supplying low-smoke fuel to a township for a period of one to two weeks and monitoring the impacts, are reported.

  2. Development of pulse neutron coal analyzer

    International Nuclear Information System (INIS)

    Jing Shiwie; Gu Deshan; Qiao Shuang; Liu Yuren; Liu Linmao; Jing Shiwei

    2005-01-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14 MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented

  3. Coal supply and transportation markets during Phase One: Change, risk and opportunity. Final report

    International Nuclear Information System (INIS)

    Heller, J.N.; Kaplan, S.

    1996-01-01

    The Clean Air Act Amendments of 1990 (CAAA) required many utilities to sharply reduce sulfur emissions by January 1, 1995. This study describes and analyzes how the coal and transportation markets responded to this major development. The study focuses on five key coal supply regions and their associated transportation networks: the Uinta Basin (Colorado/Utah), Wyoming Powder River Basin, Illinois Basin, Monongahela region (Pittsburgh seam) and the central Appalachian region. From these regional studies, the report identifies key risk areas for future coal planning and general lessons for the fuels planning process. The study provides statistical information on coal production, demand, and transportation flows for each region. The analysis for each region focuses on developments which were generally unexpected; e.g., the relatively large volumes of medium-sulfur coal produced in the Illinois Basin and Monongahela region, the eastern penetration of Utah and Colorado coals, and the relatively modest growth in demand for central Appalachian coals. These developments generally worked to the advantage of utilities; i.e., medium- and low-sulfur coal was available at a lower price, in greater volumes and from a wider range of sources than many had expected. Utilities both took advantage of and helped to encourage these developments in the coal and transportation market. Looking ahead to Phase 11 strategies and future coal procurement, a major challenge will be to maintain the choice among supply and transportation alternatives which was so important to utility success in Phase 1. The report identifies rail transportation to be the major area of risk in most regions

  4. Reduction of sulphur dioxide emissions by pyrolysis reduction of the burning sulfur of coal, applied in the power station 'Maritsa-East 3'

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1999-01-01

    A study for applying of the new method for reduction of the sulfur content in solid fuel reported at the Energy Forum '98 has been carried out. The calculations for using this method at the power station 'Maritsa-East 3' were made. The advantages compared to the conventional methods for removing of SO 2 from flue gases are reported. The application of this method reduces the emissions of SO 2 with 83-85%. The heat saved is equal to the heat from 13.8% of the coal. The tar obtained after removing of sulfur can be used as fuel. The expenses for transport and treatment of limestone and of obtained gypsum (needed at the conventional methods for removing the sulfur) are eliminated. The capital investments needed are smaller because of the 25-30 times smaller volume of the equipment for sulfur reduction

  5. Cleaning of Egyptian coal by using column flotation to minimize the environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Khalek, M.A.A. [CMRDI, Cairo (Egypt)

    2002-07-01

    This work aims to decrease the sulfur content of the Egyptian coal by using column flotation technology to be suitable for various applications. In this study, the column flotation parameters as air flow-rate, wash water, frother dosage and feed rate with its solid percent were studied. A clean coal was obtained containing 1.01 % total sulfur with a yield of 82 %, from Maghara coal (Sinai-Egypt) which contains 3.3 % total sulfur as raw coal.

  6. Pyrolisator Coal to be Cokes (Coal Cokes Casting Metal Industry Standard

    Directory of Open Access Journals (Sweden)

    Sukamto

    2016-01-01

    Full Text Available Pyrolisis of coal is partial combustion to reduce total moisture, volatile matter and sulfur contens and increase the calorific value of coal. The results of pyrolysis of coal is coke. At the laboratory level studies, pyrolisis done in batch using different calorie, namely 5800, 6000, 6300 kcal/kg and a time of 15-60 minutes and the temperature 400-800°C. Maximum results obtained total moisture (0.44%, fixed carbon (89%, volatile matter (2.4%, sulfur content (undetected and ash (7.2%. Then applied to the scale miniplant with continuous processes using multitube pyrolisator which are designed to operate in the temperature range 400-800°C and a flow rate of 240-730 kg/h, obtained coal cokes that meets industry quality standards, namely TM (0.42%, FC (90.40%, VM (2.16%, S (not detected, Ash (6.8% incalori 6300 kcal/h, a flow rate of 240 kg / h and temperatures between 600-700°C

  7. Assessment of low-rank (LRC) drying technologies

    International Nuclear Information System (INIS)

    Willson, W.G.; Young, B.C.; Irwinj, W.

    1992-01-01

    This paper reports that low-rank coals (LRCs), brown, lignitic, and subbituminous coals, represent nearly half of the estimated coal resources in the world. In many of the developing nations, LRCs are the only source of low-cost energy. LRCs are geologically younger than higher-rank bituminous coals and are typically present in thick seams with less cover (overburden) than bituminous coals, making them recoverable by low-cost strip mining. Current pit-head coal prices for LRCs range from a low of around $0.25 per MM Btus for subbituminous coals from the USA's Powder River Basin, to highs of around $1,00 for those that are more costly to mine. On the other hand, the pit-head price of bituminous coals in the USA range from a low of around $1 to over $2 per MM Btu. Unfortunately, this differential in favor of LRC is more than offset in distant markers where, until now, it has been considered a nuisance. Often less than half of its weight is combustible, the rest being water and ash. Thus the cost of hauling it any distance at all in its untreated dry bulk form is prohibitive. However, from a utilization aspect, LRCs have a lower fuel ration (fixed carbon to volatile matter) and are typically an order of magnitude more reactive than bituminous coals. Many LRCs, including the enormous reserves in Alaska, Australia, and Indonesia, also have extremely low sulfur contents of only a few tenths of a percent. Low mining costs, high reactivity, and extremely low sulfur content would make these coals premium fuel were it not for their high moisture levels, which range from around 25% w/w to over 60% w/w. High moisture creates a mistaken perception, among major coal importers, of inferior quality, and the many positive features of LRCs are overlooked

  8. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  9. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  10. In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content

    Science.gov (United States)

    Zhao, Bing; Yang, Yaqing; Wang, Zhixuan; Huang, Shoushuang; Wang, Yanyan; Wang, Shanshan; Chen, Zhiwen; Jiang, Yong

    2018-02-01

    SnS is widely studied as anode materials since of its superior structural stability and physicochemical property comparing with other Sn-based composites. Nevertheless, the inconvenience of phase morphology control and excessive consumption of sulfur sources during synthesis hinder the scalable application of SnS nanocomposites. Herein, we report a facile in-situ sulfuration strategy to synthesize sandwiched spherical SnS/sulfur-doped graphene (SnS/S-SG) composite. An ultra-low sulfur content with approximately stoichiometric ratio of Sn:S can effectively promote the sulfuration reaction of SnO2 to SnS and simultaneous sulfur-doping of graphene. The as-prepared SnS/S-SG composite shows a three-dimensional interconnected spherical structure as a whole, in which SnS nanoparticles are sandwiched between the multilayers of graphene sheets forming a hollow sphere. The sandwiched sphere structure and high S doping amount can improve the binding force between SnS and graphene, as well as the structural stability and electrical conductivity of the composite. Thus, a high reversibility of conversion reaction, promising specific capacity (772 mAh g-1 after 100 cycles at 0.1 C) and excellent rate performance (705 and 411 mAh g-1 at 1 C and 10 C, respectively) are exhibited in the SnS/S-SG electrode, which are much higher than that of the SnS/spherical graphene synthesized by traditional post-sulfuration method.

  11. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    Science.gov (United States)

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  12. Thermal and chemical modifications on a low rank coal by iron addition in swept fixed by hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mastral, A.M.; Perez-Surio, M.J.; Palacios, J.M. [CSIC, Zaragoza (Spain). Inst. de Carboquimica

    1998-05-01

    The paper discusses the thermal and chemical changes taking place on a low rank coal when it is subjected to hydropyrolysis conditions with Red Mud as the catalytic precursor. For each run, 5 g of coal were pyrolysed in a swept fixed bed reactor at 40 kg/cm{sup 2} hydrogen pressure. The variables of the process were: temperatures ranging from 400 to 600{degree}C; 0.5 and 2 l/min of hydrogen flow; 10 and 30 min residence time; and in the presence and absence of Red Mud. Conversion products distribution and a wide battery of complementary analyses allow information to be gathered regarding the changes undergone by the coal structure, both in its organic and inorganic components, in its conversion into liquids and chars. From the data obtained, it can be deduced that: (1) at 400{degree}C the iron catalyst is not active; (2) at higher temperatures iron catalytic cracking is observed more than hydrogenating activity, due to the Fe{sub 2}O{sub 3} transformation into (Fe{sub 3}S{sub 4}) crystallographically as spinel; (3) in this coal hydropyrolysis one third of the coal is converted into liquids; and (4) Red Mud helps to reduce sulfur emissions by H{sub 2}S fixation as Fe{sub 3}S{sub 4}. 10 refs., 5 figs., 5 tabs.

  13. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  14. Total Sulfur Deposition (wet+dry) from the Atmosphere

    Data.gov (United States)

    U.S. Environmental Protection Agency — Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such...

  15. Biodesulfurization of coals of different rank: Effect on combustion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Marteinz, O.; Moran, A. [Univ. de Leon (Spain). Escuela de Ingenieria Tecnica Minera

    1999-02-01

    The emission of sulfur oxides during the combustion of coal is one of the causes, among other air pollution problems, of acid rain. The contribution of coal as the mainstay of power production will be determined by whether its environmental performance is equal or superior to other supply options. In this context, desulfurization of coal before combustion by biological methods was studied. Four Spanish high-sulfur content coals of different rank were inoculated with bacteria isolated from mine-drainage waters and with naturally occurring bacteria inherent in the coals to be treated. Higher levels of desulfurization were obtained in the case of the samples treated with their own accompanying bacteria and when aeration was increased. All the samples were amenable to the biodepyritization processes. However, it is of little value to achieve large sulfur reductions if a decrease in coal combustion performance is obtained in the process. For this reason, a comparison was made between the combustibility characteristics of the original coals and those of the biodesulfurized samples. Results indicated that combustibility was not substantially modified by the overall biological treatment. The benefits of reduced sulfur emissions into the atmosphere ought to be taken into account as part of the general evaluation of the processes.

  16. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  17. Processing low-grade coal to produce high-grade products

    CSIR Research Space (South Africa)

    de Korte, GJ

    2015-07-01

    Full Text Available of the coal being mined in the central basin is gradually becoming poorer. This necessitates that more of the coal be processed to improve the quality to meet customer requirements. The challenge to the coal processing industry is to process low-yielding coals...

  18. The effect of sulfur on the inhibition of PCDD/F formation during co-combustion of coal and solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Palladas, A. [Laboratory of Environmental and Energy Processes, Thermi-Thessaloniki (Greece). Chemical Process Engineering Research Institute; Samaras, P. [TEI of Western Macedonia, Kozani (Greece). Dept. of Environmental Technology; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki (Greece). Dept. of Chemical Engineering

    2004-09-15

    Co-combustion of solid wastes with coal is a promising technique used to reduce landfilled wastes, utilizing waste the energy content. However, solid wastes often contain chlorine and other substances, which upon combustion may result in the production of extremely toxic compounds like polychlorinated dibenzo-p-dioxins and dibenzofurans. Various compounds have been proposed for their inhibition ability of PCDD/F formation, including sulphuric and nitrogen containing substances. Sulfur compounds may form some kind of complexes with metal species, reducing thus their ability for catalysing the PCDD/F formation pathways. Sulfur inhibitory capacity has been attributed to reaction with copper catalytic sites, altering their form and presumably their ability to produce Cl{sub 2} through the Deacon process reaction. Another second postulated role of sulfur is to undergo homogeneous reactions, converting the primary chlorinating agent, Cl{sub 2}, into a form (HCl) less likely to undergo aromatic substitution reactions forming PCDD/F precursors. The objectives of this work were the measurement of PCDD/F emissions during co-combustion of different fuel mixtures, and the study of the effect of sulfur addition to the fuel on PCDD/F formation.

  19. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  20. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  1. Health Endpoint Attributed to Sulfur Dioxide Air Pollutants

    Directory of Open Access Journals (Sweden)

    Geravandi

    2015-07-01

    Full Text Available Background Sulfur dioxide is a colorless gas, released from burning of coal, high-sulfur coal,s and diesel fuel. Sulfur dioxide harms human health by reacting with the moisture in the nose, nasal cavity and throat and this is the way by which it destroys the nerves in the respiratory system. Objectives The aim of this study was to focus on identifying the effects associated with sulfur dioxide on health in Ahvaz, Iran. Materials and Methods Data collections were performed by Ahvaz meteorological organization and the department of environment. Sampling was performed for 24 hours in four stations. Methods of sampling and analysis were according to US environmental protection agency (EPA guideline. Afterwards, we processed the raw data including instruction set correction of averaging, coding and filtering by Excel software and then, the impact of meteorological parameters were converted as the input file to the AirQ model. Finally, we calculated the health effects of exposure to sulfur dioxide. Results According to the findings, the concentration of sulfur dioxide in Ahvaz had an annual average of 51 μg/m3. Sum of the numbers of hospital admissions for respiratory diseases attributed to sulfur dioxide was 25 cases in 2012. Approximately, 5% of the total hospital admissions for respiratory disease and respiratory mortality happened when sulfur dioxide concentration was more than 10 mg/m3. Conclusions According to the results of this study, this increase could be due to higher fuel consumption, usage of gasoline in vehicles, oil industry, and steel and heavy industries in Ahwaz. The risk of mortality and morbidity were detected at the current concentrations of air pollutants.

  2. Low back pain and lumbar angles in Turkish coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, S.; Ozdolap, S.; Gumustas, S.; Koc, U. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Medicine

    2007-02-15

    This study was designed to assess the incidence of low back pain among Turkish coal miners and to investigate the relationship between angles of the lumbar spine and low back pain in coal miners. Fifty underground workers (Group I) and 38 age-matched surface workers (Group II) were included in the study. All the subjects were asked about low back pain in the past 5 years. The prevalence of low back pain was higher in Group I than in Group II (78.0%, 32.4%, respectively, P {lt} 0.001). The results of the study showed that low back pain occurred in 78.0% of Turkish coal miners. Although the nature of the occupation may have influenced coal miners' lumbar spinal curvature, lumbar angles are not a determinant for low back pain in this population. Further extensive studies involving ergonomic measurements are needed to validate our results for Turkish coal mining industry.

  3. Alberta Office of Coal Research and Technology: Annual review 1991-1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Annual report of the Office, established in 1984 to coordinate the government funding needed to identify, investigate and develop coal-related technologies. Background is given along with coal research strategy and research priorities. Short explanations are given of the various research projects being undertaken in mining, preparation and upgrading, combustion, liquefaction/co-processing, gasification, environment, enhanced oil recovery, the Western Canadian Low-Sulfur to Coal Program, and the Coal Research Contractor's Conference. Project expenditures are then listed by title and year, along with other statistics. A listing of the status of projects supported by the Office is also included, along with a list of publications currently available.

  4. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  5. Corrosion test by low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S; Yamamoto, S

    1952-01-01

    Corrosive actions of various fractions of low-temperature coal tar against mild steel or Cr 13-steel were compared at their boiling states. Corrosions became severe when the boiling points exceeded 240/sup 0/. The acidic fractions were more corrosive. In all instances, corrosion was excessive at the beginning of immersion testing and then gradually became mild; boiling accelerated the corrosion. Cr 13-steel was corrosion-resistant to low-temperature coal-tar fractions.

  6. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  7. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    International Nuclear Information System (INIS)

    Boulyga, Sergei F.; Heilmann, Jens; Heumann, Klaus G.; Prohaska, Thomas

    2007-01-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for 35 Cl + to more than 6 x 10 5 cps for 238 U + for 1 μg of trace element per gram of coal sample. Detection limits vary from 450 ng g -1 for chlorine and 18 ng g -1 for sulfur to 9.5 pg g -1 for mercury and 0.3 pg g -1 for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  9. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    Science.gov (United States)

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  10. On-line nuclear analysis of coal (Nucoalyzer)

    International Nuclear Information System (INIS)

    Brown, D.R.; Gozani, T.; Bozorgmanesh, H.

    1980-01-01

    Control of quality in the coal process stream is increasingly important in both coal preparation facilities and coal fire power plants. Traditional wet chemistry methods of monitoring coal composition are incapable of providing anything approaching real-time analysis of coal. Typically, small samples of the coal stream are laboratory analyzed and the results made available between a day to a week later. By this time the coal is through the process stream, often already burned and no control is possible. The need of real-time analysis of bulk quantities of the coal has long been recognized and this need motivated Science Applications, Inc. to develop, since 1975, a continuous on-line nuclear analyzer of coal (or CONAC). Over the last three years a prototype of this instrument has undergone extensive testing using 200 pound bulk samples of a wide variety of US coal types. The Nucoalyzer has proven capable of measuring the abundances of all the important elemental constituents of coal along with the ash and calorific value. In the past year the first instrument has been installed and undergone testing at Detroit Edison's Monroe Coal blending facility, where it will control the blending of high and low sulfur coal to meet EPA emission regulations

  11. Low-rank coal study. Volume 4. Regulatory, environmental, and market analyses

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    The regulatory, environmental, and market constraints to development of US low-rank coal resources are analyzed. Government-imposed environmental and regulatory requirements are among the most important factors that determine the markets for low-rank coal and the technology used in the extraction, delivery, and utilization systems. Both state and federal controls are examined, in light of available data on impacts and effluents associated with major low-rank coal development efforts. The market analysis examines both the penetration of existing markets by low-rank coal and the evolution of potential markets in the future. The electric utility industry consumes about 99 percent of the total low-rank coal production. This use in utility boilers rose dramatically in the 1970's and is expected to continue to grow rapidly. In the late 1980's and 1990's, industrial direct use of low-rank coal and the production of synthetic fuels are expected to start growing as major new markets.

  12. Process for low mercury coal

    Science.gov (United States)

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  13. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in Thailand; Kankyo chowagata sekitan riyo system kanosei chosa. Tai ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper investigated and studied the present situation and future trend of coal utilization and distribution in Thailand, and the present situation of environmental effects and the measures taken for environmental protection. Around 2010, coal will probably be produced only at EGAT`s Mae Moh (MM) coal mine. Demand for overseas coal is expected to be 40-50 million tons in 2011, and preparation of the coal center becomes a subject. For general industry use coal, pretreatment such as coal preparation, coal blending and briquetting is needed, considering coal quality, usage, transport distance and environmental effects. Brown coal of MM coal mine is a lignite with high sulfur, high ash content and low heating value. Wide spread of its use can be expected if upgrading is possible such as desulfurization, deashing, increasing heating value. In the electric power generation field, the absorber was installed at the existing boiler of the mine-mouth generating plant to conduct a verification test on high grade desulfurization of ultra-high sulfur lignite. In the industry field, the circulating fluidized bed boiler was adopted. In the residential/commercial field, introduction of briquette was proposed. 80 refs., 84 tabs.

  14. Coal princes on the world market

    International Nuclear Information System (INIS)

    1997-01-01

    The prices on fuel and coking coals on the world market are presented. The data on specific combustion heat content of volatile substances, sulfur and ash content of the corresponding types of coals are also given

  15. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  16. Liquefaction of Warukin Formation Coal, Barito Basin, South Kalimantan on Low Pressure and Low Temperature

    Directory of Open Access Journals (Sweden)

    Edy Nursanto

    2013-06-01

    Full Text Available Research focusing on the quality of coal in Warukin Formation has been conducted in coal outcrops located on Tabalong area, particularly in 3 coal seams, namely Wara 120 which consists of low rank coal (lignite. Meanwhile, coals in seam Tutupan 210 and Paringin 712 are medium rank coal (sub-bituminous. Coal liquefaction is conducted in an autoclave on low pressure and temperature. Pressure during the process is 14 psi and temperature is 120oC. Catalyst used are alumina, hydrogen donor NaOH and water solvent. Liquefaction is conducted in three times variables of 30 minutes, 60 minutes and 90 minutes. This process shows following yield : Wara seam 120: 25.37% - 51.27%; Tutupan seam 210: 3.02%-15.45% and seam Paringin 712:1.99%-11.95%. The average result of yield shows that coals in seam Wara has higher yield conversion than coals in seam Tutupan and Paringin.

  17. Preliminary assessment of the health and environmental impacts of fluidized-bed combustion of coal as applied to electrical utility systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The objective of this study was to assess the health and environmental impacts of fluidized-bed combustion of coal (FBC), specifically as applied to base-load generation of electrical energy by utilities. The public health impacts of Fluidized-Bed Combustion (FBC) plants are expected to be quite similar to those for Low Sulfur Coal (LSC) and Flue Gas Desulfurization (FGD) plants because all appear to be able to meet Federal emission standards; however, there are emissions not covered by standards. Hydrocarbon emissions are higher and trace element emissions are lower for FBC than for conventional technologies. For FBC, based on an analytical model and a single emission data point, the polycyclic organic material decreases the anticipated lifespan of the highly exposed public very slightly. Added health protection due to lower trace element emissions is not known. Although there is a large quantity of solid wastes from the generating plant, the environmental impact of the FBC technology due to solid residue appears lower than for FGD, where sludge management requires larger land areas and presents problems due to the environmentally noxious calcium sulfite in the waste. Fixing the sludge may become a requirement that increases the cost of wet-limestone FGD but makes that system more acceptable. The potential for aquatic or terrestrial impacts from hydrocarbon emissions is low. If application of AFBC technology increases the use of local high-sulfur coals to the detriment of western low-sulfur coal, a sociological benefit could accrue to the FBC (or FGD) technology, because impacts caused by western boom towns would decrease. The infrastructure of areas that mine high-sulfur coal in the Midwest are better equipped to handle increased mining than the West.

  18. Economic aspects of coal deposits exploration of the Ulug-Khem basin (Tuva

    Directory of Open Access Journals (Sweden)

    Lebedev V.I.

    2017-06-01

    Full Text Available in accordance with the article, 11 deposits coal on the territory of Tuva are accounted by State Reserves Register of the Russian Federation, the total profitable reserves are estimated at 1,12 billion tons whereof 936.6 thousand tons are dealt with as coking coals. The vast majority of explored deposits of coals of the republic are concentrated in the Ulugh-Khem basin, the total projected resources of which exceed 20 bill.t. It is substantiated that coking coal of the Ulugh-Khem basin is the most competitive resource of Tyva Republic. Low ash content, excellent caking index, low sulfur and phosphorus in coking coal of ranks GG and GZh indicate their high quality, according to these characteristics GG, GZh coal ranks take precedence over Kuznetsk and Pechora coals. About 70 bill.t of coking coal are annually mined in Russia, but there is a deficit on certain coal ranks. It is primarily related to internal prices increase for coking coal in Russia. According to forecasts of researchers coal deficit will rise up to 15–17 bill.t in the country.

  19. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent......, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through...... reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly...

  20. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  1. Effects of mineral matter on products and sulfur distributions in hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1999-05-01

    The effects of the mineral matter on the product yield and sulfur distribution in hydropyrolysis and pyrolysis of Chinese Hongmiao lignite were investigated using a fixed-bed reactor. The volatile sulfur-containing gases (H{sub 2}S, COS, CH{sub 3}SH) were also analyzed as a function of pyrolysis temperature. Coal samples were treated with HCl/HF or HCl/HF and CrCl{sub 2} solution to eliminate minerals and pyrite respectively. In hydropyrolysis, demineralized Hongmiao lignite showed lower yields of tar and water than the raw coal. Demineralization cannot only minimize the fixation effect of basic mineral matter on sulfur-containing gases, but also increase the sulfur distribution of the tar. Further, from the evolution profiles of sulfur-containing gases, it is possible to elucidate the contribution of minerals, pyrite and organic sulfur to the sulfur evolution. Pyrite may not be the only source of COS formation. 32 refs., 14 figs., 3 tabs.

  2. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  3. Briquetting and coking behavior of Bobov-Dol coal

    Energy Technology Data Exchange (ETDEWEB)

    Naundorf, W.

    1987-01-01

    Hard Bulgarian glance brown coal (23.2% ash content, 16% coal moisture 2.39% sulfur) was studied for its general suitability for partial black coal coke substitution in coking plants and for the possibility of producing pyrolysis briquets for coking purposes. Laboratory briquetting variants include coal briquetting without binders, with sulfite lye as binder, briquetting after partial demineralization by wet classification, briquetting of different screening fractions (0 to 4 mm), briquetting as a mixture with type 35 caking black coal as well as mixed with type 34 less caking black coal under addition of black coal tar, pitch or bitumen. Coking of the briquets produced was carried at with and without charge compacting. Graphs and tables provide briquetting and coking results. It is concluded that high strength coke can be produced from this brown coal, but it can only be used commercially as heating coke due to its high ash and sulfur content. Briquetting and coking of partially demineralized brown coal in a mixture with black coal and binders resulted in suitable metallurgical coke. Maximum percentage of brown coal in the briquetting mixture was 30%. 4 refs.

  4. Physical and hydrologic environments of the Mulberry coal reserves in eastern Kansas

    Science.gov (United States)

    Kenny, J.F.; Bevans, H.E.; Diaz, A.M.

    1982-01-01

    Strippable reserves of Mulberry coal underlie an area of approximately 300 square miles of Miami, Linn, and Bourbon Counties of eastern Kansas. Although subject to State reclamation law, current and projected strip mining of this relatively thin coal seam could alter and hydrologic environment of the study area. Drained by the Marais des Cygnes and Little Osage Rivers and their tributaries, this area is characterized by low relief and moderately impermeable soils. Streamflows are poorly sustained by ground-water discharge and fluctuate widely due to climatic extremes and usage of surface-water supplies. Because ground-water supplies are generally unreliable in quantity and quality, surface water is used to meet most water requirements in the study area. Primary used of surface waters are for domestic supplies, maintenance of wildlife and recreational areas, and cooling needs at LaCygne Power Plant. The prevailing chemical type of the natural streamflow is calcium bicarbonate, with concentrations of dissolved solids generally less than 500 milligrams per liter and pH near neutral. Additional streamflow and water-quality data are needed to evaluate the premining characteristics of and the anticipated changes in the hydrologic environment as strip mining proceeds within the study area. A network of data-collection stations and a sampling scheme have been established to acquire this additional information. (USGS)

  5. Desulfurization of coal by pyrolysis and hydropyrolysis with addition of KOH/NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Quanrun Liu; Haoquan Hu; Shengwei Zhu; Qiang Zhou; Wenying Li; Xianyong Wei; Kechang Xie [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2005-08-01

    In this paper, a two-step desulfurization process for high-sulfur coal was investigated. Two Chinese coals with the addition of 10 wt % potassium hydroxide or sodium hydroxide were pyrolyzed under an atmosphere of nitrogen or hydrogen in a fixed-bed reactor at 600{sup o}C, and then the obtained chars were washed with hot water. The results indicated that, without the addition of an alkali component, the sulfur removal of these two coals by pyrolysis and hydropyrolysis is {approximately}40%-50% and the sulfur content of chars is reduced only slightly, in comparison with the original coals; with the addition of 10 wt % potassium hydroxide or sodium hydroxide into the original coals and the chars being washed with hot water, the sulfur removal is {approximately}70%-80% and the sulfur content in chars is reduced dramatically. The combustion behavior of chars was also investigated, using thermogravimetric analysis. The results showed that those chars that had an added alkali component and were subjected to water-washing were more reactive and can be burned more easily than those without added alkali, which was also confirmed by a kinetics analysis of char combustion. 21 refs., 3 figs., 6 tabs.

  6. Report on investigations in fiscal 2000 on the projects to support introduction of environment friendly coal utilization system. Green helmet project for briquette production plant - Mae Moh coal mine, Thailand; 2000 nendo kankyo chowagata sekitan riyo system donyu shien jigyo chosa hokokusho. Briquette seizo setsubi ni kakawaru green helmet jigyo (Thai koku Mae Moh tanko)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This Green Helmet Project is intended to suppress generation of environment polluting substances in association with coal utilization in Thailand by demonstrating and improving the proliferation infrastructure for the clean coal technology to be used widely in Thailand. The project is also intended to serve for stabilized assurance of energies for Japan. The demonstration project related to briquette manufacturing facilities executed as one of the 'Projects to support introduction of environment friendly coal utilization system' is intended to manufacture at low cost a briquette which is low in odor, free of smoke, and suppressed largely of sulfur oxide generation. The briquette is made by adding clayish minerals, sulfur, a fixing agent and a binder into brown coal being a low grade coal. The project implements proliferation of the technology to reduce environmental load associated with coal utilization in developing countries according to the situation and needs of the counterpart countries. The present project has performed the site surveys and guidance of operation and maintenance techniques as follow-up works of the demonstration project having been completed by cooperation between Japan and Thailand. It is considered that what had been intended in the beginning has been achieved sufficiently. (NEDO)

  7. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  8. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  9. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view

    Energy Technology Data Exchange (ETDEWEB)

    Kronbauer, Marcio A. [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Izquierdo, Maria [School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL (United Kingdom); Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083 (China); Waanders, Frans B. [School of Chemical and Minerals Engineering, North West University (Potchefstroom campus), Potchefstroom 2531 (South Africa); Wagner, Nicola J. [School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg (South Africa); Mastalerz, Maria [Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Catarinense Institute of Environmental Research and Human Development, IPADHC, Capivari de Baixo, Santa Catarina (Brazil); Taffarel, Silvio R.; Bizani, Delmar [Centro Universitário La Salle, Mestrado em Avaliação de Impactos Ambientais em Mineração, Victor Barreto, 2288 Centro, 92010-000 Canoas, RS (Brazil); and others

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO{sub 3} versus Al{sub 2}O{sub 3} determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates. - Highlights: • Coal waste geochemisty can provide increased environmental information in coal-mining areas. • Oxidation is the major process for mineral transformation in coal ashes. • The electron bean methodology has been applied to investigate neoformed minerals.

  10. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F. [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria); Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Heilmann, Jens; Heumann, Klaus G. [Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2007-10-15

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for {sup 35}Cl{sup +} to more than 6 x 10{sup 5} cps for {sup 238}U{sup +} for 1 {mu}g of trace element per gram of coal sample. Detection limits vary from 450 ng g{sup -1} for chlorine and 18 ng g{sup -1} for sulfur to 9.5 pg g{sup -1} for mercury and 0.3 pg g{sup -1} for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  11. Low-shear rheology and sedimentation stability of coal-oil dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, P. R.; Davies, J. M.; Jones, T. E.R.

    1984-10-15

    Stable coal-oil mixtures can be prepared by grinding coal particles in fuel oil. These products have been prepared by the British Petroleum Company plc and are referred to as Coal-Oil Dispersions (COD). One of the major problems associated with the production of DOD is the rapid assessment of the length of time the coal particles are likely to remain in suspension under a particular set of storage conditions. This paper describes a number of measurements of the low-shear rheology and sedimentation stability of a series of CODs prepared by grinding two types of coal in two different fuel oils. The results suggest that two types of COD are possible. One type exhibits complex rheological properties at low shear rates and does not produce a coal sediment, even after prolonged storage at 80/sup 0/C under dynamic conditions. The other exhibits near Newtonian behaviour and appears to form a sedimented layer of coal during storage.

  12. Advanced Byproduct Recovery: Direct Catalytic Reduction of Sulfur Dioxide to Elemental Sulfur.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    More than 170 wet scrubber systems applied, to 72,000 MW of U.S., coal-fired, utility boilers are in operation or under construction. In these systems, the sulfur dioxide removed from the boiler flue gas is permanently bound to a sorbent material, such as lime or limestone. The sulfated sorbent must be disposed of as a waste product or, in some cases, sold as a byproduct (e.g. gypsum). Due to the abundance and low cost of naturally occurring gypsum, and the costs associated with producing an industrial quality product, less than 7% of these scrubbers are configured to produce usable gypsum (and only 1% of all units actually sell the byproduct). The disposal of solid waste from each of these scrubbers requires a landfill area of approximately 200 to 400 acres. In the U.S., a total of 19 million tons of disposable FGD byproduct are produced, transported and disposed of in landfills annually. The use of regenerable sorbent technologies has the potential to reduce or eliminate solid waste production, transportation and disposal. In a regenerable sorbent system, the sulfur dioxide in the boiler flue gas is removed by the sorbent in an adsorber. The S0{sub 2}s subsequently released, in higher concentration, in a regenerator. All regenerable systems produce an off-gas stream from the regenerator that must be processed further in order to obtain a salable byproduct, such as elemental sulfur, sulfuric acid or liquid S0{sub 2}.

  13. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  14. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  15. Progress and performance of on-line analyzers of coal

    International Nuclear Information System (INIS)

    Spencer, C.M.; Brown, D.R.; Gozani, T.; Bozorgmanesh, H.; Bernatowicz, H.; Tassicker, O.J.; Karlson, F.

    1982-01-01

    This paper describes the past year's progress in the laboratory testing of the most comprehensive Nucoalyzer, the CONAC, and the performance of a Nucoalyzer-Sulfurmeter in special field tests. Previous papers and presentations provide more detailed background information. The near real-time analysis provided by a Nucoalyzer can be used in a variety of strategies to optimize efficiency of coal use. Nucoalyzers can be used to monitor coal deliveries and achieve uniformity in coal storage and recovery. In a coal cleaning plant, on-line analysis with a Nucoalyzer can lead to optimum Btu recovery while meeting specifications for the washed coal. A Nucoalyzer can monitor the blending of different coals to maintain a key cosntituent such as sulfur below a specified level, or can predict sulfur dioxide emissions, allowing feed-forward control to gas scrubbers and precipitators. Variability in coal feed to the boiler can lead to gross changes in thermodynamic efficiency in combustion. In addition, fouling and slagging incidents due to poor coal quality cause costly boiler shutdowns and maintenance. Nucoalyzer monitoring of key constituents and Btu in the coal feed allows operators to adjust boiler parameters for increased efficiency. To summarize, the primary advantages of Nucoalyzers relate to their ability to quickly identify changes in coal composition so that adjustments can be made in a timely manner to accommodate these changes in the process being monitored. Nucoalyzers are the only instruments available that can monitor the coal (for ash, Btu, sulfur, etc.) on-line and provide real-time continuous results. One Nucoalyzer is already working in the field, and by the time of the next Symposium we will have had performance reports on two more

  16. Research on novel coal conversion technology for energy and environment in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    T. Takarada [Gunma University (Japan)

    2003-07-01

    In the 21st century, more efficient coal conversion technology will be needed. In this paper, novel gasification, pyrolysis and desulfurization processes using active catalysts are introduced. In particular, the application of ion-exchanged metals in brown coal to coal conversion technology is featured in this study. Other topics discussed include: Catalysis of mineral matter in coal; Catalytic effectiveness of Ni and K{sub 2}CO{sub 3} for various coals; Direct production of methane from steam gasification; Preparation of active catalysts from NaCl and KCl using brown coal; Gasification of high rank coal by mixing K-exchanged brown coal; Recovery of sulfur via catalytic SO{sub 2} gasification of coal char; Research on novel coal conversion technology BTX production by hydropyrolysis of coal in PPFB using catalyst; High BTU gas production by low-temperature catalytic hydropyrolysis of coal; and Ca-exchanged brown coal as SO{sub 2} and H{sub 2}S sorbents. 12 refs., 17 figs.

  17. Fiscal 1995 survey report on the feasibility study of the environmentally friendly type coal utilization system. Feasibility study of the environmentally friendly type coal utilization system in Thailand; Kankyo chowagata sekitan riyo system kanosei chosa. Tai ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The paper surveyed the present situation and future trend of economy, energy supply/demand, coal production/distribution/utilization and the environmental effects in Thailand. The survey on the coal utilization and its environmental effects was partially requested of the environmental research institute in Thailand. The amount of coal utilization in Thailand rapidly increased to nearly four times as large as that ten years ago mainly in terms of domestic lignite under the government`s policy on expansion of the domestic energy use. However, most of this domestic lignite is low-grade coal with low calories and high sulfur content, and the use of it was rapidly increased mostly in power generation sector without no adequate environmental measures taken. This caused an environmental problem on air pollution due to sulfur oxides at Mae Moh power plant in the north several years ago, and the damages to the regional residents, etc. were given much publicity by journalism and developed the social problem. Accordingly, Thai people are now critical of the coal resource exploration and the coal use expansion. Under the circumstances, the Ministry of Industry and the energy related ministries/offices are obliged to review their development/promotion plans. 84 figs., 99 tabs.

  18. Light-oil recovery in the low-temperature carbonization of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Jahn, A

    1944-01-01

    The various methods used for low-temperature carbonization of brown coal are reviewed as well as the effect of the method of carbonization on the properties and yields of light oil and tar. The composition of the light oil varied considerably with the coal and the method used. Light oil from the low-temperature distillation of brown coal contains relatively high contents of unsaturated hydrocarbons and variable content of phenols and S compounds, depending on the coal. Light oil is best recovered from low-temperature-carbonization gas by oil scrubbing; the use of active C would require preliminary removal of S compounds, which would be quite expensive.

  19. Direct liquefaction of low-rank coals under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braun, N.; Rinaldi, R. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2013-11-01

    Due to decreasing of petroleum reserves, direct coal liquefaction is attracting renewed interest as an alternative process to produce liquid fuels. The combination of hydrogen peroxide and coal is not a new one. In the early 1980, Vasilakos and Clinton described a procedure for desulfurization by leaching coal with solutions of sulphuric acid/H{sub 2}O{sub 2}. But so far, H{sub 2}O{sub 2} has never been ascribed a major role in coal liquefaction. Herein, we describe a novel approach for liquefying low-rank coals using a solution of H{sub 2}O{sub 2} in presence of a soluble non-transition metal catalyst. (orig.)

  20. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  1. Pyrolysis at low-temperature of Mequinenza coal

    Energy Technology Data Exchange (ETDEWEB)

    Chorower, C

    1940-01-01

    In the low-temperature distillation of Mequinenza coal 13 to 14.5% of tar was obtained in the carbonizing unit and 10.7 to 12.0% in the rotary drum with or without steam. The yield of semicoke was 65 to 70.5%; the gas production was 91 to 109 liter per kilogram. The tar was distilled with and without steam, the fractions were freed from phenol and paraffin and purified by treatment with H/sub 2/SO/sub 4/. The coal tested was in many respects more like mineral coal than soft coal (thus, the liquid tar was of higher specific gravity, was free from resins and lower in paraffin and higher in phenol than in the case of soft coal). The pitch content of the tar was very slight, the yield of viscous oils was high. By distillation with steam 32% of benzine was obtained. Of the high S content established in the coking 8.5% was present in the benzine, 6.3% in the motor oil and 5.6% in the lubricating oil from the tar.

  2. World coal prices and future energy demand

    International Nuclear Information System (INIS)

    Bennett, J.

    1992-01-01

    The Clean Air Act Amendments will create some important changes in the US domestic steam coal market, including price increases for compliance coal by the year 2000 and price decreases for high-sulfur coal. In the international market, there is likely to be a continuing oversupply which will put a damper on price increases. The paper examines several forecasts for domestic and international coal prices and notes a range of predictions for future oil prices

  3. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  4. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  5. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  6. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model

    International Nuclear Information System (INIS)

    Song, Huijuan; Liu, Guangrui; Wu, Jinhu

    2016-01-01

    Highlights: • Types of carbon in coal structure were investigated by curve-fitted "1"3C NMR spectra. • The work related pyrolysis characteristics and kinetics with coal structure. • Pyrolysis kinetics of low rank coals were studied by DAEM with Miura integral method. • DAEM could supply accurate extrapolations under relatively higher heating rates. - Abstract: The work was conducted to investigate pyrolysis characteristics and kinetics of low rank coals relating with coal structure by thermogravimetric analysis (TGA), the distributed activation energy model (DAEM) and solid-state "1"3C Nuclear Magnetic Resonance (NMR). Four low rank coals selected from different mines in China were studied in the paper. TGA was carried out with a non-isothermal temperature program in N_2 at the heating rate of 5, 10, 20 and 30 °C/min to estimate pyrolysis processes of coal samples. The results showed that corresponding characteristic temperatures and the maximum mass loss rates increased as heating rate increased. Pyrolysis kinetics parameters were investigated by the DAEM using Miura integral method. The DAEM was accurate verified by the good fit between the experimental and calculated curves of conversion degree x at the selected heating rates and relatively higher heating rates. The average activation energy was 331 kJ/mol (coal NM), 298 kJ/mol (coal NX), 302 kJ/mol (coal HLJ) and 196 kJ/mol (coal SD), respectively. The curve-fitting analysis of "1"3C NMR spectra was performed to characterize chemical structures of low rank coals. The results showed that various types of carbon functional groups with different relative contents existed in coal structure. The work indicated that pyrolysis characteristics and kinetics of low rank coals were closely associated with their chemical structures.

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  8. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  9. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  10. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  11. Tar bases in low-temperature coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, S; Ueno, H; Yokoyama, H

    1951-01-01

    Tar bases were extracted from three fractions, that boil below 260/sup 0/ at 260/sup 0/ to 280/sup 0/, and 280/sup 0/ to 330/sup 0/, respectively, of the low-temperature tar obtained by the carbonization of Ube coal in a Koppers' vertical retort at approximately 750/sup 0/. These were divided, respectively, into three groups, acetate-forming amine, HCl salt-forming bases (I), and CHCl/sub 3/-soluble bases (II), and further fractionally distilled. From the physical and chemical properties of the fractions thus obtained, it was concluded that low-temperature coal tar contained no low boiling pyridine homologues and that, besides higher homologues of pyridine, nonaromatic, more saturated, and less basic compounds of larger atomic weight and smaller refractive index, such as derivatives of pyrrole and indole, also existed as in crude petroleum.

  12. Research on Improving Low Rank Coal Caking Ability by Moderate Hydrogenation

    Science.gov (United States)

    Huang, Peng

    2017-12-01

    The hydrogenation test of low metamorphic coal was carried out by using a continuous hydrogen reactor at the temperature of (350-400)°C and the initial hydrogen pressure of 3 ~ 6Mpa. The purpose of the experiment was to increase the caking property, and the heating time was controlled from 30 to 50min. The test results show that the mild hydrogenation test, no adhesion of low metamorphic coal can be transformed into a product having adhesion, oxygen elements in coal have good removal, the calorific value of the product has been improved significantly and coal particles during pyrolysis, swelling, catalyst, hydrogenation, structural changes and the combined effects of particles a new component formed between financial and is a major cause of coal caking enhancement and lithofacies change, coal blending test showed that the product can be used effectively in the coking industry.

  13. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.Z.; Fan, J.S.; Qin, P.; Niu, H.Y. [Hebei University of Engineering, Handan (China)

    2009-02-15

    This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump.

  14. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  15. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  16. Health Risk Assessment of Nitrogen Dioxide and Sulfur Dioxide Exposure from a New Developing Coal Power Plant in Thailand

    Directory of Open Access Journals (Sweden)

    Tin Thongthammachart

    2017-07-01

    Full Text Available Krabi coal-fired power plant is the new power plant development project of the Electricity Generating Authority of Thailand (EGAT. This 800 megawatts power plant is in developing process. The pollutants from coal-fired burning emissions were estimated and included in an environmental impact assessment report. This study aims to apply air quality modeling to predict nitrogen dioxide (NO2 and sulfur dioxide (SO2 concentration which could have health impact to local people. The health risk assessment was studied following U.S. EPA regulatory method. The hazard maps were created by ArcGIS program. The results indicated the influence of the northeast and southwest monsoons and season variation to the pollutants dispersion. The daily average and annual average concentrations of NO2 and SO2 were lower than the NAAQS standard. The hazard quotient (HQ of SO2 and NO2 both short-term and long-term exposure were less than 1. However, there were some possibly potential risk areas indicating in GIS based map. The distribution of pollutions and high HI values were near this power plant site. Although the power plant does not construct yet but the environment health risk assessment was evaluated to compare with future fully developed coal fire plant.

  17. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    Science.gov (United States)

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  18. Dew point measurements of flue gases in steam generators with brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W.

    1980-01-01

    This paper examines empirical data on sulfuric acid condensation and resulting internal corrosion in brown coal fired steam generators. Due to the high sulfur content in brown coal (0.5% to 5.0%) and relative short duration of the gases in the combustion chamber the concentrations of sulfur trioxide present in the flue gases can condense at the heat exchange surfaces of the steam generators. A number of diagrams show sulfuric acid dew point temperatures depending on brown coal sulfur content, the influence of combustion air supply on the dew point, and condensing speed and the rate of corrosion in relation to different heat exchange surface temperatures. The conclusion is made that a five-fold increase in corrosion can be caused by a 10 K higher flue gas dew point, a 5 K cooling of heating surfaces can also cause heavy corrosion at a certain dew point. Maximum corrosion results at 20 to 50 K differences between flue gas dew point and heat exchange surfaces. Optimum operation of steam generators with minimal internal corrosion requires the consideration of flue gas and heating surface temperatures as well as flue gas sulfur acid dew points. (10 refs.) (In German)

  19. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  20. IEA low NOx combustion project Stage III. Low NOx combustion and sorbent injection demonstration projects. V.2

    International Nuclear Information System (INIS)

    Payne, R.

    1991-03-01

    This report summarizes the main results from an IES project concerning the demonstration of low-NO x combustion and sorbent injection as techniques for the control of NO x and SO x emissions from pulverized coal fired utility boilers. The project has built upon information generated in two previous stages of activity, where NO x and SO x control processes were evaluated at both fundamental and pilot-scales. The concept for this stage of the project was for a unique collaboration, where the participating countries (Canada, Denmark and Sweden, together with the United States) have pooled information from full scale boiler demonstrations of low-NO x burner and sorbent injection technologies, and have jointly contributed to establishing a common basis for data evaluation. Demonstration testing was successfully carried out on five wall-fired commercial boiler systems which ranged in size from a 20 MW thermal input boiler used for district heating, up to a 300 MW electric utility boiler. All of these units were fired on high-volatile bituminous coals with sulfur contents ranging from 0.6-3.2 percent. At each site the existing burners were either modified or replaced to provide for low-NO x combustion, and provisions were made to inject calcium based sorbent materials into the furnace space for SO 2 emission control. The results of sorbent injection testing showed moderate levels of SO 2 removal which ranged from approximately 15 to 55 percent at an injected calcium to sulfur molar ratio to 2.0 and with boiler operation at nominal full load. Sulfur capture was found to depend upon the combined effects of parameters such as: sorbent type and reactivity; peak sorbent temperature; coal sulfur content; and the thermal characteristics of the boilers. (8 refs., 58 figs., 6 tabs.)

  1. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  2. Natural desulfurization in coal-fired units using Greek lignite.

    Science.gov (United States)

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  3. Modified sulfur cement solidification of low-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended.

  4. Modified sulfur cement solidification of low-level wastes

    International Nuclear Information System (INIS)

    1985-10-01

    This topical report describes the results of an investigation on the solidification of low-level radioactive wastes in modified sulfur cement. The work was performed as part of the Waste Form Evaluation Program, sponsored by the US Department of Energy's Low-Level Waste Management Program. Modified sulfur cement is a thermoplastic material developed by the US Bureau of Mines. Processing of waste and binder was accomplished by means of both a single-screw extruder and a dual-action mixing vessel. Waste types selected for this study included those resulting from advanced volume reduction technologies (dry evaporator concentrate salts and incinerator ash) and those which remain problematic for solidification using contemporary agents (ion exchange resins). Process development studies were conducted to ascertain optimal process control parameters for successful solidification. Maximum waste loadings were determined for each waste type and method of processing. Property evaluation testing was carried out on laboratory scale specimens in order to compare with waste form performance for other potential matrix materials. Waste form property testing included compressive strength, water immersion, thermal cycling and radionuclide leachability. Recommended waste loadings of 40 wt. % sodium sulfate and boric acid salts and 43 wt. % incinerator ash, which are based on processing and performance considerations, are reported. Solidification efficiencies for these waste types represent significant improvements over those of hydraulic cements. Due to poor waste form performance, incorporation of ion exchange resin waste in modified sulfur cement is not recommended

  5. Use of Green Mussel Shell as a Desulfurizer in the Blending of Low Rank Coal-Biomass Briquette Combustion

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2016-08-01

    Full Text Available Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer oradsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS, also known as bio-briquette. The ratio ofcoal to PKS in the briquette was 90:10 (wt/wt. The influence of green mussel shell contents and combustion temperature were examined to prove the possible use of that materialas a desulfurizer. The ratio of Ca to S (Ca = calcium content in desulfurizer; S = sulfur content in briquette werefixed at 1:1, 1.25:1, 1.5:1, 1.75:1, and 2:1 (mole/mole. The burning (or desulfurization temperature range was 300-500 °C; the reaction time was 720 seconds and the air flow rate was 1.2 L/min. The results showed that green mussel shell can be introduced as a desulfurizer in coal briquette or bio-briquette combustions. The desulfurization process using that desulfurizer exhibited the first order reaction and the highest average efficiency of 84.5%.

  6. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.E.; Hedenhag, J.G. [AirPol Inc., Teterboro, NJ (United States); Marchant, S.K.; Pukanic, G.W. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Norwood, V.M.; Burnett, T.A. [Tennessee Valley Authority, Chattanooga, TN (United States)

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, air toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.

  7. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-20

    ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also

  8. JPRS Report, Science & Technology, China: Energy

    Science.gov (United States)

    1988-06-29

    to build a 150-meter dam or a 185-meter dam for the Three Gorges Project. The reason given by the MWREP was: We want to " select a dam water level...34The initial selection of a dam water level does not mean that the Three Gorges Project will be built. The dam water level initially decided on will...25 like inadequate knowledge, inappropriate planning, management systems, and so on. I. Strippable Coal Resources China has proven strippable

  9. Paleocene coal deposits of the Wilcox group, central Texas

    Science.gov (United States)

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Schultz, Adam C.; Nichols, Douglas J.; Swanson, Sharon M.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    Coal deposits in the Wilcox Group of central Texas have been regarded as the richest coal resources in the Gulf Coastal Plain. Although minable coal beds appear to be less numerous and generally higher in sulfur content (1 percent average, as-received basis; table 1) than Wilcox coal deposits in the Northeast Texas and Louisiana Sabine assessment areas (0.5 and 0.6 percent sulfur, respectively; table 1), net coal thickness in coal zones in central Texas is up to 32 ft thick and more persistent along strike (up to 15 mi) at or near the surface than coals of any other Gulf Coast assessment area. The rank of the coal beds in central Texas is generally lignite (table 1), but some coal ranks as great as subbituminous C have been reported (Mukhopadhyay, 1989). The outcrop of the Wilcox Group in central Texas strikes northeast, extends for approximately 140 mi between the Trinity and Colorado Rivers, and covers parts of Bastrop, Falls, Freestone, Lee, Leon, Limestone, Milam, Navarro, Robertson, and Williamson Counties (Figure 1). Three formations, in ascending order, the Hooper, Simsboro, and Calvert Bluff, are recognized in central Texas (Figure 2). The Wilcox Group is underlain conformably by the Midway Group, a mudstone-dominated marine sequence, and is overlain and scoured locally by the Carrizo Sand, a fluvial unit at the base of the Claiborne Group.

  10. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Science.gov (United States)

    2010-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  11. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  12. Development of advanced coal cleaning process; Kodo sekitan kaishitsu gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S [Center for Coal Utilization, Japan, Tokyo (Japan); Akimoto, A; Yamashita, T [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    This paper aims to develop a clean coal production process which excellently removes environmental pollutant, is low-costed, and need no particular systems for distribution of products. The result of the development was described paying attention to column flotation which is a technology to high-efficiently select particulate regions, particulate heavy media cyclone, magnetic separation, and the basic design of the process into which those above were integrated. The two-stage selection process, which is an integration of column flotation and particulate heavy media cyclone into the conventional coal preparation equipment, can produce low-ash clean coal at high separation efficiency and also suppress the rise in processing cost. This process was also effective for removal of sulfur content and trace metal elements. The use of clean coal at power plant can be effective for not only the reduction in ash treatment amount, but the aspect of boiler operation characteristics such as heat transfer efficiency of boiler furnace wall, ash related troubles, loads of electrostatic precipitator, loads of flue gas desulfurization facilities. 17 figs., 5 tabs.

  13. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone

    Energy Technology Data Exchange (ETDEWEB)

    Do Kim, S.; Woo, K.J.; Jeong, S.K.; Rhim, Y.J.; Lee, S.H. [Korean Institute for Energy Research, Taejon (Republic of Korea). Clean Coal Technological Research Center

    2008-07-15

    Present study was conducted for the purpose of producing low ash coal from LRC (low rank coals) such as lignite and sub-bituminous coal through thermal extraction using polar solvent. Extraction from bituminous coal was also investigated for comparison. NMP as a polar solvent was used. The ratio of coal to solvent was adjusted as 1:10. Experimental conditions were established which include the extraction temperature of 200-430{sup o}C, initial applied pressure of 1-20 bar and extraction time of 0.5-2 hr were used. Extraction yield and ash content of extracted and residual coal were measured. The extraction yield increased with the increase of extraction temperature, and the ash content of extracted coal decreased below 0.4% at 400{sup o}C from the raw coal samples that have the ash contents of 4-6%. According to the analysis of experiments results, fixed carbon and calorific value increased, and H/C and O/C decreased.

  14. Sulfur dioxide emissions and market effects under the Clean Air Act Acid Rain Program

    International Nuclear Information System (INIS)

    Zipper, C.E.; Gilroy, L.

    1998-01-01

    The Clean Air Act Amendments of 1990 (CAAA90) established a national program to control sulfur dioxide (SO 2 ) emissions from electricity generation. CAAA90's market-based approach includes trading and banking of SO 2 -emissions allowances. The paper presents an analysis of data describing electric utility SO 2 emissions in 1995, the first year of the program's Phase I, and market effects over the 1990-95 period. Fuel switching and flue-gas desulfurization were the dominant means used in 1995 by targeted generators to reduce emissions to 51% of 1990 levels. Flue-gas desulfurization costs, emissions allowance prices, low-sulfur coal prices, and average sulfur contents of coals shipped to electric utilities declined over the 1990-95 period. Projections indicate that 13-15 million allowances will have been banked during the programs' Phase I, which ends in 1999, a quantity expected to last through the first decade of the program's stricter Phase II controls. In 1995, both allowance prices and SO 2 emissions were below pre-CAAA90 expectations. The reduction of SO 2 emissions beyond pre-CAAA90 expectations, combined with lower-than-expected allowance prices and declining compliance costs, can be viewed as a success for market-based environmental controls. 21 refs., 6 figs., 3 tabs

  15. Coal: an economic source of energy

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2001-01-01

    Coal, in spite its abundance availability in Pakistan, is a neglected source of energy. Its role as fuel is not more than five percent for the last four decades. Some of the coal, mined, in used as space heating in cold areas of Pakistan but more than 90% is being used in brick kilns. There are 185 billion tonnes of coal reserves in the country and hardly 3 million tonnes of coal is, annually, mined. Lakhra coal field is, presently, major source of coal and is considered the largest productive/operative coal field of Pakistan. It is cheaper coal compared to other coals available in Pakistan. As an average analysis of colas of the country, it shows that most of the coals are lignitic in nature with high ash and sulfur content. The energy potential is roughly the same but the cost/ton of coal is quite different. It may be due to methods of mining. There should be some criteria for fixing the cost of the coal. It should be based on energy potential of unit mass of coal. (author)

  16. Monitoring coal conversion processes by IR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hobert, H.; Kempe, J.; Stephanowitz, H. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic))

    1990-01-01

    Explains application of infrared spectroscopy combined with multivariate data analysis by an on-line computer system for assessing coal quality and suitability of brown coal for conversion processes. Coal samples were pelletized under addition of KBr and analyzed using an IRF 180 Fourier transform spectrometer in the spectral range of 400 to 2,000 cm{sup -1}. Components of spectra are presented; the oil yield from coal hydrogenation is calculated by regression analysis. Covariance spectra of carbon, organic hydrogen and sulfur are shown. It is concluded that the field of application for the method includes industrial coal liquefaction, gasification as well as briquetting and coking. 8 refs.

  17. Sulfur dioxide concentration measurements in the vicinity of the Albert Funk mining and metallurgical plant complex

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M

    1976-01-01

    This article discusses the ambient air concentration of sulfur dioxide in the area of Freiberg, GDR. The emission of sulfur dioxide results for the most part from brown coal combustion in heat and power plants and in metallurgical plants. Sulfur dioxide emission from neighboring industrial centers such as Dresden and North Bohemian towns affects the Freiburg area to some extent. The use of brown coal in household heating contributes an average of 50 kg of sulfur dioxide emission per coal burning household annually. A total of 1260 measurements at 28 points in the vicinity of Freiberg were made in the year 1972 in evaluating the concentration of sulfur dioxide present in the air. In 75% of the measurements the concentrations were below 0.15 mg/mat3, in 12% between 0.15 and 0.2 mg/mat3, in 7% between 0.2 and 0.3 mg/mat3 and in 6% between 0.3 and 0.5 mg/mat3. The results are described as average industrial pollution. The influence of air temperature, wind velocity, fog, season and time of day are also discussed. (4 refs.) (In German)

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  19. Calculating the flue gas dew point for raw brown coal fired steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Schinkel, W.

    1977-01-01

    The paper analyzes parameters influencing the sulfuric acid dew point in flue gas of steam generators. Sulfur content and alkaline earths content in the fuel air ratio during combustion, fly ash content in the flue gas (which absorbs sulfur dioxide and sulfur trioxide) and combustion conditions in steam generators are relevant parameters in the combustion process. A thermodynamic and reaction kinetic calculation of the sulfuric acid dew point is, however, not yet possible. A statistical evaluation of dew point measurements in steam generators is, therefore, employed. Various diagrams show results of dew point measurements carried out at generators with steam capacities ranging from 40 to 660 t/h, which demonstrate relations of these parameters to flue gas dew points, in particular the relative sulfur content (sulfur content in the raw brown coal compared to coal ash content and alkaline earths content). A function is derived for the conversion of fuel sulfur to sulfur trioxide. A diagram presents the relation of the flue gas dew point to partial pressures of sulfuric acid and steam. Direct calculation of the flue gas dew point was achieved by the proposed method. It is applied in steam generator design. (17 refs.)

  20. Interim report on Tanjung Enim IV coal exploration project. South Arahan area (1998/1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The exploration project in Indonesia covered geological mapping, drilling, geophysical logging, underground water pumping tests, vertical seismic profiling (VSP), and seismic reflection survey. Ten boreholes were drilled. Moreover, coal property analysis, geotechnical rock test, geochemical analysis, and the like were conducted by examining core specimens sampled from the boreholes. It was found that there are three main coal beds which continuously extend to the two ends of the synclinic structure. It was also found that there is a 6m-thick coal bed 200m further below the three main coal beds, and it is estimated to produce approximately 6,000kcal/kg. Coal from two of the three beds produces 5,000kcal/kg, containing but a little ash and sulfur. Coal from the third includes 1.17% of sulfur. Coal in all the beds is summed up, and then it is estimated that there is approximately 1,054-million tons of coal in reserve in the South Arahan area. (NEDO)

  1. Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on improving the efficiency of coal gasification; 1992 nendo sekitan gas ka no kokoritsuka ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1992 in studies on improving the efficiency of coal gasification. Three kinds of coals were gasified under the atmosphere of hydrogen, He or CO2 by using the TPR method. The sulfur removing rate varies depending on coals even under the same reaction atmosphere, and so does the degree of influence of the atmospheric gases depending on coals. Very little effect of the atmospheric gases was found on the sulfur removing rate in Taiheiyo and Wandoan coals. While Tatung coal presents the same removing rate under the atmosphere of He and CO2, it shows 1.8 times greater removing rate under the hydrogen atmosphere. Generation patterns for H{sub 2}S and COS also vary depending on coal types and atmospheric gases. Inorganic sulfur shows the same behavior in the reaction process regardless of coal type and atmosphere, but organic sulfur behaves differently. The sulfur removing rate is determined by how easily the organic sulfur can be removed, which attributes to the difference in kinds and structures of organic sulfur compounds in the coal, together with the gas generation patterns. In order to discuss gasification of char, investigations were performed on effects of coal types and heat treatment temperatures, with regard to the gasification characteristics that can be estimated from the industrial and element analyses. (NEDO)

  2. A novel self-embrittling strippable coating for radioactive decontamination based on silicone modified styrene-acrylic emulsion

    Science.gov (United States)

    Wang, Jing; Wang, Jianhui; Zheng, Li; Li, Jian; Cui, Can; Lv, Linmei

    2017-03-01

    Silicone modified styrene-acrylic emulsion and butyl acrylate were used as a main film-forming agent and an additive respectively to synthesize a self-embrittling strippable coating. The doping mass-ratio of butyl acrylate was adjusted at 0, 5%, 10%, 15%, 20%, and the results indicated the optimized doping ratio was 10%. Ca(OH)2 was used to promote the coating film self-embrittling at a moderate doping mass-ratio of 20%. The synthesized coating’s coefficients of α and β decontamination on concrete, marble, glass and stainless steel surfaces were both greater than 85%, which indicated the synthesized coating is a promising cleaner for radioactive decontamination.

  3. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  4. Center for Coal-Derived Low Energy Materials for Sustainable Construction

    Energy Technology Data Exchange (ETDEWEB)

    Jewell, Robert; Robl, Tom; Rathbone, Robert

    2012-06-30

    The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

  5. Fiscal 1995 survey of the base arrangement promotion for foreign coal import. Investigation on the policy of coal demand stabilization using low grade coal; 1995 nendo kaigaitan yunyu kiban sokushin chosa. Teihin`itan riyo ni yoru sekitan jukyu anteika hosaku ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper investigated the trend of and the needs for low grade coal utilization and the seeds of low grade coal utilization technology and studied usability of low grade coal in the future. Importance of low grade coal utilization was described in consideration of features of the Asia/Pacific area in the world coal market, and the trend of production/utilization of low grade coal was examined mostly in countries holding main low grade coals in the Asia/Pacific area. The trend of the technical development contributing to the low grade coal utilization was studied to make it contribute to the extraction of technologies which are regarded as effective in the Asia/Pacific area. A study was made of applicability of the low grade coal utilization technology corresponding to the needs for low grade coal utilization, and at the same time, a study was made of the effect on the coal supply/demand in the Asia/Pacific area in case the low grade coal utilization is promoted helped by the study. Focusing on technical cooperation relating to clean coal technology, a study was conducted of the trend of international cooperation in Japan and various overseas countries and the trend of new cooperation in private sectors, and a discussion was made on how Japan should act toward promotion of low grade coal utilization. 12 figs., 91 tabs.

  6. Studies on the effect of coal particle size on biodepyritization of high sulfur coal in batch bioreactor

    Directory of Open Access Journals (Sweden)

    Singh Sradhanjali

    2015-03-01

    Full Text Available The moderate thermophilic mix culture bacteria were used to depyritize the Illinois coal of varying particle sizes (-100 μm, 100-200 μm, +200 μm. Mineral libration analysis showed the presence of pyrite along with other minerals in coal. Microbial depyritization of coal was carried out in stirred tank batch reactors in presence of an iron-free 9K medium. The results indicate that microbial depyritization of coal using moderate thermophiles is an efficient process. Moreover, particle size of coal is an important parameter which affects the efficiency of microbial depyritization process. At the end of the experiment, a maximum of 75% pyrite and 66% of pyritic sulphur were removed from the median particle size. The XRD analysis showed the absence of pyrite mineral in the treated coal sample. A good mass balance was also obtained with net loss of mass ranging from 5-9% showing the feasibility of the process for large scale applications.

  7. Hot-Gas Desulfurization with Sulfur Recovery

    International Nuclear Information System (INIS)

    Portzer, Jeffrey W.; Damle, Ashok S.; Gangwal, Santosh K.

    1997-01-01

    The objective of this study is to develop a second generation HGD process that regenerates the sulfided sorbent directly to elemental sulfur using SO 2 , with minimal consumption of coal gas. The goal is to have better overall economics than DSRP when integrated with the overall IGCC system

  8. Importance of low-temperature distillation of coal for German fuel economics

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, F

    1942-01-01

    Improved processes are available to give low-temperature distillation products economic importance. Low-temperature distillation is limited to the utilization of high-volatile nut coals and briquets. The coke formed can be used as a smokeless fuel, and the tar directly as a fuel oil. Phenols can be extracted, in order to work up the residue into fuel oil and motor fuel. Large deposits of coal in Upper Silesia and in the Saar District are suitable for low-temperature distillation.

  9. Fiscal 1994 survey of the base arrangement promotion for foreign coal import. Investigation on the trend of coal demand in Central and South American countries; 1994 nendo kaigaitan kiban seibi sokushin chosa. Chunanbei shokoku ni okeru sekitan jukyu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Focusing on the present status and future of coal demand in Central/South American countries and the coal trade between Central/South American countries and the U.S., the paper described the present status and future of coal demand there and the effects on Japan. Export of Colombian coal will amount to approximately 30-35 million tons in 2000. Venezuelan coal 10-20 million tons. The U.S. imported good-quality general coal low in sulfur content, 3.08 tons from Columbia and 1.39 tons from Venezuela. Coal export from the U.S. to Central/South America was mostly of raw material coal, 5 million tons in 1993 and 5.39 million tons in 1994. General coal was 180,000 tons. The U.S. has no plans of increasing US coal export to Central/South America. But it is safely predicted that Columbia and Venezuela will increase coal export to Europe in the future. It will bring about decrease in export of US coal to Europe, which connects with increasing pressure for the coal trade amount of Japan. 21 figs., 47 tabs.

  10. CEZ utility's coal-fired power plants: towards a higher environmental friendliness

    International Nuclear Information System (INIS)

    Kindl, V.; Spilkova, T.; Vanousek, I.; Stehlik, J.

    1996-01-01

    Environmental efforts of the major Czech utility, CEZ a.s., are aimed at reducing air pollution arising from electricity and heat generating facilities. There are 3 main kinds of activity in this respect: phasing out of coal fired power plants; technological provisions to reduce emissions of particulate matter, sulfur dioxide, and nitrogen oxides from those coal fired units that are to remain in operation after 1998; and completion of the Temelin nuclear power plant. In 1995, emissions of particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide from CEZ's coal fired power plants were 19%, 79%, 59%, and 60%, respectively, with respect to the situation in 1992. The break-down of electricity generation by CEZ facilities (in GWh) was as follows in 1995: hydroelectric power plants 1673, nuclear power plants 12230, coal fired power plants without desulfurization equipment 30181, and coal fired power plants with desulfurization equipment 2277. Provisions implemented to improve the environmental friendliness of the individual CEZ's coal fired power plants are described in detail. (P.A.). 5 tabs., 1 fig

  11. Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

  12. State coal profiles, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  13. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2013-01-01

    Highlights: • Typical Chinese lignites with various ranks are upgraded through microwave. • The pore distribution extends to micropore region, BET area and volume increase. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit weak combustion similar to Da Tong bituminous coal. • More evident effects are obtained for raw brown coal with relative lower rank. - Abstract: This study investigates the effects of microwave irradiation treatment on coal composition, pore structure, coal rank, function groups, and combustion characteristics of typical Chinese low-rank coals. Results showed that the upgrading process (microwave irradiation treatment) significantly reduced the coals’ inherent moisture, and increased their calorific value and fixed carbon content. It was also found that the upgrading process generated micropores and increased pore volume and surface area of the coals. Results on the oxygen/carbon ratio parameter indicated that the low-rank coals were upgraded to high-rank coals after the upgrading process, which is in agreement with the findings from Fourier transform infrared spectroscopy. Unstable components in the coal were converted into stable components during the upgrading process. Thermo-gravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high-temperature region, the ignition and burnout temperatures increased, and the comprehensive combustion parameter decreased. Compared with raw brown coals, the upgraded coals exhibited weak combustion characteristics similar to bituminous coal. The changes in physicochemical characteristics became more notable when processing temperature increased from 130 °C to 160 °C or the rank of raw brown coal was lower. Microwave irradiation treatment could be considered as an effective dewatering and upgrading process

  14. Advanced control - technologies for suppressing harmful emission in lignitic coal-fired power generation

    International Nuclear Information System (INIS)

    Mir, S.; Hai, S.M.A.

    2000-01-01

    The production of sufficient amount of indigenous energy is a prerequisite for the prosperity of a nation. Pakistan's energy demand far exceeds its indigenous supplies. A cursory look at the energy situation in Pakistan reveals that there is an urgent need for the development of its energy resources. In this regard, coal can play a key role if its problems of high-sulfur and high ash can be rectified through the adoption adaptation of advanced technologies, like (I) clean coal technologies, and (II) control technologies. A review on clean coal technologies for utilization of lignitic coals has already been published and the present article describes the effect of harmful emissions from the combustion of high sulfur coals, like the ones found in Pakistan and their control through advanced control technologies, to make a significant contribution in the total energy economics of Pakistan. (author)

  15. Volcanic ash in feed coal and its influence on coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O' Connor, J.T.

    2000-07-01

    The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the

  16. Fiscal 1999 report on results of joint demonstrative project for environmentally benign coal utilization system. Demonstrative project concerning coal preparation technology (China); 1999 nendo kankyo chowagata sekitan riyo system kyodo jissho jigyo seika hokokusho. Sentan gijutsu ni kakawaru jissho jigyo (Chugoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the demonstrative project for coal preparation technology, as a part of the measures against environmental pollution due to the structuring of demonstration and dissemination basis for clean coal technologies in China, The results for fiscal 1999 is reported. In the utilization of coal in China, a problem of urgency is the highly efficient selection and removal of sulfur contents in raw coal. Coal production in Chongquing City is yearly 30 million tons, of which 90% contains sulfur contents of 3% or higher. At Jinjia Colliery of Panjiang Coal and Electric Co. Ltd., Guizhou Province, a site for the present project, a number of coal seams are unsuitable for single utilization because of high sulfur contents. The coal preparation technologies to be introduced are expected to improve coal preparation efficiency and desulfurization ratio in terms of both the washability of raw coal and the accuracy of the coal washer. This is the third year of the project, with the following activities performed, namely, research/design, manufacturing/procurement of equipment, design for construction work, training of operators or the like, and documentation. The manufacturing and procurement are for such equipment as vacuum disk filter with accessories, waste water thickener, pressure filter for tailings with accessories, flocculant pump/piping, slurry tank/pump, high-shear mixer with accessories, and electric instrumentation. All the equipment arrived at the site in January, 2001. (NEDO)

  17. Standard values of fugacity for sulfur which are self-consistent with the low-pressure phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Robert A., E-mail: rob.marriott@ucalgary.ca [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada); Wan, Herman H. [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada)

    2011-08-15

    Highlights: > We have provided a method for calculating the fugacity for elemental sulfur. > Calculated sulfur fugacities can be used in sulfur equilibrium models. > The sulfur fugacities also can be used to locate the phase changes in the low-pressure phase diagram. > We have measured the 'natural' melting point of sulfur, and found it to be T = 388.5 {+-} 0.2 K. - Abstract: A method for calculating the fugacity of pure sulfur in the {alpha}-solid, {beta}-solid and liquid phase regions has been reported for application to industrial equilibrium conditions, e.g., high-pressure solubility of sulfur in sour gas. The fugacity calculations are self-consistent with the low-pressure phase diagram. As recently discussed by Ferreira and Lobo , empirical fitting of the experimental data does not yield consistent behaviour for the low-pressure phase diagram of elemental sulfur. In particular, there is a discrepancy between the vapour pressure of {beta}-solid (monoclinic) and liquid sulfur at the fusion temperature. We have provided an alternative semi-empirical approach which allows one to calculate values of the fugacity at conditions removed from the conditions of the pure sulfur phase transitions. For our approach, we have forced the liquid vapour pressure to equal the {beta}-solid vapour pressure at the {beta}-l-g triple point corresponding to the 'natural' fusion temperature for {beta}-solid. Many studies show a higher 'observed' fusion temperature for elemental sulfur. The non-reversible conditions for 'observed' fusion conditions for elemental sulfur result from a kinetically hindered melt which causes some thermodynamic measurements to be related to a metastable S{sub 8} liquid. We have measured the 'natural' fusion temperature, T{sub fus}{sup {beta}}(exp.)=(388.5{+-}0.2)K at p = 89.9 kPa, which is consistent with literature fusion data at higher-pressures. Using our semi-empirical approach, we have used or found the

  18. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  19. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, David M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Guenther, Chris P. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shekhawat, Dushyant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); VanEssendelft, Dirk T. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Means, Nicholas C. [AECOM Technology Corp., Oak Ridge, TN (United States)

    2015-04-23

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processing simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion

  20. Greening coal: breakthroughs and challenges in carbon capture and storage.

    Science.gov (United States)

    Stauffer, Philip H; Keating, Gordon N; Middleton, Richard S; Viswanathan, Hari S; Berchtold, Kathryn A; Singh, Rajinder P; Pawar, Rajesh J; Mancino, Anthony

    2011-10-15

    Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO₂ is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO₂ from coal, transporting it large distances through pipelines, and storing it safely underground.

  1. Investigations in fiscal 2000 on feasibility of environment friendly coal utilization system. Feasibility survey on environment friendly coal utilization system in India; 2000 nendo kankyo chowagata sekitan riyo system kanosei chosa hokokusho. Indo ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Taking the area of the clean coal technology (CCT) effective for energy conservation and environment preservation as the object, a feasibility survey has been performed on executing a model project in India. About 70% of the total power generation capacity in India depends upon coals existing in abundance inside the country. Since the local coals are high in ash, low in sulfur, and low in calorie, the environmental problem related to thermal power plants is the disposition of fly ash. The Central Electricity Authority of India expects solving this problem by CCT introduction. It also expects increase in combustion efficiency by using ultra-critical boilers. The Indian cement industry often uses in-house electric power generation facilities because of high electric power cost, wherein the produced coal ash is used as a cement raw material. The matter of the strongest interest is the introduction of a high-efficiency combustion system that depends on low-grade coals. Among the CCTs, strong interest was shown in the fluidized bed cement kiln and the circulating fluidized bed boiler. The iron and steel industry has expectations toward effective coal washing technologies and coke manufacturing technologies. (NEDO)

  2. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    Science.gov (United States)

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  3. Environmental considerations of coal gasification technology and the Wabash River Repowering Project

    International Nuclear Information System (INIS)

    Lessig, W.S.; Frederick, J.D.

    1993-01-01

    The Clean Air Act Amendments of 1990 have mandated a significant reduction in sulfur dioxide emissions. Coal gasification can assist coal burning utilities in meeting this challenge. The use of combustion turbines in the cycle is an important factor in terms of efficiency and pollution control technologies. The gasification process can be utilized in several applications including 'repowering' existing coal-fired facilities as well as new 'greenfield' projects. This paper addresses the environmental benefits of the repowering application at PSI Energy's Wabash River Station. The environmental impacts of air, water, solid waste, trace hazardous air pollutants, and fuel sources are addressed. Specifically, sulfur removal is discussed on both a technical and an economic level

  4. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  5. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals.

    Science.gov (United States)

    Dmitrienko, Margarita A; Nyashina, Galina S; Strizhak, Pavel A

    2017-09-15

    Negative environmental impact of coal combustion has been known to humankind for a fairly long time. Sulfur and nitrogen oxides are considered the most dangerous anthropogenic emissions. A possible solution to this problem is replacing coal dust combustion with that of coal water slurry containing petrochemicals (CWSP). Coal processing wastes and used combustible liquids (oils, sludge, resins) are promising in terms of their economic and energy yield characteristics. However, no research has yet been conducted on the environmental indicators of fuels based on CWSP. The present work contains the findings of the research of CO, CO2, NOx, SOx emissions from the combustion of coals and CWSPs produced from coal processing waste (filter cakes). It is demonstrated for the first time that the concentrations of dangerous emissions from the combustion of CWSPs (carbon oxide and dioxide), even when combustible heavy liquid fractions are added, are not worse than those of coal. As for the concentration of sulfur and nitrogen oxides, it is significantly lower for CWSPs combustion as compared to coals. The presented research findings illustrate the prospects of the wide use of CWSPs as a fuel that is cheap and beneficial, in terms of both energy output and ecology, as compared to coal. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Appalachian clean coal technology consortium

    International Nuclear Information System (INIS)

    Kutz, K.; Yoon, Roe-Hoan

    1995-01-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A ampersand E firms working in the Appalachian coal fields. This approach is consistent with President Clinton's initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force

  7. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  8. Change in surface characteristics of coal in upgrading of low-rank coals; Teihin`itan kaishitsu process ni okeru sekitan hyomen seijo no henka

    Energy Technology Data Exchange (ETDEWEB)

    Oki, A.; Xie, X.; Nakajima, T.; Maeda, S. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    1996-10-28

    With an objective to learn mechanisms in low-rank coal reformation processes, change of properties on coal surface was discussed. Difficulty in handling low-rank coal is attributed to large intrinsic water content. Since it contains highly volatile components, it has a danger of spontaneous ignition. The hot water drying (HWD) method was used for reformation. Coal which has been dry-pulverized to a grain size of 1 mm or smaller was mixed with water to make slurry, heated in an autoclave, cooled, filtered, and dried in vacuum. The HWD applied to Loy Yang and Yallourn coals resulted in rapid rise in pressure starting from about 250{degree}C. Water content (ANA value) absorbed into the coal has decreased largely, with the surface made hydrophobic effectively due to high temperature and pressure. Hydroxyl group and carbonyl group contents in the coal have decreased largely with rising reformation treatment temperature (according to FT-IR measurement). Specific surface area of the original coal of the Loy Yang coal was 138 m{sup 2}/g, while it has decreased largely to 73 m{sup 2}/g when the reformation temperature was raised to 350{degree}C. This is because of volatile components dissolving from the coal as tar and blocking the surface pores. 2 refs., 4 figs.

  9. Sixth annual coal preparation, utilization, and environmental control contractors conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

  10. Pra Desain Pabrik Substitute Natural Gas (SNG dari Low Rank Coal

    Directory of Open Access Journals (Sweden)

    Asti Permatasari

    2014-09-01

    rendah dan sedang yang sangat banyak, yaitu masing-masing sebesar 2.426,00 juta ton dan 186,00 juta ton. Maka dari itu, pabrik SNG dari low rank coal ini akan didirikan di Kecamatan Ilir Timur, Sumatera Selatan. Rencananya pabrik ini akan didirikan pada tahun 2016 dan siap beroperasi pada tahun 2018. Diperkirakan konsumsi gas alam pada tahun 2018 sebesar 906.599,3 MMSCF sehingga pendirian pabrik yang baru diharapkan dapat menggantikan kebutuhan gas alam sebesar 4% di Indonesia, yaitu sebanyak 36.295,502 MMSCF per tahun atau sebesar 109.986 MMSCFD. Proses pembuatan SNG dari low rank coal terdiri dari empat proses utama, yaitu coal preparation, gasifikasi, gas cleaning, dan metanasi. Dari analisa perhitungan ekonomi didapat Investasi 823.947.924 USD, IRR sebesar 13,12%, POT selama 5 tahun, dan BEP sebesar 68,55%.

  11. Characterization and suitability of superclean coals for hydroliquefaction feedstocks: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam

    1989-05-30

    Superclean coals have been studied for their suitability as liquefaction feedstocks. The effects of ash and sulfur contents and two catalysts on a hydrogen donor solvent liquefaction reaction have been studied. Experiments were run using a unique coal of small particle size (90% <22 microns). The coal was characterized in terms of its chemical and its physical properties. This information made it possible to determine the effects of the static tube flotation separation on the coal. Once characterized the coals were liquefied in the hydrogen donor tetralin under a hydrogen atmosphere of 500 psig. The first series of experiments was to determine the effects of the ash on the liquefaction reaction. The second group of experiments dealt with the effects of catalysts (ammonium molybdate and titanium carbide) on low ash coals at various conditions. A model for batch liquefaction in a hydrogen donor solvent is then developed. This model is based on the assumption that the reaction is due to two competing mechanisms; (1) a thermal decomposition of the coal and (2) a catalytic reaction. The thermal reaction produces unwanted products while the catalytic reaction produces the desired products. To accurately model the batch system, mass transfer is considered. 51 refs., 50 figs., 29 tabs.

  12. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  13. Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends

    Science.gov (United States)

    Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...

  14. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  15. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Maria Elisabete; Cappelli Fontanive, Fernando; Bastos Caramao, Elina; Alcaraz Zini, Claudia [Universidade Federal do Rio Grande do Sul, Instituto de Quimica, Porto Alegre, RS (Brazil); Oliveira, Jose Vladimir de [URI, Universidade Regional Integrada do Alto Uruguai e das Missoes, Erechim, RS (Brazil)

    2011-11-15

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO{sub x} gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC x GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC x GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC x GC. (orig.)

  16. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Xu, Chang; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    This study investigates the influence of hydrothermal dewatering performed at different temperatures on the combustion characteristics of Chinese low-rank coals with different coalification maturities. It was found that the upgrading process significantly decreased the inherent moisture and oxygen content, increased the calorific value and fixed carbon content, and promoted the damage of the hydrophilic oxygen functional groups. The results of oxygen/carbon atomic ratio indicated that the upgrading process converted the low-rank coals near to high-rank coals which can also be gained using the Fourier transform infrared spectroscopy. The thermogravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high temperature region, and the upgraded coals had higher ignition and burnout temperature. On the other hand, based on the higher average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and the Da Tong bituminous coal. In ignition segment, the activation energy increased after treatment but decreased in the combustion stage. The changes in coal compositions, microstructure, rank, and combustion characteristics were more notable as the temperature in hydrothermal dewatering increased from 250 to 300 °C or coals of lower ranks were used. - Highlights: • Typical Chinese lignites with various ranks are upgraded by hydrothermal dewatering. • Upgraded coals exhibit chemical compositions comparable with that of bituminous coal. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit difficulty in ignition but combust easily. • More evident effects are obtained for raw brown coal with relative lower rank.

  17. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  18. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  19. NOx emissions and potential NOx reduction for low volatile Australian coals: End-of-grant report

    International Nuclear Information System (INIS)

    Holcombe, D.; Nelson, P.F.; Kelly, M.D.; Gupta, R.P.; Wall, T.F.

    1994-09-01

    The objective of this project was to improve the understanding of NO x formation from the combustion of low-volatile Australian coals. A secondary objective was to develop NO x reduction techniques which will improve the export market potential of these coals. Low volatile coals frequently have high nitrogen levels. In addition, they differ from high volatile coals in their behaviour in the early part of the combustion process, which largely determines the level of NO x that will be formed. Low volatile coals were examined with respect to the release of nitrogen species during the early stage of PF combustion. These species are precursors to NO x and it is at this stage of combustion that furnace conditions are important in determining whether these species become NO x or are reduced to molecular nitrogen. Pilot scale measurements of NO x concentrations from the combustion of the coals were undertaken under a range of conditions to provide data on the relevance of furnace parameters as well as of coal properties. Finally, mathematical models of coal combustion with NO x formation were developed, to be able to incorporate data on nitrogen species released from coal, and to use this information as well as furnace conditions to predict NO x concentrations. (author). Tabs., figs., refs

  20. A summary of fish and wildlife information needs to surface mine coal in the United States. Part 2. The status of state surface mining regulations as of January 1980 and the fish and wildlife information needs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This is part 2 of a three part series to assist government agencies and private citizens in determining fish and wildlife information needs for new coal mining operations pursuant to the Surface Mining Control and Reclamation Act of 1977. This portion documents the status of individual state surface mining regulations as of January 1980 in those states having significant strippable reserves and/or active strip mining operations. It also provides documentation of fish and wildlife information needs identified in the state regulations of compliance to PL 95-87.

  1. Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor

    Science.gov (United States)

    Rollbuhler, R. J.; Kobak, J. A.

    1980-01-01

    The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.

  2. Biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Corder, R E; Clausen, E C; Gaddy, J L

    1987-09-01

    High temperatures and pressures are required, and therefore, high costs incurred during catalytic upgrading of coal synthesis gas to methane. Thus, the feasibility of biological reactions in converting synthesis gas to methane has been demonstrated in mixed and pure cultures. Complete conversion has been achieved in 2 hours with a mixed culture, and 45 minutes to 1.5 hours in pure cultures of P. productus and Methanothrix sp.. Typical sulfur levels involved during the process are found not to inhibit the bacteria and so sulfur does not have to be removed prior to biomethanation. Preliminary economic analyses indicate that coal gas may be biologically methanated for 50-60 cents/million Btu. Further studies with pure culture bacteria and increased pressure are expected to enhance biomethanation economics.

  3. Coal, energy of the future

    International Nuclear Information System (INIS)

    Lepetit, V.; Guezel, J.Ch.

    2006-01-01

    Coal is no longer considered as a 'has been' energy source. The production and demand of coal is growing up everywhere in the world because it has some strategic and technological advantages with respect to other energy sources: cheap, abundant, available everywhere over the world, in particular in countries with no geopolitical problems, and it is independent of supplying infrastructures (pipelines, terminals). Its main drawback is its polluting impact (dusts, nitrogen and sulfur oxides, mercury and CO 2 ). The challenge is to develop clean and high efficiency coal technologies like supercritical steam power plants or combined cycle coal gasification plants with a 50% efficiency, and CO 2 capture and sequestration techniques (post-combustion, oxy-combustion, chemical loop, integrated gasification gas combined cycle (pre-combustion)). Germany, who will abandon nuclear energy by 2021, is massively investing in the construction of high efficiency coal- and lignite-fired power plants with pollution control systems (denitrification and desulfurization processes, dust precipitators). (J.S.)

  4. 76 FR 64099 - Notice of Competitive Coal Lease Sale, Wyoming

    Science.gov (United States)

    2011-10-17

    .... The tract will be leased to the qualified bidder of the highest cash amount provided that the high bid...-way as required by typical mining practices. The total mineable stripping ratio of the coal in bank... containing approximately 0.27 percent sulfur. These quality averages place the coal reserves at the high end...

  5. Molecular biological enhancement of coal biodesulfurization. Seventh quarter report, May--July 1990

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  6. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  7. Effects of inhaled coal fly ash on lung biochemistry and function in guinea pigs

    International Nuclear Information System (INIS)

    Kimmel, T.A.; Chen, L.C.; Ryan, I.; Gordon, I.; Amdur, M.O.

    1991-01-01

    The ultrafine fraction of particles produced during the combustion of coal are the most difficult to remove with control devices and are retained longest in the atmosphere. Combustion of a high-sulfur coal, such as Illinois No. 6, produces a significant quantity of sulfuric acid, most of which is absorbed to the surface of those particles smaller than 1 μm in diameter. Particles smaller than 0.05 μm in diameter, moreover, consist largely of sulfuric acid; since these particles penetrate to the deepest regions of the lung, exposure to coal fly ash can result in the administration of large doses of acid to the alveolar tissues. Using a combustion system that generates coal fly ash similar to that collected in flue gas, guinea pigs were exposed for 2 h to aerosols produced from Illinois No. 6 (mean aerodynamic diameter 0.2 μm) at concentrations of 5 and 20 mg/m 3 . The animals were lavaged at 24 h post-exposure and levels of dehydrogenase (LDH), β-glucuronidase (β-GC), and protein were compared to those of control animals. After 24 h, no changes in levels of LDH and β-GC were seen in the lavage fluid from both high-dose and low-dose animals. Slight, but statistically significant elevations in protein concentration were measured in the high-dose exposure group. The total cell number in the lavage fluid was also found exposure group. The total cell number in the lavage fluid was also found to be exchanged following both exposures. It was previously found that exposure to 5 mg/M 3 of Illinois No. 6 fly ash results in immediate reductions in pulmonary diffusing capacity (DLco), total lung capacity (TLC), and vital capacity, and that both DLco and TLC values are not completely restored to normal 96 h post-exposure. These results suggest that the alterations in pulmonary function resulting from exposure to acidic coal fly ash are not accompanied by major inflammatory changes in lavage fluid

  8. Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J.P. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Graham, L.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Catcheside, D.E.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences

    1996-12-31

    The involvement of extracellular oxidases in biotransformation of low-rank coal was assessed by correlating the ability of nine white-rot and brown-rot fungi to alter macromolecular material in alkali-solubilised brown coal with the spectrum of oxidases they produce when grown on low-nitrogen medium. The coal fraction used was that soluble at 3.0{<=}pH{<=}6.0 (SWC6 coal). In 15-ml cultures, Gloeophyllum trabeum, Lentinus lepideus and Trametes versicolor produced little or no lignin peroxidase, manganese (Mn) peroxidase or laccase activity and caused no change to SWC6 coal. Ganoderma applanatum and Pycnoporus cinnabarinus also produced no detectable lignin or Mn peroxidases or laccase yet increased the absorbance at 400 nm of SWC6 coal. G. applanatum, which produced veratryl alcohol oxidase, also increased the modal apparent molecular mass. SWC6 coal exposed to Merulius tremellosus and Perenniporia tephropora, which secreted Mn peroxidases and laccase and Phanerochaete chrysosporium, which produced Mn and lignin peroxidases was polymerised but had unchanged or decreased absorbance. In the case of both P. chrysosporium and M. tremellosus, polymerisation of SWC6 coal was most extensive, leading to the formation of a complex insoluble in 100 mM NaOH. Rigidoporus ulmarius, which produced only laccase, both polymerised and reduced the A{sub 400} of SWC6 coal. P. chrysosporium, M. tremellosus and P. tephropora grown in 10-ml cultures produced a spectrum of oxidases similar to that in 15-ml cultures but, in each case, caused more extensive loss of A{sub 400}, and P. chrysosporium depolymerised SWC6 coal. It is concluded that the extracellular oxidases of white-rot fungi can transform low-rank coal macromolecules and that increased oxygen availability in the shallower 10-ml cultures favours catabolism over polymerisation. (orig.)

  9. Feasibility study of environmentally friendly type coal utilization systems. Feasibility study of environmentally friendly type coal utilization systems in sectors except the coal industry in China; Kankyo chowagata sekitan riyo system kanosei chosa. Chugoku no sekitan kogyo igai no bumon ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    For the purpose of working out a comprehensive master plan for application of the coal utilization system, the paper surveyed and studied the coal utilization system in terms of environmental measures and efficiency improvement in the utilization of coal. As a result of the discussion with NEDO and the National Planning Committee of China, Liaoning Province (the whole China) and Shenyang City were selected as a model area and a model city for the survey and study. As energy conservation measures taken in the former, desirable are intensifying/capacity-increase of boilers, kilns, etc. and adoption of new-type/high-efficient equipment. Also expected are reinforcement of combustion control and improvement of efficiency by using coal preparation, industrial use coal briquette, etc. Measures taken in the latter are the same as those taken in the whole China. As SOx reduction measures for Liaoning Province, desirable is installation of dry-type desulfurization equipment and simple desulfurization equipment. As dust prevention measures for it, desirable is installation of electrostatic precipitators or high-functional bag filters. SOx reduction measures for Shenyang City are the same as those taken in the whole China. SOx can be reduced by using coal-prepared low-sulfur coal and industrial use coal briquette added with desulfurizing agent. 88 figs., 163 tabs.

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  11. Anthropogenic emissions of oxidized sulfur and nitrogen into the atmosphere of the former Soviet Union in 1985 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Ryaboshapko, A.G.; Brukhanov, P.A.; Gromov, S.A.; Proshina, Yu.V; Afinogenova, O.G. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    1996-09-01

    Anthropogenic emissions of oxidized sulfur and nitrogen over the former Soviet Union for 1985 and 1990 were calculated on the basis of a combination of `bottom-up` and `top-down` approaches. Sulfur dioxide emissions from combustion of hard coal, brown coal, oil products, natural gas, shale oil, peat, wood as well as from metallurgy, sulfuric acid production, and cement production were estimated. Nitrogen oxides emissions were considered separately for large power plants, small power plants, industrial boilers, residential combustion units, and for transport. The sulfur and nitrogen emissions were spatially distributed over the former Soviet Union with 1 x 1 degree resolution. Data on 721 point sources of sulfur dioxide emissions and on the 242 largest power stations as nitrogen oxides sources were used. The area sources of both sulfur dioxide and nitrogen oxides were distributed according to the population density separately for about 150 administrative units of the former Soviet Union. 63 refs., 19 tabs.

  12. 40 CFR 80.255 - Compliance plans and demonstration of commitment to produce low sulfur gasoline.

    Science.gov (United States)

    2010-07-01

    ... commitment to produce low sulfur gasoline. 80.255 Section 80.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... gasoline. The requirements of this section apply to any refiner approved for small refiner standards who...

  13. Role of the Liquids From Coal process in the world energy picture

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, J.P.; Knottnerus, B.A. [ENCOAL Corp., Gillette, WY (United States)

    1997-12-31

    ENCOAL Corporation, a wholly owned indirect subsidiary of Zeigler Coal Holding Company, has essentially completed the demonstration phase of a 1,000 Tons per day (TPD) Liquids From Coal (LFC{trademark}) plant near Gillette, Wyoming. The plant has been in operation for 4{1/2} years and has delivered 15 unit trains of Process Derived Fuel (PDF{trademark}), the low-sulfur, high-Btu solid product to five major utilities. Recent test burns have indicated the PDF{trademark} can offer the following benefits to utility customers: lower sulfur emissions, lower NO{sub x} emissions, lower utilized fuel costs to power plants, and long term stable fuel supply. More than three million gallons of Coal Derived Liquid (CDL{trademark}) have also been delivered to seven industrial fuel users and one steel mill blast furnace. Additionally, laboratory characteristics of CDL{trademark} and process development efforts have indicated that CDL{trademark} can be readily upgraded into higher value chemical feedstocks and transportation fuels. Commercialization of the LFC{trademark} is also progressing. Permit work for a large scale commercial ENCOAL{reg_sign} plant in Wyoming is now underway and domestic and international commercialization activity is in progress by TEK-KOL, a general partnership between SGI International and a Zeigler subsidiary. This paper covers the historical background of the project, describes the LFC{trademark} process and describes the worldwide outlook for commercialization.

  14. Studies on the sulfur metabolism of cows on protein-free and low-protein feed

    Directory of Open Access Journals (Sweden)

    Eino Matikkala

    1977-09-01

    Full Text Available The influence of purified, protein-free feed with urea and ammonium salts as nitrogen sources (0-feed and of non-purified, urea-rich, low-protein feeds (ULP-feed on the sulfur metabolism of cows has been studied by determining the contents of sulfur fractions in faeces, urine, milk, blood and rumen fluid. The sulfur of 0-feed was composed entirely of inorganic sulfate. During balance trials the N:S ratio in the feed varied from 6.1 to 9.5, and the sulfur content from 0.22 to 0.31 % of the dry matter. In every trial (seven with 0-feed and two with ULP-feed, of five or seven days duration, the cows were in high-positive sulfur balance. The 0-cows excreted a greater proportion of their total sulfur output via urine than the ULP-cows. The excretion of inorganic sulfate sulfur, as a proportion of the urinary and faecal sulfur, was greater for 0-cows than for ULP- or NorP-cows (cows on normal, protein-rich feed; the opposite was the case with regard to the excretion of ester sulfate sulfur and neutral sulfur. The sulfur contents of milk and blood showed only minor inter-feed differences. The sulfate content in the rumen fluid of the 0-cow rose rapidly after the commencement of feeding and then fell quite rapidly. We conclude tentatively that in the rumen of the 0-cow hydrogen sulfide is generated so quickly that the whole of it cannot be used for the synthesis of sulfur-containing compounds, a considerable proportion of it being lost in eructations or excreted as inorganic sulfates in the urine.

  15. Mineralogical and Geochemical Compositions of the No. 5 Coal in Chuancaogedan Mine, Junger Coalfield, China

    Directory of Open Access Journals (Sweden)

    Ning Yang

    2015-11-01

    Full Text Available This paper reports the mineralogy and geochemistry of the Early Permian No. 5 coal from the Chuancaogedan Mine, Junger Coalfield, China, using optical microscopy, scanning electron microscopy (SEM, Low-temperature ashing X-ray diffraction (LTA-XRD in combination with Siroquant software, X-ray fluorescence (XRF, and inductively coupled plasma mass spectrometry (ICP-MS. The minerals in the No. 5 coal from the Chuancaogedan Mine dominantly consist of kaolinite, with minor amounts of quartz, pyrite, magnetite, gypsum, calcite, jarosite and mixed-layer illite/smectite (I/S. The most abundant species within high-temperature plasma-derived coals were SiO2 (averaging 16.90%, Al2O3 (13.87%, TiO2 (0.55% and P2O5 (0.05%. Notable minor and trace elements of the coal include Zr (245.89 mg/kg, Li (78.54 mg/kg, Hg (65.42 mg/kg, Pb (38.95 mg/kg, U (7.85 mg/kg and Se (6.69 mg/kg. The coal has an ultra-low sulfur content (0.40%. Lithium, Ga, Se, Zr and Hf present strongly positive correlation with ash yield, Si and Al, suggesting they are associated with aluminosilicate minerals in the No. 5 coal. Arsenic is only weakly associated with mineral matter and Ge in the No. 5 coals might be of organic and/or sulfide affinity.

  16. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  17. Low severity conversion of activated coal

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  18. Warm Cleanup of Coal-Derived Syngas: Multicontaminant Removal Process Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Spies, Kurt A.; Rainbolt, James E.; Li, Xiaohong S.; Braunberger, Beau; Li, Liyu; King, David L.; Dagle, Robert A.

    2017-02-15

    Warm cleanup of coal- or biomass-derived syngas requires sorbent and catalytic beds to protect downstream processes and catalysts from fouling. Sulfur is particularly harmful because even parts-per-million amounts are sufficient to poison downstream synthesis catalysts. Zinc oxide (ZnO) is a conventional sorbent for sulfur removal; however, its operational performance using real gasifier-derived syngas and in an integrated warm cleanup process is not well reported. In this paper, we report the optimal temperature for bulk desulfurization to be 450oC, while removal of sulfur to parts-per-billion levels requires a lower temperature of approximately 350oC. Under these conditions, we found that sulfur in the form of both hydrogen sulfide and carbonyl sulfide could be absorbed equally well using ZnO. For long-term operation, sorbent regeneration is desirable to minimize process costs. Over the course of five sulfidation and regeneration cycles, a ZnO bed lost about a third of its initial sulfur capacity, however sorbent capacity stabilized. Here, we also demonstrate, at the bench-scale, a process and materials used for warm cleanup of coal-derived syngas using five operations: 1) Na2CO3 for HCl removal, 2) regenerable ZnO beds for bulk sulfur removal, 3) a second ZnO bed for trace sulfur removal, 4) a Ni-Cu/C sorbent for multi-contaminant inorganic removal, and 5) a Ir-Ni/MgAl2O4 catalyst employed for ammonia decomposition and tar and light hydrocarbon steam reforming. Syngas cleanup was demonstrated through successful long-term performance of a poison-sensitive, Cu-based, water-gas-shift catalyst placed downstream of the cleanup process train. The tar reformer is an important and necessary operation with this particular gasification system; its inclusion was the difference between deactivating the water-gas catalyst with carbon deposition and successful 100-hour testing using 1 LPM of coal-derived syngas.

  19. Element geochemistry and cleaning potential of the No. 11 coal seam from Antaibao mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.F.; Qin, Y.; Song, D.Y.; Sang, S.X.; Jiang, B.; Zhu, Y.M.; Fu, X.H. [China University of Mining & Technology, Xuzhou (China). College for Resources & Geoscience

    2005-12-15

    Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geochemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolinite, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentration of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, AI, Cs, and Cr associated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.

  20. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  1. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall

  2. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  4. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Amezketa, E.; Aragues, R.; Gazol, R. [Gobierno Navarra, Pamplona (Spain). Agricultural Resources Evaluation Center

    2005-06-01

    We evaluated the efficiency of four amendments (sulfuric acid, mined-gypsum, and the by-products coal-gypsum and lacto-gypsum) in crusting prevention of two calcareous nonsodic and sodic soils and in sodic soil reclamation. Treatments for crust prevention consisted of surface-applied amendments at equivalent rates of 5 Mg pure-gypsum ha{sup -1}. Treatments for sodic soil reclamation consisted of surface-applied acid and soil-incorporated gypsums at rates of 1 pure-gypsum requirement. The efficiency of these amendments was evaluated by comparing the final infiltration rates (FIR) of the amended vs. the nonamended soils measured in disturbed-soil columns pounded with low-salinity irrigation water. Electrical conductivity (EC) and Na in the leachates of the sodic soil were measured. In the crusting prevention experiment, FIRs (mm h{sup -1) of the nonsodic soil were 21 (nonamended), 33 to 35 (gypsum materials), and 53 (sulfuric acid), whereas those for the sodic soil were 0 (nonamended), 9 (lacto-gypsum), 15 to 17 (coal- and mined-gypsum), and 21 (sulfuric acid). In the sodic-soil reclamation experiment, FIRs were 0 (nonamended), 8 to 9 (gypsum-materials), and 17 (sulfuric acid) mm h{sup -1}. All amendments were effective in crusting prevention and soil reclamation, but sulfuric acid was the most efficient due to the fastest EC and Na reductions in the leachates. The three gypsum-materials were equally effective in the reclamation process and in the nonsodic soil crusting-prevention, whereas lacto-gypsum was less efficient in the sodic-soil crusting-prevention.

  5. Waste pyritic coal as a raw material for energetic industry

    Energy Technology Data Exchange (ETDEWEB)

    Gasiorek, J. [Institute of Inorganic Chemistry, Poznan (Poland). Dept. of Research and Technology

    1997-11-01

    Results are presented of large laboratory studies on coal desulphurisation with foam flotation method improved by application of bioadsorption of Thiobacillus ferrooxidans bacteria to the modification of superficial properties of pyrite particulates from hydrophobic to hydrophillic ones. Results of coal desulfurization with and without bioadsorption have been compared. Bioadsorption improved pyritic sulfur removal by 30% (for coal from `Sierza mine`, coal size 0.3 to 0.102 mm, S pyritic content 1.69%) after 6-week adaptation of bacteria and 30 min of bioadsorption. Bacteria concentration in 5% water suspension of coal reached 22 {mu}g of biomass cm{sup -3}. 12 refs., 4 figs., 1 tab.

  6. Chemical and physical aspects of refining coal liquids

    Science.gov (United States)

    Shah, Y. T.; Stiegel, G. J.; Krishnamurthy, S.

    1981-02-01

    Increasing costs and declining reserves of petroleum are forcing oil importing countries to develop alternate energy sources. The direct liquefaction of coal is currently being investigated as a viable means of producing substitute liquid fuels. The coal liquids derived from such processes are typically high in nitrogen, oxygen and sulfur besides having a high aromatic and metals content. It is therefore envisaged that modifications to existing petroleum refining technology will be necessary in order to economically upgrade coal liquids. In this review, compositional data for various coal liquids are presented and compared with those for petroleum fuels. Studies reported on the stability of coal liquids are discussed. The feasibility of processing blends of coal liquids with petroleum feedstocks in existing refineries is evaluated. The chemistry of hydroprocessing is discussed through kinetic and mechanistic studies using compounds which are commonly detected in coal liquids. The pros and cons of using conventional petroleum refining catalysts for upgrading coal liquids are discussed.

  7. Application of Acidithiobacillus Ferrooxidans in coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Amini, E.; Hosseini, T.R.; Oliazadeh, M.; Kolahdoozan, M. [University of Queensland, Brisbane, Qld. (Australia)

    2009-07-01

    Bioflotation is a potential method for removing pyritic sulphur from coal. Sodium cyanide is a well-known depressant for pyrite in flotation of sulphide minerals; however, for coal this reagent is unacceptable from the environmental point of view. This study investigates an alternate to sodium cyanide, Acidithiobacillus Ferrooxidans, a nonharmful bacterial reagent as a pyrite depressant. The flotation behavior of pyrite and other gangue particles using the sodium cyanide and the Ferrooxidans is compared by applying the general first-order flotation model. The kinetic parameters extracted from the model demonstrated that the modified flotation rate of pyrite was reduced, and the selectivity between coal and gangue was improved using the bacteria. These results indicate that Acidithiobacillus Ferrooxidans has potential in removing pyritic sulfur from coal.

  8. Desulfurization and denitrogenation in copyrolysis of coal with hydrogen-rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    1999-06-01

    Desulfurization and denitrogenation were systematically investigated by analyzing the chars and tars from copyrolysis of Yanzhou high sulfur bituminous coal with coke-oven gas (COG), synthesis gas (SG) and hydrogen. The results indicated that under the conditions of 3MPa, up to 650{degree}C with a heating rate of 10{degree}C/min, the desulfurization of coal pyrolysis with COG, SG and hydrogen were almost equal (about 80%, w%, ad), the order of denitrogenation were: hydrogen (41%) {gt} SG(35%) {gt} COG(30%). The distributions of sulfur in char, oil and gas was very similar under the three reactive gases, i.e., about 205 in char, 105 in tar and 70% (diff.) in gas, respectively. Compared with hydropyrolysis at the same hydrogen partial pressure, the desulfurization of coal pyrolysis with coke oven gas was increased by about 4.5%, while the denitrogenation was decreased by about 3.5%. There is an important desulfurization advantage for hydropyrolysis using COG and SG instead of pure hydrogen. Compared with the copyrolysis of coal with COG, Yanzhou coal pyrolysis under SG can achieve the same level of desufurization but higher denitrogenation. 11 refs., 3 figs., 4 tabs.

  9. Nuclear assay of coal. Volume 8. Continuous nuclear assay of coal (CONAC). Final report

    International Nuclear Information System (INIS)

    Lagarias, J.; Irminger, P.; Dodson, W.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium-iodide and germanium-lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully by traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses. Since satisfactory correlation has been obtained at bench-scale level using 100 to 200 kG samples, an apparatus has been designed to analyze a coal stream of up to 50 ton/hour, at an electric power generating station

  10. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  11. Coal. Fluidized bed, a world record; Charbon. Lit fluidise: record mondial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    In April 1996, the `Societe Provencale du Lit Fluidise`, a subsidiary of Electricite de France (EDF) has put into service in Gardanne, the most powerful circulating fluidized bed boiler in the world, producing 600 MWt; it was constructed by GEC Alsthom Stein Industrie, and will strongly reduce the SO{sub 2} emissions from the coal power plant of Gardanne, which use a highly sulfurous coal. New regulations concerning the French coal industry are also introduced

  12. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  13. Fiscal 1999 research cooperation project report. Research cooperation on coal liquefaction technology; 1999 nendo sekitan ekika gijutsu ni kansuru kenkyu kyoryoku jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research cooperation project result on coal liquefaction technology. Cooperative FS was made on coal liquefaction technology of Indonesian coal as petroleum substituting energy. To obtain the basic data necessary for the FS, study was made on the applicability of Indonesian natural minerals as catalytic materials. Promising low-cost abundant Soroako Limonite ore showed a high catalytic activity for liquefaction reaction of Banko coal, and an excellent grindability. Improved BCL process including hydrogenation process was promising for production of high-quality coal liquid superior in storage stability with less nitrogen and sulfur contents. Survey was made on the general conditions of Tanjung Enim area including South Banko coal field concerned, and the geological features and coal seam of South Banko coal field which is composed of 3 seams including coal deposits of 6.35 hundred million tons. To study the marketability of coal liquid, survey was made on the current situation of oil, oil product standards, and blendability of coal liquid. Hydrogen for the liquefaction process can be obtained by coal gasification. (NEDO)

  14. Shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Hennekes, B. [Shell Global Solutions (US) Inc. (United States). Technology Marketing

    2002-07-01

    The presentation, on which 17 slides/overheads are included in the papers, explained the principles of the Shell coal gasification process and the methods incorporated for control of sulfur dioxide, nitrogen oxides, particulates and mercury. The economics of the process were discussed. The differences between gasification and burning, and the differences between the Shell process and other processes were discussed.

  15. Laboratory simulated slipstream testing of novel sulfur removal processes for gasification application

    International Nuclear Information System (INIS)

    Schmidt, Roland; Tsang, Albert; Cross, Joe; Summers, Clinton; Kornosky, Bob

    2008-01-01

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is investigating an Early Entrance Coproduction Plant (EECP) concept to evaluate integrated electrical power generation and methanol production from coal and other carbonaceous feedstocks. Research, development and testing (RD and T) that is currently being conducted under the project is evaluating cost effective process systems for removing contaminants, particularly sulfur species, from the generated gas which contains mainly synthesis gas (syngas), CO 2 and steam at concentrations acceptable for the methanol synthesis catalyst. The RD and T includes laboratory testing followed by bench-scale and field testing at the SG Solutions Gasification Plant located in West Terre Haute, Indiana. Actual synthesis gas produced by the plant was utilized at system pressure and temperature for bench-scale field testing. ConocoPhillips Company (COP) developed a sulfur removal technology based on a novel, regenerable sorbent - S Zorb trademark - to remove sulfur contaminants from gasoline at high temperatures. The sorbent was evaluated for its sulfur removal performance from the generated syngas especially in the presence of other components such as water and CO 2 which often cause sorbent performance to decline over time. This publication also evaluates the performance of a regenerable activated carbon system developed by Nucon International, Inc. in polishing industrial gas stream by removing sulfur species to parts-per-billion (ppb) levels. (author)

  16. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  17. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.; Wattal, P.K.

    2013-01-01

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  18. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    OpenAIRE

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria.

  19. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  20. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    Energy Technology Data Exchange (ETDEWEB)

    Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Khanna, Nina Zheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Lixuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    As China continues its double-digit economic growth, coal remains the principal fuel for the country’s primary energy consumption and electricity generation. China’s dependence on coal in coming years makes its carbon emission intensity reduction targets more difficult to achieve, particularly given rising electricity demand from a growing number of Chinese cities. This paradox has led the government to pursue cleaner and more efficient development of the coal industry on the supply side and “low carbon” development of cities on the demand side. To understand and assess how China may be able to meet its energy and carbon intensity reduction targets, this report looks at the recent development of low carbon cities as well as new developments and trends in the coal industry. Specifically, we review low-carbon city and related eco-city development in China before delving into a comparison of eight pilot lowcarbon city plans to highlight their strengths and weaknesses in helping achieve national energy and carbon targets. We then provide insights into the future outlook for China’s coal industry by evaluating new and emerging trends in coal production, consumption, transport, trade and economic performance.

  1. Nuclear assay of coal. Volume 1. Coal composition by prompt neutron activation analysis: basic experiments. Final report

    International Nuclear Information System (INIS)

    Reynolds, G.; Bozorganesh, H.; Elias, E.; Gozani, T.; Maung, T.; Orphan, V.

    1979-01-01

    Using californium-252 as a source of exciting neutrons, prompt gamma photons emitted by elemental nuclei in the coal have been measured using several detectors, including sodium--iodide and germanium--lithium. Several coal types, including bituminous, subbituminous lignite and anthracite were crushed to various top sizes and analyzed carefully be traditional ASTM wet chemistry techniques at two or three different laboratories. The elements (sulfur, hydrogen, carbon, aluminum, silicon, iron, calcium, sodium, nitrogen, and chlorine) were determined by prompt neutron activations and the quantities compared with those of the wet chemical analyses

  2. The ENCOAL Mild Coal Gasification Project, A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    This report is a post-project assessment of the ENCOAL(reg s ign) Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL(reg s ign) Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL(reg s ign) mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL(reg s ign) was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL(reg s ign) was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of$90,664,000. ENCOAL(reg s ign) operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC(trademark)) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF(trademark)) and Coal-Derived Liquids (CDL(trademark)). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall

  3. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  4. Desulfurization and denitrogenation of coal during multi-stage hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    2001-02-01

    The elemental composition of char of high sulfur Hongmiao coal in multi-stage hydropyrolysis (MHyPy) with different heating rates were analysed and compared with that from normal hydropyrolysis (HyPy). The results illustrated that the sulfur removal in MHyPy was greater than that in HyPy, and more sulfur was evolved as the easily recycled gas H{sub 2}S. Similar with the situation of sulfur, more nitrogen transferred to the gas phase easily to be dealt with and the clean char was obtained. During MHyPy the extent of desulfurization and denitrogenation was more remarkable at high rate than that at slow heating rate. 8 refs., 2 figs., 2 tabs.

  5. Preliminary Beneficiation and Washability Studies on Ghouzlou's Low-Ash Coal Sample

    Directory of Open Access Journals (Sweden)

    Ataallah Bahrami

    2017-12-01

    Full Text Available In the present research work, a low-ash coal, from Ghouzlou deposit in Iran, with an average ash content of 12% was subjected to some beneficiation experiments such as heavy media separation and flotation. Sieve analysis showed that 62.3% of the coal sample with the size of +2 mm had around 7.3% ash contents. Also, heavy media tests carried out on five size fractions revealed that by setting the separation density at 1.4 g/cm3 for the coarse fraction (+1 mm, a 5% ash product with more than 70% coal recovery was obtainable. Samples with lower ash content (5% based on the Mayer curves to produce a 5% coal product. Moreover, flotation tests on -1 mm fraction could reduce the ash content from more 13.2% to 10.4%.

  6. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  7. Use of zeolites for the removal of volatile sulfur compounds from industrial waste gases and from natural gases

    Energy Technology Data Exchange (ETDEWEB)

    Dudzik,; Z,; Bilska, M

    1974-12-01

    The use of zeolites for the removal of sulfur dioxide from industrial waste gases and for the removal of hydrogen sulfide and volatile mercaptans from the natural gas or synthetic gas manufactured from coal is discussed. The effectiveness and cost of zeolite methods are superior to that of other methods. The best sorption properties with respect to sulfur dioxide are observed in faujasites and erionites. The molecular sieve 13X (a sodium form of low-silicon faujasite) is the most effective sorbent of hydrogen sulfide, produced commercially on a large scale. This zeolite is also a very effective catalyst for simultaneous oxygenation of hydrogen sulfide. The reaction with oxygen can begin at temperatures as low as -80/sup 0/C. The effectiveness of zeolite reactors is enhanced by the presence of oxygen in the gas being purified, and is hindered by the presence of water or water vapor. The extraordinary catalytic activity of sodium faujasites is due to free donors, and sulfur and oxygen ion donors at their surface. A zeolite reactor is also economical.

  8. Evaluation of pitches and cokes from solvent-extracted coal materials

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, E.R.

    1996-12-01

    Three initial coal-extracted (C-E) samples were received from the West Virginia University (WVU) Chemical Engineering Department. Two samples had been hydrogenated to obtain pitches that satisfy Theological requirements. One of the hydrogenated (HC-E) samples had been extracted by toluene to remove ash and higher molecular weight aromatic compounds. We were unable to measure the softening point and viscosity of the non-hydro treated solid extract sample, Positive characteristics in the HC-E materials were softening points of 113-119{degrees}C, low sulfur and ash. The oxygen and nitrogen content of the HC-E samples may limit future usage in premium carbon and graphite products. Coking values were similar to petroleum pitches. Laboratory anode testing indicates that in combination with standard coal-tar pitch, the HC-E material can be used as a binder pitch.

  9. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  10. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    Mercury (Hg) analyses were obtained for 42 samples of feed coal provided by Eskom, the national electric utility of South Africa, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations returned to service starting in the late 2000s. These stations were not sampled in the most recent previous study. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Determination of halogen contents of the 42 feed coals confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited. Eight density separates of a South African Highveld (#4) coal were also provided by Eskom, and these show a strong mineralogical association of Hg (and arsenic) with pyrite. The density separates were used to predict Hg and ash contents of coal products used in South Africa or exported. A suite of 48 paired samples of pulverization-mill feed coal and fly ash collected in a previous (2010) United Nations Environment Programme-sponsored study of emissions from the Duvha and Kendal power stations was obtained for further investigation in the present study. These samples show that in each station, Hg capture varies by boiler unit and confirms that units equipped with fabric filters for air pollution control are much more effective in capturing Hg than those equipped with electrostatic precipitators. Apart from tracking the performance of PCDs individually, changes resulting in improved mercury capture of the Eskom fleet are discussed. These include Hg reduction through coal selection and washing, as well as through optimization of equipment and operational parameters. Operational changes leading to increased mercury capture include increasing mercury

  11. Innovative Clean Coal Technology (ICCT): 500-MW demonstration of advanced wall-fired cmbustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Field chemical emissions monitoring, Overfire air and overfire air/low NO{sub x} burner operation: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report summarizes data gathered by Radian Corporation at a coal-fired power plant, designated Site 16, for a program sponsored by the United States Department of Energy (DOE), Southern Company Services (SCS), and the Electric Power Research Institute (EPRI). Concentrations of selected inorganic and organic substances were measured in the process and discharge streams of the plant operating under two different types of combustion modifications: overfire air (OFA) and a combination of overfire air with low-NO{sub x} burners (OFA/LNB). Information contained in this report will allow DOE and EPRI to determine the effects of low-NO{sub x} modifications on plant emissions and discharges. Sampling was performed on an opposed wall-fired boiler burning medium-sulfur bituminous coal. Emissions were controlled by electrostatic precipitators (ESPs). The testing was conducted in two distinct sampling periods, with the OFA test performed in March of 1991 and the OFA/LNB test performed in May of 1993. Specific objectives were: to quantify emissions of target substances from the stack; to determine the efficiency of the ESPs for removing the target substances; and to determine the fate of target substances in the various plant discharge streams.

  12. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  13. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    Science.gov (United States)

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  15. Recovery of sulfur from residue gases of low H/sub 2/S concentration

    Energy Technology Data Exchange (ETDEWEB)

    Bratzler, K; Doerges, A; Schlauer, J

    1976-01-01

    The Lucas process is intended for reduction of SO/sub 2/ and H/sub 2/S in Claus tail gas or other low-sulfur residue gases to levels below 200 ppm (H/sub 2/S only in traces). In the first stage, all sulfur compounds are burned to SO/sub 2/; in the second stage, a coke reactor reduces SO/sub 3/ and O/sub 2/; and in the third stage, the SO/sub 2/ is absorbed in an aqueous alkali phosphate solution. Concentrated SO/sub 2/ from regeneration of the solution is returned to the Claus plant, or can be catalystically reduced to elemental sulfur. The process was proven out in a semitechnical pilot plant, with satisfactory results as follows: sulfur recovery, 97 to 99.8%; energy consumption per 1,000 cu m feed gas, 2.6 to 3.7 kw-hr plus 860 to 930 MJ heating gas (however, 300 to 350 kg steam was generated); 0.15 kg chemicals; 0.7 to 1.5 kg coke; and a minimal amount of catalyst if sulfur is produced. Investment is only 60 to 80% of that in a 2-stage Claus process, with which the Lucas process is competitive.

  16. Monitoring of qualitative characteristics of coal in mines and power plants

    International Nuclear Information System (INIS)

    Cervenka, M.; Krouzek, J.

    1991-01-01

    The basic qualitative characteristic of coal is its heating value, which is dependent on its noncombustible content and moisture. Sensors which have been developed for coal quality monitoring include two-channel radiometric ash meters, moisture meters and neutron sulfur analyzers. They are complemented with integrating balances and automated samplers and computer techniques. A complex quality monitoring system has been implemented in the North Bohemian localities of Vrsany and Most. The gamma ash meter is fitted with a scintillation counter. The measurement is continuous and contactless. A German ash meter equipped with a Geiger-Mueller tube is also mentioned. A continuous neutron analyzer is used for measuring the sulfur content; it is based on radiative capture of thermal neutrons. Described are also the method of coal weighing, the automated samplers, the central computer system and the software used. The results obtained with the systems implemented are summarized. The poor reliability of the Czechoslovak computer hardware poses problems. (M.D.). 7 figs., 6 tabs., 5 refs

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  18. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  19. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Beittel, R. [DB Riley, Inc., Worcester, MA (United States); Ruth, L.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (copper oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.

  20. Fiscal 1993 survey of the base arrangement promotion for foreign coal import. Supply to Japan of subbituminous coal of the west of the U.S. (survey of the cost and a potentiality of the cost); 1993 nendo kaigaitan yunyu kiban sokushin chosa. Beikoku seibu arekiseitan no tainichi kyokyu (cost to yunyu chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Subbituminous coal of the Powder River coal field in the west of the U.S. is abundant, about 1/3 in the U.S. in reserve and about 1/4 in production. It is predicted that supply/demand of general coal will be tight from now up to the coming year of 2000 in the Pacific rim region including Japan as center, and therefore, if Japan imports in large quantity the subbituminous coal which exists abundantly and has a great potentiality of the expanding production quantity, Japan can contribute greatly to loosening the supply/demand of general coal in the Pacific rim region. However, there are some problems on the following: long inland transportation distance of more than 2000km, heavy burden of railroad fare, and coal quality, namely high water content, low calorific value, and low ash melting point of the coal being low in sulfur and ash. Accordingly, surveyed were on what level the cost of supply to Japan will be as compared with Australian coal, and whether there is a possibility of import of the subbituminous coal in large quantity at a competitive price. As to the potential import to Japan, the import of this coal will be 2.025 million tons/year at maximum in 2000 if the railroad price is reduced 20% and the blending of 30% at maximum can be realized at the Soma Kyodo Thermal Power Plant. 34 figs., 48 tabs.

  1. Influence of coal as an energy source on environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Balat, M. [University of Mahallesi, Trabzon (Turkey)

    2007-07-01

    This article considers the influence of coal energy on environmental pollution. Coal is undoubtedly part of the greenhouse problem. The main emissions from coal combustion are sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), particulates, carbon dioxide (CO{sub 2}), and mercury (Hg). Since 1980, despite a 36% increase in electricity generation and more than a 50% increase in coal use, electric utility SO{sub 2} and NOx emissions have declined significantly. Globally, the largest source of anthropogenic greenhouse gas (GHG) emissions is CO{sub 2} from the combustion of fossil fuels - around 75% of total GHG emissions covered under the Kyoto Protocol. At the present time, coal is responsible for 30-40% of world CO{sub 2} emission from fossil fuels.

  2. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    Science.gov (United States)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  3. Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Kim, Changhyeon; Ryu, Ho-Suk; Cho, Gyu-Bong; Cho, Kwon-Koo; Kim, Ki-Won [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical & Biological Engineering, Gyeongsang National University, Jinju (Korea, Republic of); Wang, Guoxiu [School of Chemistry and Forensic Science, University of Technology Sydney, Sydney, NSW 2007 (Australia); Ahn, Jae-Pyeung [Advanced Analysis Center, Research Planning & Coordination Division, KIST, Seoul (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [School of Materials Science and Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2015-09-15

    Highlights: • The content of sulfur in activated carbon was controlled by solution process. • The sulfur electrode with low sulfur content shows the best performance. • The Li/S battery has capacity of 1360 mAh/g at 1 C and 702 mAh/g at 10 C. - Abstract: The content of sulfur in sulfur/activated carbon composite is controlled from 32.37 wt.% to 55.33 wt.% by a one-step solution-based process. When the sulfur content is limited to 41.21 wt.%, it can be loaded into the pores of an activated carbon matrix in a highly dispersed state. On the contrary, when the sulfur content is 55.33 wt.%, crystalline sulfur can be detected on the surface of the activated carbon matrix. The best electrochemical performance can be obtained for a sulfur electrode with the lowest sulfur content. The sulfur/activated carbon composite with 32.37 wt.% sulfur afforded the highest first discharge capacity of 1360 mAh g{sup −1} at 1 C rate and a large reversible capacity of 702 mAh g{sup −1} at 10 C (16.75 A/g)

  4. Simultaneous Determination of Metals in Coal with Low-Resolution ...

    African Journals Online (AJOL)

    The setup including low-resolution spectrometer with the charge-coupled device (CCD) detector, continuum radiation source and filter furnace (FF) atomizer was employed for direct simultaneous determination of Al, Fe, Mg, Cu and Mn in coal slurry. In the FF, sample vapour entered absorption volume by filtering through ...

  5. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  6. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  7. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  8. Study on Al2O3 extraction from activated coal gangue under different calcination atmospheres

    Science.gov (United States)

    Dong, Ling; Liang, Xinxing; Song, Qiang; Gao, Gewu; Song, Lihua; Shu, Yuanfeng; Shu, Xinqian

    2017-12-01

    Coal gangue was calcinated under air, nitrogen, carbon dioxide, air-hydrogen, and hydrogen atmospheres. The effects of different calcination temperatures and atmospheres on the mineral composition of activated coal gangue were investigated by X-ray diffraction. Moreover, the acid leaching kinetics of aluminum oxide from coal gangue was investigated with sulfuric acid. It showed that the air atmosphere promoted kaolinite decomposition during coal gangue calcination. The hydrogen atmosphere promoted the activation and decomposition of kaolinite at reaction temperatures exceeding 650°C. The carbon dioxide atmosphere eliminated the influence of residual carbon on coal gangue. When the ratio of acid/coal gangue was 1.5 and reaction temperature was 650°C, the sulfuric acid leaching rate under air, air-hydrogen, carbon dioxide, hydrogen and nitrogen atmospheres were 93.66%, 90.90%, 84.06%, 81.91% and 77.54% respectively. The acid leaching reaction process conformed to unreacted shrinking core model of particle unchanged, and was controlled by the interfacial chemical reaction. The reaction kinetic equation for the leaching process was 1-(1-x)1/3=kt with an apparent activation energy of 48.97 kJ/mol.

  9. Second row transition metal sulfides for the hydrotreatment of coal-derived naphtha. 1. Catalyst preparation, characterization and comparison of rate of simultaneous removal of total sulfur, nitrogen and oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.P.; Liaw, S.-J.; Srinivasan, R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-03-13

    Naphtha derived from an Illinois No. 6 coal contains appreciable quantities of sulfur-, nitrogen- and oxygen-containing compounds. The hydrotreatment of this naphtha was evaluated over unsupported transition metal sulfide catalysts (Ru, Rh, Mo, Pd, Zr, Mb). The catalysts were prepared by a room temperature precipitation reaction. Surface areas, crystalline phase and particle size distributions were determined by Brunauer-Emmet-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. A comparison of average particle sizes calculated from these three techniques has enable the understanding of the morphology of the transition metal sulfides. The catalysts exhibit a so-called volcano plot for the HDS of dibenzothiophene. Similar so-called volcano plots are also exhibited for the simultaneous hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and the hydrodeoxygenation (HDO) of the coal-derived naphtha containing a mixture of heteroatoms. The order of reactivity of the transition metal catalysts is the same for all three of the processes. Ruthenium sulfide is the most active catalyst for HDS, HDN and HDO of the coal-derived naphtha. 22 refs., 3 figs., 4 tabs.

  10. MCNP simulation of the influence of the external moisture on low calorific value in the coal quality analysis by neutron

    International Nuclear Information System (INIS)

    Liu Dekun; Zhang Hongyu; Zhang Lihong; Dong Huan; Gu Deshan

    2012-01-01

    An important index in assessment of coal quality is low calorific value. Using neutron to analysis coal quality, the more the coal moisture content, especially the increasing of external moisture will reduce the low calorific value. The principle of coal quality analysis by neutron prompt Gamma-ray is introduced. The influence of the gamma count of the carbon element peak with increasing external moisture in coal samples was simulated using MCNP code. And discussed the reasons how external moisture content influence the calorific value. Simulation results indicate that with the increasing of external moisture in the coal samples, the gamma count of the carbon element peak dwindling, and the low calorific value reducing. The conclusion is : using neutrons method to analysis coal quality, the more external moisture content, the larger error of the measurement results of the carbon element, and will influence the calculation accuracy of the low calorific value. (authors)

  11. Impact and environmental handling of the coal in Colombia

    International Nuclear Information System (INIS)

    Garcia Lozada, Hector

    1999-01-01

    The coal is a natural resource of great strategic importance for Colombia, in virtue not only of the magnitude of the reserves that possesses the country, but also of its physical-chemistry characteristic, which make it very attractive for the energy generation mainly in European countries and in United States, for the environmental advantages that it offers to consume a coal with contained low percentage of sulfur (maximum 1%) and high heating power. In this chapter a general vision of the Colombian carboniferous sector is presented, followed by a discussion on the environmental impacts of more relevance, associated to the industry and the carboniferous mining that happen in the country. Finally activities and projects of environmental administration are commented, that are in Colombia, with the object to improve the environmental administration of this mineral resource, from the institutional perspective of the participation of the economic agents of the sector, in the solution of the environmental conflicts

  12. Catalysis of metal-clay intercalation compound in the low temperature coal hydrogasification

    Energy Technology Data Exchange (ETDEWEB)

    Fuda, Kiyoshi; Kimura, Mitsuhiko; Miyamoto, Norimitsu; Matsunaga, Toshiaki

    1986-10-23

    Focusing the hydrogenating methanation by gaseous phase catalytic reactions of low temperature volatile components, the catalytic effects of Ni metal and the effects of carriers having sensitive effects on the catalytic activities of Ni metal were studied. Sample coals were prepared from Shin-Yubari coal, and Ni hydride-montmorillonite complex catalysts and the catalysts produced by carring Ni nitrate on alumina and burning in hydrogen gas flows were prepared. The hydrogasification were carried out in a reaction tube. As a result, the montmorillonite-Ni compounds catalysts had high catalitic effects and high conversion ratio of 90% or more in the low temperature coal gasification. The catalitic effects of carried Ni metal strongly depended on the carrier substances, and the rank of effects for the carriers was montmorillonite>zeorite>TiO/sub 2/>alpha-Al/sub 2/O/sub 3/>MgO>SiO/sub 2/=gamma-Al/sub 2/O/sub 3/. (3 figs, 3 tabs, 3 refs)

  13. Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.

    Science.gov (United States)

    Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou

    2014-01-21

    We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.

  14. Study on the Low-Temperature Oxidation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-01-01

    Full Text Available The low-temperature oxidation law of coal and rock mass is the basis to study spontaneous combustion in goafs. In this paper, the low-temperature oxidation laws of coal, oil shale, and mixtures of coal and oil shale were studied by using laboratory programmed heating experiments combined with a field beam tube monitoring system. The results from the programmed heating experiments showed that the heat released from oil shale was less than that from coal. Coal had a lower carbon monoxide (CO-producing temperature than oil shale, and the mixture showed obvious inhibiting effects on CO production with an average CO concentration of about 38% of that for coal. Index gases were selected in different stages to determine the critical turning point temperature for each stage. The field beam tube monitoring system showed that the temperature field of the 1105 co-mining face of coal and oil shale in the goaf of the Liangjia Coal Mine presented a ladder-like distribution, and CO concentration was the highest for coal and lower for the mixture of coal and oil shale, indicating that the mixture of coal with oil shale had an inhibiting effect on CO production, consistent with the results from the programmed heating experiments.

  15. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  16. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  17. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available gasifiers. Fluidised bed Entrained flow Coal particle size 0.5 mm – 5 mm 0 – 0.5 mm Coal moisture Dry Dry/slurry Coal type Non-caking coals Any coal Ash in coal < 60% < 30% Gasification agents Air/steam/oxygen Steam/oxygen Gasification... properties important for fluidised bed gasification are: square4 Coal reactivity in atmospheres of CO2 and H2O square4 Caking index and free swelling index (FSI) square4 Ash fusion temperature (AFT) 5.1 Coal reactivity The gasifcation reactions (1...

  18. Effects of drying methods on the low temperature reactivity of Victorian brown coal to oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Unal, S.; Wood, D.G.; Harris, I.J. (University of Marmara, Istanbul (Turkey). Ataturk Faculty of Education, Division of Science Education)

    1992-02-01

    The effects of air drying and thermal dewatering on the low temperature oxygen reactivity of Victorian brown coal have been investigated in the temperature range 35-55{degree}C and at 100 kPa oxygen pressure using coal samples ground to {lt} 100 mesh. An attempt has also been made to relate the low temperature oxygen reactivity of the coal to its free radical concentration as measured prior to oxidation. Two rate models, the Schmidt and Winmill models, have been adapted to include the initial free radical concentration of the coal samples as the drying method sensitivity parameter in lieu of the concentration of oxygen-reactive sites in the coal material. The experimental results show that air drying, which reduces the free radical concentration of the coal, causes a decline in its oxygen reactivity whereas thermal dewatering, which causes an increase in the free radical concentration of the coal, enhances its oxygen reactivity. Air drying does not affect the distribution of the consumed oxygen in the oxidation products. A difference is observed in the case of the thermally dewatered coal samples. The correlation of the two rate models adopted is considered equally satisfactory. However, only the values obtained for the two activation energies in the Winmill model reflect the changes caused by thermal dewatering in the oxidation pattern of the coal. The activation energy values obtained from the two models are within the range of those quoted in the literature for the abstraction of hydrogen from various arene structures by free radicals. 35 refs., 10 figs., 8 tabs.

  19. Characterization of products of combustion of mineral coal

    International Nuclear Information System (INIS)

    Pinheiro, H.S.; Albuquerque, J. S. V.; Sales, J.C.; Nogueira, R.E.F.Q.

    2011-01-01

    During the burning of coal in power plants, various types of waste or by products are generated. These materials have been the subject of several studies. They contain ashes and have many technological applications, such as in the production of various types of ceramic pieces. The objective of this work was to study the feasibility of adding the coal combustion products as filler for ceramics. X-ray fluorescence analysis was used to identify and quantify the proportions of the elements contained in the sample and x-ray diffraction to identify the phases present. The analysis by X-ray diffraction revealed a diffraction pattern of silicon sulfide, calcium silicate and sulfide phases of Aluminium, Potassium and Titanium. X-ray fluorescence analysis showed silica (37.14%), calcium (21.86%), aluminum (14.69%) and sulfur (8.70%). These results show characteristics of materials with potential for incorporation in ceramic bodies, provided that some processing is done to eliminate the sulfur. (author)

  20. Hydrocracking of coal extracts to highly aromatic petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kotowski, W; Gorski, R

    1972-07-01

    Coal extracts were hydrocracked at 400 to 450/sup 0/C, 250 atm, 0.8 to 2.0 hr/sup -1/ space velocity, and with 1.5 cu m/l./hr of hydrogen over a bed of fluidized, 0.6 to 0.8 mm granules of nickel-molybdenum zeolite catalyst using the Consolidation Coal Co. process. The 330/sup 0/C bp extract was diluted with the 230 to 320/sup 0/C fraction of the product. At 440/sup 0/C and 1.2 hr/sup -1/ space velocity, the hydrotreatment removed 97% of the sulfur compounds, 95% of oxygen compounds, and 92% of nitrogen compounds. The yield of 35 to 230/sup 0/C gasoline stock decreased with increasing feed space velocity, but that of 230 to 340/sup 0/C gas oils increased. The synthetic crude product contained 48.7% aromatics, 35.1% naphthenes, 13.4% paraffins, 2.8% olefins, 0.14% sulfur, and 1.07% asphaltene. The product is compared with Romashkino crude.

  1. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  2. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. Ion-exchanged calcium from calcium carbonate and low-rank coals: high catalytic activity in steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Y.; Asami, K. [Tokoku University, Sendai (Japan). Inst. for Chemical Reaction Science

    1996-03-01

    Interactions between CaCO{sub 3} and low-rank coals were examined, and the steam gasification of the resulting Ca-loaded coals was carried out at 973 K with a thermobalance. Chemical analysis and FT-IR spectra show that CaCO{sub 3} can react readily with COOH groups to form ion-exchanged Ca and CO{sub 2} when mixed with brown coal in water at room temperature. The extent of the exchange is dependent on the crystalline form of CaCO{sub 3}, and higher for aragonite naturally present in seashells and coral reef than for calcite from limestone. The FT-IR spectra reveal that ion-exchange reactions also proceed during kneading CaCO{sub 3} with low-rank coals. The exchanged Ca promotes gasification and achieves 40-60 fold rate enhancement for brown coal with a lower content of inherent minerals. Catalyst effectiveness of kneaded CaCO{sub 3} depends on the coal type, in other words, the extent of ion exchange. 11 refs., 7 figs., 3 tabs.

  6. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Young-Kwon [University of Seoul, Seoul (Korea, Republic of)

    2013-03-15

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed.

  7. Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel

    International Nuclear Information System (INIS)

    Jeong, Kwang-Eun; Kim, Tae-Wan; Kim, Joo-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong; Park, Young-Kwon

    2013-01-01

    The current technologies for achieving low sulfur in diesel fuel are based on hydrotreating, which requires high temperature, high pressure and excessive supply of hydrogen. Oxidative desulfurization (ODS) is considered one of the promising new methods for super deep desulfurization, which could be carried out under very mild conditions (atmospheric pressure, <100 .deg.. C) without consumption of hydrogen. In this paper, development status of ODS process by major licensors are described as well as general concepts of ODS reaction. In addition, the ODS process has been categorized into single phasic and biphasic system according to the oxidants involved. Recent trends in both systems are reviewed in detail and future work is also proposed

  8. The Net Climate Impact of Coal-Fired Power Plant Emissions

    Science.gov (United States)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  9. Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine.

    Science.gov (United States)

    Gabriele, Morena; Gerardi, Chiara; Lucejko, Jeannette J; Longo, Vincenzo; Pucci, Laura; Domenici, Valentina

    2018-04-15

    This study analyzed the effect of low sulfur dioxide concentrations on the chromatic properties, phytochemical composition and antioxidant activity of Aglianico red wines with respect to wines produced from conventional winemaking. We determined the phytochemical composition by spectrophotometric methods and HPLC-DAD analysis and the in vitro antioxidant activity of different wine samples by the ORAC assay. The main important classes of fluorophore molecules in red wine were identified by Front-Face fluorescence spectroscopy, and the emission intensity trend was investigated at various sulfur dioxide concentrations. Lastly, we tested the effects of both conventional and low sulfite wines on ex vivo human erythrocytes under oxidative stimulus by the cellular antioxidant activity (CAA) assay and the hemolysis test. The addition of sulfur dioxide, which has well-known side effects, increased the content of certain bioactive components but did not raise the erythrocyte antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  11. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    Science.gov (United States)

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Wyoming geo-notes No. 2

    International Nuclear Information System (INIS)

    Glass, G.B.

    1984-01-01

    After a general overview of the mineral industry in Wyoming, activities and data are given on petroleum, natural gas, coal, uranium, trona, thorium, and other industrial minerals, metals, and precious stones. Coal production figures by county and basin are given. Maps are included showing regions containing subbituminous, bituminous, lignite, and strippable deposits of coal; major active and inactive uranium deposits; oil, gas, and oil shale deposits and pipeline corridors; and selected mineral occurrences of bentonite, trona, and jade. Production forecasts are given for uranium, trona, oil, gas, and coal. Reserve estimates are given for petroleum, natural gas, coal, trona, uranium, and oil shale. 8 references, 4 figures, 7 tables

  13. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  14. Amelioration and reforestation of sulfurous mine soils in Lusatia (eastern Germany)

    International Nuclear Information System (INIS)

    Katzur, J.; Haubold-Rosar, M.

    1996-01-01

    In Germany nearly 1.550 km 2 have been claimed by brown coal mining until now. Mine soils formed of carboniferous and sulfurous overburden are classified as sulfurous mine soils. They remain vegetation-free for decades and may be cultivated only after soil amelioration. The objective of amelioration is a sustained improvement of soil reaction. Lime requirement for the achievement of a certain pH-value is calculated from acid-base-balance (SBB). Lime fertilizers and base-rich brown coal ashes are used for amelioration. As ashes have several advantages, their application is recommended. The ameliorative application of lime fertilizer or brown coal ash should be incorporated intensively into the soil to a depth of 60 cm, better 100 cm. Amelioration includes a mineral fertilization with N, P and K. Afforestation with Pinus sylvestris, Pinus nigra, Larix decidua, Larix eurolepis. Tilia cordata, Quercus rubra and Quercus petraea on ameliorated mine soils show surprising good results. Multi-species stands have very positive effects on soil formation. Raw humus is formed under pine and larch, and under deciduous trees moder and mull with higher bioactivity and better development of water and nutrient balance in the topsoil are found. 55 refs., 6 figs., 4 tabs

  15. An oxidative desulfurization method using ultrasound/Fenton's reagent for obtaining low and/or ultra-low sulfur diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongchuan; Qi, Yutai [Department of Applied Chemistry, School of Science, Harbin Institute of Technology, Harbin 115001 (China); Zhao, Dezhi [Department of Petroleum Chemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Huicheng [Fushun Research Institute of Petroleum and Petrochemicals of SINOPEC Corp., Fushun 113001 (China)

    2008-10-15

    The total development trend in the world is towards continuously lower of sulfur content as a quality standard of diesel fuels. Integrating of an oxidative desulfurization unit with a conventional hydrotreating unit can bring benefits to producing low and/or ultra-low sulfur diesel fuels. Using the hydrotreated Middle East diesel fuel as a feedstock, four processes of the oxidative desulfurization have been studied: a hydrogen peroxide-acetic acid system and a Fenton's reagent system both without/with ultrasound. Results showed that the oxidative desulfurization reaction mechanics fitted apparent first-order kinetics. The addition of Fenton's reagent could enhance the oxidative desulfurization efficiency for diesel fuels and sono-oxidation treatment in combination with Fenton's reagent shows a good synergistic effect. Under our best operating condition for the oxidative desulfurization: temperature 313 K, ultrasonic power 200 W, ultrasonic frequency 28 kHz, Fe{sup 2+}/H{sub 2}O{sub 2} 0.05 mol/mol, pH 2.10 in aqueous phase and reaction time 15 min, the sulfur content in the diesel fuels was decreased from 568.75 {mu}g/g to 9.50 {mu}g/g. (author)

  16. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    Science.gov (United States)

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  17. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  18. Acidophilic sulfur disproportionation

    Science.gov (United States)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  19. Investigation of the effects of various water mediums on desulfurization and deashing of a coal sample by flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, F.D. [Dicle University, Diyarbakir (Turkey)

    2009-08-15

    The aim of this study was to investigate the effects of various water mediums on desulfurization and deashing of a coal sample using flotation. For this purpose, experimental studies were conducted on a coal sample containing high ash and sulfur contents. The effects of pH, solid concentration, collector amount and frother amount on the flotation were investigated separately in Mediterranean Sea water, Cermik thermal spring water, snow water and tap water. Flotation, results indicated that, when comparing the various water mediums, the following order for the ash content was obtained: snow water < Cermik thermal spring water < tap water < the Mediterranean Sea water. For the reduction of total sulfur, the following order was obtained: snow water > Cermik thermal spring water > Mediterranean Sea water > tap water. When snow water was used as a flotation medium, it was found that a concentrate containing 3.01% total sulfur and 27.64% ash with a total sulfur reduction of 57.06% was obtained from a feed containing 7.01% total sulfur and 4.1.17% ash.

  20. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China

    Science.gov (United States)

    Sun, R.; Liu, Gaisheng; Zheng, Lingyun; Chou, C.-L.

    2010-01-01

    The abundances of nine major elements and thirty-eight trace elements in 520 samples of low sulfur coals from the Zhuji Mine, Huainan Coalfield, Anhui, China, were determined. Samples were mainly collected from 10 minable coal seams of 29 boreholes during exploration. The B content in coals shows that the influence of brackish water decreased toward the top of coal seams; marine transgression and regression occurred frequently in the Lower Shihezi Formation. A wide range of elemental abundances is found. Weighted means of Na, K, Fe, P, Be, B, Co, Ni, Cr, Se, Sb, Ba, and Bi abundances in Zhuji coals are higher, and the remainder elements are either lower or equal to the average values of elements in coals of northern China. Compared to the Chinese coals, the Zhuji coals are higher in Na, K, Be, B, Cr, Co, Se, Sn, Sb, and Bi, but lower in Ti, P, Li, V and Zn. The Zhuji coals are lower only in S, P, V and Zn than average U.S. and world coals. Potassium, Mg, Ca, Mn, Sr, As, Se, Sb and light rare earth elements (LREE) had a tendency to be enriched in thicker coal seams, whereas Fe, Ti, P, V, Co, Ni, Y, Mo, Pb and heavy rare earth elements (HREE) were inclined to concentrate in thinner coal seams. The enrichment of some elements in the Shanxi or Upper Shihezi Formations is related to their depositional environments. The elements are classified into three groups based on their stratigraphic distributions from coal seams 3 to 11-2, and the characteristics of each group are discussed. Lateral distributions of selected elements are also investigated. The correlation coefficients of elemental abundances with ash content show that the elements may be classified into four groups related to modes of occurrence of these elements. ?? 2009 Elsevier B.V. All rights reserved.

  1. Low severity conversion of activated coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  2. SO2 policy and input substitution under spatial monopoly

    International Nuclear Information System (INIS)

    Gerking, Shelby; Hamilton, Stephen F.

    2010-01-01

    Following the U.S. Clean Air Act Amendments of 1990, electric utilities dramatically increased their utilization of low-sulfur coal from the Powder River Basin (PRB). Recent studies indicate that railroads hauling PRB coal exercise a substantial degree of market power and that relative price changes in the mining and transportation sectors were contributing factors to the observed pattern of input substitution. This paper asks the related question: To what extent does more stringent SO 2 policy stimulate input substitution from high-sulfur coal to low-sulfur coal when railroads hauling low-sulfur coal exercise spatial monopoly power? The question underpins the effectiveness of incentive-based environmental policies given the essential role of market performance in input, output, and abatement markets in determining the social cost of regulation. Our analysis indicates that environmental regulation leads to negligible input substitution effects when clean and dirty inputs are highly substitutable and the clean input market is mediated by a spatial monopolist. (author)

  3. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  4. Prospects for production of synthetic liquid fuel from low-grade coal

    Directory of Open Access Journals (Sweden)

    Shevyrev Sergei

    2015-01-01

    Full Text Available In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  6. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    Science.gov (United States)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    for residential heating can be replaced with gas-burning wall-heaters, ground-source heat pumps, solar energy and electricity. In areas with inadequate clean energy sources, low-sulfur coal should be used instead of the traditional raw coal with high sulfur and ash content, thereby slightly reducing the emissions of PM, SO2, CO and other toxic pollutants.

  7. Biomass Cofiring in Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  8. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  9. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  10. Mechanism of Enhancing Extraction of Vanadium from Stone Coal by Roasting with MgO

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2017-02-01

    Full Text Available In this paper, the extraction of vanadium from stone coal by roasting with MgO and leaching with sulfuric acid has been investigated, and the mechanism analysis of stone coal roasting with MgO was studied. The results indicated that under the conditions that the mass fraction of the particles with grain size of 0–0.074 mm in raw ore was 75%, the roasting temperature was 500 °C, the roasting time was 1 h, MgO addition was 3 wt %, the sulfuric acid concentration was 20 vol %, the liquid-to-solid ratio was 1.5 mL/g, the leaching temperature was 95 °C, and leaching time was 2 h, resulting in a vanadium leaching efficiency of 86.63%, which increased by 7.73% compared with that of blank roasting. The mechanism analysis showed that the degree of calcite decomposition was low and, thus, magnesium vanadate was more easily formed than calcium vanadate below 500 °C. Moreover, magnesium vanadate was easier to dissolve than calcium vanadate during the sulfuric acid leaching process. Thus, the vanadium leaching efficiency was enhanced by using MgO as a roasting additive below 500 °C. Additionally, at high temperature the formation of tremolite would consume calcium oxide produced from the decomposition of calcite, thus, the formation of calcium vanadate was hindered, and V2O5 would react with MgO to form magnesium vanadate. Therefore, the vanadium leaching efficiency of roasting with MgO was higher than that of blank roasting at high temperature.

  11. Low-maturity Kulthieth Formation coal: A possible source of polycyclic aromatic hydrocarbons in benthic sediment of the northern Gulf of Alaska

    Science.gov (United States)

    Van Kooten, G. K.; Short, J.W.; Kolak, J.J.

    2002-01-01

    The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low - i.e. the coals are over mature - to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH: TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  12. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system, China.

    Science.gov (United States)

    Zhang, Xiaobo; Li, Xue; Gao, Xubo

    2016-04-01

    Hydrogeochemical analysis, statistical analysis, and geochemical modeling were employed to evaluate the impacts of coal mining activities on karst water chemistry in Niangziguan spring catchment, one of the largest karst springs in Northern China. Significant water quality deterioration was observed along the flow path, evidenced from the increasing sulfate, nitrate, and TDS content in karst water. Karst water samples are Ca-Mg-HCO3 type in the recharge areas, Ca-Mg-HCO3-SO4 type in the coal mining areas, and Ca-Mg-SO4-HCO3/HCO3-SO4 type in the rural areas and discharge areas. A four-factor principal component analysis (PCA) model is conducted which explains over 82.9% of the total variation. Factor 1, which explained the largest portion (45.33%) of the total variance, reveals that coal mining activities and natural water-rock interaction as the primary factors controlling karst water quality. Anthropogenic effects were recognized as the secondary factor with high positive loadings for NO3 (-) and Cl(-) in the model. The other two factors are co-precipitation removal of trace elements and silicate mineral dissolution, which explained 20.96% of the total variance. A two-end mixing modeling was proposed to estimate the percentage of coal wastewater giving on karst water chemistry, based on the groundwater sulfate chemistry constrains rather than sulfur isotopes. Uncertainty of sulfur isotope sources led to an overestimation of coal mining water contribution. According to the results of the modeling, the contribution of coal mining waste on karst water chemistry was quantified to be from 27.05 to 1.11% which is ca. three times lower than the values suggested using a sulfur isotope method.

  13. Geochemistry of Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, Harvey E.; Tewalt, Susan J.

    2007-01-01

    Introduction Indonesia is an archipelago of more than 17,000 islands that stretches astride the equator for about 5,200 km in southeast Asia (figure 1) and includes major Cenozoic volcano-plutonic arcs, active volcanoes, and various related onshore and offshore basins. These magmatic arcs have extensive Cu and Au mineralization that has generated much exploration and mining in the last 50 years. Although Au and Ag have been mined in Indonesia for over 1000 years (van Leeuwen, 1994), it was not until the middle of the nineteenth century that the Dutch explored and developed major Sn and minor Au, Ag, Ni, bauxite, and coal resources. The metallogeny of Indonesia includes Au-rich porphyry Cu, porphyry Mo, skarn Cu-Au, sedimentary-rock hosted Au, epithermal Au, laterite Ni, and diamond deposits. For example, the Grasberg deposit in Papua has the world's largest gold reserves and the third-largest copper reserves (Sillitoe, 1994). Coal mining in Indonesia also has had a long history beginning with the initial production in 1849 in the Mahakam coal field near Pengaron, East Kalimantan; in 1891 in the Ombilin area, Sumatra, (van Leeuwen, 1994); and in South Sumatra in 1919 at the Bukit Asam mine (Soehandojo, 1989). Total production from deposits in Sumatra and Kalimantan, from the 19thth century to World War II, amounted to 40 million metric tons (Mt). After World War II, production declined due to various factors including politics and a boom in the world-wide oil economy. Active exploration and increased mining began again in the 1980's mainly through a change in Indonesian government policy of collaboration with foreign companies and the global oil crises (Prijono, 1989). This recent coal revival (van Leeuwen, 1994) has lead Indonesia to become the largest exporter of thermal (steam) coal and the second largest combined thermal and metallurgical (coking) coal exporter in the world market (Fairhead and others, 2006). The exported coal is desirable as it is low sulfur

  14. The World Coal Quality Inventory: A status report

    Science.gov (United States)

    Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.

    2005-01-01

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  15. Chemical treatment of coal by grinding and aqueous caustic leaching

    Energy Technology Data Exchange (ETDEWEB)

    Balaz, P.; LaCount, R.B.; Kern, D.G.; Turcaniova, L. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Geotechnics

    2001-04-01

    The aim of this work has been to point out the possibility of using GACL process for chemical cleaning of brown coal Nivaky (Slovakia) and Pittsburgh coal. Simultaneous grinding and aqueous chemical leaching, which is the principle of the process, reduces the inorganic and inorganic sulfur content in both coals. Dearsenificiation nearly up to 96% is detected in GACL-treated samples of Novaky coal. The possibility of enhancing the recovery of humic acid as a consequence of GACL treatment is demonstrated. The process under study works under atmospheric pressure, temperature of 90{degree}C and NaOH consumption, which is six times lower compared with the MCL process. Further research is needed to minimize the wear of grinding media and to improve the washing step. 24 refs., 7 figs., 3 tabs.

  16. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  17. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  18. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  19. Identifying parameter windows for sulfur removal by direct limestone injection in the rich zone of staged heat engine combustors

    International Nuclear Information System (INIS)

    Colaluca, M.A.

    1990-01-01

    Recent experimental evidence suggests the possibility of sulfur cleanup by direct injection at gas temperatures that do not thermodynamically favor the absorption of sulfur by the limestone. The purpose of this paper is to analytically investigate possible mechanistic explanations of this observed sulfur capture with the goal of evaluating the potential for limestone injection sulfur capture in direct coal fired gas turbine and diesel engine (heat engines) combustion applications. The method was to use current available data on the physical properties of limestone, and the rates of the pertinent reactions, and to develop mathematical models of the processes experienced by the sorbent particles. The models were then used to predict extent of capture at the high-pressure, high-temperature, short residence time conditions of interest. The goal was to first investigate capture in a single-pulse reactor (combustion bomb) and then to extrapolate these results to advanced coal-fired heat engine combustion environments. Model predictions were in good agreement with observed sulfur capture in cold wall combustion bomb studies and suggest that efficient sulfur capture (in excess of 80 percent calcium utilization) may b e possible when limestone sorbents are injected into high-temperature combustion products, even when the gas temperatures exceed the thermodynamically favored temperature window by several hundred kelvins. This behavior is possible because particle temperatures are moderated and held at levels that favor sulfur capture due to the strongly endothermic calcination reaction

  20. Low-temperature carbonization of bituminous coal for the production of solid, liquid, and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    1942-01-01

    Properties and uses of low-temperature coke for producing ferrosilicon, CaC/sub 2/ generator gas and water gas, as a fuel for boilers and household use and as a diluent for coking coal, and the properties and uses of low-temperature tar, gasoline, gas, and liquefied gas are described. By using a circulating gas, it is possible to obtain in low-temperature carbonization of bituminous coal a fuel oil for the navy. Aging-test data of such an oil are given. Several plants in Upper Silesia, using the Lurgi circulation process are producing a fuel oil that meets specification.

  1. Partitioning of elements during coal combustion and leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wen-feng; Qin Yong; Song Dang-yu; Wang Jun-yi [China University of Mining & Technology, Xuzhou (China). School of Resources and Earth Science

    2009-04-15

    The mineral component and content of sulfur and 42 major and trace elements of the feed coal, fly and bottom ashes collected from Shizuishan coal-fired power plant, Ningxia, China were analyzed using AFS, INAA, ICP-MS, ICP-AES, XRD. Based on the coal combustion and leaching experiments, the partitioning of these elements during coal combustion and the leaching behavior of the 11 potentially hazardous elements, including As, Cd, Co, Cr, Hg, Mo, Ni, Pb, Se, Th and U were investigated. The results show that the distribution of elements in the fly and bottom ashes is controlled by their volatilities and modes of occurrence in the coal. The degree of volatilization of elements may be mainly associated with boiling/melting points of these elements and their compounds. The elements easily volatilized, organically bound or associated with sub-micrometer and nano minerals (e.g. Al and Na) tend to be enriched in the fine fractions of fly ash, and most elements do not vaporize which are approximately equally partitioned in the fly and bottom ashes. The emission rates of As, Cr, K, Mg, Mn, Mo, Pb, Sb, and Zn are notably influenced by the temperature ranging from 877 to 1300{sup o}C. The leaching behavior of elements depend significantly on their geochemical properties and modes of occurrence. The elements with a low degree of volatilization are not easily leached, while volatile elements easily leached under the acid conditions. Arsenic, B Br, Cd, Cu, Hg, Pb, S, Sb and Se show a higher emission rate during coal combustion, and the leached concentrations of Cd, Co, Mo, Ni and U in the acid media exceed their limited concentrations recommended in relevant environment quality standards for water, which will harm the environment. 32 refs., 4 figs., 4 tabs.

  2. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  3. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  4. Possibilities of employing saliferous raw brown coal for technical fodder drying

    Energy Technology Data Exchange (ETDEWEB)

    Koerdel, P; Haeusler, W

    1978-09-01

    The successful utilization of saliferous brown coal is demonstrated with a sodium oxide content greater than 0.5% in dry substance, but with high calorific value (2300 to 3000 kcal/kg) for fodder drying (sugar beets and green fodder). Details of the fodder dryer and its performance, and combustion and drying parameters of 11 dryers using saliferous coal are presented. Hot air enters the dryer with temperatures between 300 and 800 C depending on the operation, and dries the fodder to 88-92% dry substance. Chemical analysis showed no significant increase in sulfur dioxide, hydrogen sulfide, chlorine, or sodium content in the dry fodder, which is recognized as safe to feed to ruminants. The substitution of ordinary brown coal by saliferous coal led to a savings of 4.000 Marks/kt coal in drying. (8 refs.) (In German)

  5. Fluidized bed combustion of low-grade coal and wastes: Research and development

    Energy Technology Data Exchange (ETDEWEB)

    Borodulya, V.A.; Dikalenko, V.I.; Palchonok, G.I.; Vinogradov, L.M. [Academy of Sciences of Belarus, Minsk (Belarus). A.V. Luikov Heat and Mass Transfer Inst.; Dobkin, S.M.; Telegin, E.M. [Special Design Office, Brest (Belarus)

    1994-12-31

    Experimental studies were carried out to investigate devolatilization of fuel as single spherical particles of wood, hydrolytic lignin, leather sewage sludge and Belarussian brown coals in a fluidized bed of sand. It is found that the devolatilization process depends on moisture and ash contents in fuel and on the external heat and mass transfer rate. The char combustion occurs largely in the intermediate region. Kinetic parameters of the devolatilization and char combustion are obtained. A low-capacity fluidized bed boiler suitable for combustion of coal and different wastes is described.

  6. Subsequent flue gas desulfurization of coal-fired power plant units

    International Nuclear Information System (INIS)

    Willibal, U.; Braun, Gy.

    1998-01-01

    The presently operating coal-fired power plant in Hungary do not satisfy the pollution criteria prescribed by the European Union norms. The main polluting agent is the sulfur dioxide emitted by some of the power plants in Hungary in quantities over the limit standards. The power plant units that are in good operating state could be made competitive by using subsequent desulfurization measures. Various flue gas desulfurization technologies are presented through examples that can be applied to existing coal-fired power plants. (R.P.)

  7. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  8. Advanced sulfur control concepts for hot-gas desulfurization technology

    International Nuclear Information System (INIS)

    Lopez Ortiz, A.; Harrison, D.P.; Groves, F.R.; White, J.D.; Zhang, S.; Huang, W.N.; Zeng, Y.

    1998-01-01

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500C to 700C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a

  9. Gasification of various types of tertiary coals: A sustainability approach

    International Nuclear Information System (INIS)

    Öztürk, Murat; Özek, Nuri; Yüksel, Yunus Emre

    2012-01-01

    Highlights: ► Production energy by burning of coals including high rate of ash and sulfur is harmful to environment. ► Energy production via coal gasification instead of burning is proposed for sustainable approach. ► We calculate exergy and environmental destruction factor of gasification of some tertiary coals. ► Sustainability index, improvement potential of gasification are evaluated for exergy-based approach. - Abstract: The utilization of coal to produce a syngas via gasification processes is becoming a sustainability option because of the availability and the economic relevance of this fossil source in the present world energy scenario. Reserves of coal are abundant and more geographically spread over the world than crude oil and natural gas. This paper focuses on sustainability of the process of coal gasification; where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The coal gasifier unit is one of the least efficient step in the whole coal gasification process and sustainability analysis of the coal gasifier alone can substantially contribute to the efficiency improvement of this process. In order to evaluate sustainability of the coal gasification process energy efficiency, exergy based efficiency, exergy destruction factor, environmental destruction factor, sustainability index and improvement potential are proposed in this paper.

  10. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  11. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  12. Thermal behaviour during the pyrolysis of low rank perhydrous coals

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Rubiera, F.; Pis, J.J.; Cuesta, M.J.; Suarez-Ruiz, I. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Iglesias, M.J. [Area de Quimica Organica, Universidad de Almeria, Carretera de Sacramento, 04120 Almeria (Spain); Jimenez, A. [Area de Cristalografia y Mineralogia, Departamento de Geologia, Campus de Llamaquique, 33005 Oviedo (Spain)

    2003-08-01

    Perhydrous coals are characterised by high H/C atomic ratios and so their chemical structure is substantially modified with respect to that of conventional coals. As a result, perhydrous coals show different physico-chemical properties to common coals (i.e. higher volatile matter content, enhancement of oil/tar potential, relatively lower porosity and higher fluidity during carbonisation). However, there is little information about thermal behaviour during the pyrolysis of this type of coal. In this work, six perhydrous coals (H/C ratio between 0.83 and 1.07) were pyrolysed and analysed by simultaneous thermogravimetry/mass spectrometry. The results of this work have revealed the influence of high H/C values on the thermal behaviour of the coals studied. During pyrolysis the perhydrous coals exhibit very well defined, symmetrical peaks in the mass loss rate profiles, while normal coals usually show a broader peak. The shape of such curves suggests that in perhydrous coals fragmentation processes prevailed over condensation reactions. The high hydrogen content of perhydrous coals may stabilise the free radicals formed during heat treatment, increasing the production of light components.

  13. The changing structure of the US coal industry: An update, July 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-29

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  14. The changing structure of the US coal industry: An update, July 1993

    International Nuclear Information System (INIS)

    1993-01-01

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA's responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration

  15. Spin-mapping of Coal Structures with ESE and ENDOR

    Science.gov (United States)

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  16. Marketing strategy of low-grade coal of Orissa state

    Energy Technology Data Exchange (ETDEWEB)

    Maheshwari, L.N.

    2000-07-01

    Orissa has vast reserves of poor-grade coal. In this paper, the author has highlighted various aspects of Orissa coal reserves and also provided suggestions for the marketing strategy of this coal, taking into consideration the pros and cons of techno-economic viability of beneficiation of poor-grade coal of Orissa. He also addresses transport problems; power houses are situated more than 1000 km from the coal mines. Suggestions provided in this paper include the following: (1) fuel supply agreement to be set up, particularly for the long-distance customers, (2) considering the overall economics, MCL to try and convince the Ministry of Environment and Forests to drop the clause using 34% ash coal by distant thermal power stations from June 2001, (3) to properly utilize manpower, as the wages are high but the industry growth curve is negative, and (4) to set up proper safety measures in opencast mines to prevent fire. This will avoid weathering and degradation of coal.

  17. Characterization of Malaysian coals for carbon dioxide sequestration

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.

  18. Treatment of products from petroleum, shale, coal, lignite, etc

    Energy Technology Data Exchange (ETDEWEB)

    Jevanoff, V

    1952-06-20

    An improved process is described for treating with sodium plumbite all the products derived from crude petroleum, bituminous shale, coal, lignite, peat, etc., such as gasoline, solvents, lamp oil, gas oil, fuels, etc; the process being essentially characterized by the fact that it consists first in washing the product to be refined with a soda wash; submitting it to a treatment with sodium plumbite, without addition of sulfur, then to eliminate the sulfur plumbite compounds resulting in the treated product, using either redistillation to eliminate products remaining in the residue or filtration over an absorbing material such as active carbon, decolorizing earths.

  19. Modeling and Simulation on NOx and N2O Formation in Co-combustion of Low-rank Coal and Palm Kernel Shell

    Directory of Open Access Journals (Sweden)

    Mahidin Mahidin

    2012-12-01

    Full Text Available NOx and N2O emissions from coal combustion are claimed as the major contributors for the acid rain, photochemical smog, green house and ozone depletion problems. Based on the facts, study on those emissions formation is interest topic in the combustion area. In this paper, theoretical study by modeling and simulation on NOx and N2O formation in co-combustion of low-rank coal and palm kernel shell has been done. Combustion model was developed by using the principle of chemical-reaction equilibrium. Simulation on the model in order to evaluate the composition of the flue gas was performed by minimization the Gibbs free energy. The results showed that by introduced of biomass in coal combustion can reduce the NOx concentration in considerably level. Maximum NO level in co-combustion of low-rank coal and palm kernel shell with fuel composition 1:1 is 2,350 ppm, low enough compared to single low-rank coal combustion up to 3,150 ppm. Moreover, N2O is less than 0.25 ppm in all cases. Keywords: low-rank coal, N2O emission, NOx emission, palm kernel shell

  20. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  1. Application of House of Quality in evaluation of low rank coal pyrolysis polygeneration technologies

    International Nuclear Information System (INIS)

    Yang, Qingchun; Yang, Siyu; Qian, Yu; Kraslawski, Andrzej

    2015-01-01

    Highlights: • House of Quality method was used for assessment of coal pyrolysis polygeneration technologies. • Low rank coal pyrolysis polygeneration processes based on solid heat carrier, moving bed and fluidized bed were evaluated. • Technical and environmental criteria for the assessment of technologies were used. • Low rank coal pyrolysis polygeneration process based on a fluidized bed is the best option. - Abstract: Increasing interest in low rank coal pyrolysis (LRCP) polygeneration has resulted in the development of a number of different technologies and approaches. Evaluation of LRCP processes should include not only conventional efficiency, economic and environmental assessments, but also take into consideration sustainability aspects. As a result of the many complex variables involved, selection of the most suitable LRCP technology becomes a challenging task. This paper applies a House of Quality method in comprehensive evaluation of LRCP. A multi-level evaluation model addressing 19 customer needs and analyzing 10 technical characteristics is developed. Using the evaluation model, the paper evaluates three LRCP technologies, which are based on solid heat carrier, moving bed and fluidized bed concepts, respectively. The results show that the three most important customer needs are level of technical maturity, wastewater emissions, and internal rate of return. The three most important technical characteristics are production costs, investment costs and waste emissions. On the basis of the conducted analysis, it is concluded that the LRCP process utilizing a fluidized bed approach is the optimal alternative studied

  2. Chemical-composition studies of low-temperature-carbonization coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Edel' shtein, N G; Lanin, V A

    1955-01-01

    Pintsch-oven low-temperature tar was separated into its constituents by conventional methods, and the average of 2 results was neutral asphaltenes 12.56, basic asphaltenes 2.61, acid asphaltenes 18.82, phenols 13.23, bases 2.31, neutral oil 17.66, crystalline paraffins 7.34, silica-gel tars (I) (benzene extract) 15.40, I (acetone extract) 2.47, carbenes 0.45, and carbides and dust 1.44%. The low-temperature-tar asphaltenes and tars differ from shale-oil tars by being lower in C and higher in H, with a considerably higher C:H ratio. Their specific gravity is somewhat higher, and they are cyclic in structure. The asphaltenes and silica-gel tars of coal tar and shale oil were hydrogenated, molecular weights d/sub 4//sup 20/ and n/sub 4//sup 20/ of the separated compounds were determined, and empirical formulas of the hydrogenated compounds calculated. The neutral oil was separated into saturated, intermediate (iodine number 23), unsaturated (iodine number 51), a small quantity of a mixture of unsaturated and aromatic hydrocarbons, and 44.9% aromatic hydrocarbons. While naphthenes seem to be predominantly present in the neutral-oil fraction of shale oil, aromatic hydrocarbons are predominant in coal oil.

  3. Variation in mineral composition of coal during enrichment and coking

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Ulanovskii; A.N. Likhenko [Ukrkoks Coke Producers' Association, Dnepropetrovsk (Ukraine)

    2009-06-15

    The parameters I{sub b} and B{sub b} used in developing an optimal coking-batch composition are determined from data on the chemical composition of the ash in Donetsk Basin and other coal. It is found that, when the ash content is reduced in deeper enrichment of coal with an increased content of fine pyrite, there will be accompanying increase in the Fe{sub 2}O{sub 3} content and decrease in the SiO{sub 2} content of the ash in lighter fractions. This increases I{sub b}. In other words, reducing the ash content of the coal is an unpromising means of increasing CRI and CSR of the coke produced. Three ash-containing elements (silicon, aluminum, and iron) are experimentally proven to transfer from coal to coke. Specific behavior of calcium, magnesium, alkali metals, and sulfur during coking.

  4. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    Science.gov (United States)

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  5. FY 1999 report on the survey of the overseas geological structure, etc. Japan-Indonesia joint Tanjung Enim coal exploration project; 1999 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Indonesia sekitan kyodo tansa Tanjung Enim project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper summed up the FY 1999 results of the survey conducted based on the agreement on the Tanjung Enim IV coal exploration project which was concluded between NEDO and Indonesia's Ministry of Mining Energy. The survey was made for an area of approximately 40km{sup 2} which is a north block of the south Arahan region, Tanjung Enim, South Sumatra, Indonesia. To grasp the succession of strata/rock facies/geological structure and the state of existence of the coal seams to be drilled, surveys were conducted on ground surface and boreholes. A total of 10 holes was test-drilled, and all the boreholes were physically logged. As a result of the survey, each of A1, A2, B, C and E coal seams was confirmed as main seams. A1, A2 and B seams are low in ash and sulfur contents with heating values of approximately 4,800 kcal/kg, C seam is high in sulfur content, and E seam is high in heating value, 6,000 kcal/kg. As coal seams for open pit mining, existence of A, B and C seams is expected which lay in the shallow part from ground surface to sea level of 0m and in the range of depth of approximately 100m. The proved coal reserves of these coals were estimated at 189 million tons. (NEDO)

  6. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  7. Sulfur Fixation by Chemically Modified Red Mud Samples Containing Inorganic Additives: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Sulfur retention ability of Bayer red mud from alumina plant was investigated. Bayer red mud modified by fusel salt and waste mother liquor of sodium ferrocyanide as the main sulfur fixation agent and the calcium based natural mineral materials as servicing additives; the experimental results showed the following: (1 Through 10 wt% waste mother liquor of sodium ferrocyanide modifying Bayer red mud, sulfur fixation rate can increase by 13 wt%. (2 Magnesium oxide can obviously improve the sulfur fixation performance of Bayer red mud and up to a maximum sulfur fixation rate of 47 wt% at adding 1 wt% magnesium oxide. (3 Dolomite enhanced the sulfur fixation performances with the sulfur fixation rate of 68 wt% in optimized condition. (4 Vermiculite dust reduced sulfur dioxide during the fixed-sulfur process of modified Bayer red mud, and the desulphurization ration could reach up to a maximum 76 wt% at 950°C. (5 An advanced three-component sulfur fixation agent was investigated, in which the optimized mass ratio of modified Bayer red mud, dolomite, and vermiculite dust was 70 : 28 : 2 in order, and its sulfur fixation efficiency has reached to a maximum 87 wt% under its 20 wt% dosage in the coal.

  8. The role of IGCC technology in power generation using low-rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Juangjandee, Pipat

    2010-09-15

    Based on basic test results on the gasification rate of Mae Moh lignite coal. It was found that an IDGCC power plant is the most suitable for Mae Moh lignite. In conclusion, the future of an IDGCC power plant using low-rank coal in Mae Moh mine would hinge on the strictness of future air pollution control regulations including green-house gas emission and the constraint of Thailand's foreign currency reserves needed to import fuels, in addition to economic consideration. If and when it is necessary to overcome these obstacles, IGCC is one variable alternative power generation must consider.

  9. Low temperature coal depolymerization-liquefaction: conversion of a North Dakota lignite to a light hydrocarbon oil

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Yuan Zhang (University of Utah, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1989-10-01

    A new low temperature method of coal liquefaction is described which includes intercalation of the coal with FeCl{sub 3}, depolymerization under supercritical conditions, and hydroprocessing of the depolymerized product. Results indicate a high yield conversion of lignites to light hydrocarbon oils. 6 refs., 4 figs., 1 tab.

  10. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  11. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  12. Effect of chemical modification on reduction and sorptive properties of chars from hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Stanczyk, K.; Miga, K.; Fabis, G.; Jastrzab, K. [Polskiej Akademii Nauk, Gliwice (Poland)

    1998-01-01

    Hydropyrolysis of bituminous coal and lignite as way of synthesis of adsorbents has been applied. Chemical modification of chars based on simultaneous carbonization of coal and plastics containing sulfur and nitrogen has been carried out. It was stated that modified chars exhibit better reduction and sorptive properties than non-modified and that modified adsorbents made of lignite exceed commercial ones. 7 refs., 4 figs., 3 tabs.

  13. Report for fiscal 1981 of Sunshine Program coal group. Basic research on Solvolysis liquefaction technology; 1981 nendo solvolysis ekika gijutsu no kiso kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Basic research is conducted on the Solvolysis liquefaction process for the purpose of producing from coal an ashless, low-sulfur, pollution-free liquid fuel. In the research on the Solvolysis liquefaction (1st stage liquefaction) of coal using a hydrogenation solvent, the Solvolysis liquefaction of coal is studied, for which a refined Solvolysis pitch containing coal substances and a hydride of solvent refined coal are used as Solvolysis liquefaction solvents for the 1st stage. In the research on the 1st stage liquefaction reaction conditions using a high-temperature closed process, two methods are employed. One is a method that uses a mini-pump type reactor in which a small hermetic container is submerged in a high-temperature solvent for rapid heating and the other is a method that uses a pipe type reactor in which coal slurry is caused to travel through a pipe heated to a high temperature. For the analysis of the 2nd stage liquefaction (hydrogenation) reaction conditions, the properties of the 2nd coal liquid, and the constitution of the 2nd coal liquid, and the for the research on the 1st stage liquefaction capacity, the hydrogenation of anthracene oil and solvent refined coal as recyclable solvent models is studied. (NEDO)

  14. Assessment of Coal Geology, Resources, and Reserves in the Gillette Coalfield, Powder River Basin, Wyoming

    Science.gov (United States)

    Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.

    2008-01-01

    The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic

  15. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  16. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  17. The position of the French coal industry on the European Commission strategy against acidification; Position de charbonnages de France sur la strategie de lutte contre l`acidification de la commission europeenne

    Energy Technology Data Exchange (ETDEWEB)

    Dejean, M. [CDF Energie, 92 - Rueil-Malmaison (France)

    1997-12-31

    The Charbonnages de France group (French coal industry) presents several objections to the projected European Commission program concerning the reduction of air pollution emission and acidification: reaching so rapidly the projected reduction level means a drastic improvement to the large burning plants, regardless of the low operating duration of the coal plants in France, which are used for electric power production only at peak or semi-base periods or in industries (principally food industry) with low energy duration requirements, and regardless of the important emission reductions already achieved in France. The coal industry proposes to simply apply the present IPPC directive; already, turning to circulating fluidized bed units has allowed important SO{sub 2} and NO{sub x} emission reductions. The evolution of sulfur and nitrogen oxide emissions in France between 1990 and 1995 is detailed

  18. Sour streams in appalachia: mapping nature’s buffer against sulfur deposition

    Science.gov (United States)

    Natasha Vizcarra; Nicholas Povak; Paul Hessburg; Keith Reynolds

    2015-01-01

    Even while emissions are in decline, sulfur released into the air primarily by coal- and oil-burning power plants continues to acidify streams in the eastern United States, stressing vegetation and harming aquatic life. Watersheds rich in base cations—nutrients that attract and bind acidic molecules—naturally buffer streams against acidification. These watersheds can...

  19. Sulfur-binding in recent environments: II. Speciation of sulfur and iron and implications for the occurrence of organo-sulfur compounds

    Science.gov (United States)

    Hartgers, Walter A.; Lòpez, Jordi F.; Sinninghe Damsté, Jaap S.; Reiss, Christine; Maxwell, James R.; Grimalt, Joan O.

    1997-11-01

    Speciation of iron and sulfur species was determined for two recent sediments (La Trinitat and Lake Cisó) which were deposited in environments with a high biological productivity and sulfate-reducing activity. In sediments from calcite ponds of La Trinitat an excess of reactive iron species (iron monosulfides, iron hydroxides) results in a depletion of reactive sulfur which is accompanied by a virtual absence of organo-sulfur compounds, both in low (LMW) and high molecular-weight (HMW) fractions. Small amounts of phytanyl and highly branched isoprenoid (HBI) thiophenes in the extract demonstrate that these molecules exhibit a higher reactivity towards reduced sulfur species as compared to detrital iron. Euxinic sediments from Lake Cisó are characterised by an excess of reduced sulfur species which can rapidly trap reactive iron. High concentrations of H 2S results in the formation of organo-sulfur compounds which were encountered in both LMW and HMW fractions. The major part of the organic sulfur is bound to the carbohydrate portion of woody tissues, whose presence was revealed by a specific alkylthiophene distribution in the flash pyrolysate and by Li/EtNH 2 desulfurisation of the kerogen which resulted in the solubilisation of the sulfur-enriched hemicellulose fraction. Relatively high amounts of sulfurised C 25 HBI compounds in the sediment extract of Lake Cisó reflect the incorporation of sulfur into algal derived organic matter upon early diagenesis. The combined approach of the speciation of iron and sulfur species and the molecular analysis of sedimentary fractions demonstrates that abiotic sulfur binding to organic matter occurs at the earliest stages of diagenesis under specific depositional conditions (anoxic, stratified water column) in which an excess of reduced sulfur species relative to the amount of reactive iron is a controlling factor.

  20. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.

    Science.gov (United States)

    Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang

    2015-09-07

    The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. EVALUATION AND MITIGATION OF VISIBLE ACIDIC AEROSOL PLUMES FROM COAL FIRED POWER BOILERS

    Science.gov (United States)

    The formation of sulfur trioxide during the combustion of coal can increase significantly following the installation and operation of selective catalytic reduction systems for reduction of nitrogen oxides. This can in turn lead to adverse environmental impacts, including visible...

  2. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  3. Catalytic briquettes from low-rank coal for NO reduction

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2007-07-01

    The briquetting is one of the most ancient and widespread techniques of coal agglomeration which is nowadays becoming useless for combustion home applications. However, the social increasing interest in environmental protection opens new applications to this technique, especially in developed countries. In this work, a series of catalytic briquettes were prepared from low-rank Spanish coal and commercial pitch by means of a pressure agglomeration method. After that, they were cured in air and doped by equilibrium impregnation with vanadium compounds. Preparation conditions (especially those of activation and oxidizing process) were changed to study their effects on catalytic behaviour. Catalytic briquettes showed a relative high NO conversion at low temperatures in all cases, however, a strong relation between the preparation process and the reached NO conversion was observed. Preparation procedure has an effect not only on the NO reduction efficiency but also on the mechanical strength of the briquettes as a consequence of the structural and chemical changes carried out during the activation and oxidation procedures. Generally speaking mechanical resistance is enhanced by an optimal porous volume and the creation of new carboxyl groups on surface. Just on the contrary, NO reduction is promoted by high microporous structures and higher amounts of surface oxygen groups. Both facts force to find an optimum point in the preparation produce which will depend on the application. 24 refs., 4 figs., 3 tabs.

  4. Measurements and simulation for design optimization for low NOx coal-firing system

    Energy Technology Data Exchange (ETDEWEB)

    E. Bar-Ziv; Y. Yasur; B. Chudnovsky; L. Levin; A. Talanker [Ben-Gurion University of Negev, Beer-Sheva (Israel)

    2003-07-01

    The information required to design a utility steam generator is the heat balance, fuel analysis and emission. These establish the furnace wall configuration, the heat release rates, and the firing technology. The furnace must be sized for (1) residence time for complete combustion with low NOx, and (2) reduction of flue gas temperature to minimize ash deposition. To meet these, computational fluid dynamics (CFD) of the combustion process in the furnace were performed and proven to be a powerful tool for this purpose. Still, reliable numerical simulations require careful interpretation and comparison with measurements. We report numerical results and measurements for a 575 MW pulverized coal tangential firing boiler of the Hadera power plant of Israel Electric Corporation (IEC). Measured and calculated values were found to be in reasonable agreement. We used the simulations for optimization and investigated temperature distribution, heat fluxes and concentration of chemical species. We optimized both the furnace flue gas temperature entering the convective path and the staged residence time for low NOx. We tested mass flow rates through close-coupled and separate overfire air ports and its arrangement and the coal powder fineness. These parameters can control the mixing rate between the fuel and the oxidizer streams and can affect the most important characteristics of the boiler such as temperature regimes, coal burning rate and nitrogen oxidation/reduction. From this effort, IEC started to improve the boiler performance by replacing the existing typical tangential burners to low NOx firing system to ensure the current regulation requirements of emission pollutions.

  5. A summary of fish and wildlife information needs to surface mine coal in the United States. Part 1. Fish and wildlife information needs in the federal surface mining permanent regulations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This is part 1 of three part series to assist government agencies and private citizens in determining fish and wildlife information needs for new coal mining operations pursuant to the Surface Mining Control and Reclamation Act of 1977. Part 2 will document status of individual state surface mining regulations as of January 1980 in those states having significant strippable reserves and/or active strip mining operations. It will also provide documentation of fish and wildlife information needs identified in the state regulations of compliance to PL 95-87. Part 3 will be a discussion of the information needed to develop the Fish and Wildlife Plan identified in the Permanent Regulations. The objective of this three part series is to include consideration of fish and wildlife resources in the surface mining process.

  6. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  7. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  8. Mössbauer study of the effect of gamma irradiation on the removal of pyrite from Colombian coals

    International Nuclear Information System (INIS)

    Mejía, J A; Palacio, C A; Caballero, F Reyes; Dávila, H Olaya; Ovalle, S A Martínez; De Grave, E

    2014-01-01

    The removal of sulfur from the coals is necessary before using it. It is due to the environmental and technological problems that it causes. In this work, the results of the study by Mössbauer spectroscopy of the gamma-irradiation effect on the pyrite in three Colombian coals are analyzed. They were exposed to different gamma-irradiation doses using a 60 Co source

  9. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  10. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    Science.gov (United States)

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  11. Effects of sulfur oxides on eicosanoids

    International Nuclear Information System (INIS)

    Chen, L.C.; Miller, P.D.; Amdur, M.O.

    1989-01-01

    Ultrafine metal oxides and SO2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SOx layer. Ongoing work in this laboratory has examined the effects of sulfur oxides on pulmonary functions of guinea pigs. We have previously reported that 20 micrograms/m3 acidic sulfur oxide as a surface layer on ultrafine ZnO particles decreases lung volumes, decreases carbon monoxide diffusing capacity, and causes lung inflammation in guinea pigs after 4 daily 3-h exposures. It also produces bronchial hypersensitivity following a single 1-h exposure. The importance of this surface layer is demonstrated by our observation that 200 micrograms/m3 of sulfuric acid droplets of equivalent size are needed to produce the same degree of hypersensitivity. This study characterized the concentration-dependent effects of in vivo exposures to sulfur oxides on arachidonic acid metabolism in the guinea pig lung, and investigated the time course and the relation between eicosanoid composition and pulmonary functions. We focused specifically on four cyclooxygenase metabolites of arachidonic acid, that is, prostaglandins (PG) E1, F2 alpha, 6-keto prostaglandin F1 alpha, and thromboxane (Tx) B2, and two groups of sulfidopeptide leukotrienes (C4, D4, E4, and F4). Guinea pigs were exposed to ultrafine ZnO aerosol (count median diameter = 0.05 microns, sigma g = 1.80) with a layer of acidic sulfur oxide on the surface of the particles. Lung lavage was collected after exposures, and the levels of arachidonic acid metabolites were determined using radioimmunoassay (RIA). Concentration-dependent promotion of PGF2 alpha and concentration-dependent suppression of LtB4 were observed. The increased PGF2 alpha was associated with depressed vital capacity and diffusing capacity of the lungs measured in guinea pigs exposed to the same atmosphere described in a previous study

  12. Using simulated maps to interpret the geochemistry, formation and quality of the Blue Gem Coal Bed, Kentucky, USA

    Science.gov (United States)

    Geboy, Nicholas J.; Olea, Ricardo A.; Engle, Mark A.; Martin-Fernandez, Jose Antonio

    2013-01-01

    This study presents geostatistical simulations of coal-quality parameters, major oxides and trace metals for an area covering roughly 812 km2 of the Blue Gem coal bed in southeastern Kentucky, USA. The Blue Gem, characterized by low ash yield and low sulfur content, is an important economic resource. Past studies have characterized the Blue Gem's geochemistry, palynology and petrography and inferred a depositional setting of a planar peat deposit that transitioned to slightly domed later in its development. These studies have focused primarily on vertical geochemical trends within the coal bed. Simulated maps of chemical elements derived from 45 measured sample locations across the study area provide an opportunity to observe changes in the horizontal direction within the coal bed. As the Blue Gem coal bed shows significant vertical chemical trends, care was taken in this study to try to select samples from a single, middle portion of the coal. By revealing spatial distribution patterns of elements across the middle of the bed, associations between different components of the coal can be seen. The maps therefore help to provide a picture of the coal-forming peat bog at an instant in geologic time and allow interpretation of a depositional setting in the horizontal direction. Results from this middle portion of the coal suggest an association of SiO2 with both K2O and TiO2 in different parts of the study area. Further, a pocket in the southeast of the study area shows elevated concentrations of elements attributable to observed carbonate-phase minerals (MgO, CaO, Ba and Sr) as well as elements commonly associated with sulfide-phase minerals (Cu, Mo and Ni). Areas of relatively high ash yield are observed in the north and south of the mapped area, in contrast to the low ash yields seen towards the east. Additionally, we present joint probability maps where multiple coal-quality parameters are plotted simultaneously on one figure. This application allows researchers

  13. Promoting effect of various biomass ashes on the steam gasification of low-rank coal

    International Nuclear Information System (INIS)

    Rizkiana, Jenny; Guan, Guoqing; Widayatno, Wahyu Bambang; Hao, Xiaogang; Li, Xiumin; Huang, Wei; Abudula, Abuliti

    2014-01-01

    Highlights: • Biomass ash was utilized to promote gasification of low rank coal. • Promoting effect of biomass ash highly depended on AAEM content in the ash. • Stability of the ash could be improved by maintaining AAEM amount in the ash. • Different biomass ash could have completely different catalytic activity. - Abstract: Application of biomass ash as a catalyst to improve gasification rate is a promising way for the effective utilization of waste ash as well as for the reduction of cost. Investigation on the catalytic activity of biomass ash to the gasification of low rank coal was performed in details in the present study. Ashes from 3 kinds of biomass, i.e. brown seaweed/BS, eel grass/EG, and rice straw/RS, were separately mixed with coal sample and gasified in a fixed bed downdraft reactor using steam as the gasifying agent. BS and EG ashes enhanced the gas production rate greater than RS ash. Higher catalytic activity of BS or EG ash was mainly attributed to the higher content of alkali and alkaline earth metal (AAEM) and lower content of silica in it. Higher content of silica in the RS ash was identified to have inhibiting effect for the steam gasification of coal. Stable catalytic activity was remained when the amount of AAEM in the regenerated ash was maintained as that of the original one

  14. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  15. Aerosol sampling of an experimental fluidized bed coal combustor

    International Nuclear Information System (INIS)

    Newton, G.J.; Peele, E.R.; Carpenter, R.L.; Yeh, H.C.

    1977-01-01

    Fluidized bed combustion of coal, lignite or other materials has a potential for widespread use in central electric generating stations in the near future. This technology may allow widespread use of low-grade and/or high sulfur fuels due to its high energy utilization at low combustion temperature and its ability to meet emission criteria by using limestone bed material. Particulate and gaseous products resulting from fuel combustion and fluidization of bed material are discharged and proceed out the exhaust clean-up system. Sampling philosophy, methodology and equipment used to obtain aerosol samples from the exhaust system of the 18-inch fluidized bed combustor (FBC) at the Morgantown Energy Research Center (MERC) are described. Identification of sampling sites led to design of an aerosol sampling train which allowed a known quantity of the effluent streams to be sampled. Depending on the position, a 15 to 25 l/min sample is extracted from the duct, immediately diluted and transferred to a sampling/aging chamber. Transmission and scanning electron microscope samples, two types of cascade impactor samples, vapor-phase and particulate-phase organic samples, spiral duct aerosol centrifuge samples, optical size measurements and filter samples were obtained. Samples are undergoing physical, chemical and biological tests to help establish human health risk estimates for fluidized bed coal combustion and to provide information for use in design and evaluation of control technologies

  16. Long-range transport and deposition of sulfur in Asia

    International Nuclear Information System (INIS)

    Arndt, R.L.; Carmichael, G.R.

    1995-01-01

    The long range transport of sulfur in Asia is analyzed through the use of a multi-dimensional acid deposition model. The air quality of this region is heavily influenced by the combination of Asia's growing population, its expanding economy, and the associated systems of energy consumption and production. These factors combined with a shift to using indigenous coal as the primary fuel source for the region, will result in increased emissions of pollutants into the environment. By the year 2020 sulfur emissions from Asia are projected to exceed the combined emissions from Europe and North America. The authors have estimated sulfur deposition in Asia on a one-by-one degree spatial resolution in the region from Pakistan to Japan and from Indonesia to Mongolia using a 3-layer Lagrangian model. Deposition in excess of 10 g S/m 2 is predicted in south-central China. The relationship between emission source and receptor has been developed into a deposition matrix and examples of the source-receptor relationship are presented. 11 refs., 2 figs., 2 tabs

  17. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    Energy Technology Data Exchange (ETDEWEB)

    Burford, D.P. [Southern Company Services, Inc., Birmingham, AL (United States)

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  18. Effect of blending ratio to the liquid product on co-pyrolysis of low rank coal and oil palm empty fruit bunch

    Directory of Open Access Journals (Sweden)

    Zullaikah Siti

    2018-01-01

    Full Text Available The utilization of Indonesia low rank coal should be maximized, since the source of Indonesia law rank coals were abundant. Pyrolysis of this coal can produce liquid product which can be utilized as fuel and chemical feedstocks. The yield of liquid product is still low due to lower of comparison H/C. Since coal is non-renewable source, an effort of coal saving and to mitigate the production of greenhouse gases, biomass such as oil palm empty fruit bunch (EFB would added as co-feeding. EFB could act as hydrogen donor in co-pyrolysis to increase liquid product. Co-pyrolysis of Indonesia low rank coal and EFB were studied in a drop tube reactor under the certain temperature (t= 500 °C and time (t= 1 h used N2 as purge gas. The effect of blending ratios of coal/EFB (100/0, 75/25, 50/50, 25/75 and 0/100%, w/w % on the yield and composition of liquid product were studied systematically. The results showed that the higher blending ratio, the yield of liquid product and gas obtained increased, while the char decreased. The highest yield of liquid product (28,62 % was obtained used blending ratio of coal/EFB = 25/75, w/w%. Tar composition obtained in this ratio is phenol, polycyclic aromatic hydrocarbons, alkanes, acids, esters.

  19. Alkaloid-derived molecules in low rank Argonne premium coals.

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  20. Summary of workshop on materials issues in low emission boilers and high efficiency coal-fired cycles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The purpose of the workshop was to review with experts in the field the materials issues associated with two of the primary coal power systems being developed by the DOE Office of Fossil Energy. The DOE-FE Advanced Power Systems Program includes natural gas-based and coal-based power systems. Major activities in the natural gas-based power systems area include the Advanced Turbine Systems (ATS) Program, the Fuel Cells Program, and Hybrid Cycles. The coal-based power systems projects include the Low Emissions Boiler Systems (LEBS) Program, the High-Performance Power Systems Program (HIPPS), the Integrated (Coal) Gasification Combined-Cycle Program, and the Fluidized-Bed Combustion Program. This workshop focused on the materials issues associated with the LEBS and HIPPS technologies.