International Nuclear Information System (INIS)
Dixon, R.W.; Joyce, W.B.; Miller, R.C.
1979-01-01
By using a fast photodetector and a simple spatial filtering technique, the relationship between the optical spike which frequently appears at the leading edge of a pulsed-GaAs-laser response and the optical nonlinearities called kinks has been investigated. It is suggested that the spike can be viewed consistently as a transition period during which the lasing mode distortion, which has been previously associated with kinks, occurs. It is the time taken for the kink to become established. During the spike, light emisson occurs with a spatial and angular intensity distribution consistent with the lasing which would be appropriate if the kink did not exist. It is shown that the experimental technique can also be used to investigate sustained laser optical-intensity oscillations
Dynamics of longitudinal and transverse modes along the junction plane in GaAlAs stripe lasers
DEFF Research Database (Denmark)
Mengel, F; Ostoich, V
1977-01-01
Observations of the transient excitation of higher order transverse modes along the junction plane in DH GaAlAs stripe lasers during subnanosecond pulse modulation is reported. These modes are strongly excited at the onset of the light pulse, they decay during 200 ps, and reappear after 400-600 ps...
Yagi, Tetsuya; Shimada, Naoyuki; Nishida, Takehiro; Mitsuyama, Hiroshi; Miyashita, Motoharu
2013-03-01
Laser based displays, as pico to cinema laser projectors have gathered much attention because of wide gamut, low power consumption, and so on. Laser light sources for the displays are operated mainly in CW, and heat management is one of the big issues. Therefore, highly efficient operation is necessitated. Also the light sources for the displays are requested to be highly reliable. 638 nm broad stripe laser diode (LD) was newly developed for high efficiency and highly reliable operation. An AlGaInP/GaAs red LD suffers from low wall plug efficiency (WPE) due to electron overflow from an active layer to a p-cladding layer. Large optical confinement factor (Γ) design with AlInP cladding layers is adopted to improve the WPE. The design has a disadvantage for reliable operation because the large Γ causes high optical density and brings a catastrophic optical degradation (COD) at a front facet. To overcome the disadvantage, a window-mirror structure is also adopted in the LD. The LD shows WPE of 35% at 25°C, highest record in the world, and highly stable operation at 35°C, 550 mW up to 8,000 hours without any catastrophic optical degradation.
International Nuclear Information System (INIS)
Safdar, Shakeel; Li, Lin; Sheikh, M A
2007-01-01
Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data
Indian Academy of Sciences (India)
. In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...
Superintense fields from multiple ultrashort laser pulses retroreflected in circular geometry
Ooi, C. H. Raymond
2010-02-01
Laser field with superintensity beyond 1029 W/cm2 can be generated by coherent superposition of multiple 100 fs laser pulses in circular geometry setup upon retroreflection by a ring mirror. We have found the criteria for attaining such intensities using broadband ring mirror within the practical damage threshold and paraxial focusing regime. Simple expressions for the intensity enhancement factor are obtained, providing insight for achieving unlimited laser intensity. Higher intensities can be achieved by using few-cycle laser pulses.
Laser--plasma interaction in a theta-pinch geometry
International Nuclear Information System (INIS)
Armstrong, W.T.
1978-06-01
Prompt stimulated Brillouin scatter (SBS) is studied in an experiment wherein a high power, pulsed CO 2 laser irradiates an independently produced, theta-pinch plasma. SBS does not significantly affect laser heating of the plasma. Measurements of density profiles and temperature histories permitted examination of laser refraction, local heating and net absorption. Refractive containment of the CO 2 laser beam by an on-axis density minimum was observed at early times during the laser pulse. However, refractive containment was lost at late times due to the diffusive loss of the density minimum. Classical modeling of the expected heating required ''bleached'' absorption to account for the observed heating. A plasma absorptivity of approximately 46% was inferred from calorimetry measurements at 250 mtorr fill pressure. These results confirm that classical heating and refraction dominated the laser-plasma interaction
Pedoe, Dan
1988-01-01
""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he
High-resolution in-source laser spectroscopy in perpendicular geometry
Energy Technology Data Exchange (ETDEWEB)
Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)
2017-11-15
Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.
Laser-generated magnetic fields in quasi-hohlraum geometries
Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John
2014-10-01
Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.
DEFF Research Database (Denmark)
Byg din egen boomerang, kast den, se den flyve, forstå hvorfor og hvordan den vender tilbage, og grib den. Det handler om opdriften på vingerne når du flyver, men det handler også og allermest om den mærkværdige gyroskop-effekt, du bruger til at holde balancen, når du kører på cykel. Vi vil bruge...... matematik, geometri, og fysik til at forstå, hvad det er, der foregår....
Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao
2018-01-01
This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.
2010-01-01
The objective of this study were to: a) monitor the initial installations of rumble stripes and b) evaluate the results of rumble stripe installations. : Ten rural, two-lane road locations were selected by the Kentucky Transportation Cabinet across t...
Searching for optimal mitigation geometries for laser resistant multilayer high reflector coatings
Energy Technology Data Exchange (ETDEWEB)
Qiu, S R; Wolfe, J E; Monterrosa, A M; Feit, M D; Pistor, T V; STolz, C J
2011-02-11
Growing laser damage sites on multilayer high reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with pre-designed benign mitigation structures. By mitigating the weakest site on the optic, the large aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite difference time domain method (FDTD) was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarization wave at a range of incident angles between 30{sup o} and 45{sup o}.
Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers
Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.
2012-01-01
In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.
Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes
Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron
2016-10-01
The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.
Caiazzo, Fabrizia; Caggiano, Alessandra
2018-03-19
Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning
Directory of Open Access Journals (Sweden)
Fabrizia Caiazzo
2018-03-01
Full Text Available Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.
Energy Technology Data Exchange (ETDEWEB)
Zapata, Luis E.
2004-12-21
The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.
Flexible registration method for light-stripe sensors considering sensor misalignments
Gorschenew, W.; Kaestner, M.; Reithmeier, Eduard
2017-06-01
In many application areas such as object reconstruction or quality assurance, it is required to completely or partly measure the shape of an object or at least the cross section of the required object region. For complex geometries, therefore, multiple views are needed to bypass undercuts respectively occlusions. Hence, a multi-sensor measuring system for complex geometries has to consist of multiple light-stripe sensors that are surrounding the measuring object in order to complete the measurements in a prescribed time. The number of sensors depends on the object geometry and dimensions. In order to create a uniform 3D data set from the data of individual sensors, a registration of each individual data set into a common global coordinate system has to be performed. Stateof- the-art registration methods for light-stripe sensors use only data from object intersection with the respective laser plane of each sensor. At the same time the assumption is met that all laser planes are coplanar and that there are corresponding points in two data sets. However, this assumption does not represent the real case, because it is nearly impossible to align multiple laser planes in the same plane. For this reason, sensor misalignments are neglected by this assumption. In this work a new registration method for light-stripe sensors is presented that considers sensor misalignments as well as intended sensor displacements and tiltings. The developed method combines 3D pose estimation and triangulated data to properly register the real sensor pose in 3D space.
A cost-effective laser scanning method for mapping stream channel geometry and roughness
Lam, Norris; Nathanson, Marcus; Lundgren, Niclas; Rehnström, Robin; Lyon, Steve
2015-04-01
In this pilot project, we combine an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire high resolution topographic area scans for a stream channel. The microprocessor and imaging system was installed in a custom gondola and suspended from a wire cable system. To demonstrate the systems capabilities for capturing stream channel topography, a small stream (5m by 2m area. A grain size distribution of the streambed material was extracted from the point cloud using a moving window, local maxima search algorithm. The median, 84th and 90th percentiles (common metrics to describe channel roughness) of this distribution were found to be within the range of measured values while the largest modelled element was approximately 35% smaller than its measured counterpart. The laser scanning system captured grain sizes between 30mm and 255mm (coarse gravel/pebbles and boulders based on the Wentworth (1922) scale). This demonstrates that our system was capable of resolving both large-scale geometry (e.g. bed slope and stream channel width) and small-scale channel roughness elements (e.g. coarse gravel/pebbles and boulders) for the study area. We further show that the point cloud resolution is suitable for estimating ecohydraulic parameters such as Manning's n and hydraulic radius. Although more work is needed to fine-tune our system's design, these preliminary results are encouraging, specifically for those with a limited operational budget.
Zhang, Weian; Wang, Long; Dong, Qixin
2011-06-01
The omni-directional laser warning equipment based on infrared fish-eye lens and short-wave infrared FPA has been used to protect large-scale targets, which can detect the threat laser scattered by the attacked targets or the objects surrounding them, and image the laser spot on FPA, then fix the position of spot. The application offsets the disadvantage of direct interception warner which need disposed largely. Before study of imaging mechanism about the scattered laser spot, the definition of geometry relationship is needed firstly. In this paper we developed a 3D geometry model by analyzing the position relationships in typical battlefield environment among the enemy's threat laser source, the laser spot radiated on one flat surface and our omni-directional laser warning fish-eye lens. The model including R, α, β, d, θ, φ, ψ, δ etc. 8 parameters and 4 coordinate systems was suitable for any general situations. After achievement of the model foundation, we obtained analytic expression of the laser spot contour on flat surface, then attained analytic expression of spot contour on image surface by calculating the object space half-field angle and the azimuth angle relative to fish-eye lens of an arbitrary point at the spot edge on flat surface. The attainment of the expression makes possible that we can analyze the spot energy distributions on image surface and the imaging characteristic of the scattered laser spot via fish-eye lens, then can compute the transmission direction of the threat laser. The foundation of the model in this paper has an importantly basic and guiding meaning to the latter research on this aspect.
Futamata, Masayuki; Akai, Keitaro; Iida, Chiaki; Akiba, Natsumi
2017-01-01
We have investigated various aspects of a gap mode plasmon to establish it as an analytical tool. First, markedly large (10 7 - 10 9 ) enhancement factors for the Raman scattering intensity from a thiophenol (TP) monolayer sandwiched by Ag films on a prism and silver nanoparticles (AgNPs) were obtained under attenuated total reflection (ATR) geometry. Second, AgNPs with a radius of ∼20 nm were optically trapped and immobilized on TP-covered Ag films under a gap mode resonance with extremely weak laser power density of ∼1 μW/μm 2 at 532 nm. The observed optical trapping and immobilization were theoretically rationalized using a dipole-dipole coupling and van der Waals interaction between AgNPs and Ag films. Third, p-alkyl TP molecules such as p-methyl TP, p-ethyl TP, p-isopropyl TP, and p-tertiary butyl TP were photocatalytically oxidized into p-carboxyl TP, whereas o- and m-methyl TP did not show such reactions.
Afkhami, S.; Kondic, L.
2013-07-01
Metallic nanoparticles, liquified by fast laser irradiation, go through a rapid change of shape attempting to minimize their surface energy. The resulting nanodrops may be ejected from the substrate when the mechanisms leading to dewetting are sufficiently strong, as in the experiments involving gold nanoparticles [Habenicht et al., Science 309, 2043 (2005)]. We use a direct continuum-level approach to accurately model the process of liquid nanodrop formation and the subsequent ejection from the substrate. Our computations show a significant role of inertial effects and an elaborate interplay of initial geometry and wetting properties: e.g., we can control the direction of ejection by prescribing appropriate initial shape and/or wetting properties. The basic insight regarding ejection itself can be reached by considering a simple effective model based on an energy balance. We validate our computations by comparing directly with the experiments specified above involving the length scales measured in hundreds of nanometers and with molecular dynamics simulations on much shorter scales measured in tens of atomic diameters, as by M. Fuentes-Cabrera et al. [Phys. Rev. E 83, 041603 (2011)]. The quantitative agreement, in addition to illustrating how to control particle ejection, shows utility of continuum-based simulation in describing dynamics on nanoscale quantitatively, even in a complex setting as considered here.
Bagheri, Zahra S; Melancon, David; Liu, Lu; Johnston, R Burnett; Pasini, Damiano
2017-06-01
The accuracy of Additive Manufacturing processes in fabricating porous biomaterials is currently limited by their capacity to render pore morphology that precisely matches its design. In a porous biomaterial, a geometric mismatch can result in pore occlusion and strut thinning, drawbacks that can inherently compromise bone ingrowth and severely impact mechanical performance. This paper focuses on Selective Laser Melting of porous microarchitecture and proposes a compensation scheme that reduces the morphology mismatch between as-designed and as-manufactured geometry, in particular that of the pore. A spider web analog is introduced, built out of Ti-6Al-4V powder via SLM, and morphologically characterized. Results from error analysis of strut thickness are used to generate thickness compensation relations expressed as a function of the angle each strut formed with the build plane. The scheme is applied to fabricate a set of three-dimensional porous biomaterials, which are morphologically and mechanically characterized via micro Computed Tomography, mechanically tested and numerically analyzed. For strut thickness, the results show the largest mismatch (60% from the design) occurring for horizontal members, reduces to 3.1% upon application of the compensation. Similar improvement is observed also for the mechanical properties, a factor that further corroborates the merit of the design-oriented scheme here introduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Fan; Dong, Xinran; Yin, Kai; Song, Yuxin; Tian, Yaxiang; Wang, Cong; Duan, Ji'an
2018-03-01
In this study, the temperature effects on hole geometry of the PMMA during micro-holes drilling by femtosecond laser has been studied under various pulse energy and number of pulse. The laser-induced hole's diameter is considerably increased by 73% as the temperature rises from 20 °C to 90 °C. Remarkable enhancement in the removal volume of micro-hole is also observed under high temperature. The possible mechanism for such changes is discussed in detail on account of optical absorption enhancement and higher density of surface plasma. The atomic percentage of oxygen obviously increases with the increase of temperature, which is beneficial to femtosecond laser fabrication of PMMA micro-hole. The spatter area of micro-hole has been found to tremendously extend with the increase of temperature, which is due to recoil pressure effect. These results demonstrate that temperature plays a crucial role to tailor micro-hole fabrication by femtosecond laser.
Energy Technology Data Exchange (ETDEWEB)
Ovchinnikova, Olga S [ORNL; Bhandari, Deepak [ORNL; Lorenz, Matthias [ORNL; Van Berkel, Gary J [ORNL
2014-01-01
RATIONALE: Capture of material from a laser ablation plume into a continuous flow stream of solvent provides the means for uninterrupted sampling, transport and ionization of collected material for coupling with mass spectral analysis. Reported here is the use of vertically aligned transmission geometry laser ablation in combination with a new non-contact liquid vortex capture probe coupled with electrospray ionization for spot sampling and chemical imaging with mass spectrometry. Methods: A vertically aligned continuous flow liquid vortex capture probe was positioned directly underneath a sample surface in a transmission geometry laser ablation (355 nm, 10 Hz, 7 ns pulse width) setup to capture into solution the ablated material. The outlet of the vortex probe was coupled to the Turbo V ion source of an AB SCIEX TripleTOF 5600+ mass spectrometer. System operation and performance metrics were tested using inked patterns and thin tissue sections. Glass slides and slides designed especially for laser capture microdissection, viz., DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides, were used as sample substrates. Results: The estimated capture efficiency of laser ablated material was 24%, which was enabled by the use of a probe with large liquid surface area (~ 2.8 mm2) and with gravity to help direct ablated material vertically down towards the probe. The swirling vortex action of the liquid surface potentially enhanced capture and dissolution of not only particulates, but also gaseous products of the laser ablation. The use of DIRECTOR slides and PEN 1.0 (polyethylene naphthalate) membrane slides as sample substrates enabled effective ablation of a wide range of sample types (basic blue 7, polypropylene glycol, insulin and cyctochrome c) without photodamage using a UV laser. Imaging resolution of about 6 m was demonstrated for stamped ink on DIRECTOR slides based on the ability to distinguish features present both in the optical and in the
Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2016-07-01
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 =(1 - βb2)- 1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.
STRIPE: Remote Driving Using Limited Image Data
Kay, Jennifer S.
1997-01-01
Driving a vehicle, either directly or remotely, is an inherently visual task. When heavy fog limits visibility, we reduce our car's speed to a slow crawl, even along very familiar roads. In teleoperation systems, an operator's view is limited to images provided by one or more cameras mounted on the remote vehicle. Traditional methods of vehicle teleoperation require that a real time stream of images is transmitted from the vehicle camera to the operator control station, and the operator steers the vehicle accordingly. For this type of teleoperation, the transmission link between the vehicle and operator workstation must be very high bandwidth (because of the high volume of images required) and very low latency (because delayed images can cause operators to steer incorrectly). In many situations, such a high-bandwidth, low-latency communication link is unavailable or even technically impossible to provide. Supervised TeleRobotics using Incremental Polyhedral Earth geometry, or STRIPE, is a teleoperation system for a robot vehicle that allows a human operator to accurately control the remote vehicle across very low bandwidth communication links, and communication links with large delays. In STRIPE, a single image from a camera mounted on the vehicle is transmitted to the operator workstation. The operator uses a mouse to pick a series of 'waypoints' in the image that define a path that the vehicle should follow. These 2D waypoints are then transmitted back to the vehicle, where they are used to compute the appropriate steering commands while the next image is being transmitted. STRIPE requires no advance knowledge of the terrain to be traversed, and can be used by novice operators with only minimal training. STRIPE is a unique combination of computer and human control. The computer must determine the 3D world path designated by the 2D waypoints and then accurately control the vehicle over rugged terrain. The human issues involve accurate path selection, and the
International Nuclear Information System (INIS)
Shaaran, T.; Augstein, B. B.; Figueira de Morisson Faria, C.
2011-01-01
We address the influence of the molecular orbital geometry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules for different molecular species, namely N 2 and Li 2 . We focus on the recollision excitation with subsequent tunneling ionization (RESI) mechanism, in which the first electron, upon return, promotes the second electron to an excited state, from where it subsequently tunnels. We assume that both electrons are initially in the highest occupied molecular orbital (HOMO) and that the second electron is excited to the lowest unoccupied molecular orbital (LUMO). We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. We provide generalized analytical expressions for such maxima or minima, which take into account s-p mixing and the orbital geometry. The patterns caused by the two-center interference are sharpest for vanishing alignment angle and get washed out as this parameter increases. Apart from that, there exist features due to the geometry of the LUMO, which may be observed for a wide range of alignment angles. Such features manifest themselves as the suppression of probability density in specific momentum regions due to the shape of the LUMO wave function, or as an overall decrease in the RESI yield due to the presence of nodal planes.
Single-step growth of InP/InGaAsP buried stripe MQW lasers on structured InP substrate
Energy Technology Data Exchange (ETDEWEB)
Rakovics, V.; Nagy, G.; Koltai, F.; Puespoeki, S.; Serenyi, M. [Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Technical Physics; Frigeri, C.; Longo, F. [CNR MASPEC, Parma (Italy)
1996-12-31
Single-step LPE growth of DH lasers for 1.1--1.6 {micro}m wavelength range, and MQW lasers for 1.5--1.55 {micro}m have been demonstrated. The separate confinement bulk lasers have similar characteristics to 3QW with similar active layer volume, and both type lasers are better than the DH lasers for the same wavelength. These results indicate, that computer controlled low temperature, single-step LPE growth can be used for preparing low cost MQW devices.
Pace, Mike; Israelsen, Clark; Evans, Kent; Barnhill, James
2008-01-01
Stripe rust, or yellow rust, is primarily a foliar fungal disease of wheat, although it can infect spike and stem tissues. If the pathogen infects the spike (head) it causes extensive quality and grain yield loss. The disease is caused by the fungus Puccinia striiformis f. sp. tritici. The fungus can only survive and reproduce on wheat. It survives from one season to the next on volunteer plants.
International Nuclear Information System (INIS)
Sun Duixiong; Su Maogen; Dong Chenzhong; Wen Guanhong; Cao Xiangnian
2013-01-01
A time resolved laser induced breakdown spectroscopy technique (LIBS) was used for the investigation of emission signal enhancement on double-pulse LIBS. Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to generate laser-induced plasma on aluminium-based alloys. The plasma emission signals were recorded by spectrometer with ICCD detector. Spectral response calibration was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron density was investigated in SP and DP experiments. Based on the investigation of plasma parameters, the enhancements of emission line intensities were investigated, and the mechanisms of it were discussed. (author)
Equation of state of matter irradiated by short laser pulse and geometry of spalled cupola
Petrov, Yu. V.; Zhakhovskii, V. V.; Inogamov, N. A.; Ashitkov, S. I.; Khokhlov, V. A.; Upadhyay, A. K.; Agranat, M. B.; Anisimov, S. I.; Nishihara, K.; Rethfeld, B.; Urbassek, H. M.
2008-05-01
The motion of both Lennard-Jones solids and metals induced by ultrashort laser irradiation near the ablation threshold is investigated by molecular dynamics simulation. The universality of the ablation threshold fluence with respect to the cohesion energy of solids irradiated by femtosecond laser pulses is demonstrated for Lennard-Jones solid and metals simulated by many-body EAM potentials.
Investigation of high-power diode-end-pumped Tm:YLF laser in slab geometry.
Shen, Yingjie; Duan, Xiaoming; Yuan, Jinhe; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu
2015-03-10
Comparative investigations of high-power diode-end-pumped Tm:YLF laser with a-cut and c-cut slab crystals were demonstrated. A maximum output power of 87.5 W of 1907.8 nm Tm:YLF laser with two slab crystals was achieved, corresponding to a slope efficiency of 35.9% and an optical-to-optical efficiency of 32.1% with respect to the pump power. The c-cut slab Tm:YLF laser operated at 1907.8 nm with a beam quality factor of M2∼1.79 at the output power level of 71.0 W.
Advances In The Application Of Laser Cladding Of Multi-Dimensional Part Geometries
Webber, Tim
1987-01-01
The high power output capability of a CO2 laser has been shown to be an excellent source of controllable heat, allowing for the application of hardface alloys on substrates with very low dilution and consistent thickness. Enormous opportunities exist in the aircraft, automotive, and oil and gas exploration industries for such an alternate to conventional hardfacing equipment and techniques. Yet, the majority of experimentation with lasers thus far thas been on flat surfaces only. This report reflects preliminary findings on the geometric capabilities of the laser cladding process.
Proton radiography of laser-driven imploding target in cylindrical geometry
Volpe, L.; Batani, D.; Vauzour, B.; Nicolai, Ph.; Santos, J. J.; Regan, C.; Morace, A.; Dorchies, F.; Fourment, C.; Hulin, S.; Perez, F.; Baton, S.; Lancaster, K.; Galimberti, M.; Heathcote, R.; Tolley, M.; Spindloe, Ch.; Koester, P.; Labate, L.; Gizzi, L. A.; Benedetti, C.; Sgattoni, A.; Richetta, M.; Pasley, J.; Beg, F.; Chawla, S.; Higginson, D. P.; MacPhee, A. G.
2011-01-01
An experiment was done at the Rutherford Appleton Laboratory (Vulcan laser petawatt laser) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This was performed in the framework of the experimental road map of HiPER (the European high power laser energy research facility project). In the experiment, protons accelerated by a picosecond-laser pulse were used to radiograph a 220 μm diameter cylinder (20 μm wall, filled with low density foam), imploded with ˜200 J of green laser light in four symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to get the compression history and the stagnation time. Results are also compared to those from hard x-ray radiography. Detailed comparison with two-dimensional numerical hydrosimulations has been done using a Monte Carlo code adapted to describe multiple scattering and plasma effects. Finally we develop a simple analytical model to estimate the performance of proton radiography for given implosion conditions.
Lighting up superconducting stripes
Ergeçen, Emre; Gedik, Nuh
2018-02-01
Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.
Directory of Open Access Journals (Sweden)
M. R. Pakmanesh
2018-03-01
Full Text Available In the present study, the optimization of pulsed Nd:YAG laser welding parameters was done on a lap-joint of a 316L stainless steel foil in order to predict the weld geometry through response surface methodology. For this purpose, the effects of laser power, pulse duration, and frequency were investigated. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to evaluate the effect of welding parameters on weld width. The results showed that the weld width at the upper, middle and lower surfaces of weld cross section increases by increasing pulse durationand laser power; however, the effects of these parameters on the mentioned levels are different. The effect of pulse duration in the models of weld upper, middle and lower widths was calculated as 76, 73 and 68%, respectively. Moreover, the effect of power on theses widths was determined as 18, 24 and 28%, respectively. Finally, by superimposing these models, optimum conditions were obtained to attain a full penetration weld and the weld with no defects.
Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.
1995-01-01
Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.
The slab geometry laser. II - Thermal effects in a finite slab
Kane, T. J.; Byer, R. L.; Eggleston, J. M.
1985-01-01
This paper presents two methods for calculating the thermally induced stress, focusing, and depolarization in a pumped zigzag-slab solid-state laser. A computer program capable of detailed calculations of thermal effects in the general case is described. An approximate analysis of slab thermal effects in many cases allows calculation of these effects without use of the computer model directly. The analysis predicts that slabs of square cross section can be designed to have low depolarization and thermal focusing compared to Nd:YAG laser rods.
Microwave permeability of stripe patterned FeCoN thin film
International Nuclear Information System (INIS)
Wu, Yuping; Yang, Yong; Ma, Fusheng; Zong, Baoyu; Yang, Zhihong; Ding, Jun
2017-01-01
Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 µm the initial permeability shows a continuous growth from about 8–322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 µm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications. - Highlights: • This work presents a systematic study on permeability of FeCoN stripe pattern. • Geometrical parameters of the stripe pattern are systematically optimized. • Several important conclusions has been obtained. • The results offer guideline on FeCoN stripe patterns for high frequency applications.
Microwave permeability of stripe patterned FeCoN thin film
Energy Technology Data Exchange (ETDEWEB)
Wu, Yuping [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Yang, Yong, E-mail: tslyayo@nus.edu.sg [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ma, Fusheng; Zong, Baoyu; Yang, Zhihong [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ding, Jun [Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore)
2017-03-15
Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 µm the initial permeability shows a continuous growth from about 8–322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 µm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications. - Highlights: • This work presents a systematic study on permeability of FeCoN stripe pattern. • Geometrical parameters of the stripe pattern are systematically optimized. • Several important conclusions has been obtained. • The results offer guideline on FeCoN stripe patterns for high frequency applications.
2011-03-01
The discovery of a pattern of X-ray "stripes" in the remains of an exploded star may provide the first direct evidence that a cosmic event can accelerate particles to energies a hundred times higher than achieved by the most powerful particle accelerator on Earth. This result comes from a very long observation of the Tycho supernova remnant with NASA's Chandra X-ray Observatory. It could explain how some of the extremely energetic particles bombarding the Earth, called cosmic rays, are produced. "We've seen lots of intriguing structures in supernova remnants, but we've never seen stripes before," said Kristoffer Eriksen, a postdoctoral researcher at Rutgers University who led the study. "This made us think very hard about what's happening in the blast wave of this powerful explosion." This latest study from Chandra provides support for a theory about how magnetic fields can be dramatically amplified in such blast waves. In this theory, the magnetic fields become highly tangled and the motions of the particles very turbulent near the expanding supernova shock wave at the front edge of the supernova remnant. High-energy charged particles can bounce back and forth across the shock wave repeatedly, gaining energy with each crossing. Theoretical models of the motion of the most energetic particles -- which are mostly protons -- are predicted to leave a messy network of holes and dense walls corresponding to weak and strong regions of magnetic fields, respectively. The X-ray stripes discovered by the Chandra researchers are thought to be regions where the turbulence is greater and the magnetic fields more tangled than surrounding areas, and may be the walls predicted by the theory. Electrons become trapped in these regions and emit X-rays as they spiral around the magnetic field lines. However, the regular and almost periodic pattern of the X-ray stripes was not predicted by the theory. "It was a big surprise to find such a neatly arranged set of stripes," said co
From stripe to slab confinement for DNA linearization in nanochannels
Cifra, Peter; Benkova, Zuzana; Namer, Pavol
We investigate suggested advantageous analysis in the linearization experiments with macromolecules confined in a stripe-like channel using Monte Carlo simulations. The enhanced chain extension in a stripe that is due to significant excluded volume interactions between monomers in two dimensions weakens on transition to experimentally feasible slit-like channel. Based on the chain extension-confinement strength dependence and the structure factor behavior for the chain in stripe we infer the excluded volume regime typical for two-dimensional systems. On transition to the slab geometry, the advantageous chain extension decreases and the Gaussian regime is observed for not very long semiflexible chains. The evidence for pseudo-ideality in confined chains is based on indicators such as the extension curves, variation of the extension with the persistence length or the structure factor. The slab behavior is observed when the stripe (originally of monomer thickness) reaches the thickness larger than cca 10nm in the third dimension. This maximum height of the slab to retain the advantage of the stripe is very low and this have implication for DNA linearization experiments. The presented analysis, however, has a broader relevance for confined polymers. Support from Slovak R&D Agency (SRDA-0451-11) is acknowledged.
Yilbas, B. S.; Akhtar, S. S.; Karatas, C.
2017-11-01
A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.
Energy Technology Data Exchange (ETDEWEB)
Ganguli, Tapas [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 (India)], E-mail: tapas@cat.ernet.in; Porwal, Sanjay; Sharma, Tarun; Ingale, Alka; Kumar, Shailendra; Tiwari, Pragya [Raja Ramanna Centre for Advanced Technology, Indore, 452 013 (India); Balamurugan, A.K.; Rajagopalan, S.; Tyagi, A.K. [Materials Science Division, IGCAR, Kalpakkam 603 102 (India); Chandrasekaran, K.S.; Arora, B.M. [Department of Condensed Matter Physics and Materials Science, TIFR, Mumbai 400 005 (India); Rustagi, K.C. [Department of Physics, IIT, Powai, Mumbai 400 076 (India)
2007-07-31
We have deposited thin layers of ZnSe on (001) oriented GaAs substrates by pulsed laser deposition at different incident laser fluence (referred to as normal geometry) and in an off-axis geometry where the plasma plume direction is at an angle of {approx} 25{sup o} away from the direction of the substrate. The crystalline quality of these layers has been studied by high-resolution X-ray diffraction measurements and Raman scattering. We find that we are in a position to deposit pseudomorphic strained layers of ZnSe on GaAs in the off-axis deposition geometry when the ZnSe layer thickness is less than the critical thickness of ZnSe on GaAs i.e. 150 nm. Secondary ion mass spectroscopy, scanning electron microscopy, photoluminescence and electrical transport measurements have also been carried out in all the ZnSe layers and the results of all the above characterizations have been compared for the normal geometry and the off-axis geometry of deposition. All the results indicate that the ZnSe layers deposited in the off-axis geometry have better crystalline quality and an improved interface as compared to the ones deposited in the normal geometry. We attribute this improvement in the overall quality of the ZnSe layers in the off-axis geometry to the reduction in the average energy of the plume particles that reach the GaAs substrate in the off-axis geometry.
Measurement of laser welding pool geometry using a closed convex active contour model
International Nuclear Information System (INIS)
Zheng, Rui; Zhang, Pu; Duan, Aiqing; Xiao, Peng
2014-01-01
The purpose of this study was to develop a computer vision method to measure geometric parameters of the weld pool in a deep penetration CO 2 laser welding system. Accurate measurement was achieved by removing a huge amount of interference caused by spatter, arc light and plasma to extract the true weld pool contour. This paper introduces a closed convex active contour (CCAC) model derived from the active contour model (snake model), which is a more robust high-level vision method than the traditional low-level vision methods. We made an improvement by integrating an active contour with the information that the weld pool contour is almost a closed convex curve. An effective thresholding method and an improved greedy algorithm are also given to complement the CCAC model. These influences can be effectively removed by using the CCAC model to acquire and measure the weld pool contour accurately and relatively fast. (paper)
Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman
2017-10-01
Comprehensive analysis of the performance and beam quality of subsonic flowing-gas K diode-pumped alkali lasers (DPALs) with different pumping geometries, using 3D computational fluid dynamics model, is reported. The model is first applied to a K DPAL with transverse pumping and parameters similar to those of the 1.5 kW K DPAL [Pitz et al, Proc. SPIE 9729, 972902 (2016)] and the calculated results are in satisfactory agreement with the measurements. To study the possibility of scaling up the K DPAL the model is then applied to 100-kW class device with transverse and end pumping geometry. Dependence of the output power on the flow velocity and the pumping geometry is studied. Comparison between end and transverse pumping schemes shows that the output power is almost unaffected by the pumping geometry. However, the spatial intensity distribution of the output laser beam depends on the pumping geometry: it is uniform for the end pumping, whereas for the transverse pumping it is strongly non-uniform at high gas temperature (corresponding to large density of K atoms), becoming more uniform with temperature reduction. The model is applied to evaluation of the beam quality of flowing-gas K DPALs which strongly depends on the refractive index distribution in the gain medium. The beam divergence and the width of the intensity profile in the far field for the end pumping appear to be much smaller than for the transverse pumping. Wave front corrections of the transversely pumped device using cylindrical lens results in substantial reduction of the laser beam divergence and improvement of its quality which becomes comparable with that of the end pumped laser.
Directory of Open Access Journals (Sweden)
Lee T.-K.
2012-03-01
Full Text Available Since the discovery of high temperature superconductors (HTS two decades ago, many anomalous properties have been reported. One of the most interesting properties is the possible existence of the stripe state consisting of one dimensional charge-density modulation coupled with some kind of spin ordering. X-ray and neutron scattering experiments and recently high resolution scanning tunneling microscopy have reported direct evidences of such a structure. In particular it has found in the La-Sr-Cu-O (LSCO family the existence of the half-doped stripe with average of half a hole in one charge modulation period below and about 1/8 hole density. These results have fueled the idea about the presence of these charge or spin density wave states competing with the superconducting phase in underdoped HTS. They may even contribute to the pairing mechanism. In this talk, we will demonstrate that the presence of these stripes is actually a natural consequence of the strongly interacting t-J model by using a variational approach which provides a good enough accuracy to address the subtle result. Furthermore we show that half-doped stripes could be stabilized in hole-doped systems if we assume a simple electron-phonon interaction to renormalize the electron mass. However we have not found any evidence to support half-doped stripes in electron-doped systems.
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
Improving striping operations through system optimization.
2015-09-01
Striping operations generate a significant workload for Missouri Department of Transportation (MoDOT) maintenance : operations. The requirement for each striping crew to replenish its stock of paint and other consumable items from a bulk storage : fa...
Stripe to slab confinement for the linearization of macromolecules in nanochannels.
Benková, Zuzana; Námer, Pavol; Cifra, Peter
2015-03-21
We investigated the recently suggested advantageous analysis of chain linearization experiments with macromolecules confined in a stripe-like channel (Huang and Battacharya, EPL, 2014, 106, 18004) using Monte Carlo simulations. The enhanced chain extension in a stripe, which is due to the significant excluded volume interactions between the monomers in two dimensions, weakens considerably on transition to an experimentally feasible slit-like channel. Based on the chain extension-confinement strength dependence and the structure factor behavior for a chain in a stripe, we infer the excluded volume regime (de Gennes regime) typical for two-dimensional systems. On widening of the stripe in a direction perpendicular to the stripe plane, i.e. on the transition to the slab geometry, the advantageous chain extension decreases and a Gaussian regime is observed for not very long semiflexible chains. The evidence for pseudo-ideality in confined chains is based on four indicators: the extension curves, variation of the extension with the persistence length P, estimated limits for the regimes in the investigated systems, and the structure factor behavior. The slab behavior can be observed when the two-dimensional stripe (originally of a one-monomer thickness) reaches a reduced thickness D larger than approximately D/P ≈ 0.2 in the third dimension. This maximum height of a slab at which the advantage of a stripe is retained is very low and has implications for DNA linearization experiments.
Pfefer, T. Joshua; Barton, Jennifer K.; Smithies, Derek J.; Milner, Thomas E.; Nelson, J. Stuart; van Gemert, Martin J. C.; Welch, Ashley J.
1998-07-01
The efficacy of laser treatment of port wine stains (PWS) has been shown to be highly dependent on the patient-specific structure of vascular lesions. To improve the accuracy of PWS numerical models, an optical-thermal model simulating an arbitrarily complex, three dimensional tissue geometry has been developed. In this model, the distribution of absorbed radiant energy -- determined using a modified Monte Carlo technique -- is used as the source term in a finite difference thermal model that predicts transient temperature rise. The Arrhenius rate process integral is then used to calculate thermal damage. Simulations based on a tomographic reconstruction of a PWS biopsy were performed for laser pulse durations of 0.5, 5.0 and 50.0 ms and a wavelength of 585 nm. Irradiances that produced maximum tissue temperatures of 120 degrees Celsius were used. The simulations indicated that energy deposition in blood is primarily a function of depth in skin. Thermal diffusion effects increased with longer pulse duration, leading to collateral damage observed at 5.0 and 50.0 ms. A pulse duration of 0.5 ms resulted in confinement of thermal damage to blood regions. Clusters of small vessels tended to behave similarly to larger vessels, reaching higher temperatures and creating more damage in the surrounding dermis than isolated vessels. The incorporation of realistic geometry into an optical-thermal model represents a significant advance in computer modeling of laser surgery.
Radke, C. R.; Meyer, T. R.
2014-01-01
The spray characteristics of a liquid-liquid double swirl coaxial injector were studied using non-invasive optical, laser, and X-ray diagnostics. A parametric study of injector exit geometry demonstrated that spray breakup time, breakup type and sheet stability could be controlled with exit geometry. Phase Doppler interferometry was used to characterize droplet statistics and non-dimensional droplet parameters over a range of inlet conditions and for various fluids allowing for a study on the role of specific fluid properties in atomization. Further, X-ray radiography allowed for investigation of sheet thickness and breakup length to be quantified for different recess exit diameters and inlet pressures. Finally, computed tomography scans revealed that the spray cone was distinctively non-uniform and comprised of several pockets of increased mass flux.
Kim, Youngdeuk
2011-04-15
The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).
Directory of Open Access Journals (Sweden)
N.S. Khalifa
2013-12-01
Full Text Available In light of using laser power in space applications, the motivation of this paper is to use a space based solar pumped laser to produce a torque on LEO satellites of various shapes. It is assumed that there is a space station that fires laser beam toward the satellite so the beam spreading due to diffraction is considered to be the dominant effect on the laser beam propagation. The laser torque is calculated at the point of closest approach between the space station and some sun synchronous low Earth orbit cubesats. The numerical application shows that space based laser torque has a significant contribution on the LEO cubesats. It has a maximum value in the order of 10−8 Nm which is comparable with the residual magnetic moment. However, it has a minimum value in the order 10−11 Nm which is comparable with the aerodynamic and gravity gradient torque. Consequently, space based laser torque can be used as an active attitude control system.
Invasion of the striped mollusks
International Nuclear Information System (INIS)
Anon.
1992-01-01
Introduced to this country only five years ago, the prolific zebra mussel has infested the Great Lakes and has already begun to move into fresh waters beyond the region. Dense populations in utility water systems have caused serious problems, reducing plant efficiency and blocking lines used for cooling and fire fighting. Experts say the striped mollusk has the potential to become the industry's worst biological problem, possibly affecting 70% of US power plants. While it appears that the invader is here to stay, EPRI and others continue to develop and refine techniques to control mussel growth
International Nuclear Information System (INIS)
Le Guen, E.
2010-11-01
Hybrid laser/MIG-MAG welding shows high advantages compared to laser welding or GMAW arc welding used separately. Thanks to this process, higher productivity can be gained through higher welding speed, higher squeeze tolerance moreover possible improvement of the metallurgical properties of the weld seam can be obtained. However, many operating parameters have to be set up in order to achieve optimal process. The complex physical phenomena, which govern welding process, have to be understood in order to use efficiently this technique in mass production. Understanding of these phenomena is also necessary to program numerical simulations which fit to this process. In the first step, experimental studies have been carried out with GMAW, laser and hybrid welding on samples of S355 steel. Influence of operating parameters has been analyzed through films performed with speed camera and macro-graphies of weld seam cross section. Surface deformations of the melt pool, induced by the arc pressure, weld pool length, droplet detachment and welding speed, have been analyzed precisely from images of the surface melt pool. In a second step, a numerical model was developed using the COMSOL Multiphysics software for MAG, laser and hybrid laser/MAG welding processes. A 3D quasi-stationary model has been calculated from the temperature field within the metal. The originality of the MAG and hybrid model lies in the prediction of the melt pool surface profile used to determine the 3D geometry, by taking into account the material input. The influence of different parameters such as arc power and speed welding on the efficiency as well as the distribution radius of the arc power and the arc pressure are analyzed through validations with different experimental results and different calculation configurations. (author)
Schmieder, Benjamin
2012-03-01
To serve the high need of lithium-ion secondary batteries of the automobile industry in the next ten years it is necessary to establish highly reliable, fast and non abrasive machining processes. In previous works [1] it was shown that high cutting speeds with several meters per second are achievable. For this, mainly high power single mode fibre lasers with up to several kilo watts were used. Since lithium-ion batteries are very fragile electro chemical systems, the cutting speed is not the only thing important. To guarantee a high cycling stability and a long calendrical life time the edge quality and the heat affected zone (HAZ) are equally important. Therefore, this paper tries to establish an analytical model for the geometry of the cutting edge based on the ablation thresholds of the different materials. It also deals with the composition of the HAZ in dependence of the pulse length, generated by laser remote cutting with pulsed fibre laser. The characterisation of the HAZ was done by optical microscopy, SEM, EDX and Raman microscopy.
International Nuclear Information System (INIS)
Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji
2007-01-01
The fibre laser has been receiving great attention due to its advantages of high efficiency, high power and high beam quality, and is expected to be one of the most desirable heat sources for high-speed and deep-penetration welding. In this study, therefore, in bead-on-plate welding of Type 304 stainless steel plates with 6 kW fibre laser, the effects of laser power, power density and welding speed on the formation of sound welds were investigated with four laser beams of 130, 200, 360 and 560 μm in spot diameter, and their welding phenomena were clarified with high-speed video cameras and an x-ray transmission real-time imaging system. The weld beads showed a keyhole type of penetration at any diameter, and the maximum penetration of 11 mm in depth was obtained at 130 μm spot diameter and 0.6 m min -1 welding speed. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, and sound partially penetrated welds without welding defects such as porosity, underfilling or humping could be produced at wide process windows of welding speeds between 4.5 and 10 m min -1 with fibre laser beams of 360 μm or 560 μm in spot diameter. The high-speed video observation pictures and the x-ray images of the welding phenomena at 6 m min -1 welding speed and 360 μm spot diameter show that a sound weld bead was formed owing to a long molten pool suppressing and accommodating spattering and a stable keyhole generating no bubbles from the tip, respectively
Invasion of the striped mollusks
Energy Technology Data Exchange (ETDEWEB)
1991-09-01
Introduced to this country only five years ago, the prolific zebra mussel has infested the Great Lakes and has already begun to move into fresh waters beyond the region. Dense populations in utility water systems have caused serious problems, reducing plant efficiency and blocking lines used for cooling and fire fighting. Experts say the striped mollusk has the potential to become the industry's worst biological problem, possibly affecting 70% of US power plants. While it appears that the invader is here to stay, EPRI and others continue to develop and refine techniques to control mussel growth. This article describes how the mollusk got here, reviews the problems it can cause and what is being done to mitigate the problems and control the growth and spread of the mollusk.
Energy Technology Data Exchange (ETDEWEB)
Marko, Angelina [Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany); Graf, Benjamin; Rethmeier, Michael [Fraunhofer Institute for Production Systems and Design Technology IPK, Berlin (Germany). Dept. for Joining and Coating Technology
2017-11-01
The process of laser cladding has become more important during recent years because of its broad application for cladding, repair or additive manufacturing. In the field of mechanical engineering, one use is the repair of turbine blades. For high quality and reliability of the repaired components, it is necessary to adjust the weld bead geometry to the specific repair task. The bead geometry influences the metallurgical bonding and the degree of dilution as well as the formation of defects like pores or cracks. Therefore, it is important to know the effects of the different parameters on the welding bead. A valuable tool to meet this industrial challenge is the design of experiments (DoE). In this context, the user can choose between a huge number of test plans. Greater profit of information is expected by a larger test range. In order to confirm the acceptance, a five-step full factorial test plan is compared to a central composite design in this paper. Moreover, the limits of the experimental range are indicated and restrictions can be derived. As the results show, the essential effects are detected with a full factorial test plan as well as with a central composite design. Merely the effect strength could not always be specified unambiguously. On this account and in consideration of cost efficiency, the use of central compound design is recommended in industrial applications.
Directory of Open Access Journals (Sweden)
Robinson Timothy
2018-01-01
Full Text Available We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with 30 MeV energies, suggesting the discharge current contribution to EMP is dominant.
Stock characteristics of Hudson River striped bass
International Nuclear Information System (INIS)
Hoff, T.B.; McLaren, J.B.; Cooper, J.C.
1988-01-01
Striped bass, because of their tremendous popularity both commercially and recreationally, were a principal focus of the Hudson River power plant case. Between 1976 and 1979, over 23,000 age-II and older striped bass were studied as one facet of an extensive research program on the spring population in the Hudson River. Samples were collected from the overwintering as well as the spawning portion of the striped bass population, and included immature as well as mature fish. At least 12 age-groups contributed to spawning each year. Of these 12, age-groups III, IV, and V usually were most abundant, but the percentage of the population represented by any single age-group varied as the result of fluctuations in year-class strength. Males first became sexually mature at age II and females at age IV. Fast-growing individuals within a year class tended to mature earlier. Fecundity increased with the size of fish, reaching an observed maximum of about 3 million eggs per female. Although significant annual variations in maturity and growth were detected for Hudson River striped bass, there was no evidence of a consistent change in either variable that might be associated with increasing power plant operations and a reduction in striped bass abundance. Age at maturity and age structure are the two life history components that differ the most between the Hudson River population and other striped bass populations. 36 refs., 7 tabs
Holme, Audun
1988-01-01
This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
Directory of Open Access Journals (Sweden)
André F. Colaço
2017-07-01
Full Text Available LiDAR (Light Detection and Ranging technology has been used to obtain geometrical attributes of tree crops in small field plots, sometimes using manual steps in data processing. The objective of this study was to develop a method for estimating canopy volume and height based on a mobile terrestrial laser scanner suited for large commercial orange groves. A 2D LiDAR sensor and a GNSS (Global Navigation Satellite System receiver were mounted on a vehicle for data acquisition. A georeferenced point cloud representing the laser beam impacts on the crop was created and later classified into transversal sections along the row or into individual trees. The convex-hull and the alpha-shape reconstruction algorithms were used to reproduce the shape of the tree crowns. Maps of canopy volume and height were generated for a 25 ha orange grove. The different options of data processing resulted in different values of canopy volume. The alpha-shape algorithm was considered a good option to represent individual trees whereas the convex-hull was better when representing transversal sections of the row. Nevertheless, the canopy volume and height maps produced by those two methods were similar. The proposed system is useful for site-specific management in orange groves.
van den Broek, P.M.
1984-01-01
The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.
Robinson, Timothy; Giltrap, Samuel; Eardley, Samuel; Consoli, Fabrizio; De Angelis, Riccardo; Ingenito, Francesco; Stuart, Nicholas; Verona, Claudio; Smith, Roland A.
2018-01-01
We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm) and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with earth following ejection of hot electrons from the plasma, in contrast to predictions for pin-mounted foils in the Poyé EMP generation model. With levitated targets, no EMP was measurable above the noise threshold of any diagnostic, despite observation of protons accelerated to >30 MeV energies, suggesting the discharge current contribution to EMP is dominant.
Bidi, Lyes; Le Masson, Philippe; Cicala, Eugen; Primault, Christophe
2017-03-01
The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2 mm deposited metal and must provide sufficient lateral penetration of about 0.2 mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4 mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan.
Energy Technology Data Exchange (ETDEWEB)
Le Guen, E.
2010-11-15
Hybrid laser/MIG-MAG welding shows high advantages compared to laser welding or GMAW arc welding used separately. Thanks to this process, higher productivity can be gained through higher welding speed, higher squeeze tolerance moreover possible improvement of the metallurgical properties of the weld seam can be obtained. However, many operating parameters have to be set up in order to achieve optimal process. The complex physical phenomena, which govern welding process, have to be understood in order to use efficiently this technique in mass production. Understanding of these phenomena is also necessary to program numerical simulations which fit to this process. In the first step, experimental studies have been carried out with GMAW, laser and hybrid welding on samples of S355 steel. Influence of operating parameters has been analyzed through films performed with speed camera and macro-graphies of weld seam cross section. Surface deformations of the melt pool, induced by the arc pressure, weld pool length, droplet detachment and welding speed, have been analyzed precisely from images of the surface melt pool. In a second step, a numerical model was developed using the COMSOL Multiphysics software for MAG, laser and hybrid laser/MAG welding processes. A 3D quasi-stationary model has been calculated from the temperature field within the metal. The originality of the MAG and hybrid model lies in the prediction of the melt pool surface profile used to determine the 3D geometry, by taking into account the material input. The influence of different parameters such as arc power and speed welding on the efficiency as well as the distribution radius of the arc power and the arc pressure are analyzed through validations with different experimental results and different calculation configurations. (author)
Directory of Open Access Journals (Sweden)
Francesco Pennacchio
2017-07-01
Full Text Available Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect. Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.
METHODS OF OBTAINING LONGITUDINAL STRIPES LAYOUTS
Directory of Open Access Journals (Sweden)
OANA Dorina
2014-05-01
Full Text Available From the technological point of view it is necessary that the phase of warping to be done two or three multiple warp, which results in two or three rolls of the warp final will meet only the warping. To achieve longitudinal striped fabric spinning machines is necessary to have all tensioning mechanism dispensing rolls which requires their special construction. The homogeneity of the fabric from the point of view of the warp yarns tension must be ensured by synchronizing operation of the tensioning two cutting mechanisms of the two reels on which the wires are wound with a degree of waving and thus the fuel consumption at the different weaving. It is recommended that the design be adopted average float bonds, such that the wires can be wrapped around more than two final reels. In terms of manufacturing technology with longitudinal stripes fabrics have a more complicated and expensive technology to cross-striped fabrics for the manufacture of which technology is simplified. Cross-striped fabrics containing groups of warp threads those linked to floating average is materially different. Due to this degree of crimping of wires in the stripes with different bonds makes their contract to be different, having a direct influence on the wires consumption. The different contraction of wire weaving makes warp yarn length, contained in a linked reports are so different that it requires winding wires with different bonds also differing on the final rolls.
Bioinspired Heterogeneous Structural Color Stripes from Capillaries.
Zhao, Ze; Wang, Huan; Shang, Luoran; Yu, Yunru; Fu, Fanfan; Zhao, Yuanjin; Gu, Zhongze
2017-12-01
As an important characteristic of many creatures, structural colors play a crucial role in the survival of organisms. Inspired by these features, an intelligent structural color material with a heterogeneous striped pattern and stimuli-responsivity by fast self-assembly of colloidal nanoparticles in capillaries with a certain diameter range are presented here. The width, spacing, color, and even combination of the structural color stripe patterns can be precisely tailored by adjusting the self-assembly parameters. Attractively, with the integration of a near-infrared (NIR) light responsive graphene hydrogel into the structural color stripe pattern, the materials are endowed with light-controlled reversible bending behavior with self-reporting color indication. It is demonstrated that the striped structural color materials can be used as NIR-light-triggered dynamic barcode labels for the anti-counterfeiting of different products. These features of the bioinspired structural color stripe pattern materials indicate their potential values for mimicking structural color organisms, which will find important applications in constructing intelligent sensors, anti-counterfeiting devices, and so on. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guiding thermomagnetic avalanches with soft magnetic stripes
Energy Technology Data Exchange (ETDEWEB)
Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W. -K.
2017-12-01
We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.
Rodger, Alison
1995-01-01
Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans
The IAC stripe82 legacy project
Román, Javier; Fliri, Juergen; Trujillo, Ignacio
2017-03-01
We present new deep co-adds of data taken within Stripe 82 of the Sloan Digital Sky Survey (SDSS), especially stacked to reach the faintest surface brightness limits of this data set. Our reduction puts special emphasis on preserving the characteristics of the background (sky + diffuse light) in the input images using a non-aggressive sky subtraction strategy, resulting in an exquisite quality on extremely faint structures. The IAC Stripe 82 co-adds offer a rather unique possibility to study the low surface brightness Universe like stellar haloes and disc truncations, low surface brightness, tidal galactic interactions, extremely faint dwarf galaxies, intra-cluster light or diffuse light from galactic dust. The imaging data is publicly available at http://www.iac.es/proyecto/stripe82/.
Improving striping operations through system optimization - phase 2 : final report.
2016-07-01
Striping operations generate a significant workload for MoDOT maintenance operations. The requirement for each striping crew : to replenish its stock of paint and other consumable items from a bulk storage facility, along with the necessity to make s...
Probing optically silent superfluid stripes in cuprates
Rajasekaran, S.; Okamoto, J.; Mathey, L.; Fechner, M.; Thampy, V.; Gu, G. D.; Cavalleri, A.
2018-02-01
In many theoretical models of high-temperature superconductors, remnants of superconductivity persist to temperatures higher than the transition temperature, TC. Rajasekaran et al. used nonlinear terahertz spectroscopy to probe this region of the phase diagram of a cuprate superconductor that is well known for a stripe phase that appears for certain doping levels (see the Perspective by Ergeçen and Gedik). For a sample deep in the stripe phase, a large nonlinear signal persisted from the superconducting region up to temperatures much higher than TC. The findings suggest the formation of a peculiar spatially modulated superconducting state called the pair-density wave.
International Nuclear Information System (INIS)
Robinson, I.; Trautman, A.
1988-01-01
The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem
Blossfeld, Mathis
2015-01-01
In 2007, the Global Geodetic Observing System (GGOS) was installed as a full component of the International Association of Geodesy (IAG). One primary goal of GGOS is the integration of geometric and gravimetric observation techniques to estimate consistent geodetic-geophysical parameters. Thereby, GGOS is based on the data and services of the IAG. Besides the combination of different geodetic techniques, also the common estimation of the station coordinates (TRF), Earth Orientation Parameters (EOP) and coefficients of the Earth's gravitational field (Stokes coefficients) is necessary in order to reach this goal. However, the combination of all geometric and gravimetric observation techniques is not yet fully realized. A major step towards the GGOS idea of parameter integration would be the understanding of the existing correlations between the above mentioned fundamental geodetic parameter groups. This topic is the major objective of this thesis. One possibility to study the interactions is the use of Satellite Laser Ranging (SLR) in an intertechnique combination with Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry (VLBI) or the intra-technique combination of multiple SLR-tracked satellites. SLR plays a key role in this thesis since it is the unique technique which is sensitive to all parameter groups and allows an integrated parameter estimation with very high accuracy. The present work is based on five first-author publications which are supplemented by four co-author publications. In this framework, for the first time an extensive discussion of a refined global Terrestrial Reference Frame (TRF) estimation procedure, the estimation of so-called Epoch Reference Frames (ERFs) is presented. In contrast to the conventional linear station motion model, the ERFs provide frequently estimated station coordinates and Earth Orientation Parameters (EOP) which allow to approximate not modeled non-linear station motions very accurately
DNA methylation profiles correlated to striped bass sperm fertility
Striped bass (Morone saxatilis) spermatozoa are used to fertilize in vitro the eggs of white bass (Morone chrysops) to produce the preferred hybrid for the striped bass aquaculture industry. Currently, only one source of domestic striped bass juveniles are available to growers that are not obtained ...
Pottmann, Helmut
2014-11-26
Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.
Maor, Eli
2014-01-01
If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur
Faulkner, Thomas Ewan
1952-01-01
This text explores the methods of the projective geometry of the plane. Some knowledge of the elements of metrical and analytical geometry is assumed; a rigorous first chapter serves to prepare readers. Following an introduction to the methods of the symbolic notation, the text advances to a consideration of the theory of one-to-one correspondence. It derives the projective properties of the conic and discusses the representation of these properties by the general equation of the second degree. A study of the relationship between Euclidean and projective geometry concludes the presentation. Nu
substitution line for resistance to stripe rust
Indian Academy of Sciences (India)
2011-08-19
Aug 19, 2011 ... c Indian Academy of Sciences. RESEARCH ARTICLE. Molecular cytogenetic characterization of a new wheat Secale africanum. 2R a. (2D) substitution line for resistance to stripe rust. MENGPING LEI, GUANGRONG LI, SUFEN ZHANG, CHENG LIU and ZUJUN YANG. ∗. School of Life Science and ...
Breakup Behavior of a Capillary Bridge on a Hydrophobic Stripe Separating Two Hydrophilic Stripes
Hartmann, Maximilian; Hardt, Steffen
2017-11-01
The breakup dynamics of a capillary bridge on a hydrophobic area between two liquid filaments occupying two parallel hydrophilic stripes is studied experimentally. In addition calculations with the finite-element software Surface Evolver are performed to obtain the corresponding stable minimal surfaces. Droplets of de-ionized water are placed on substrates with alternating hydrophilic and hydrophobic stripes of different width. Their volume decreases by evaporation. This results in a droplet shaped as the letter ``H'' covering two hydrophilic stripes separated by one hydrophobic stripe. The width of the capillary bridge d(t) on the hydrophobic stripe during the breakup process is observed using a high-speed camera mounted on a bright-field microscope. The results of the experiments and the numerical studies show that the critical width dcrit, indicating the point where the capillary bridge becomes unstable, mainly depends on the width ratio of the hydrophilic and hydrophobic stripes. It is found that the time derivative of d(t) first decreases after dcrit has been reached. The final breakup dynamics then follows a t 2 / 3 scaling. We kindly acknowledge the financial support by the German Research Foundation (DFG) within the Collaborative Research Centre 1194 ``Interaction of Transport and Wetting Processes'', Project A02a.
Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz
2017-01-01
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Directory of Open Access Journals (Sweden)
Chamanei S. Perera
2015-10-01
Full Text Available In this paper we image the highly confined long range plasmons of a nanoscale metal stripe waveguide using quantum emitters. Plasmons were excited using a highly focused 633 nm laser beam and a specially designed grating structure to provide stronger incoupling to the desired mode. A homogeneous thin layer of quantum dots was used to image the near field intensity of the propagating plasmons on the waveguide. We observed that the photoluminescence is quenched when the QD to metal surface distance is less than 10 nm. The optimised spacer layer thickness for the stripe waveguides was found to be around 20 nm. Authors believe that the findings of this paper prove beneficial for the development of plasmonic devices utilising stripe waveguides.
Berger, Marcel
2010-01-01
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,
Robinson, Gilbert de B
2011-01-01
This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom
Burdette, A C
1971-01-01
Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st
Crystal shapes on striped surface domains
International Nuclear Information System (INIS)
Valencia, Antoni
2004-01-01
The equilibrium shapes of a simple cubic crystal in contact with a planar chemically patterned substrate are studied theoretically using an effective interface model. The substrate is primarily made of lyophobic material and is patterned with a lyophilic (easily wettable) stripe domain. Three regimes can be distinguished for the equilibrium shapes of the crystal. The transitions between these regimes as the volume of the crystal is changed are continuous or discontinuous depending on the strength of the couplings between the crystal and the lyophilic and lyophobic surface domains. If the crystal grows through a series of states close to equilibrium, the discontinuous transitions correspond to growth instabilities. These transitions are compared with similar results that have been obtained for a volume of liquid wetting a lyophilic stripe domain
The preparation of immunochromatographic stripe of methamphetamine
International Nuclear Information System (INIS)
Jiang Jing; Liu Yibing; Zhou Ling; Guo Weizheng
2004-01-01
A gold immunochromatographic assay (GICA) is developed for methamphetamine in urine. Colloidal gold is obtained by reducing the gold chloride with sodium citrate, and labeled methamphetamine monoclonal antibody. The drug or metabolite competes with the immobilized drug conjugate in the test area for the limited colloidal gold-labeled antibody complex in which the stripe is made to screen the drug abuser. This method has sensitivity of 1000 μg/L, and without cross-reaction with some drugs
3D face recognition using isogeodesic stripes.
Berretti, Stefano; Del Bimbo, Alberto; Pala, Pietro
2010-12-01
In this paper, we present a novel approach to 3D face matching that shows high effectiveness in distinguishing facial differences between distinct individuals from differences induced by nonneutral expressions within the same individual. The approach takes into account geometrical information of the 3D face and encodes the relevant information into a compact representation in the form of a graph. Nodes of the graph represent equal width isogeodesic facial stripes. Arcs between pairs of nodes are labeled with descriptors, referred to as 3D Weighted Walkthroughs (3DWWs), that capture the mutual relative spatial displacement between all the pairs of points of the corresponding stripes. Face partitioning into isogeodesic stripes and 3DWWs together provide an approximate representation of local morphology of faces that exhibits smooth variations for changes induced by facial expressions. The graph-based representation permits very efficient matching for face recognition and is also suited to being employed for face identification in very large data sets with the support of appropriate index structures. The method obtained the best ranking at the SHREC 2008 contest for 3D face recognition. We present an extensive comparative evaluation of the performance with the FRGC v2.0 data set and the SHREC08 data set.
Classifying Variable Sources in SDSS Stripe 82
Willecke Lindberg, Christina
2018-01-01
SDSS (Sloan Digital Sky Survey) Stripe 82 is a well-documented and researched region of the sky that does not have all of its ~67,500 variable objects labeled. By collecting data and consulting different catalogs such as the Catalina Survey, we are able to slowly cross-match more objects and add classifications within the Stripe 82 catalog. Such matching is performed either by pairing SDSS identification numbers, or by converting and comparing the coordinates of every object within the Stripe 82 catalog to every object within the classified catalog, such as the Catalina Survey catalog. If matching is performed with converted coordinates, a follow-up check is performed to ascertain that the magnitudes of the paired objects are within a reasonable margin of error and that objects have not been mismatched. Once matches have been confirmed, the light curves of classified objects can then be used to determine features that most effectively separate the different types of variable objects in feature spaces. By classifying variable objects, we can construct a reference for subsequent large research surveys, such as LSST (the Large Synoptic Survey Telescope), that could utilize SDSS data as a training set for its own classifications.
Occupational Noise Reduction in CNC Striping Process
Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad
2018-03-01
Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.
Desseyn, H. O.; And Others
1985-01-01
Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 8. Geometry VI - Space-the Final Frontier. Kapil H Paranjape. Series Article Volume 1 Issue 8 August 1996 pp 28-33. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/08/0028-0033 ...
Geometry -----------~--------------RESONANCE
Indian Academy of Sciences (India)
Mathematicians were at war with one another because Euclid's axioms for geometry were not entirely acceptable to all. Archi- medes, Pasch and others introduced further axioms as they thought that Euclid had missed a few, while other mathematicians were bothered by the non-elementary nature of the parallel axiom.
Study on guided waves in semiconductor lasers
International Nuclear Information System (INIS)
Pudensi, M.A.A.
1980-01-01
In This work we studied the guided waves in semiconductor lasers. In the first part we carried on the experimental measurements on lasers with stripe nonorthogonal to the mirrors. In the second part we developed a matrix method for the study of propagation and reflection of guided waves in lasers. (author) [pt
International Nuclear Information System (INIS)
Strominger, A.
1990-01-01
A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)
Directory of Open Access Journals (Sweden)
Leonardo Paris
2012-06-01
Full Text Available Lo studio degli ingranaggi si basa sulle geometrie coniugate in cui due curve o due superfici si mantengono costantemente in contatto pur se in movimento reciproco. La teoria geometrica degli ingranaggi fino alla fine del XIX secolo era uno dei molteplici rami nelle applicazioni della Geometria Descrittiva. Lo studio si basa sulla conoscenza delle principali proprietà delle curve piane e gobbe e delle loro derivate. La specificità del tema è che queste geometrie nel momento in cui si devono relazionare con le loro coniugate, devono rispettare dei vincoli che altrimenti non avrebbero. Si vuole evidenziare attraverso casi concreti il ruolo della geometria descrittiva nel passaggio dal teorico al pratico riproponendo in chiave informatica, temi e procedure di indagine spesso passati in secondo piano se non addirittura dimenticati.
Petersen, Peter
2016-01-01
Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...
Passeron, Thierry
2012-01-01
International audience; Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be succesfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-aulait macules should not b...
Du, K.; Loosen, P.; Herziger, G.
1991-01-01
Laser, consisting of a beam path multiple-folded by means of two cavity end mirrors and having at least one reflector folding the laser beam retroreflectively, the axis of which is arranged offset in parallel to the axis of a further reflector. So that the laser exhibits an improved beam quality while retaining its comparatively low adjustment sensitivity, the beam path is folded at least twice by means of the retoreflective reflector.
General Geometry and Geometry of Electromagnetism
Shahverdiyev, Shervgi S.
2002-01-01
It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...
Inhomogeneous Stripe Phase Revisited for Surface Superconductivity
Barzykin, Victor; Gor'kov, Lev P.
2002-11-01
We consider 2D surface superconductivity in high magnetic fields parallel to the surface. We demonstrate that the spin-orbit interaction at the surface changes the properties of the inhomogeneous superconducting Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state that develops above fields given by the paramagnetic criterion. Strong spin-orbit interaction significantly broadens the range of existence of the LOFF phase, which takes the form of periodic superconducting stripes running along the field direction on the surface, leading to the anisotropy of its properties. Our results provide a tool for studying surface superconductivity as a function of doping.
Ciarlet, Philippe G
2007-01-01
This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and
Czech Academy of Sciences Publication Activity Database
Kasperczuk, A.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; Ullschmied, Jiří; Krouský, Eduard; Pfeifer, Miroslav; Skála, Jiří; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Pisarczyk, P.
2011-01-01
Roč. 18, č. 4 (2011), 044503/1-044503/4 ISSN 1070-664X R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : laser-produced plasma * plasma streams * Cu-plasma jets * laser targets Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.147, year: 2011 http://pop.aip.org/ resource /1/phpaen/v18/i4/p044503_s1
leaf and stripe rust resistance among ethiopian grown wheat ...
African Journals Online (AJOL)
ADMIN
pathogen pathotypes. These varieties and lines, therefore, may be utilized in leaf and stripe rust resistance breeding programs. Key words/phrases: Leaf rust, resistance, stripe rust, Triticum aestivum, Triticum turgidum. * Current address: University of Limpopo, School of Agricultural and Environmental Sciences, Private Bag ...
Transfer of stripe rust resistance from Aegilops variabilis to bread ...
African Journals Online (AJOL)
In terms of area, the bread wheat producing regions of China comprise the largest area in the world that is constantly threatened by stripe rust epidemics. Consequently, it is important to exploit new adultplant resistance genes in breeding. This study reports the transfer of stripe rust resistance from Aegilops variabilis to ...
Structural lability of Barley stripe mosaic virus virions.
Directory of Open Access Journals (Sweden)
Valentin V Makarov
Full Text Available Virions of Barley stripe mosaic virus (BSMV were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV, a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed.
Gusev, D. S.; Lyukhter, A. B.
2017-12-01
On the example of glass forming equipment, the surfaces of which must have high wear resistance during repeated contacts with molten glass, a study was made of laser cladding of nickel based alloys on a substrate of gray cast iron. In study the shapes of individual tracks are investigated with varying laser radiation power, processing speed and powder feed rate. The influence of technological parameters on the width and height of the clad is shown. A similarity is found between the two principles of measuring the dilution through linear dimensions and the areas of track in cross section. A high correlation between dilution and laser radiation power over a wide range of speeds has been established, which has made it possible to develop a scheme of control laser cladding process with achieving a low level of dilution in order to minimize the heat effect zone (HAZ).
Competing States in the t-J Model: Uniform d-Wave State versus Stripe State versus Stripe State
Corboz, P.R.; Rice, T.M.; Troyer, M.
2014-01-01
Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only
Passeron, T
2012-12-01
Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Passeron, T
2012-11-01
Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Sufizadeh, A. R.; Akbari Mousavi, S. A. A.
2017-12-01
In this paper, laser welding of 316L and AISI 4340 steel is studied. Studies are focused on the effects of laser parameters on the depth and width of the welds. The results show that increasing in pulse energy and frequency will increase the weld depth and the weld width. The calculation of effective peak power density related to the welded joints results in optimum operating welding parameters with full penetration and proper dimensions and strengths. The tensile strength values of the full penetrated weldments are greater than the tensile strength values of AISI 316 base metal. The effects of laser parameters on weld grain size and HAZ size were investigated. The results show that the weld grain size and HAZ size increase with pulse energy and frequency.
Critical assessment of the evidence for striped nanoparticles.
Directory of Open Access Journals (Sweden)
Julian Stirling
Full Text Available There is now a significant body of literature which reports that stripes form in the ligand shell of suitably functionalised Au nanoparticles. This stripe morphology has been proposed to strongly affect the physicochemical and biochemical properties of the particles. We critique the published evidence for striped nanoparticles in detail, with a particular focus on the interpretation of scanning tunnelling microscopy (STM data (as this is the only technique which ostensibly provides direct evidence for the presence of stripes. Through a combination of an exhaustive re-analysis of the original data, in addition to new experimental measurements of a simple control sample comprising entirely unfunctionalised particles, we show that all of the STM evidence for striped nanoparticles published to date can instead be explained by a combination of well-known instrumental artefacts, or by issues with data acquisition/analysis protocols. We also critically re-examine the evidence for the presence of ligand stripes which has been claimed to have been found from transmission electron microscopy, nuclear magnetic resonance spectroscopy, small angle neutron scattering experiments, and computer simulations. Although these data can indeed be interpreted in terms of stripe formation, we show that the reported results can alternatively be explained as arising from a combination of instrumental artefacts and inadequate data analysis techniques.
Critical assessment of the evidence for striped nanoparticles.
Stirling, Julian; Lekkas, Ioannis; Sweetman, Adam; Djuranovic, Predrag; Guo, Quanmin; Pauw, Brian; Granwehr, Josef; Lévy, Raphaël; Moriarty, Philip
2014-01-01
There is now a significant body of literature which reports that stripes form in the ligand shell of suitably functionalised Au nanoparticles. This stripe morphology has been proposed to strongly affect the physicochemical and biochemical properties of the particles. We critique the published evidence for striped nanoparticles in detail, with a particular focus on the interpretation of scanning tunnelling microscopy (STM) data (as this is the only technique which ostensibly provides direct evidence for the presence of stripes). Through a combination of an exhaustive re-analysis of the original data, in addition to new experimental measurements of a simple control sample comprising entirely unfunctionalised particles, we show that all of the STM evidence for striped nanoparticles published to date can instead be explained by a combination of well-known instrumental artefacts, or by issues with data acquisition/analysis protocols. We also critically re-examine the evidence for the presence of ligand stripes which has been claimed to have been found from transmission electron microscopy, nuclear magnetic resonance spectroscopy, small angle neutron scattering experiments, and computer simulations. Although these data can indeed be interpreted in terms of stripe formation, we show that the reported results can alternatively be explained as arising from a combination of instrumental artefacts and inadequate data analysis techniques.
Akbari, Mohammad; Saedodin, Seyfolah; Toghraie, Davood; Shoja-Razavi, Reza; Kowsari, Farshad
2014-07-01
This paper reports on a numerical and experimental investigation of laser welding of titanium alloy (Ti6Al4V) for modeling the temperature distribution to predict the heat affected zone (HAZ), depth and width of the molten pool. This is a transient three-dimensional problem in which, because of simplicity, the weld pool surface is considered flat. The complex physical phenomenon causing the formation of keyhole has not been considered. The temperature histories of welding process were studied. It was observed that the finite volume thermal model was in good agreement with the experimental data. Also, we predicted the temperature as a function of distance at different laser welding speeds and saw that at each welding speed, the temperature profile was decreased sharply in points close to the laser beam center, and then decreased slightly in the far region from the laser beam center. The model prediction error was found to be in the 2-17% range with most numerical values falling within 7% of the experimental values.
Zhang, Liguo; Sun, Jianguo; Yin, Guisheng; Zhao, Jing; Han, Qilong
2015-01-01
In non-destructive testing (NDT) of metal welds, weld line tracking is usually performed outdoors, where the structured light sources are always disturbed by various noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, we design a cross structured light (CSL) to detect the weld line and propose a robust laser stripe segmentation algorithm to overcome the noises in structured light images. An adaptive monochromatic space is applied to preprocess the image with ambient noises. In the monochromatic image, the laser stripe obtained is recovered as a multichannel signal by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a wall climbing robot inspecting the weld line of a wind power tower. The experimental results show that the CSL sensor can capture the 3D information of the welds with high accuracy, and the proposed algorithm contributes to the weld line inspection and the robot navigation. PMID:26110403
Stripe order from the perspective of the Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Devereaux, Thomas Peter
2018-03-01
A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large portion of the cuprate phase diagram.
Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference
Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M
2016-01-01
The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423
Pathological changes associated with white striping in broiler breast muscles.
Kuttappan, V A; Shivaprasad, H L; Shaw, D P; Valentine, B A; Hargis, B M; Clark, F D; McKee, S R; Owens, C M
2013-02-01
White striping is a condition in broiler chickens characterized grossly by the occurrence of white striations, seen parallel to the direction of muscle fibers, on broiler breast fillets and thighs. Based on visual evaluation of the intensity of white striping, breast fillets can be categorized into normal (NORM), moderate (MOD), and severe (SEV) categories. This study was undertaken to evaluate the details of changes in histology as well as proximate composition occurring in the fillets with respect to the 3 degrees of white striping. In experiment 1, representative breast fillets for each degree of white striping (n = 20) were collected from 45-d-old broilers, approximately 2 h postmortem. From each fillet, 2 skeletal muscle samples were obtained and fixed in 10% neutral buffered formalin. To identify and differentiate the histological changes, slides were prepared and stained using hematoxylin and eosin, Masson's Trichrome, and Oil Red O stains. In experiment 2, samples with 3 degrees of white striping were collected from 57-d-old birds for conducting proximate analysis. Major histopathological changes observed in the MOD and SEV samples consisted of loss of cross striations, variability in fiber size, floccular/vacuolar degeneration and lysis of fibers, mild mineralization, occasional regeneration (nuclear rowing and multinucleated cells), mononuclear cell infiltration, lipidosis, and interstitial inflammation and fibrosis. Microscopic lesions were visually scored for degeneration and necrosis, fibrosis, and lipidosis. The scale used to score the samples ranged from 0 (normal) to 3 (severe). There was an increase (P white striping increased from NORM to SEV. The results from the histopathological study were supported by the findings from proximate analysis confirming that the fat and protein contents of muscle increased (P white striping increased. In conclusion, the histopathological changes occurring in white striping indicate a degenerative myopathy that
Guide to Computational Geometry Processing
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas; Gravesen, Jens; Anton, François
Optical scanning is rapidly becoming ubiquitous. From industrial laser scanners to medical CT, MR and 3D ultrasound scanners, numerous organizations now have easy access to optical acquisition devices that provide huge volumes of image data. However, the raw geometry data acquired must first...... be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction...... Provides additional material at a supplementary website Includes self-study exercises throughout the text Graduate students will find this text a valuable, hands-on guide to developing key skills in geometry processing. The book will also serve as a useful reference for professionals wishing to improve...
Energy Technology Data Exchange (ETDEWEB)
Schiller, A.; Renard, P.
2016-07-01
In the course of extended hydrological studies in the coastal Karst plain of Yucatan, near the town of Tulum amongst others, a novel laser scanning device was developed and applied for the acquisition of the 3d-geometry of ground water conduits. The method is derived from similar industrial systems and for the first time adapted to the specific measurement conditions in underwater cave systems. The device projects a laser line over the whole perimeter at a certain position. This line represents the intersection of a plane with the cave walls. The line is imaged with a wide angle camera system. Through proper design and calibration of the device it is possible to derive the true scale geometry of the perimeter via special image processing techniques. By acquiring regularly spaced images it is possible to reconstruct the true scale and 3 d-shape of a tunnel through the incorporation of location and attitude data. In a first test in the Ox Bel Ha under-water cave system, about 800 metres of tunnels have been scanned down to water depths of 20 metres. The raw data is further interpolated using the ODSIM-algorithm in order to delineate the 3D geometry of the cave system. The method provides easy, operable acquisition of the 3-D geometry of caves in clear water with superior resolution and speed and significantly facilitates the measurement in underwater tunnels as well as in dry tunnels. The data gathered represents crucial input to the study of the state, dynamics and genesis of the complex karst water regime. (Author)
Silva, Alessandro
1993-01-01
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
Eisenhart, Luther Pfahler
2005-01-01
This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.
International Nuclear Information System (INIS)
Gurevich, L.Eh.; Gliner, Eh.B.
1978-01-01
Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
Millijansky radio variability in SDSS stripe 82
Energy Technology Data Exchange (ETDEWEB)
Hodge, J. A.; Becker, R. H. [University of California, 1 Shields Avenue, Davis, CA 95616 (United States); White, R. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Richards, G. T., E-mail: hodge@mpia.de [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)
2013-06-01
We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the Faint Images of the Radio Sky at Twenty centimeters survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart and have an overlapping area of 60 deg{sup 2}. We uncover 89 variable sources down to the millijansky level, 75 of which are newly identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of active galactic nucleus radio variability of 14 yr. We find that only 1% of extragalactic sources have fractional variability f {sub var} > 3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the sub-millijansky regime.
Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul
2015-04-07
A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.
Low temperature TFTs with poly-stripes
Brunets, I.; Boogaard, A.; Smits, Sander M.; de Vries, Hein; de Vries, Hendrikus; Aarnink, Antonius A.I.; Holleman, J.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan
2009-01-01
By enforcing layer thickness variations of an amorphous silicon thin film, the location of grain boundaries after laser annealing can be controlled to great extend. This allowes the positioning of TFTs in between the main crystal boundaries, offering high mobility and low transistor-to-transistor
Roadway striping productivity data analysis for INDOT Greenfield and Crawfordsville districts.
2013-11-01
The main objective of the SPR3650 project is to provide an accurate overview of striping operation so that INDOT finds a way to : effectively save significant investment for purchasing new striping trucks in near future without compromising roadwa...
Twin InSb/GaAs quantum nano-stripes: Growth optimization and related properties
Narabadeesuphakorn, Phisut; Thainoi, Supachok; Tandaechanurat, Aniwat; Kiravittaya, Suwit; Nuntawong, Noppadon; Sopitopan, Suwat; Yordsri, Visittapong; Thanachayanont, Chanchana; Kanjanachuchai, Songphol; Ratanathammaphan, Somchai; Panyakeow, Somsak
2018-04-01
Growth of InSb/GaAs quantum nanostructures on GaAs substrate by using molecular beam epitaxy with low growth temperature and slow growth rate typically results in a mixture of isolated and paired nano-stripe structures, which are termed as single and twin nano-stripes, respectively. In this work, we investigate the growth conditions to maximize the number ratio between twin and single nano-stripes. The highest percentage of the twin nano-stripes of up to 59% was achieved by optimizing the substrate temperature and the nano-stripe growth rate. Transmission electron microscopy reveals the substantial size and height reduction of the buried nano-stripes. We also observed the Raman shift and photon emission from our twin nano-stripes. These twin nano-stripes are promising for spintronics and quantum computing devices.
Ju, Dehao; Shrimpton, John; Bowdrey, Moira; Hearn, Alex
2012-08-01
A cigarette alternative is designed to deliver a dose of medicinal nicotine within a timeframe comparable to that of a cigarette, and gives much of what smokers expect from a cigarette without the risks of smoking tobacco. The design concept is the same as a pressurized metered dose inhaler (pMDI), but is a breath actuated device (Oxette(®)). This work predicts the residual mass median diameter (MMD) of the spray issuing from early stage Oxette(®) prototypes by using an evaporation model of multi-component liquid droplets with the help of a numerical multi-component two-phase actuation model (developed by the authors) to quantify the sprays. Two different formulations with 95% and 98% mass fraction of HFA 134a, and two prototypes of cigarette alternatives with different expansion chamber volumes have been analyzed by the numerical model and compared with laser based measurements. The later designed device provides a larger expansion chamber volume to enhance the propellant evaporation, recirculation, bubble generation and growth inside the chamber, and it makes a significant improvement to produce finer sprays than the earlier design. The mass fraction of the formulation does not affect significantly on the initial MMD of the droplets near the discharge orifice. However, it influences the residual MMD at x=100mm from the discharge orifice, where the ratio of the predicted residual MMDs of the droplets generated by the formulations with 98% and 95% of HFA 134a is 0.73. Although the formulation with 98% of HFA 134a can generate smaller droplets, the formulation with 95% of HFA 134a produces more steady puffs with relatively low mass flow rate. Copyright © 2012 Elsevier B.V. All rights reserved.
Distinguishing Patterns of Charge Order: Stripes or Checkerboards
Energy Technology Data Exchange (ETDEWEB)
Robertson, J.A.
2010-04-06
In two dimensions, quenched disorder always rounds transitions involving the breaking of spatial symmetries so, in practice, it can often be difficult to infer what form the symmetry breaking would take in the 'ideal,' zero disorder limit. We discuss methods of data analysis which can be useful for making such inferences, and apply them to the problem of determining whether the preferred order in the cuprates is 'stripes' or 'checkerboards.' In many cases we show that the experiments clearly indicate stripe order, while in others (where the observed correlation length is short), the answer is presently uncertain.
Visual acuity in the striped skunk (Mephitis mephitis).
Johnson-Ulrich, Zoe; Hoffmaster, Eric; Robeson, Audrey; Vonk, Jennifer
2017-11-01
The visual acuity of striped skunks (Mephitis mephitis) was tested using a 2 alternative forced-choice task with square wave gratings. Skunks were reinforced with food items for touching a ball in front of a striped stimulus when paired with a ball in front of a solid gray stimulus. Skunks demonstrated a maximum visual acuity of 0.42 cycles per degree when tested with bright outdoor illumination. This poor visual acuity may be due to their nocturnal lifestyle, lack of predation, and is consistent with their preferential use of smell and sound during foraging. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
32 CFR Appendix E to Part 246 - Stars and Stripes (S&S) Board of Directors
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Stars and Stripes (S&S) Board of Directors E... DEFENSE (CONTINUED) MISCELLANEOUS STARS AND STRIPES (S&S) NEWSPAPER AND BUSINESS OPERATIONS Pt. 246, App. E Appendix E to Part 246—Stars and Stripes (S&S) Board of Directors A. Organization and Management...
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
minimal collateral thermal damage over conventional tissue welding. 7.6 Summary and future scope. Laser joining is one of the earliest recorded applications of laser material processing. That laser can heat a material irrespective of its chemistry, state, bonding or size/geometry, is obviously a big advantage in joining a ...
Nonlinearities of GaAlAs lasers--Harmonic distortion
DEFF Research Database (Denmark)
Stubkjær, Kristian; Danielsen, Magnus
1980-01-01
Narrow stripe lasers (2-6 mum) and transverse junction lasers exhibit excellent linearity. The dependence of relative second-and third-harmonic distortion is investigated as a function of modulation frequency and modulation current. Relative second- and third-harmonic distortion of -50 and -70 dB...
Meyer, Walter J
2006-01-01
Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...
Mapping of stripe rust resistance gene in an Aegilops caudata ...
Indian Academy of Sciences (India)
... rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%.
Anatomical studies of the gastrointestinal tract of the striped sand ...
African Journals Online (AJOL)
A study was carried out on the gross anatomical, morphometric features and histology of the gastrointestinal tract of the Striped Sand Snake (Psammophis sibilans). Ten snakes (five males and five females) were euthanized and dissected for the study. The gastrointestinal tract appeared as a straight tubular organ from oral ...
Stripe domains and magnetoresistance in thermally deposited nickel films
International Nuclear Information System (INIS)
Sparks, P.D.; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C.
2004-01-01
We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21±0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane
Distribution patterns of striped mullet Mugil cephalus in mangrove ...
African Journals Online (AJOL)
Spatial and seasonal variations in density of striped mullet Mugil cephalus were investigated in four mangrove creeks in Zanzibar, Tanzania, during a one-year cycle. Fish were collected monthly in the lower, intermediate and upper reaches of each creek using a beach-seine net. All fish collected were juveniles between 2 ...
Mapping of stripe rust resistance gene in an Aegilops caudata ...
Indian Academy of Sciences (India)
Artificial rust epidemic was created by spraying the infector rows and experimental material with the mixture of uredinospores of Pst isolates 78S84 and 46S119. Stripe rust assessment was according to the modified Cobb's scale. (Peterson et al. 1948). The RIL population was screened at the seedling stage against leaf rust ...
Monitoring quantity and quality of striped catfish pond effluent
Heijden, van der P.G.M.; Poelman, M.; Bosma, R.H.; Long, N.; Son, V.M.
2012-01-01
The production of striped catfish and other fish species in ponds has several possible impacts on the environment, one of which is caused by the discharge of pond waste water (effluent), which is enriched with nitrogen and phosphorous compounds as result of feeding and fish faeces. To restrict the
Intervertebral Disk Disease in 3 Striped Skunks (Mephitis mephitis)
Krauss, M.W.; Benato, L.; McDonnell, J.; Schoemaker, N.J.; Westerhof, I.; Bronson, E.; Gielen, I.; van Caelenberg, A.; Hellebuyck, T.; Meij, B.P.; de Decker, S.
Objective To describe diagnostic findings, surgical technique, and outcome in 3 striped skunks (Mephitis mephitis) with a history of paraparesis. Study Design Case series. Animals Skunks (n = 3) with paraparesis. Methods Neurologic examination revealed upper motor neuron disease (T2–L2) in 2 skunks
Modulation of the innate immune responses in the striped ...
African Journals Online (AJOL)
Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...
Siim Nestor soovitab : Supreme 7aastane. White Stripes / Siim Nestor
Nestor, Siim, 1974-
2005-01-01
Kolmik Supreme tähistab oma 7. tegutsemisaastat 24. juunil Von Krahlis, kus toimub ka Krecki debüütalbumi "If You Live" (väljaandjaks ettevõte Umblu) esitlus. Detroidi blues-rock duo White Stripes esitleb oma uut albumit "Get Behind Me Satan" 29. juunil Tallinnas klubis Hollywood
Mapping of stripe rust resistance gene in an Aegilops caudata ...
Indian Academy of Sciences (India)
Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome. 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS ...
Geometry essentials for dummies
Ryan, Mark
2011-01-01
Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque
Introduction to projective geometry
Wylie, C R
2008-01-01
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include w
Distinct Nature of Static and Dynamic Magnetic Stripes in Cuprate Superconductors
Jacobsen, H.; Holm, S. L.; Lǎcǎtuşu, M.-E.; Rømer, A. T.; Bertelsen, M.; Boehm, M.; Toft-Petersen, R.; Grivel, J.-C.; Emery, S. B.; Udby, L.; Wells, B. O.; Lefmann, K.
2018-01-01
We present detailed neutron scattering studies of the static and dynamic stripes in an optimally doped high-temperature superconductor, La2 CuO4 +y . We observe that the dynamic stripes do not disperse towards the static stripes in the limit of vanishing energy transfer. Therefore, the dynamic stripes observed in neutron scattering experiments are not the Goldstone modes associated with the broken symmetry of the simultaneously observed static stripes, and the signals originate from different domains in the sample. These observations support real-space electronic phase separation in the crystal, where the static stripes in one phase are pinned versions of the dynamic stripes in the other, having slightly different periods. Our results explain earlier observations of unusual dispersions in underdoped La2 -xSrx CuO4 (x =0.07 ) and La2 -xBax CuO4 (x =0.095 ).
Distinct Nature of Static and Dynamic Magnetic Stripes in Cuprate Superconductors
DEFF Research Database (Denmark)
Jacobsen, H.; Holm, S. L.; Lăcătuşu, M. E.
2018-01-01
We present detailed neutron scattering studies of the static and dynamic stripes in an optimally doped high-Temperature superconductor, La2CuO4+y. We observe that the dynamic stripes do not disperse towards the static stripes in the limit of vanishing energy transfer. Therefore, the dynamic stripes...... observed in neutron scattering experiments are not the Goldstone modes associated with the broken symmetry of the simultaneously observed static stripes, and the signals originate from different domains in the sample. These observations support real-space electronic phase separation in the crystal, where...... the static stripes in one phase are pinned versions of the dynamic stripes in the other, having slightly different periods. Our results explain earlier observations of unusual dispersions in underdoped La2-xSrxCuO4 (x=0.07) and La2-xBaxCuO4 (x=0.095)....
Optics of laser plasmas in spherical geometry
International Nuclear Information System (INIS)
Mulser, P.; Kessel, C. van.
1977-05-01
Analytical formulae for classical reflection from pellets and plane targets under normal incidence are presented and the maximum electric field increase in smooth density profiles is determined. Density profile distortions due to light pressure and their influence on pellet compression are discussed in a steady state model. (orig.) [de
Bárány, Imre; Vilcu, Costin
2016-01-01
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Bulk temperature measurement in thermally striped pipe flows
International Nuclear Information System (INIS)
Lemure, N.; Olvera, J.R.; Ruggles, A.E.
1995-12-01
The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique
Euclidean geometry and transformations
Dodge, Clayton W
1972-01-01
This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.
International Nuclear Information System (INIS)
Hrivnacova, I; Viren, B
2008-01-01
The Virtual Geometry Model (VGM) was introduced at CHEP in 2004 [1], where its concept, based on the abstract interfaces to geometry objects, has been presented. Since then, it has undergone a design evolution to pure abstract interfaces, it has been consolidated and completed with more advanced features. Currently it is used in Geant4 VMC for the support of TGeo geometry definition with Geant4 native geometry navigation and recently it has been used in the validation of the G4Root tool. The implementation of the VGM for a concrete geometry model represents a small layer between the VGM and the particular native geometry. In addition to the implementations for Geant4 and Root TGeo geometry models, there is now added the third one for AGDD, which together with the existing XML exporter makes the VGM the most advanced tool for exchanging geometry formats providing 9 ways of conversions between Geant4, TGeo, AGDD and GDML models. In this presentation we will give the overview and the present status of the tool, we will review the supported features and point to possible limits in converting geometry models
O'Leary, Michael
2010-01-01
Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull
Fundamental concepts of geometry
Meserve, Bruce E
1983-01-01
Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Striped bass stocks and concentrations of polychlorinated biphenyls
Fabrizio, Mary C.; Sloan, Ronald J.; O'Brien, John F.
1991-01-01
Harvest restrictions on striped bass Morone saxatilis fisheries in Atlantic coastal states were relaxed in 1990, but consistent, coastwide regulations of the harvest have been difficult to implement because of the mixed-stock nature of the fisheries and the recognized contamination of Hudson River fish by polychlorinated biphenyls (PCBs). We examined PCB concentrations and stock of origin of coastal striped bass to better understand the effects of these two factors on the composition of the harvest. The probability of observing differences in PCB concentration among fish from the Hudson River stock and the 'southern' group (Chesapeake Bay and Roanoke River stocks combined) was investigated with the logit model (a linear model for analysis of categorical data). Although total PCB concentrations were highly variable among fish from the two groups, striped bass classified as Hudson River stock had a significantly greater probability of having PCB concentrations equal to or greater than 2.00 mg/kg than did fish belonging to the southern group for all age- and size-classes examined. There was a significantly greater probability of observing total PCB concentrations equal to or exceeding 2.00 mg/kg in fish that were 5, 6, and 7 or more years old, and this probability increased linearly with age. We observed similar results when we examined the effect of size on total PCB concentration. The minimum-size limit estimated to permit escapement of fish to sustain stock production is 610 mm total length. Unless total PCB concentrations decrease in striped bass, it is likely that many harvestable fish will have concentrations that exceed the tolerance limit set by the U.S. Food and Drug Administration.
Charge stripes and spin correlations in copper-oxide superconductors
Tranquada, J. M.
1997-01-01
Recent neutron diffraction studies have yielded evidence that, in a particular cuprate family, holes doped into the CuO(2) planes segregate into stripes that separate antiferromagnetic domains. Here it is shown that such a picture provides a quantitatively consistent interpretation of the spin fluctuations measured by neutron scattering in La(1.85)Sr(0.15)CuO(4) and YBa(2)Cu(3)O(6+x).
Disorder induced stripes in d-wave superconductors
Schmid, Markus; Loder, Florian; Kampf, Arno P.; Kopp, Thilo
2013-07-01
Stripe phases are observed experimentally in several copper-based high-Tc superconductors near 1/8 hole doping. However, the specific characteristics may vary depending on the degree of dopant disorder and the presence or absence of a low-temperature tetragonal phase. On the basis of a Hartree-Fock decoupling scheme for the t-J model, we discuss the diverse behavior of stripe phases. In particular, the effect of inhomogeneities is investigated in two distinctly different parameter regimes which are characterized by the strength of the interaction. We observe that small concentrations of impurities or vortices pin the unidirectional density waves, and dopant disorder is capable of stabilizing a stripe phase in parameter regimes where homogeneous phases are typically favored in clean systems. The momentum-space results exhibit universal features for all coexisting density-wave solutions, nearly unchanged even in strongly disordered systems. These coexisting solutions feature generically a full energy gap and a particle-hole asymmetry in the density of states.
Survey of cardiac pathologies in captive striped skunks (Mephitis mephitis).
Benato, Livia; Wack, Allison; Cerveny, Shannon N S; Rosenthal, Steven L; Bronson, Ellen
2014-06-01
Cardiac disease is a common finding in small mammals but it is rarely reported in striped skunks (Mephitis mephitis). The aim of this survey was to evaluate the prevalence of cardiac disease in striped skunks and to characterize the types of cardiac disease that might be present. In April 2010, a questionnaire was sent to veterinarians in zoologic collections with membership in the International Species Inventory System. Surveys were distributed to 55 institutions in the United States, Canada, and Europe. Twenty collections with a total of 95 skunks replied to the questionnaire. Of these, five collections reported at least one skunk with cardiac conditions for a total of 11 cases. In these 11 animals, the following conditions were diagnosed: myocardial fibrosis (n = 4), myxomatous valve degeneration (n = 4), hypertrophic cardiomyopathy (n = 1), dilated cardiomyopathy (n = 1), and valvular endocarditis (n = 1). Based on these findings, cardiac diseases should be considered as part of the differential diagnosis in captive striped skunks presenting with weakness, lethargy, and decreased appetite. Cardiac ultrasound also should be considered at the time of annual health examinations to evaluate for possible cardiac conditions at an early stage.
Ultrafast charge localization in a stripe-phase nickelate
Energy Technology Data Exchange (ETDEWEB)
Coslovich, Giacomo; Huber, Bernhard; Lee, Wei-Sheng; Sasagawa, Takao; Hussain, Zahid; Bechtel, Hans A.; Martin, Michael C.; Shen, Zhi-Xun; W. Schoenlein, Robert; A. Kaindl, Robert
2013-08-30
Self-organized electronically-ordered phases are a recurring feature in correlated materials, resulting in e.g. fluctuating charge stripes whose role in high-Tc superconductivity is under debate. However, the relevant cause-effect relations between real-space charge correlations and low-energy excitations remain hidden in time-averaged studies. Here, we reveal ultrafast charge localization and lattice vibrational coupling as dynamical precursors of stripe formation in the model compound La1.75Sr0.25NiO4, using ultrafast and equilibrium mid-infrared spectroscopy. The opening of a pseudogap at a crossover temperature T* far above long-range stripe formation establishes the onset of electronic localization which is accompanied by an enhanced Fano asymmetry of Ni-O stretch vibrations. Ultrafast excitation triggers a sub-picosecond dynamics exposing the synchronous modulation of electron-phonon coupling and charge localization. These results illuminate the role of localization in forming the pseudogap in nickelates, opening a path to understanding this mysterious phase in a broad class of complex oxides.
NATURAL TRANSVERSE VIBRATIONS OF A PRESTRESSED ORTHOTROPIC PLATE-STRIPE
Directory of Open Access Journals (Sweden)
Egorychev Oleg Aleksandrovich
2012-10-01
Full Text Available The article represents a new outlook at the boundary-value problem of natural vibrations of a homogeneous pre-stressed orthotropic plate-stripe. In the paper, the motion equation represents a new approximate hyperbolic equation (rather than a parabolic equation used in the majority of papers covering the same problem describing the vibration of a homogeneous orthotropic plate-stripe. The proposed research is based on newly derived boundary conditions describing the pin-edge, rigid, and elastic (vertical types of fixing, as well as the boundary conditions applicable to the unfixed edge of the plate. The paper contemplates the application of the Laplace transformation and a non-standard representation of a homogeneous differential equation with fixed factors. The article proposes a detailed representation of the problem of natural vibrations of a homogeneous orthotropic plate-stripe if rigidly fixed at opposite sides; besides, the article also provides frequency equations (no conclusions describing the plate characterized by the following boundary conditions: rigid fixing at one side and pin-edge fixing at the opposite side; pin-edge fixing at one side and free (unfixed other side; rigid fixing at one side and elastic fixing at the other side. The results described in the article may be helpful if applied in the construction sector whenever flat structural elements are considered. Moreover, specialists in solid mechanics and theory of elasticity may benefit from the ideas proposed in the article.
Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem
2009-01-01
Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Supersymmetric Sigma Model Geometry
Directory of Open Access Journals (Sweden)
Ulf Lindström
2012-08-01
Full Text Available This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyperkähler reduction; projective superspace; the generalized Legendre construction; generalized Kähler geometry and constructions of hyperkähler metrics on Hermitian symmetric spaces.
Geometry of multihadron production
International Nuclear Information System (INIS)
Bjorken, J.D.
1994-10-01
This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions
1996-01-01
Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.
The STRIPES Trial - Support to Rural India's Public Education System
2010-01-01
Background Performance of primary school students in India lags far below government expectations, and major disparity exists between rural and urban areas. The Naandi Foundation has designed and implemented a programme using community members to deliver after-school academic support for children in over 1,100 schools in five Indian states. Assessments to date suggest that it might have a substantial effect. This trial aims to evaluate the impact of this programme in villages of rural Andhra Pradesh and will compare test scores for children in three arms: a control and two intervention arms. In both intervention arms additional after-school instruction and learning materials will be offered to all eligible children and in one arm girls will also receive an additional 'kit' with a uniform and clothes. Methods/Design The trial is a cluster-randomised controlled trial conducted in conjunction with the CHAMPION trial. In the CHAMPION trial 464 villages were randomised so that half receive health interventions aiming to reduce neonatal mortality. STRIPES will be introduced in those CHAMPION villages which have a public primary school attended by at least 15 students at the time of a baseline test in 2008. 214 villages of the 464 were found to fulfil above criteria, 107 belonging to the control and 107 to the intervention arm of the CHAMPION trial. These latter 107 villages will serve as control villages in the STRIPES trial. A further randomisation will be carried out within the 107 STRIPES intervention villages allocating half to receive an additional kit for girls on the top of the instruction and learning materials. The primary outcome of the trial is a composite maths and language test score. Discussion The study is designed to measure (i) whether the educational intervention affects the exam score of children compared to the control arm, (ii) if the exam scores of girls who receive the additional kit are different from those of girls living in the other STRIPES
Energy Technology Data Exchange (ETDEWEB)
Grotz, Andreas
2011-10-07
In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.
A Content Analysis Comparison between Stars and Stripes and Commercial National Newspapers
1990-01-01
McQuail , Mass Communication Theory , (London: Sage Publications, 1983) 126. 15 He notes that some of the concerns... Communication Theory . London: SAGE Publications, 1983. " S & S Ombudsman’E Plan Draws Fire," European Stars and Stripes, 4 February 1990. "Stars and Stripes May...STRIPES AND COMMERCIAL NATIONAL NEWSPAPERS A THESIS APPROVED FOR THE DEPARTMENT OF JOURNALISM AND MASS COMMUNICATION By Shirley Rafey Bruce Hinson
Geometry on the space of geometries
International Nuclear Information System (INIS)
Christodoulakis, T.; Zanelli, J.
1988-06-01
We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs
Relationship of Soil Properties and Sugarcane Yields to Red Stripe in Louisiana.
Johnson, Richard M; Grisham, Michael P; Warnke, Kathryn Z; Maggio, Jeri R
2016-07-01
Symptoms of red stripe disease caused by Acidovorax avenae subsp. avenae in Louisiana between 1985 and 2010 were limited to the leaf stripe form, which caused no apparent yield loss. During 2010, the more severe top rot form was observed, and a study was initiated to investigate the distribution of red stripe in the field and determine its effects on cane and sugar yields. Soil properties data, red stripe incidence, and sugarcane yields were all highly variable and were not randomly distributed in the field. Combined harvest data showed a negative correlation between yield components and red stripe incidence, with the strongest relationship between sucrose per metric ton and disease incidence. Red stripe incidence was positively correlated with several soil properties, including phosphorus, potassium, zinc, and calcium. Red stripe incidence also was found to increase with increasing nitrogen rate, with the greatest effects in heavy soils. Results also indicated that using red-stripe-infected cane as a seed source can significantly decrease shoot emergence, stalk population, and subsequent cane and sugar yields. These combined data suggest that red stripe disease can exhibit a highly variable rate of infection in commercial sugarcane fields and may also significantly decrease sugar yields.
Microsatellite markers linked to the locus of the watermelon fruit stripe pattern.
Gama, R N C S; Santos, C A F; Dias, R C S; Alves, J C S F; Nogueira, T O
2015-01-16
Agronomic performance and external and internal appearance of watermelon (Citrullus lanatus) fruit are important traits that should be taken into consideration during the development of a new cultivar, as well as being the principal identification elements used by the consumer, which are based on the external appearance and quality of the fruit. Externally, the fruit can be characterized in terms of the shape, the color of the lower rind, and the presence of grooves and stripes, the stripes can be classified as clearly defined or diffuse. The objective of this study was to identify microsatellite markers linked to the stripe pattern of watermelon fruit to support watermelon improvement programs, with the selection of this characteristic in the plantlet stage. F1 and F2 populations, result of a cross between the cultivars BRS Opara (clearly defined stripes) and Pérola (diffuse stripes), were phenotyped for their fruit stripe pattern. The CTAB 2X protocol was used for DNA extraction and 116 microsatellite markers were examined in a group of F2 plants that had fruit with well-defined stripes and fruit with diffuse stripes. The microsatellite loci MCPI_05 and MCPI_16 exhibited a linkage to the stripe pattern at a distance of 1.5 and 1.8 cM, respectively, with LOD scores of 39.28 and 38.11, respectively, which were located on chromosome six of the watermelon genome. These markers can be used in marker-assisted selection in watermelon improvement programs, by various research institutions.
Zhang, Zhi; Song, Liqiang; Han, Haiming; Zhou, Shenghui; Zhang, Jinpeng; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui
2017-11-13
Stripe rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat ( Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2 n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat- A . cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A . cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat- A . cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A . cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
Complex and symplectic geometry
Medori, Costantino; Tomassini, Adriano
2017-01-01
This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.
Busemann, Herbert
2005-01-01
A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.
Introduction to tropical geometry
Maclagan, Diane
2015-01-01
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...
Melzak, Z A
2008-01-01
Intended for students of many different backgrounds with only a modest knowledge of mathematics, this text features self-contained chapters that can be adapted to several types of geometry courses. 1983 edition.
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Kollár, János
1997-01-01
This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2002-01-01
The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...
Lectures on Symplectic Geometry
Silva, Ana Cannas
2001-01-01
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...
WE-EF-207-10: Striped Ratio Grids: A New Concept for Scatter Estimation
Energy Technology Data Exchange (ETDEWEB)
Hsieh, S [Stanford University, Stanford, CA (United States)
2015-06-15
Purpose: To propose a new method for estimating scatter in x-ray imaging. We propose the “striped ratio grid,” an anti-scatter grid with alternating stripes of high scatter rejection (attained, for example, by high grid ratio) and low scatter rejection. To minimize artifacts, stripes are oriented parallel to the direction of the ramp filter. Signal discontinuities at the boundaries between stripes provide information on local scatter content, although these discontinuities are contaminated by variation in primary radiation. Methods: We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid, and processed them together to mimic a striped ratio grid. Two phantoms were scanned with the emulated striped ratio grid and compared with a conventional anti-scatter grid and a fan-beam acquisition, which served as ground truth. A nonlinear image processing algorithm was developed to mitigate the problem of primary variation. Results: The emulated striped ratio grid reduced scatter more effectively than the conventional grid alone. Contrast is thereby improved in projection imaging. In CT imaging, cupping is markedly reduced. Artifacts introduced by the striped ratio grid appear to be minimal. Conclusion: Striped ratio grids could be a simple and effective evolution of conventional anti-scatter grids. Unlike several other approaches currently under investigation for scatter management, striped ratio grids require minimal computation, little new hardware (at least for systems which already use removable grids) and impose few assumptions on the nature of the object being scanned.
Bi-sensory, striped representations: comparative insights from owl and platypus.
Pettigrew, John D
2004-01-01
Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (S1), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus S1 cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This "thunder-and-lightning" system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance.
López-Portillo, Jorge; Montaña, Carlos
1999-05-01
Mosaics consisting of vegetation stripes surrounded by bare areas have been described in several arid and semiarid ecosystems. The dynamics of the system depends on the redistribution of rainwater which is preferentially stored and evapotranspired in the vegetated stripes. A process of plant `colonization' in the upslope fringe of the stripes has been described in some cases and a consequent upslope migration of the stripes has been inferred, but not confirmed in all cases quoted in the literature. In this paper, we studied the spatial distribution of mesquite ( Prosopis glandulosa var. torreyana) and the soil parameters in three vegetation stripes and their associated bare areas in the southern Chihuahuan Desert. The spatial distribution of mesquites of different sizes do not coincide with that expected under the hypothesis of an uniform upslope stripe migration, but soil data suggest that current bare areas had been vegetated some time ago. Dispersion and establishment abilities enhanced by overgrazing may explain the observed mesquite distribution, but the presence of trees with high basal diameters in any part of the stripes suggests stripe permanence at the same site and no upslope migration. These results point to the conflicting evidence on stripe migration that has been already found in other areas. The most probable scenario in our study area is that of a general long-term change of form of the stripes taking place at very variable speeds in different stripes, including the possibility that some of them remain stationary for prolonged periods, and showing different histories of colonization according to the life-history of the different species concerned. The speed and regularity of the process would show a very high temporal and spatial variability due to the interaction of climatic, geomorphologic and biotic interactions.
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Intermediate algebra & analytic geometry
Gondin, William R
1967-01-01
Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system
Assessing Fishers' Support of Striped Bass Management Strategies.
Murphy, Robert D; Scyphers, Steven B; Grabowski, Jonathan H
2015-01-01
Incorporating the perspectives and insights of stakeholders is an essential component of ecosystem-based fisheries management, such that policy strategies should account for the diverse interests of various groups of anglers to enhance their efficacy. Here we assessed fishing stakeholders' perceptions on the management of Atlantic striped bass (Morone saxatilis) and receptiveness to potential future regulations using an online survey of recreational and commercial fishers in Massachusetts and Connecticut (USA). Our results indicate that most fishers harbored adequate to positive perceptions of current striped bass management policies when asked to grade their state's management regime. Yet, subtle differences in perceptions existed between recreational and commercial fishers, as well as across individuals with differing levels of fishing experience, resource dependency, and tournament participation. Recreational fishers in both states were generally supportive or neutral towards potential management actions including slot limits (71%) and mandated circle hooks to reduce mortality of released fish (74%), but less supportive of reduced recreational bag limits (51%). Although commercial anglers were typically less supportive of management changes than their recreational counterparts, the majority were still supportive of slot limits (54%) and mandated use of circle hooks (56%). Our study suggests that both recreational and commercial fishers are generally supportive of additional management strategies aimed at sustaining healthy striped bass populations and agree on a variety of strategies. However, both stakeholder groups were less supportive of harvest reductions, which is the most direct measure of reducing mortality available to fisheries managers. By revealing factors that influence stakeholders' support or willingness to comply with management strategies, studies such as ours can help managers identify potential stakeholder support for or conflicts that may
Osborne, I.; Brownson, E.; Eulisse, G.; Jones, C. D.; Lange, D. J.; Sexton-Kennedy, E.
2014-06-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Introduction to combinatorial geometry
International Nuclear Information System (INIS)
Gabriel, T.A.; Emmett, M.B.
1985-01-01
The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity
International Nuclear Information System (INIS)
Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J
2014-01-01
CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.
Unfolding of Vortices into Topological Stripes in a Multiferroic Material
Wang, X.; Mostovoy, M.; Han, M. G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.-W.
2014-06-01
Multiferroic hexagonal RMnO3 (R =rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.
MEDIASTINAL LYMPHOMA AND CHYLOTHORAX IN A STRIPED SKUNK (MEPHITIS MEPHITIS).
Liptovszky, Mátyás; Kerekes, Zoltán; Perge, Edina; Vajdovich, Péter; Papp, Endre Ákos; Molnár, Viktor
2017-06-01
Tumors are infrequently reported in skunks, with only a few case reports published in the literature. Chylothorax associated with mediastinal lymphoma was diagnosed in a captive 7-yr-old male striped skunk ( Mephitis mephitis ). The animal presented with anorexia and apathy. Supportive care and prednisolone improved the animal's clinical status for 2 wk preceding its death. Histopathology supported the clinical findings, and the tumor was classified as a mediastinal non-Hodgkin lymphoma, stage 2b, which has not been documented in the literature.
Response to "Critical Assessment of the Evidence for Striped Nanoparticles".
Directory of Open Access Journals (Sweden)
Quy Khac Ong
Full Text Available Stirling et al., (10.1371/journal.pone.0108482 presented an analysis on some of our publications on the formation of stripe-like domains on mixed-ligand coated gold nanoparticles. The authors shed doubts on some of our results however no valid argument is provided against what we have shown since our first publication: scanning tunneling microscopy (STM images of striped nanoparticles show stripe-like domains that are independent of imaging parameters and in particular of imaging speed. We have consistently ruled out the presence of artifacts by comparing sets of images acquired at different tip speeds, finding invariance of the stipe-like domains. Stirling and co-workers incorrectly analyzed this key control, using a different microscope and imaging conditions that do not compare to ours. We show here data proving that our approach is rigorous. Furthermore, we never solely relied on image analysis to draw our conclusions; we have always used the chemical nature of the particles to assess the veracity of our images. Stirling et al. do not provide any justification for the spacing of the features that we find on nanoparticles: ~1 nm for mixed ligand particles and ~ 0.5 nm for homoligand particles. Hence our two central arguments remain unmodified: independence from imaging parameters and dependence on ligand shell chemical composition. The paper report observations on our STM images; none is a sufficient condition to prove that our images are artifacts. We thoroughly addressed issues related to STM artifacts throughout our microscopy work. Stirling et al. provide guidelines for what they consider good STM images of nanoparticles, such images are indeed present in our literature. They conclude that the evidences we provided to date are insufficient, this is a departure from one of the authors' previous article which concluded that our images were composed of artifacts. Given that four independent laboratories have reproduced our measurements and
Behavior and Body Patterns of the Larger Pacific Striped Octopus.
Directory of Open Access Journals (Sweden)
Roy L Caldwell
Full Text Available Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.
Behavior and Body Patterns of the Larger Pacific Striped Octopus.
Caldwell, Roy L; Ross, Richard; Rodaniche, Arcadio; Huffard, Christine L
2015-01-01
Over thirty years ago anecdotal accounts of the undescribed Larger Pacific Striped Octopus suggested behaviors previously unknown for octopuses. Beak-to-beak mating, dens shared by mating pairs, inking during mating and extended spawning were mentioned in publications, and enticed generations of cephalopod biologists. In 2012-2014 we were able to obtain several live specimens of this species, which remains without a formal description. All of the unique behaviors listed above were observed for animals in aquaria and are discussed here. We describe the behavior, body color patterns, and postures of 24 adults maintained in captivity. Chromatophore patterns of hatchlings are also shown.
Symptoms of red stripe disease caused by Acidovorax avenae subsp. avenae in Louisiana between 1985 and 2010 were limited to the leaf stripe form which caused no apparent yield loss. During 2010, the more severe top rot form was observed, and a study was initiated to investigate the distribution of r...
Osmoregulatory effects of hypophysectomy and homologous prolactin replacement in hybrid striped bass
DEFF Research Database (Denmark)
Jackson, Leslie F; McCormick, Stephen D; Madsen, Steffen S
2005-01-01
The effects of ovine prolactin (oPRL) and striped bass prolactin (sbPRL; Morone saxatilis) on plasma osmolality, electrolyte balance, and gill Na+,K+-ATPase activity were investigated in hypophysectomized (Hx), freshwater (FW)-acclimated, hybrid striped bass (M. saxatilis x Morone chrysops...
Color Fringes Bordering Black Stripes at the Bottom of a Swimming Pool
Fuster, Gonzalo; Rojas, Roberto; Slüsarenko, Viktor
2016-01-01
We have observed a nice example of chromatic dispersion due to refraction in water, in the form of color fringes bordering the black stripes that exist at the bottom of a swimming pool. Here we give a qualitative description of the phenomenon, explaining the role of the black stripes and the dispersive index of refraction of water.
Genetics of leaf and stripe rust resistance in a bread wheat cultivar ...
Indian Academy of Sciences (India)
MYT), Mexico, has shown resistance to leaf rust and stripe rust in the Indian ... rust resistance against. -isogenic line genes present Leaf rust. Stripe rust. Origin. Source. Parentage. Tonichi. –. TR. 10.0. Mexico. RAMC CAR422/Anahuac75. CSP44. Lr48 .... separately have been reported earlier by several authors. Table 2.
Genetics of adult plant stripe rust resistance in CSP44, a selection ...
Indian Academy of Sciences (India)
This suggests the presence of nonhypersensitive adult plant stripe rust resistance in the line CSP44. The evaluation of F1, F2 and F3 generations and F6 SSD families from the cross of CSP44 with susceptible wheat cultivar WL711 for stripe rust severity indicated that the resistance in CSP44 is based on two genes showing ...
Genetics of adult plant stripe rust resistance in CSP44, a selection ...
Indian Academy of Sciences (India)
Unknown
Wheat line CSP44, a selection from an Australian bread wheat cultivar Condor, has shown resistance to stripe rust in. India since the last twenty years. Seedlings and adult plants of CSP44 showed susceptible infection types against stripe rust race 46S119 but displayed average terminal disease severity of 2.67 on adult ...
Yuan, J; Wang, B; Huang, Z; Fan, Y; Huang, C; Hou, Z
2013-01-01
1. The egg quality of striped and normal duck eggs was compared to determine why striped eggs show decreased hatchability. A total of 430 eggs, obtained from a Pekin duck breeder flock aged 50-65 wks, were used in three experiments. The eggs were weighed and assigned randomly to measure egg quality traits, egg weight (EW) loss and hatchability during incubation. 2. There were no significant differences between egg types in terms of egg shape index, eggshell strength and thickness, albumen height, Haugh unit, yolk colour, weight of the eggshell with or without membranes, calcium, phosphorus, copper and manganese contents in the eggshell (with the inner and outer membranes or without the inner membrane), albumen weight, dry matter of albumen, crude protein (CP) of thick albumen and pH of the thick albumen. 3. The weight of eggshells with membranes, weight of thick albumen and CP of thin albumen in striped eggs were lower than those in normal eggs. 4. The thin albumen in striped eggs was heavier than that in normal eggs. The pH of the thin albumin in striped egg was significantly higher than that in normal eggs. 5. There were no significant differences in EW loss during incubation or duckling weight between striped and normal eggs. However, the hatchability of striped eggs was lower. 6. The lower weight of the eggshell inner membrane and thick albumen, lower CP content and higher pH in the thin albumen of striped eggs might contribute to lower hatchability.
Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035
Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this resear...
Mice as stowaways? Colonization history of Danish striped field mice.
Andersen, Liselotte Wesley; Jacobsen, Magnus; Vedel-Smith, Christina; Jensen, Thomas Secher
2017-07-01
Species from the steppe region of Eastern Europe likely colonized northwestern Europe in connection with agriculture after 6500 BP. The striped field mouse ( Apodemus agrarius Pallas, 1783), is a steppe-derived species often found in human crops. It is common on the southern Danish islands of Lolland and Falster, which have been isolated from mainland Europe since approximately 10 300-8000 BP. Thus, this species could have been brought in with humans in connection with agriculture, or it could be an earlier natural invader. We sequenced 86 full mitochondrial genomes from the northwestern range of the striped field mouse, analysed phylogenetic relationships and estimated divergence time. The results supported human-induced colonization of Denmark in the Subatlantic or Subboreal period. A newly discovered population from Central Jutland in Denmark diverged from Falster approximately 100-670 years ago, again favouring human introduction. One individual from Sweden turned out to be a recent introduction from Central Jutland. © 2017 The Author(s).
Systemic sarcocystosis in a striped skunk (Mephitis mephitis).
Burcham, G N; Ramos-Vara, J A; Vemulapalli, R
2010-05-01
A striped skunk with neurological signs was euthanized and examined via necropsy. Histologically, protozoa were found in multiple tissues. Protozoal schizonts measured 15 to 25 mum in diameter and contained 4 to 6 mum crescent-shaped merozoites. Protozoa were associated with necrosis and inflammation in the lung, brain, liver, and nasal epithelium. Immunohistochemistry labeled protozoa strongly positive for Sarcocystis neurona. Polymerase chain reaction-amplified products from the protozoan were 99.6% identical to the corresponding portion of the nuclear small subunit ribosomal RNA gene of S neurona. S neurona origin was further confirmed by amplifying a 451-base pair DNA fragment from the skunk lung, which differed by just 2 or 3 base pairs from the small subunit ribosomal RNA gene of S neurona. Striped skunks act as intermediate and aberrant hosts for S neurona; however, S neurona has rarely been found in extraneural tissues in any species, and systemic sarcocystosis has not been reported in skunks. Additionally, canine distemper virus infection was confirmed with histopathology and immunohistochemistry. Concurrent canine distemper suggests that immunosuppression may have played a role in S neurona infection in this skunk.
Khan, Mohammed Zahed Mustafa
2013-03-04
We report on the atypical emission dynamics of InAs/AlGaInAs/InP quantum dash (Qdash) lasers employing varying AlGaInAs barrier thickness (multilayer-chirped structure). The analysis is carried out via fabry-perot (FP) ridge (RW) and stripe waveguide (SW) laser characterization corresponding to the index and gain guided waveguiding mechanisms, respectively, and at different current pulse width operations. The laser emissions are found to emerge from the size dispersion of the Qdash ensembles across the four Qdash-barrier stacks, and governed by their overlapping quasi-zero dimensional density of states (DOS). The spectral characteristics demonstrated prominent dependence on the waveguiding mechanism at quasi-continuous wave (QCW) operation (long pulse width). The RW geometry showed unusual spectral split in the emission spectra on increasing current injection while the SW geometry showed typical broadening of lasing spectra. These effects were attributed to the highly inhomogeneous active region, the nonequilibrium carrier distribution and the energy exchange between Qdash groups across the Qdash-barrier stacks. Furthermore, QCW operation showed a progressive red shift of emission spectra with injection current, resulted from active region heating and carrier depopulation, which was observed to be minimal in the short pulse width (SPW) operation. Our investigation sheds light on the device physics of chirped Qdash laser structure and provides guidelines for further optimization in obtaining broad-gain laser diodes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sources of hyperbolic geometry
Stillwell, John
1996-01-01
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...
Students Discovering Spherical Geometry Using Dynamic Geometry Software
Guven, Bulent; Karatas, Ilhan
2009-01-01
Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…
2002-01-01
Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...
Ochiai, T.; Nacher, J. C.
2011-09-01
Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.
Zheng, Fangyang
2002-01-01
The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...
Cecil, Thomas E
2015-01-01
This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hy...
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Implosions and hypertoric geometry
DEFF Research Database (Denmark)
Dancer, A.; Kirwan, F.; Swann, A.
2013-01-01
The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....
Boyer, Carl B
2012-01-01
Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.
Hartshorne, Robin
2000-01-01
In recent years, I have been teaching a junior-senior-level course on the classi cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa rately. The remainder of the book is an exploration of questions that arise natu rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...
Wares, Arsalan; Elstak, Iwan
2017-01-01
The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2008-01-01
, whether the shape of the material should be coupled to the appearance model or not, etc. A generalised concept of shape and geometry is presented to provide a framework for handling these many degrees of freedom. Constraints between input and output parameters are modelled as multidimensional shapes...
Diophantine geometry an introduction
Hindry, Marc
2000-01-01
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.
Metrics for Probabilistic Geometries
DEFF Research Database (Denmark)
Tosi, Alessandra; Hauberg, Søren; Vellido, Alfredo
2014-01-01
We investigate the geometrical structure of probabilistic generative dimensionality reduction models using the tools of Riemannian geometry. We explicitly define a distribution over the natural metric given by the models. We provide the necessary algorithms to compute expected metric tensors where...
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Coxeter, HSM
1965-01-01
This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.
Hsü, K J; Hsü, A J
1990-01-01
Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot.
Cooper, Brett D.; Barger, Rita
2009-01-01
The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…
Atiyah, M.; Dijkgraaf, R.; Hitchin, N.
2010-01-01
We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology.
Martin, John
2010-01-01
The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.
Sliding vane geometry turbines
Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R
2014-12-30
Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...
Intervertebral disk disease in 3 striped skunks (Mephitis mephitis).
Krauss, Maximiljan W; Benato, Livia; Wack, Allison; McDonnell, John J; Schoemaker, Nico J; Westerhof, Ineke; Bronson, Ellen; Gielen, Ingrid; Van Caelenberg, Annemie; Hellebuyck, Tom; Meij, Björn P; De Decker, Steven
2014-07-01
To describe diagnostic findings, surgical technique, and outcome in 3 striped skunks (Mephitis mephitis) with a history of paraparesis. Case series. Skunks (n = 3) with paraparesis. Neurologic examination revealed upper motor neuron disease (T2-L2) in 2 skunks and lower motor neuron disease (L3-S3) in 1 skunk. Diagnostic imaging included radiography, myelography, CT, and MRI and confirmed intervertebral disk herniation (IVDH) in each skunk. Because initial treatment with pain medication and cage rest did not result in lasting improvement, spinal surgery was performed. Hemilaminectomy (2 skunks) and dorsal laminectomy (1 skunk) was performed with removal of extruded disk material. The skunks improved after surgery but all had minor residual neurologic deficits when examined at various times postoperatively. Thoracolumbar intervertebral disk herniation occurs in skunks, and must be included in the differential diagnosis of paraparesis. © Copyright 2014 by The American College of Veterinary Surgeons.
Explanation of the nature of stripe magnetic anomalies without inversions
Melikhov, Vjacheslav; Lygin, Ivan; Sokolova, Tatiana
2014-05-01
Several scientists of different branches express doubts on the validity of the Earth's geomagnetic field inversions hypothesis [Vine F.J., Matthews D.H, 1963]. Presently a lot of information allows to link the appearance of stripe magnetic anomalies of both signs with the spreading fracture structure (horizontal segmentation of intrusions and sills, breaks in the strong crust, vertical movements of blocks), remagnetization near the borders of the blocks, hydrothermal activity. Non-inversion mechanism of origin of linear stripe magnetic anomalies in the oceans could be explained as follows. Ascending asthenospheric flows have been enrich with volatile components, become thinner, pressure on the walls of the lithospheric plates grows and part them. When it approaches the surface: - horizontal tensile pressure grows, - lithostatic pressure in the vertical column of rocks decreases, - crust strong upper layer flakes away and begins to move horizontally. It is important that thin magmatic and magnetic layers (further layers) of the newly formed strong upper crust move away from the ridge axis. The structure of such layers forms by horizontal stresses and so consist of the hills and depressions sequences or updiped and downdiped blocks heaped each other. This layer is the main source of the magnetic field and cannot be approximated by a horizontal homogeneous plate as it proved before. In the mid-ocean ridges (MOR) the folding periods of layer depend on its thickness and rigidity and horizontal velocity of spreading. The higher velocity - the longer periods of roughness are and contrary. Same pattern is observed for the stripe magnetic anomalies distribution. The magnetic field of the MOR forms there due to young lava flows which get thermoremanent magnetization according the current direction of geomagnetic field. Partial destruction of the relief, overlaying and creation of the new shapes occur when new magma penetrates the moved magnetic layer. The process entails
Zhang, Xiaoen; Chen, Yong
2017-11-01
In this paper, a combination of stripe soliton and lump soliton is discussed to a reduced (3+1)-dimensional Jimbo-Miwa equation, in which such solution gives rise to two different excitation phenomena: fusion and fission. Particularly, a new combination of positive quadratic functions and hyperbolic functions is considered, and then a novel nonlinear phenomenon is explored. Via this method, a pair of resonance kink stripe solitons and rogue wave is studied. Rogue wave is triggered by the interaction between lump soliton and a pair of resonance kink stripe solitons. It is exciting that rogue wave must be attached to the stripe solitons from its appearing to disappearing. The whole progress is completely symmetry, the rogue wave starts itself from one stripe soliton and lose itself in another stripe soliton. The dynamic properties of the interaction between one stripe soliton and lump soliton, rogue wave are discussed by choosing appropriate parameters.
Static and dynamic magnetic properties of stripe-patterned Fe20Ni80 soft magnetic films
Zhu, Zengtai; Feng, Hongmei; Cheng, Xiaohong; Xie, Hongkang; Liu, Qingfang; Wang, Jianbo
2018-01-01
Stripe-patterned soft magnetic Fe20Ni80 films were fabricated on silicon substrate via radio frequency magnetron sputtering technology. The static and dynamic magnetic properties of samples were measured by a vibrating sample magnetometer and vector network analyzer. The vector network analyzer ferromagnetic resonance technique was used to analyze the experimental results, which showed that damping and in-plane uniaxial anisotropy can be tuned significantly for the samples with various stripe widths from 5 to 20 µm. A stripe-shaped anisotropy model was used to analyze the experimental results, which were in accord with the theoretical predictions. Moreover, the variation of damping was investigated in detail.
Striped Bass Spawning in Non-Estuarine Portions of the Savannah River
Energy Technology Data Exchange (ETDEWEB)
Martin, D.; Paller, M.
2007-04-17
Historically, the estuarine portions of the Savannah River have been considered to be the only portion of the river in which significant amounts of striped bass (Morone saxatilis) spawning normally occur. A reexamination of data from 1983 through 1985 shows a region between River Kilometers 144 and 253 where significant numbers of striped bass eggs and larvae occur with estimated total egg production near that currently produced in the estuarine reaches. It appears possible that there are two separate spawning populations of striped bass in the Savannah River.
Directory of Open Access Journals (Sweden)
F. Valdés-Bango
2017-05-01
Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.
Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.
2017-05-01
Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.
Transformational plane geometry
Umble, Ronald N
2014-01-01
Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...
Multivariate calculus and geometry
Dineen, Seán
2014-01-01
Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.
Algebra, Arithmetic, and Geometry
Tschinkel, Yuri
2009-01-01
The two volumes of "Algebra, Arithmetic, and Geometry: In Honor of Y.I. Manin" are composed of invited expository articles and extensions detailing Manin's contributions to the subjects, and are in celebration of his 70th birthday. The well-respected and distinguished contributors include: Behrend, Berkovich, Bost, Bressler, Calaque, Carlson, Chambert-Loir, Colombo, Connes, Consani, Dabrowski, Deninger, Dolgachev, Donaldson, Ekedahl, Elsenhans, Enriques, Etingof, Fock, Friedlander, Geemen, Getzler, Goncharov, Harris, Iskovskikh, Jahnel, Kaledin, Kapranov, Katz, Kaufmann, Kollar, Kont
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....
DEFF Research Database (Denmark)
Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob
2009-01-01
The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust parame...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....
Introducing geometry concept based on history of Islamic geometry
Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.
2018-01-01
Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.
Directory of Open Access Journals (Sweden)
Kalanghad Puthankalam SRINIVAS
2014-05-01
Full Text Available Maize stripe virus (MSpV, one of the distinct species of the genus Tenuivirus, has been associated with stripe disease of sorghum in India. In this study, we report the complete sequence analysis of ambisense RNA3 of four MSpV isolates associated with this disease, to confirm its correct identity. The RNA3 of four MSpV-Sorg isolates is 2357 nucleotides in length with two ORFs, one in virion sense (594 nucleotides, non-structural protein 3, NS3 and the other in complementary sense (951 nucleotides, coat protein, CP. The intergenic region between these two ORFs is 653 nucleotides in length, which is rich in U and A residues. The deduced molecular weights of NS3 and CP are ≈22 and ≈34 kDa, respectively. RNA3 has ≈82% sequence identity at nucleotide level with RNA3 of MSpV infecting maize in Florida, USA and Reunion. NS3 and CP ORFs shared ≈94% and ≈95% identities at amino acid levels, respectively with MSpV isolates of maize from Florida and Reunion. The internal non-coding region between two ORFs has 67–68% identity at nucleotide level with the reported MSpV isolates from Florida and Reunion. The sequence identity was more than ≈98% among the four isolates of MSpV-Sorg. Compared to maize-infecting MSpV isolates in USA and Reunion, the sorghum-infecting MSpV isolates in India had more amino acid substitutions in both NS3 and CP. This is the first report of complete sequence analysis of MSpV RNA3 from Asia.
Integral geometry and valuations
Solanes, Gil
2014-01-01
Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...
Integral geometry and holography
Energy Technology Data Exchange (ETDEWEB)
Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,Stanford, CA 94305 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory,Menlo Park, CA 94025 (United States)
2015-10-27
We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS{sub 3}/CFT{sub 2} correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts — points, distances and angles — are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS{sub 3} whose kinematic space is two-dimensional de Sitter space.
Albers, Peter
1990-08-01
Since the invention of diode lasers in the early 1960's there had been continuous investigations in laser diode pumped solid state lasers as has been reviewed in detail by a number of papers ( see e.g. [1] ). There are two main advantages of using diode lasers instead of flashlaraps as a pump source for solid state lasers: First the emission of the diode lasers matches well with the absorption bands of several Rare Earth ions that are doped in laser crystals ( mainly Nd3+, but also Er3, Tm3, Dy3', and others ) . This summary will report only about diode lasers at a wavelength of around BlOnm, which fits to an absorptionband of Nd3t Second diode lasers provide the possibility of longitudinally pumped configurations and therefore an excellent mode matching with the solid state laser mode. For both reasons the efficiency of a diode laser puniped solid state laser is nuch higher than of a flashlamp pumped one. Since the early 1980's a much wider interest in diode laser pumped solid state lasers arose. It was stimulated by the improved performance of the new generation of diode lasers in terms of reliability , operational lifetime and output power [21. Two important steps in direction to the diode lasers at present time were the developments of double hetero (DH) structure- and graded index separate confinement hetero (GrInSCH) structurediode lasers. In the same way the development of new production techniques were necessary to ensure the reliability of the diode lasers. Starting with the liquid phase epitaxy (LPE) the (GaAl)As structures are now grown by the molecular beam epitaxy (MBE), mainly used for very high precision laboratory investigations, and metal organic chemical vapour deposition (MOCVD), mainly used for commercial production. As a first commercial product SDL introduced a 100mW array in 1984. Since then the output power of the commercially available diode lasers increased by two orders of magnitude to lOW. These diode lasers are multi stripe bar arrays
Nguyen, Nhut
2016-01-01
The aim of this thesis was to document improvements in sustainability indicators of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) production through the application of recirculation and waste treatment techniques. To be able to document improvements in sustainability, in each system
Nonlocal Electron-Phonon Interaction as a Source of Dynamic Charge Stripes in the Cuprates
Directory of Open Access Journals (Sweden)
Claus Falter
2012-01-01
small pockets with reduced doping. We argue that the incompressibility of the orbital and simultaneously the compressibility of the orbital in the pseudogap state seem to be required to nucleate dynamic stripes.
Striped Marlin Hardparts and Gonads Collected by the PIRO Hawaii Longline Observer Program
National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of all samples collected from striped marlin (Tetrapturus audax) collected and brought to the Aiea Heights Research Facility by the PIRO Hawaii Longline...
Guguchia, Z.; Roessli, B.; Khasanov, R.; Amato, A.; Pomjakushina, E.; Conder, K.; Uemura, Y. J.; Tranquada, J. M.; Keller, H.; Shengelaya, A.
2017-08-01
We report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x ≈1 /8 , the spin-stripe ordering temperature Tso decreases linearly with Zn doping y and disappears at y ≈4 %, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent on intertwining with superconducting correlations.
Evaluation of the effectiveness of centerline rumble stripes on rural roads.
2015-03-01
This report documents the site characteristics, constructability, summary of audibility testing, and maintenance response of centerline rumble : stripes at two locations: US Route 4 in Mendon-Killington and VT Route 105 in Sheldon. : The primary obje...
Histopathologic correlates of radial stripes on MR images in lysosomal storage disorders.
Voorn, J.P. van der; Pouwels, P.J.; Kamphorst, W.; Powers, J.M.; Lammens, M.M.Y.; Barkhof, F.; Knaap, M.S. van der
2005-01-01
BACKGROUND AND PURPOSE: Radially oriented hypointense stripes in hyperintense cerebral white matter are recognized on T2-weighted images of certain lysosomal storage disorders. We compared in vivo and postmortem MR imaging with histopathologic findings in three patients with metachromatic
Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V
DEFF Research Database (Denmark)
Eriksen, L.; Afshari, F.; Christiansen, M.J.
2004-01-01
Stripe or yellow rust of wheat, caused by Puccinia striiformis f. sp. tritici, is an important disease in many wheat-growing regions of the world. A number of major genes providing resistance to stripe rust have been used in breeding, including one gene that is present in the differential tester...... Carstens V. The objective of this study was to locate and map a stripe rust resistance gene transferred from Carstens V to Avocet S and to use molecular tools to locate a number of genes segregating in the cross Savannah/Senat. One of the genes present in Senat was predicted to be a gene that is present...... in Carstens V. For this latter purpose, stripe rust response data from both seedling and field tests on a doubled haploid population consisting of 77 lines were compared to an available molecular map for the same lines using a non-parametric quantitative trait loci (QTL) analysis. Results obtained in Denmark...
Introductory non-Euclidean geometry
Manning, Henry Parker
1963-01-01
This fine and versatile introduction begins with the theorems common to Euclidean and non-Euclidean geometry, and then it addresses the specific differences that constitute elliptic and hyperbolic geometry. 1901 edition.
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1996-01-01
We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....
Directory of Open Access Journals (Sweden)
Iulia Craciun
2018-03-01
Full Text Available This study was aimed at mapping the organization of the projections from the inferior olive (IO to the ventral uvula in pigeons. The uvula is part of the vestibulocerebellum (VbC, which is involved in the processing of optic flow resulting from self-motion. As in other areas of the cerebellum, the uvula is organized into sagittal zones, which is apparent with respect to afferent inputs, the projection patterns of Purkinje cell (PC efferents, the response properties of PCs and the expression of molecular markers such as zebrin II (ZII. ZII is heterogeneously expressed such that there are sagittal stripes of PCs with high ZII expression (ZII+, alternating with sagittal stripes of PCs with little to no ZII expression (ZII−. We have previously demonstrated that a ZII+/− stripe pair in the uvula constitutes a functional unit, insofar as the complex spike activity (CSA of all PCs within a ZII+/− stripe pair respond to the same type of optic flow stimuli. In the present study we sought to map the climbing fiber (CF inputs from the IO to the ZII+ and ZII− stripes in the uvula. We injected fluorescent Cholera Toxin B (CTB of different colors (red and green into ZII+ and ZII− bands of functional stripe pair. Injections in the ZII+ and ZII− bands resulted in retrograde labeling of spatially separate, but adjacent regions in the IO. Thus, although a ZII+/− stripe pair represents a functional unit in the pigeon uvula, CF inputs to the ZII+ and ZII− stripes of a unit arise from separate regions of the IO.
Stripe patterns in a granular system induced by slow deformation of its container
Kitsunezaki, So; Kurumatani, Akemi
2001-01-01
We investigate the formation of stripe patterns that appear on the surface of a dry granular system as the container is deformed very slowly. In an experimental study using nearly mono-disperse glass beads, we found that many faults develop beneath t he surface. Our results show that the spacing of stripes is independent of the system size and does not depend significantly on the grain size.
Matter in toy dynamical geometries
International Nuclear Information System (INIS)
Konopka, Tomasz
2009-01-01
One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect matter can affect dynamical geometries. Using a simple model, it is shown that matter can effectively mold a geometry into an isotropic configuration. Implications for 'atomistic' models of quantum geometry are briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Hook, D W [Blackett Laboratory, Imperial College of Science Technology and Medicine, University of London, Prince Consort Road, London, SW7 2BW (United Kingdom)
2008-01-11
A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric
Teaching of Geometry in Bulgaria
Bankov, Kiril
2013-01-01
Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…
Graded geometry and Poisson reduction
Cattaneo, A S; Zambon, M
2009-01-01
The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics
Functional integration over geometries
International Nuclear Information System (INIS)
Mottola, E.
1995-01-01
The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted
Are stripes beneficial? Dazzle camouflage influences perceived speed and hit rates.
Directory of Open Access Journals (Sweden)
Bettina von Helversen
Full Text Available In the animal kingdom, camouflage refers to patterns that help potential prey avoid detection. Mostly camouflage is thought of as helping prey blend in with their background. In contrast, disruptive or dazzle patterns protect moving targets and have been suggested as an evolutionary force in shaping the dorsal patterns of animals. Dazzle patterns, such as stripes and zigzags, are thought to reduce the probability with which moving prey will be captured by impairing predators' perception of speed. We investigated how different patterns of stripes (longitudinal-i.e., parallel to movement direction-and vertical-i.e., perpendicular to movement direction affect the probability with which humans can hit moving objects and if differences in hitting probability are caused by a misperception of speed. A first experiment showed that longitudinally striped objects were hit more often than unicolored objects. However, vertically striped objects did not differ from unicolored objects. A second study examining the link between perceived speed and hitting probability showed that longitudinally and vertically striped objects were both perceived as moving faster and were hit more often than unicolored objects. In sum, our results provide evidence that striped patterns disrupt the perception of speed, which in turn influences how often objects are hit. However, the magnitude and the direction of the effects depend on additional factors such as speed and the task setup.
Gillespie, Ronald J; Robinson, Edward A
2005-05-01
Although the structure of almost any molecule can now be obtained by ab initio calculations chemists still look for simple answers to the question "What determines the geometry of a given molecule?" For this purpose they make use of various models such as the VSEPR model and qualitative quantum mechanical models such as those based on the valence bond theory. The present state of such models, and the support for them provided by recently developed methods for analyzing calculated electron densities, are reviewed and discussed in this tutorial review.
2015-01-01
This stimulating volume offers a broad collection of the principles of geometry and trigonometry and contains colorful diagrams to bring mathematical principles to life. Subjects are enriched by references to famous mathematicians and their ideas, and the stories are presented in a very comprehensible way. Readers investigate the relationships of points, lines, surfaces, and solids. They study construction methods for drawing figures, a wealth of facts about these figures, and above all, methods to prove the facts. They learn about triangle measure for circular motion, sine and cosine, tangent
Abhyankar, Shreeram Shankar
1964-01-01
This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from
Flegg, H Graham
2001-01-01
This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.
Kendig, Keith
2015-01-01
Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th
Gruber, Peter M
1987-01-01
This volume contains a fairly complete picture of the geometry of numbers, including relations to other branches of mathematics such as analytic number theory, diophantine approximation, coding and numerical analysis. It deals with convex or non-convex bodies and lattices in euclidean space, etc.This second edition was prepared jointly by P.M. Gruber and the author of the first edition. The authors have retained the existing text (with minor corrections) while adding to each chapter supplementary sections on the more recent developments. While this method may have drawbacks, it has the definit
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Geometry I includes methods of proof, points, lines, planes, angles, congruent angles and line segments, triangles, parallelism, quadrilaterals, geometric inequalities, and geometric
Dooner, David B
2012-01-01
Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat
Experimental Toxoplasma gondii infection in striped skunk (Mephitis mephitis).
Quirk, Travis; Dubey, J P
2008-06-01
Twenty-three striped skunks (Mephitis mephitis) without demonstrable antibodies in 1:25 serum dilution in the modified agglutination test (MAT) were fed sporulated Toxoplasma gondii oocysts (9 skunks) or tissue cysts (10 skunks), and 4 skunks (controls) were not fed T. gondii. Skunks were bled before feeding T. gondii, 10 and 23- 25 days postinoculation (PI). All 9 seronegative skunks fed oocysts died of acute toxoplasmosis between 7 and 19 days PI; T. gondii tachyzoites were found in histological sections of many tissues. One of the 10 skunks fed tissue cysts and 1 of the 4 controls also died of acute toxoplasmosis days 19 and 20 PI; these animals probably became infected by ingestion of unexcysted oocysts passed in feces of skunks fed oocysts that were housed in the same room that skunks fed tissue cysts were housed. The remaining 9 skunks fed tissue cysts and the 3 controls developed only a mild illness and were killed in good health on days 23-25 PI. Antibodies to T. gondii were not found in 1:25 serum dilution of any of the 19 of 23 skunks that were alive on day 10 PI; 12 of 13 skunks had antibodies (MAT 1:80 or higher) on the day they were killed. Antibodies were not found in 1 skunk. Results indicate that skunks can develop IgG antibodies to T. gondii within 3 wk PI, and primary toxoplasmosis can be fatal in skunks.
Evaluation of marked-recapture for estimating striped skunk abundance
Greenwood, R.J.; Sargeant, A.B.; Johnson, D.H.
1985-01-01
The mark-recapture method for estimating striped skunk (Mephitis mephitis) abundance was evaluated by systematically livetrapping a radio-equipped population on a 31.4-km2 study area in North Dakota during late April of 1977 and 1978. The study population was 10 females and 13 males in 1977 and 20 females and 8 males in 1978. Skunks were almost exclusively nocturnal. Males traveled greater nightly distances than females (3.3 vs. 2.6 km, P skunks spent on the study area. Little variation in capture probabilities was found among trap-nights. Skunks exhibited neither trap-proneness nor shyness. Capture rates in 1977 were higher for males than for females; the reverse occurred in 1978. Variation in individual capture rates was indicated among males in 1977 and among females in 1978. Ten estimators produced generally similar results, but all underestimated true population size. Underestimation was a function of the number of untrapped skunks, primarily those that spent limited time on the study area. The jackknife method produced the best estimates of skunk abundance.
Characterizing the Heat Flow from Between Enceladus' Tiger Stripes
Howett, C.; Spencer, J. R.; Verbiscer, A.
2017-12-01
Enceladus' heat flow provides a fundamental constraint on its tidal dissipation mechanisms, orbital evolution, and the physical processes that generate the plumes. Determining the total amount of emission is proving difficult, as different techniques produce differing constraints. For example, an initial estimate of this value, 5.8±1.3 GW, was made by Spencer et al. (2006) using Cassini Composite Infrared Spectrometer (CIRS) 600 to 1100 cm-1 observations, which was refined using 10 to 600 cm-1 CIRS observations to 15.8±3.1 GW by Howett et al. (2011). However, recent reanalysis of high-spatial resolution 10 to 1100 cm-1 CIRS observations of Enceladus' active south polar region conducted by Spencer and Howett gives a heat flow of 4.64±0.23 GW. Whilst all of these heat flow estimates are much larger than those expected in a steady state, 1.1 GW (Meyer and Wisdom, 2007), their obvious discrepancy is a puzzle. In this work we seek to help understand these discrepancies by determining how much endogenic heat flow is coming from the funiscular terrain between Enceladus active tiger stripes.
Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.
Directory of Open Access Journals (Sweden)
Diana P Garnica
Full Text Available Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.
Laser solenoid: an alternate use of lasers in fusion power
International Nuclear Information System (INIS)
Rose, P.H.
1977-01-01
A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches
DEFF Research Database (Denmark)
Vigliante, A.; Zimmermann, M. von; Schneider, J.R.
1997-01-01
In the past few years neutron-scattering experiments have shown very intriguing stripe correlations of spins and holes in hole-doped La2NiO4 and La2CuO4. As yet, no x-ray-diffraction experiment has confirmed the neutron results and the topic is still controversial. In this paper we report...... the observation of stripe correlations of holes by x-ray diffraction. The experiments were performed in Laue geometry at the hard-x-ray beamline BW5 at HASYLAB on a crystal of La1.775Sr0.225NiO4 which was previously studied by neutron diffraction. Temperature dependences of the intensities and wave vectors...... of the charge-density-modulation peaks were characterized and found to be in good agreement with the neutron-scattering results. Interestingly, weak, temperature-dependent scattering was also observed at positions consistent with nonresonant x-ray magnetic scattering from the spin correlations; however...
A novel weld seam detection method for space weld seam of narrow butt joint in laser welding
Shao, Wen Jun; Huang, Yu; Zhang, Yong
2018-02-01
Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.
Geometry through history Euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
Geometry through history euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
Bochnak, Jacek; Roy, Marie-Françoise
1998-01-01
This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.
A New Estimate of the Power Emitted by Enceladus' Tiger Stripes
Spencer, John R.; Howett, C. J.; Verbiscer, A. J.; Hurford, T. A.; Segura, M.; Spencer, D. C.
2013-10-01
The heat flow from the south pole of Enceladus is a fundamental constraint on its tidal dissipation mechanisms, orbital evolution, and the physical processes that generate the plumes. Cassini Composite Infrared Spectrometer (CIRS) observations of the integrated 17 - 1000 micron thermal emission from the south pole have produced an estimated heat flow of 15.8 +/- 3.1 GW (Howett et al. 2011). This is a surprisingly high value, about 10x higher than can be generated by steady-state tidal heating (Meyer and Wisdom 2007). The estimate includes all sources of south polar endogenic emission, but is model-dependent because the observation also includes passive re-radiation of absorbed sunlight, which must be modeled and subtracted from the observed radiation. An alternate approach is to use higher spatial resolution CIRS observations in which emission from the tiger stripes, which is certainly endogenic, is spatially separated from emission from the surrounding terrain, which consists of passive emission plus a possible endogenic component. Tiger stripe emission is thus a lower bound on total endogenic emission, and is itself important as a constraint on plume generation and transport. CIRS has several observations of 9 - 16 micron emission with sufficient resolution to resolve the tiger stripes, but only limited resolved observations at longer wavelengths where most heat is radiated. Combining the best resolved data at all wavelengths, with reasonable assumptions about the ratio of long to short wavelength emission, we obtain preliminary estimates of tiger stripe thermal emission of roughly 4.2 GW, to which must be added ~0.5 GW of plume latent heat (Ingersoll and Pankine 2009), for a total tiger stripe power of about 4.7 GW. We are investigating whether the discrepancy between the new tiger stripe heat flow estimate, and the earlier estimate for the entire south pole, results from a large heat flow component that is not from the tiger stripes, or possible inaccuracies in
Kang, Houyang; Wang, Yi; Fedak, George; Cao, Wenguang; Zhang, Haiqin; Fan, Xing; Sha, Lina; Xu, Lili; Zheng, Youliang; Zhou, Yonghong
2011-01-01
Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat- P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding. PMID:21760909
Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies.
Tijare, V V; Yang, F L; Kuttappan, V A; Alvarado, C Z; Coon, C N; Owens, C M
2016-09-01
The global poultry industry has been faced with emerging broiler breast meat quality issues including conditions known as white striping (WS, white striations parallel to muscle fibers) and woody breast (WB, hardness of raw fillet). Experiments were conducted to evaluate effects of WS and WB hardness on meat quality traits in broiler breast fillets. In Exp. 1, birds were processed at approximately 9 wk of age and deboned at 4 h postmortem (PM); in Exp. 2, birds were processed at approximately 6 and 9 wk of age and deboned at 2 h PM. Fillets were categorized as: normal for both white striping and woody breast (NORM); moderate for white striping and mild for woody breast (MILD); severe for white striping and mild for woody breast (WS); severe for woody breast and moderate for white striping (WB); or severe for both white striping and woody breast (BOTH). Sarcomere length, gravimetric fragmentation index, marination uptake, cook loss, and Meullenet-Owens razor shear energy (MORSE) values on non-marinated and marinated fillets were assessed. Sarcomeres tended to be longer (P = 0.07) with increasing severity of WS and WB in both experiments and gravimetric fragmentation index did not differ (P > 0.05) among categories. Marinade uptake decreased (P 0.05) in non-marinated fillets, the marinated BOTH fillets had greater MORSE values (P 0.05) among categories of marinated breasts. At 9 wk, WS and BOTH were higher (P white striping and woody breast, individually or in combination, negatively impact meat quality, especially water holding capacity attributes such as marinade uptake and cook loss. © 2016 Poultry Science Association Inc.
On organizing principles of discrete differential geometry. Geometry of spheres
International Nuclear Information System (INIS)
Bobenko, Alexander I; Suris, Yury B
2007-01-01
Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.
Higher geometry an introduction to advanced methods in analytic geometry
Woods, Frederick S
2005-01-01
For students of mathematics with a sound background in analytic geometry and some knowledge of determinants, this volume has long been among the best available expositions of advanced work on projective and algebraic geometry. Developed from Professor Woods' lectures at the Massachusetts Institute of Technology, it bridges the gap between intermediate studies in the field and highly specialized works.With exceptional thoroughness, it presents the most important general concepts and methods of advanced algebraic geometry (as distinguished from differential geometry). It offers a thorough study
International Nuclear Information System (INIS)
Reichardt, T.A.; Lucht, R.P.; Danehy, P.M.; Farrow, R.L.
1998-01-01
We examine theoretically the degenerate four-wave mixing (DFWM) signal intensities and line shapes obtained with the forward phase-matched geometry in which all beams propagate in the same direction and compare the results to those of the phase-conjugate geometry with counterpropagating pump beams. To examine the forward phase-matched geometry, we modify a theoretical approach used previously to calculate phase-conjugate DFWM signal intensities. This theoretical approach, which involves numerical integration of the time-dependent density-matrix equations, is validated for the forward phase-matched geometry by comparison of our calculated line shapes to both a perturbative solution and to experimental data. This methodology is then used to compare the signal intensities and line shapes obtained with the forward phase-matched geometry and the phase-conjugate geometry in the perturbative (low laser power) and saturated (high laser power) regimes. In the perturbative regime the forward phase-matched signal exhibits less sensitivity to the Doppler linewidth. At pump laser intensities approximately equal to the saturation intensity the signal for the forward phase-matched geometry is stronger than that for the phase-conjugate geometry for primarily Doppler-broadened resonances, assuming the same probe volume for both geometries. These advantages warrant further investigations employing the forward phase-matched configuration for DFWM measurements of gas-phase species. copyright 1998 Optical Society of America
Cells and Stripes: A novel quantitative photo-manipulation technique.
Mistrik, Martin; Vesela, Eva; Furst, Tomas; Hanzlikova, Hana; Frydrych, Ivo; Gursky, Jan; Majera, Dusana; Bartek, Jiri
2016-01-18
Laser micro-irradiation is a technology widely used in the DNA damage response, checkpoint signaling, chromatin remodeling and related research fields, to assess chromatin modifications and recruitment of diverse DNA damage sensors, mediators and repair proteins to sites of DNA lesions. While this approach has aided numerous discoveries related to cell biology, maintenance of genome integrity, aging and cancer, it has so far been limited by a tedious manual definition of laser-irradiated subcellular regions, with the ensuing restriction to only a small number of cells treated and analyzed in a single experiment. Here, we present an improved and versatile alternative to the micro-irradiation approach: Quantitative analysis of photo-manipulated samples using innovative settings of standard laser-scanning microscopes. Up to 200 cells are simultaneously exposed to a laser beam in a defined pattern of collinear rays. The induced striation pattern is then automatically evaluated by a simple algorithm, which provides a quantitative assessment of various laser-induced phenotypes in live or fixed cells. Overall, this new approach represents a more robust alternative to existing techniques, and provides a versatile tool for a wide range of applications in biomedicine.
Directory of Open Access Journals (Sweden)
Couteau C.
2015-05-01
Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.
Geodesics in supersymmetric microstate geometries
International Nuclear Information System (INIS)
Eperon, Felicity C
2017-01-01
It has been argued that supersymmetric microstate geometries are classically unstable. One argument for instability involves considering the motion of a massive particle near the ergosurface of such a spacetime. It is shown that the instability can be triggered by a particle that starts arbitrarily far from the ergosurface. Another argument for instability is related to the phenomenon of stable trapping of null geodesics in these geometries. Such trapping is studied in detail for the most symmetrical microstate geometries. It is found that there are several distinct types of trapped null geodesic, both prograde and retrograde. Several important differences between geodesics in microstate geometries and black hole geometries are noted. The Penrose process for energy extraction in these geometries is discussed. (paper)
An introduction to incidence geometry
De Bruyn, Bart
2016-01-01
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end...
WISE-Selected Red and Obscured Quasars in Stripe 82
Glikman, Eilat; Lacy, M.; Urrutia, T.; Urry, C. M.
2013-01-01
We identified a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey with the near-infrared Two Micron All Sky Survey (2MASS) catalog and color-selecting red sources. We interpret this population of objects as a tansitional phase in merger-driven quasar/galaxy co-evolution where these reddened quasars are shedding their dusty environment prior to becoming a “normal” blue quasar. When correcting for extinction, we find that red quasars make up ~15%-20% of the luminous quasar population. The radio requirement was intended to avoid contamination from stars, but restricts our sample to radio-detected objects. With the release of the Wide-Field Infrared Survey Explorer (WISE) we can now select all red quasars regardless of their radio propoerties, using infrared colors. We present a pilot survey for heavily obscured luminous quasars using infrared selection from WISE colors in the SDSS Stripe 82. We concentrated on objects with both bright WISE 22 micron fluxes and 2MASS magnitudes that lack spectra in SDSS to identify the brightest (mostly high luminosity) sources that complement the fainter objects in Spitzer-selected samples. Our relatively liberal color selection produced a candidate list of 12 sources. We obtained near-infrared spectra for all using SpeX on IRTF and have spectroscopically confirmed at least five obscured and reddened quasars. We explore the nature of the dusty quasar population and how it depends on redshift, luminosity and radio-loudness.
Self-designing parametric geometries
Sobester, Andras
2015-01-01
The thesis of this paper is that script-based geometry modelling offers the possibility of building `self-designing' intelligence into parametric airframe geometries. We show how sophisticated heuristics (such as optimizers and complex decision structures) can be readily integrated into the parametric geometry model itself using a script-driven modelling architecture. The result is an opportunity for optimization with the scope of conceptual design and the fidelity of preliminary design. Addi...
Quantum roots in geometry : II
International Nuclear Information System (INIS)
Wanas, M.I.
2006-01-01
The present work is a review of a series of papers, published in the last ten. years, comprising an attempt to find a suitable avenue from geometry to quantum. It shows clearly that, any non-symmetric geometry admits some built-in quantum features. These features disappear completely once the geometry becomes symmetric (torsion-less). It is shown that, torsion of space-time plays an important role in both geometry and physics. It interacts with the spin of the moving particle and with its charge. The first interaction, Spin-Torsion Interaction, has been used to overcome the discrepancy in the results of the COW-experiment. The second interaction, Charge-Torsion Interaction, is similar to the Aharonov-Bohm effect. As a byproduct, a new version of Absolute Parallelism (AP) geometry, the Parameterized Absolute Parallelism (PAP) geometry, has been established and developed. This version can be used to construct field theories that admit some quantum features. Riemannian geometry and conventional AP-geometry are special cases of PAP-geometry
Initiation to global Finslerian geometry
Akbar-Zadeh, Hassan
2006-01-01
After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, p
Planetary Image Geometry Library
Deen, Robert C.; Pariser, Oleg
2010-01-01
The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A
Zero-bias-field microwave dynamic magnetic properties in trapezoidal ferromagnetic stripe
International Nuclear Information System (INIS)
Bi, Mei; Wang, Xin; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Xie, Jianliang
2016-01-01
Dynamic magnetization response of the axially magnetized ferromagnetic stripe with trapezoidal cross section has been studied. The stripe with beveled edges exhibits multiple resonant peaks modes under an in-plane microwave excitation compared with the single resonant of vertical edge surfaces. The complexity of the observed response is attributed to the spatially nonuniform equilibrium spin distribution at the stripe edges. Micromagnetic simulations identify spin waves as spatially localized mode at the modified edges. This one is also described by effective pinning boundary conditions taking into account finite-size effects, which is related to the exchange interaction, surface anisotropy and dipole–dipole interaction. These results provide detailed insights into the nonlinear spin dynamics of microstructures influenced by the edge properties. - Highlights: • Series of FeCoNbBCu stripes with trapezoidal cross section have been fabricated. • The stripe with beveled edges exhibits multiple resonant peaks modes. • Micromagnetic simulations identify the spatially localized mode. • The effective pinning boundary conditions taking into account finite-size effects.
Traffano-Schiffo, Maria Victoria; Castro-Giraldez, Marta; Colom, Ricardo J.; Fito, Pedro J.
2017-01-01
Due to the high intensification of poultry production in recent years, white chicken breast striping is one of the most frequently seen myopathies. The aim of this research was to develop a spectrophotometry-based sensor to detect white striping physiopathy in chicken breast meat in whole chicken carcasses with skin. Experiments were carried out using normal and white striping breasts. In order to understand the mechanism involved in this physiopathy, the different tissues that conform each breast were analyzed. Permittivity in radiofrequency (40 Hz to 1 MHz) was measured using two different sensors; a sensor with two flat plates to analyze the whole breast with skin (NB or WSB), and a two needles with blunt-ended sensor to analyze the different surface tissues of the skinless breast. In the microwave range (500 MHz to 20 GHz), permittivity was measured as just was described for the two needles with blunt-ended sensor. Moreover, fatty acids composition was determined by calorimetry techniques from −40 °C to 50 °C at 5 °C/min after previously freeze-drying the samples, and pH, microstructure by Cryo-SEM and binocular loupe structure were also analyzed. The results showed that the white striping physiopathy consists of the partial breakdown of the pectoral muscle causing an increase in fatty acids, reducing the quality of the meat. It was possible to detect white striping physiopathy in chicken carcasses with skin using spectrophotometry of radiofrequency spectra. PMID:28471378
Bhatia, Rajendra
2013-01-01
This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR). During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.
Guijosa, A
1999-01-01
This thesis explores some aspects of the recently uncovered connection between gauge theories and gravity, known as the AdS/CFT, or bulk-boundary, correspondence. This is a remarkable statement of equivalence between string or M-theory on certain backgrounds and field theories living on the boundaries of the corresponding spacetimes. Under the duality between four-dimensional N = 4 SU(N) superYang-Mills (SYM) and Type IIB string theory on AdS5 × S5, a baryon is mapped onto N fundamental strings terminating on a wrapped D5-brane. We examine the structure and energetics of this system from the vantage point of the fivebrane worldvolume action, making use of the Born-Infeld string approach. We construct supersymmetric fivebrane embeddings which correspond to gauge theory configurations with n external quarks, 0 ≤ n ≤ N. The extension of these solutions to the full asymptotically flat geometry of N D3-branes provides a detailed description of the creation of strings as the fivebrane is...
Positive geometries and canonical forms
Arkani-Hamed, Nima; Bai, Yuntao; Lam, Thomas
2017-11-01
Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of "positive geometries" and their associated "canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via "triangulation" on the one hand, and "push-forward" maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest "simplex-like" geometries and the richer "polytope-like" ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex
Asymmetrically excited semiconductor injection laser
International Nuclear Information System (INIS)
Ladany, I.; Marinelli, D.P.; Kressel, H.; Cannuli, V.M.
1975-01-01
A diode laser is improved in order to produce an output in a single longitudinal mode. The laser has a rectangular body with two regions of differing conductivity type material. Extending from one surface of the rectangular body and into one of the regions of differing conductivity material is a third region. Although the third region is composed of the same general conductivity type material as the region into which it extends, it is more highly doped with conductivity modifiers (more conductive). This third region extends along one surface between the ends of the body and is spaced from the sides of the body. An electrical contact stripe is positioned on the one surface so that a portion of its width overlaps a portion of the width of the third region
Charged Stripes in the Two-Orbital Hubbard Model for Pnictides
Yao, Dao-Xin; Luo, Qinlong; Prestel, Thomas; Daghofer, Maria; Moreo, Adriana; Dagotto, Elbio
2011-03-01
The two-orbital Hubbard model for the pnictides is studied numerically in the real-space Hartree-Fock approximation. Upon electron doping, states with a nonuniform ditribution of charge are stabilized. The patterns observed correspond to charge stripes that run perpendicular to the direction of the spin stripes of the undoped magnetic ground state. These striped states are robust when the undoped state has a gap, although with a decreasing amplitude as the gap decreases. Results for hole doping and implications for recent experiments that reported electronic nematic states and spin incommensurability in the pnictides are also discussed. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (Q.L., A.M., E.D.), the SYSU and NSFC-11074310 (D.X.Y.), the DFG under the Emmy-Noether program (T.P., M.D.).
Lump Solutions and Resonance Stripe Solitons to the (2+1-Dimensional Sawada-Kotera Equation
Directory of Open Access Journals (Sweden)
Xian Li
2017-01-01
Full Text Available Based on the symbolic computation, a class of lump solutions to the (2+1-dimensional Sawada-Kotera (2DSK equation is obtained through making use of its Hirota bilinear form and one positive quadratic function. These solutions contain six parameters, four of which satisfy two determinant conditions to guarantee the analyticity and rational localization of the solutions, while the others are free. Then by adding an exponential function into the original positive quadratic function, the interaction solutions between lump solutions and one stripe soliton are derived. Furthermore, by extending this method to a general combination of positive quadratic function and hyperbolic function, the interaction solutions between lump solutions and a pair of resonance stripe solitons are provided. Some figures are given to demonstrate the dynamical properties of the lump solutions, interaction solutions between lump solutions, and stripe solitons by choosing some special parameters.
Energy Technology Data Exchange (ETDEWEB)
Duque, J G S [Nucleo de Fisica, UFS, 49500-000, Itabaiana, SE (Brazil); Rosa, W O [CSIC, Instituto de Ciencia de Materiales, 28049 Madrid (Spain); Nunes, W C [Instituto de Fisica, UFF, Campus da Praia Vermelha, Niteroi, RJ 24.210-340 (Brazil); De Araujo, A E P [Unidade Academica de Garanhuns, UFRPE, CEP 55296-190, Garanhuns-PE (Brazil); Pagliuso, P G; Cescato, L; Knobel, M [Instituto de Fisica ' Gleb Wataghin' , UNICAMP, CP 6165, Campinas SP (Brazil); Socolovsky, L M [UFG, Instituto de Fisica, BR-74001970 Goiania, GO (Brazil); Zysler, R D, E-mail: jduque@fisica.ufs.b [Centro Atomico Bariloche, 8400 San Carlos de Bariloche, RN (Argentina)
2010-01-20
The magnetic properties of sub-micrometric magnetic structures of Ni and permalloy (Ni{sub 80}Fe{sub 20}) patterned stripes are studied as functions of temperature. The samples are produced by combining an interferometric lithographic technique with sputtering. At room temperature, ferromagnetic resonance and hysteresis data indicate the existence of an in-plane uniaxial anisotropy in both samples. The NiFe sample has an easy axis along the stripes direction in the entire studied temperature range (2 < T < 300 K). On the other hand, an interesting change in the easy magnetization direction is observed in Ni samples, from parallel to perpendicular to the axis of the stripes, when the temperature is decreased. The results are interpreted in terms of a competition between shape and magnetoelastic anisotropies.
Wilkinson, Mark; Presswell, Bronwen; Sherratt, Emma; Papadopoulou, Anna; Gower, David J
2014-04-02
A new species of striped ichthyophiid caecilian, Ichthyophis multicolor sp. nov., is described on the basis of morphological and molecular data from a sample of 14 specimens from Ayeyarwady Region, Myanmar. The new species resembles superficially the Indian I. tricolor Annandale, 1909 in having both a pale lateral stripe and an adjacent dark ventrolateral stripe contrasting with a paler venter. It differs from I. tricolor in having many more annuli, and in many details of cranial osteology, and molecular data indicate that it is more closely related to other Southeast Asian Ichthyophis than to those of South Asia. The caecilian fauna of Myanmar is exceptionally poorly known but is likely to include chikilids as well as multiple species of Ichthyophis.
Striped states in a many-body system of tilted dipoles
Wenzel, Matthias; Böttcher, Fabian; Langen, Tim; Ferrier-Barbut, Igor; Pfau, Tilman
2017-11-01
We study theoretically and experimentally the behavior of a strongly confined dipolar Bose-Einstein condensate in the regime of quantum-mechanical stabilization by beyond-mean-field effects. Theoretically, we demonstrate that self-organized "striped" ground states are predicted in the framework of the extended Gross-Pitaevskii theory. Experimentally, by tilting the magnetic dipoles we show that self-organized striped states can be generated, likely in their metastable state. Matter-wave interference experiments with multiple stripes show that there is no long-range off-diagonal order (global phase coherence). We outline a parameter range where global phase coherence could be established, thus paving the way towards the observation of supersolid states in this system.
2002-01-01
densities as low as 2x10 cm enabled cw room-temperature lasing at a wavelength of 858nm. The laser structures are oxide -stripe gain-guided devices with...quantum wells in GaAs grown above it. GaAs grown on Ge can introduce complications for device integration due to autodoping effects from amphoteric Ge...dopant concentrations were measured using secondary ion mass spectroscopy (SIMS). Oxide -stripe gain-guided devices were fabricated from these structures
Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor
Directory of Open Access Journals (Sweden)
Christian eBrandli
2014-01-01
Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.
Surrogate Modeling for Geometry Optimization
DEFF Research Database (Denmark)
Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie
2009-01-01
A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....
Enumerative Geometry of Hyperplane Arrangements
2012-05-11
NUMBER 6. AUTHOR(SI 5d. PROJECT NUMBER Paul, Thomas Joseph 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS! ESl ...Smith and Bernd Sturmfels. Teaching the geometry of schemes. In Computations in algebraic geometry with Macaulay 2, volume 8 of Algorithms Comput
Spatial geometry and special relativity
DEFF Research Database (Denmark)
Kneubil, Fabiana Botelho
2016-01-01
In this work, it is shown the interplay of relative and absolute entities, which are present in both spatial geometry and special relativity. In order to strengthen the understanding of special relativity, we discuss firstly an instance of geometry and the existence of both frame-dependent and fr...
Molecular motion in restricted geometries
Indian Academy of Sciences (India)
Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...
Conformal Lorentz geometry revisited
Teleman, Kostake
1996-02-01
. We also show that Mach's principle on inertial motions receives an explanation in our theory by considering the particular geodesic paths, for which one of the partners of an interacting pair is fixed and sent to infinity. In fact we study a dynamical system (W,L) which presents some formal and topological similarities with a system of two particles interacting gravitationally. (W,L) is the only conformally invariant relativistic two-point dynamical system. At the end we show that W can be naturally regarded as the base of a principal GL(2,C)-bundle which comes with a natural connection. We study this bundle from differential geometric point of view. Physical interpretations will be discussed in a future paper. This text is an improvement of a previous version, which was submitted under the title ``Hypertwistor Geometry.'' [See, K. Teleman, ``Hypertwistor Geometry (abstract),'' 14th International Conference on General Relativity and Gravitation, Florence, Italy, 1995.] The change of the title and many other improvements are due to the valuable comments of the referee, who also suggested the author to avoid hazardous interpretations.
Magnetism in curved geometries
Streubel, Robert
Deterministically bending and twisting two-dimensional structures in the three-dimensional (3D) space provide means to modify conventional or to launch novel functionalities by tailoring curvature and 3D shape. The recent developments of 3D curved magnetic geometries, ranging from theoretical predictions over fabrication to characterization using integral means as well as advanced magnetic tomography, will be reviewed. Theoretical works predict a curvature-induced effective anisotropy and effective Dzyaloshinskii-Moriya interaction resulting in a vast of novel effects including magnetochiral effects (chirality symmetry breaking) and topologically induced magnetization patterning. The remarkable development of nanotechnology, e.g. preparation of high-quality extended thin films, nanowires and frameworks via chemical and physical deposition as well as 3D nano printing, has granted first insights into the fundamental properties of 3D shaped magnetic objects. Optimizing magnetic and structural properties of these novel 3D architectures demands new investigation methods, particularly those based on vector tomographic imaging. Magnetic neutron tomography and electron-based 3D imaging, such as electron holography and vector field electron tomography, are well-established techniques to investigate macroscopic and nanoscopic samples, respectively. At the mesoscale, the curved objects can be investigated using the novel method of magnetic X-ray tomography. In spite of experimental challenges to address the appealing theoretical predictions of curvature-induced effects, those 3D magnetic architectures have already proven their application potential for life sciences, targeted delivery, realization of 3D spin-wave filters, and magneto-encephalography devices, to name just a few. DOE BES MSED (DE-AC02-05-CH11231).
Effect of white striping on chemical composition and nutritional value of chicken breast meat
Directory of Open Access Journals (Sweden)
Massimiliano Petracci
2014-03-01
Full Text Available White striping defect (appearance of white striations parallel to muscle fiber on surface of breast is considered an emerging issue in chicken breast meat which is related to increasing growth rate of modern hybrid birds. This study was aimed at evaluating the effect of white striping on chemical composition and nutritional value of chicken breast meat. During three replications, a total of 108 Pectoralis major muscles representing three degrees of white striping (absence=normal; presence classified in 2 levels as moderate or severe were selected to determine proximate composition (moisture, protein, lipid and collagen as well as sarcoplasmic and myofibrillar protein profile by sodium dodecyl sulphatepolyacrylamide gel electrophoresis analysis. The results showed that both severe and moderate white-striped fillets had higher fat content (2.53 vs 1.46 vs 0.78%; P<0.001, lower protein level (20.9 vs 22.2 vs 22.9%; P<0.001, decreased quality of protein as proven by higher collagen content (1.30 vs 1.37 vs 1.43%; P<0.001, and different pattern on myofibrillar and sarcoplasmic fractions when compared to normal fillets. Moreover, severe white-striped fillets exhibited higher energy content (450.7 vs 421.1 kJ/100g; P<0.01 with respect to normal meat. In conclusion, there was a large worsening of nutritional value of chicken breast meat following occurrence of white striping and this might impair consumer attitude towards poultry meat.
Determination of the quality of stripe-marked and cracked eggs during storage
Directory of Open Access Journals (Sweden)
Yu Chi Liu
2017-07-01
Full Text Available Objective Stripe marks, which occasionally occur on the shell, do not cause breakage to the shell and shell membranes of eggs. This study investigated the quality of intact eggs (IEs, minor stripe-marked eggs (MEs, severe stripe-marked eggs (SEs, and cracked eggs (CEs during 3-week storage at 25°C. Methods Shell eggs were collected the day after being laid and were washed. Among them, eggs without any visual cracks or stripe marks on the shells were evaluated as IEs by the plant employees using candling in a darkened egg storage room; the remaining eggs exhibited some eggshell defects. At day 3, the eggs were further categorized into IEs, MEs, SEs, CEs, and broken eggs (BEs on the basis of the description given. Except BEs, which were discarded, the remaining eggs were stored at 25°C (approximate relative humidity 50% and then analyzed. Results Stripe marks were observed primarily within the first 3 days after washing. At day 3, CEs had significantly (p<0.05 lower Haugh unit values, but all eggs had grades AA or A, according to the United States Department of Agriculture standard. As storage time increased, differences in egg quality between groups were more obvious. IEs had the highest eggshell breaking strength. During storage, the total plate counts and pathogens, namely Escherichia coli, Campylobacter spp., Staphylococcus aureus, and Salmonella spp., were not detectable in the internal content of IEs and SEs. Conclusion In conclusion, cracks degraded egg quality severely and minor stripe marks only slightly influenced the egg quality.
Optical geometry across the horizon
International Nuclear Information System (INIS)
Jonsson, Rickard
2006-01-01
In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework
Effect of white striping on turkey breast meat quality.
Soglia, F; Baldi, G; Laghi, L; Mudalal, S; Cavani, C; Petracci, M
2018-01-08
In the past decades, the intense selection practices carried out in order to develop fast growing and high breast-yield turkey hybrids profoundly modified the muscle physiology leading to the development of growth-related alterations and muscular abnormalities. White striations of variable thickness have been particularly observed on the ventral surface of Pectoralis major muscle belonging from heavy male turkeys since several years. However, although the effects of white striping (WS) have been extensively studied on broilers, this condition was not considered as a main quality issue by both turkey producers and meat industry. Thus, this study aimed at evaluating whether the occurrence of WS in heavy male turkeys affects the quality traits and technological properties of meat to the same extent previously observed for broilers. In two replications, 72 Pectoralis major muscles were classified as: normal (NORM), moderate WS (MOD) and severe WS (SEV) cases. The whole muscle was weighed and cut in order to assess colour, ultimate pH, water holding (drip and cooking losses) and binding (marinade uptake) capacities, NMR relaxation properties, shear force as well as proximate composition of meat. The Pectoralis major muscles affected by WS (both moderate and severe cases) exhibited a one-fifth increased weight in comparison with their NORM counterpart. However, the occurrence of WS only partially affected the proximate composition of the meat. In detail, although moisture, collagen and protein contents did not differ among the groups, if compared with NORM, higher lipid levels were found in SEV muscles, whereas MOD had intermediate values. On the other hand, both MOD and SEV exhibited lower ash content. Despite these variations in proximate composition, both water holding and binding capacities of turkey breast meat were not affected by WS. Indeed, quality traits of raw (pH, colour, cooking losses and shear force) and marinated (uptake, cooking losses and shear force
International Nuclear Information System (INIS)
Gubbiotti, G; Tacchi, S; Carlotti, G; Ono, T; Roussigne, Y; Tiberkevich, V S; Slavin, A N
2007-01-01
Spin wave excitations in a magnetic structure consisting of a series of long permalloy stripes of a rectangular cross section magnetized along the stripe length and situated above a continuous permalloy film are studied both experimentally and theoretically. Stripes and continuous film are coupled by dipole-dipole interaction across 10 nm thick Cu spacers. Experimental measurements made using the Brillouin light scattering technique (with the light wavevector oriented along the stripe width) provide evidence for one dispersive spin wave mode associated with the continuous film and several discrete non-dispersive modes resonating within the finite width of the stripes. To interpret the experimental spectra, an analytic theory based on the spin wave formalism for finite-width magnetic stripes has been developed, achieving a good qualitative and partly quantitative description of the experimentally observed spin wave spectrum of the system. In particular, it is explained why the presence of a continuous magnetic film near the magnetic stripe leads to a substantial decrease of the frequencies of the discrete dipolar spin wave modes localized within the stripes. A more quantitative description of the measured frequencies and of the spatial profiles of the spin wave eigenmodes has been obtained by numerical calculations performed using a finite element method
Checkerboard local density of states in striped domains pinned by vortices
DEFF Research Database (Denmark)
Andersen, B.M.; Hedegård, P.; Bruus, Henrik
2003-01-01
We discuss recent elastic neutron scattering and scanning tunneling experiments on high-T-c cuprates exposed to an applied magnetic field. Antiferromagnetic vortex cores operating as pinning centers for surrounding stripes is qualitatively consistent with the neutron data provided the stripes have...... the antiphase modulation. Within a Green's function formalism we study the low energy electronic structure around the vortices and find that besides the dispersive quantum interference there exists a non-dispersive checkerboard interference pattern consistent with recent scanning tunneling measurements. Thus...
Magnetic anisotropy of two-dimensional nanostructures: Transition-metal triangular stripes
International Nuclear Information System (INIS)
Dorantes-Davila, J.; Villasenor-Gonzalez, P.; Pastor, G.M.
2005-01-01
The magnetic anisotropy energy (MAE) of one-dimensional stripes having infinite length and triangular lateral structure are investigated in the framework of a self-consistent tight-binding method. One observes discontinuous changes in the easy magnetization direction along the crossover from one to two dimensions. The MAE oscillates as a function of stripe width and depends strongly on the considered transition metal (TM). The MAE of the two-leg ladder is strongly reduced as compared to that of the monoatomic chain and the convergence to the two-dimensional limit is rather slow
Magnetic anisotropy of two-dimensional nanostructures: Transition-metal triangular stripes
Energy Technology Data Exchange (ETDEWEB)
Dorantes-Davila, J. [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: jdd@ifisica.uaslp.mx; Villasenor-Gonzalez, P. [Instituto de Fisica, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Pastor, G.M. [Laboratoire de Physique Quantique, Centre National de la Recherche Scientifique, Universite Paul Sabatier, Toulouse (France)
2005-07-15
The magnetic anisotropy energy (MAE) of one-dimensional stripes having infinite length and triangular lateral structure are investigated in the framework of a self-consistent tight-binding method. One observes discontinuous changes in the easy magnetization direction along the crossover from one to two dimensions. The MAE oscillates as a function of stripe width and depends strongly on the considered transition metal (TM). The MAE of the two-leg ladder is strongly reduced as compared to that of the monoatomic chain and the convergence to the two-dimensional limit is rather slow.
Feshbach shape resonance for high Tc pairing in superlattices of quantum stripes and quantum wells
Directory of Open Access Journals (Sweden)
A Bianconi
2006-09-01
Full Text Available The Feshbach shape resonances in the interband pairing in superconducting superlattices of quantum wells or quantum stripes is shown to provide the mechanism for high Tc superconductivity. This mechanism provides the Tc amplification driven by the architecture of material: superlattices of quantum wells (intercalated graphite or diborides and superlattices of quantum stripes (doped high Tc cuprate perovskites where the chemical potential is tuned to a Van Hove-Lifshitz singularity (vHs in the electronic energy spectrum of the superlattice associated with the change of the Fermi surface dimensionality in one of the subbands.
Partial resistance to stripe rust and its effect on sustainability of wheat yield
International Nuclear Information System (INIS)
Qamar, M.; Din, R.U.; Gardazi, D.A.
2014-01-01
Stripe rust (Puccinia striiformis Westend. f. sp. tritici) poses a serious threat to wheat production in cooler areas of Pakistan. The 70% area of wheat in Pakistan is prone to stripe rust disease. It can cause 10-17% yield losses if susceptible cultivars are planted under favorable conditions. Level of partial plant resistance in bread wheat and its impact on sustainable wheat production was studied at the National Agricultural Research Centre, Islamabad under natural conditions in the field. Eleven Pakistani commercial wheat cultivars/advance lines including check (Inqalab 91) were assessed for the level of partial resistance against stripe rust using Area Under the Disease Progress Curve (AUDPC), disease severity (DS) and epidemic growth rate in comparison with wheat cultivar, Inqalab 91. During 2007 cropping season, natural epidemic was developed and relative AUDPC was recorded from 0 to 100% whereas the 2008 cropping season was dry and no stripe rust appeared. Two advanced lines (NR 268 and NR 285) showed the infection type (IT) less than 7 (incompatible reaction) to the mixture of prevailing stripe rust inoculums. Very low level of DS and AUDPC were recorded in the remaining cultivars/lines indicating a high level of partial resistance to stripe rust compared to the susceptible check cultivar, Inqalab 91. Among eight cultivars/lines that showed compatible type of reaction (IT greater then equal to 7), one was resistant (relative AUDPC = 20% of Inqalab 91) and six showed very high resistance levels (relative AUDPC greater then equal to 5%). Maximum level of resistance (relative AUDPC = 0.1%) was observed in advanced line, NR 271. The wheat cultivars/lines that showed a slow disease development (low DS and AUDPC), could be considered as -1 partially resistant for stripe rust infection. The yield (2178 kg ha) of susceptible check cultivar Inqalab-91 during 2007 was reduced to 45% as -1 compared to its yield (3945 kg ha) in epidemic free year (2008). Thus the use
Evaluation of thermal striping risks: Limitation of cracks initiation and propagation
International Nuclear Information System (INIS)
Drubay, B.; Acker, D.
1994-01-01
Thermal striping is the effect of a rapid random oscillation of surface temperature inducing a corresponding fluctuation of surface strains. It occurs on components situated in the mixing zone of coolant streams of different temperatures and is characterised by large numbers of strain cycles having the potential to add to the fatigue damage produced by strain cycles associated with all other plant operating events. The purpose of this paper is to describe the R and D works performed in the frame of the European Fast Reactor project between 1985 and 1992 on the thermal striping: experimental works and validation of assessment methodology. (author)
International Nuclear Information System (INIS)
Ortore, P.; Fodor, G.; Psenner, F.; Stuefert, S.; Scherer, M.
1991-01-01
The use of high-resolution US equipments in the examination of the newborn hip allowed the evaluation of a thin echogenic stripe (the internal capsule stripe), which defines laterally the acetabular hyaline cartilage. By means of an anatomo-histological preparation the echogenic stripe can be related to either the capsular circular fibres or the interface between the latter and the hyaline cartilage. The internal capsular stripe, together with the echogenic synovial stripe, precisely delimit the whole acetabular hyaline cartilage. Further-more, in many babies high-resolution US sometimes fails to demonstrate Graft's 'perichondral gap', so that an accurate anatomic knowledge of the hip becomes necessary in the evaluation of acetabular labrum
The geometry description markup language
International Nuclear Information System (INIS)
Chytracek, R.
2001-01-01
Currently, a lot of effort is being put on designing complex detectors. A number of simulation and reconstruction frameworks and applications have been developed with the aim to make this job easier. A very important role in this activity is played by the geometry description of the detector apparatus layout and its working environment. However, no real common approach to represent geometry data is available and such data can be found in various forms starting from custom semi-structured text files, source code (C/C++/FORTRAN), to XML and database solutions. The XML (Extensible Markup Language) has proven to provide an interesting approach for describing detector geometries, with several different but incompatible XML-based solutions existing. Therefore, interoperability and geometry data exchange among different frameworks is not possible at present. The author introduces a markup language for geometry descriptions. Its aim is to define a common approach for sharing and exchanging of geometry description data. Its requirements and design have been driven by experience and user feedback from existing projects which have their geometry description in XML
Differential geometry and symmetric spaces
Helgason, Sigurdur
2001-01-01
Sigurdur Helgason's Differential Geometry and Symmetric Spaces was quickly recognized as a remarkable and important book. For many years, it was the standard text both for Riemannian geometry and for the analysis and geometry of symmetric spaces. Several generations of mathematicians relied on it for its clarity and careful attention to detail. Although much has happened in the field since the publication of this book, as demonstrated by Helgason's own three-volume expansion of the original work, this single volume is still an excellent overview of the subjects. For instance, even though there
Differential geometry curves, surfaces, manifolds
Kühnel, Wolfgang
2015-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and-as a new feature-a good number of so
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Walsh, Edward T
2014-01-01
This introductory text is designed to help undergraduate students develop a solid foundation in geometry. Early chapters progress slowly, cultivating the necessary understanding and self-confidence for the more rapid development that follows. The extensive treatment can be easily adapted to accommodate shorter courses. Starting with the language of mathematics as expressed in the algebra of logic and sets, the text covers geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, space geometry, and coordinate geometry. Each chapter incl
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig
2013-03-24
Standard particle theory is based on quantized matter embedded in a classical geometry. Here, a complementary model is proposed, based on classical matter -- massive bodies, without quantum properties -- embedded in a quantum geometry. It does not describe elementary particles, but may be a better, fully consistent quantum description for position states in laboratory-scale systems. Gravitational theory suggests that the geometrical quantum system has an information density of about one qubit per Planck length squared. If so, the model here predicts that the quantum uncertainty of geometry creates a new form of noise in the position of massive bodies, detectable by interferometers.
An introduction to differential geometry
Willmore, T J
2012-01-01
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Hyperbolic Metamaterials with Complex Geometry
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei
2016-01-01
We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...
Advances in discrete differential geometry
2016-01-01
This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...
Inheritance of trunk striping in the Sumatran tiger barb, Barbus tetrazona.
Frankel, J S
1985-01-01
The Sumatran tiger barb, Barbus tetrazona, exhibits three truck (pelvic) striping phenotypes: complete, incomplete, and half banded. Segregation patterns observed in the progeny from 12 different matings indicate that the inheritance of these phenotypes is controlled by two autosomal gene loci acting additively, with complete dominance at each locus.
Helminths of sympatric striped, hog-nosed, and spotted skunks in west-central Texas.
Neiswenter, Sean A; Pence, Danny B; Dowler, Robert C
2006-07-01
Twenty-eight hog-nosed skunks (Conepatus leuconotus), 23 striped skunks (Mephitis mephitis), and nine spotted skunks (Spilogale gracilis) from an area of sympatry in west-central Texas were examined for helminth parasites. Shared helminth species among all three host species were one nematode (Physaloptera maxillaris), two acanthocephalans (Pachysentis canicola, Macracanthorhynchus ingens), and one cestode (Mathevotaenia mephitis). Two nematodes (Gongylonema sp. and Filaria taxidaea) occurred in both the striped and hog-nosed skunks. One nematode (Filaroides milksi) and one acanthocephalan (Oncicola canis) were collected only from C. leuconotus. The most common helminth infections for striped and hog-nosed skunks were P. maxillaris and P. canicola. Helminth species richness was highest in hog-nosed skunks, but striped skunks had the highest prevalences and intensities of all the common helminth species. The helminth fauna of spotted skunks was markedly depauperate in terms of species richness and helminth abundance compared to the other two host species. Differences in helminth communities across these three sympatric skunks may be related to differences in their relative abundance, behavior, food habits, and geographic range.
Nguyen, Nhut
2016-01-01
The aim of this thesis was to document improvements in sustainability indicators of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) production through the application of recirculation and waste treatment techniques. To be able to document improvements in sustainability, in each
3D Measurement Technology by Structured Light Using Stripe-Edge-Based Gray Code
International Nuclear Information System (INIS)
Wu, H B; Chen, Y; Wu, M Y; Guan, C R; Yu, X Y
2006-01-01
The key problem of 3D vision measurement using triangle method based on structured light is to acquiring projecting angle of projecting light accurately. In order to acquire projecting angle thereby determine the corresponding relationship between sampling point and image point, method for encoding and decoding structured light based on stripe edge of Gray code is presented. The method encoded with Gray code stripe and decoded with stripe edge acquired by sub-pixel technology instead of pixel centre, so latter one-bit decoding error was removed. Accuracy of image sampling point location and correspondence between image sampling point and object sampling point achieved sub-pixel degree. In addition, measurement error caused by dividing projecting angle irregularly by even-width encoding stripe was analysed and corrected. Encoding and decoding principle and decoding equations were described. Finally, 3dsmax and Matlab software were used to simulate measurement system and reconstruct measured surface. Indicated by experimental results, measurement error is about 0.05%
DEFF Research Database (Denmark)
Lefevre, Sjannie; Huong, Do Thi Thanh; Wang, Tobias
2011-01-01
Air-breathing fish are common in the tropics, and their importance in Asian aquaculture is increasing, but the respiratory physiology of some of the key species such as the striped catfish, Pangasianodon hypophthalmus Sauvage 1878 is unstudied. P. hypophthalmus is an interesting species as it app...
The effect of freezing rate on the quality of Striped Bass Spermatozoa
Several studies have been conducted in an attempt to determine the optimal freezing rate for the cryopreservation of striped bass (Morone saxatilis) spermatozoa. In this study, the effects of freezing rate (-10, -15, -20 and -40oC/minute) on gamete quality including, viability, motion characteristi...
Variation in the timing of reproduction of the four-striped field mouse ...
African Journals Online (AJOL)
We used the four-striped field mouse, Rhabdomys pumilio (Sparrmann, 1784), to test the hypothesis that reproduction in a small, short-lived mammal will be opportunistic, characterized by temporal and spatial variation in the timing of events, and only be inhibited under harsh and predictable winter conditions. Field mice ...
Genetic analysis and location of gene for resistance to stripe rust in ...
Indian Academy of Sciences (India)
2013-08-06
Aug 6, 2013 ... to rust race CYR26. The gene YrSD in Strube Dickkopf resistant to stripe rust CYR26 using SSR method was located on chromosome 5B. There are four pairs (Wmc640,. Barc59, Wmc783 and Wms497) polymorphic SSR primers on chromosome 5B which produced polymorphic DNA bands between the ...
Luminous Obscured AGN Unveiled in the Stripe 82 X-ray Survey
LaMassa, Stephanie; Glikman, Eilat; Brusa, Marcella; Rigby, Jane; Tasnim Ananna, Tonima; Stern, Daniel; Lira, Paulina; Urry, Meg; Salvato, Mara; Alexandroff, Rachael; Allevato, Viola; Cardamone, Carolin; Civano, Francesca Maria; Coppi, Paolo; Farrah, Duncan; Komossa, S.; Lanzuisi, Giorgio; Marchesi, Stefano; Richards, Gordon; Trakhtenbrot, Benny; Treister, Ezequiel
2018-01-01
Stripe 82X is a wide-area (30 deg2) X-ray survey overlapping the legacy Sloan Digital Sky Survey (SDSS) Stripe 82 field, designed to uncover rare, high luminosity active galactic nuclei (AGN). We report on the results of an on-going near-infrared (NIR) spectroscopic campaign to follow-up reddened AGN candidates with Palomar TripleSpec, Keck NIRSPEC, and Gemini GNIRS. We identified 8 AGN in our bright NIR sample (K colors (> 4, Vega); four of these sources had existing optical spectra in SDSS. We targeted four out of 34 obscured AGN candidates in our faint NIR sample (K > 17, Vega), all of which are undetected in the single-epoch SDSS imaging, making them the best candidates for the most obscured and/or the most distant reddend AGN in Stripe 82X. All twelve sources are Type 1 AGN, with the FWHM of at least one permitted emission line exceeding 1300 km/s. We find that our nearly complete bright NIR sample (12/13 obscured AGN candidates have spectroscopic redshifts) is more distant (z > 0.5) than a matched sample of blue Type 1 AGN from Stripe 82X; these AGN tend to be more luminous than their blue, unobscured counterparts. Results from our pilot program of faint NIR-selected obscured AGN candidates demonstrate that our selection recovers reddened quasars missed by SDSS.
Nhut, N.; Hao, N.V.; Bosma, R.H.; Verreth, J.A.V.; Verdegem, M.C.J.; Eding, E.H.
2017-01-01
To assess the potential for improving sustainability and efficiency in an important Vietnamese finfish culture, we quantified sustainability indicators for 2 downstream and 2 upstream 3 to 4 m deep ponds for striped catfish Pangasianodon hypophthalmus (Sauvage, 1878) production along the Mekong
Parallel carbon nanotube stripes in polymer thin film with remarkable conductive anisotropy.
Huang, Jinrui; Zhu, Yutian; Jiang, Wei; Yin, Jinghua; Tang, Qingxin; Yang, Xiaodong
2014-02-12
In our previous study ( Mao et al. J. Phys. Chem. Lett. 2013 , 4 , 43 - 47 ), we proposed a novel method, that is, the shear-flow-induced hierarchical self-assembly of two-dimensional fillers (octadecylamine-functionalized graphene) into the well-ordered parallel stripes in a polymer matrix, to fabricate the anisotropic conductive materials. In this study, we extend this method to one-dimensional multiwalled carbon nanotubes (MWCNTs). Under the induction of shear flow, the dispersed poly(styrene ethylene/butadiene-styrene) (SEBS) phase and MWCNTs can spontaneously assemble into well-ordered parallel stripes in the polypropylene (PP) thin film. The electrical measurements indicate that the electrical resistivity in the direction parallel to the stripes is almost 6 orders of magnitude lower than that in the perpendicular direction, which is by far the most striking conductive anisotropy for the plastic anisotropic conductive materials. In addition, it is found that the size of the MWCNT stripe as well as the electrical property of the resulting anisotropic conductive thin film can be well-controlled by the gap of the shear cell.
Soto, Sara; Alba, Ana; Ganges, Llilianne; Vidal, Enric; Raga, Juan Antonio; Alegre, Ferrán; González, Beatriz; Medina, Pascual; Zorrilla, Irene; Martínez, Jorge; Marco, Alberto; Pérez, Mónica; Pérez, Blanca; Pérez de Vargas Mesas, Ana; Martínez Valverde, Rosa; Domingo, Mariano
2011-10-06
Dolphin morbillivirus (DMV) has caused 2 epizootics with high mortality rates on the Spanish Mediterranean coast, in 1990 and 2006-07, mainly affecting striped dolphins Stenella coeruleoalba. Following the first epizootic unusual DMV infections affecting only the central nervous system of striped dolphins were found, with histological features similar to subacute sclerosing panencephalitis and old dog encephalitis, the chronic latent localised infections caused by defective forms of measles virus and canine distemper virus, respectively. Between 2008 and 2010, monitoring by microscopic and immunohistochemical (IHC) studies of 118 striped dolphins stranded along Catalonia, the Valencia Region and Andalusia showed similar localised DMV nervous system infections in 25.0, 28.6 and 27.4% of cases, respectively, with no significant differences among regions or sex. The body length of DMV-infected dolphins was statistically greater than that of non-infected dolphins (196.5 vs. 160.5 cm; p dolphins with positive IHC-DMV had positive PCR results. All 6 cases were positive with the 78 bp RT-PCR. These findings contraindicate the use of the 429 bp RT-PCR protocol based on the P gene to detect this specific form of DMV. DMV localised nervous infection constitutes the most relevant single cause of stranding and death in Mediterranean striped dolphins in the years following a DMV epizootic, and it might even overwhelm the effects of the epizootic itself, at least in 2007.
Genetics of adult plant stripe rust resistance in CSP44, a selection ...
Indian Academy of Sciences (India)
Unknown
areas of temperate zones (Johnson 1988). Yield losses can be considerable, ranging from about 40 per cent to com- plete destruction of the crop depending upon the growth stage at which the disease attacks. Using diverse genes for resistance against stripe rust disease is the most eco- nomical and environmentally safe ...
Molecular mapping of a stripe rust resistance gene in wheat line C51
Indian Academy of Sciences (India)
Stripe rust, a major disease in areas where cool temperatures prevail, can strongly influence grain yield. To control this disease, breeders have incorporated seedling resistance genes from a variety of sources outside the primary wheat gene pool. The wheat line C51, introduced from the International Center for Agricultural ...
Gauger, Robert
1993-01-01
Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)
VICS82: The VISTA–CFHT Stripe 82 Near-infrared Survey
Geach, J. E.; Lin, Y.-T.; Makler, M.; Kneib, J.-P.; Ross, N. P.; Wang, W.-H.; Hsieh, B.-C.; Leauthaud, A.; Bundy, K.; McCracken, H. J.; Comparat, J.; Caminha, G. B.; Hudelot, P.; Lin, L.; Van Waerbeke, L.; Pereira, M. E. S.; Mast, D.
2017-07-01
We present the VISTA–CFHT Stripe 82 (VICS82) survey: a near-infrared (J+Ks) survey covering 150 square degrees of the Sloan Digital Sky Survey (SDSS) equatorial Stripe 82 to an average depth of J = 21.9 AB mag and Ks = 21.4 AB mag (80% completeness limits; 5σ point-source depths are approximately 0.5 mag brighter). VICS82 contributes to the growing legacy of multiwavelength data in the Stripe 82 footprint. The addition of near-infrared photometry to the existing SDSS Stripe 82 coadd ugriz photometry reduces the scatter in stellar mass estimates to δ {log}({M}\\star )≈ 0.3 dex for galaxies with {M}\\star > {10}9 {M}ȯ at z≈ 0.5, and offers improvement compared to optical-only estimates out to z≈ 1, with stellar masses constrained within a factor of approximately 2.5. When combined with other multiwavelength imaging of the Stripe, including moderate-to-deep ultraviolet (GALEX), optical and mid-infrared (Spitzer-IRAC) coverage, as well as tens of thousands of spectroscopic redshifts, VICS82 gives access to approximately 0.5 Gpc3 of comoving volume. Some of the main science drivers of VICS82 include (a) measuring the stellar mass function of {L}\\star galaxies out to z∼ 1; (b) detecting intermediate-redshift quasars at 2≲ z≲ 3.5; (c) measuring the stellar mass function and baryon census of clusters of galaxies, and (d) performing cross-correlation experiments of cosmic microwave background lensing in the optical/near-infrared that link stellar mass to large-scale dark matter structure. Here we define and describe the survey, highlight some early science results, and present the first public data release, which includes an SDSS-matched catalog as well as the calibrated pixel data themselves.
Measurement Error Affects Risk Estimates for Recruitment to the Hudson River Stock of Striped Bass
Directory of Open Access Journals (Sweden)
Dennis J. Dunning
2002-01-01
Full Text Available We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years. Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%. However, the risk decreased almost tenfold (0.032 if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009 and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006— an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.
Estimating abundance of adult striped bass in reservoirs using mobile hydroacoustics
Hightower, Joseph E.; Taylor, J. Christopher; Degan, Donald J.
2013-01-01
Hydroacoustic surveys have proven valuable for estimating reservoir forage fish abundance but are more challenging for adult predators such as striped bass Morone saxatilis. Difficulties in assessing striped bass in reservoirs include their low density and the inability to distinguish species with hydroacoustic data alone. Despite these difficulties, mobile hydroacoustic surveys have potential to provide useful data for management because of the large sample volume compared to traditional methods such as gill netting and the ability to target specific areas where striped bass are aggregated. Hydroacoustic estimates of reservoir striped bass have been made using mobile surveys, with data analysis using a threshold for target strength in order to focus on striped bass-sized targets, and auxiliary sampling with nets to obtain species composition. We provide recommendations regarding survey design, based in part on simulations that provide insight on the level of effort that would be required to achieve reasonable estimates of abundance. Future surveys may be able to incorporate telemetry or other sonar techniques such as side-scan or multibeam in order to focus survey efforts on productive habitats (within lake and vertically). However, species apportionment will likely remain the main source of error, and we see no hydroacoustic system on the horizon that will identify fish by species at the spatial and temporal scale required for most reservoir surveys. In situations where species composition can be reliably assessed using traditional gears, abundance estimates from hydroacoustic methods should be useful to fishery managers interested in developing harvest regulations, assessing survival of stocked juveniles, identifying seasonal aggregations, and examining predator–prey balance.
Remapping of the stripe rust resistance gene Yr10 in common wheat.
Yuan, Cuiling; Wu, Jingzheng; Yan, Baiqiang; Hao, Qunqun; Zhang, Chaozhong; Lyu, Bo; Ni, Fei; Caplan, Allan; Wu, Jiajie; Fu, Daolin
2018-02-23
Yr10 is an important gene to control wheat stripe rust, and the search for Yr10 needs to be continued. Wheat stripe rust or yellow rust is a devastating fungal disease caused by Puccinia striiformis f. sp. tritici (Pst). Host disease resistance offers a primary source for controlling wheat stripe rust. The stripe rust resistance gene Yr10 confers the race-specific resistance to most tested Pst races in China including CYR29. Early studies proposed that Yr10 was a nucleotide-binding site, leucine-rich repeat gene archived as GenBank accession AF149112 (hereafter designated the Yr10 candidate gene or Yr10 CG ). In this study, we revealed that 15 Chinese wheat cultivars positive for Yr10 CG are susceptible to CYR29. We then expressed the Yr10 CG cDNA in the common wheat 'Bobwhite'. The Yr10 CG -cDNA positive transgenic plants were also susceptible to CYR29. Thus, it is highly unlikely that Yr10 CG corresponds to the Yr10 resistance gene. Using the Yr10 donor 'Moro' and the Pst-susceptible wheat 'Huixianhong', we generated two F 3 populations that displayed a single Mendelian segregation on the Yr10 gene, and used them to remap the Yr10 gene. Six markers were placed in the Yr10 region, with the Yr10 CG gene now mapping about 1.2-cM proximal to the Yr10 locus and the Xsdauw79 marker is completely linked to the Yr10 locus. Apparently, the Yr10 gene has not yet been identified. Fine mapping and positional cloning of Yr10 is important for gene pyramiding for stripe rust resistance in wheat.
Laser plasma focus produced in a ring target
International Nuclear Information System (INIS)
Saint-Hilaire, G.; Szili, Z.
1976-01-01
A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers
Hossain, Md. Shafayat; Mueed, M. A.; Ma, Meng K.; Chung, Yoon Jang; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.
Anisotropic stripe phases are observed at high-index, half-filled Landau levels in high quality 2D carrier systems with high mobility. Here, we report the observation of such phases at filling factors ν = 3/2, 5/2 and 7/2 under tilted magnetic field in a narrow (56.6 Å-wide) AlAs quantum well where electrons occupy an out of plane (Z) valley with a density of 3x1011 cm-2 and a modest mobility of about 7 m2/Vs. At a critical tilting angle, when ν = 3/2 undergoes a transition from the N = 0 (Z0 ↑) to the N = 1 (Z1 ↓) Landau level, a resistance spike emerges, indicating a ferromagnetic transition. For higher tilting angles, the ground state at ν = 3/2 develops into a stripe phase with the resistance along B|| exhibiting a minimum whose value is about 6 times smaller (in a Hall-bar geometry) than the resistance perpendicular to B|| which shows a maximum. Similar phenomenon happens for ν = 5/2 and 7/2, when they undergo transitions from Z0 ↑ to Z2 ↓ and Z0 ↑ to Z3 ↓, respectively, at yet higher tilt angles. Furthermore, the anisotropic phases appear to be quite robust as they persist even at 1.8 K. Work supported by the NSF (Grants DMR-1305691, ECCS-1508925, and MRSEC DMR-1420541), the DOE Basic Energy Sciences (Grant DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (Grant GBMF4420), and the Keck Foundation.
DEFF Research Database (Denmark)
Milus, Eugene A; Kristensen, Kristian; Hovmøller, Mogens S
2009-01-01
Stripe rust (yellow rust) of wheat, caused by Puccinia striiformis f. sp. tritici, has become more severe in eastern United States, Australia, and elsewhere since 2000. Recent research has shown that this coincided with a global spread of two closely related strains that were similar based...... to the warm temperature regime for all variables. Based on these results and previously published models for stripe rust epidemics, recent severe stripe rust epidemics were most likely enhanced by the pathogen's increased aggressiveness, especially at higher temperature. Furthermore, these results demonstrate...... that wheat rust fungi can adapt to warmer temperatures and cause severe disease in previously unfavorable environments...
Energy Technology Data Exchange (ETDEWEB)
Fritzsche, R.A. (Univ. of Mississippi, University); Johnson, G.D.
1980-07-01
A cartilage and bone straining technique was employed to study the developmental osteology of the striped bass (Morone saxatilis) and white perch (Morone americana). Special attention was given to those osteological characters that appeared to be unique to the larvae of each species. Larval striped bass and white perch exhibited diagnostic differences in the position and shape of the median ethmoid, predorsal bones, dorsal- and anal-fin pterygiophores, vertebral column, and caudal skeleton. These differences were discernible at the earliest appearance of these elements as cartilage, and allow identification of striped bass and white perch larvae above a length of about 7.5 mm.
A Comment on Molecular Geometry
Gomba, Frank J.
1999-12-01
A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established. In the case of diatomic molecules, any atom may be used as the central atom. When hydrogen is present in a multiatom molecule or ion, this method "naturally" eliminates choosing hydrogen; but, any other atom may be used as the central atom to determine the correct geometry. The Lewis structure can then be used to determine the formal charges on the atoms. In this way there is a check on the selection of the central atom, should the correct Lewis structure be desired. Thus, it assumes that one is familiar with both Lewis structures and the valence shell electron pair repulsion (VSEPR) approach to bonding. The approach suggested in this paper will give rapid and accurate molecular geometries, and it is fun !!!
Electrodynamics and Spacetime Geometry: Foundations
Cabral, Francisco; Lobo, Francisco S. N.
2017-02-01
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.
Euclidean geometry and its subgeometries
Specht, Edward John; Calkins, Keith G; Rhoads, Donald H
2015-01-01
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...
Flux compactifications and generalized geometries
International Nuclear Information System (INIS)
Grana, Mariana
2006-01-01
Following the lectures given at CERN Winter School 2006, we present a pedagogical overview of flux compactifications and generalized geometries, concentrating on closed string fluxes in type II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyse the resulting four-dimensional effective theories for Calabi-Yau and Calabi-Yau orientifold compactifications, concentrating on the flux-induced superpotentials. We discuss the generic mechanism of moduli stabilization and illustrate with two examples: the conifold in IIB and a T 6 /(Z 3 x Z 3 ) torus in IIA. We finish by studying the effective action and flux vacua for generalized geometries in the context of generalized complex geometry
KEMAJUAN BELAJAR SISWA PADA GEOMETRI TRANSFORMASI MENGGUNAKAN AKTIVITAS REFLEKSI GEOMETRI
Directory of Open Access Journals (Sweden)
Irkham Ulil Albab
2014-10-01
Full Text Available Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemajuan belajar siswa pada materi geometri transformasi yang didukung dengan serangkaian aktivitas belajar berdasarkan Pendidikan Matematika Realistik Indonesia. Penelitian didesain melalui tiga tahap, yaitu tahapan perancangan desain awal, pengujian desain melalui pembelajaran awal dan pembelajaran eksperimental, dan tahap analisis retrospektif. Dalam penelitian ini, Hypothetical Learning Trajectory, HLT (HLT berperan penting sebagai desain pembelajaran sekaligus instrumen penelitian. HLT diujikan terhadap 26 siswa kelas VII. Data dikumpulkan dengan teknik wawancara, pengamatan, dan catatan lapangan. Hasil penelitian menunjukkan bahwa desain pembelajaran ini mampu menstimulasi siswa untuk memberikan karakteristik refleksi dan transformasi geometri lainnya secara informal, mengklasifikasikannya dalam transformasi isometri pada level kedua, dan menemukan garis bantuan refleksi pada level yang lebih formal. Selain itu, garis bantuan refleksi digunakan oleh siswa untuk menggambar bayangan refleksi dan pola pencerminan serta memahami bentuk rotasi dan translasi sebagai kombinasi refleksi adalah level tertinggi. Keyword: transformasi geometri, kombinasi refleksi, rotasi, translasi, design research, HLT STUDENTS’ LEARNING PROGRESS ON TRANSFORMATION GEOMETRY USING THE GEOMETRY REFLECTION ACTIVITIES Abstract: This study was aimed at describing the students’ learning progress on transformation geometry supported by a set of learning activities based on Indonesian Realistic Mathematics Education. The study was designed into three stages, that is, the preliminary design stage, the design testing through initial instruction and experiment, and the restrospective analysis stage. In this study, Hypothetical Learning Trajectory (HLT played an important role as an instructional design and a research instrument. HLT was tested to 26 seventh grade students. The data were collected through interviews
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Stochastic geometry and its applications
Chiu, Sung Nok; Kendall, Wilfrid S; Mecke, Joseph
2013-01-01
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital a
Introduction to topology and geometry
Stahl, Saul
2014-01-01
An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition ". . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained." -CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparallele
Graphical debugging of combinational geometry
International Nuclear Information System (INIS)
Burns, T.J.; Smith, M.S.
1992-01-01
A graphical debugger for combinatorial geometry being developed at Oak Ridge National Laboratory is described. The prototype debugger consists of two parts: a FORTRAN-based ''view'' generator and a Microsoft Windows application for displaying the geometry. Options and features of both modules are discussed. Examples illustrating the various options available are presented. The potential for utilizing the images produced using the debugger as a visualization tool for the output of the radiation transport codes is discussed as is the future direction of the development
Combinatorial geometry in the plane
Hadwiger, Hugo; Klee, Victor
2014-01-01
Geared toward advanced undergraduates familiar with analysis and college geometry, this concise book discusses theorems on topics restricted to the plane such as convexity, coverings, and graphs. In addition to helping students cultivate rigorous thought, the text encourages the development of mathematical intuition and clarifies the nature of mathematical research.The two-part treatment begins with specific topics including integral distances, covering problems, point set geometry and convexity, simple paradoxes involving point sets, and pure combinatorics, among other subjects. The second pa
Modern differential geometry for physicists
Isham, C J
1989-01-01
These notes are the content of an introductory course on modern, coordinate-free differential geometry which is taken by the first-year theoretical physics PhD students, or by students attending the one-year MSc course "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen with an eye to the way in which differential geometry is applied these days to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields
Algebraic geometry and theta functions
Coble, Arthur B
1929-01-01
This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and
Geometry, topology, and string theory
International Nuclear Information System (INIS)
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated
Some applications on laser material processing
International Nuclear Information System (INIS)
Oros, C.
2005-01-01
An overview of the state-of-the-art in laser material processing for a large types of lasers from IR (CO 2 laser, NdYAG laser) to UV (excimer laser) and different kinds of materials (metals, dielectrics) is given. Laser radiation has found a wide range of applications as machining tool for various kinds of materials processing. The machining geometry, the work piece geometry, the material properties and economic productivity claim for customized systems with special design for beam guiding, shaping and delivery in order to fully utilize the laser radiation for surface processing with optimum efficiency, maximum processing speed and high processing quality. The laser-material interaction involves complex processes of heating, melting, vaporization, ejection of atoms, ions, and molecules, shock waves, plasma initiation and plasma expansion. The interaction is dependent on the laser beam parameters (pulse duration, energy and wavelength), the solid target properties and the surrounding environments condition. Experimental results for laser surface melting and laser ablation are given. Also, assuming the applicability of a one dimensional model for short pulses used, and restricting condition to single-pulse exposure, the temperature rise on the target was calculated taking account of the finite optical absorption depth and pulse duration of the laser
Directory of Open Access Journals (Sweden)
Fevzi Bardakci
2014-07-01
This study was determined a preview of genetic structure of red striped mullet because of few sampling localities so a further study is would be useful to determine its population structure along its distribution area in detail.
Tasoniero, G; Cullere, M; Cecchinato, M; Puolanne, E; Dalle Zotte, A
2016-11-01
The aim of the research was to study the impact of white striping and wooden breast myopathies on the technological quality, mineral, and sensory profile of poultry meat. With this purpose, a total of 138 breasts were selected for a control group with normal breasts (N), a group of breasts characterised by white striping (WS) myopathy, and a group of breasts having both white striping and wooden breast myopathies (WSWB). Data revealed that the simultaneous presence of the two myopathies, with respect to the WS lesion individually considered, had a further detrimental effect on pH (6.04 vs. 5.96; P white striping and wooden breast myopathies. © 2016 Poultry Science Association Inc.
Teaching Activity-Based Taxicab Geometry
Ada, Tuba
2013-01-01
This study aimed on the process of teaching taxicab geometry, a non-Euclidean geometry that is easy to understand and similar to Euclidean geometry with its axiomatic structure. In this regard, several teaching activities were designed such as measuring taxicab distance, defining a taxicab circle, finding a geometric locus in taxicab geometry, and…
Singh, A.; Pandey, M. P.; Singh, A. K.; Knox, R. E.; Ammar, K.; Clarke, J. M.; Clarke, F. R.; Singh, R. P.; Pozniak, C. J.; DePauw, R. M.; McCallum, B. D.; Cuthbert, R. D.; Randhawa, H. S.; Fetch, T. G.
2012-01-01
Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf ...
Milus, Eugene A; Moon, David E; Lee, Kevin D; Mason, R Esten
2015-08-01
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders' perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.
Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi
2017-12-01
The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.
Axiomatic characterization of physical geometry
International Nuclear Information System (INIS)
Schmidt, H.J.
1979-01-01
This book deals with the foundations of a theory which can be considered as the most ancient part of physics, namely Euclidean geometry. It may be viewed as a partial realization of a program set up by G. Ludwig who suggested to formulate geometry explicity as a theory of possible operations with practically rigid bodies, using as basic concepts 'region', 'inclusion' and 'transport'. After an introduction to the problems, in which we sketch also the historical development, we develop a pre-theory with respect to the geometry with the aim to give an interpretation of the above-mentioned basic geometrical concepts in terms of notions which are closely related to experimental situations. The passage from a pure topological analysis of physical space to the differential geometrical view is made in the next section where we use the prerequisites established in the previous chapter to apply the Tits/Freudenthal solution of the Helmholtz-Lie problem. The main theorem of this book is stated in the last section by a characterization of Euclidean geometry. It turns out that two additional postulates are necessary whose empirical meaning we stress by referring to the axiom of dimension. The book might be of interest to scientist working in the field of axiomatics. Unfamiliar readers will be required to have a sound knowledge of topology and group theory. (HJ) 891 HJ/HJ 892 MB
Algebraic Methods in Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 10. Algebraic Methods in Plane Geometry - The Use of Conic Sections. Shailesh A Shirali. General Article Volume 13 Issue 10 October 2008 pp 916-928. Fulltext. Click here to view fulltext PDF. Permanent link:
Multivariable calculus and differential geometry
Walschap, Gerard
2015-01-01
This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
Stochastic Modelling of River Geometry
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Schaarup-Jensen, K.
1996-01-01
Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....
GEOMETRY AND COMPLEXITY IN ARCHITECTURE
Directory of Open Access Journals (Sweden)
RUSU Maria Ana
2015-06-01
Full Text Available As Constantin Brancuși (1876-1956 said „Simplicity is complexity itself“, simplicity and regularity through the use of basic geometric forms has always played a central role in architectural design, during the 20th century. A diachronic perspective, shows as the use of geometry and mathematics to describe built form provided a common basis for communication between the processes of design, fabrication and stability. Classic ways of representing geometry, based on descriptive methods, favor precise language of bidimensionality easy to represent in a rectangular coordinate system. In recent years, the importance of geometry has been re-emphasized by significant advances in the digital age, where computers are increasingly used in design, fabrication and construction to explore the art of the possible. Contemporary architecture transcend the limitations of Euclidean geometry and create new forms that are emerging through the convergence of complex systems, computational design and robotic fabrication devices, but which can also achieve higher levels of performance. Freeform architectural shapes and structures play an increasingly important role in 21st century architectural design. Through a series of examples, the paper relates to contemporary architectural explorations of complex, curvilinear surfaces in the digital age and discusses how it has required rethinking the mode in which we traditionally operate as architects. The analysis creates the possibility of comparisons between original and current design.
Signature geometry and quantum engineering
Samociuk, Stefan
2013-09-01
As the operating frequency of electromagnetic based devices increase, physical design geometry is playing an ever more important role. Evidence is considered in support of a relationship between the dimensionality of primitive geometric forms, such as transistors, and corresponding electromagnetic coupling efficiency. The industry of electronics is defined as the construction of devices by the patterning of primitive forms to physical materials. Examples are given to show the evolution of these primitives, down to nano scales, are requiring exacting geometry and three dimensional content. Consideration of microwave monolithic integrated circuits,(MMIC), photonics and metamaterials,(MM), support this trend and also add new requirements of strict geometric periodicity and multiplicity. Signature geometries,(SG), are characterized by distinctive attributes and examples are given. The transcendent form transcode algorithm, (TTA) is introduced as a multi dimensional SG and its use in designing photonic integrated circuits and metamaterials is discussed . A creative commons licensed research database, TRANSFORM, containing TTA geometries in OASIS file formats is described. An experimental methodology for using the database is given. Multidimensional SG and extraction of three dimensional cross sections as primitive forms is discussed as a foundation for quantum engineering and the exploitation of phenomena other than the electromagnetic.
Exploring Bundling Theory with Geometry
Eckalbar, John C.
2006-01-01
The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…
Generative CAI in Analytical Geometry.
Uttal, William R.; And Others
A generative computer-assisted instruction system is being developed to tutor students in analytical geometry. The basis of this development is the thesis that a generative teaching system can be developed by establishing and then stimulating a simplified, explicit model of the human tutor. The goal attempted is that of a computer environment…
Stochastic Modelling of River Geometry
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Schaarup-Jensen, K.
1996-01-01
Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....
M. Deza; M. Laurent (Monique)
1997-01-01
htmlabstractCuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book offers a
Analogical Reasoning in Geometry Education
Magdas, Ioana
2015-01-01
The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…
Matter in toy dynamical geometries
Konopka, T.J.
2009-01-01
One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect
Complex Numbers and Plane Geometry
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 1. Complex Numbers and Plane Geometry. Anant R Shastri. General Article Volume 13 Issue 1 January 2008 pp 35-53. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/013/01/0035-0053. Keywords.
Learners engaging with transformation geometry
African Journals Online (AJOL)
Grade 12, learners would have been exposed to both visual and analytical strategies. The visual approach is one ... movement), dynamic imagery, memory images and pattern imagery. She found that concrete .... the visual and analytic modes of thinking when working with transformation geometry? We hope then to set out ...
General Relativity: Geometry Meets Physics
Thomsen, Dietrick E.
1975-01-01
Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…
Fan, Meiyong; Yang, Huimin; Zheng, Pengfei; Hu, Guohua; Yun, Binfeng; Cui, Yiping
2017-09-04
A graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide is proposed and analyzed. By embedding four graphene layers in the double-stripe silicon nitride waveguide and the graphene layers co-electrode design, the total metal-graphene contact resistance can be reduced 50% and as high as 30.6GHz modulation bandwidth can be achieved theoretically. The calculated extinction ratio and figure of merit are 0.1658dB/um and 9.7, respectively. And the required switching voltage from its minimum to maximum absorption state is 3.8180V and 780.50fJ/bit power consuming can be achieved. The proposed modulator can remedy the lack of high speed modulator on the passive silicon nitride waveguide.
Effect of an electric field on the properties of BN Möbius stripes
Energy Technology Data Exchange (ETDEWEB)
Lemos de Melo, J. [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Azevedo, S., E-mail: sazevedo@fisica.ufpb.br [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900 João Pessoa, PB (Brazil); Kaschny, J.R. [Instituto Federal da Bahia, Campus Vitória da Conquista, Av. Amazonas 3150, 45075-265 Vitória da conquista, BA (Brazil)
2014-09-15
In the present work, we present a first-principles study on the effects of an external electric field on the structural stability and electronic properties of boron nitride Möbius stripes with armchair and zigzag chirality. The calculation results indicate that the gap energy can be remarkably reduced by the application of an external field. Such reduction is in principle attributed to the occurrence of Stark effect, which significance depends on the orientation of the applied field relative to the stripe axis. Moreover, the electric field produces significant changes on dipole momentum of the structure and induces a negative shift on the calculated total energy, reducing the obtained formation energy. - Highlights: • The gap energy is remarkably reduced by the application of an external field. • The electric field produces significant changes on dipole momentum. • The field induces a negative shift on the total energy due to Stark effect.
On fast iterative mapping algorithms for stripe based coarse-grained reconfigurable architectures
Mehta, Gayatri; Patel, Krunalkumar; Pollard, Nancy S.
2015-01-01
Reconfigurable devices have potential for great flexibility/efficiency, but mapping algorithms onto these architectures is a long-standing challenge. This paper addresses this challenge for stripe based coarse-grained reconfigurable architectures (CGRAs) by drawing on insights from graph drawing. We adapt fast, iterative algorithms from hierarchical graph drawing to the problem of mapping to stripe based architectures. We find that global sifting is 98 times as fast as simulated annealing and produces very compact designs with 17% less area on average, at a cost of 5% greater wire length. Interleaving iterations of Sugiyama and global sifting is 40 times as fast as simulated annealing and achieves somewhat more compact designs with 1.8% less area on average, at a cost of only 1% greater wire length. These solutions can enable fast design space exploration, rapid performance testing, and flexible programming of CGRAs "in the field."
Patterson, Larissa B; Bain, Emily J; Parichy, David M
2014-11-06
Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation.
Effect of the tiger stripes on the deformation of Saturn's moon Enceladus
Souček, Ondřej; Hron, Jaroslav; Běhounková, Marie; Čadek, Ondřej
2016-07-01
Enceladus is a small icy moon of Saturn with active jets of water emanating from fractures around the south pole, informally called tiger stripes, which might be connected to a subsurface water ocean. The effect of these features on periodic tidal deformation of the moon has so far been neglected because of the difficulties associated with implementation of faults in continuum mechanics models. Here we estimate the maximum possible impact of the tiger stripes on tidal deformation and heat production within Enceladus's ice shell by representing them as narrow zones with negligible frictional and bulk resistance passing vertically through the whole ice shell. Assuming a uniform ice shell thickness of 25 km, consistent with the recent estimate of libration, we demonstrate that the faults can dramatically change the distribution of stress and strain in Enceladus's south polar region, leading to a significant increase of the heat production in this area.
International Nuclear Information System (INIS)
Miyakoshi, Hiroyuki; Kimura, Nobuyuki; Kamide, Hideki; Miyake, Yasuhiro
2003-03-01
A quantitative evaluation on thermal striping, in which temperature fluctuation due to convective mixing among jets causes thermal fatigue in structural components, is of importance for structural integrity and also reactor safety. The treasonable and safety design could be approved by taking account of decay of temperature fluctuation in fluid, during heat transfer from fluid to structure surface and thermal conduction in the structure. In this study, water experiment was performed for vertical and parallel triple jets along wall, those are cold jet in the center and hot jets on both sides. The local temperature and velocity were measured by movable thermocouples and particle image velocimetry (PIV). The both hot jets flowed leaning to the cold jet. The lean of the jets increased as the jets approached the wall. So the convective mixing region among the jets was shifted upstream near the wall. Temperature fluctuation intensity was dependent of the distance from the wall. Under isovelocity condition, prominent frequency component was observed in the power spectrum density of the temperature fluctuation at the furthest position from the wall. The power at the prominent component decreased as the jets approached the wall. Under non-isovelocity condition, on the other hand, the power spectrum density of temperature fluctuation was independent of the distance from the wall. Comparison of the second moment between of velocity PIV and laser Doppler velocimetry showed that the PIV system had high measurement accuracy. Under non-isovelocity condition, the normal components in the second-order moments of fluctuation were smaller than those under isovelocity condition. Normal components in the second-order moments in turbulence was dependent of the distance from the wall. (author)
Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.
2017-07-01
Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also
Jennifer S. Hunter
2009-01-01
Multicomponent aposematic warning signals are generally accepted to function as a deterrent to predatory attacks; however, the relative importance of specific visual cues used by wild predators to recognize defended animals is poorly understood. Here, I use naturally and reciprocally colored taxidermy models of striped skunks (Mephitis mephitis) and gray foxes (Urocyon cinereoargenteus) to explore the impact of aposematic coloration and body shape on the behavior of wild mammalian predators. ...
Effective genes for resistance to stripe rust and virulence of Puccinia ...
African Journals Online (AJOL)
The results revealed that stripe rust resistance genes Yr3, Yr5, Yr10, Yr15, Yr26, YrSP and YrCV were resistant, while Yr18 showed moderate susceptibility at all locations. Genes YrA-, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27 and gene combinations Opata (Yr27+Yr18) and Super Kauz (Yr9, Yr27, Yr18) were found susceptible.
1989-12-01
the sides (Werner 1980). Osteological vomer and paiatines (Hardy 1978). differences are also evident in the three species (Woolcott 1957; Harrell 1984...Percichthyidae) by means of osteological patterns, meristics and Holland, B.F., Jr., and G.F. Yelverton. 1973. morphometrics. Ph.D. Dissertation. Uni...1957. Comparative osteology Striped Bass Subcommittee of the House of of serranid fishes of the genus Roccus Representatives. 9 pp. (Mitchill). Copeia
Tiger Stripes and Cassini ISS High-Resolution Imaging of Enceladus
Helfenstein, Paul; Denk, T.; Giese, B.; McEwen, A. S.; Neukum, G.; Perry, J.; Porco, C. C.; Thomas, P. C.; Turtle, E.; Verbiscer, A.; Veverka, J.
2008-09-01
Deciphering the mechanisms of Enceladus’ plumes is one of the most important and challenging tasks for planetary science. Cassini has provided a wealth of data by remote and in-situ data collection, but fundamental details of the vents and their context remain elusive. Three flybys of Enceladus by Cassini in 2008, on August 11 (altitude: 50km), October 9 (30km), and October 31 (200 km) are designed to further our knowledge of Enceladus’ geology and geophysics. Anticipated data include images as good as 7 m/pixel of parts of the geologically active South Polar Terrain (SPT). We targeted six different known eruption sites (Spitale and Porco 2007, Nature 449, 695-697) along Cairo Sulcus, Baghdad Suclus, and Damascus Sulcus, as well as non-active portions of the the "tiger stripes" and bright grooved terrain in between. On each of the three flybys we also plan contiguous ISS broadband multi-spectral mosaics of the entire SPT region so that we can search for volcanically and tectonically driven temporal changes and construct detailed digital terrain maps. Previous images of the tiger stripes and other rift systems on Enceladus resolve geomorphic structures on hundred meter scales or larger. Within those resolution limits, tiger stripes are morphologically distinguished most strongly from comparably sized young looking rifts elsewhere on Enceladus by their prominent upturned flanks, the muted appearance of their surface relief, and their relative absence of distinct cliff faces, probably of solid ice along scarps. The anticipated new high-resolution images will provide critical structural details needed to identify the extent to which unique attributes of tiger stripes are caused by mantling by plume fallout, tectonic deformation, seismic disruption, or perhaps thermal processes. Here, we present a first analysis of the August 11 close flyby images.
Cytogenetics and stripe rust resistance of wheat-Thinopyrum elongatum hybrid derivatives.
Li, Daiyan; Long, Dan; Li, Tinghui; Wu, Yanli; Wang, Yi; Zeng, Jian; Xu, Lili; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Kang, Houyang
2018-01-01
Amphidiploids generated by distant hybridization are commonly used as genetic bridge to transfer desirable genes from wild wheat species into cultivated wheat. This method is typically used to enhance the resistance of wheat to biotic or abiotic stresses, and to increase crop yield and quality. Tetraploid Thinopyrum elongatum exhibits strong adaptability, resistance to stripe rust and Fusarium head blight, and tolerance to salt, drought, and cold. In the present study, we produced hybrid derivatives by crossing and backcrossing the Triticum durum-Th. elongatum partial amphidiploid ( Trititrigia 8801, 2 n = 6 × = 42, AABBEE) with wheat cultivars common to the Sichuan Basin. By means of cytogenetic and disease resistance analyses, we identified progeny harboring alien chromosomes and measured their resistance to stripe rust. Hybrid progenies possessed chromosome numbers ranging from 40 to 47 (mean = 42.72), with 40.0% possessing 42 chromosomes. Genomic in situ hybridization revealed that the number of alien chromosomes ranged from 1 to 11. Out of the 50 of analyzed lines, five represented chromosome addition (2 n = 44 = 42 W + 2E) and other five were chromosome substitution lines (2 n = 42 = 40 W + 2E). Importantly, a single chromosome derived from wheat- Th. elongatum intergenomic Robertsonian translocations chromosome was occurred in 12 lines. Compared with the wheat parental cultivars ('CN16' and 'SM482'), the majority (70%) of the derivative lines were highly resistant to strains of stripe rust pathogen known to be prevalent in China. The findings suggest that these hybrid-derivative lines with stripe rust resistance could potentially be used as germplasm sources for further wheat improvement.
Eliminating Vertical Stripe Defects on Silicon Steel Surface by L1/2 Regularization
Jing, Wenfeng; Meng, Deyu; Qiao, Chen; Peng, Zhiming
2011-01-01
The vertical stripe defects on silicon steel surface seriously affect the appearance and electromagnetic properties of silicon steel products. Eliminating such defects is adifficult and urgent technical problem. This paper investigates the relationship between the defects and their influence factors by classification methods. However, when the common classification methods are used in the problem, we cannot obtain a classifier with high accuracy. Byanalysis of the data set, we find that it is...
Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes
Kite, Edwin S.; Rubin, Allan M.
2016-04-01
Spacecraft observations suggest that the plumes of Saturn’s moon Enceladus draw water from a subsurface ocean, but the sustainability of conduits linking ocean and surface is not understood. Observations show eruptions from “tiger stripe” fissures that are sustained (although tidally modulated) throughout each orbit, and since the 2005 discovery of the plumes. Peak plume flux lags peak tidal extension by ˜1 rad, suggestive of resonance. Here, we show that a model of the tiger stripes as tidally flexed slots that puncture the ice shell can simultaneously explain the persistence of the eruptions through the tidal cycle, the phase lag, and the total power output of the tiger stripe terrain, while suggesting that eruptions are maintained over geological timescales. The delay associated with flushing and refilling of O(1)-m-wide slots with ocean water causes erupted flux to lag tidal forcing and helps to buttress slots against closure, while tidally pumped in-slot flow leads to heating and mechanical disruption that staves off slot freezeout. Much narrower and much wider slots cannot be sustained. In the presence of long-lived slots, the 106-y average power output of the tiger stripes is buffered by a feedback between ice melt-back and subsidence to O(1010) W, which is similar to observed power output, suggesting long-term stability. Turbulent dissipation makes testable predictions for the final flybys of Enceladus by Cassini. Our model shows how open connections to an ocean can be reconciled with, and sustain, long-lived eruptions. Turbulent dissipation in long-lived slots helps maintain the ocean against freezing, maintains access by future Enceladus missions to ocean materials, and is plausibly the major energy source for tiger stripe activity.
Indian Academy of Sciences (India)
Limit: (of a sequence) A point such that the points of the sequence eventually approach it to within any previously specified distance. Some of the Greek mathematicians were quite confused! For example, let us take an empty cup and put it under a tap. Assume that it is half full in a minute. It is then 3/4-th full in another half.
Indian Academy of Sciences (India)
Huygens, Leibnitz and Newton. (independently) formulated the notion of curvature of a curve. (This was developed by Serret-Frenet into a multiplicity of invariants for curves in higher dimensions. We will concentrate on the curvature defined by Huygens et al). A line then becomes a curve of curvature zero. It is always ...
Indian Academy of Sciences (India)
As in art, understanding is enhanced by doing. Readers are encour- aged to attempt the exercises scattered in the text. The Origin (s). Origin: the starting point of a .... role to play In modem mathematics. Address {or correspondence. Kapil H Paranjape,. Indian Statistical Institute,. 8th Mile, Mysore Road,. Bangalore 560 059 ...
Indian Academy of Sciences (India)
In the previous article the author examined curves and surfaces. One might hope to continue by analogy in many dimensions. The concept of working in many dimensions is so bewildering (yet today so matter-of-course) that it needed the genius ofBemhard Riemann to show us exactly how it can be done. In just one lecture ...
Numerical investigation on thermal stratification and striping phenomena in various coolants
International Nuclear Information System (INIS)
Zumao Yang; Muramatsu, Toshiharu
2000-02-01
It is important to study thermal stratification and striping phenomena for they can induce thermal fatigue failure of structures. This presentation uses the AQUA code, which has been developed in Japan Nuclear Cycle Development Institute (JNC), to investigate the characteristics of these thermal phenomena in water, liquid sodium, liquid lead and carbon dioxide gas. There are altogether eight calculated cases with same Richardson number and initial inlet hot velocity in thermal stratification calculations, in which four cases have same velocity difference between inlet hot and cold fluid, the other four cases with same temperature difference. The calculated results show: (1) The fluid's properties and initial conditions have considerable effects on thermal stratification, which is decided by the combination of such as thermal conduction, viscous dissipation and buoyant force, etc., and (2) The gas has distinctive thermal stratification characteristics from those of liquid because for horizontal flow in the transportation of momentum and energy, the drastic exchange usually happens at the hot-cold interface for liquid, however, the buoyancy and natural convection make the quick exchange position depart from the hot-cold interface for gas. In thermal striping analysis, only the first step work has been finished. The calculated results show: (1) the vertical flow has some difference in thermal stratification characteristics from those of horizontal flow, and (2) For deep thermal striping analysis in the calculated area, more attention should be paid to the center area along Z-direction for liquid and small velocity area for gas. (author)
LaDouceur, E E B; Anderson, M; Ritchie, B W; Ciembor, P; Rimoldi, G; Piazza, M; Pesti, D; Clifford, D L; Giannitti, F
2015-11-01
Aleutian disease virus (ADV, Amdovirus, Parvoviridae) primarily infects farmed mustelids (mink and ferrets) but also other fur-bearing animals and humans. Three Aleutian disease (AD) cases have been described in captive striped skunks; however, little is known about the relevance of AD in free-ranging carnivores. This work describes the pathological findings and temporospatial distribution in 7 cases of AD in free-ranging striped skunks. All cases showed neurologic disease and were found in a 46-month period (2010-2013) within a localized geographical region in California. Lesions included multisystemic plasmacytic and lymphocytic inflammation (ie, interstitial nephritis, myocarditis, hepatitis, meningoencephalitis, pneumonia, and splenitis), glomerulonephritis, arteritis with or without fibrinoid necrosis in several organs (ie, kidney, heart, brain, and spleen), splenomegaly, ascites/hydrothorax, and/or encephalomalacia with cerebral microangiopathy. ADV infection was confirmed in all cases by specific polymerase chain reaction and/or in situ hybridization. The results suggest that AD is an emerging disease in free-ranging striped skunks in California. © The Author(s) 2014.
Pathogen dynamics and morbidity of striped skunks in the absence of rabies.
Gehrt, Stanley D; Kinsel, Michael J; Anchor, Chris
2010-04-01
Parasites have the potential to influence the population dynamics of mammalian hosts, either as a single devastating pathogen or as a community effect. Striped skunks (Mephitis mephitis) are typically host to rabies, which often regulates population numbers. We assessed micro- and macroparasite dynamics in striped skunk populations in the absence of rabies, to determine if a single pathogen, or community, was responsible for a majority of skunk deaths. We monitored mortality due to pathogens, and prevalence of pathogens via serology and necropsy, in two populations of striped skunks in northern Illinois during 1998-2004. Transmissible pathogens requiring direct transmission (i.e., canine distemper virus, canine parvovirus) exhibited high annual variability in prevalence. In contrast, those pathogens employing a more indirect, environmental route of transmission (i.e., Leptospira interrogans and Toxoplasma gondii) appeared to exhibit relatively less annual variability in prevalence. Skunks were diagnosed with infections from an average of 4.08 (SD=2.52, n=32) species of endoparasites, with a range of 1-11. Macroparasite prevalence and intensity did not vary among seasons, or sex or age of host. Severe infections occurred with multiple parasite species, and patterns of aggregation suggested some parasite species, or more likely the parasite community, act as a limiting mechanism in skunk populations.
Summer habitat selection by striped bass, Morone Saxatilis, in Cherokee Reservoir, Tennessee, 1977
Energy Technology Data Exchange (ETDEWEB)
Waddle, H.R.; Coutant, C.C.; Wilson, J.L.
1980-02-01
Summer habitat selection patterns of 18 adult striped bass (Morone saxatilis) in Cherokee Reservoir were monitored with externally attached temperature-sensing acoustic or radio transmitters from June through September 1977. Mortalities of adult striped bass in this reservoir were hypothesized to be related to high summer temperatures and low dissolved oxygen (DO). The inhabited areas or refuges differed from noninhabited areas by maintaining temperatures less than or equal to 22 C and DO concentrations greater than 5 mg/liter. Total water hardness, pH, and water transparency were not significantly different among refuges and noninhabited areas. Movement of fish outside refuges occurred more frequently and for longer periods during June when the summer pattern of high temperatures and low DO was less severe. Fish experienced temperatures between 15 and 27 C with mean temperatures of individuals ranging from 18.5 to 22.0 C. Several tagged fish migrated outside the refuges and selected the lowest available temperature, generally near 21 C, even though DO concentrations at these temperatures were 3 mg/liter or less. Long-term survival of tagged and nontagged fish outside refuges was undetermined because no fish were tracked outside a refuge for more than 12 days without being lost. This study indicates that temperature strongly influences the behavior of striped bass and that adults of this species may have a thermal preferendum of approximately 21 C.
Eliminating Vertical Stripe Defects on Silicon Steel Surface by L1/2 Regularization
Directory of Open Access Journals (Sweden)
Wenfeng Jing
2011-01-01
Full Text Available The vertical stripe defects on silicon steel surface seriously affect the appearance and electromagnetic properties of silicon steel products. Eliminating such defects is adifficult and urgent technical problem. This paper investigates the relationship between the defects and their influence factors by classification methods. However, when the common classification methods are used in the problem, we cannot obtain a classifier with high accuracy. Byanalysis of the data set, we find that it is imbalanced and inconsistent. Because the common classification methods are based on accuracy-maximization criterion, they are not applicable to imbalanced and inconsistent data set. Thus, we propose asupport-degree-maximization criterion and anovel cost-sensitive loss function and also establish an improved L1/2 regularization approach for solution of the problem. Moreover, by employing reweighted iteration gradient boosting algorithm, we obtain a linear classifier with a high support degree. Through analyzing the classifier, we formulate a rule under which the silicon steel vertical stripe defects do not occur in the existing production environment. By applying the proposed rule to 50TW600 silicon steel production, the vertical stripe defects of the silicon steel products have been greatly decreased.
Stripes developed at the strong limit of nematicity in FeSe film
Li, Wei; Zhang, Yan; Deng, Peng; Xu, Zhilin; Mo, S.-K.; Yi, Ming; Ding, Hao; Hashimoto, M.; Moore, R. G.; Lu, D.-H.; Chen, Xi; Shen, Z.-X.; Xue, Qi-Kun
2017-10-01
A single monolayer of iron selenide grown on strontium titanate shows an impressive enhancement of superconductivity compared with the bulk, as well as a novel Fermi surface topology, extreme two-dimensionality, and the possibility of phonon-enhanced electron pairing. For films thicker than one unit cell, however, the electronic structure is markedly different, with a drastically suppressed superconductivity and strong nematicity appearing. The physics driving this extraordinary dichotomy of superconducting behaviour is far from clear. Here, we use low-temperature scanning tunnelling microscopy to study multilayers of iron selenide grown by molecular beam epitaxy, and find a stripe-type charge ordering instability that develops beneath the nematic state. The charge ordering is visible and pinned in the vicinity of impurities. And as it emerges in the strong limit of nematicity, it suggests that a magnetic fluctuation with a rather small wavevector may be competing with the ordinary collinear antiferromagnetic ordering in multilayer films. The existence of stripes in iron-based superconductors, which resemble the stripe order in cuprates, not only suggests that electronic anisotropy and correlation are playing an important role, but also provides a platform for probing the complex interactions between nematicity, charge ordering, magnetism and superconductivity in high-temperature superconductors.
Reduction of Uncorrelated Striping Noise—Applications for Hyperspectral Pushbroom Acquisitions
Directory of Open Access Journals (Sweden)
Christian Rogass
2014-11-01
Full Text Available Hyperspectral images are of increasing importance in remote sensing applications. Imaging spectrometers provide semi-continuous spectra that can be used for physics based surface cover material identification and quantification. Preceding radiometric calibrations serve as a basis for the transformation of measured signals into physics based units such as radiance. Pushbroom sensors collect incident radiation by at least one detector array utilizing the photoelectric effect. Temporal variations of the detector characteristics that differ with foregoing radiometric calibration cause visually perceptible along-track stripes in the at-sensor radiance data that aggravate succeeding image-based analyses. Especially, variations of the thermally induced dark current dominate and have to be reduced. In this work, a new approach is presented that efficiently reduces dark current related stripe noise. It integrates an across-effect gradient minimization principle. The performance has been evaluated using artificially degraded whiskbroom (reference and real pushbroom acquisitions from EO-1 Hyperion and AISA DUAL that are significantly covered by stripe noise. A set of quality indicators has been used for the accuracy assessment. They clearly show that the new approach outperforms a limited set of tested state-of-the-art approaches and achieves a very high accuracy related to ground-truth for selected tests. It may substitute recent algorithms in the Reduction of Miscalibration Effects (ROME framework that is broadly used to reduce radiometric miscalibrations of pushbroom data takes.
Defining and Verifying Research Grade Airborne Laser Swath Mapping (ALSM) Observations
Carter, W. E.; Shrestha, R. L.; Slatton, C. C.
2004-12-01
The first and primary goal of the National Science Foundation (NSF) supported Center for Airborne Laser Mapping (NCALM), operated jointly by the University of Florida and the University of California, Berkeley, is to make "research grade" ALSM data widely available at affordable cost to the national scientific community. Cost aside, researchers need to know what NCALM considers research grade data and how the quality of the data is verified, to be able to determine the likelihood that the data they receive will meet their project specific requirements. Given the current state of the technology it is reasonable to expect a well planned and executed survey to produce surface elevations with uncertainties less than 10 centimeters and horizontal uncertainties of a few decimeters. Various components of the total error are generally associated with the aircraft trajectory, aircraft orientation, or laser vectors. Aircraft trajectory error is dependent largely on the Global Positioning System (GPS) observations, aircraft orientation on Inertial Measurement Unit (IMU) observations, and laser vectors on the scanning and ranging instrumentation. In addition to the issue of the precision or accuracy of the coordinates of the surface points, consideration must also be given to the point-to-point spacing and voids in the coverage. The major sources of error produce distinct artifacts in the data set. For example, aircraft trajectory errors tend to change slowly as the satellite constellation geometry varies, producing slopes within swaths and offsets between swaths. Roll, pitch and yaw biases in the IMU observations tend to persist through whole flights, and created distinctive artifacts in the swath overlap areas. Errors in the zero-point and scale of the laser scanner cause the edges of swaths to turn up or down. Range walk errors cause offsets between bright and dark surfaces, causing paint stripes to float above the dark surfaces of roads. The three keys to producing
Probing bulk physics in the 5/2 fractional quantum Hall effect using the Corbino geometry
Schmidt, Benjamin; Bennaceur, Keyan; Bilodeau, Simon; Gaucher, Samuel; Lilly, Michael; Reno, John; Pfeiffer, Loren; West, Ken; Reulet, Bertrand; Gervais, Guillaume
We present two- and four-point Corbino geometry transport measurements in the second Landau level in GaAs/AlGaAs heterostructures. By avoiding edge transport, we are able to directly probe the physics of the bulk quasiparticles in fractional quantum Hall (FQH) states including 5/2. Our highest-quality sample shows stripe and bubble phases in high Landau levels, and most importantly well-resolved FQH minima in the second Landau level. We report Arrhenius-type fits to the activated conductance, and find that σ0 agrees well with theory and existing Hall geometry data in the first Landau level, but not in the second Landau level. We will discuss the advantages the Corbino geometry could bring to various experiments designed to detect the non-Abelian entropy at 5/2, and our progress towards realizing those schemes. The results of these experiments could complement interferometry and other edge-based measurements by providing direct evidence for non-Abelian behaviour of the bulk quasiparticles. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.
Coordinate geometry method for capturing and evaluating crown preparation geometry.
Tiu, Janine; Waddell, J Neil; Al-Amleh, Basil; Jansen van Vuuren, Wendy-Ann; Swain, Michael V
2014-09-01
A validated universal method requiring no human input is needed to capture and evaluate preparation geometries in a manner that can be used to see the correlation of different parameters. The purpose of this study was to present a method of capturing and evaluating crown preparation geometry. One manually machined acrylic resin block and 9 randomly selected preparations for ceramic complete crowns prepared by general dentists were selected and prepared. The specimens were scanned (3D scanner; Nobel Biocare), and buccolingual and mesiodistal cross section images were collected. The images were imported into digitizing software (Engauge Digitizer 4.1) to convert the outlines into x and y coordinates. Six points were chosen by using a set of algorithms, and the resulting parameters were calculated. The acrylic resin block was milled with a 12 degree total occlusal convergence (TOC) instrument producing a 12.83 degree TOC. For the other specimens, average TOC values ranged from 18 degrees to 52 degrees. The mean average margin width was 0.70 mm, and the mean average base dimension was 6.23 mm. The surface area/volume ratio, resistance length, and limiting taper were also calculated. The method described provides a basis for accurately evaluating preparation geometry without human input. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Impact of processing parameters on the LTCC channels geometry*
Directory of Open Access Journals (Sweden)
Macioszczyk Jan
2015-12-01
Full Text Available A great advantage of Low Temperature Co-fired Ceramics (LTCC yields the possibility of channel and air cavity fabrication. Such empty spaces have numerous applications, for example, in microfluidics, microwave techniques and integrated packaging. However, improper geometry of these structures can degrade the performance of the final device. The processing parameters recommended by the LTCC tape supplier are relevant for the production of multilayer circuits but not surface embedded channels and/or cavities. Thus, it is important to examine which factors of the fabrication process are the most significant. In our study, special attention has been paid to the geometric performance of the channel structure resulting from the applied processing parameters. Laser cutting parameters were checked to obtain the structures with great fidelity. The impact of an isostatic lamination on the quality of the final structure was analyzed. The influence of pressure and temperature of the lamination process on the channel geometry and tape shrinkage were examined. The performed experiments showed that some improvements in channel/cavity geometry may be achieved by optimizing the processing procedures. The microscopic observations combined with the Analysis of Variance (ANOVA showed which combinations of the processing parameters are the best for achieving a channel/cavity structure with the desired geometry.
Mudalal, S; Lorenzi, M; Soglia, F; Cavani, C; Petracci, M
2015-04-01
One of the consequences of intense genetic selection for growth of poultry is the recent appearance of abnormalities in chicken breast muscles, such as white striping (characterised by superficial white striations) and wooden breast (characterised by pale and bulged areas with substantial hardness). The aim of this study was to evaluate the quality traits of chicken fillets affected by white striping and wooden breast abnormalities. In two replications, 192 fillets were divided into the following four classes: normal (n=48; absence of any visual defects), white striping (n=48, presence of white striations), wooden breast (n=48; diffusely presence of hardened areas) and white striping/wooden breast (n=48; fillets affected by both abnormalities). Morphology, raw meat texture and technological properties were assessed in both unprocessed (pH, colour, drip loss, cooking loss and cooked meat shear force) and marinated meat (marinade uptake, purge loss, cooking loss and cooked meat shear force). Fillets affected by white striping, wooden breast or both abnormalities exhibited higher breast weights compared with normal fillets (305.5, 298.7, 318.3 and 244.7 g, respectively; Pmeat hardness compared with both normal and the white striping abnormality, for which there was no difference. Overall, the occurrence of the individual and combined white striping and wooden breast abnormalities resulted in substantial reduction in the quality of breast meat, although these abnormalities are associated with distinct characteristics. Wooden breast fillets showed lower marinade uptake and higher cooking losses than white-striped fillets for both unprocessed and marinated meats. On the other hand, white-striped fillets showed a moderate decline in marinade and cooking yield. Fillets affected by both abnormalities had the highest (Pmeat, drip loss, purge loss and cooked meat shear force were negligible or relatively low and of little practical importance. Thus, the presence of white
Galagarza, Oscar A; Kuhn, David D; Smith, Stephen A; Hrubec, Terry C
2017-09-01
Striped catfish (Pangasius hypophthalmus) is a valuable aquaculture fish species produced primarily in Southeast Asia. In the United States, it is bred as an ornamental species. Striped catfish has high productivity and great demand in numerous countries around the world, yet little is known about its normal physiology. The objective of this study was to establish hematologic and blood chemistry RIs for healthy juvenile Striped catfish. Blood samples were collected from 70 Striped catfish raised in recirculating aquaculture systems. Whole blood and plasma samples were analyzed for multiple hematologic and chemistry variables using standard techniques. The RIs for hematology were as follows: PCV 23.5-35.9%, MCV 106.3-156.6 fL, RBC count 1.79-2.75 × 10 6 cells/μL, thrombocytes 26,318-73,333 cells/μL, total WBC count 36,294-94,286 cells/μL, total lymphocytes 18,997-59,998 cells/μL, small lymphocytes 13,763-51,490 cells/μL, large lymphocytes 715-21,200 cells/μL, granulocytes 4504-18,291 cells/μL, and monocytes 0-7549 cells/μL. Plasma chemistry RIs were the following: ALP 32.7-74.6 U/L, AST 20.3-1235.8 U/L, sodium 135.2-147.7 mmol/L, potassium 3.3-5.0 mmol/L, chloride 120.1-133.6 mmol/L, calcium 2.7-3.6 mmol/L, magnesium 0.9-1.3 mmol/L, phosphorous 1.4-2.7 mmol/L, glucose 4.6-7.6 mmol/L, cholesterol 2.8-5.3 mmol/L, total protein 30-42 g/L, albumin 7-11 g/L, globulin 22-32 g/L, albumin:globulin ratio 0.27-0.37, creatinine 0-8 μmol/L, and osmolality 251.8-327.9 mOsm/kg. Reference intervals reported here can help veterinarians and fish health specialists monitor the health status of Striped catfish under recirculating aquaculture conditions for research, exhibition, and production purposes. © 2017 American Society for Veterinary Clinical Pathology.
The STRIPES trial--support to rural India's public education system.
Eble, Alex; Mann, Vera; Bhakta, Preetha; Lakshminarayana, Rashmi; Frost, Chris; Elbourne, Diana; Boone, Peter
2010-02-01
Performance of primary school students in India lags far below government expectations, and major disparity exists between rural and urban areas. The Naandi Foundation has designed and implemented a programme using community members to deliver after-school academic support for children in over 1,100 schools in five Indian states. Assessments to date suggest that it might have a substantial effect. This trial aims to evaluate the impact of this programme in villages of rural Andhra Pradesh and will compare test scores for children in three arms: a control and two intervention arms. In both intervention arms additional after-school instruction and learning materials will be offered to all eligible children and in one arm girls will also receive an additional 'kit' with a uniform and clothes. The trial is a cluster-randomised controlled trial conducted in conjunction with the CHAMPION trial. In the CHAMPION trial 464 villages were randomised so that half receive health interventions aiming to reduce neonatal mortality. STRIPES will be introduced in those CHAMPION villages which have a public primary school attended by at least 15 students at the time of a baseline test in 2008. 214 villages of the 464 were found to fulfil above criteria, 107 belonging to the control and 107 to the intervention arm of the CHAMPION trial. These latter 107 villages will serve as control villages in the STRIPES trial. A further randomisation will be carried out within the 107 STRIPES intervention villages allocating half to receive an additional kit for girls on the top of the instruction and learning materials. The primary outcome of the trial is a composite maths and language test score. The study is designed to measure (i) whether the educational intervention affects the exam score of children compared to the control arm, (ii) if the exam scores of girls who receive the additional kit are different from those of girls living in the other STRIPES intervention arm. One of the goals of
The working out of a design rule in case of structures submitted to thermal striping
International Nuclear Information System (INIS)
Lejeail, Y.
1994-01-01
Thermal striping is a complex phenomenon involving incomplete mixing of hot and cold jets of fluid near a component surface, thus submitted to random fast temperature fluctuations. Because of his nature, the zones where thermal striping can occur in a fast breeder reactor are well known; these areas can suffer fatigue damage. It has been studied by several authors and some thermomechanical design rules against this fatigue damage have been proposed. In the french point of view, the problem is the determination of the margin between the mean and the design strain controlled fatigue curves, giving the allowable maximum temperature range that a component can sustain during his life without crack initiation. The purpose of this paper is the presentation of literature results (particularly on uniaxial smooth specimens) concerning the effects of different factors such as surface finish, environment, weldments, ageing, scatter of fatigue results, prior high strain cycling...on the high temperature fatigue life, which are of first importance for the determination of design factors in case of thermal striping. The remaining question is the combination of these factors. For the analysis of thermal striping test results, it is of great interest and importance to compare the crack initiation cycles and to use a coherent strain for uniaxial and equibiaxial fatigue results, as we show in the interpretation of FAENA and SPLASH tests (performed respectively by Y. Bergamaschi and B. Marini). An analysis based on elastic calculations as proposed in the RCCMR design code gives a good correlation, despite the ambiguous choice of some coefficients in best fit analysis. This problem disappears entirely in case of high cycles/low temperature variations. Then we present a strategy for the accomplishment of simplified thermal striping tests on the FAENA sodium loop in view of acquiring a better design factor knowledge. With this experimental program, we intend to study the interaction of
Fractal geometry and computer graphics
Sakas, Georgios; Peitgen, Heinz-Otto; Englert, Gabriele
1992-01-01
Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with a...
Groups and Geometries : Siena Conference
Kantor, William; Lunardon, Guglielmo; Pasini, Antonio; Tamburini, Maria
1998-01-01
On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of f...
Code subspaces for LLM geometries
Berenstein, David; Miller, Alexandra
2018-03-01
We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.
Differential geometry and mathematical physics
Rudolph, Gerd
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Foliation theory in algebraic geometry
McKernan, James; Pereira, Jorge
2016-01-01
Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classificati...
Hyperbolic geometry for colour metrics.
Farup, Ivar
2014-05-19
It is well established from both colour difference and colour order perpectives that the colour space cannot be Euclidean. In spite of this, most colour spaces still in use today are Euclidean, and the best Euclidean colour metrics are performing comparably to state-of-the-art non-Euclidean metrics. In this paper, it is shown that a transformation from Euclidean to hyperbolic geometry (i.e., constant negative curvature) for the chromatic plane can significantly improve the performance of Euclidean colour metrics to the point where they are statistically significantly better than state-of-the-art non-Euclidean metrics on standard data sets. The resulting hyperbolic geometry nicely models both qualitatively and quantitatively the hue super-importance phenomenon observed in colour order systems.
Euclidean distance geometry an introduction
Liberti, Leo
2017-01-01
This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.
Confinement of nonneutral plasma in unconventional geometries
International Nuclear Information System (INIS)
Turner, L.
1990-01-01
Our interest in efficient storage of cold, nonneutral plasma has been motivated by the elegant studies on cryogenic nonneutral electron plasmas at UCSD and by the remarkable results obtained from the laser-cooled ion plasmas at the NIST, Boulder, Colorado. Also motivating our study is the perceived need to develop the most expedient means of storing antimatter, whether it be antiprotons for gravitational studies or positrons for a variety of physics experiments and diagnostic purposes. One of the most explored technologies of confining nonneutral plasmas is the Penning trap. The maximum number density of cold nonneutral plasma that can be stored in such a trap is B 2 /2μ 0 mc 2 , in which B 2 /2μ 0 is the (homogeneous) magnetic energy density and mc 2 is the rest energy of the stored charges. In this paper, we shall present a synopsis of the results of our theoretical exploration of the effect on this hydrostatic limit, the so-called ''Brillouin'' limit, of altering the geometry of the confining vacuum magnetic field while maintaining the field's azimuthal symmetry. In particular, we shall analyze equilibrium confinement by, first, a poloidal magnetic field, B 4 (r,z)r + B z (r,z)z, and second, a toroidal magnetic field, along with the concomitant electrostatic fields
Holographic thermalization in noncommutative geometry
Directory of Open Access Journals (Sweden)
Xiao-Xiong Zeng
2015-05-01
Full Text Available Gravitational collapse of a shell of dust in noncommutative geometry is probed by the renormalized geodesic length, which is dual to probe the thermalization by the two-point correlation function in the dual conformal field theory. We find that the larger the noncommutative parameter is, the longer the thermalization time is, which implies that the large noncommutative parameter delays the thermalization process. We also investigate how the noncommutative parameter affects the thermalization velocity and thermalization acceleration.
Needle decompositions in Riemannian geometry
Klartag, Bo'az
2017-01-01
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
Systematics of IIB spinorial geometry
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2005-01-01
We reduce the classification of all supersymmetric backgrounds of IIB supergravity to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This extends the work of [hep-th/0503046] to IIB supergravity. We give the expressions of the Killing spinor equations on all five types of spinors. In this way, the Killing spinor equations become a linear system for the fluxes, geometry and spacetime derivatives of...
Needle decompositions in riemannian geometry
Klartag, Bo'az
2017-01-01
The localization technique from convex geometry is generalized to the setting of Riemannian manifolds whose Ricci curvature is bounded from below. In a nutshell, the author's method is based on the following observation: When the Ricci curvature is non-negative, log-concave measures are obtained when conditioning the Riemannian volume measure with respect to a geodesic foliation that is orthogonal to the level sets of a Lipschitz function. The Monge mass transfer problem plays an important role in the author's analysis.
Turtle geometry the Python way
Battle, S.
2014-01-01
An introduction to coding using Python’s on-screen ‘turtle’ that can be commanded with a few simple instructions including forward, backward, left and right. The turtle leaves a trace that can be used to draw geometric figures. This workshop is aimed at beginners of all ages. The aim is to learn a smattering of programming and a little bit of geometry in a fun way.
Topics in modern differential geometry
Verstraelen, Leopold
2017-01-01
A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.
Geometry success in 20 minutes a day
LLC, LearningExpress
2014-01-01
Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr
Algebraic Geometry and Number Theory Summer School
Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk
2017-01-01
This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.
Number theory III Diophantine geometry
1991-01-01
From the reviews of the first printing of this book, published as Volume 60 of the Encyclopaedia of Mathematical Sciences: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such research for many years, is one of the best guides a reader can hope for. The book is full of beautiful results, open questions, stimulating conjectures and suggestions where to look for future developments. This volume bears witness of the broad scope of knowledge of the author, and the influence of several people who have commented on the manuscript before publication ... Although in the series of number theory, this volume is on diophantine geometry, and the reader will notice that algebraic geometry is present in every chapter. ... The style of the book is clear. Ideas are well explained, and the author helps the reader to pass by several technicalities. Reading and rereading this book I noticed that the topics ...
Introduction to geometry and relativity
2013-01-01
This book provides a lucid introduction to both modern differential geometry and relativity for advanced undergraduates and first-year graduate students of applied mathematics and physical sciences. This book meets an overwhelming need for a book on modern differential geometry and relativity that is student-friendly, and which is also suitable for self-study. The book presumes a minimal level of mathematical maturity so that any student who has completed the standard Calculus sequence should be able to read and understand the book. The key features of the book are: Detailed solutions are provided to the Exercises in each chapter; Many of the missing steps that are often omitted from standard mathematical derivations have been provided to make the book easier to read and understand; A detailed introduction to Electrodynamics is provided so that the book is accessible to students who have not had a formal course in this area; In its treatment of modern differential geometry, the book employs both a modern, c...
Aspects of differential geometry II
Gilkey, Peter
2015-01-01
Differential Geometry is a wide field. We have chosen to concentrate upon certain aspects that are appropriate for an introduction to the subject; we have not attempted an encyclopedic treatment. Book II deals with more advanced material than Book I and is aimed at the graduate level. Chapter 4 deals with additional topics in Riemannian geometry. Properties of real analytic curves given by a single ODE and of surfaces given by a pair of ODEs are studied, and the volume of geodesic balls is treated. An introduction to both holomorphic and Kähler geometry is given. In Chapter 5, the basic properties of de Rham cohomology are discussed, the Hodge Decomposition Theorem, Poincaré duality, and the Künneth formula are proved, and a brief introduction to the theory of characteristic classes is given. In Chapter 6, Lie groups and Lie algebras are dealt with. The exponential map, the classical groups, and geodesics in the context of a bi-invariant metric are discussed. The de Rham cohomology of compact Lie groups an...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Computational geometry for reactor applications
International Nuclear Information System (INIS)
Brown, F.B.; Bischoff, F.G.
1988-01-01
Monte Carlo codes for simulating particle transport involve three basic computational sections: a geometry package for locating particles and computing distances to regional boundaries, a physics package for analyzing interactions between particles and problem materials, and an editing package for determining event statistics and overall results. This paper describes the computational geometry methods in RACER, a vectorized Monte Carlo code used for reactor physics analysis, so that comparisons may be made with techniques used in other codes. The principal applications for RACER are eigenvalue calculations and power distributions associated with reactor core physics analysis. Successive batches of neutrons are run until convergence and acceptable confidence intervals are obtained, with typical problems involving >10 6 histories. As such, the development of computational geometry methods has emphasized two basic needs: a flexible but compact geometric representation that permits accurate modeling of reactor core details and efficient geometric computation to permit very large numbers of histories to be run. The current geometric capabilities meet these needs effectively, supporting a variety of very large and demanding applications
Directory of Open Access Journals (Sweden)
Zhuo Wang
2016-02-01
Full Text Available Modern satellite radiometers have many detectors with different relative spectral response (RSR. Effect of RSR differences on striping and the root cause of striping in sensor data record (SDR radiance and brightness temperature products have not been well studied. A previous study used MODTRAN radiative transfer model (RTM to analyze striping. In this study, we make efforts to find the possible root causes of striping. Line-by-Line RTM (LBLRTM is used to evaluate the effect of RSR difference on striping and the atmospheric dependency for VIIRS bands M15 and M16. The results show that previous study using MODTRAN is repeatable: the striping is related to the difference between band-averaged and detector-level RSR, and the BT difference has some atmospheric dependency. We also analyzed VIIRS earth view (EV data with several striping index methods. Since the EV data is complex, we further analyze the onboard calibration data. Analysis of Variance (ANOVA test shows that the noise along track direction is the major reason for striping. We also found evidence of correlation between solar diffuser (SD and blackbody (BB for detector 1 in M15. Digital Count Restoration (DCR and detector instability are possibly related to the striping in SD and EV data, but further analysis is needed. These findings can potentially lead to further SDR processing improvements.
Geometry of the vapor layer under a leidenfrost drop.
Burton, J C; Sharpe, A L; van der Veen, R C A; Franco, A; Nagel, S R
2012-08-17
In the Leidenfrost effect, liquid drops deposited on a hot surface levitate on a thin vapor cushion fed by evaporation of the liquid. This vapor layer forms a concave depression in the drop interface. Using laser-light interference coupled to high-speed imaging, we measured the radius, curvature, and height of the vapor pocket, as well as nonaxisymmetric fluctuations of the interface for water drops at different temperatures. The geometry of the vapor pocket depends primarily on the drop size and not on the substrate temperature.
The standing wave FEL/TBA: Realistic cavity geometry and energy extraction
International Nuclear Information System (INIS)
Kim, Jin-Soo, Henke, H.; Sessler, A.M.; Sharp, W.M.
1993-05-01
A set of parameters for standing wave free electron laser two beam accelerators (SWFEL/TBA) is evaluated for realistic cavity geometry taking into account beam-break-up and the sensitivity of output power to imperfections. Also given is a power extraction system using cavity coupled wave guides
SQUID microscopy of magnetic field induced in solar cell by laser spot irradiation
Nakatani, Yoshihiro; Hayashi, Tadayuki; Miyato, Yuji; Itozaki, Hideo
A solar cell with surface stripe electrodes was investigated by laser-superconducting quantum interference device microscopy (laser-SQUID microscopy) using two scan methods: the standard method and our new approach. In the standard method, the sample was raster scanned while the positions of the laser irradiation spot and the SQUID were fixed. The resulting magnetic images reflected some defects related to the grain boundaries on the solar cell. Background contrast fluctuations also exist in the images. For a better understanding of these fluctuations, we developed a method to investigate the photocurrent distributions on the solar cell around the laser spot. In this method, the sample was raster scanned with the laser spot fixed to a certain position by means of an optical fiber. We converted the magnetic images of the sample to photocurrent images. The results showed that the anisotropic photocurrent mainly flowed along the electrode near the laser spot rather than in the area around the spot. Therefore, the arrangement of the surface stripe electrodes affected the magnetic images obtained by the standard method in laser-SQUID microscopy.
InGaAs-GaAs strained layer quantum well heterostructure lasers
Coleman, J. J.; York, P. K.; Beernink, K. J.; Waters, R. G.
1990-05-01
InGaAs-GaAs strained layer quantum well heterostructure lasers offer availability of emission wavelengths in the range of 0.9-1.1 micron, otherwise largely inaccessible with semiconductor diode lasers. Here, InGaAs-GaAs strained layer lasers and laser arrays grown by atmospheric pressure metalorganic chemical vapor deposition (MOCVD) are described. The growth conditions for preparing these strained layer structures by MOCVD are presented, and time zero characterization of oxide defined stripe broad area lasers is outlined as a function of InGaAs layer composition and thickness, relative to the critical thickness. Various structures, grown throughout the 0.9-1.1-micron wavelength range and having In mole fractions from x = 0 - 0.50, are shown to have low broad area threshold current densities (Jth less than 200 A/sq cm) and other characteristics of unstrained quantum well heterostructure lasers. Recent results indicating highly reliable CW operation of oxide stripe strained quantum well heterostructure lasers are reviewed.
Raghavan, Ram K; Hanlon, Cathleen A; Goodin, Douglas G; Davis, Rolan; Moore, Michael; Moore, Susan; Anderson, Gary A
2016-04-01
Striped skunks are one of the most important terrestrial reservoirs of rabies virus in North America, and yet the prevalence of rabies among this host is only passively monitored and the disease among this host remains largely unmanaged. Oral vaccination campaigns have not efficiently targeted striped skunks, while periodic spillovers of striped skunk variant viruses to other animals, including some domestic animals, are routinely recorded. In this study we evaluated the spatial and spatio-temporal patterns of infection status among striped skunk cases submitted for rabies testing in the North Central Plains of US in a Bayesian hierarchical framework, and also evaluated potential eco-climatological drivers of such patterns. Two Bayesian hierarchical models were fitted to point-referenced striped skunk rabies cases [n = 656 (negative), and n = 310 (positive)] received at a leading rabies diagnostic facility between the years 2007-2013. The first model included only spatial and temporal terms and a second covariate model included additional covariates representing eco-climatic conditions within a 4 km(2) home-range area for striped skunks. The better performing covariate model indicated the presence of significant spatial and temporal trends in the dataset and identified higher amounts of land covered by low-intensity developed areas [Odds ratio (OR) = 3.41; 95% Bayesian Credible Intervals (CrI) = 2.08, 3.85], higher level of patch fragmentation (OR = 1.70; 95% CrI = 1.25, 2.89), and diurnal temperature range (OR = 0.54; 95% CrI = 0.27, 0.91) to be important drivers of striped skunk rabies incidence in the study area. Model validation statistics indicated satisfactory performance for both models; however, the covariate model fared better. The findings of this study are important in the context of rabies management among striped skunks in North America, and the relevance of physical and climatological factors as risk factors for skunk to human rabies transmission and
Directory of Open Access Journals (Sweden)
Ram K Raghavan
2016-04-01
Full Text Available Striped skunks are one of the most important terrestrial reservoirs of rabies virus in North America, and yet the prevalence of rabies among this host is only passively monitored and the disease among this host remains largely unmanaged. Oral vaccination campaigns have not efficiently targeted striped skunks, while periodic spillovers of striped skunk variant viruses to other animals, including some domestic animals, are routinely recorded. In this study we evaluated the spatial and spatio-temporal patterns of infection status among striped skunk cases submitted for rabies testing in the North Central Plains of US in a Bayesian hierarchical framework, and also evaluated potential eco-climatological drivers of such patterns. Two Bayesian hierarchical models were fitted to point-referenced striped skunk rabies cases [n = 656 (negative, and n = 310 (positive] received at a leading rabies diagnostic facility between the years 2007-2013. The first model included only spatial and temporal terms and a second covariate model included additional covariates representing eco-climatic conditions within a 4 km(2 home-range area for striped skunks. The better performing covariate model indicated the presence of significant spatial and temporal trends in the dataset and identified higher amounts of land covered by low-intensity developed areas [Odds ratio (OR = 3.41; 95% Bayesian Credible Intervals (CrI = 2.08, 3.85], higher level of patch fragmentation (OR = 1.70; 95% CrI = 1.25, 2.89, and diurnal temperature range (OR = 0.54; 95% CrI = 0.27, 0.91 to be important drivers of striped skunk rabies incidence in the study area. Model validation statistics indicated satisfactory performance for both models; however, the covariate model fared better. The findings of this study are important in the context of rabies management among striped skunks in North America, and the relevance of physical and climatological factors as risk factors for skunk to human rabies
Geometry in the Early Years: A Commentary
Dindyal, Jaguthsing
2015-01-01
The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…
Blow-Ups in Generalized Complex Geometry
van der Leer Duran, J.L.
2016-01-01
Generalized complex geometry is a theory that unifies complex geometry and symplectic geometry into one single framework. It was introduced by Hitchin and Gualtieri around 2002. In this thesis we address the following question: given a generalized complex manifold together with a submanifold, does
Global affine differential geometry of hypersurfaces
Li, An-Min; Zhao, Guosong; Hu, Zejun
2015-01-01
This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry- as differential geometry in general- has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.
Students' Misconceptions and Errors in Transformation Geometry
Ada, Tuba; Kurtulus, Aytac
2010-01-01
This study analyses the students' performances in two-dimensional transformation geometry and explores the mistakes made by the students taking the analytic geometry course given by researchers. An examination was given to students of Education Faculties who have taken the analytic geometry course at Eskisehir Osmangazi University in Turkey. The…
"WGL," a Web Laboratory for Geometry
Quaresma, Pedro; Santos, Vanda; Maric, Milena
2018-01-01
The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…
International Nuclear Information System (INIS)
Gibson, C.I.; Thatcher, T.O.; Apts, C.W.
1975-03-01
The CTM (Critical Thermal Maxima) values for coon stripe shrimp increase with an increase in shrimp size. The CTM values for coon strip shrimp increase with an increase in the rate at which the temperature is elevated. Coon stripe shrimp are more resistant to chlorine when acclimated and exposed at 7.5 0 C-10 0 C than (a) when acclimated at 7.5 0 C and exposed at 15 0 C or 20 0 C, or when (b) acclimated and exposed at 15 0 C which is near their optimum short-term growth temperature (16 0 C). The optimal growing temperature for (1 to 7g) coon stripe shrimp for periods up to one month is 16 0 C. Copper at a concentration of 0.04 mg/l effectively retards the growth of (1-2g) coon stripe shrimp at 16 0 C over a one-month period. Chlorine at a concentration of 0.18 mg/l is lethal to (1-2g) coon stripe shrimp at 16 0 C and reduced their growth at 0.08 mg/l over a one-month period. (U.S.)
Kuttappan, V A; Huff, G R; Huff, W E; Hargis, B M; Apple, J K; Coon, C; Owens, C M
2013-02-01
White striping is the white striation occasionally observed parallel to the direction of muscle fibers in broiler breast fillets and thighs at the processing plant. Broiler breast fillets can be categorized as normal (NORM), moderate (MOD), or severe (SEV) based on the degree of white striping. Histologically, SEV fillets are characterized by the highest degree of degeneration of muscle fibers along with fibrosis and lipidosis when compared with NORM. The present study was undertaken to compare the hematologic and serologic profiles of broilers with NORM and SEV degrees of white striping to get more information on the systemic changes associated with the condition. Day-old male broiler chicks of a commercial strain were grown on the same diet in 6 replicate pens (n = 32 birds/pen). Blood samples (5 mL) were collected from the wing vein of each bird on the day before processing for analyzing hematologic and serologic profiles. At 63 d, the birds were weighed and processed in a commercial inline processing system. Weight of the butterfly fillets, liver, and abdominal fat pad were recorded. Left-side fillets were scored to obtain the degree of white striping for each bird. Representative samples for NORM (n = 24) and SEV (n = 17) categories were selected to compare the hematologic and serologic profiles. The SEV birds had greater (P white striping. The elevated serum enzyme levels confirm the muscle damage associated with the degenerative myopathy in SEV birds.
Losa, Gabriele A
2009-01-01
The extension of the concepts of Fractal Geometry (Mandelbrot [1983]) toward the life sciences has led to significant progress in understanding complex functional properties and architectural / morphological / structural features characterising cells and tissues during ontogenesis and both normal and pathological development processes. It has even been argued that fractal geometry could provide a coherent description of the design principles underlying living organisms (Weibel [1991]). Fractals fulfil a certain number of theoretical and methodological criteria including a high level of organization, shape irregularity, functional and morphological self-similarity, scale invariance, iterative pathways and a peculiar non-integer fractal dimension [FD]. Whereas mathematical objects are deterministic invariant or self-similar over an unlimited range of scales, biological components are statistically self-similar only within a fractal domain defined by upper and lower limits, called scaling window, in which the relationship between the scale of observation and the measured size or length of the object can be established (Losa and Nonnenmacher [1996]). Selected examples will contribute to depict complex biological shapes and structures as fractal entities, and also to show why the application of the fractal principle is valuable for measuring dimensional, geometrical and functional parameters of cells, tissues and organs occurring within the vegetal and animal realms. If the criteria for a strict description of natural fractals are met, then it follows that a Fractal Geometry of Life may be envisaged and all natural objects and biological systems exhibiting self-similar patterns and scaling properties may be considered as belonging to the new subdiscipline of "fractalomics".
International Nuclear Information System (INIS)
Gervais, J.L.
1993-01-01
By analyzing the extrinsic geometry of two dimensional surfaces chirally embedded in C P n (the C P n W-surface), we give exact treatments in various aspects of the classical W-geometry in the conformal gauge: First, the basis of tangent and normal vectors are defined at regular points of the surface, such that their infinitesimal displacements are given by connections which coincide with the vector potentials of the (conformal) A n -Toda Lax pair. Since the latter is known to be intrinsically related with the W symmetries, this gives the geometrical meaning of the A n W-Algebra. Second, W-surfaces are put in one-to-one correspondence with solutions of the conformally-reduced WZNW model, which is such that the Toda fields give the Cartan part in the Gauss decomposition of its solutions. Third, the additional variables of the Toda hierarchy are used as coordinates of C P n . This allows us to show that W-transformations may be extended as particular diffeomorphisms of this target-space. Higher-dimensional generalizations of the WZNW equations are derived and related with the Zakharov-Shabat equations of the Toda hierarchy. Fourth, singular points are studied from a global viewpoint, using our earlier observation that W-surfaces may be regarded as instantons. The global indices of the W-geometry, which are written in terms of the Toda fields, are shown to be the instanton numbers for associated mappings of W-surfaces into the Grassmannians. The relation with the singularities of W-surface is derived by combining the Toda equations with the Gauss-Bonnet theorem. (orig.)
High brightness diode lasers controlled by volume Bragg gratings
Glebov, Leonid
2017-02-01
Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.
Stochastic geometry for image analysis
Descombes, Xavier
2013-01-01
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Geometry of physical dispersion relations
International Nuclear Information System (INIS)
Raetzel, Dennis; Rivera, Sergio; Schuller, Frederic P.
2011-01-01
To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.
COMPUTATIONAL GEOMETRY: THE CONVEXHULL PROBLEM
Ruiz Lizama, Edgar; Raffo Lecca, Eduardo
2014-01-01
The objective of this work is to show fundamental concepts of computational geometry and one solution for the convex hull problem, using the Graham algorithm. The authors use the Java language programming in order to implement the solution. El artículo tiene por objetivo presentar los conceptos fundamentales de la geometría computacional y mostrar una solución al problema del cerco convexo, utilizando el algoritmo de Graham. Para la implementación de la solución, los autores usan el lengua...
Moduli spaces in algebraic geometry
International Nuclear Information System (INIS)
Goettsche, L.
2000-01-01
This volume of the new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics contains the lecture notes of the School on Algebraic Geometry which took place at the Abdus Salam International Centre for Theoretical Physics from 26 July to 13 August 1999. The school consisted of 2 weeks of lecture courses and one week of conference. The topic of the school was moduli spaces. More specifically the lectures were divided into three subtopics: principal bundles on Riemann surfaces, moduli spaces of vector bundles and sheaves on projective varieties, and moduli spaces of curves
Porous media geometry and transports
Adler, Pierre
1992-01-01
The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr
Magnetoelectrostatic thruster physical geometry tests
Ramsey, W. D.
1981-01-01
Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.
Projective differential geometry of submanifolds
Akivis, M A
1993-01-01
In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are s
Tsallis Entropy for Geometry Simplification
Directory of Open Access Journals (Sweden)
Miguel Chover
2011-09-01
Full Text Available This paper presents a study and a comparison of the use of different information-theoretic measures for polygonal mesh simplification. Generalized measures from Information Theory such as Havrda–Charvát–Tsallis entropy and mutual information have been applied. These measures have been used in the error metric of a surfaces implification algorithm. We demonstrate that these measures are useful for simplifying three-dimensional polygonal meshes. We have also compared these metrics with the error metrics used in a geometry-based method and in an image-driven method. Quantitative results are presented in the comparison using the root-mean-square error (RMSE.
Number Theory, Analysis and Geometry
Goldfeld, Dorian; Jones, Peter
2012-01-01
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, th
Symplectic geometry of constrained optimization
Agrachev, Andrey A.; Beschastnyi, Ivan Yu.
2017-11-01
In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude.
Projective geometry and projective metrics
Busemann, Herbert
2005-01-01
The basic results and methods of projective and non-Euclidean geometry are indispensable for the geometer, and this book--different in content, methods, and point of view from traditional texts--attempts to emphasize that fact. Results of special theorems are discussed in detail only when they are needed to develop a feeling for the subject or when they illustrate a general method. On the other hand, an unusual amount of space is devoted to the discussion of the fundamental concepts of distance, motion, area, and perpendicularity.Topics include the projective plane, polarities and conic sectio
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
Photonic Molecule Lasers Revisited
Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.
2014-05-01
Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.
Periodic structures in pyrolytic laser-CVD of W from WCl6
Kargl, P. B.; Kullmer, R.; Bäuerle, D.
1993-08-01
In laser-induced direct writing of W stripes from an admixture of WCl6 and H2 non-coherent periodic structures have been observed. These structures appear only in the presence of small amounts of O2. Together with this structure formation, an oscillating change in the surface absorptivity and morphology has been observed. A special setup that permits to determine the absorptivity of deposits on a micrometer scale has been developed.
International Nuclear Information System (INIS)
Gordeev, N. Yu.; Novikov, I. I.; Kuznetsov, A. M.; Shernyakov, Yu. M.; Maximov, M. V.; Zhukov, A. E.; Chunareva, A. V.; Payusov, A. S.; Livshits, D. A.; Kovsh, A. R.
2010-01-01
The concept of a diffraction optical filter is used for prevention of high-order mode oscillation in a design of stripe laser diodes with an active region based on InAs/InGaAs quantum dots emitting in the 1.3-μm wavelength range grown on GaAs substrates. Incorporation of such a filter made it possible to increase the width of the stripe and obtain an output power as high as 700 mW with retention of a single-spatial-mode character of lasing.
Electron-beam pumping of visible and ultraviolet gas lasers
International Nuclear Information System (INIS)
Bradley, L.P.
1975-01-01
Several techniques for using direct electron-pumping of gas lasers are reviewed. The primary objective is to categorize pump geometries and to give guidelines for gun selection and pulser design. Examples and application of pump technology are given
New Laser and Non-Linear Optical Materials
National Research Council Canada - National Science Library
Chai, Bruce Huai-Tzu
1999-01-01
... glasses. However, even with crystalline laser host materials where the thermal conductivity is much higher, it is still necessary to use slab geometry for high power operations with high repetition...
Hightower, Joseph E.; Pollock, Kenneth H.
2013-01-01
Striped bass Morone saxatilis in inland reservoirs play an important role ecologically and in supporting recreational fishing. To manage these populations, biologists need information about abundance and mortality. Abundance estimates can be used to assess the effectiveness of stocking programs that maintain most reservoir striped bass populations. Mortality estimates can indicate the relative impact of fishing versus natural mortality and the need for harvest regulation. The purpose of this chapter is to evaluate tagging studies as a way of obtaining information about abundance and mortality. These approaches can be grouped into three broad categories: tag recapture, tag return, and telemetry. Tag-recapture methods are typically used to estimate population size and other demographic parameters but are often difficult to apply in large systems. A fishing tournament can be an effective way of generating tagging or recapture effort in large systems, compared to using research sampling only. Tag-return methods that rely on angler harvest and catch and release can be used to estimate fishing (F) and natural (M) mortality rates and are a practical approach in large reservoirs. The key to success in tag-return studies is to build in auxiliary studies to estimate short-term tagging mortality, short- and longterm tag loss, reporting rate, and mortality associated with catch and release. F and M can also be estimated using telemetry tags. Advantages of this approach are that angler nonreporting does not bias estimates and fish with transmitters provide useful ecological data. Cost can be a disadvantage of telemetry studies; thus, combining telemetry tags with conventional tag returns in an integrated analysis is often the optimal approach. In summary, tagging methods can be a powerful tool for assessing the effectiveness of inland striped bass stocking programs and the relative impact of fishing versus natural mortality
Root, J. Jeffrey; Shriner, Susan A.; Bentler, Kevin T.; Gidlewski, Thomas; Mooers, Nicole L.; Ellis, Jeremy W.; Spraker, Terry R.; VanDalen, Kaci K.; Sullivan, Heather J.; Franklin, Alan B.
2014-01-01
Background Striped skunks (Mephitis mephitis) are susceptible to infection with some influenza A viruses. However, the viral shedding capability of this peri-domestic mammal and its potential role in influenza A virus ecology are largely undetermined. Methodology/Principal Findings Striped skunks were experimentally infected with a low pathogenic (LP) H4N6 avian influenza virus (AIV) and monitored for 20 days post infection (DPI). All of the skunks exposed to H4N6 AIV shed large quantities of viral RNA, as detected by real-time RT-PCR and confirmed for live virus with virus isolation, from nasal washes and oral swabs (maximum ≤106.02 PCR EID50 equivalent/mL and ≤105.19 PCR EID50 equivalent/mL, respectively). Some evidence of potential fecal shedding was also noted. Following necropsy on 20 DPI, viral RNA was detected in the nasal turbinates of one individual. All treatment animals yielded evidence of a serological response by 20 DPI. Conclusions/Significance These results indicate that striped skunks have the potential to shed large quantities of viral RNA through the oral and nasal routes following exposure to a LP AIV. Considering the peri-domestic nature of these animals, along with the duration of shedding observed in this species, their presence on poultry and waterfowl operations could influence influenza A virus epidemiology. For example, this species could introduce a virus to a naive poultry flock or act as a trafficking mechanism of AIV to and from an infected poultry flock to naive flocks or wild bird populations. PMID:24489638
Schmitz, Mélodie; Ziv, Tamar; Admon, Arie; Baekelandt, Sébastien; Mandiki, Syaghalirwa N M; L'Hoir, Maëlenn; Kestemont, Patrick
2017-09-07
In the Mekong Delta, striped catfish are faced with chronic salinity stress related to saltwater intrusion induced by global climatic changes. In this study, striped catfish juveniles were submitted to a prolonged salinity stress (up to 10ppt) over three weeks followed by infection with a virulent bacterial strain, Edwardsiella ictaluri. Osmoregulatory parameters were investigated. In addition, a label free quantitative proteomics workflow was performed on kidneys. The workflow consisted of an initial global profiling of relative peptide abundances (by LC/MS, peak area quantification based on extracted ion currents), followed by identification (by MS/MS). The aim of the study was to highlight specific functional pathways modified during realistic salinity stress, particularly those involved in immunity. In kidney proteome, 2483 proteins were identified, of which 400 proteins were differentially expressed between the freshwater and the saline water conditions. Several pathways and functional categories were highlighted, mostly related to energy metabolism, protein metabolism, actin cytoskeleton, signaling, immunity, and detoxification. In particular, the responsiveness of proteins involved in small GTPases and Mitogen Activated Protein Kinase p38 signaling, phagolysosome maturation, and T-cells regulation is discussed. In the Mekong River Delta (Vietnam), striped catfish production is threatened by extensive sea water intrusion exacerbated by sea level rise. In fish, the effect of chronic exposure to salinity stress on immune capacities and response to disease has been poorly investigated. This study aims to highlight the main molecular changes occurring in the kidney during acclimation to salinity stress, particularly those involved in the immune defences of fish. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Lee, Baek Yeon
2007-01-01
This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.